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This article is concerned with asymptotics of equivariant Bergman
kernels and partial Bergman kernels for polarized projective Kähler
manifolds invariant under a Hamiltonian holomorphic S1 action.
Asymptotics of partial Bergman kernel are obtained in the al-
lowed region A resp. forbidden region F , generalizing results of
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toric Kähler manifolds. The main result gives scaling asymptotics
of equivariant Bergman kernels and partial Bergman kernels in the
transition region around the interface ∂A, generalizing recent work
of Ross-Singer on partial Bergman kernels, and refining the Ross-
Singer transition asymptotics to apply to equivariant Bergman ker-
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This article is concerned with the asymptotics of partial Bergman ker-
nels for positive Hermitian holomorphic line bundles (L, h)→ (M,ω) over a
Kähler manifold of complex dimension m carrying a Hamiltonian holomor-
phic S1 action, where S1 = T = R/2πZ,

exp t(ξH/2π) : T×M →M, ιξHω = dH, exp t(ξH/2π)(z) =: e2πitz,

where H : M→P0 := H(M)⊂R is the Hamiltonian and ξH is its Hamilton
vector field. The T-action1 preserves the data (L, h) and can be ‘quantized’
to give a unitary representation of T

(1) Uk(θ) = eikθĤk : T×H0(M,Lk)→ H0(M,Lk)

on the spaces H0(X,Lk) of holomorphic sections of the tensor powers Lk,
equipped with the L2 norm Hilbhk induced by the Hermitian metric h. The
self-adjoint generator of Uk(θ) is denoted by

(2) Ĥk := H +
i

2πk
∇ξH : H0(M,Lk)→ H0(M,Lk),

where ∇ξHs is the covariant derivative of a section s and Hs is the product

of s with H [Ko, GS]. When ξH generates a holomorphic T action, Ĥk

1 We denote it by T rather than by S1 because we use that notation for a
different circle action on L∗. We also use the terms Bergman kernel and Szegö kernel
interchangeably.
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Interface asymptotics of partial Bergman kernels 795

preserves holomorphic sections and coincides with the Toeplitz operator

Ĥks = ΠkĤkΠks, s ∈ H0(M,Lk)

with principal symbol H (see §1.3). Here,

Πk : L2(M,Lk)→ H0(M,Lk)

is the orthogonal projection (or Szegö -Bergman kernel).
We define the eigenspaces of Ĥk (= the weight spaces of the T action)

by

Vk(j) = {s ∈ H0(M,Lk) : Uk(θ)s = eijθs}(3)

=

{
s ∈ H0(M,Lk) : Ĥks =

j

k
s

}
;

it is known that Vk(j) 6= {0} if and only if j
k ∈ P0 = H(M), and their di-

mensions have been computed in articles on “quantization commutes with
reduction” [GS]. In Lemma 2.1 we show that H(M) = [0, a] for a positive
integer a which is equal to the symplectic area of a generic C∗ orbit. We
define the associated weight space projections (termed equivariant Bergman
kernels)

(4) Πk,j(z, w) : L2(M,Lk)→ Vk(j).

These equivariant Bergman kernels are the smallest components of the full
Bergman kernel (or Szegö projector)

(5) Πk(z, w) =
∑

j: j
k
∈P0

Πk,j : L2(M,Lk)→ H0(M,Lk)

to possess strong asymptotic expansions when j
k → E for some value E of

H. The norm contraction of Πk,j(z, z) on the diagonal is denoted by Πk,j(z)
and is called the equivariant density of states.2 As proved in Theorems 1
and 2, the normalized equivariant density of states k−m+ 1

2 Πk,j(z) resembles
a Gaussian bump concentrated on the energy level H−1(E) in the sense
of being essentially equal to 1 on H−1( jk ) and having “Gaussian decay”

e−kbE(z) away from H−1( jk ) along gradient lines σ → e−σ/2 · z of H, where
bE is defined by (9), and is like distance-squared to the hypersurfaceH−1(E).

2The norm contraction of any kernel K(z, w) on the diagonal is denoted K(z).
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796 S. Zelditch and P. Zhou

This is the analogue for S1 actions of the result of [STZ] showing that joint
eigensections zα of the torus action of a toric Kähler manifold are Gaussian-
like bumps centered on the tori µ−1(α) (the inverse image of α ∈ Zm under
the moment map µ), a fact also used in [PS, RS].

The partial Bergman kernels of the title are projectors

(6) Πk,P (z, w) :=
∑
j: j
k
∈P

Πk,j(z, w).

onto subspaces

(7) Sk,P :=
⊕
j: j
k
∈P

Vk(j) ⊂ H0(M,Lk)

corresponding to proper sub-intervals P ⊂ P0 = H(M). They behave like
sums of Gaussian bumps centered at the the inverse images H−1( jk ) of the

“lattice points” j
k ∈ P .

The main problem is to relate the asymptotic properties of Πk,P (z, w)
to the geometry of the Hamiltonian flow of H and its complexification as
a C∗ action. The analogous problem for toric Kähler manifolds was studied
in [ShZ], with P a sub-polytope of the Delzant moment polytope of (M,ω).
As in the toric case, we prove in Theorem 3 the norm contraction Πk,P (z)
of Πk,P (z, z) has standard asymptotics in the allowed region AP and expo-
nentially decaying asymptotics in the forbidden region FP where

AP := int{z ∈M : H(z) ∈ P}, FP := int(M\AP ).

On the boundary, or “interface” ∂AP , Ross-Singer in [RS] showed that
k−mΠk,P (z) decreases from ∼ 1 to ∼ 0 in a tube of radius k−

1

2 . In the special
case where the minimum set of H is a complex hypersurface, Theorem 1.2
of [RS] asserts that if

√
k(H(z)− E) is bounded, then

(8) k−nΠk,(−∞,E](z) =
1√

2π|ξH(z)|2

∫ √k(H(z)−E)

−∞
e
− t2

2|ξH (z)|2 dt+O(k−
1

2 ).

Here, |ξH | is the norm of ξH with respect to the Kähler metric ω. The in-
tegral on the right is an incomplete Gaussian integral closely related to the
error function erf(x) = 1√

π

∫ x
−x e

−t2dt, which is odd and smoothly interpo-

lates between −1 at −∞ to 1 at +∞. The right side above involves the
slight modification Erf(x) = 1√

2π

∫ x
−∞ e

−t2/2dt, which interpolates between



i
i

“6-Zhou” — 2019/9/6 — 16:41 — page 797 — #5 i
i

i
i

i
i

Interface asymptotics of partial Bergman kernels 797

0 at −∞ and 1 at +∞. It often arises in interface problems involved in
packing quantum states in a domain (see e.g. [J, W]).

One of the principal motivations for this article is to establish this tran-
sition law for all Hamiltonian holomorphic S1 actions, with no conditions on
the fixed point set or on the analyticity of the Kähler metric ω. We obtain
the interface asymptotics from the Gaussian asymptotics of the equivariant
kernels (4). The Gaussian asymptotics of the equivariant Bergman kernels
in Theorems 1 and 2 are used in Theorem 4 to give Erf asymptotics for
partial Bergman kernels (8), which are essentially integrals of equivariant
Bergman kernels. In Theorem 3 we give exponentially decaying asymptotics
of the partial Bergman kernels Πk,P in the forbidden region.

Asymptotics of equivariant Szegö kernels have also been studied by
R. Paoletti in several settings, of which the closest to this article are con-
tained in [P, P2]. Equivariant Szegö kernels were not explicitly defined or
studied by Ross-Singer [RS]; as discussed in §0.7, they constructed kernels
Gj,k which play the role of Πk,j .

0.1 Set-up

To state our results we introduce some notation. Let (L, h,M, ω) be a Kähler
manifold with a positive line bundle (L, h) with C∞ Hermitian metric h and
with ω = i∂∂̄ log h a C∞ Kähler form. Let H : M → R be a Hamiltonian
function generating the holomorphic T-action. We shift H by a constant
such that the minimum of H is zero. In §2.1 and §2.2 the complex and
real Morse theory of Hamiltonians generating holomorphic S1 actions is
reviewed. The Hamiltonian and gradient flows of H commute and generate
a C∗ action. We denote the C∗ action by ewz = eρ+iθ · z, and the R-action
of gradient flow (and T-action of Hamiltonian flow, resp) of H by eρ (and
eiθ, resp), and infinitesimal generators for R and T action by ∂ρ and ∂θ.

We assume that E is a regular value of H, i.e. H has no critical points
on H−1(E). The subinterval P of H(M), is taken as P = [0, E). The allowed
region and forbidden region are then

AE = {z ∈M | H(z) < E}, and FE = {z ∈M | H(z) > E}.

Results for general P can be obtained from this easily.
Let ME

max be the set of points whose C∗-orbit (hence R-orbit) intersects
with hypersurface H−1(E). Let FEmax = ME

max ∩ FE .
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Definition 0.1. For z ∈ME
max, we define zE ∈ H−1(E), and real number

τE(z) and bE(z) as follows:
(1) zE is the intersection of the R-orbit {eρ · z} with H−1(E). We define the
projection

qE : ME
max → H−1(E), z 7→ zE .

(2) τE(z) is the ‘flow-time’ from zE to z, z = eτE(z) · zE .
(3) bE(z) is an analog of distanced-squared to H−1(E), defined by

(9) bE(z) = 2

∫ τE(z)

0
(H(eσ · zE)−H(zE)) dσ.

For ease of notation, we sometimes write b(z, E) = bE(z), τ(z, E) = τE(z).
(4) For E a regular value of H, we define the largest (1/k)Z lattice points
in P = [0, E), as

(10) Ek := max

{
1

k
Z ∩ [0, E)

}
.

For any point z ∈M that is not a fixed point of T, we fix a local C∗-
invariant holomorphic section eL ∈ Γ(U,L) in an open neighborhood U of z
and define the Kähler potential ϕ by e−ϕ = ‖eL‖2h. For any subspace Sk ⊂
Γ(M,Lk), the Bergman density for Sk can be written as

ΠSk(z) =

dimSk∑
j=1

‖sj(z)‖2hk =

dimSk∑
j=1

|fj(z)|2e−kϕ(z)

where {sj : j = 1, . . . ,dimSk} is an orthonormal basis for Sk and sj(z) =
fj(z) · eL(z)⊗k for a local holomorphic function fj(z) on U .

0.2 Asymptotics of equivariant Bergman kernels

Our first result is the precise statement that k−m+1/2Πk,j(z, z) is a kind of
Gaussian bump along H−1( jk ), i.e. in the tangential directions along H−1( jk )
it is essentially constant while it has Gaussian decay at speed k in the normal
directions (i.e. along the ∇H flow lines). Note that the ‘lattice points’ j

k are

Bohr-Sommerfeld type energy levels and H−1( jk ) are the corresponding clas-
sical energy surfaces. As k →∞ they become denser and approximate any
energy level E. We now give the Gaussian asymptotics of k−m+1/2Πk,j(z, z)
as j

k → E.
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Theorem 1. Let (L, h)→ (M,ω) be a positive line bundle over a Kähler
manifold, ω = i∂∂̄ log h ∈ C∞, and let H : M → R generate a holomorphic
T-action. Let E be a regular value of H, and z ∈ME

max. Then for any se-
quence j1, j2, . . . such that |jk/k − E| < C/k for some constant C, then the
equivariant density of states has the following asymptotics.

Πk,jk(z) =


km−

1

2

√
2

π∂2
ρϕ(zE)(1 +O(k−1)), z∈ME

max ∩H−1(E),

km−
1

2

√
2

π∂2
ρϕ(zE)e

−kb(z,jk/k)(1 +O(k−1)), z∈ME
max\H−1(E).

Here, zE and b(z, E) are defined in Definition 0.1.

Remark 1. The right side of the bottom asymptotics can be re-written in
terms of b(z, E) but the coefficient changes. For z /∈ H−1(E), |b(z, jk/k)−
b(z, E)| = ∂Eb(z, ·)( jkk − E) +O( 1

k2 ). Hence

e−kb(z,jk/k) ' e−kb(z,E)e−∂Eb(z,E)[k(
jk
k
−E)]

(
1 +O

(
1

k

))
.

Hence, the coefficient of the exponential decay e−kb(z,E) depends both on
the geometric coefficient ∂Eb(z, E) and on the degree of approximation of E
by the nearest ‘lattice point’ jk

k .

The next result concerns the scaling asymptotics of the equivariant
Bergman kernels in a C√

k
-neighborhood of H−1(E).

Theorem 2. With (L, h,M, ω) , (H,E) and (k, jk) as in Theorem 1. Let

zE ∈Mmax ∩H−1(E) and zk = e
β√
k · zE be a sequence of points approaching

zE. Then,

Πk,jk(e
β√
k · zE) = km−

1

2

√
2

π∂2
ρϕ(zE)

e−β
2∂2
ρϕ(zE)(1 +O(k−1/2)).

0.3 Asymptotics of partial Bergman kernels

In this section, we state analogues of Theorems 1 and 2 for partial Bergman
kernels (6); the first is the analogues of Theorem 1.2 of [ShZ] for partial
Bergman kernels of toric Kähler manifolds. Our aim is to obtain exponen-
tially accurate asymptotics in the forbidden region.
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Theorem 3. Let (L, h,M, ω) and (H,E) be as in Theorem 1, with h, ω ∈
C∞. Let P = H(M) ∩ (−∞, E) and z ∈ME

max. Then the partial Bergman
density is given by the asymptotic formulas:

Πk,P (z) =


Πk(z) +O(k−∞) H(z) < E

km−1/2
√

2
π∂2

ρϕ(zE)
e−kb(z,Ek)

1−e−|2τE(z)| (1 +O(k−1)) H(z) > E

where zE , τE(z), bE(z), Ek are given in Definition 0.1, and the remainder
estimates are uniform on compact subsets of ME

max.

Remark 2. As in Remark 1, the decaying exponent of e−kb(z,Ek) in the for-
bidden region (bottom equation in Theorem 3) can be replaced by e−kb(z,E)

by changing Ek to E at the cost of introducing an O(1) multiplicative factor,

e−kb(z,Ek) = e−kb(z,E)e∂Eb(z,E)k(E−Ek)(1 +O(1/k)).

However, when doing computation involving k−1 log Πk,P (z) or its deriva-
tives, one may replace b(z, Ek) by b(z, E) with only an O(1/k) error.

0.4 Interface asymptotics

Interface asymptotics concerns scaling asymptotics of the partial Bergman
density function Πk,P (z) for z in a 1√

k
-tube around the interfaces H−1(∂P ).

It suffices to consider intervals of the form (−∞, E] or [E,∞). We parametrize

the tube around H−1(E) using points zk = eβ/
√
kzE with zE ∈ H−1(E).

Theorem 4. Let (L, h,M, ω) and (H,E) be as in Theorem 1. In particular,

h, ω ∈ C∞. Let zE ∈Mmax ∩H−1(E) and let zk = e
β√
k · zE be a sequence of

points approaching zE along an R+ orbit, where β ∈ R. Then,

Πk,(−∞,E](zk) = km Erf

(√
4πk

E −H(zk)

|∇H|(zE)

)
(1 +O(k−1/2))(11)

= km Erf

(
−β|∇H(zE)|√

π

)
(1 +O(k−1/2)).

We present two approaches to prove Theorem 3 and 4 on partial Bergman
kernel Πk,P (z). The first approach (see Section 6) is based on asymptotics
of the equivariant Bergman kernels Πk,j(z) for j/k ∈ P of Theorem 2. For
fixed z, we use the localization Lemma 5.1 to identify the relevant cluster of
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weights j that contributes to leading order and calculate their contribution.
The second approach (see Section 8) makes use of the polytope character
χk,P (ew) =

∑
j∈kP e

jw and the Euler-MacLaurin formula as in [ShZ, RS]. It
is a more global approach. Convolution of χk,P (ew) with the full Bergman
kernel sifts out the relevant equivariant modes. A key point is that the χk,P
is a ‘semi-classical Fourier integral with complex phase,’ as is the Bergman
kernel, so that asymptotics can be obtained by use of the Boutet-de-Monvel-
Sjöstrand parametrix (see Section 3.3) and the stationary phase method.

There are interesting variations on the 1√
k
-scaling, which do not seem

to have been studied before, and which will be developed in [ZZ17]. In The-
orem 4, one takes a fixed interval of eigenvalues and studies the behavior
of pointwise Weyl sums for z in a 1√

k
-tube around the classical interface

H−1(E). But one might also study spectral sums where the eigenvalues are
also constrained to lie 1√

k
close to E. This is done in Propositions 8.1 and 8.5

for smooth, resp. sharp interval, constraints. It is shown in the “Localization
Lemma” 5.1 (2)–(3) that weights j

k ≤ E in the sum (11) which are ‘far’ from

E in the sense that | jk − E| ≥
log k√
k

do not contribute to the asymptotics and,

moreover, that those satisfying | jk − E| ≥
C√
k

do not contribute to the lead-

ing order asymptotics for C sufficiently large. Hence a smooth model for the
interface sums is to use weights f(

√
k( jk − E)) with Schwartz test functions

f . For f = 1[−M,M ] we use the Euler-MacLaurin sums method (Proposi-
tion 8.5). As in Theorem 4, the sums in Propositions 8.1 and 8.5 exhibit Erf
asymptotics. As explained further in [ZZ17], the

√
k scaling of smooth Weyl

sums gives rise to a kind of Central Limit Theorem for deterministic Weyl
sums.

The asymptotics in Theorem 3 improve on Theorem 1.1 of [RS] by giving
exponentially accurate asymptotics in the forbidden region and give the
analogue of the mass density results of [ShZ]. The interface asymptotics
of Theorem 4 extend the result of [RS] to general holomorphic S1 actions.
The method of proof is rather different and, in particular, Proposition 8.1
extends to general Hamiltonian flows ([ZZ17]).

0.5 Zero locus of a Random section

As in [ShZ], one may deduce the formula for the asymptotic distribution of
zeros of Gaussian random sections of Sk = Sk,P , the subspace of H0(M,Lk)
spanned by eigensection of Hk with eigenvalue in the subinterval P = [0, E]
(c.f (7)). The definition of random sections is precisely as in [ShZ]: Let
s =

∑dimSk
j=1 ak,jsk,j where ak,j are i.i.d. complex N(0, 1) random variables
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and {sk,j} is an orthonormal basis of Sk. Let Zs be the zero set of s and let
[Zs] be the current of integration over Zs.

Recall the setup from §0.1, let E be a regular value of H, ME
max the

set of points whose C∗ orbits intersect the hypersurface H−1(E). We define
qE : ME

max → H−1(E) sending a point z along its R-orbit to the hypersurface
H−1(E), and define

qE : ME
max →ME

max/C∗ = H−1(E)/S1

to be its image under the further quotient by the S1-action.

Theorem 5. For any z ∈ AE or z ∈ FE ∩ME
max, we have the following

weak-* convergence result

lim
k→∞

1

k
E([Zs])(z) =


ω, for z ∈ AE .
√
−1

2π ∂∂̄ [ϕ(qE(z)) + 2EτE(z)] , for z ∈ FE ∩ME
max.

The limiting current in FE ∩ME
max is a smooth (1, 1)-form of rank (n− 1).

Above, ϕ is a local Kähler potential for ω, i.e. ω = (i/2π)∂∂̄ϕ. It is
S1 invariant and descends to a potential on the reduced Kähler manifold
H−1(E)/S1. Since the Gaussian ensemble is S1 invariant, the limiting cur-
rents in both regions are S1 invariant. In FE the first term is invariant under
the C∗ action.

Remark 3. In the case where the fixed locus Y = H−1(Emax) is a divisor,
and there is no other critical value of H in (E,Emax), the limiting current
of zero locus can be written as

lim
k→∞

1

k
E([Zs])(z) =

i

2π
∂∂̄ϕY,ε,

where ε = Emax − E and ϕY,ε is the envelope psh function

ϕY,ε(z) = ϕ(z) + sup{ψ : ω + (i/2π)∂∂̄ψ ≥ 0,

ψ ≤ 0, ν(ψ)z ≥ ε for all z ∈ Y }.

In [RS] Theorem 5.16, they give an explicit expression for ϕY,ε, which in our
notation can be written as

ϕY,ε(z) =

{
ϕ(z) z ∈ A
ϕ(z)− bE(z) = ϕ(zE) + 2E · τE(z) z ∈ F .



i
i

“6-Zhou” — 2019/9/6 — 16:41 — page 803 — #11 i
i

i
i

i
i

Interface asymptotics of partial Bergman kernels 803

See also sections 2.5 and 2.6 for the notation bE , τE and the relation with
symplectic potential u(I, z)3.

0.6 Relations to Bernstein polynomials

The interface result of Theorem 4 reduces to a classical theorem on Bern-
stein polynomial approximations of characteristic functions of intervals in
the special case where M = CP1 and ϕ(z) = log(1 + |z|2), resp. M = C and
ϕ(z) = |z|2. We briefly review these classical results and their relation to the
present article.

We recall that Bernstein polynomials of one variable give canonical uni-
form polynomial approximations to continuous functions f ∈ C([0, 1]):

(12) BN (f)(x) =

N∑
j=0

(
N

j

)
f(

j

N
)xj(1− x)N−j ,

and

lim
N→∞

BN (f)→ f uniformly on [0, 1].

It is explained in [Ze, Fe] that (12) can be put in the form of the kernels in
Theorem 3. More precisely, Bernstein polynomials in the sense of [Ze, Fe]
are functions

(13) Bk(f)(z) :=

Nk∑
j=1

f

(
j

k

)
Πk,j(z)

Πk(z)
=

(Πkf(Ĥk)Πk)(z, z)

Πk(z, z)
,

where for f is smooth there exists asymptotic expansion for k →∞. Here,
f(Ĥk) on H0(M,Lk) is defined by the spectral theorem, so that f(Ĥk)ŝk,j =

f
(
j
k

)
ŝk,j if sk,j is an eigensection of Ĥk with eigenvalue j/k.

Partial Bergman kernels are Bernstein polynomials (up to a normaliza-
tion constant) in the case where f is a step function 1P . Since 1P above is a
characteristic function with a jump, BN (1P )(x) cannot approach 1P (x) at
the jump. In fact, there is a kind of mean value formula at the jump involving
incomplete Gaussian integrals Erf(x) =

∫ x
−∞ e

−x2/2dx/
√

2π. In the classical
setting of Bernstein polynomials on [0, 1], the jump formula is proved in
[Ch, Lo, Lev]. The interface asymptotics of [RS] and of this article are gen-
eralizations of Theorem 1.5.2 of [Lo] in the one-variable setting.

3We thank the referee for pointing out this connection.
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0.7 Remarks on the proof, on related work and open problems

The main idea of the present article is to use the spectral theory of the S1

action and in particular the eigenspace projections (equivariant Bergman
kernels) to obtain asymptotics. The spectral viewpoint generalizes in many
respects to any Hamiltonian H : M → R on any compact Kähler manifold,
including cases where the Hamiltonian does not generate an S1 action. In
the general case, the gradient flow and Hamiltonian flow do not commute
or define a C∗ action, and the eigenspace projections do not have individual
asymptotics. Consequently, much of the analysis of this article does not
generalize. However it can be replaced by a more difficult analysis using
Toeplitz operators [ZZ17]. At this time, the spectral approach has been
the only feasible approach to asymptotics of partial Bergman kernels in
forbidden regions or to interface asymptotics.

In this paper we have avoided critical points ∇H(z) = 0 of H. The inter-
face results would change at a critical point. Roughly speaking, one would
have to use the quadratic approximation (the metaplectic representation)
rather than the linear approximation (the Heisenberg representation). It
seems to be an interesting problem to study the local interface behavior
around a critical point.

In [RS] the role of the equivariant kernels is played by the termsGn,k(z, w)

σn(z)⊗ σ(w)
n

in Definition 5.21, where σ is defined in Section 5.2 as the
section σ ∈ H0(Y,O(Y )) defining a hypersurface component of Fix(T). We
do not assume Fix(T) contains a hypersurface component and do not make
use of σ. We also do not make any constructions of Gn,k or construct special
parametrices adapted to the hypersurface Y , as is done in [RS].

The analysis in Ross-Singer [RS] was largely motivated by a more general
unsolved problem of determining Bergman kernel asymptotics for subspaces
of sections defined in terms of vanishing order along a divisor Y ⊂M . The
partial Bergman kernels are Schwartz kernels of the orthogonal projections

(14) ΠY,t
k (z, w) : L2(X,Lk)→ H0(X,O(Lk)⊗ ItkY )

onto the subspace of s ∈ H0(M,Lk) which vanish to order tk on a complex
hypersurface Y . The main question is to find the asymptotics of the density
of states,

(15) ρY,thk (z) := ΠY,t
k (z, z)hkz⊗hkz ,

defined by contracting the Szegö kernel along the diagonal with the metric.
The asymptotics depend on whether z lies in the allowed region At far from
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the divisor Y or whether it lies in the forbidden region Ft near the divisor Y
but it is more difficult to define these regions in the absence of a T action.

The general definition of allowed/forbidden regions (due to R. Berman
[Ber] and developed several articles of Ross-Witt-Nystrom) is that the al-
lowed region is the set At := DY,t = {φe,Y,t = φ} where a certain equilibrium
potential φe,Z,t equals the original Kähler potential. As pointed out in [PS],
in this generality, there is no information about the smoothness of ∂DY,t nor
about the ‘transition behaviour’ of (15) near ∂DY,t. In [Ber] it is suggested to
employ singular Hermitian metrics with singularities and with negative cur-
vature concentrated along the divisor Y . At the present time, this program
has only partially been carried out in [Ber, RS, CM] and remains largely
open.

The spectral viewpoint towards (14) has not been developed beyond the
S1 case of this article, and may not admit generalizations to non-symmetric
cases. The interface might be quite irregular in general (as the boundary
of an envelope). We briefly discuss how to re-cast vanishing order in terms
of spectral theory. When the Hamiltonian flow is holomorphic and periodic
and when one component of the fixed point set MT of the T action is a
divisor Y , then the allowed and forbidden regions are those defined above
in terms of the Hamiltonian and the interface asymptotics are given by (8)
in [RS]. The hypersurface Y is necessarily the minimum set of the classical
Hamiltonian. The link between the spectral theory and the definition of
partial Bergman kernels in terms of vanishing order is given in the following
Proposition (closely related to Lemma 5.4 of [RS]. )

Proposition 0.2. Suppose that the minimum set of H is a complex hy-
persurface Y . Then H0(X,O(Lk)⊗ ItkY ) =

⊕
j≥tk Vk(j) is the direct sum of

eigenspaces of Ĥk for eigenvalue ≥ t.

Proof. Since Y is T-invariant, both Lk and ItkY are T invariant and so the
action fo T on H0(X,O(Lk)⊗ ItkY ) decomposes into weight spaces,

H0(X,O(Lk)⊗ ItkY ) =
⊕
j: j
k
∈P0

Vk(j)⊗ ItkY .

Thus it suffices to determine the summands which are non-zero. An element
s ∈ Vk(j) transforms by wj under the action of w ∈ C∗. We restrict it to C∗
orbit which tends to a point y ∈ Y . In holomorphic coordinates (w, y) where
w = 0 on Y , it is given by cyw

j . Thus it vanishes to order ≥ tk if and only
if j ≥ tk. �



i
i

“6-Zhou” — 2019/9/6 — 16:41 — page 806 — #14 i
i

i
i

i
i
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Of course, it is only in special cases that the minimum set of H is a
hypersurface. To take a simple model example, the hypersurface {z1 = 0}
is a component of the fixed point set of the S1 action on Cm defined by
eiθ(z1, . . . , zm) = (eiθz1, z2, . . . , zm), but for the ‘isotropic Harmonic oscilla-
tor’ eiθ(z1, . . . , zm) = (eiθz1, e

iθz2, . . . , e
iθzm) generated by H = ‖Z‖2/2 only

{0} is in the fixed point set or minimum set of H.
Partial Bergman kernels corresponding to intervals of eigenvalues are

closely related to Bergman kernels for the Kähler symplectic cut of M in
H−1(P ) in the sense of [BGL]. It would be interesting to compare the in-
terface behavior of the partial Bergman kernel, and the Bergman kernel of
the Kähler cut near the ‘cut’ but only for special cuts does the line bundle
project to an ample bundle.
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1. Hermitian line bundles, Kähler potentials and geometric
quantization

In this section, we review some elementary facts about the Kähler geometry
and geometric quantization, and also establish our notations and conven-
tions.

1.1. Hermitian line bundles

Let (L, h)→ (M,ω = c1(L)) be an ample line bundle with a positive hermi-
tian metric over a projective Kähler manifold. For any z ∈M , and any open
neighborhood U of z on which L is trivial, we may choose a local trivializa-
tion eL ∈ Γ(U,L), that is eL(z) 6= 0 for all z ∈ U . Then we may define the
corresponding local Kähler potential ϕ : U → R as

h(eL(z), eL(z)) =: e−ϕ(z) := h(z).

The Chern connection associated to h is

∇ : C∞(L)→ A1(L)
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where C∞(L) is the sheaf of smooth sections valued in L and A1(L) is the
sheaf of smooth 1-forms valued in L, such that

∇ = ∇(1,0) +∇(0,1), ∇(0,1) = ∂̄, ∇(1,0) = ∂ +A(1,0),

A(1,0) = ∂ log h = −∂ϕ.

The curvature associated with the Chern connection is

F∇(z) = dA(1,0) = d∂ log h = ∂̄∂ log h = ∂∂̄ϕ.

We choose the Kähler form ω = Ric(L), more precisely

ω = c1(L) =
i

2π
F∇ =

i

2π
∂∂̄ϕ =

−1

4π
ddcϕ.

where dc = i(∂ − ∂̄), such that dcf = df ◦ J .
It often simplifies the analysis to lift sections of L→M and operators

on sections to the unit circle bundle Xh of the Hermitian metric h, so that
geometric pre-quantization of the S1 action is pullback of scalar functions
under a flow. In the next section we discuss the geometric aspects of the lift
and in §3.1 we discuss the analytic aspects.

1.2. The disc bundle and the circle bundle of L∗

Let (L∗, h∗) be the dual bundle to L with the induced hermitian metric h∗,
which we will also denote as h from now on. Let e∗L ∈ Γ(U,L∗) be the dual
frame to eL, then we can define the disc and circle bundle in L∗:

Dh = D(L∗) := {(z, λ) | z ∈M, λ ∈ L∗z, ‖λ‖h ≤ 1}, X = Xh = ∂Dh.

The disc bundle Dh is strictly pseudoconvex in L∗, and hence Xh inherits
the structure of a strictly pseudoconvex CR manifold. Let ψ be a smooth
function defined in a neighborhood of ∂D inside D, such that ψ > 0 in Do

, ψ = 0 on ∂D and dψ 6= 0 near ∂D. For example, one may take

(16) ψ(x) = −2 log |λ| − ϕ(z),
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where x = (z, λe∗L(z)). Associated to Xh is the contact form4

(17) α = Re(i∂ψ|X) = Re(−i∂̄ψ|X) = dθ + Re(i∂̄ϕ(z)), π∗ω =
1

2π
dα

where we used (z, θ) to denote
(
z, eiθe∗L(z)/‖e∗L(z)‖h

)
∈ Xh, and we abused

notation by omitting π∗ in π∗∂̄ϕ(z). The Reeb vector field R is uniquely
defined by α(R) = 1, ιRdα = 0; here it is R = ∂θ, the fiberwise rotation.
Since later we will use ∂θ for the generator of the holomorphic circle action
on M , we will always refer to the Reeb flow by R, and the group action by
rθ := exp(θR).

A section sk of Lk determines an equivariant function ŝk on L∗ by the
rule

ŝk(λ) =
(
λ⊗k, sk(z)

)
, λ ∈ L∗z, z ∈M,

where λ⊗k = λ⊗ · · · ⊗ λ.

1.3. Lifting the Hamiltonian flow to a contact flow on Xh.

Let H be a Hamiltonian function on (M,ω). Let ξH be the Hamiltonian
vector field associated to H, that is,

dH(Y ) = ω(ξH , Y )

for all vector field Y on M . The sign convention for the Hamiltonian vector
field and the corresponding Poisson bracket is

df(Y ) = ω(ξf , Y ), {f, g} = −ω(ξf , ξg)

this choice ensures that [ξf , ξg] = ξ{f,g}.

The purpose of this section is to lift ξH to a contact vector field ξ̂H on
Xh and to lift the Hamiltonian T action to a contact T action. Recall that
the horizontal lift is defined by ξhH ∈ kerα and π∗ξ

h
H = ξH . We also denote

the Reeb vector field generating the canonical S1 action on Xh →M by R.

Lemma 1.1. Define

ξ̂H = ξhH − 2πHR.

Then ξ̂H is a contact vector field.

4If we used two different defining functions ψ1 and ψ2, the induced αs would
differ as well. However, if ψ1 = f(ψ2), then α1 = f ′(0)α2 only differ by a constant
factor.
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Proof. Since π∗ξ̂H = π∗ξ
h
H = ξH , it suffices to check that ξ̂H preserve the

contact form α. By (17),

Lξ̂Hα = LξhH−2πHRα = (ιξhH−2πHR ◦ d+ d ◦ ιξhH−2πHR)α

= ιξhHπ
∗(2πω) + d(−2πHα(R)) = 0. �

In Lemma 2.6 we prove that the lifted flow is periodic of period 2π.

Lemma 1.2. For any C∞ section s of Lk,
̂̂
Hks = i

2πk ξ̂H(ŝ). If H defines

a holomorphic S1 action, then the spectrum of Ĥk is given by

Sp(Ĥk) = { j
k

: j ∈ N,
j

k
∈ H(M)}.

Proof. We write ξH = ξ. It is well-known that ∇̂ξs = dŝ(ξh); we refer to [KN]
for the proof. The equation follows from the fact s lifts to an equivariant
function satisfying Rŝ = ikŝ. �

Recall the definition (1) of Uk(θ) = eikθĤk , acting on C∞(M,Lk), we
have

Corollary 1.3. For any smooth section s ∈ C∞(M,Lk), and for any θ ∈ R,

Ûk(θ)s = exp

(
−θ ξ̂H

2π

)
ŝ = ŝ ◦ exp

(
θ
ξ̂H
2π

)
.

As mentioned above, if we have a holomorphic S1 action, then the lifted
flow is periodic of period 1 (Lemma 2.6). It follows that Uk(θ) is periodic of
period 2π.

1.4. The S1 × S1 action on Xh and its weights

The Reeb flow and the lifted T action together define an S1 × S1 action
on Xh. Its weights form the semi-lattice {(j, k) ∈ Z+ × Z+, j ∈ kP0}. This
lifting and the approximation of energy levels by rays in Z+ × Z+ is discussed
in detail in [STZ] for toric varieties, and the same discussion applies almost
verbatim to T actions.

The asymptotics of the equivariant Bergman kernels Πk,j involves pairs
(jn, kn) of lattice points along a “ray” in the joint lattice. The simplest rays
are the “rational rays” where j/k ∈ Q ∩ P0. Somewhat more complicated are
“irrational rays” where jn

kn
→ E /∈ Q. In this case we consider lattice points

with | jk − E| ≤
C
k .
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2. Kähler manifolds carrying C∗ actions

We begin by reviewing the geometry of C∗ actions on Kähler manifolds
and give examples where at least one component of the fixed point set is a
hypersurface. We also consider the possible Hamiltonians H which generate
such actions.

2.1. Bialynicki-Birula decomposition

Let (M,ω) be a compact Kähler manifold equipped with a holomorphic C∗
action. The generator of the C∗ action ξ ∈ H0(M,T 1,0) is a holomorphic
vector field. A holomorphic T action which preserves ω is necessarily an
isometric T action for the Kähler metric. The closure of a non-trivial C∗ orbit
contains two fixed points and is a topological S2 called a gradient sphere. A
free gradient sphere is one whose generic point has trivial stabilizer.

By Frankel’s theorem [F], if the action has a fixed point, then the real S1

action is Hamiltonian. We denote the Hamiltonian by H : M → R and its
Hamilton vector field by ξ = ξH . Let F1, . . . , Fr be the connected components
of the fixed point set MT. Each Fj is a compact totally geodesic Kähler
submanifold of (M,ω). Set

M+
i := {x ∈M : lim

t→0
tx ∈ Fi}, M−i := {x ∈M : lim

t→∞
tx ∈ Fi}.

The so-called Bialynicki-Birula decomposition [BB, CS] states that the strata
of the disjoint decomposition

(18) M =
⋃
M+
i =

⋃
M−i

are locally closed analytic submanifolds. In Theorem II of [CS] it is proved
that

T (M±j )|Fj = N(Fj)
± ⊕ TFj ,

where N(Fj)
+ (resp. N(Fj)

−) is the weight space decomposition with pos-
itive (resp. negative) weights. Moreover, there is precisely one component
M+
src of the plus-decomposition (called the source), resp. one component

M−sink of the minus decomposition (called the sink) such that the associated
stratum is Zariski open. We will denote the points in M+

src ∩M−sink by Mmax

To paraphrase [BBS], the C∗ action gives a ’flow’ from the source to the
sink, and the ’flowlines’ are closures of ’generic’ orbits and limits of such
closures.
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2.2. Morse theory and gradient flow

The same decomposition can be obtained from the real Morse theory of the
Hamiltonian H. Kirwan proved that H2 is a minimally degenerate Morse
function. Since we are dealing with a real-valued moment map, we may
simply use H and it is also a minimally degenerate (perfect) Bott-Morse
function. The gradient flow of H with respect to the Kähler metric induces a
Morse stratification of X, and in [Ki, Y] it is proved that this stratification is
the same as the Bialynicki-Birula decomposition. That is, the Morse stratum

S±j =

{
x ∈M : lim

t→±∞
exp(t∇H) · x ∈ Fj

}
is the same as M±j . We note that

MT = {x : dH(x) = 0}

so that Fj are the components of the critical point set. The sink corresponds
to the minimum set of H. In [RS] it is assumed that one of the components
of MT is a hypersurface, and this hypersurface is necessarily the minimum
set of H.

Above we defined the open dense set ME
max of points whose forward

or backward gradient trajectories intersect H−1(E). Its complement con-
sists of the stable/unstable manifolds of critical points other than the min-
imum/maximum. These gradient trajectories can get hung up at the other
critical points and not make it to H−1(E).

We will also identify the Lie algebra g of T with R, such that −2π∂θ ∈
g 7→ 1 ∈ Z. Let H be the corresponding Hamiltonian for ξH = −2π∂θ. H is
determined only up to an additive constant. We fix the indeterminacy in H
by defining H = 0 on its minimum set.

Remark 4. (Remark on periods) By definition, the vector field ∂θ of the
action eiθz has period 2π, so the above convention makes the period of ξH
equal to 1.

2.3. The image H(M)

We normalized H so that the minimum of H is zero. The question then
arises what is the maximum value of H or equivalently what is the inter-
val H(M). It must be a “lattice polytope”, i.e. an interval which integer
endpoints. Thus, the maximum of H must be an integer.
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Lemma 2.1. Let z ∈Mmax and let Oz ' CP1 be the compactification of
C∗z. Let ω(Oz) =

∫
Oz ω. Then

• ω(Oz) is a positive integer and is constant in z for z ∈Mmax.

• maxH = ω(Oz);

Proof. For each z ∈Mmax we obtain a polarized Kähler CP1 by
(Oz, L|Oz , ω|Oz) and it must be the case that ω|Oz ∈ H2(Oz,Z). This proves
the first statement. We then restrict H : Oz → R. It generates the S1 ac-
tion restricted to Oz. Hence ω|Oz = (2π)−1dH ∧ dθ. If ω(Oz) = M , then

M =
∫
Oz

(2π)−1dH ∧ dθ =
∫ Hmax

0 dH = Hmax, or Hmax = M . �

2.4. The Hamiltonian and the T-invariant Kähler potentials

Following §0.2, for any w = eρ+iθ ∈ C∗, denote the C∗ action on M by z 7→
eρ+iθ · z. If we choose a local slice S of the C∗ action (necessarily a symplectic
manifold), then we may define slice-orbit coordinates (ρ, θ, y) by letting y
be coordinates on the slice and identifying

(19) eiθ+ρy = z.

For instance, if we choose a slice SE of the T action on H−1(E) then we
may use SE × C∗ to give local coordinates on a neighborhood of SE . Also,
H−1(E) is a slice of the gradient flow or R+ action on ME

max and we use the
coordinates (ρ, zE) ∈ R×H−1(E) as well.

As in the introduction, for z ∈ME
max, we define

(20) τE(z) ∈ R := the unique time s.t. z = eτE(z) · zE , zE ∈ H−1(E).

As in §0.2, we denote the two global vector fields ∂ρ, ∂θ (not be confused
with the Reeb flow R on the circle bundle), such that
(21)

∂θf(z) :=
d

dθ

∣∣∣∣
θ=0

f(eiθ · z), ∂ρf(z) :=
d

dρ

∣∣∣∣
ρ=0

f(eρ · z), ∀f ∈ C∞(M)

Since the C∗ action is holomorphic, we have ∂θ = J∂ρ.
Our choice of coordinates is such that on O,

(22) ι∗Oω =
i

2π
∂∂̄ι∗Oϕ =

1

4π
∂2
ρ ϕ dρ ∧ dθ.
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Recall that the gradient vector field ∇H is related to the Hamiltonian
vector field ξH , for any Y ∈ V ect(M),

dH(Y ) = ω(ξH , Y ), dH(Y ) = g(Y,∇H), g(X,Y ) = ω(X,JY )

hence ∇H = JξH = −2πJ∂θ = 2π∂ρ. Thus the limit point of downward gra-
dient flow ∇H is the same as limρ→−∞ e

ρ · z = z∞.
The following lemma relates H with the local Kähler potential.

Lemma 2.2. Fix any z ∈Mmax. Then

H(z) =
1

2
∂ρϕ(z)

Proof. As in [GS] (5.5) we define a T-invariant potential using a T-invariant
holomorphic section s ∈ H0

T(M,L) in the sense of Lemma 1.3, i.e. so that
Ĥs = 0. Then,

0 = Ĥs =
i

2π
∇ξHs+Hs =

i

2π
〈A, ξH〉s+Hs =

i

2π
〈−∂ϕ,−2π∂θ〉s+Hs

where we used the Chern connection 1-form with respect to the basis frame s
is given by A = −∂ϕ, and our convention of ξH = −2π∂θ (see above). Hence

H = −i〈∂θ, ∂ϕ〉 =

〈
∂θ,

i

2
(∂̄ − ∂)ϕ

〉
(23)

=

〈
∂θ,
−J
2

(∂ + ∂̄)ϕ

〉
=

〈
J∂θ,

−1

2
(dϕ)

〉
=

1

2
∂ρϕ,

This definition is unambiguous because any two T-invariant holomorphic
sections give the same Hamiltonian 1

2∂ρϕ(z). Indeed, let s1, s2 ∈ H0(M,L)
be two T-invariant (hence C∗ invariant) holomorphic sections. Then s1 =
fs2 for some C∗-invariant meromorphic function f . Then ∂ρf = ∂θf = 0,
so ϕ1(z) = − log ‖s1‖2 = − log |f |2 + ϕ2(z), and ∂ρϕ1(z) = ∂ρ(− log |f |2 +
ϕ2(z)) = ∂ρϕ2(z). �

2.5. The second derivative of ϕ and the action integral bE

We now consider the relation of ∂2
ρϕ and bE(z) (9). Let O(z) denote the

C∗ orbit of z, and let OR(z) denote the gradient trajectory of z. If OR(z) ∩
H−1(E) 6= ∅, then they intersect at the unique point zE (20).
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Lemma 2.3. If the C∗ orbit of z intersects H−1(E), let z = eτE(z) · zE
where τE(z) ∈ R and zE ∈ H−1(E), then

bE(z) = ϕ(z)− ϕ(zE)− τE(z)∂ρϕ(zE),(24)

∂ρbE(z) = ∂ρϕ(z)− ∂ρϕ(zE),

∂2
ρbE(z) = ∂2

ρϕ(z)

Hence, bE(eρ · zE) is a strictly convex function in ρ, with minimum at ρ = 0
and bE(zE) = 0. In particular, for ρ > 0 (resp. ρ < 0), bE(eρ · zE) is strictly
increasing (resp. decreasing) in ρ, or equivalently τE(z), along a C∗ orbit for
z ∈ FE resp. z ∈ AE.

Proof. By Lemma 2.2, we haveH(z) = 1
2∂ρϕ(z), hence 2E = ∂ρϕ(zE). Hence

from (9), we have

bE(z) = −2EτE(z) +

∫ 2τE(z)

0

[
H(e−σ/2 · z)

]
· dσ

= −2EτE(z) + 2

∫ τE(z)

0
[H(eσ · zE)] · dσ

= −τE(z)∂ρϕ(zE) +

∫ τE(z)

0
[∂ρϕ(eσ · z)] · dσ

= ϕ(z)− ϕ(zE)− τE(z)∂ρϕ(zE).

The other two identities follow from ∂ρτE(z) = 1 and ∂ρϕ(zE) = 0.
From Lemma 2.2 and the fact that ∇H = 2π∂ρ (see §2.4), we get

(25) π∂2
ρϕ = |∇H|2 = |ξH |2.

A closely related formula is that

H(eσz0)−H(z0) =

∫ σ

0

d

ds
H(esz0)ds(26)

=

∫ σ

0
g

(
∇H(es(z0)),

d

ds
(esz0)

)
ds

=
1

2π

∫ σ

0
|∇H(es(z0))|2ds.

Hence for z = eτE(z) · zE where zE ∈ H−1(E), we have

bE(z) =

∫ τE(z)

0

∫ σ

0
π−1|∇H|2(es · zE)dsdσ
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Monotonicity of bE in τE(z) is evident from the formula when τE(z) > 0 i.e.
z ∈ FE , hence bE is monotone increasing in ρ. �

2.6. The Leafwise Symplectic Potential and bE

In this section we relate bE(z) to leaf-wise symplectic potentials. To define
the symplectic potentials we use slice-orbit coordinates (θ, ρ, y) as in (19)
and pull back the Kähler potential (22) to C∗, by ϕ(ρ, θ; y) = ϕ(eρ+iθ · y).
Since the Kähler potential is T invariant, ϕ(ρ, θ; y) is θ independent and is
convex in ρ, and will be denoted by ϕ(ρ; y) relative to a slice SE ⊂ H−1(E).
Note that ϕ(ρ; eiθy) = ϕ(ρ; y) and so ϕ(ρ, zE) is defined for all zE ∈ H−1(E).

The leafwise symplectic potential is defined to be the Legendre transfor-
mation of ϕ(ρ; y),

u(I; y) = sup
ρ∈R

(Iρ− ϕ(ρ; y))

Since ϕ(ρ; y) is a smooth convex function in ρ, we have

(27) u(I; y) = Iρ(I; y)− ϕ(ρ(I; y); y),

where ρ(I; y) is s.t. I = ∂ρϕ(ρ(I; y); y). The Legendre transformation is an
involution,

(28) ϕ(ρ; y) = sup
I∈R

(ρI − u(I; y)) = ρI(ρ; y)− u(I(ρ; y); y),

where I(ρ; y) is s.t. ρ = ∂Iu(I(ρ; y); y). Also their second derivatives are
related by

(29) ∂2
Iu(I; y) = ∂Iρ(E; y) =

1

∂ρI(ρ; y)
=

1

∂2
ρϕ(ρ; y)

where I = I(ρ; y) and ρ = ρ(I; y). We use the notation I as in the “action-
variable’ dual to the angle variable θ; (27) implies that I/2 lies in the range
of H (see Lemma (2.5)).

The following Lemma relates bE(z) with the symplectic potential, and
can be easily verified using Lemma 2.3.

Lemma 2.4. Let zE ∈ H−1(E) and use gradient flow-coordinates z = eρ ·
zE. Then

(30) bE(z) = −u(2H(z), zE)− ϕ(zE) + 2(H(z)− E)τE(z),
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Using the symplectic potential, one can easily derive the dependence of
bE(z) in terms of E for fixed z.

Lemma 2.5. Fix z ∈M and E ∈ H(M), such that the R∗ orbit of z inter-
sects H−1(E) at zE, and let τ(z, E) = τE(z) ∈ R be such that eτE(z) · zE = z.
Then b(z, E) = bE(z) can be written as

(31) b(z, E) = ϕ(z) + u(2E; z)

and we have the following properties

(32) ∂Eb(z, E) = −2τ(z, E), ∂2
Eb(z, E) =

4

∂2
ρϕ(zE)

.

Hence b(z, E) is a strictly convex function in E with minimum being 0 at
E = H(z).

Proof. First we claim that ρ(2E; z) = −τ(z, E). Indeed by the definition of
ρ(2E; z) in (27), we have

2E = ∂ρϕ(ρ(2E; z); z) = ∂ρϕ(eρ(2E;z) · z) = 2H(eρ(2E;z) · z)

and τ(z, E) by definition satisfies E = H(zE) = H(e−τ(z,E) · z), hence
ρ(2E; z) = −τ(z, E). Using (27) we have

u(2E; z) = 2E(−τ(z, E))− ϕ(e−τ(z,E) · z) = −2τ(z, E)E − ϕ(zE)

Combined with (24), this proves (31). Next, using ρ = ∂Iu(I(ρ; y); y) from
(28), we have

∂E(b(z, E)) = 2∂Iu(I; z)|I=2E = 2ρ(2E; z) = −2τ(z, E),

and using (29) we have

∂2
E(b(z, E)) = 4∂2

Iu(2E; z) =
4

∂2
ρϕ(ρ(2E; z); z)

=
4

∂2
ρϕ(zE)

.
�

2.7. Periodicity of the lifted flow

We can now prove the periodicity statement in §1.3. Recall that the contact
vector field is ξ̂H = ξhH − 2πR.
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Lemma 2.6. The lifted flow exp tξ̂H is 1-periodic, or equivalently, Uk(θ) is
2π-periodic.

Proof. The equivalence follows from Corollary 1.3. By our choice of gener-
ator, the common period of all ξH -orbits equals 1, hence flow by ξhH return
to the same fiber. Since on the circle bundle, the horizontal vector field ξhH
and vertical Reeb vector field R commute, and H(z) is constant along the
ξH orbit, we may first flow by ξhH for time 1, then by −2πHR for time 1.
Let θγ be defined such that exp(ξhH)(z, λ) = (z, eiθγλ). Then,

θγ = i

∫
γ
A = i

∫ 2π

0
〈−∂ϕ, ∂θ〉dθ = 2πH

where we used identities from (23). Hence flowing by −2πHR sends (z, λ) 7→
(z, e−i2πHλ) = (z, e−iθγλ), the two eiθγ factor cancels, hence ξ̂H has period
1. �

2.8. Examples

To illustrate the variety of S1-Kähler manifolds, we first start with model
linear cases and then proceed to other types of examples.

(0): Linear actions on Cm On the non-compact Kähler manifold Cm with
Euclidean metric the linear S1 actions have the form,

eiθ · (Z1, . . . , Zm) = (eib1Z1, . . . , e
ibmZm), bj ∈ Z,

with Hamiltonians H =
∑

j bj |Zj |2. Extreme cases are where all bm = 0 ex-
cept b1 = 1, in which case the fixed point set is a hypersurface Z1 = 0, and
the isotropic Harmonic oscillator with all bj = 1 and Hamiltonian |Z|2 with
fixed point set {0}.

(i) Standard S1 actions on CPm They arise from subgroups S1 ⊂ SU(m+
1) of the form

eiθ · [Z0, . . . , Zm] = [eib0Z0, . . . , e
ibmZm], bj ∈ Z.

With no loss of generality it is assumed that b0 = 0. When bj 6= bk when j 6=
k, the action has m+ 1 isolated fixed points, Pj = [0, . . . , 0, zj , 0, . . . , 0]. The
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weights at Pj are {bj − bi}j 6=i. The Hamiltonian is

µ~b([Z0 : · · · : Zm]) =
b1|Z1|2 + · · ·+ bm|Zm|2

|Z|2
.

(ii) Cubic hypersurface in CP4

This example is taken from [Ki]. Consider the cubic hypersurface X ⊂
CP4,

x3 + y3 + z3 = u2v,

in CP4 = {[x, y, z, u, v]} and let C∗ act on X via the action on CP4,

t · [x, y, z, u, v] = [t−1x, t−1y, t−1z, t−3u, t3v].

Then XT has three fixed point components,

F1 = {[0, 0, 0, 1, 0]}, F2 = {[x, y, z, 0, 0] : x3 + y3 + z3 = 0},
F3 = {[0, 0, 0, 0, 1]},

of which two (F1, F3) are isolated fixed points and F2 is a hypersurface in
X, i.e. a curve. The point P = [0, 0, 0, 0, 1] is singular.

The corresponding stable sets Sj = {x ∈ X : limt→0 t · x ∈ Fj} are
S1 = {[x, y, z, u, v] ∈ X : u 6= 0},
S2 = {[x, y, z, u, v] ∈ X : u = 0, (x, y, z) 6= 0},
S3 = {[0, 0, 0, 0, 1]},

Here, S1 is Zariski open in X, S2 is of codimension one, and S3 = F3 is a
point.

The Hamiltonian H : X → R is the restriction of the Hamiltonian for
the T action on CPm above.

(iii) Ruled surfaces [HS]
Let Mg be a Riemann surface of genus g, equipped with a constant

curvature metric. Let L→M be a holomorphic line bundle. L carries a
natural C∗ action. Projectivize each line Lz → PLz ' CP1 to get PL. It still
carries a C∗ action. Examples of S1-invariant Kähler metrics are the constant
scalar curvature metrics.
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3. The Szegö kernel and the Boutet de Monvel-Sjöstrand
parametrix

This section is preparation for Theorem 1 and the subsequent asymptotic
results. The equivariant Bergman kernels Πk,j have two positive integer in-
dices, indicating a lattice point in Z+ × Z+

5. The asymptotics in k for a
fixed energy level E implicitly involve pairs (jn, kn) of lattice points along a
“ray” in the joint lattice.

It is convenient to lift the sections of H0(M,Lk), resp. the equivariant
kernels Πk,j , as equivariant functions (resp. kernels) on the unit circle bun-
dle Xh →M associated to the Hermitian line bundle (L∗, h∗), see §1.2. This
circle bundle carries a canonical S1 action. The Hamiltonian T action also
lifts to Xh and thus the two commuting circle actions define an S1 × S1 ac-
tion, whose weights form the semi-lattice of {(j, k) ∈ Z+ × Z+}. This lifting
and the approximation of energy levels by rays in Z+ × Z+ is discussed in
detail in [STZ] for toric varieties, and the same discussion applies almost
verbatim to T actions. We therefore summarize the key points and refer to
[STZ] for further details.

3.1. The Szegö kernel and the Bergman kernel

We now discuss the analytic aspects of the lift to the circle bundle Xh and
the disc bundle Dh in §1.2 and §1.3. We define the Hardy space H2(Xh) ⊂
L2(Xh) of square-integrable CR functions on Xh, i.e., functions that are
annihilated by the Cauchy-Riemann operator ∂̄b and are L2 with respect to
the inner product

(33) 〈F1, F2〉 =

∫
X
F1F2dVX , F1, F2 ∈ L2(X) .

Equivalently, H2(X) is the space of boundary values of holomorphic func-
tions on D that are in L2(X). Here, Xh is equipped with the contact volume
form

(34) dVX =
1

m!

α

2π
∧
(
dα

2π

)m
=

α

2π
∧ dVM , where dVM =

ωm

m!
.

The S1 action on X commutes with ∂̄b; hence H2(X) =
⊕∞

k=0H2
k(X)

where H2
k(X) = {F ∈ H2(X) : F (rθx) = eikθF (x)}. As mentioned in §1.3, a

5The T action in general has Z weights, since we have chosen H such that
H(M) ≥ 0, the corresponding weights are in Z+.
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section sk of Lk determines an equivariant function ŝl on L∗ by the rule

ŝk(λ) =
(
λ⊗k, sk(z)

)
, λ ∈ L∗z , z ∈M ,

where λ⊗k = λ⊗ · · · ⊗ λ. We henceforth restrict ŝ to X and then the equiv-
ariance property takes the form ŝk(rθx) = eikθŝk(x). The map s 7→ ŝ is a uni-
tary equivalence between H0(M,Lk) and H2

k(X). (This follows from (34)–
(33) and the fact that α = dθ along the fibers of π : X →M .)

We define the (lifted) Szegö kernel Π̂(x, y) to be the (Schwarz) kernel of
the orthogonal projection Π̂k : L2(X)→ H2(X). It is given by

(35) Π̂F (x) =

∫
X

Π̂(x, y)F (y)dVX(y) , F ∈ L2(X) .

The Fourier components Π̂k : L2(X)→ H2
k(X) of the Szegö projector

can be extracted from Π̂(x, y) by

(36) Π̂k(x, y) =

∫ 2π

0
e−ikθΠ̂(rθx, y)

dθ

2π
.

The Szegö (or Bergman)6 kernel Πk(z, w) for the orthogonal projection Πk :
L2(M,Lk)→ H0(M,Lk) can be obtained via the isometry of H0(M,Lk) ∼=
H2
k(X).

In a local coordinate patch U with a holomorphic frame eL ∈ Γ(U,L),
we introduce two scalar kernels Kk(z, w) and Bk(z, w), with respect to the
holomorphic frame and unitary frame:

Πk(z, w) =: Kk(z, w) · ekL(z)⊗ ekL(w) =: Bk(z, w) ·
ekL(z)

‖ekL(z)‖h
⊗

ekL(w)

‖ekL(w)‖h
.

The Bergman density function Πk(z) is the contraction of Πk(z, w) with the
hermitian metric on the diagonal,

Πk(z) := Bk(z, z)(:= Πk(z, z)),

where in the second equality we record a standard abuse of notation in which
the diagonal of the Szegö kernel is identified with its contraction.

6In the setting of line bundles, we use the terms interchangeably.
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3.2. Equivariant Szegö kernels

Let eL is a local T-invariant holomorphic frame and we define equivariant
Bergman kernel and densities,

(37)


Πk,j(z, w) = Kk,j(z, w) · ekL(z)⊗ ekL(w)

= Bk,j(z, w) ·
ekL(z)

‖ekL(z)‖h
⊗

ekL(w)

‖ekL(w)‖h
,

Πk,j(z) = Bk,j(z, z).

Equivariant Bergman kernels are closely related to Bergman kernels for
the reductions of the level sets H−1( jk ). For instance, the space of invariant
sections

(38) Vk(0) := H0
T(M,Lk) = {s ∈ H0(M,Lk) : eiθs = s}.

is isomorphic in a canonical way to the space of holomorphic sections of
the reduced line bundle LT on the reduced space ME := H−1(E)/S1, i.e.
Vk(0) ' H0(ME , L

k
T}, so that dimH0

T(M,Lk) = Vol(H−1(E)/S1) km−1.

3.3. The Boutet de Monvel-Sjöstrand parametrix

Near the diagonal in Xh ×Xh, there exists a parametrix due to Boutet de
Monvel-Sjöstrand [BSj] for the Szegö kernel of the form,

(39) Π̂(x, y) =

∫
R+

eσψ(x,y)χ(zx, zy)s(x, y, σ)dσ + R̂(x, y).

Here, χ(zx, zy) is a smooth cutoff supported in a neighborhood of the diag-
onal of M ×M . ψ(x, y) is defined as (up to 2πZi ambiguity)

ψ(x, y) = + log λx + log λy + ϕ(zx, zy)

where x = λx · e∗L(zx) ∈ Xh for zx ∈M,λx ∈ C∗, similarly for y, with respect
to a local trivialization eL ∈ Γ(U,L). And ϕ(z, w) is the almost analytic
extension of ϕ(z) (we abuse notation), that is

ϕ(z, z) = ϕ(z), ∂̄zϕ(z, w) = ∂wϕ(z, w) = 0

to infinite order on ∆M ⊂M ×M.
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On the co-circle bundle, we have 2Re log λx = −ϕ(zx) and 2Re log λy =
−ϕ(zy), hence if we write θx = arg λx, θy = arg λy, we have

ψ(x, y) = iθx − iθy + ϕ(zx, zy)− ϕ(zx)/2− ϕ(zy)/2.

The real part of ψ proportional to the Calabi-Diastasis,

Reψ(x, y) = −1

2
D(zx, zy),

where

(40) D(z, w) := −ϕ(w, z)− ϕ(z, w) + ϕ(z) + ϕ(w),

is defined near the diagonal of M ×M , and is positive and only vanishes
when z = w. The amplitude s is a classical symbol,

(41) s ∼
∞∑
n=0

σm−nsn(x, y).

Finally, the remainder term R̂(x, y) is C∞.
From the parametrix for Π̂ one can derive semi-classical parametrices

for the Fourier components and thus for the semi-classical Szegö kernels on
H0(M,Lk). If we substitute the first term of (39) into (36), one obtains the
oscillatory integral,

(42) Π̂k(x, y) ∼
∫
R+

∫ 2π

0
eσψ(x,rθy)eikθχ(zx, zy)s(x, rθy, σ)dθdσ,

Changing variables σ → kσ and eliminating the dθdσ integral by the sta-
tionary phase method gives, at least formally, the off-diagonal expansion for
the full Szegö kernel on M ,

(43) Kk(z, w) = ekϕ(z,w)km (1 +O(k−1)).

A direct construction of the parametrix is given in [BBSj] (where (43) is
stated as (2.2)).

We only use the full Bergman kernel and the the parametrices (43)–(42)
in Sections 4.1 and 7.1, in the proof of the Localization Lemma, and in
Section 8.
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4. Equivariant Bergman kernels: Proofs of Theorem 1 and
Theorem 2

In this section, we prove that the equivariant Bergman kernel Πk,j(z, z) forms
a Gaussian bump around the hypersurface H−1(j/k), with decay width ∼
1/
√
k.

Lemma 4.1. For all α, β ∈ C, we have

Kk,j(e
α · z, eβ · w) = ej(α+β̄)Kk,j(z, w)

and

Bk,j(e
α · z, eβ · w) = ej(α+β̄)−k(ϕ(eα·z)−ϕ(z))/2−k(ϕ(eβ ·w)−ϕ(w))/2Bk,j(z, w).

In particular, if we set β = −ᾱ, we have

Kk,j(z, w) = Kk,j(e
α · z, e−ᾱ · w).

Proof. This is immediate from the definition of K and B. �

4.1. Proof of Theorem 1

Theorem 1 follows from the following two propositions. The first one es-
tablishes the decay property of Πk,j(z) away from the real hypersurface
H−1(j/k). Recall the definition of bE(z) (9).

Proposition 4.2. Fix (k, j) and z ∈ H−1(E) where E = j/k. Then, for
any α ∈ R, we have

Πk,j(e
α · z) = e−kbE(eαz)Πk,j(z).

Proof. Using Lemma 4.1 with z = w, α = β ∈ R, we have

Bk,j(e
α · z, eα · z) = e2jα−k(ϕ(eα·z)−ϕ(z))Bk,j(z, z).

Now, write j = kE = kH(z) = k∂ρϕ/2, we have

Πk,j(e
α · z) = Bk,j(e

α · z, eα · z) = e−k(ϕ(eα·z)−ϕ(z)−α∂ρϕ(z))Bk,j(z, z)

= e−kbE(eαz)Bk,j(z, z) = e−kbE(eαz)Πk,j(z).
�
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These are exact identities and do not involve parametrices. Next, we
express Kk,j as a Fourier coefficient of Kk with respect to the Hamiltonian
S1 action and give a parametrix formula,

Lemma 4.3. For any j,

Kk,j(z, z) =

∫ 2π

0
Kk(e

iθ · z, z)e−ijθ dθ
2π

= km
∫ 2π

0
ekϕ(eiθz,z)e−ijθχ(eiθz, z)(1 +O(1/k))

dθ

2π

where χ(z, w) is a cut-off function supported in a neighborhood U of the
diagonal of M ×M .

Proof. The first line is evident and the second uses (43). �

The next proposition studies the kernel Πk,jk(z) when z ∈ H−1(E) and
jk/k → E.

Proposition 4.4. Fix a regular value E of H : M → R, and a sequence
{jk} such that | jkk − E| < C/k for some positive constant C. Then for any
z ∈ H−1(E) with trivial stabilizer in the T-action, we have

Πk,jk(z) = km−1/2

√
2

π∂2
ρϕ(z)

(1 +O(1/k)).

Proof. Let Ek = jk/k, and zk ∈ H−1(Ek) ρk ∈ R, such that z = eρkzk. We
have |ρk| = O(1/k). Indeed,

C/k > |Ek − E| =
1

2
|∂ρϕ(zk)− ∂ρϕ(z)| = 1

2

∣∣∣∣∫ ρk

0
∂2
ρϕ(esz)ds

∣∣∣∣ > C ′|ρk|

where we used the fact ϕ is psh and T-invariant, to get ∂2
ρϕ strictly positive,

hence |ρk| = O(1/k). Then using Proposition 4.2, we get

Πk,jk(z) = Πk,jk(zk)e
−kbEk (eρkzk)(44)

= Πk,jk(zk)e
−kO(ρ2

k) = Πk,jk(zk)(1 +O(1/k)).

Next, we evaluate Πk,jk(zk) using the parametrix of Lemma 4.3 and the
stationary phase method.
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Setting j = jk, z = zk in Lemma 4.3, we get

(45) Kk,jk(zk, zk) = km
∫ π

−π
ek(ϕ(eiθzk,zk)−iEkθ)χ(eiθzk, zk)(1 +O(1/k))

dθ

2π
.

This is not quite a standard stationary phase integral because the phase

(46) Ψk(iθ) := ϕ(eiθzk, zk)− iEkθ,

depends on k. However, all aspects of the stationary phase expansion (see
[Hö]) extend with no essential change to (46).

We claim that θ = 0 is a Morse critical point of (46). To see this, we
use H = −i〈∂θ, ∂ϕ〉 from (23)’s first equality. Thus, the first derivative of
Ψk(iθ) at θ = 0 is

−i∂θΨk(iθ)|θ=0 = H(zk)− Ek = 0.

To calculate the second derivative at θ = 0 we rewrite

ϕ(eiθz, z) = ϕ(eiθ/2z, e−iθ/2z),

using the T invariance of ϕ, then we extend (46) to a holomorphic function

(47) Ψk(τ) = ϕ(eτ/2 · zk, eτ̄ /2 · zk)− Ekτ.

The Taylor expansion of Ψk|R, has the form,

Ψk(t) = ϕ(et/2zk, e
t/2zk)− tEk

= ϕ(et/2zk)− tEk = ϕ(zk) +
t2

8
∂2
ρϕ(zk) +O(t3).

Thus θ = 0 is a non-degenerate isolated critical point of Ψ(iθ), with Hes-
sian ∂2

θ |θ=0Ψ(iθ) = −Ψ′′(0) = −1
4∂

2
ρϕ(z). Hence, we may choose ε > 0 small

enough such that for |θ| < ε there is no other critical point than θ = 0. Let
η(θ) ∈ C∞c (R), such that η(θ) ≡ 1 for |θ| < ε/2 and η(θ) ≡ 0 for |θ| > ε. Since
eiθ · z 6= z only when θ 6= 0 by the assumption on the stabilizer of S1-action
on z, and since (as in (40))

Reϕ(z, w)− 1

2
ϕ(z)− 1

2
ϕ(w) = −1

2
D(z, w) ≤ 0

and only vanishes when z = w, we have the following upper bound on the
real part of the phase function

(48) sup{Reϕ(eiθ · z, z)− ϕ(z) | (eiθ · z, z) ∈ U, |θ| ∈ [ε/2, π]} = −c < 0.
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for some positive constant c, where we used ϕ(eiθz) = ϕ(z) by the T-invariance
of ϕ. It follows that

Πk,jk(zk) = e−kϕ(zk)Kk,jk(zk, zk)

(49)

= km
∫ π

−π
ek(ϕ(eiθzk,zk)−ϕ(zk)−iEkθ)η(θ)χ(eiθzk, zk)(1 +O(1/k))

dθ

2π

+ km
∫ π

−π
ek(ϕ(eiθzk,zk)−ϕ(zk)−iEkθ)(1− η(θ))χ(eiθzk, zk)(1 +O(1/k))

dθ

2π

= km−1/2

√
2

π∂2
ρϕ(zk)

(1 +O(1/k))

= km−1/2

√
2

π∂2
ρϕ(z)

(1 +O(1/k))

where we applied stationary phase method to the first term and bound the
second term by O(e−ck) using (48). Since z = eρkzk with |ρk| = O(1/k), we
replaced zk by z in the last step without changing the remainder estimate.
Combining (44) and (49), we finish the proof of the proposition. �

Remark 5. If the stabilizer Gz of z is non-trivial then it is a cyclic group
generated by ζ = e

2πi

` for some positive integer `. By Lemma 4.1 and by the

stabilizer condition,Kk,jk(e
2πi

` · z, z) = e
2πijk
` Kk,jk(z, z) = Kk,jk(z, z).Hence,

either Kk,jk(z, z) = 0 or e
2πijk
` = 1, i.e. jk

` ∈ Z.
The stationary phase method applies as well, and each element ζn, n =

0, . . . , `− 1 is a critical point of the dθ integral. The phase has the critical

value e
2πijkn

` at ζn. The Hessian is independent of n, so the leading term of
the stationary phase expansion is

km−1/2

√
2

π∂2
ρϕ(z)

`−1∑
n=0

e
2πijkn

` .

If jk
` ∈ Z then each term is 1 and the sum is `. Otherwise, Kk,jk(z, z) = 0.

The above two propositions finish the proof of Theorem 1.

Remark 6. If ϕ(z) is real analytic, then Ψ(τ) is holomorphic when Im(τ) is
small enough. If ϕ is only smooth, then Ψ(τ) is an almost analytic extension
of Ψ|R. Although the proof uses the parametrix, it only uses Ψ in the real
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domain and only uses the C∞ remainder. Hence, it does not require real
analyticity.

4.2. Proof of Theorem 2

Theorem 2 follows from the following proposition.

Proposition 4.5. For any fixed k, j, z ∈ H−1(j/k) and α ∈ R, we have

Πk,j(e
α/
√
k · z) = e−

α2

2
∂2
ρϕ(z)Πk,j(z)(1 +O(k−1/2))

Proof. This follows from Proposition 4.2, and Lemma 2.3. We Taylor expand
bE(eα · z) in α around α = 0, to get

(50) bE(eα · z) =
α2

2
∂2
ρϕ(z) + g3(z, α), where g3(z, α) = O(|α|3).

Then we plug in the expansion to the exponent e−kbE(eα·z) to get

Πk,j(e
α/
√
k · z) = e−kbE(eα/

√
k·z)Πk,j(z)

= e−k(α
2

2k
∂2
ρϕ(z)+g3(z, α√

k
))Πk,j(z)

= e−
α2

2
∂2
ρϕ(z)Πk,j(z)

(
1 +O

(
kg3

(
z,

α√
k

)))
= e−

α2

2
∂2
ρϕ(z)Πk,j(z)(1 +O(k−1/2)). �

5. Lemma for Localization of sums

In this section we consider the sums in the partial Bergman kernels (6).
We prove several localization formulae for these sums. Roughly speaking a
localization formula says that, for a given z, only terms in the sums with
| jk −H(z)| < M√

k
contribute to the leading order asymptotics.

Lemma 5.1. As in Theorem 1, let (L, h,M, ω) be a Kähler manifold with
a positive line bundle, and H generates a holomorphic S1-action on (L,M),
with E a regular value of H, and z ∈ H−1(E) with C∗ acting freely on z.
Fix any smooth cut-off function χ : R→ [0, 1], such that χ(x) = 1 for |x| ≤ 1
and χ(x) = 0 for |x| ≥ 2. Then we have:
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(1) For any 1/2� ε > 0, we have

(51)
∑

j/k∈H(M)

(
1− χ

(
|j/k −H(z)|
k−1/2+ε

))
Πk,j(z) = O(k−∞).

(2) For any R > 0, there exists C large enough such that

(52)
∑

j/k∈H(M)

(
1− χ

(
|j/k −H(z)|
Ck−1/2

√
log k

))
Πk,j(z) = O(k−R).

(3) For any ε > 0, there exists C large enough such that for large enough k

(53)
∑

j/k∈H(M)

(
1− χ

(
|j/k −H(z)|
Ck−1/2

))
Πk,j(z) < εkm.

The above statements are also true for χ(x) = 1[0,1](x).

Proof. First we prove (1) and (2). From Proposition 4.2, we have

Πk,j(z) = e−kb(z,j/k)Πk,j(zj) = O(km−1/2e−kb(z,j/k)).

If j/k > H(z) and 1− χ
(
|j/k−H(z)|
k−1/2S

)
is nonzero, e.g. for S = kε or C

√
log k,

then by monotonicity of b(z, E) in E for E > H(z) (Lemma 2.5), we have

kb(z, j/k) > kb(z,H(z) + k−1/2S) =
1

2
∂2
Eb(z,H(z))S2 +O(k−1/2S3).

Similar statement is true for j/k < H(z). Hence

∑
j/k>H(z)

(
1− χ

(
|j/k −H(z)|
k−1/2S

))
e−kb(z,j/k)Πk,j(zj)

= O(e−
1

2
∂2
Eb(z,H(z))S2+(m+1/2) log k).

If S = kε, then −1
2∂

2
Eb(z,H(z))S2 + (m+ 1/2) log k < −ck2ε as k →∞,

proving (51). If S = C
√

log k, then for any R > 0, we can choose C large
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enough such that

− 1

2
∂2
Eb(z,H(z))S2 + (m+ 1/2) log k

=

(
m+ 1/2− C2

(
1

2
∂2
Eb(z,H(z))

))
log k

< −R log k,

proving (52).
To prove (3), it is not enough to have a uniform bound on the summand,

one needs to prove that the summand decays fast. Consider the range of j,
where

Ik,H(z) = {j : k−1/2C < |j/k −H(z)| < kε−1/2},

then

b(z, j/k) = b(z,H(z)) + ∂Eb(z,H(z))(j/k −H(z))

+
1

2
∂2
Eb(z,H(z))(j/k −H(z))2 +O(|j/k −H(z)|3)

=
1

2
∂2
Eb(z,H(z))(j/k −H(z))2 +O(k3ε−3/2)

hence sum over j ∈ Ik,H(z) gives∑
j∈Ik,H(z)

Πk,j(z)

=
∑

j∈Ik,H(z)

Πk,j(zj)e
−kb(z,j/k)

=
∑

j∈Ik,H(z)

km−1/2

√
2

π∂2
ρϕ(zj)

e−∂
2
Eb(z,H(z))(

√
k(j/k−H(z)))2

(1 +O(k3ε−1/2))

< c1k
m−1/2

√
k

∫ ∞
C

e−∂
2
Eb(z,H(z))x2

dx

= c1k
mδC ,

where δC is a constant depending on C and ∂2
Eb(z,H(z)), such that as

C →∞, δC → 0. For any given ε > 0, we may take C large enough, such
that c1δC < ε. Thus combining with part (1) of the proposition, we finished
the proof of part (3). �
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6. Proofs of Theorem 3 and 4: Summing equivariant
Bergman kernels

In this section we prove results about partial Bergman kernel asymptotics
in the interior of the allowed/forbidden regions (Theorem 3 ) and near the
interface(4), using localization Lemma 5.1 and asymptotics of equivariant
Bergman kernels in Theorem 1 and Theorem 2. Let P = [0, E) ⊂ H(M),
and recall the partial Bergman density as Πk,P (z) =

∑
j/k∈P Πk,j(z).

We fix a standard smooth cut-off function χ : R→ [0, 1], such that χ(x) =
1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2.

Proof of Theorem 3 . (Allowed Region). If z is in the allowed region, we may
use the localization formula (51) for the sum to write

Πk,P (z) =
∑

j∈kP∩Z
χ

(
|H(z)− j/k|
k−1/2+δ

)
Πk,j(z) +O(k−∞).

However, this is the same as the full Bergman kernel, up to another O(k−∞)
error term.

(Forbidden Region). If z is in the forbidden region, H(z) > E, then only
terms with |H(z)− j/k| small will contribute. Recall as in Definition 0.1, we
define jk = max{Z ∩ k[0, E)} and Ek = jk/k. Let zj ∈ H−1(j/k) and τj be
such that, z = eτjzj . Since H(z) > E > H(zj), we have τj > 0. Then using
Proposition 4.2, we have

Πk,P (z)

e−kb(z,Ek)Πk,jk(zjk)
=

∑
j∈kP∩Z

Πk,j(z)

e−kb(z,Ek)Πk,jk(zjk)

=
∑

j∈kP∩Z

e−kb(z,j/k)Πk,j(zj)

e−kb(z,Ek)Πk,jk(zjk)
.

For any 1� ε > 0, we claim the following localization result

Πk,P (z)

e−kb(z,Ek)Πk,jk(zjk)
(54)

=
∑

j∈kP∩Z

e−kb(z,j/k)Πk,j(zj)

e−kb(z,Ek)Πk,jk(zjk)
χ

(
|j/k − Ek|
k−1+ε

)
+O(k−∞).



i
i

“6-Zhou” — 2019/9/6 — 16:41 — page 831 — #39 i
i

i
i

i
i

Interface asymptotics of partial Bergman kernels 831

Proof of the claim: By Taylor expansion of b(z, E) in E, there exists δ, C > 0,
such that ∀|E − Ek| < δ, and

(55) b(z, E) = b(z, Ek) + (E − Ek)∂Eb(z, Ek) +R
(2)
b (z, E,Ek),

where |R(2)
b (z, E,Ek)| ≤ C|E − Ek|2. Then if (j − jk) > kε, and k large

enough such that k−1+ε < δ, then

k[b(z, j/k)− b(z, Ek)] > k[b(z, j + kε/k)− b(z, Ek)]

= ∂Eb(z, Ek)k
ε + kR

(2)
b (z, Ek + kε−1, Ek).

Since

∂Eb(z, Ek) = −2τ(z, Ek) > 0,

and

kR
(2)
b (z, Ek + kε−1, Ek) < Ck−1+2ε � kε,

we have

∑
j∈kP∩Z

e−kb(z,j/k)Πk,j(zj)

e−kb(z,Ek)Πk,jk(zjk)

(
1− χ

(
|j − jk|
kε

))
= O(k−∞).

This finishes the proof of the localization claim (54).
Next, we claim that the sum in (54) can be approximated by an infinite

geometric series with O(1/k) error. Indeed, using Proposition 4.4, we have

Πk,j(zj)

Πk,jk(zjk)
=

√
∂2
ρϕ(zjk)

∂2
ρϕ(zj)

+O(1/k) = 1 +R1(zj , zjk) +O(k−1),

where |R1(zj , zjk)| < C|H(zj)− Ek| = k−1 · C|j − jk|. And from (32), we
have

e−kb(z,j/k)

e−kb(z,Ek)
= e−A(jk−j)(1 +R2(j, jk)), A = −∂Eb(z, Ek) = 2τ(z, Ek),

where

R2(j, jk) = ekR
(2)
b (z,j/k,Ek) − 1 < Ck · |j/k − Ek|2 = k−1 · C|j − jk|2.
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Hence we get

∑
j∈kP∩Z

e−kb(z,j/k)Πk,j(zj)

e−kb(z,Ek)Πk,jk(zjk)
χ

(
|j/k − Ek|
k−1+ε

)
=

∑
j∈kP∩Z

e−A(jk−j)(1 + k−1R(j − jk, z0))χ

(
|j/k − Ek|
k−1+ε

)

=

 ∑
j∈kP∩Z

e−A(jk−j)χ

(
|j/k − Ek|
k−1+ε

) (1 +O(k−1))

=
∑

j∈kP∩Z
e−A(jk−j)(1 +O(k−1)) = (1− e−A)−1(1 +O(k−1)),

where R(m, z0) has at most polynomial growth in m, hence is integrable
against the exponential decaying factor. Thus, we have proved

Πk,P (z) = Πk,jk(zjk)
e−kb(z,Ek)

1− e−2τ(z,Ek)
(1 +O(k−1)).

Using (49), we have

Πk,P (z) = km−1/2

√
2

π∂2
ρϕ(zk)

e−kb(z,Ek)

1− e−2τ(z,Ek)
(1 +O(k−1)).

Finally, one may replace ∂2
ρϕ(zk) by ∂2

ρϕ(zE) and τ(z, Ek) by τ(z, E) with an
additional (1 +O(1/k)) factor. This concludes the proof of Theorem 3. �

Proof of Theorem 4. We write z for the sequence zk = eβ/
√
k · zE , for point

zE ∈ H−1(E) ∩ME
max. By the Localization Lemma 5.1

Πk,P (z) =
∑

j∈kP∩Z
Πk,j(z)χ

(
|H(z)− j/k|
k−1/2+ε

)
+O(k−∞)

=
∑

j∈kP∩Z
e−kb(z,j/k)Πk,j(zj)χ

(
|H(z)− j/k|
k−1/2+ε

)
+O(k−∞)
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Next we Taylor expand b(z, E) around E = H(z), ∃δ, C > 0, such that for
all |H(z)− E| < δ, we have

b(z, E) =
|E −H(z)|2

2
∂2
Eb(z, E) +R

(3)
b (z, E)

=
|E −H(z)|2

2

4

∂2
ρϕ(z)

+R
(3)
b (z, E)

where we have used Lemma 2.5, and |R(3)
b (z, E)| < C|E −H(z)|3. Define

uj =
√
k(j/k −H(z))

we have

kb(z, j/k) = A2u
2
j + kR

(3)
b (z, j/k), A2 =

2

∂2
ρϕ(z)

and

kR
(3)
b (z, j/k) < Ck−1/2|uj |3 < Ck−1/2+3ε.

where we used χ(|uj |/kε) > 0 only |uj | < 2kε. We have

Πk,P (z)

Πk,j0(zj0)
=

∑
j∈kP∩Z

e−A2u2
jekR

(3)
b (z,j/k) ·

Πk,j(zj)

Πk,j0(zj0)
· χ(uj/k

ε)

=
∑

j∈kP∩Z
e−A2u2

j (1 + k−1/2R(uj))χ(uj/k
ε)

=

 ∑
j∈kP∩Z

e−A2u2
jχ(uj/k

ε)

 (1 +O(k−1/2))

=

 ∑
j∈kP∩Z

e−A2u2
j

 (1 +O(k−1/2))

where R(uj) has at most polynomial growth in uj , hence is integrable against
the Gaussian decaying factor, and removing the cut-off function in the last
step only will introduce an error of size O(k−∞). Finally, we replace the
sum with the integral over u. Since uj+1 − uj = 1/

√
k, and the integrand is

smooth and has bounded derivative, the difference between the integral and
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the summation is again O(k−1/2)

Πk,P (z)

Πk,j0(zj0)
=

∫ √k(E−H(z))

√
k(−H(z))

exp

(
− 2u2

∂2
ρϕ(z)

)√
kdu(1 +O(k−1/2)).

Using our assumption that
√
k|E −H(z)| < C, we may extend the lower

limit of the integral to −∞, with an O(k−∞) error. Using Theorem 1, we
can estimate the denominator as

Πk,j0(zj0) = Πk,j0(zE)(1 +O(k−1/2)) = km−
1

2

√
2

π∂2
ρϕ(zE)

(1 +O(k−1/2)).

Then evaluate the incomplete Gaussian integral, we get

Πk,P (z) = km Erf

(√
4k

∂2
ρϕ(zE)

(E −H(z))

)
(1 +O(k−1/2)).

Using (25), ∂2
ρϕ = |∇H|2/π, we finish the proof. �

7. Proof of Theorem 3: Euler-MacLaurin approach

In this section we prove Theorem 3 by the technique of [ShZ] of using ‘poly-
tope characters’ to sift out the weights in the given interval. In dimension
one we refer to these polytope characters as interval characters. They are
very simple in dimension one and can be directly integrated.

We recall our normalization has H(M) = [0, Emax]. Given a proper
subinterval P = [0, E) ⊂ H(M) the interval characters χkP defined on (C∗)
by

(56) χkP (ew) =

kEk∑
j=0

ejw =
∑

j∈Z∩[0,kE)

ejw w ∈ C.

where Ek = max{ 1
kZ ∩ [0, E)} as in (10). The next Lemma expresses the

partial Bergman kernel in terms of the interval character:

Lemma 7.1. For any proper subinterval P = [0, E) ⊂ H(M), and a, b ∈ R
such that a+ b = 1, we have the following contour integral expression

Kk,P (z1, z2) =

∫
|ew|=1

Kk(e
−aw · z1, e

−bw̄ · z2)χkP (ew)
dw

2πi
.
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Proof. From the equivariant property of Kk,j(z, w) in Lemma 4.1, we have

Kk(e
−aw · z1, e

−bw̄ · z2) =
∑
j

Kk,j(e
−aw · z1, e

−bw̄ · z2)

=
∑
j

e−jwKk,j(z1, z2).

The contour integral then extracts the correct weights j from Kk. �

The particular case we use is a = b = 1
2 , where we have the following

identity,

(57) Kk,P (eζz, z) = Kk,P (eζ/2z, eζ̄/2z), (ζ ∈ C∗).

The main result is that interval characters are given by oscillatory inte-
grals over P .

Proposition 7.2. Let P = [0, E) ⊂ H(M) be a proper subinterval of H(M).
Then, the interval characters (56) are oscillatory integrals

χkP (ew) = L(w)k

∫
[0,Ek]

ekwxdx+
1

2
(1 + ekEkw) ,

for all w ∈ C\{±2πi,±4πi, . . . },

where

L(w) =
w/2

tanhw/2
.

Proof. We recall the Euler-MacLaurin formula for lattice interval sum, for
any [a, b] ⊂ R, a, b ∈ Z, we have

∑
n∈[a,b]

enw = L(w)

∫ b

a
exwdx+

eaw + ebw

2
.

Then plug in a = 0, b = kEk gives the desired result. The claim holds for all
w ∈ R and by analytic continuation we get the desired results. �

Remark 7. See [KSW] and [ShZ] for the generalization to character sums
over simple polytopes.
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7.1. Proof of Theorem 3

Proof of Theorem 3. In this section we use the Euler-MacLaurin formula
and the Boutet de Monvel-Sjöstrand parametrix discussed in section 3.3.
Although we allow E to be any real number, Proposition 7.2 replaces [0, E]
by [0, Ek] and we get integrals over the latter interval.

Combining Lemma 7.1 and Proposition 7.2, we obtain the following rep-
resentation. For any τ ∈ R, we have

Πk,P (z) = e−kϕ(z)

∫ τ+πi

τ−πi
Kk(e

−w/2z, e−w̄/2z)χkP (ew)
dw

2πi
(58)

= e−kϕ(z)k

∫ τ+πi

τ−πi

∫
[0,Ek]

Kk(e
−w/2z, e−w̄/2z)L(w)ekxw

dxdw

2πi︸ ︷︷ ︸
I1

+
1

2
(Kk,0(z) +Kk,kEk(z))︸ ︷︷ ︸

I2

where in the first step, we used Lemma 7.1 with a = 1/2, b = 1/2 (or the
identity (57)), and shifted the integration contour from the unit circle to
|ew| = e−τ ; this is possible because the integrand is holomorphic in w even
for C∞ metrics. We will see it is only necessary to shift the contour when
z lies in the forbidden region. We use I1, I2 to denote the integral term and
the boundary term.

Using the parametrix (43) for Kk, we obtain

I1 = e−kϕ(z)km+1

∫ τ+πi

τ−πi

∫
[0,Ek]

ekϕ(e−w/2z,e−w̄/2z)+kxwL(w)Ak
dxdw

2πi

where Ak = (1 +O(k−1)) is a semi-classical symbol. The phase function is

Ψ(w, x) := ϕ(e−w/2z, e−w̄/2z) + xw.

The asymptotics can be obtained in two ways. One is to apply stationary
phase for oscillatory integrals with complex phase functions on the surface-
with-boundary S1 × [0, Ek] (see Appendix A for stationary phase method
on half-space). The details are quite different in the allowed and forbidden
regions, but the overall argument is to locate critical points (w, x) satisfying
(59)

0 = ∂xΨ = w, 0 = ∂w|e−wz=e−w̄zΨ = x− 1

2
∂ρϕ(e−w/2z) = x−H(e−w/2z)
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and having maximal real part on the contour of integration. By (40) they
occur near the diagonal e−wz = e−w̄z, hence Imw = 0. That is, at an interior
critical point,

w = 0, x = H(z).

The second way is to remove the dx integral using,

(60)

∫
[0,E]

ekxwdx =
ekEw − 1

kEw
.

This formula is not useful when w = 0, which is a critical point for the
integral in the allowed region. But it is useful when w 6= 0, which is true of
critical points for the integral when z lies in the forbidden region. We now
give the details.

Allowed Region. We assume that z is in the allowed region and that
it is not a critical point of H. We set τ = 0 in (58). The asymptotics of I1

are thus determined by interior critical points (w, x).
The critical point equations (59) force x = H(z) and w = 0. The Hessian

matrix for Ψ(φ, x) (w = iφ) at (φ, x) = (0, H(z)) is

∂xxΨ = 0, ∂xwΨ = 1, ∂wwΨ = −1

4
∂2
ρϕ(z).

The Hessian determinant in (x, φ) equals 1 . Note that Ψ(0, H(z)) = ϕ(z)
at the critical point, so the phase factor cancels the pre-factor e−kφ in I1.
Hence the interior stationary phase formula ([Hö]) gives

I1 = kmL(0)(1 +O(k−1)) = km(1 +O(k−1)).

where the integration of dwdx gives a factor of k−1.
To complete the proof we show that I2 = O(k−∞). Indeed, there exists

constant c > 0, such that |H(z)− 0| > c, |H(z)− Ek| > c. By Theorem 1,
I2 = O(k−∞). Since the computation would be the same, if we had replaced
[0, Ek] by [0, Emax] = H(M), we get Kk,P (z) = Kk(z) for z in the allowed
region.

Forbidden Region. In the forbidden region, we have H(z) > E and
z ∈ME

max. The phase of the integral I1 has no critical points on the unit
circle |ew| = 1 and we must deform the integral to pick up the dominant
critical point. The relevant value of τ is τ = 2τE(z), where as above z =
eτE(z) · zE for zE ∈ H−1(E), τE(z) > 0. Then w 6= 0 on the contour and we
can use (60) to remove the dx integral. Then the dominant critical point
is on the boundary where x = Ek. The real part of the phase is smaller
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at 0 than E, and is therefore negligible. The critical equations are ∂wΨ =
x−H(e−τEk (z)z) = x− Ek = 0 is satisfied on the right boundary of [0, Ek].

I1 then can be explicitly written as

I1 = e−kϕ(z)km+1

∫ π

−π

∫
[0,Ek]

ekϕ(e−iφ/2zE ,eiφ/2zE)+2kxτEk (z)+ikxφ

× L(2τEk(z) + iφ)(1 +O(k−1))
dxdφ

2π
.

Alternatively, by (60), the dx integral equals e2kEτE(z)+ikEkφ−1
2kEkτE(z)+ikEkφ

. Since e2kEkτE(z)

is exponentially larger than 1, we may absorb the second term of the nu-
merator into the remainder estimate. The integral of dφ contributes

1√
k · 1

4∂
2
ρϕ(zE)

.

Recalling the definition of bE (Definition 0.1), we obtain

I1 = km−1/2e−k(ϕ(z)−2EkτEk (z)−ϕ(zE)) 1√
2π

1

2τEk(z)

2√
∂2
ρϕ(zE)

(61)

× τEk(z)

tanh(τEk(z)
(1 +O(k−1))

= km−1/2e−kbEk (z)

√
2√

π∂2
ρϕ(zE)

(
1

1− e−2τEk (z)
− 1

2

)
(1 +O(k−1)).

On the other hand, we can estimate the boundary terms

I2 =
1

2
Kk,kEk(z) +O(k−∞)(62)

= km−1/2e−kbEk (z) 1√
2π∂2

ρϕ(zE)
(1 +O(k−1)).

Combining I1, I2, we see the −1/2 term in the parenthesis in (61) cancels
out, and we get the result in the forbidden region. �

8. Interface asymptotics: Proof of Theorem 4

In Proposition 8.1, we first prove a smoothed version of Theorem 4 in which
the characteristic function 1[−∞,E] is replaced by a Schwartz test function
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f ∈ S(R)7. A density argument using the localization results of Section 5
then extends the asymptotic result from f ∈ S(R) to the characteristic
function of any interval in R (Theorem 8.2), and in particular proves the
leading order asymptotics stated in Theorem 4. In Section 8.3 we use the
Euler-MacLaurin formula to obtain the stated remainder estimate for the
intervals [−∞, E] (Proposition 8.5). The three main results of this section
(Proposition 8.1, Theorem 8.2 and Proposition 8.5) are more or less inde-
pendent: each uses a different techniques and sheds a different light on the
Erf-asymptotics of Theorem 4.

Recall the setup of Theorem 4, let E be a regular value of H : M → R,
zE ∈ H−1(E) and zk = eβ/

√
k · zE for some constant β. We define a sequence

of measures,

(63) dµk,zE ,β(x) =
1

Πk(zk, zk)

∑
j

Πk,j(zk)δ√k(j/k−E)(x), (k = 1, 2, 3, . . . )

and the purported limiting measure,

(64) dµ∞,zE ,β(x) = e
− 1

2

(
2x√

∂2
ρϕ(zE)

−β
√
∂2
ρϕ(zE)

)2

2dx√
2π∂2

ρϕ(z)
.

In the following, we fix E, zE , β and write µk and µ∞ for µk,zE ,β and µ∞,zE ,β,
respectively.

For any bounded continuous function f ∈ Cb(R), we define

(65) Ik,f (z) := k−m
∑
j

f

(√
k

(
j

k
− E

))
Πk,j(z).

Since Πk(zk, zk) = km(1 +O(k−1/2)), we have∫
fdµk = Ik,f (zk)(1 +O(k−

1

2 )).

8.1. Schwartz test functions

Although we state the main result for Schwartz test functions, it is easily
seen that much less is required of the test functions for the asymptotics to
be valid.

7 S(R) denotes Schwartz space
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Proposition 8.1. With the same notation as in Theorem 4, and f ∈ S(R),
we have

Ik,f (eβ/
√
k · zE) =

∫ ∞
−∞

f(x)e
− 1

2

(
2x√

∂2
ρϕ(zE)

−β
√
∂2
ρϕ(zE)

)2

2dx√
2π∂2

ρϕ(zE)

+Of (k−1/2).

where the constant in Of depends on f .

Proof. By the Fourier inversion formula, we have

Ik,f (z) = k−m
∑
j

∫
R
f̂(t)eit

√
k(j/k−E)Kk,j(z, z)e

−kϕ(z)dt

= k−m
∫
R
f̂(t)e−iE

√
ktKk(e

it/
√
kz, z)e−kϕ(z)dt.

where in the first step we used Fourier transformation and the definition
Πk,j(z) = Kk,j(z, z)e

−kϕ(z) (see (37)), and in the second step we used the
equivariant property of Bergman kernel Kk,j(z, z) (see Lemma 4.1). We note

that t→ Πk(e
it/
√
kz, z) is 2π

√
k-periodic (similarly for the parametrix and

remainder terms), so the integrals converge when f̂ ∈ S(R). We periodize

g(t) = f̂ e−iEt
√
k by means of the

√
k-periodization operator

P√kg(t) :=
∑
`∈Z

g(t+ 2π
√
k`), g ∈ S(R),

which is periodic of period 2π
√
k. In fact the right side converges as long as

|g(t)| ≤ C(1 + |t|)−1−ε. We write

P√k(f̂ e
−iEt

√
k) =

∑
`∈Z

f̂(t+ 2π
√
k`)e−iEt

√
k−2πik`E =: e−iEt

√
kF̂k(t),

with F̂k(t) =
∑

`∈Z f̂(t+ 2π
√
k`)e−2πi(k`E). Then,

(66) Ik,f (z) = k−m
∫ π
√
k

−π
√
k
F̂k(t)e

−iEt
√
kKk(e

it/
√
kz, z)e−kϕ(z)dt.

We then localize the last integral using a smooth cutoff χ( t
(log k)2 ), where

χ ∈ C∞0 (R) is supported in (−1, 1) and equals to 1 in (−1/2, 1/2). When

π
√
k ≥ |t| ≥ (log k)2, the off-diagonal Bergman kernel Kk(e

it/
√
kz, z) is
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rapidly decaying at the rate O(e−(log k)2

). Here, we use the standard off-

diagonal estimate, |Kk(x, y)| ≤ Ckme−β
√
kd(x,y) for certain β,C > 0 (see The-

orem B.1 of the Appendix). Hence,

Ik,f (z) = k−m
∫
R
χ(

t

(log k)2
) F̂k(t)e

−iEt
√
kKk(e

it/
√
kz, z)e−kϕ(z)dt

+Of (k−∞),

where the constant in Of (k−∞) depends on ‖F̂k‖L1(−
√
k,
√
k) = ‖f̂‖L1 .

We then introduce the Boutet-de-Monvel-Sjöstrand parametrix for Kk,

Ik,f (z) =

∫ ∞
−∞

χ(
t

(log k)2
) F̂k(t)e

−iEt
√
kekϕ(eit/

√
k·z,z)−kϕ(z)Ak(e

it/
√
kz, z)dt

+

∫ ∞
−∞

χ(
t

(log k)2
) F̂k(t)e

−iEt
√
kRk(e

it/
√
kz, z)dt+Of (k−∞).

By the parametrix construction, Rk ∈ k−∞C∞(M ×M), hence the second
term is O(k−∞) and may be absorbed into the remainder estimate.

As in (47), the phase function of Ik,f is

(67) Ψ(it, z) = −it(
√
kE) + kϕ(eit/2

√
k · z, e−it/2

√
k · z)− kϕ(z).

Recall that zk = eβ/
√
kzE with H(zE) = E. Then as k →∞,

Ψ(it, eβ/
√
kzE)

= −it(
√
kE) + k

(
ϕ(e(it/2+β)/

√
k · zE , e(−it/2+β)/

√
k · zE)− ϕ(eβ/

√
k · zE)

)
= −it(1

2

√
k∂ρϕ(zE)) + k

[(
it/2 + β√

k

)
∂ρϕ(zE) +

1

2

(
it/2 + β√

k

)2

∂2
ρϕ(zE)

−
(
β√
k

)
∂ρϕ(zE)− 1

2

(
β√
k

)2

∂2
ρϕ(zE)

]
+ g3(it, z, β)

=
1

2
((it/2 + β)2 − β2)∂2

ρϕ(zE) + g4(it, z, β),

where

(68) g3 = O(k−1/2(|β|3 + |t|3)), g4 = O(k−1/2(|β|3 + |t|3)).

We substitute the Taylor expansion into the phase of the first term of
Ik,f (eβ/

√
kzE), and also Taylor expand eg4 to order 1. Let e1(x) = 1− ex.
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Since |t| ≤ (log k)2 on the support of the integrand, |g4| ≤ C( (log k)6

√
k

) on |t| ≤
(log k)2. Since ex = 1 + e1(x) where e1(x) ≤ 2x on [0, C( log k)6

√
k

)], eg4 = 1 + g̃4

where g̃4(k, t) ≤ 2g4 ≤ C0k
− 1

2 (1 + t3) on [0, (log k)2].
We get

Ik,f (eβ/
√
kzE)

=

∫
R
χ(

t

(log k)2
)F̂k(t)e

1

2
((it/2+β)2−β2)∂2

ρϕ(zE)(1 + g̃4))dt+Of (k−1/2)

=

∫
R
χ(

t

(log k)2
)F̂k(t)e

1

2
((it/2+β)2−β2)∂2

ρϕ(zE)dt+Of (k−1/2)

where χ( t
(log k)2 )|g̃4| ≤ C0k

−1/2(1 + |t|3) after integration against the Gaus-

sian factor is of size O(k−1/2).
Finally, we unravel the periodization F̂k to evaluate the first term.∫

R
χ(

t

(log k)2
)F̂k(t)e

1

2
((it/2+β)2−β2)∂2

ρϕ(zE)dt

=

∫
R
χ(

t

(log k)2
)f̂(t)e

1

2
((it/2+β)2−β2)∂2

ρϕ(zE)dt

+
∑
`∈Z\0

∫
R
χ(

t

(log k)2
)f̂(t+ 2π

√
k`)e2πik`E+ 1

2
((it/2+β)2−β2)∂2

ρϕ(zE)dt

=

∫
R
χ(

t

(log k)2
)f̂(t)e

1

2
((it/2+β)2−β2)∂2

ρϕ(zE)dt+Of (k−∞)

where in bounding the terms with ` 6= 0, we have used the fast decay prop-
erty of the Schwarz function f̂(t), i.e., for any positive integer N , we have
|f̂(t+ 2π

√
k`)| < CN (1 + |t+ 2π

√
k`|)−N for some CN , hence the sum over

` is convergent by l−N factor.
Finally, removing the cut-off χ(t/(log k)2) will introduce an error as∫∞

(log k)2 e
−ax2

dx = O(k−∞). We have

Ik,f (eβ/
√
kzE) =

∫
R
f̂(t)e

1

2
((it/2+β)2−β2)∂2

ρϕ(zE)dt+Of (k−1/2)

=

∫ ∞
−∞

f(x)e
− 1

2

(
2x√

∂2
ρϕ(zE)

−β
√
∂2
ρϕ(zE)

)2

2dx√
2π∂2

ρϕ(zE)

+Of (k−1/2)
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by the Plancherel theorem. This completes the proof of Proposition 8.1. �

8.2. Proof of Weak Convergence result.

We now use Proposition 8.1 to prove the following weak-convergence result:

Theorem 8.2. The sequence of measures µk converges to µ∞ weak* on
Cb(R). In particular, for any interval I, possibly unbounded,

µk(I)→ µ∞(I).

This proves the leading order convergence statement of Theorem 4.

Proof. We first prove that
∫
R f(x)dµk(x)→

∫
R f(x)dµ∞(x) for f ∈ Cc(R)

and then f ∈ Cb(R). We then use the results of Section 5 to show that
{µk}k is a tight family of probability measures. These steps are done in the
following lemmas.

Lemma 8.3. For any f ∈ Cc(R)8, we have

lim
k→∞

∫
fdµk =

∫
fdµ∞.

Proof. Let η(x) be a smooth non-negative compactly supported function,
such that

∫
η(x)dx = 1. Let ηε(x) = ε−1η(x/ε), and fε = ηε ? f . Then fε → f

in the C0-norm and fε ∈ C∞c (R). Given δ > 0, choose ε small enough such
that |fε − f |C0 < δ. Then,∣∣∣∣∫ f(dµk − dµ∞)

∣∣∣∣ ≤ ∣∣∣∣∫ fε(dµk − dµ∞)

∣∣∣∣+

∫
|f − fε|dµk +

∫
|f − fε|dµ∞

≤
∣∣∣∣∫ fε(dµk − dµ∞)

∣∣∣∣+ 2δ.

By Proposition 8.1,
∣∣∫ fε(dµk − dµ∞)

∣∣ < δ for k sufficiently large. Since δ is
arbitrarily, Lemma 8.3 follows. �

Next,we prove that the sequence of measure µk is tight and extend the
range of the test function from Cc(R) to Cb(R).

8Cc(R) denotes continuous functions of compact support.
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Lemma 8.4. The sequence of measure {µk} is tight, and for any f ∈
Cb(R),

lim
k→∞

∫
fdµk =

∫
fdµ∞.

Proof. To prove tightness, for any ε > 0, we need to find R > 0 large enough,
such that µk(R\[−R,R]) < ε for all k. The existence of such R is an imme-
diate consequence of Lemma 5.1 (3) on localization of sums.

We then prove weak convergence: Let ε, R be as above. Let χ(x) be a
cut-off function that equal to 1 on [−R,R] and equals to zero for |x| > R+ 1.
Then ∣∣∣∣∫ f(dµk − dµ∞)

∣∣∣∣ ≤ ∣∣∣∣∫ fχ(x)(dµk − dµ∞)

∣∣∣∣
+

∣∣∣∣∫ f(1− χ)dµk

∣∣∣∣+

∣∣∣∣∫ f(1− χ)dµ∞

∣∣∣∣ .
The last two terms can be bounded by 2ε‖f‖C0 , and the first term tends to
0 as k →∞ since fχ ∈ Cc(R). Thus

lim
k→∞

∣∣∣∣∫ f(dµk − dµ∞)

∣∣∣∣ ≤ 2ε‖f‖C0

for all ε, and the left hand side has to be zero. This finishes the proof of the
Lemma and hence the proof of Proposition 8.2. �

�

8.3. Proof by the Euler-MacLaurin method

In this section we use the Euler-MacLaurin method of Section 7.1 to obtain
a remainder estimate for the weak convergence, as claimed in Theorem 4.

Define

(69) I[− M√
k
, M√
k

](e
β√
k zE) := k−m

∑
j:| j

k
−E|≤ M√

k

Πk,j(e
β√
k zE) ' µk,zE ,β[−M,M ].

These are sums of the type (65) but with f = 1[−M,M ]. As above, we use that

Πk(zk, zk) = km(1 +O(k−1/2)) to normalize by the simpler factor k−m. The
following Proposition (with trivial modification from [−M,M ] to (−∞,M ])
implies Theorem 4 (with the remainder estimate). For the sake of brevity,
we omit further details.
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Proposition 8.5. Let zE ∈ H−1(E) and fix real numbers M > 0, β ∈ R.
Then

I[− M√
k
, M√
k

](e
β√
k zE) =

∫ M

−M

√
2

π∂2
ρϕ(zE)

e
−

(2y−β∂2
ρϕ(zE))2

2∂2
ρϕ(zE) (1 +O(k−

1

2 ))dy,

Proof. We use Proposition 7.2 with P = [E − M√
k
, E + M√

k
] and (58) with

zk = e
β√
k zE to get I[− M√

k
, M√
k

](zk) := I1 + I2 with

I1 = e−kϕ(e
β√
k zE)k

∫ iπ

−iπ

∫ E+ M√
k

E− M√
k

ekϕ(e−w/2e
β√
k zE ,e−w̄/2e

β√
k zE)+kxwL(w)Ak

dxdw

2πi

where as above Ak = (1 +O(k−1)) is a semi-classical symbol and where we
omit the boundary term (62)

I2 =
1

2
(Kk,k[E− M√

k
](e

β√
k zE) +Kk,k[E+ M√

k
](e

β√
k zE))

since it has lower order, indeed the first sum I1 having O(
√
k) terms of

almost constant order and the boundary term I2 having only two of the
same order.

We change variables in the dx integral to x = E + y√
k

so that the ekxwdx

integral becomes ekwE√
k
e
√
kywdy. The full (k-dependent) phase function be-

comes

Ψ(w, y) := kϕ(e−w/2e
β√
k zE , e

−w̄/2e
β√
k zE)− kϕ(e

β√
k zE) + kEw +

√
kyw.

We then change variables to t = i
√
kw to obtain a new phase resembling

(67),

Ψ(it, y)

= iyt− it(
√
kE)

+ k
(
ϕ(e(it/2+β)/

√
k · zE , e(īt/2+β)/

√
k · zE)− ϕ(eβ/

√
k · zE)

)
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= iyt− it(1

2

√
k∂ρϕ(zE))

+ k

[(
it/2 + β√

k

)
∂ρϕ(zE) +

1

2

(
it/2 + β√

k

)2

∂2
ρϕ(zE)

−
(
β√
k

)
∂ρϕ(zE)− 1

2

(
β√
k

)2

∂2
ρϕ(zE)

]
+ g3(it, z, β)

= iyt+
1

2
((it/2 + β)2 − β2)∂2

ρϕ(zE) + g4(z, it, β),

where

g3 = O(k−1/2(|β|3 + |t|3), g4 = O(k−1/2(|β|3 + |t|3)),

and the ranges are t ∈ [−π
√
k, π
√
k] and y ∈ [−M,M ].

We further cutoff the integrand to a (log k)2-neighborhood of t = 0 using
a smooth cutoff χ( t

(log k)2 ) where χ ≡ 1 in a neighborhood of t = 0 and χ ≡ 0
outside a slightly larger neighborhood, and observe that the part of the
integral with the cutoff (1− χ( t

(log k)2 )) is rapidly decaying in k (c.f. the

argument after (68)). Substituting τ = it and integrating dt gives,

I1 '
∫ M

−M

∫ ∞
−∞

χ

(
t

(log k)2

)
e

1

2
((it/2+β)2−β2)∂2

ρϕ(zE)eiyt(1 +O(k−
1

2 ))
dtdy

2π

'
∫ M

−M

∫ ∞
−∞

e
1

2
((it/2+β)2−β2)∂2

ρϕ(zE)eiyt(1 +O(k−
1

2 ))
dtdy

2π

'
∫ M

−M

√
2

π∂2
ρϕ(zE)

e
−

(2y−β∂2
ρϕ(zE))2

2∂2
ρϕ(zE) (1 +O(k−

1

2 ))dy,

where ' denotes asymptotics as k →∞. �

9. Distribution of zero locus of a Random section: Proof of
Theorem 5

First we recall a proposition that links the expectation of the (1, 1) current
defined by a random section from the Hilbert subspace Sk ⊂ H0(M,Lk). Re-
call our setup: Let s =

∑dimSk
j=1 ak,jsk,j where ak,j are i.i.d. complex N(0, 1)

random variables and {sk,j} is an orthonormal basis of Sk. Let Zs be the
zero set of s and let [Zs] be the current of integration over Zs.
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Proposition 9.1 ([ShZ], Proposition 4.1).

(70)
1

k
E([Zs]) =

√
−1

2πk
∂∂̄ log ΠSk(z) + c1(L, h)

where ΠSk(z) is the partial Bergman density function.

The random zero locus in the interior of the allowed region is uniformly
distributed, as if Sk = H0(M,Lk), indeed ΠSk(z) = 1 +O(k−1) is approx-
imately constant. Our main interest is the distribution in the forbidden
region.

As before, we take A = {z | H(z) < E} and F = {z | H(z) > E} for
some regular value E of H. Let FEmax be the open dense subset of F where
the S1-action acts freely, and where the R+-orbit of z intersect H−1(E),
say at qE(z). We define πE : H−1(E) ∩Mmax → XE to be the Hamiltonian
reduction of H−1(E) ∩Mmax by the S1-action. Then we define another pro-
jection map

qE : FEmax → XE , qE(z) = πE ◦ qE(z).

The complex structure on the quotient is defined as the quotient of the semi-
stable points by the C∗ action, and qE is the restriction of this quotient map
to FEmax. Hence qE is holomorphic by definition.

Let ϕE be the restriction of ϕ to H−1(E). Since it is S1-invariant, it
descends to a Kähler potential on XE as well and is the Kähler potential
of the reduced Kähler form ωE on XE . The following is a somewhat more
precise version of Theorem 5:

Proposition 9.2. Let H : M → R be a smooth function generating a holo-
morphic S1-action, and E a regular value of H. Let Sk = Sk,E ⊂ H0(M,Lk)

be the subspace spanned by eigensections of Ĥk (see (2)) with eigenvalues
less than E. For any compact subset K ⊂ FEmax, we have the following weak*
convergence

(71) lim
k→∞

1

k
E([Zs]) = q−1

E (ωE) + 2E

√
−1

2π
(∂∂̄τ(z, E)).

In particular, the right hand side of (71) is a smooth (1, 1)-form of rank
(n− 1) in FEmax. 9

9In the toric case the leaves (orbits) of the C∗ action vary holomorphically and
∂∂̄τ = 0.
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Proof. Using the expansion of the partial Bergman density in the forbidden
region, we have for z ∈ F ,

ΠkP (z) = km−1/2

√
2

π∂2
ρϕ(zE)

e−kb(z,Ek)

1− e−|2τ(z,E)| (1 +O(k−1)).

Using Proposition 9.1, we get

1

k
E([Zs]) =

√
−1

2π
∂∂̄(−b(z, Ek) + ϕ(z)) +O(k−1)

=

√
−1

2π
∂∂̄(−b(z, E) + ϕ(z)) +O(k−1)

=

√
−1

2π
∂∂̄[ϕ(qE(z)) + 2Eτ(z, E)] +O(k−1)

where we have used c1(L, h) =
√
−1

2π ∂∂̄ϕ(z) and expression of b(z, E)
from (24). Since ϕE is the Kähler potential on the symplectic reduction
H−1(E)/S1, we have ϕ(qE(z)) = ϕE(qE(z)), and since qE is holomorphic,
we can commute ∂∂̄ with the pullback. This gives the desired result (71).
For the rank statement, we note that the (1, 1)-form on the right-hand-side
of (71) vanishes on any C∗-leaf inside FEmax hence is of rank (n− 1). �

10. Example: The Bargmann-Fock model

In this section we illustrate the results in the Bargmann-Fock model of the
line bundle Cm × C→ Cm with Kähler potential ϕ = ‖z‖2.

H2
k = H2

hkBF
=

{
f ∈ O(Cm) :

∫
Cm
|f(z)|2e−k‖z‖2dm(z) <∞

}
where dm = (ω)m/m! is Lebesgue measure, and ω = i

2π∂∂̄ϕ = i
2πdz ∧ dz̄ =

π−1
∑

j dxj ∧ dyj . As mentioned in §2.8, the linear S1 actions on Cm have
the form,

eiθ · (z1, . . . , zm) = (eib1θz1, . . . , e
ibmθzm), bj ∈ Z,

with Hamiltonians H = 1
2∂ρ|ρ=0

∑m
j=1(|ebjρzj |2) =

∑
j bj |zj |2. We only con-

sider the diagonal T action and Hamiltonian H(z) = ‖z‖2, i.e. the isotropic
harmonic oscillator in the Bargmann-Fock representation.
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The usual quantum Hamiltonian for the harmonic oscillator is ~
(
N̂ + m

2

)
where ~ = 1/k where N̂ = Z · ∂

∂Z is the number or Euler operator with eigen-
values/eigenfunctions

N̂zα = |α|zα.

where |α| :=
∑

i αi. Since we chose our normalization of H to have minimum
0, we will drop the m/2 constant, and define Hk = 1

k N̂ . It is an elliptic S1

action in the sense that its moment map H is proper and all weight spaces

Hk,j = Span{zα = zα1

1 · · · z
αm
m , |α| = α1 + · · ·+ αm = j}

are finite dimensional.
We will fix the constant section 1 ∈ Γ(Cm,C) as the holomorphic refer-

ence frame, then an orthonormal basis is given by

cαz
α =

m∏
i=1

√
kαi+1

(αi)!
zαii

thus the full Bergman kernel

Πk(z, w) = Kk(z, w), Kk(z, w) :=
∑
α∈Zm≥0

k|α|+mzαwα

α!
= kmekz·w̄.

and the equivariant Bergman kernels are

Πk,j(z, w) = Kk,j(z, w), Kk,j(z, w) :=
∑

α:|α|=j

k|α|+mzαwα

α!
.

The equivariant kernel is obtained from the full kernel by

(72) Kk,j(z, w) =
1

2π

∫ 2π

0
e−ijθK(eiθz, w)dθ.

And Bergman density Bk(z) = km, and the equivariant Bergman density is

Πk,j(z) = Kk,j(z, z)‖1k(z)‖2hk(z) = e−k‖z‖
2
∑

α:‖α‖=j

km+|α|zαwα

α!
.
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Lemma 10.1. As k →∞, and E = j/k, the equivariant Bergman kernel
is

Kk,j(z, z) = km−
∫
T
e−ijθeke

iθ‖z‖2dθ

= km
kj

j!
‖z‖2j ' km−1/2

(
e · ‖z‖2

E

)kE
(2πE)−1/2

and the equivariant Bergman kernel is

Bk,j(z) = Kk,j(z, z)e
−k‖z‖2 = km−1/2(2πE)−1/2

(
‖z‖2

E

)kE
e−k(‖z‖2−E).

The maximum of Bk,j(z) is obtained, when ‖z‖2 = E.

Proof. In fact, Kk,j(z, w) is U(m)-invariant and so Kk,j(z, w) is a function
of z · w. It is also homogeneous of degree 2j so it is a constant multiple
C = Ck,j,m of (z · w)k. The constant may be determined from the fact that

dimVk(j) =

∫
Cm

Bk,j(z)dm(z) = π−m
∫ ∞

0
e−kr

2 · Cr2j · r2m−1ω2m−1dr

where dimVk(j) =
(
j+m−1
m−1

)
is the number of partitions of j in m parts,

ωd−1 = 2πd/2

Γ(d/2) is the volume of Sd−1 ⊂ Rd. A straightforward computation

gives Ck,j,m = km+j

j! . Hence Kk,j(z, z) is the j-th term of the Taylor expansion

kmek‖z‖
2

. But it is useful to compute the integral using the general method,
which we will explain next.

Let E := Ek,j = j
k . The first equality follows from (72). We then change

θ to θ + iτ so that the complex phase is

Ψz,τ (θ) = −iE(θ + iτ) + ei(θ+iτ)‖z‖2.

The critical point equation is

∂

i∂θ
Ψz,τ (θ) = −E + ei(θ+iτ)‖z‖2 = 0 ⇐⇒ Ee−iθ = e−τ‖z‖2.

Since the right side is positive real, the only possible solution is θ = 0 and for
this we need to choose τ so that eτ = ‖z‖2/E = H(z)/E. With this choice
of τ , and by deforming the contour to this |w| = eτ ∈ C, the phase becomes
−iE(θ + i log(‖z‖2/E)) + Eeiθ and we have a non-degenerate critical point



i
i

“6-Zhou” — 2019/9/6 — 16:41 — page 851 — #59 i
i

i
i

i
i

Interface asymptotics of partial Bergman kernels 851

at θ = 0 and an asymptotic expansion,

Kk,j(z, z) = km−
∫
T
e−ikE(θ+i log(‖z‖2/E))ekEe

iθ

dθ

' km−1/2

(
e · ‖z‖2

E

)kE
(2πE)−1/2.

where we used the stationary phase formula for dθ integral. The result agrees
with the exact one after applying Stirling formula.

The statement about the maximum of Bk,j(z) can be obtained by solving

d

d|z|2

(
1

k
logBk,j(z)

)
= −1 + E/‖z‖2 = 0.

Indeed, the maximum of Bk,j(z) occurs when ‖z‖2 = E. �

Now we scale the equivariant Bargmann-Fock kernels around H−1(E)
and prove Theorem 2 in this case. Let z0 ∈ H−1(E), i.e. ‖z0‖2 = E and fix
u ∈ R.

Πk,j

(
z0

(
1 +

u√
k

)
, z0

(
1 +

u√
k

))
(73)

= km−
∫
T
e−ikEθek(e

iθ‖z0‖2(1+ u√
k

)2−‖z0‖2(1+ u√
k

)2)dθ.

As k →∞,

eiθ‖z0‖2
(

1 +
u√
k

)2

− ‖z0‖2
(

1 +
u√
k

)2

= E(iθ − θ2/2 + e3(θ))(1 + 2u/
√
k + u2/k))

so the phase has the form kEΨ with

Ψ = iθ
(

2u/
√
k + u2/k

)
− θ2

2

(
1 + 2u/

√
k + u2/k

)
+ e3(iθ)

(
1 + 2u/

√
k + u2/k

)
,

where ex = 1 + x+ x2/2! + e3(x). We localize around θ = 0 using a cutoff
χ ∈ C∞0 (−1, 1) and change variables θ → k−1/2θ to get

k−1/2(2π)−1

∫
R
χ(θ/

√
k) eiθ(2uE)−E θ2

2 Ak(θ, u)dθ,
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where A is a semi-classical symbol of order zero. Here, we absorbed the other
terms,

eE( iθ|u|
2

√
k
− θ2u√

k
− iθ3

3!
√
k

)+O(1/k)

into A. Since A0(θ, u) = 1 as k →∞ the integral tends to

k−1/2(2π)−1

∫
R
eiθ(2Eu)−E θ2

2 dθ = (2πkE)−1/2e−2u2E(1 +O(k−1/2)).

Thus

Πk,j

(
z0

(
1 +

u√
k

)
, z0

(
1 +

u√
k

))
= km−1/2

(
e−2Eu2

√
2πE

+O(k−1/2)

)

proving Theorem 2 in this case.

Appendix A. Stationary phase on a half-space

Lemma A.1. Let Ψ(ξ, y), A(ξ, y) ∈ C∞(Rk≥0 × Rs) such that dyΨ(0, 0) = 0,
A has compact support and

1) ∂Ψ
∂ξj
6= 0 on supp(A), for 1 ≤ j ≤ k,

2) dyΨ(0, y) 6= 0 for (0, y) ∈ supp(A) \ {0},

3) detHyΨ(0, 0) 6= 0 (where Hy denotes the Hessian with respect to y),

4) ReΨ ≤ ReΨ(0, 0) on supp(A).

Then ∫
Rs

∫ ∞
0

eNΨ(ξ,y)A(ξ, y) dξ dy

= N−k−s/2eNΨ(0,0)[c0 + c1N
−1 + c2N

−2 + · · ·+ clN
−l +O(N−l−1)]

for l = 1, 2, 3, . . . , where

c0 =
(2π)s/2A√

det(−HyΨ)
∏k
j=1 ∂ψ/∂ξj

∣∣∣∣∣
ξ=y=0

.
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Proof. Integrating by parts,∫
Rs

∫ +∞

0
eNΨAdξ1 dy =

1

N

∫
Rs
eNΨ A

∂Ψ/∂ξ1

∣∣∣∣
ξ1=0

dy(A.1)

− 1

N

∫
Rs

∫ +∞

0
eNΨ ∂

∂ξ1

[
A

∂Ψ/∂ξ1

]
dξ1 dy.

Applying the stationary phase expansion [Hö, Th. 7.7.5] to the first term of
(A.1) and iterating, we obtain the desired expansion. �

Appendix B. Off-diagonal decay estimates

Theorem B.1. (See Theorem 2 of [Del] and Proposition 9 of [L])] Let M
be a compact Kähler manifold, and let (L, h)→M be a positive Hermitian
line bundle. Then the exists a constant β = β(M,L, h) > 0 such that

|Π̃N (x, y)|h̃N ≤ CN
me−β

√
Nd(x,y)

where d(x, y) is the Riemannian distance with respect to the Kähler metric ω̃.

The theorem is stated for strictly pseudo-convex domains in Cn but
applies with no essential change to unit codisc bundles of positive Hermitian
line bundles.
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