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We define a notion of relative fundamental class that applies to
moduli spaces in gauge theory and in symplectic Gromov–Witten
theory. For universal moduli spaces over a parameter space, the rel-
ative fundamental class specifies an element of the Čech homology
of the compactification of each fiber; it is defined if the compactifi-
cation is “thin” in the sense that the boundary of the generic fiber
has homological codimension at least two.
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The moduli spaces that occur in gauge theories and in symplectic
Gromov–Witten theory are often orbifolds that can be compactified by
adding “boundary strata” of lower dimension. Often, it is straightforward
to prove that each stratum is a manifold, but more difficult to prove “collar
theorems” that describe how these strata fit together. The lack of collar the-
orems is an impediment to applying singular homology to the compactified
moduli space, and in particular to defining its fundamental homology class.
The purpose of this paper is to show that collar theorems are not needed
to define a (relative) fundamental class as an element of Čech homology for
families of appropriately compactified manifolds.

One can distinguish two types of homology theories. Type I theories,
exemplified by singular homology, are based on finite chains and are func-
torial under continuous maps. Type II theories, exemplified by Borel-Moore
singular homology, are based on locally finite (possibly infinite) chains, and
are functorial under proper continuous maps. We will use two theories of the
second type: (type II) Steenrod homology sH∗ and (type II) Čech homol-
ogy Ȟ∗. These have two features that make them especially well-suited for
applications to compactified moduli spaces:

(1) For any closed subset A of a locally compact Hausdorff space X,
the relative group sHp(X,A) is identified with sHp(X \A). As Massey notes
[Ma2, p. vii]:

. . . one does not need to consider the relative homology or co-
homology groups of a pair (X,A); the homology or cohomology
groups of the complementary space X −A serve that function.
In many ways these “single space” theories are simpler than
the usual theories involving relative homology groups of pairs.
The analog of the excision property becomes a tautology, and
never needs to be considered. It makes possible an intuitive and
straightforward discussion of the homology and cohomology of a
manifold in the top dimension, without any assumption of dif-
ferentiability, triangulability, compactness, or even paracompact-
ness!

(2) Čech homology satisfies a “continuity property” ((1.10) below) that
allows one to define relative fundamental classes by a limit process.
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We briefly review Steenrod and Čech homology in Section 1. Then, in
Section 2, we apply Property (1) to manifolds M that admit compactifica-
tions M whose “boundary” M \M is “thin” in the sense that it has homo-
logical codimension at least 2. There may be many such compactifications.
If M is oriented and d-dimensional, every thin compactification carries a
fundamental class

[M ] ∈ sHd(M ;Z)

in Steenrod homology. This class pushes forward under maps M → Y that
extend continuously over M , and many properties of fundamental classes of
manifolds continue to hold.

We next enlarge the setting by considering thinly compactified families.
We consider a proper continuous map

(0.1)

M

π
��
P

from a Hausdorff space to a locally path-connected Baire metric space whose
generic fiber is a thin compactification in the sense of Section 2. More pre-
cisely, as in Definition 3.1, we call (0.1) a “relatively thin family” if there
is a Baire second category subset P∗ of P such that (i) the fiber Mp over
each p ∈ P∗ is a thin compactification of a d-dimensional oriented manifold,
and (ii) a similar condition holds for a dense set of paths in P. Then the
fiber over each p ∈ P∗ has a fundamental class, which we now regard as an
element of Čech homology (see Lemma 1.1). Because P∗ is dense, a limit-
ing process using Property (2) then yields a class — now called a relative
fundamental class — in the Čech homology of every fiber of π. This impor-
tant fact, stated as Extension Lemma 3.4, is used repeatedly in subsequent
arguments. We then give a precise definition of a relative fundamental class
(Definition 4.1) and prove:

Theorem 4.2. Every thinly compactified family π :M→ P admits a unique
relative fundamental class.

The end of Section 4 explains how a relative fundamental class yields nu-
merical invariants associated to the family.

Section 5 describes how relatively thin families arise from Fredholm
maps. Suppose that π :M→ P is a Fredholm map between Banach mani-
folds with index d. A “Fredholm-stratified thin compactification” is an exten-
sion of π to a proper map π :M→ P such that the boundary S =M\M
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is stratified by Banach manifolds Sα so that, for each α, π restricts to a
Fredholm map Sα → P of index at most d− 2 (see Definition 5.2). The
Sard-Smale theorem implies that such compactifications fit into the context
of Section 4:

Lemma 5.3. A Fredholm-stratified thin family is a relatively thin family.

Section 6 describes how a relative fundamental class on one thinly com-
pactified family extends or restricts to relative fundamental classes on related
families.

The remaining sections give examples. In each example, we show that the
relevant moduli space admits a Fredholm-stratified thin compactification.
Lemma 5.3 and Theorem 4.2 then immediately imply the existence of a
relative fundamental class.

Sections 7 and 8 apply these ideas to Donaldson theory. Given an ori-
ented Riemannian four-manifold (X, g), one constructs moduli spacesMk(g)
of g-anti-self-dual U(2)-connections. Donaldson’s polynomial invariants are
defined by evaluating certain natural cohomology classes on Mk(g) for a
generic g. We show that results already present in Donaldson’s work imply
the existence of relative fundamental classes for the Uhlenbeck compactifi-
cation Mk(g) for any metric.

Sections 9 and 10 give applications to Gromov–Witten theory. Here the
central object is the moduli space of stable maps into a closed symplectic
manifold (X,ω), viewed as a family

(0.2) MA,g,n(X)→ JV

over the space of Ruan-Tian perturbations, as described in Section 9. Again,
the theme is that many results in the literature can be viewed as giving
conditions under which there exist thin compactifications of the Gromov–
Witten moduli spaces (0.2) over JV, or over some subset of JV. In these
situations, the results of Sections 2–6 produce a relative fundamental class
over a subset of JV. Section 10 presents two examples: the moduli space of
somewhere-injective J-holomorphic maps, and the moduli space of domain-
fine (J, ν)-holomorphic maps.

We note that John Pardon, building on the work of McDuff and
Wehrheim [MW], has constructed a virtual fundamental class on the space
of stable maps for any genus and any closed symplectic manifold [Pd]. While
Pardon’s approach is different from the one presented here, both produce
classes in the dual of Čech cohomology, and we expect that they are equal
whenever both are defined.
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1. Steenrod and Čech homologies

Expositions of Steenrod homology are surprisingly hard to find in the liter-
ature. We will use the type II version of Steenrod homology that is based on
“infinite chains”, as presented in Chapter 4 of W. Massey’s book [Ma2]. We
call this simply “Steenrod homology” and denote it by sH∗ (Massey’s nota-
tion is H∗ in Chapters 4-9 and H∞∗ in Chapters 10 and 11). For background,
see also [Ma1], [Mil], and the introduction to [Ma2].

Steenrod homology with abelian coefficient group G assigns, for each
integer p, an abelian group sHp(X) = sHp(X;G) to each locally compact
Hausdorff space X, and a homomorphism f∗ : sHp(X)→ sHp(Y ) to each
proper continuous map. The axioms for this homology theory [Ma2, p. 86]
include:

• For each open subset U ⊆ X and each p, there is a natural “restriction”
map

(1.1) ρX,U : sHp(X)→ sHp(U).

• For each closed set ι : A ↪→ X, there is a natural long exact sequence

(1.2) · · · −→ sHp(A)
i∗−→ sHp(X)

ρ−→ sHp(X −A)
∂−→ sHp−1(A) −→ · · ·

• If X is the union of disjoint open subsets {Xα}, then the inclusions
ια : Xα → X induce monomorphisms in homology, and sHp(X) is the
cartesian product

(1.3)
sHp(X) =

∏
α

(ια)∗
sHp(Xα).

• For any inverse system {· · · → Y3 → Y2 → Y1} of compact metric
spaces with limit Y , the maps Y → Yα induce a natural exact sequence
[Mil, Theorem 4]

(1.4) 0 −→ lim1 [sHp+1(Yα;G)] −→ sHp(Y ;G) −→ lim←−
sHp(Yα;G) −→ 0.

The corresponding cohomology theory is Alexander-Spanier cohomology
with compact support. For compact Haudorff spaces, this is isomorphic to
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both Alexander-Spanier and Čech cohomology Ȟ∗ [Sp, p. 334], and there is
a universal coefficient theorem [Ma2, Cor. 4.18],

0 −→ Ext(Ȟp+1(M ;Z), G) −→ sHp(M ;G) −→ Hom(Ȟp(M,Z), G) −→ 0.

In Sections 1–4, the term “manifold”, or “topological manifold” for em-
phasis, of dimension d, means a Hausdorff space in which each point has an
open neighborhood homeomorphic to Rd. Any further assumptions (such as
compactness, connectedness, or second countability) will be explicitly spec-
ified as needed. Orientations can be defined as in [Ma2, §3.6]. One has the
following facts for any oriented d-dimensional topological manifold and any
abelian coefficient group G:

• For all p > d,

(1.5) sHp(M) = 0.

• For each topological d-ball B in a connected component Mα of M ,

(1.6) sHd(B;G) ∼= G

and

(1.7) ρBMα
: sHd(Mα)→ sHd(B) is an isomorphism.

• The orientation determines a fundamental class [M ] ∈ sHd(M ;Z) such
that for each open ball B ⊆M , regarded as a manifold with the in-
duced orientation,

ρBM [M ] = [B].

More generally, if N is an open subset of M with the induced orienta-
tion, then

(1.8) ρNM [M ] = [N ].

• If M has components {Mα}, the fundamental class is given under the
isomorphism (1.3) by

(1.9) [M ] =
∏
α

[Mα].

For proofs, see [Ma2], Theorems 2.13 and 3.21a, page 112, and Lemma 11.6.
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Note that (1.6) shows a key difference between type I and type II homol-
ogy theories: in a type II homology, a ball B ⊆ Rd has a fundamental class.
This, as well as the existence of the restriction map (1.1), stem from the fact
that type II homology is constructed using chains that are dual to compactly
supported cochains. For the same reason, type II homology is invariant only
under proper homotopies.

In Section 2, we work exclusively with Steenrod homology. In Section 3,
where we consider families of spaces, we pass instead to Čech homology,
because it satisfies the following

Continuity Property. For every inverse system of compact Hausdorff
spaces as in (1.4), the maps Y → Yα induce a natural isomorphism

(1.10) Ȟ∗(Y ;G)
∼=−→ lim←− Ȟ∗(Yα;G)

[ES, pages 260-261].

In general, Steenrod homology does not satisfy the continuity property
(it satisfies (1.4) instead), and Čech homology does not satisfy the exactness
axiom. However, for every compact Hausdorff space X, abelian group G, and
commutative ring R, there are natural maps

(1.11) sHp(X;G) −→ Ȟp(X;G) and Ȟp(X;R) −→ Ȟp(X;R)∨,

where Ȟp(X;R)∨ = Hom(Ȟp(X;R), R) is the dual to Čech cohomology (cf.
Remark 5.0.2 in [Pd]). Furthermore, when restricted to compact metric
spaces and rational coefficients, both arrows in (1.11) are isomorphisms (the
first by Milnor’s uniqueness theorem [Mil]), giving a theory that is both
exact and continuous (cf. [ES, p. 233]).

Lemma 1.1. Let Ȟ∗(X) denote one of the three possibilities:

(1.12) Ȟ∗(X) =


Ȟ∗(X;Z) Čech homology, or

Ȟ∗(X;Z)∨ Dual Čech cohomology, or

Ȟ∗(X;Q) Rational Čech homology.

Then there is a natural transformation sH∗(X;Z)→ Ȟ∗(X) defined on the
category of compact Hausdorff spaces, and Ȟ∗ satisfies the Continuity Prop-
erty (i.e. (1.10) holds with Ȟ∗ replaced by Ȟ∗).
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Proof. For any abelian group G, Čech homology satisfies (1.10) while, with
the same notation, Čech cohomology satisfies

(1.13) Ȟp(Y,Z) = lim−→
α

Ȟp(Yα;Z)

[ES, pages 260-261]. Hence by Proposition 5.26 in [Ro],

Ȟp(Y ;Z)∨ = Hom(lim−→
α

Ȟp(Yα;Z),Z))

= lim←−
α

Hom(Ȟp(Yα;Z),Z) = lim←−
α

Ȟp(Yα;Z)∨.

�

Each of the possibilities in Lemma 1.1 pairs with Čech cohomology; there
is no longer any need for Alexander-Spanier cohomology. Čech cohomology,
of course, is different from singular cohomology but, for any G and any
paracompact Hausdorff space X, there is a natural map

(1.14) Ȟp(X;G)→ Hp
sing(X;G)

that is an isomorphism if X is a manifold, or more generally if X is locally
contractible [Sp, Corollaries 6.8.8 and 6.9.5].

2. Thin compactifications

In Steenrod homology with integer coefficients, oriented open manifolds M
have a fundamental class, but this class is of limited use because it does not
push forward under general continuous maps. This deficiency can be recti-
fied by considering maps that extend continuously over a compactification
M = M ∪ S of M , and showing that the fundamental class [M ] ∈ sH∗(M)
extends canonically to a class [M ] in sH∗(M). Many such compactifications
are possible; making S larger allows more maps to extend continuously to
M , but making S too large interferes with the fundamental class. Defini-
tion 2.1 identifies a class of compactifications — “thin compactifications”
— that is appropriate for working with fundamental classes. These have the
form

M = M ∪ S

where S is a space of “homological codimension 2”. There are no assumptions
about differentiability or about how M and S fit together, other than the
requirement that M is a compact Hausdorff space.
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Definition 2.1. Let M be an oriented d-dimensional topological manifold.
A thin compactification of M is a compact Hausdorff space M containing
M such that the complement S = M \M (the “singular locus”) is a closed
subset of codimension 2 in the sense that

(2.1) sHp(S) = 0 ∀ p > d− 2.

Every compact manifold is a thin compactification of itself (with S
empty), and for each oriented manifold of finite dimension d ≥ 2, the 1-
point compactification is a thin compactification. Further examples arise
from stratified spaces of the following type (as was communicated to us by
both J. Morgan and J. Pardon).

Lemma 2.2 (Stratified thin compactification). Suppose that an ori-
ented d-dimensional topological manifold M is a subset of a compact Haus-
dorff space M that, as a set, is a disjoint union

(2.2) M = M ∪
⋃
k≥2

Sk,

where for each k ≥ 2, Sk is a manifold of dimension at most d− k, and
Tk :=

⋃
i≥k Si is closed. Then M is a thin compactification of M .

Proof. By induction on k, we will show that sHp(Tk) = 0 for all p > d− k,
which implies that the singular set S = T2 satisfies (2.1). The induction
starts with k = d+ 1 (Td+1 is empty) and descends. For p > d− (k − 1), we
have dimSk−1 ≤ d− (k − 1) < p+ 1, so sHp+1(Sk−1) = 0. The long exact
sequence

→ sHp+1(Sk−1)→ sHp(Tk−1)→ sHq(Tk)→

and the induction assumption then imply that sHp(Tk−1) = 0, as required.
�

In practice, singular strata are usually unions of a large number of strata
Sα. One must form the Sk of (2.2) as unions of the Sα and verify that
Sk \ Sk−1 are manifolds. One way of doing this is described in Lemma 5.4.

Example 2.3. (a) The closure V of a smooth quasi-projective variety V ⊂
PN is a thin compactification.

(b) For a nodal complex curve C, the regular part M = Creg can be thinly
compactified in three ways: by its 1-point compactification, by C, and
by its normalization C̃, which may be disconnected.
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(c) Define an infinite chain of 2-spheres as follows. For each n = 1, 2, . . . , let
pn be the point ( 1

n , 0, 0) in R3. Let Sn be the sphere with center qn =
1
2(pn + pn+1) and radius Rn = |pn − qn| with the two points pn and pn+1

removed. Then M =
⋃
Sn is an embedded 2-manifold in R3, and M =

M ∪ S is a thin compactification with a singular set S =
⋃
pn ∪ (0, 0, 0)

of dimension zero.

(d) In contrast, M =
{

1
n |n ∈ Z

}
⊂ R is a 0-manifold, but its compactifica-

tion M ∪ {0} is not thin.

We now come to the key point of these definitions: in Steenrod homology,
the fundamental class of an oriented manifold M extends to every thin
compactification.

Theorem 2.4. Let M be an oriented d-dimensional manifold with funda-
mental class [M ]. Every thin compactification M of M has a fundamental
class

[M ] ∈ sHd(M ;Z)

uniquely characterized by the requirement that

(2.3) ρM ([M ]) = [M ],

where ρM : sHd(M ;Z)→ sHd(M ;Z) is the map (1.1).

Proof. The exact sequence (1.2) for the closed subset A = S of M , together
with (2.1), implies that the map

(2.4) ρM : sH`(M)
∼=−→ sH`(M)

is an isomorphism for all ` ≥ d. Taking ` = d shows that there is a unique
class [M ] satisfying (2.3). �

In general, a manifold M has many thin compactifications, each with a
fundamental class related to [M ] by (2.3). If M is one such thin compactifi-
cation with singular locus S, and Z ⊂M is a closed subset such that Z ∪ S
has homological codimension 2, then M is also a thin compactification of
M \ Z, and [M \ Z] = [M ]. In this sense, one can ignore sets of codimen-
sion 2 in computations with fundamental classes.
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Example 2.5. For two thin compactifications M1 and M2 of the same d-
dimensional manifold M , there are isomorphisms ρi : sHd(M i)→ sHd(M),
as in (2.4), and the composition

ρ−1
2 ◦ ρ1 : sHd(M1)→ sHd(M2)

takes [M1] to [M2]. This is true even when there is no continuous map from
M1 to M2. If there is a map f : M1 →M2, then f∗[M1] = [M2] by the
naturality of ρ. In particular:

(a) Let π : MZ →M be the blowup of a closed complex manifold M along
a complex submanifold Z. Then M and MZ are two different thin com-
pactifications of M \ Z, and π∗[MZ ] = [M ].

(b) More generally, a birational map X ⇢ Y between complex projective
varieties induces an identification of [X] with [Y ].

(c) If dimM ≥ 2, every thin compactification M has a map p to the 1-point
compactification M+, and p∗[M ] = [M+].

The fundamental class of a manifold M need not push forward under a
general continuous map f : M → X. However, if f extends to a continuous
map f : M → X from some thin compactification M of M , then f is proper,
so induces a map f∗ in Steenrod homology:

sHd(M)
f∗

((
ρ ∼=
��

sHd(M) // sHd(X).

In this situation, [M ] corresponds to [M ] by (2.3), and the class f∗([M ]) ∈
sHd(X) serves as a surrogate for f∗[M ]. Alternatively, one can take a Čech
class α ∈ Ȟd(X) and evaluate f ∗α on the image of [M ] under (1.11).

2.1. Covering maps

The isomorphism (2.4) implies several statements about how fundamental
classes behave under covering maps.

Lemma 2.6. Suppose that f : M → N is a continuous map between thinly
compactified oriented manifolds. If f restricts to a degree ` oriented covering
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f : M → N , then

(2.5) f∗[M ] = ` [N ].

More generally, if N has components {Nα} and f restricts to a degree `α
cover over some nonempty open ball Uα in each Nα then, in the notation of
(1.3) and (1.9),

(2.6) f∗[M ] =
∏
α

`α [Nα].

Here `α = 0 if f−1(Uα) is empty.

Proof. First assume that M and N are both connected. Fix an open ball
U ⊆ N so that f−1(U) is the disjoint union of ` open balls V1, . . . , V`. In
this situation, there is an isomorphism ρU : sHd(N)→ sHd(U) as in (1.7),
and similar isomorphisms ρi : sHd(M)→ sHd(Vi) for each i. These fit into a
commutative diagram

sHd(M)

f∗
��

∼=
ρM
// sHd(M)

f∗
��

(ρ1,...,ρ`)
//
⊕

i
sHd(Vi)

f∗
��

∼= // Z⊕ · · · ⊕ Z

ϕ

��
sHd(N)

∼=
ρN
// sHd(N)

∼=
ρU

// sHd(U)
∼= // Z

where ϕ(a1, . . . , a`) =
∑
ai, where ρM and ρN are isomorphisms by (2.4),

and where the first two squares commute by the naturality of ρ. Restricting
the diagram to generators gives (2.5).

In general, for each component Nα of N , f−1(Uα) is the disjoint union
of components Vαβ, and (2.5) applies to each restriction fαβ = f |Vαβ , and
the homologies of M and N are cartesian products as in (1.3). This implies
(2.6) with `α =

∑
β deg fαβ, and (2.5) if all `α are equal to `. �

Example 2.7. Lemma 2.6 applies to branched covers of complex analytic
varieties.

2.2. Components

Suppose that an oriented manifold M has finitely many connected compo-
nents Mα, and that M is a thin compactification of M with singular locus
S. We then have:
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Lemma 2.8. For each α, Mα = Mα ∪ S is a thin compactification of Mα,
and

(2.7) [M ] =
∑
α

[Mα].

Proof. The first statement holds because Mα = Mα ∪ S is a closed, hence
compact, subset of M and S satisfies (2.1). The disjoint union

⊔
Mα is

therefore another thin compactification ofM , and [
⊔
Mα] =

∑
α[Mα]. More-

over, the identity M →M extends to a continuous map ι :
⊔
Mα →M .

Lemma 2.6 then gives ι∗[
⊔
Mα] = [M ], and hence (2.7). �

2.3. Thin compactifications with boundary

It is useful to extend the notion of thin compactifications to manifolds M
with boundary ∂M .

Definition 2.9. A thin compactification of (M,∂M) is a compact Haus-
dorff pair (M,∂M) containing (M,∂M) such that

(i) S = M \M is a closed subset of M of codimension 2,

(ii) S′ = ∂M \ ∂M is a closed subset of ∂M of codimension 2, and

(iii) S′ ⊆ S.

Note that (ii) implies that ∂M is a thin compactification of ∂M , while
(iii) implies that the interior M0 = M \ ∂M is a subset of M \ ∂M and that
∂M = M ∩ ∂M . The exact sequence (1.2) of such a pair (∂M,M) is, in part,

(2.8) sHd(M)
ρ−→ sHd(M \ ∂M)

∂−→ sHd−1(∂M)
ι∗−→ sHd−1(M).

When M is oriented, there is an induced orientation on ∂M , and the interior
M0 carries a fundamental class [M0] = [M \ ∂M ] ∈ Hd(M

0). This is related
to the fundamental class [∂M ] of ∂M by

(2.9) ∂[M0] = [∂M ] ∈ sHd−1(∂M),

where ∂ is the boundary operator in the sequence (1.2) for the pair (M,∂M)
(see [Ma2, Theorem 11.8], being mindful of orientations and noting the
change of notation Hp 7→ H∞p on page 302).
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Lemma 2.10. A thin compactification (M,∂M) of an oriented d-
dimensional manifold with boundary (M,∂M) has a natural fundamental
class [M ] ∈ sHd(M \ ∂M) such that, for the maps in (2.8),

(2.10) a) ∂[M ] = [∂M ] and b) ι∗[∂M ] = 0.

Furthermore, ρ′[M ] = [M0] under the restriction to M0 ⊆M \ ∂M .

Proof. Combining (2.8) with the similar sequence for the pair (M,∂M) gives
the diagram

0 // sHd(M)

ρM,M

��

ρ // sHd(M \ ∂M)
∂ //

ρ′

��

sHd−1(∂M)
ῑ∗ //

ρ∂M

��

sHd−1(M)

ρ

��
0 // sHd(M)

ρ // sHd(M \ ∂M)
∂ // sHd−1(∂M)

ι∗ // sHd−1(M)

where the rows are exact and the vertical maps are restriction maps to open
subsets. Using properties 3b, 4b, and 4c listed on page 86 of [Ma2], one
sees that the three squares are commutative. The first and third vertical
arrows are isomorphisms by parts (i) and (ii) of Definition 2.9, and the
exact sequence (1.2) for the pair (M,S) shows that ρ is an injection. The
Five Lemma then implies that ρ′ is an isomorphism.

We can define [M ] ∈ sHd(M \ ∂M) uniquely by the requirement that

ρ′[M ] = [M0].

Then (2.10a) follows from (2.9) and the uniqueness of (2.3), while (2.10b)
follows from exactness of the top row of the diagram. �

Example 2.11. (a) If X is a thin compactification of a manifold X of
dimension d ≥ 1, then the cone CX on X is a thin compactification of
the cone on X minus its vertex.

(b) In the picture, M is the union of a cone on
S2 and a cylinder S2 × [0, 1], intersecting at
one point p. Then the complement of the cone
point p is a manifold with boundary, and M
satisfies the conditions of Definition 2.9 with
S = S′ = {p}.

p

M0

M1

M ′
1
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2.4. Cobordisms

Lemma 2.10 can be applied to cobordisms. A thin compactified cobordism
between M0 and M1 is a compact Hausdorff pair (W,S) such that

(i) W = W \ S is an oriented cobordism between two manifolds M0 and
M1.

(ii) M i ⊂W is a thin compactification ofMi for i = 0, 1, andM0 is disjoint
from M1.

(iii) sHk+1(S) = 0 for all k ≥ d− 2.

Corollary 2.12. Suppose that W is an oriented topological cobordism be-
tween d-dimensional manifolds M0 and M1. If W admits a thin compactifi-
cation W , then the fundamental classes of M0 and M1 represent the same
class in W :

(2.11) (ι0)∗[M0] = (ι1)∗[M1] in sHd(W ),

where ι0, ι1 are the inclusions of M0 and M1 into W .

Proof. The hypothesis means that W is an oriented topological manifold
with boundary ∂W = M1 t −M0 and that (W,∂W ) is a thin compactifica-
tion of (W,∂W ), where ∂W = M1 ∪M0. Then Lemmas 2.8 and 2.10 apply,
and (2.10b) becomes (2.11). �

3. Relatively thin families and the Extension Lemma

The notion of thin compactification has a relative version. Consider a con-
tinuous map π :M→ P between Hausdorff spaces, which we regard as a
family of spaces (the fibers of π) parameterized by P. A compactification of
this family is a Hausdorff space M with maps

(3.1)

M �
� //

π
��

M

π}}
P

where the horizontal arrow is an inclusion of M as an open subset, and π
is continuous and proper. The fibers of M and M over a point p ∈ P are
denoted Mp and Mp respectively; these may be empty because we are not
assuming that π is surjective.
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To extend the notion of a thin compactification to families, one might
require that the fiberMp be a thin compactification ofMp for every p ∈ P.
The aim of this section is to show that it is enough to use a weaker notion,
in which the fiber is required to be thin only for generic points p ∈ P.

In the following definition, the term “second category subset” means a
countable intersection of open dense subsets. We will assume that P has two
properties:

(a) P is a locally path-connected metric space, and

(b) P is a Baire space, i.e. every second category subset of P is dense in P.

By the Baire Category Theorem, both (a) and (b) hold if P is a metrizable
separable Banach manifold.

The space of paths in P is the set of continuous maps γ : [0, 1]→ P with
the C0 topology. For each such γ, the pullback of M by γ is a space

Mγ =
{

(x, y) ∈ [0, 1]×M
∣∣ γ(x) = π(y)

}
.

There is an associated pullback diagram

(3.2)

Mγ

πγ ��

γ̂
//M

π
��

[0, 1] γ
// P,

with natural embeddings ι0 :Mp →Mγ , ι1 :Mq →Mγ of the fibers over
the endpoints.

Definition 3.1. A relatively thin family of relative dimension d is a proper
continuous map

(3.3) π :M→ P

from a Hausdorff space M to a space P satisfying (a) and (b) above, such
that there exists a second category subset P∗ ⊆ P satisfying:

(I) for each p ∈ P∗, the fiber Mp over p is a thin compactification of a
d-dimensional oriented topological manifold Mp.

(II) for each p, q ∈ P∗, there is a second category subset of paths from p
to q such that, for each γ in this subset, (Mγ , Mp tMq) is a thin
compactification of an oriented cobordism from Mp to Mq.
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The assumptions on P ensure that P∗ is dense in P. Relatively thin
families often appear as compactifications:

Definition 3.2. A thin compactification of a family π :M→ P is a rela-
tively thin family (3.3) together with an embedding as in Diagram (3.1).

The lemmas below use elementary topological arguments to show that
assumptions (I) and (II) imply the existence and uniqueness of a consistent
relative fundamental class. In subsequent sections, we will use the Sard-
Smale theorem to obtain (I) and (II).

By Lemma 1.1, Assumption (I) implies that for each p ∈ P∗ there is an
associated fundamental class

(3.4) [Mp] ∈ sHd(Mp,Z)

in integral Steenrod homology. Corollary 2.12 and Assumption (II) imply
that this association has the consistency property

(3.5) (ι0)∗[Mp] = (ι1)∗[M q] in sHd(Mγ)

along a dense set of paths γ from p to q.

We now pass from Steenrod to Čech homology using the natural trans-
formation in Lemma 1.1. The fundamental class (3.4) in Steenrod homology
determines a fundamental class, still denoted [Mp], in Čech homology. Thus
there is an association

(3.6) p 7→ [Mp] ∈ Ȟd(Mp)

for each p ∈ P∗ that satisfies the consistency property (3.5) in Ȟd(Mγ). To
proceed, it is helpful to temporarily move to a general context that does not
involve fundamental classes (as done in Definition 3.3 and Lemma 3.4). We
will return to (3.6) in Section 4.

Definition 3.3. Let Ȟ∗ be as in Lemma 1.1. We say an association

p 7→ αp ∈ Ȟ∗(Mp)

is consistent along a path γ from p to q if the images of αp and αq become
equal in the homology of Mγ:

(3.7) (ι0)∗αp = (ι1)∗αq in Ȟ∗(Mγ).
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We can now apply the continuity property (1.10) to extend any such
consistent association to all p ∈ P:

Extension Lemma 3.4. Let π :M→ P be a proper continuous map from
a Hausdorff space to a locally path-connected metric space P. Suppose that
there is a dense subset P∗ of P and an assignment

(3.8) p 7→ αp ∈ Ȟ∗(Mp)

defined for p ∈ P∗ and consistent along paths in a dense subset of the space
of paths in P from p to q for each p, q ∈ P∗. Then (3.8) extends to all p ∈ P
so that (3.7) holds for all paths γ in P, and this extension is unique.

Proof. Fix a point p ∈ P, and let Bk be the ball of radius 1/k centered at
p. Using the definition of locally path-connected, one can inductively choose
a sequence of path-connected open neighborhoods Uk of p with Uk ⊂ Bk
and Uk+1 ⊂ Uk, for all k ≥ 1. Then each Uk contains a dense set of values
q ∈ P∗ ∩ Uk for which (3.8) is defined. Moreover, any two values in P∗ ∩ Uk
can be joined by a path in Uk which, by assumption, can be perturbed,
keeping the endpoints fixed, to a path in Uk for which (3.7) holds.

Choose any sequence pk ∈ Uk ∩ P∗ (so pk converge to p) and paths γk :
[0, 1]→ P from pk to pk+1 satisfying (3.7) and whose image is in Uk. For
each m ≥ 1, set Km = [0, 1

m ], and define a “segmented” path ϕm : Km → P
by ϕm(0) = p and

ϕm(t) = γk
(

1
t − k

)
for t ∈

[
1

k+1 ,
1
k

]
, k ≥ m.

Then each ϕm is a proper continuous map whose image is a path through
the points pk = ϕm(1/k) for k ≥ m. The pullback spaces Mϕm (defined
as in (3.2)) form a nested sequence of compact Hausdorff spaces whose
intersection is the compact space Mp. There are also natural inclusions
ιkm :Mpk →Mϕm for each k ≥ m. Applying the consistency condition (3.7)
inductively, one sees that the class

(ιkm)∗αpk ∈ Ȟd(Mϕm).

is independent of k for k ≥ m. These homology classes are consistently re-
lated by the inclusions Mϕm1

↪→Mϕm2
for m1 ≥ m2, so define an element
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of the inverse limit

(3.9) lim←− (ιkm)∗αpk ∈ lim←−
m

Ȟd(Mϕm).

By the continuity property (1.10), this determines a unique Čech homology
class

(3.10) αp ∈ Ȟd(Mp)

which, at this point, depends on the choices of the pk and the γk.
Next, fix an arbitrary continuous path γ : [0, 1]→ P from p ∈ P to p′ ∈

P. Choose segmented paths ϕm and ϕ′m : Km → P as above that limit to
p = ϕm(0) and p′ = ϕ′m(0), respectively. Then, for each k, choose a path σk
from pk to p′k that lies in the 1/k neighborhood of γ, and for which (3.7)
holds (specifically, Uk ∪ γ ∪ U ′k is path-connected, so contains a path from
pk ∈ P∗ to p′k ∈ P∗ which, by assumption, can be perturbed to the desired
path σk). For each m, let Lm ⊂ R2 denote the “ladder” consisting of the
union of the segments:

Im = {(0, y) | 0 ≤ y ≤ 1/m} I0 = {(x, 0) | 0 ≤ x ≤ 1}
I ′m = {(1, y) | 0 ≤ y ≤ 1/m} Jk = {(x, 1

k ) | 0 ≤ x ≤ 1}, k ≥ m.

Now let Φm : Lm → P be the continuous map whose restriction (i) to I0 is
γ (after identifying I0 with [0, 1]), and whose restrictions

(ii) to Im is ϕm,

(iii) to I ′m is ϕ′m, and

(iv) to each Jk is σk.

p

p1

p2

p3

p′

p′1

p′2

p′3

Φm

Ladder Lm γ
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Each Lm is compact, so Φm is proper, and the pullback spaces MΦm

are a nested sequence of compacta whose intersection is Mγ . Again the
consistency condition (3.7) implies that, for k ≥ m, the classes

(ιkm)∗αpk , (ι
′
km)∗αp′k ∈ Ȟd(MΦm)

are equal and independent of k, and hence form an inverse system that
defines an element

(3.11) αγ = lim←− (ιkm)∗αpk = lim←− (ι′km)∗αp′k ∈ Ȟd(Mγ).

Recall that the class (3.10) depends on the choice of the points pk and
the connecting paths γk. But given another choice {p′k, γ′k}, we can construct
ladder maps Φm for the constant path γ(t) ≡ p. For constant paths, Mγ is
equal to Mp × [0, 1], so there is a projection ρ :Mγ →Mp. Applying ρ∗
to (3.11) then shows the class (3.10) constructed from the two choices are
equal.

With this understood, the consistency condition (3.7) along γ follows
simply by comparing (3.10) and (3.11).

Finally, to check uniqueness, assume α′ is another extension which agrees
with α on P∗ and satisfies (3.7) for all paths γ in P. Pick any point p ∈ P and
segmented paths ϕm : Km → P as above. Then for any k ≥ m, the inclusions
induce equalities

α′p = (ιkm)∗α
′
pk = (ι′km)∗αpk = αp

in Ȟd(Mϕm). Therefore, again by continuity, we have

α′p = lim←−
m

(ι′km)∗α
′
p = lim←−

m

(ιkm)∗αpk = αp

as elements of lim←−Ȟd(Mϕm) = Ȟd(Mp). Thus the extension is unique. �

4. Relative fundamental classes

We now return to the homology theory (1.12) and define relative fundamen-
tal classes for relatively thin families. The definition is axiomatic, and we
prove both existence and uniqueness.
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Definition 4.1. A relative fundamental class for the relatively thin family
(3.3) of relative dimension d associates to each p ∈ P an element

(4.1) [Mp]
rel ∈ Ȟd(Mp)

such that, for some choice of P∗ as in Definition 3.1,

A1. (Normalization) For each p ∈ P∗, [Mp]
rel is the fundamental class

[Mp].

A2. (Consistency) For every path γ in P from p to q,

(4.2) (ι0)∗[Mp]
rel = (ι1)∗[Mq]

rel in Ȟ∗(Mγ).

Note that a relative fundamental class is not a single class, but rather is a
consistent collection of classes. It assigns a d-dimensional class (4.1) to every
fiber Mp, including those that are not thinly compactified manifolds, and
those whose dimension is not d. Similarly, the consistency condition (4.2) is
a collection of equalities, one for each path in P. The proof of Theorem 4.2
below shows how [Mp]

rel is defined at each p as a limit of the fundamental
classes of the fibers Mp for p in the dense set P∗.

Of course, the relative fundamental class depends on the relatively thin
family (3.3), and in particular on its relative dimension d. A priori, it also
depends on the second category set P∗, but we show next that it does not.

Using the terminology of Definitions 3.1 and 4.1, our main result can be
stated simply:

Theorem 4.2. A relatively thin family π :M→ P admits a unique relative
fundamental class. This class satisfies satisfies A1 and A2 in Definition 4.1
for each choice of the second category set P∗ in Definition 3.1, and is inde-
pendent of the choice of P∗.

Proof. For each p ∈ P∗, the fiberMp is a thin compactification of an oriented
d-manifold, and we define [Mp]

rel to be its fundamental class. As in (3.6),
properties I and II of Definition 3.1 imply that the association

(4.3) p 7→ [Mp]
rel

has the consistency property (3.5). Thus the Extension Lemma 3.4 applies,
giving a unique extension of (4.3) to all p ∈ P that satisfies the consistency
condition Axiom A2.
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To show independence of P∗, suppose that a relatively thin family sat-
isfies conditions I and II of Definition 3.1 for two second category sets Q∗
and Q∗∗. Then it also satisfies these conditions for the second category set
P∗ = Q∗ ∩Q∗∗. The sets P∗,Q∗ and Q∗∗ each define a relative fundamental
class, and these three classes are equal for all p in dense set P∗. By the
uniqueness in the Extension Lemma 3.4, they must agree for all p ∈ P. �

A relative fundamental class can be used to define numerical invariants.
For each p ∈ P, there is map

(4.4) Ip : Ȟd(M,Z)→ Z

defined on a Čech cohomology class α ∈ Ȟ∗(M) by

(4.5) Ip(α) =
〈
α, [Mp]

rel
〉
.

Here we are implicitly restricting α to the fiber Mp, and the pairing is well
defined because Mp is compact.

Corollary 4.3. For a relatively thin family π :M→ P the map (4.4) is
independent of p on each path component of P.

Proof. Given points p and q in the same path component, fix a path γ :
[0, 1]→ P from p to q. Pushing the consistency condition (4.2) forward by
the homology map induced by the proper map γ̂ in diagram (3.2) shows that
[Mp]

rel is homologous to [Mq]
rel in Ȟd(M). Hence Ip(α) is equal to Iq(α)

for all cohomology classes α. �

5. Fredholm families

In many gauge theories, the universal moduli space admits a compactifi-
cation that is stratified by Banach manifolds in the manner described in
Definition 5.2 below. If so, and more generally if such a stratification exists
over an open dense subset of the parameter space, one can obtain a relative
fundamental class using the Sard-Smale theorem and Theorem 4.2.

In this and later sections, the term “Banach manifold” means a metriz-
able separable C l Banach manifold, finite or infinite dimensional. Such man-
ifolds are second countable and paracompact. We say that a property holds
“for generic p” if it holds for all p in some second category subset of P. We
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will consider Fredholm maps

(5.1)

M
π
��
P

between Banach manifolds, which we again regard as a family parameterized
by P and, to emphasize this viewpoint, call it a “Fredholm family”. Such a
map has an associated Fredholm index d, and we assume that

(5.2) l > max(d+ 1, 0).

The Sard-Smale theorem shows that the generic fibers of π are manifolds
of dimension d. It also yields a similar statement about generic paths in
the Banach manifolds Ω(p, q) of C1 paths γ : [0, 1]→ P from p = γ(0) to
q = γ(1). The precise statements are as follows.

Theorem 5.1. For a Fredholm map (5.1) of index d that satisfies (5.2),

(a) The set Preg0 of regular values of π is a second category subset of P, and
for each p ∈ Preg0 , the fiber Mp = π−1(p) is a manifold of dimension
d, and is empty if d < 0.

(b) For each p, q ∈ Preg0 , there is a second category subset of Ω(p, q) con-
sisting of paths γ for which the pullback space Mγ (cf. (3.2)) is man-
ifold of dimension d+ 1.

Proof. Statement (a) is the Sard-Smale theorem; see Section 1 of [S]. For
(b), set Ω = Ω(p, q) and let ε : [0, 1]× Ω→ P be the evaluation map ε(t, γ) =
γ(t). The pullback of (5.1) by ε is a map ε∗M→ [0, 1]× Ω. Composing with
the projection to Ω yields a Fredholm map ε∗M→ Ω whose fiber over γ ∈ Ω
is Mγ . Part (b) follows by applying part (a) to this map, as explained, for
example, in Sections 4.3.1 and 4.3.2 of [DK]. �

The data (5.1) also determines a real line bundle det(dπ) over M —
the determinant line bundle of the Fredholm map π — whose restriction to
each regular fiber Mp, p ∈ Preg0 , is the orientation bundle ΛdTMp. We will
always assume that (5.1) has a relative orientation specified by a nowhere
zero section of det(dπ). We will use the term oriented Fredholm family to
mean a Fredholm map (5.1) together with a choice of a relative orientation.

Given an oriented Fredholm family, we can consider compactifications
as in Section 3 which are stratified by Fredholm families. In fact, in the



i
i

“4-Ionel” — 2019/8/27 — 21:31 — page 726 — #24 i
i

i
i

i
i

726 E.-N. Ionel and T. H. Parker

applications given in Sections 7-10 below, the relevant compactifications
will have the following structure.

Definition 5.2. A Fredholm-stratified thin family of index d is proper con-
tinuous map π :M→ P from a Hausdorff space M which, as a set, is a
disjoint union

M =M∪
∞⋃
k=2

Sk

such that

(a) The restriction of π to M is an index d oriented Fredholm family
π :M→ P.

(b) For each k ≥ 2, the restriction of π to Sk is an index d− k Fredholm
family πk : Sk → P.

(c) Tk =
⋃
i≥k Si is closed in M for each k.

We then say that π :M→ P is a Fredholm-stratified thin compactification
of the Fredholm family π with top stratum M and strata Sk.

The first key observation is that Fredholm-stratified thin families fit
into the context of the previous section: the Sard-Smale theorem implies
that they are relatively thin families in the sense of Definition 3.1.

Lemma 5.3. A Fredholm-stratified thin family is a relatively thin family
with P∗ equal to the set of regular values defined in (5.3) below.

Proof. By assumption, P is a Banach manifold, so is locally path-connected.
Apply the Sard-Smale Theorem to (5.1) and to each map πk : Sk → P, and
intersect the corresponding second category sets of regular values. The result
is a single second category subset

(5.3) Preg ⊆ P

whose points are simultaneous regular values of π and all πk; we call these
regular values of π.

For each regular p ∈ Preg, the fiber Mp of π :M→ P is stratified as
in (2.2), so is a thin compactification of Mp by Lemma 2.2. Thus Assump-
tion I of Definition 3.1 holds.

Similarly, for any p, q ∈ Preg, the Sard-Smale theorem shows that there
is a second category subset of the space of paths γ in P from p to q for
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which γ is transverse to πk for all k, and hence the pullback (Sk)γ of πk over
γ is a manifold (with boundary) of dimension d− k + 1. Then Mγ is the
union of Mγ and the manifolds (Sk)γ , so Assumption II of Definition 3.1
also holds. �

The following simple lemma provides a useful way of verifying that a
given family satisfies the conditions of Definition 5.2.

Lemma 5.4. Consider an index d oriented Fredholm family (5.1) of C l

manifolds with l satisfying (5.2). Suppose that there exists a Hausdorff space
M containingM as an open set and an extension of π to a proper continuous
map π :M→ P such that

(a) M can be written as a disjoint union of sets {Sα|α ∈ A} indexed by a
finite set A with 0 ∈ A and S0 =M.

(b) Each Sα is a manifold, and πα = π|Sα is a C l Fredholm map Sα → P of
index dα.

(c) dα ≤ d− 2 for all α 6= 0, and

Sα \ Sα ⊆
⋃

{β | dβ<dα}

Sβ.

Then π :M→ P is a Fredholm-stratified thin compactification of the family
π :M→ P.

Proof. Condition (c) implies that the accumulation points of Sα that are
not in Sα lie in strata of strictly smaller index. Hence for each k, the union
of strata of index d− k

Xk =
⋃

dα=d−k
Sα

is topologically a disjoint union of manifolds. This means that each Xk is a
manifold, and that the restriction of π to Xk is a Fredholm map of index
d− k. It also means that

⋃
i≥kXi is closed for each k. Definition 5.2 then

applies, showing that

M =M∪
⋃
α 6=0

Sα =M∪
⋃
k≥2

Xk

is a Fredholm-stratified thin compactification ofM→ P with strata Xk. �
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We conclude this section with two finite-dimensional examples, both
of which come from algebraic geometry. The first shows that the relative
fundamental class can be different from the actual fundamental class even
when the fiber is a manifold.

Example 5.5 (Elliptic surfaces). An elliptic surface is a compact com-
plex algebraic surface S with a holomorphic projection π : X → C to an
algebraic curve C whose fiber is an elliptic curve except over a finite number
of points pi ∈ C. The singular fibers Fpi are unions of rational curves, each
possibly with singularities and multiplicities, and elliptic curves with multi-
plicity. The restriction of π to the union of the smooth fibers is a Fredholm
map X∗ → C of index 2, and π : X → C is a thin compactification of X∗

regarded as a family over C. Thus by Theorem 4.2, every fiber Fp carries a
relative fundamental class

[Fp]
rel ∈ Ȟ2(Fp,Z)

whose image ι∗[Fp]
rel in Ȟ2(X,Q) is the homology class of the generic fiber.

In particular, if Fp is a smooth elliptic fiber with multiplicity m > 1,
then Fp has a fundamental class [Fp], but the relative fundamental class is

(5.4) [Fp]
rel = m[Fp].

Example 5.6 (Lefschetz pencils and fibrations). Consider a complex
projective manifold X with a complete linear system |D| of divisors of com-
plex dimension at least 3. Lefschetz showed that a generic 2-dimensional
linear system [D] determines a holomorphic map π : X \B → P1, where B
is the base locus of [D]. The generic fiber of π is smooth and the other fibers
have only quadratic singularities. This map π is therefore Fredholm, and its
index is the real dimension d = 2(dimCX − 1) of the generic fiber. While
π does not extend continuously to X, it does extend continuously over the
blowup XB of X along B, and π̃ : XB → P1 is a thin compactification of
X \B → P1. Theorem 4.2 therefore defines a relative fundamental class

[Fp]
rel ∈ Ȟd(Fp,Z)

on the fiber Fp = π̃−1(p) over each p ∈ P1.

6. Enlarging the parameter space

In gauge theories, one starts with a parameterized family of elliptic PDEs,
and considers the moduli space of solutions as a family over the space of
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parameters. After completing in appropriate Sobolev norms, this yields a
map π :M→ P to a separable Banach space P of parameters. Often, there
is a natural compactification M as in diagram (3.1).

One can then hope to obtain a relative fundamental class by applying
Theorem 4.2. This involves defining a stratification of S =M\M, and
proving lemmas of two types:

(i) Formal dimension counts for all strata.

(ii) Transversality results showing thatM and each stratumMα of S is a
manifold of the expected dimension.

In general, (ii) can be done only if the space of parameters P is sufficiently
large. Thus it may be necessary to enlarge the space of parameters in order
to define relative fundamental classes. Enlarged spaces of parameters may
also be needed to show independence of added geometric structure, such as
the choice of a Riemannian metric used to define Donaldson polynomials
(see Section 7 and 8), and the choice of an almost complex structure used
to define Gromov–Witten invariants (Sections 9 and 10).

When enlarging the parameter space, some care is needed because the
relative fundamental classes depend on the choice of P and of the thin
compactification. Thus enlarging the space of parameters may change the
problem that one is trying to solve. Lemma 6.2 below gives a stability result
that ensures that a base expansion yields a compatible relative fundamental
class.

Definition 6.1. A base expansion of a relatively thin compactification (3.3)
is a relatively thin compactification of π′ :M′ → P ′ with a commutative di-
agram of continuous maps

(6.1)

M

π
��

F //M′

π′

��
P f // P ′

where there exist a second category subset P∗ of P that satisfies the condi-
tions of Definition 3.1 for π, and a similar subset (P ′)∗ of P ′ for π′, such
that:

(a) f(P∗) ⊆ (P ′)∗.

(b) for each p ∈ P∗, F restricts to a degree 1 map Mp →M′f(p) between
oriented topological manifolds.
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Note that these conditions imply that π and π′ have the same relative
dimension.

Lemma 6.2. For a base expansion (6.1), the relative fundamental classes
of π and π′ agree over P, i.e. for all p ∈ P we have

(6.2) (Fp)∗[Mp]
rel = [M′f(p)]

rel

in Ȟ∗(M′f(p)), where Fp :Mp →M
′
f(p) denotes the restriction of F .

Proof. For each p in the set P∗ of Definition 6.1, both Mp and Mf(p) are

oriented topological manifolds. By Definition 3.1(I),Mp andM′f(p) are thin
compactifications of Mp =M′f(p), respectively. Each carries a fundamental
class by Theorem 2.4, and these are equal to the corresponding relative
fundamental class by Axiom A1 of Definition 4.1. Therefore, for each p ∈ P∗,

(Fp)∗[Mp]
rel = (Fp)∗[Mp] = [M′f(p)] = [M′f(p)]

rel,

where the middle equality holds by Lemma 2.6 and Definition 6.1(b). This
then implies (6.2) for all p ∈ P, as follows.

As in the proof of the Extension Lemma 3.4, pick nested open sets Vk ⊆
P with

⋂
Vk = {p}, and V ′k ⊆ P ′ with

⋂
V ′k = {f(p)}, and set Uk = Vk ∩

f−1(V ′k). Next, choose a sequence pk → p with pk ∈ Uk ∩ P∗, and segmented
paths ϕm in P converging to p. Then, as in (3.9),

[Mp]
rel = lim←− (ιkm)∗[Mpk ]

rel,

and therefore by the naturality of (1.10)

(Fp)∗[Mp]
rel = (Fp)∗ lim←− (ιkm)∗[Mpk ]

rel = lim←− (Fp ◦ ιkm)∗[Mpk ]
rel

On the other hand, the images F ◦ ϕm converge to f(p) in P ′, and therefore

[M′f(p)]
rel = lim←− (jkm)∗[M

′
f(pk)]

rel,

where jkm = F ◦ ιkm is the inclusion of f(pk) into V ′m. Combining the last
three displays give (6.2) for all p ∈ P. �

Example 6.3. (a) If both vertical arrows in (6.1) are Fredholm-stratified
families, and p is a regular value of π, then the inclusion of Mp → {p}
into π :M→ P is a base expansion. Equation (6.2) becomes [Mp] =
[Mp]

rel, which is Axiom A1 of Definition 4.1.
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(b) Example 5.5 shows the importance of condition (a) in Definition 6.1. Let
Fp be a smooth elliptic fiber in an elliptic surface with multiplicity m >
1. Then Fp → {p} is a thinly compactified family with [Fp]

rel = [Fp], and
the inclusion of Fp → {p} into X → C satisfies all of the conditions of
Definition 6.1 except (a). But, as in (5.4), the relative fundamental class
induced by the extended family X → C is m[Fp] rather than [Fp].

(c) Similarly, in Example 2.5(a), the family πZ : π−1(Z)→ Z embeds into
π : MZ →M . In this case, the dimensions of the generic fibers and the
indices are different, so this embedding is not a base expansion, and the
two relative fundamental classes lie in different dimensions.

Examples (b) and (c) above are instances where the relative fundamental
class [M]rel depends on the choice of the parameter space P. Thus it does not
make sense to speak of “the” relative fundamental class of a single fiberMp:
relative fundamental classes are, by their nature, associated with relatively
thin families over parameter spaces.

Example 6.4. For moduli spaces of solutions to an elliptic differential
equation, one obtains base expansions by lowering the regularity of the pa-
rameters, for example, by including a space P l of C l parameters into the
corresponding C l−1 space. Often, elliptic theory implies that, for sufficiently
large l, all conditions in Definition 6.1 are satisfied, and hence the relative
fundamental class is unchanged in the sense of Lemma 6.2. In particular, for
each smooth parameter p ∈ P∞ =

⋂
P l, the moduli space Mp of solutions

is canonically identified with the fibers Ml
p over p in P l for each large l,

and the relative fundamental classes [Ml
p]
rel consistently induce a relative

fundamental class on Mp.

In some applications, one has a family M→ P which is not itself
Fredholm-stratified, but whose restriction to an open dense subset Po of
P is Fredholm-stratified. The next result, which will be used in Section 8,
gives conditions under which this is sufficient to make M→ P a relatively
thin family.

Lemma 6.5. Let π :M→ P be a proper continuous map from a Hausdorff
space to a Banach manifold. Suppose that there is an open, dense subset Po
of P such that

(i) Every path in P is a limit of paths in Po.



i
i

“4-Ionel” — 2019/8/27 — 21:31 — page 732 — #30 i
i

i
i

i
i

732 E.-N. Ionel and T. H. Parker

(ii) The restriction πo :Mo → Po of π over Po is a Fredholm-stratified
thin family of index d.

Then π :M→ P is a relatively thin family of relative dimension d with P∗
defined by (6.3), and therefore admits a unique relative fundamental class
[Mp]

rel ∈ Ȟd(Mp) for all p ∈ P.

Proof. By Lemma 5.3, the set

(6.3) P∗ = Preg

of regular values of πo is a second category subset of Po, i.e. is a countable
intersection of open dense subsets. But open dense subsets of Po are open
and dense in P (because Po is open and dense in P), so P∗ is also a second
category subset of P.

Next observe that any path γ in P whose endpoints p, q are in P∗ ⊆
Po is a limit of paths in Po with the same endpoints p, q as follows. By
assumption (i), γ is the limit of a sequence of paths γk in Po with endpoints
pk, qk, where pk → p and qk → q. Because p, q ∈ Po and Po is open subset
of a Banach manifold, for sufficiently large k we can find paths σk in Po
from p to pk converging to the constant path at p, and similarly paths τk in
Po from qk to q converging to the constant path at q. The concatenation of
these paths is a sequence {σk#γk#τk} of paths in Po, each with endpoints
p, q, which limit to the path γ.

With these observations, one sees that Definition 3.1 applies to π :M→
P with this P∗:

(i) Condition I holds as in the proof of Lemma 5.3.

(ii) Condition II holds because, again as in the proof of Lemma 5.3, it
holds for a dense set of paths in Po from p to q described above, and
this set of paths is dense in the space of paths in P from p to q.

The lemma then follows by Theorem 4.2. �

7. Donaldson theory

Let X be a smooth, closed, oriented 4-manifold that satisfies the Betti num-
ber condition b+2 (X) > 1. Donaldson theory uses moduli spaces of connec-
tions to construct invariants of the smooth structure of X. This section and
the next describe how Donaldson’s polynomial invariants fit into the context
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of the previous sections. We follow Donaldson’s exposition in Sections 5.6
and 6.3 of [D2].

Let E → X be a U(2) vector bundle with first Chern class c1 = c1(E) and
instanton number k = (c2(E)− 1

4c
2
1(E))[X]. Fix a connection ∇0 on Λ2E.

After completing in appropriate Sobolev norms (see, for example, Section 4.2
of [DK]), we obtain three separable Banach manifolds: a space A = AE(∇0)
of connections on E that induce ∇0 on Λ2E, a space R of Riemannian met-
rics on X, and the group G of gauge transformations of E with determinant
1. Furthermore, G acts smoothly on A, the orbit space B = A/G is metriz-
able, and the subset Birred ⊂ B of irreducible connections is also a separable
Banach manifold.

A pair (A, g) in A×R is called an instanton if its curvature FA sat-
isfies ∗ad(FA) = −ad(FA), where ∗ is the Hodge star operator on 2-forms
for the metric g. The universal moduli space ME ⊂ B ×R is the set of all
G-equivalence classes ([A], g) of instantons for A ∈ AE . Up to isomorphism,
ME depends on the bundle E only though the pair (k, c1), and is indepen-
dent of the connection ∇0 (see page 146 of [D2]).

Now fix c1 and consider the sequence of moduli spaces Mk associated
with bundles E with instanton number k and this fixed c1. Projection onto
the second factor is a map

(7.1)

Mk

π
��
R

whose restriction toMirred
k =Mk ∩ (Birred ×R) is a smooth Fredholm map

of index 2dk, where dk is given in terms of the Betti numbers b1(X) and
b+2 (X) of X by

(7.2) dk = 4k − 3
2

(
1− b1(X) + b+2 (X)

)
.

This Fredholm family is oriented by the choice of a homology orientation
for X [DK, 7.1.39].

Let Mk(g) denote the fiber of Mk over a metric g ∈ R. We say that c1

is odd if it represents a class in H2(X;Z)/Torsion that is not divisible by 2.

Lemma 7.1. Suppose that b+2 (X) > 1 and c1 is odd. Then there is an open
dense subset Ro of R such that
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(i) For each g ∈ Ro and each 0 ≤ j ≤ k, the fiber Mj(g) contains no re-
ducible connection.

(ii) Every path in R is the limit of paths in Ro.

Proof. This follows directly from the discussion on page 147 of [D2] and
Corollary 4.3.15 of [DK]. Note that the assumption that c1 is odd implies
that the space AE contains no flat connections [D2, Section 5.6]. �

Lemma 7.2. Under the hypotheses of Lemma 7.1, the map (7.1) extends
to a proper continuous map π :Mk → R whose restriction over Ro is a
Fredholm-stratified thin compactification of πo :Mk|Ro → Ro.

Proof. We follow the notation and discussion in Section 4.4 of [DK]. Using
the topology of weak convergence (as defined by Condition 4.4.2 in [DK]),
one defines the Uhlenbeck compactification Mk by setting

(7.3) Mk =Mk ∪ S,

where S is the union of the strata Sjk =Mk−j × Symj(X) for 0 < j < k
(noting thatM0 is empty because there are no flat connections). ThenMk

is paracompact and metrizable [DK, Section 4.4], and π extends to a map
π :Mk → R whose restriction to each stratum is Fredholm.

The proof is completed by applying Lemma 5.4. For this, it suffices to de-
fine a stratification onMk, different from the one in (7.3), whose restriction
Mo

k =Mk|Ro satisfies the hypotheses of Lemma 5.4.
The new strata are labeled by partitions. A partition is a non-increasing

sequence α = (α1, . . . , α`) of positive integers; its length `(α) = ` and its
degree |α| =

∑
αi satisfy `(α) ≤ |α|. We also consider (0) to be a partition

with `(0) = |(0)| = 0. Let Pk be the set of all partitions α with |α| ≤ k.
Define the level of α to be

(7.4) Λ(α) = 2|α| − `(α),

and note that Λ(α) ≥ 0 with equality if and only if α = (0).
Given a four-manifold X and an integer k ≥ 0, regard SymkX as formal

positive sums
∑
αixi of distinct points of X associated with some partition

α = (α1, . . . , α`) with |α| = k. Let ∆α be the set of all such sums associated
with a given α. Then ∆α is a manifold of dimension 4`(α), and SymkX is
the disjoint union of the sets ∆α over all α with |α| = k.
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With these preliminaries understood, we re-stratify the compactification
(7.3) by writing

(7.5) Mk =Mk ∪
⋃
α∈Pk

Sα,

where S0 =Mk and

Sα =Mk−|α| ×∆α.

By the choice of Ro, the restriction Soα of Sα over Ro is, for each α, a Banach
manifold with a Fredholm projection πα : Soα → Ro of index

(7.6) ια = 2d(k − |α|) + 4`(α) = 2dk − 4Λ(α),

where dk is the index (7.2).
One then sees that conditions (a) and (b) of Lemma 5.4 hold for

the restriction of (7.5) over Ro. To verify (c), suppose that a sequence
(An,

∑
αi(xn)i) converges in the weak topology. Then {An} converges to

a formal instanton (B,
∑
βjyj) with B ∈Mo

k−|α|−|β|, and
∑
αi(xn)i con-

verges to
∑
γmzm with `(γ) ≤ `(α) and |γ| = |α|. Thus the limit is

(
B,
∑

βjyj +
∑

γmzm

)
∈Mo

k−|δ| ×∆δ,

with `(δ) ≤ `(β) + `(γ) ≤ `(α) + `(β) and |δ| = |β|+ |γ| = |α|+ |β|. The
level (7.4) of this limit stratum is therefore

Λ(δ) = 2|δ| − `(δ) ≥ Λ(α) + Λ(β) ≥ Λ(α),

with equality if and only if β = (0) and γ = α. This, together with (7.6),
implies property (c) of Lemma 5.4. Thus Lemma 5.4 applies. �

8. Relative fundamental classes and Donaldson polynomials

As in Section 7, the universal moduli space (7.1) of anti-self-dual instantons
on a 4-manifold X admits a compactification, the Uhlenbeck compactifica-
tion π :Mk → R. Under the assumptions of Lemmas 7.1 and 7.2, there is
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an open dense subset Ro of R and a diagram

Mo
k

πo

��

//Mk

π
��

Ro �
� // R

where Mo
k is the restriction of Mk over Ro, and

(i) πo :Mo
k → Ro is a Fredholm-stratified thin family.

(ii) Every path in R is the limit of paths in Ro.

Let Rreg be the set of regular values of the family (i). By the Sard-Smale
theorem, Rreg is dense in Ro, and hence is dense in R.

With this setup, Lemma 5.3 and Theorem 4.2 produce a relative funda-
mental class for Mo

k → Ro. In fact, Lemma 6.5 gives a stronger conclusion:
it shows that the Uhlenbeck compactification is a relatively thin family over
the entire space of metrics. Thus we obtain a relative fundamental class for
Donaldson theory:

Proposition 8.1. Let X be a closed, oriented 4-manifold with b+2 (X) > 1,
and let E → X a U(2) vector bundle with instanton number k and c1(E)
odd. Then

(a) The Uhlenbeck compactification is a relatively thin family with index
2dk with R∗ equal to Rreg and dk given by (7.2).

(b) A homology orientation for X determines a relative fundamental class

(8.1) [Mk(g)]rel ∈ Ȟ2dk

(
Mk(g)

)
,

where Mk(g) is the fiber of Mk over g ∈ R.

To obtain invariants, one would like, as in (4.5), to consider pairings〈
α, [Mk(g)]rel

〉
where α is the restriction to Mk(g) of a Čech cohomology class defined on
Bk. Unfortunately, this is not as straightforward as one might hope, and one
must work harder.
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Following Donaldson, the natural cohomology classes to consider are
those in the image of the µ-map

µ : H2(X;Q)→ Ȟ2(Birredk ;Q)

(cf. Chapter 5 of [DK]). For each choice of classes A1, . . . , Adk ∈ H2(X;Q),
the product µ(A1) ∪ · · · ∪ µ(Adk) restricts to a class

µ = µ(A1, . . . , Adk) ∈ Ȟ2dk(Mirred
k ;Q)

whose dependence on the Ai is multilinear and symmetric. For each g ∈ R,
this further restricts under the inclusion ιg :Mirred

k (g) ↪→Mirred
k of the fiber

over g to a class

(8.2) ι∗gµ ∈ Ȟ2dk(Mirred
k (g);Q).

But these are not classes in the cohomology ofMk(g), so cannot be directly
paired with the relative fundamental class. Thus we proceed more indirectly.

The key observation is that, for each regular metric g, the classes (8.2) ex-
tend over the compatificationMk(g) in a way that is consistent along paths.
(Here “regular” means g ∈ Rreg, which is equivalent to conditions 9.2.4 and
implies 9.2.13 in [DK].) One can then apply Extension Lemma 3.4 to obtain
a relative fundamental class in 0-dimensional Čech homology, which yields
invariants. The remainder of this section gives the details.

Lemma 8.2. For each A1, . . . , Adk ∈ H2(X;Z),

(a) For each g ∈ Rreg, the class (8.2), which depends on A1, . . . , Adk , ex-
tends uniquely to an element µg of Ȟ2dk(Mk(g);Q).

(b) There is a unique association

g 7→ αg ∈ Ȟ0(Mk(g);Q)

such that
(i) for each g ∈ Rreg, αg is the cap product with the fundamental class

(8.1):

(8.3) αg = [Mk(g)]rel ∩ µg.

(ii) the consistency condition (8.5) below holds for every path γ in R.
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Proof. (a) Donaldson and Kronheimer showed [DK, Subsection 9.2.3] that
for each regular g, ι∗gµ has a Čech representative with compact support in

Mirred
k (g), which is equal to Mk(g) by Lemma 7.1(i). Because Mk(g) is a

Fredholm-stratified thin compactification ofMk(g), the long exact sequence
in Čech cohomology, used as in the proof of Lemma 2.2, shows that ι∗gµ

extends uniquely to a Čech class in the compactification

µg ∈ Ȟ2dk(Mk(g);Q).

Furthermore, for each regular path γ in Ro with endpoints g, g′, the pull-
back Mk(γ) over γ of the compactified moduli space contains no reducible
connections and is a thin compactified cobordism as defined in Section 2.4
above. Again as in [DK], the class ι∗γµ has a representative compactly sup-

ported inMk(γ), so extends uniquely to a class µγ onMk(γ). The unique-
ness of these extensions implies that

(8.4) µg = ι∗gµ
γ in Ȟ2dk(Mk(g);Q) and µg′ = ι∗g′µ

γ in Ȟ2dk(Mk(g
′);Q).

(b) For each regular g, define αg to be the cap product (8.3). By the
naturality of cap products, (8.4) implies a consistency condition for αg of
the form (3.7), namely

(8.5) (ι0)∗αg = (ι1)∗αg′ in Ȟ0(Mk(γ);Q)

for every regular path γ. Lemma 7.1(ii), together with the middle paragraph
of the proof of Lemma 6.5, shows that each path γ in R with endpoints
g, g′ ∈ Rreg is a limit of paths γk in Ro with the same endpoints. But each
γk is a limit of regular paths in Ro with the same endpoints (cf. the proof
of Lemma 5.3), which means that the regular paths are dense in the space
of all paths in R from g to g′. The hypotheses of Lemma 3.4 then hold for
g 7→ αg, with P∗ taken to be Rreg, and the conclusion of Lemma 3.4 gives
(b). �

Remark 8.3. Alternatively, one could work with the index 0 universal
“cutdown” moduli spaces defined by [DK, (9.2.8)], and regard the class αg
in (8.3) as the relative fundamental class of the cutdown moduli space.

We can now use the class αg of Lemma 8.2, which depends onA1, . . . , Adk ,
to define numerical invariants. For each g ∈ R there is a map

qk(g) : SymdkH2(X;Q)→ Q
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defined by evaluating αg on the class 1 ∈ Ȟ0(Mk(g);Q):

(8.6) qk(g) = 〈1, αg〉.

Proposition 8.4. The map qk(g) is independent of g ∈ R, and is equal to
Donaldson’s polynomial invariants.

Proof. First note that the space R of Riemannian metrics is path-connected;
in fact, it is contractible. The consistency condition (8.5) then shows that
qk(g) is independent of g, exactly as in the proof of Corollary 4.3. For regular
g, we can use (8.3) to rewrite (8.6) as

qk(A1, . . . , Adk)(g) =
〈
µg, [Mk(g)]rel

〉
=
〈
ι∗gµ(A1, . . . , Adk), [Mirred

k (g)]
〉
,

where the last term is a pairing between a compactly supported cohomology
class and the fundamental class of a non-compact manifold. This agrees with
Donaldson’s definition of qk: see Section 9.2 of [DK], especially (9.2.18) and
the top of page 360. �

Proposition 8.4 is a re-casting of Donaldson’s theorem [D1] in the form
presented in [D2]: it implies that the Donaldson polynomials are invariants
of the smooth structure of the manifold X, depending on the class c1(E),
the orientation, and the homology orientation. In fact, changes in c1(E) and
the homology orientation change the Donaldson polynomial in a specific way
[MM]. In the literature, the story is completed by removing the assumption
that c1 is odd by using the stabilizing trick of Morgan and Mrowka; see
[MM] or [D2, Section 6.3].

This viewpoint makes clear that the invariance of the Donaldson polyno-
mials follows directly from two core facts: (i) the Uhlenbeck compactification
is a Fredholm-stratified thin family over an open, dense, path-connected sub-
set Ro of the space of metrics, and (ii) 2dk-dimensional products of classes
µ(Ai) extend to the compactification of regular fibers. Both appear explic-
itly in the work of Donaldson. As we have seen, these same two facts imply
the existence of a relative fundamental class [Mk(g)]rel defined for every
metric g and every k.

9. Gromov–Witten theory

In the remaining two sections, we consider thin compactifications in Gromov–
Witten theory. This section summarizes the well-known setup; details can
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be found in [MS], [RT1], [RT2], and [IP]. Throughout, we work in the stable
range 2g − 2 + n > 0.

The Deligne-Mumford spaces Mg,n are at the foundation of Gromov–
Witten theory. Points in Mg,n represent equivalence classes [C] of stable,
connected nodal complex curves C of arithmetic genus g with n marked
points x1, . . . , xn; those without nodes form the principal stratum Mg,n.
There is a universal curve

(9.1)

Ug,n

π
��

Mg,n

with the property that for each stable curve C as above there is a map
C → Ug,n whose image is a fiber of (9.1) that is biholomorphic (as a marked
curve) to C/Aut(C). More generally, for any connected, n-marked genus g
nodal curve C, there is a map

(9.2) ϕ : C → Ug,n

defined as the composition C → Cst → Ug,n where Cst is the stable curve
(the stable model of C) obtained by collapsing all unstable irreducible com-
ponents of C, and the second map is as above.

Now fix a closed symplectic manifold (X,ω), a large integer l and a
number r > 2. As in Section 3.1 of [MS], let J be the smooth separable
Banach manifold of all C l ω-tame almost complex structures J on X. We
consider maps f : C → X whose domain is an n-marked connected nodal
curve C with complex structure j. Such a map is called J-holomorphic if

∂Jf = 1
2(df + Jdfj) = 0,

and two such maps are regarded as equivalent if they differ by reparametriza-
tion. Let MA,g,n(X) denote the moduli space of all equivalence classes
([f ], J) of pairs (f, J), where J ∈ J and f is a J-holomorphic map of
Sobolev class W l,r with smooth stable domain that represents A = [f(C)] ∈
H2(X;Z). One then has a continuous projection π and a continuous
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stabilization-evaluation map se

(9.3)

MA,g,n(X)

π

��

se //Mg,n ×Xn

J

defined by π(f, J) = J and se(f, J) = ([C], f(x1), . . . , f(xn)).
More generally, each map f : C → X from a connected nodal curve has

an associated graph map

(9.4) F = Ff : C → Ug,n ×X

defined by F (x) = (ϕ(x), f(x)); this is an embedding if Aut(C) = 1. Fol-
lowing Ruan and Tian [RT2], we can use F to expand the base of (9.3), as
follows.

The universal curve Ug,n is projective; fix a holomorphic embedding
Ug,n ↪→ PM . For each fixed almost complex structure J , consider sections ν of
the bundle Hom(π∗1TPM , π∗2TX) over PM ×X that satisfy J ◦ ν + ν ◦ j = 0,
where this j is the complex structure on PM . The space of all C l pairs (J, ν)
of this form is also a smooth separable Banach manifold, which we denote
by JV. Each (J, ν) ∈ JV defines a deformation Jν of the product almost
complex structure on PM ×X, and therefore on Ug,n ×X, by writing

(9.5) Jν =

(
j 0

−ν ◦ j J

)
.

We identify such Jν with the pair (J, ν) and call it a Ruan-Tian perturbation.
A map f : C → X is (J, ν)-holomorphic if its graph satisfies ∂JνF = 0,

or equivalently if f satisfies

(9.6) ∂Jf(x) = ν(ϕ(x), f(x)).

Such a map is called stable if, for each irreducible component Ci of C, either
Ci is stable or f(Ci) is not a single point.

The map J 7→ (J, 0) induces a smooth inclusion J ↪→ JV of Banach
manifolds. Furthermore, the maps π and se extend continuously over the
universal moduli space MA,g,n(X) of all triples (f, J, ν) where f is a stable
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(J, ν)-holomorphic map, giving continuous maps

(9.7)

MA,g,n(X)

π

��

se //Mg,n ×Xn

JV.

The analysis of these maps is standard; see, for example, Chapter 3
of [MS], Section 3 of [RT2], and Sections 4 and 5.1 of [IP]. Let Em,r (resp.
Fm,r) denote the space ofWm,r sections of the bundle f∗TX (resp. T 0,1C ⊗C
f∗TX ) over C. The space of first order deformations of the complex struc-
ture on C is the finite-dimensional vector space H0,1(TC). The linearization
of the (J, ν)-holomorphic map equation (9.6) at (f, J, ν) is a bounded linear
operator

Df,Jν : Em,r ×H0,1(TC)× TJνJV −→ Fm−1,r

given by formula [RT2, (3.10)]; see also [MS, Prop 3.1.1]. The elliptic theory
of this operator leads to two important regularity properties:

Reg 1. If Df,Jν is surjective and Aut(f) = 1, the universal moduli space π :
MA,g,n(X)→ JV in (9.3) is a manifold near (f, J, ν) with a natu-
ral relative orientation (see the proofs of [RT2, Theorem 3.2] or [MS,
Theorem 3.1.5]).

Reg 2. If Reg 1 holds, then at each regular value (J, ν) of π, the fiber
MJ,ν

A,g,n(X) is a manifold whose dimension is the index of Df,Jν , which
is

(9.8) ι(A, g, n) = 2[c1(A) + (N − 3)(1− g) + n]

where dimX = 2N .

The construction of Gromov–Witten invariants now hinges on a single
issue: can one find a thin compactification of (9.3) so that the map se ex-
tends over the compactification to give diagram (9.7)? Doing so, even over
a portion of JV, allows us to define the Gromov–Witten numbers

(9.9) GWA,g,n(α) =
〈

(se)∗α, [MJ
A,g,n]rel

〉
for all α ∈ Ȟ∗(Mg,n ×Xn;Q).

Note that Mg,n ×Xn is locally contractible, so by (1.14) α can also be
regarded as an element of rational singular cohomology.

More specifically, assuming the existence of a thin compactification, we
can apply the results of Sections 1-6, with the following payoffs:
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(a) A thin compactification for the fiber over a single regular J ∈ J yields a

relative fundamental class [MJ
A,g,n]rel. (Note, however, that the numbers

(9.9) may not be invariant under changes in J .)

(b) A thin compactification over a connected neighborhood P of J gives
a relative fundamental class at each J ∈ P, and by Corollary 4.3 the
numbers (9.9) are independent of J in P.

(c) A thin compactification over all of J or JV gives numbers (9.9) that
depend only on the symplectic structure of (X,ω).

(d) A thin compactification over the larger space Jsymp of all tame pairs
(ω, J), completed in an appropriate Sobolev norm, implies that the num-
bers (9.9) are invariants of the isotopy class of the symplectic structure
on X.

We will give examples of this procedure in the next section. Before pro-
ceeding, here are some simple examples that illustrate the ideas of this sec-
tion.

Example 9.1 (Rational ghost maps). For each J ∈ J , every J-holo-
morphic map f : S2 → X representing the trivial class A = 0 is a constant
map. It follows that Df,J is the ∂ operator on the trivial holomorphic bundle
f∗TX, and f is regular because the sheaf cohomology group H1(S2, f∗TX)

vanishes. Hence for n ≥ 3 the fibers of the moduli space MJ
0,0,n(X)→ J

are all regular and canonically identified with M0,n ×X. The relative fun-

damental class [MJ
(X)]rel is therefore equal to the actual fundamental class

[M0,n ×X] and the GW invariants (9.9) are independent of J ∈ J .

Example 9.2 (K3 surfaces). Let X be a K3 surface, and consider the
moduli spaceM(X)→ Jalg of smooth rational holomorphic maps (f, J) for
algebraic J ∈ J . By a theorem of Mumford and Mori (see [MMu]), every
algebraic K3 contains a non-trivial rational curve, so for each algebraic J
the fiber MJ

A,0,0(X) is non-empty for some A 6= 0. But by (9.8) the index
ι(A, 0, 0) = −2 is negative. Thus MA,0,0(X)→ Jalg does not satisfy condi-
tion Reg 1 for any algebraic J .

Now expand the base by considering π :M(X)→ Jcx over the space
of all integrable almost complex structures. Each J ∈ Jcx determines a 20-
dimensional subspace H1,1(X;R) of H2(X;R) ∼= R22, and the resulting map
Jcx → Gr(20, 22) to the Grassmannian is a submersion. But A ∈ H2(X;Z)
can be represented by a J-holomorphic curve only if the Poincaré dual of
A is an integral (1, 1) class. It follows that MJ

A,g,n(X) is empty for all J
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in a subset P ⊂ Jcx whose complement is a locally finite countable union
of codimension 2 submanifolds. Since empty fibers are regular, a relative
fundamental class exists over P and is equal to 0. Lemma 6.5 then applies,
showing that

[MJ
A,g,n(X)]rel = 0

for all A 6= 0, g and n, and all J ∈ Jcx, including the algebraic J .

Example 9.3 (Convex manifolds). A complex algebraic manifold
(X,ω, J) is called convex if H1(C, f∗TX) = 0 for all stable J-holomorphic
maps f : S2 → X. Examples include projective spaces, Grassmannians, and
Flag manifolds. Convexity implies that all J-holomorphic maps with smooth
domain are regular, soMJ

A,0,n(X) is smooth and complex. It is also a quasi-
projective variety (cf. [FP]), so its closure is a thin compactification. Hence

by Lemma 2.2 there is a relative fundamental class [MJ
A,0,n(X)]rel for the

given J ; more work is needed to determine if the associated GW numbers
(9.9) are symplectic invariants.

10. Moduli spaces of stable maps

The space of stable maps is the most commonly-used compactification of
the moduli space (9.3) of smooth pseudo-holomorphic maps. Indeed, it is
often regarded as the central object of Gromov–Witten theory. This section
uses existing results to show that, in certain rather special circumstances,
the space of stable maps is a thin compactification over parts of J or JV.
In these cases, the space of stable maps carries a relative fundamental class.

Each stable map f : C → X has an associated dual graph τ(f), whose
vertices correspond to the irreducible components Ci of C and whose edges
correspond to the nodes of C. Each vertex of the graph is labeled by the
homology class Ai = [f(Ci)] ∈ H2(X;Z), by the genus gi of Ci, and by the
number ni of marked points on Ci. Every such graph τ defines a stratum
Sτ consisting of all stable maps f with τ(f) = τ . The trivial graph, which
consists of a single vertex and no edges, corresponds to the moduli space
MA,g,n in (9.3). The universal moduli space of all stable maps is then the
disjoint union

(10.1) MA,g,n =MA,g,n ∪
⋃
Sτ ,

where the last union is over all non-trivial graphs τ with
∑
Ai = A,

∑
ni =

n, and with
∑
gi plus the first Betti number of the graph equal to g.
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The Gromov Compactness Theorem (cf. [IS]) implies that the projection
π :MA,g,n → J is proper.

To check whether (10.1) is a thin compactification one must, as always,
compute the index of the restriction πτ : Sτ → JV of π to each stratum Sτ ,
and prove transversality results that show that Sτ is a manifold over J . In
this case, the index calculations have been done many times in the literature
(for example, see Theorem 6.2.6(i) in [MS] or Section 4 in [RT1] for the g = 0
case, and Section 3 in [RT2] in general). These calculations show that, for
each τ ,

(10.2) index πτ = ι(A, g, n)− 2k

where ι(A, g, n) is the index (9.8) of the principal stratum π :MA,g,n → J ,
and k is the number of nodes of the domain. Lemma 5.4 then shows that
(10.1) is a Fredholm-stratified thin compactification of the principal stratum
provided all strata satisfy the transversality condition Reg 1 in Section 9.

Unfortunately, transversality can only be shown for certain classes of
stable maps. In the remainder of this section, we examine two such classes
of maps.

10.1. Moduli spaces of somewhere injective maps

A stable map f : C → X is called somewhere injective (si) if each irreducible
component Ci of C contains a non-special point pi such that

(df)pi 6= 0 and f−1(f(pi)) = {pi}.

(cf. [MS, Section 2.5]). In the literature, it is usual to consider the universal
moduli space of stable maps M→ J , and to show that the subset M∗

consisting of the somewhere injective maps has good properties. We will shift
perspective: instead of restricting to a subset of M, we restrict to the subset

of J consisting of those “nice” J for which the entire fiber MJ
consists of

somewhere injective maps.

Thus we fix (A, g, n) and define the (possibly empty) subset Jsi =
Jsi(A, g, n) of J by

Jsi =
{
J ∈ J

∣∣∣ all (f, J) ∈MJ
A,g,n are si

}
.
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We then consider the map

(10.3)

M′A,g,n(X)

π′

��
Jsi

obtained by restricting the space of stable maps (9.7) over Jsi, with the
stratification

M′A,g,n =M′A,g,n ∪
⋃
S ′τ ,

obtained by restricting (10.1) over Jsi. First note that:

Lemma 10.1. Jsi(A, g, n) is an open subset of J , so is a Banach manifold.

The proof of Lemma 10.1 is given at the end of this subsection. Assuming
it, one obtains a relative fundamental class, in any one of the homology
theories (1.12), for the space of stable maps over Jsi:

Proposition 10.2. The family (10.3) is a Fredholm-stratified thin com-
pactification whose index d = ι(A, g, n) is given by (9.8). It therefore admits
a unique relative fundamental class which, in particular, assigns an element

[MJ
A,g,n(X)]rel ∈ Ȟd

(
MJ

A,g,n(X)
)

to each J ∈ Jsi(A, g, n).

By Corollary 4.3, the corresponding GW numbers (9.9) are constant on
each path-component of Jsi(A, g, n).

Proof. Following the discussion in Section 9, it suffices to verify the as-
sumptions of Reg 1. First, observe that somewhere injective maps have no
non-trivial automorphisms. Next, standard arguments show that for each
somewhere injective f , one can use the variation in the parameter J ∈ J
to show that the linearization of the equation ∂Jf = 0 (with fixed domain
and map f) is onto. Specifically, for the g = 0 case, Proposition 6.2.7 and
Theorem 6.3.1 in [MS] imply that each stratum S ′τ of (10.3) is a Banach
manifold and π′τ : S ′τ → Jsi has index given by (10.2). As mentioned be-
fore (9.8), the principal stratum is relatively oriented. Therefore (10.3) is a
Fredholm-stratified thin compactification when g = 0.

The same proofs (Propositions 6.2.7 and 6.2.8 and the proof of Theo-
rem 6.3.1) in [MS] also apply for g > 0: they show that the linearization is



i
i

“4-Ionel” — 2019/8/27 — 21:31 — page 747 — #45 i
i

i
i

i
i

Thin compactifications and relative fundamental classes 747

surjective using variations that fix the complex structure on the domain,
which implies, a fortiori, surjectivity as the domain is allowed to vary. �

While Proposition 10.2 implies that the Gromov–Witten numbers are
invariant under small deformations of J , it does not imply that they are
symplectic invariants unless one can show that Jsi is equal to J , or at least
is path-connected, and open and dense in J . The following examples give
two simple cases where this occurs.

Example 10.3. For X = CPN , the universal spaceML,0,0(X) of stable ra-
tional maps representing the class of a line is smooth and equal toML,0,0(X),
and Jsi(L, 0, 0) is all of J .

Example 10.4. AssumeX is a Calabi-Yau 3-fold. As in (10.3), consider the

universal moduli spaceM′A,0,0(X)→ Jsi of unmarked stable rational curves
representing a primitive homology class A ∈ H2(X;Z). In this case, π has
index 0 and, we claim, Jsi = Jsi(A, 0, 0) is not only open, but is also dense
and path-connected. Hence Proposition 10.2 gives a relative fundamental
class

[MJ
A,0,0(X)]rel ∈ Ȟ0

(
MJ

A,0,0(X)
)

defined for all J ∈ Jsi, and therefore for all J ∈ J by the Extension Lemma

3.4. Evaluating on 1 ∈ Ȟ0(MJ
) then gives a well-defined numerical GW

invariant.

To prove the claim, note that, by Corollaries 1.4 and 6.6 of [IP], there
is a path-connected dense subset J Eisol of J (with E = ω(A)) such that, for
each J ∈ J Eisol, all somewhere injective J-holomorphic maps with energy at
most E are embeddings, and their images are disjoint. Fix J ∈ J Eisol. Then

by Lemma 1.5(a) of [IP] any J-holomorphic map f ∈MJ
A,0,0(X) factors as

a composition f = g ◦ ϕ of a holomorphic map ϕ : C → Cred of (connected)
complex curves and a J-holomorphic embedding g : Cred → X. But A is
primitive so the degree of ϕ is 1, and C is an unmarked rational curve, so
ϕ cannot have any constant components. Therefore f is an embedding of a
smooth curve; in particular, f is somewhere injective. Thus J Eisol ⊆ Jsi. But
this means that Jsi is an open subset of the manifold J that contains a dense
path-connected set. It follows that Jsi itself is dense and path-connected, as
claimed.

We conclude this subsection by supplying the deferred proof.

Proof of Lemma 10.1. From the discussion in [MS, Section 2.5], one sees
that the complement of Jsi in J is the set of all J such that there exists a
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J-holomorphic map f : C → X inMA,g,n(X) and an irreducible component
Ci of C with either

(i) f(Ci) = p is a single point,

(ii) the restriction f |Ci is a multiple cover of its image, or

(iii) there is another component Cj of C with f(Ci) = f(Cj).

We will show that each of these is a closed condition on J , so the complement
of Jsi is the union of three closed sets.

Suppose that a sequence {Jk} converges to J ∈ J and that there are
stable Jk-holomorphic maps fk : Ck → X and components C ′k ⊂ Ck with
fk(C

′
k) = pk as in (i). By Gromov compactness, after passing to a subse-

quence and then a diagonal subsequence, {fk} and {fk|C′k} converge to J0-
holomorphic maps f : C → X and f ′ : C ′ → X, respectively, for some nodal
curve C and subcurve C ′ with f ′ = f |C′ . But then f ′ is a constant map.
Thus (i) is a closed condition on J .

If each {fk|C′k} is multiply covered then, by the proof of [MS, Proposi-
tion 2.5.1], there exist curves Bk and holomorphic maps ϕk : C ′k → Bk of de-
gree > 1 such that fk|C′k is the composition gk ◦ ϕk for some Jk-holomorphic
map gk : Bk → X. Again by Gromov compactness, we may assume that, af-
ter restricting to C ′k, these converge to maps f ′, g and ϕ with f ′ = g ◦ ϕ and
degϕ > 1. Then f ′ = f |C′ satisfies (ii), so (ii) is a closed condition on J .

The proof for (iii) is similar after using [MS, Corollary 2.5.3] to write
fk|Ci as the composition of ϕk : Cik → Cjk and gk : Cjk → X. �

10.2. Moduli spaces of domain-fine maps

The somewhere injective condition is too restrictive for most applications.
In the genus 0 case, the needed transversality results hold for the slightly
larger class of maps (“simple maps”) that are somewhere injective on the
complement of ghost components; see [MS, Example 6.2.5]. But it is more
effective to expand the base space J to the space JV of Ruan-Tian pertur-
bations and work with the universal moduli space (9.7) of (J, ν)-holomorphic
maps. Here one has results analogous to those of the previous section for a
different class of maps:

Definition 10.5. A (J, ν)-holomorphic map f : C → X is called domain-
fine if Aut C = 1.
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Note that any domain-fine map f : C → X is a stable map. Furthermore,
the map C 7→ ϕ(C) defined by (9.2) is an embedding, so the graph map (9.4)
is also an embedding, and hence is somewhere injective. While the proofs
in the previous subsection do not automatically apply (because the set of
almost complex structures on Ug,n ×X is restricted to be of the form (9.5)),
their conclusions hold, as we show next.

Again, we fix (A, g, n), set

JVdf = JVdf (A, g, n) =
{
J ∈ JV

∣∣∣ all (f, J) ∈MJ
A,g,n are domain-fine

}
,

and consider the map

(10.4)

M′′A,g,n(X)

π′′

��
JVdf

obtained by restricting the space of stable maps (9.7) over Jdf . Then (10.1)
restricts to a stratification

M′′A,g,n =M′′A,g,n ∪
⋃
S ′′τ .

Corresponding to Lemma 10.1, we have:

Lemma 10.6. JVdf is an open subset of JV, so is a Banach manifold.

Proof. Under Gromov convergence, the order of the automorphism group of
the domain is upper semi-continuous, and limits of unstable domain compo-
nents are unstable. Thus each domain-fine map f has a neighborhood with
the same property. For (J, ν) ∈ JVdf , these open sets cover the moduli space

MJ,ν
A,g,n(X), and hence by compactness cover the moduli spaces π−1(U) for

some open neighborhood U of (J, ν). �

Lemma 10.6 enables us to rephrase a result of Ruan and Tian in [RT2] to
show that the moduli space (10.4) over JVdf admits a relative fundamental
class in the homology theories (1.12).

Proposition 10.7. Fix (A, g, n) and JVdf as above. Then the restriction
(10.4) of the universal moduli space of stable maps over JVdf is a Fredholm-
stratified thin compactification MA,g,n(X)→ JVdf of index d = ι(A, g, n).
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Therefore it admits a unique relative fundamental class

[MJ
A,g,n(X)]rel ∈ Ȟ∗

(
MJ

A,g,n(X)
)
.

Again, by Corollary 4.3, the corresponding GW numbers (9.9) are in-
variant under small deformations of (J, ν), and are constant on each path-
component of JVdf (A, g, n).

Proof. For domain-fine maps f , we have Aut(f) = 1 and the graph map
F is an embedding. Hence one can use the variation in ν to show that
the linearization of the equation ∂Jf = ν is onto, as in the proof of [RT2,
Proposition 3.2]. The proof is completed exactly as the proof of Proposi-
tion 10.2. �

Example 10.8. LetM0,0,n(X)→ JV be the moduli space of stable (J, ν)-
holomorphic rational maps representing the class 0 ∈ H2(X) and with n ≥ 3
marked points. Because stable rational curves have no non-trivial automor-
phisms, maps of this type are domain-fine for all (J, ν). Thus in this case
Jdf (0, 0, n) is all of JV.

In general, JVdf may not be all of JV, and may even be empty. Propo-
sition 10.7 is then insufficient to define symplectic invariants. This is a man-
ifestation of a well-known problem in symplectic Gromov–Witten theory
originally identified by Ruan and Tian: the space of stable maps may not be
a relatively thin family because of the presence of multiply-covered unstable
domain components. On such components, the perturbation ν vanishes and
cannot be used to verify condition Reg 1 of Section 9. In subsequent papers,
we will extend and apply the constructions in Sections 1-6 with the aim of
moving past this obstacle.
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