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We show that simply connected contact manifolds that are subcrit-
ically Stein fillable have a unique symplectically aspherical filling
up to diffeomorphism. Various extensions to manifolds with non-
trivial fundamental group are discussed. The proof rests on ho-
mological restrictions on symplectic fillings derived from a degree-
theoretic analysis of the evaluation map on a suitable moduli space
of holomorphic spheres. Applications of this homological result in-
clude a proof that compositions of right-handed Dehn twists on
Liouville domains are of infinite order in the symplectomorphism
group. We also derive uniqueness results for subcritical Stein fill-
ings up to homotopy equivalence and, under some topological as-
sumptions on the contact manifold, up to diffeomorphism or sym-
plectomorphism.
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1. Introduction

The aim of this paper is to study the topology of symplectic fillings (W,ω)
of a given contact manifold (M, ξ). By ‘symplectic filling’ we always mean
a strong filling [14, Definition 5.1.1]. This means that one requires the exis-
tence of a Liouville vector field Y for ω (that is, d(iY ω) = ω), defined near
and pointing outwards along the boundary ∂W = M , such that we have
ker(iY ω|TM ) = ξ.

Any filling can of course be modified by performing symplectic blow-
ups; this is ruled out if we require the filling (W,ω) to be symplectically
aspherical, that is, [ω]|π2(W ) = 0.

It is well known that even under this asphericity assumption symplec-
tic fillings are not, in general, unique up to diffeomorphism. For instance,
McDuff [27] observed that the lens space L(4, 1) with its standard contact
structure coming from the 3-sphere is Stein fillable both by the disc bun-
dle over the 2-sphere S2 with Euler class −4, and by the complement of
the quadric in CP2, cf. [36, Exercises 12.3.4]. Many more examples of lens
spaces with non-unique fillings have been found by Lisca [25].

On the other hand, there are also contact manifolds whose symplectic
fillings are determined up to diffeomorphism, or even symplectomorphism.
The first result about the diffeomorphism type of fillings (in all dimensions)
is due to Eliashberg–Floer–McDuff, see [28, Theorem 1.5]. Here ξst denotes
the standard contact structure on the odd-dimensional standard sphere com-
ing from the obvious filling by the standard symplectic ball.

Theorem 1.1 (Eliashberg–Floer–McDuff). Let (W,ω) be a symplecti-
cally aspherical filling of (S2n−1, ξst), n ≥ 3. Then W is diffeomorphic to the
ball D2n.

Earlier, it had been proved by Gromov [20, p. 311] and McDuff [27,
Theorem 1.7], using positivity of intersection in dimension four, that any
symplectically aspherical filling of (S3, ξst) is even symplectomorphic to the
standard 4-ball.

In this paper, we study the topology of symplectically aspherical fillings
of contact manifolds that admit a subcritical Stein filling, that is, where the
plurisubharmonic function on the Stein filling has handles of index below the
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The diffeomorphism type of symplectic fillings 931

middle dimension only. Essentially, what we show (under various topological
assumptions) is that the existence of a single subcritical Stein filling fixes
the diffeomorphism type of all symplectically aspherical fillings.

By analysing the moduli space of holomorphic spheres in a partial com-
pactification of the filling, we derive a degree-theoretic statement concerning
the evaluation map on this moduli space. This approach was pioneered by
McDuff in [28], and developed further by two of the present authors in a
number of papers, e.g. [16–18]. From the evaluation map on the moduli
space we derive a homological vanishing result for fillings, which then leads
to the following result. Here, by slight abuse of notation, we write the Stein
filling as a pair (W0, ω0) consisting of a manifold and a symplectic form,
since we are primarily interested in the symplectic properties of fillings.

Theorem 1.2. Let (M, ξ) be a (2n− 1)-dimensional closed, connected con-
tact manifold, n ≥ 2, admitting a subcritical Stein filling (W0, ω0) with the
homotopy type of a CW complex of dimension `0 ≤ n− 1. Let (W,ω) be any
symplectically aspherical filling of (M, ξ). Then the following holds:

(a) The integral homology groups of W are

Hk(W ) ∼=

{
Hk(M) for k = 0, . . . , `0,

0 otherwise,

where the isomorphism between the relevant homology groups of M and
W is induced by the inclusion M ⊂W . In particular, the homology
groups of W coincide with those of W0.

(b) The inclusion map M ⊂W induces an epimorphism on fundamental
groups. If the fundamental group π1(M) is abelian, then the inclusion
M ⊂W is also π1-injective.

This theorem will be proved in Section 2. Various direct applications are
discussed in Section 3.

Remark 1.3. In the proof of Theorem 1.2, we appeal to a result of Cielie-
bak, which relies on the assumption that the filling is subcritical as a Stein
manifold, i.e. there are no Stein handles of critical index. It is probably not
sufficient, in general, merely to assume that the Stein filling is of subcritical
homotopical dimension (that is, where the critical handles cancel topolog-
ically). Stein manifolds of this kind exist by the work of Seidel–Smith [41]
and McLean [31]: in all even dimensions 2n ≥ 8 there are infinitely many
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distinct finite type Stein manifolds diffeomorphic to R2n; they all have Stein
handle decompositions involving critical handles.

Our most significant application of Theorem 1.2 is the following vast
extension of results of Seidel on generalised Dehn twists. This is discussed
in Section 4, where all the relevant concepts will be introduced. For other
work in this direction see Remark 4.6.

Theorem 1.4. A (non-empty) composition of right-handed Dehn twists
on a Liouville manifold of dimension at least four is never isotopic to the
identity within the group of compactly supported symplectomorphisms.

Theorem 1.2 is also one of the essential steps towards the main result
of this paper, proved in Section 5, about the topological classification of
symplectic fillings.

Theorem 1.5. Let (M, ξ) be as in Theorem 1.2, n ≥ 3. If M is simply con-
nected, then all symplectically aspherical fillings of (M, ξ) are diffeomorphic.

An extension of this result to certain finite fundamental groups is given
in Theorem 5.3.

In Section 6 we generalise the argument used to prove Theorem 1.2 to
the setting of coverings. This is used in Section 7 to derive results on the
homotopy and diffeomorphism type of fillings when the maximal index of a
handle decomposition of W is known. One result that is easy to state is the
following.

Theorem 1.6. All subcritical Stein fillings of a closed, connected contact
manifold are homotopy equivalent.

Of course the statement may be empty if the given contact manifold
does not admit any subcritical Stein fillings.

In Section 8 we consider fillings of simple manifolds M . Recall that a
topological space is called simple if its fundamental group acts trivially on
all its homotopy groups. Examples of simple manifolds are Lie groups or,
more generally, any manifold that is an H-space [26, Corollary 8bis.3]. The
main result of Section 8 is the following.

Theorem 1.7. Let (M, ξ) be as in Theorem 1.2, n ≥ 3. If M is a sim-
ple space whose fundamental group has vanishing Whitehead group, then all
symplectically aspherical fillings of M are diffeomorphic.



i
i

“1-Geiges” — 2019/10/3 — 0:39 — page 933 — #5 i
i

i
i

i
i

The diffeomorphism type of symplectic fillings 933

In Section 9 we apply our theory to the sphere bundle of stabilised
cotangent bundles. Finally, in Section 10 we show that if (M, ξ) admits a
2-subcritical Stein filling, then all flexible Stein fillings (e.g. subcritical ones)
are symplectomorphic.

For other results on the topology of Stein fillings see [9, Chapter 16] and
[36, Chapter 12] and the references therein.

2. Proof of Theorem 1.2

2.1. A completion of the filling

According to a theorem of Cieliebak [8], [9, Section 14.4], every subcriti-
cal Stein manifold is deformation equivalent (hence symplectomorphic) to
a split one. Thus, if (W0, ω0) is the given subcritical Stein filling of (M, ξ),
we may assume — perhaps after scaling ω0 by a small positive constant —
that there is a (2n− 2)-dimensional Stein manifold (V, JV ) with plurisubhar-
monic function ψV (with minψV = 0) and symplectic form ωV = −d(dψV ◦
JV ), such that W0 is a sublevel set of the plurisubharmonic potential

ψ(v, z) := ψV (v) +
1

4
log
(
1 + |z|2

)
on (V × C, JV ⊕ i), and such that, with z = reiθ, the corresponding sym-
plectic form

ω := ωV +
r dr ∧ dθ

(1 + r2)2

on V × C coincides with ω0 on W0 under the inclusion W0 ⊂ V × C.
Now, given a symplectically aspherical filling (W,ω) of (M, ξ), we define

the symplectic manifold

(Z,Ω) := (W,ω) ∪(M,ξ)

(
(V × C) \ Int(W0), ωV +

r dr ∧ dθ

(1 + r2)2

)
.

Our choice of plurisubharmonic potential on the C-factor is explained by the
fact that we can now build a new symplectic manifold (Ẑ, Ω̂) from (Z,Ω)
by compactifying C to a complex projective line CP1 = C ∪ {∞} with its
standard Fubini–Study symplectic form of total area π, see Figure 1.

With ω0 scaled sufficiently small, we may assume that M = ∂W0 is a
level set of ψ below (log 2)/4, so that the hypersurfaces V × {±1} may also
be regarded as subsets of Ẑ. Moreover, without loss of generality we may
assume that ψV has no critical points above the level of M . This ensures
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(W,ω)

(M, ξ)

CP1

V × {∞}

Figure 1: The symplectic manifold Ẑ.

that the homotopical dimension of V equals that of W0, i.e. `0, and W is a
strong deformation retract of Z.

We equip the symplectic manifold (Ẑ, Ω̂) with a compatible almost com-
plex structure J , generic in the sense of [30] on Int(W0), and equal to JV ⊕ i
on Ẑ \ Int(W ).

2.2. Holomorphic spheres

For v ∈ V with ψV (v) > (log 2)/4 we have the obvious holomorphic spheres
{v} × CP1 ⊂ (Ẑ, J), which foliate the corresponding part of Ẑ.

Lemma 2.1. Let u : CP1 → Ẑ be a non-constant J-holomorphic sphere.

(i) If u(CP1) is contained in Ẑ \ Int(W ), then u is a holomorphic branched
covering CP1 → {v} × CP1 for some v ∈ V .

(ii) If u(CP1) intersects Ẑ \ Int(W ), then it also intersects the hypersur-
face H := V × {∞}.

(iii) If u(CP1) intersects {ψV > (log 2)/4} × CP1, then u is as in (i).

Proof. (i) This follows from the maximum principle for JV -holomorphic
curves in V , applied to the V -component of u.
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(ii) The plurisubharmonic function ψ is defined on Ẑ \ (Int(W ) ∪H) and
a collar neighbourhood of M in W , and the symplectic form ω is exact in this
region. Thus, if u(CP1) intersects Ẑ \ Int(W ), but not the hypersurface H,
the maximum principle constrains u(CP1) to lie in a level set of ψ, and hence
inside the region where ω is exact. This forces u to be constant.

(iii) Apply the maximum principle to the V -component of u on the
preimage of {ψV > (log 2)/4} × CP1. �

Let M be the moduli space of holomorphic spheres u : CP1 → (Ẑ, J)
with the properties

(M1) [u] =
[
{v} × CP1

]
in the homology group H2(Ẑ), where v ∈ V can be

any point with ψV (v) > (log 2)/4;

(M2) u(z) ∈ V × {z} for z ∈ {±1,∞}.

The homological condition (M1) entails that the symplectic energy of holo-
morphic spheres inM equals π. Observe that a holomorphic sphere u ∈M
satisfying one of the assumptions (i) or (iii) in Lemma 2.1 is simply an
inclusion map CP1 → {v} × CP1.

Proposition 2.2. The moduli space M is an oriented manifold of dimen-
sion 2n− 2.

Proof. This is proved exactly as [16, Proposition 6.1]. Notice that our moduli
space M corresponds to M−1,1,∞ in [16, p. 277]. �

In the following proposition, the degree of a proper map between non-
compact oriented manifolds is understood in the sense of [22, Exercise 5.1.10].
We think of CP1 as C ∪ {∞}.

Proposition 2.3. The evaluation map

M× CP1 −→ Ẑ
(u, z) 7−→ u(z)

is proper and of degree 1. It restricts to a proper degree 1 map

ev : M× C −→ Z.

Proof. Let (uα)1≤α≤N be a stable map in the sense of [30] that arises as the
Gromov-limit of a sequence (uν) of spheres inM. We need to show that N =
1, so that uν → u1 as a C∞-limit. The claim about the first evaluation map
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then follows from Lemma 2.1 and the observation following the definition
of M, which say that the non-compact end of Ẑ is foliated by holomorphic
spheres {v} × CP1, and no other spheres intersect this end.

By positivity of intersections [11, Proposition 7.1] and (M1) we may
assume that u1 •H = 1 and uj •H = 0 for j = 2, . . . , N . Then part (ii) of
Lemma 2.1 tells us that the uj are contained entirely in Int(W ) for j =
2, . . . , N , but W does not contain any non-constant holomorphic spheres.

From positivity of intersection and (M2) we conclude that u−1(H) =
{∞} for u ∈M, so the evaluation map restricts to C ⊂ CP1 as claimed. �

2.3. A homology epimorphism

From Proposition 2.3 we now deduce crucial homological information.

Proposition 2.4. The induced homomorphism

ev∗ : Hk(M× C) −→ Hk(Z)

is surjective in all degrees k.

Proof. Write D2
R ⊂ C for the closed 2-disc of radius R. By Lemma 2.1, for

R sufficiently large we have

ev
(
M× (C \ Int(D2

R))
)
⊂ Z \W.

Write M′ ⊂M for the truncated moduli space obtained by cutting off
the non-compact end of M consisting of spheres {v} × CP1 with ψV (v) >
(log 2)/4. ThenM× C strongly deformation retracts to the compact mani-
fold (with boundary) P :=M′ ×D2

R.
As observed after the construction of Z and Ẑ, the compact manifold

W (with boundary M) is a strong deformation retract of Z. By pre- and
postcomposing ev with the respective deformation retraction, we obtain a
map of pairs

f : (P, ∂P ) −→ (W,∂W ).

Since the degree of ev can be computed at any regular value w in the in-
terior of W , and neither w nor the discrete set of points ev−1(w) ⊂ P is
affected by the deformation retractions, the map f is likewise of degree 1.
This degree can now be interpreted homologically; deg(f) = 1 says that the
fundamental cycle [P ] ∈ H2n(P, ∂P ) is mapped to the fundamental cycle
[W ] ∈ H2n(W,∂W ).
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It then follows that the shriek homomorphism f! : Hk(W )→ Hk(P ) is a
right inverse for f∗ : Hk(P )→ Hk(W ), since the composition f∗f! is simply
multiplication by the homological degree, see [4, Proposition VI.14.1].

Hence, f∗ : Hk(P )→ Hk(W ) is surjective in all degrees, and the same is
true for ev∗, as we have merely passed to deformation retracts. �

2.4. Proof of Theorem 1.2 (a)

By condition (M2) we have the commutative diagram

Hk

(
M×{1}

) ev∗- Hk

(
V × {1}

)

Hk(M× C)

i∗

? ev∗ - Hk(Z),

j∗

?

where the vertical homomorphisms are induced by inclusion. Since i∗ is an
isomorphism and ev∗ at the bottom is surjective by Proposition 2.4, the
homomorphism j∗ is likewise surjective.

The Stein manifold V has the homotopy type of an `0-dimensional com-
plex. It follows that

Hk(Z) = 0 for k ≥ `0 + 1.

The same homological vanishing result holds for the deformation retract W
of Z. This means that the homological dimension of W can be at most that of
the subcritical filling W0. Beware that, a priori, the homotopical dimension,
i.e. the smallest dimension of a CW complex homotopy equivalent to W ,
might well be larger.

Lemma 2.5. The relative homology group Hk(W,M) vanishes for k ≤ 2n−
1− `0.

Proof. Write FH∗ and TH∗ for the free and the torsion part, respectively,
of a homology group H∗. By Poincaré duality and the universal coefficient
theorem we have

Hk(W,M) ∼= H2n−k(W ) ∼= FH2n−k(W )⊕ TH2n−k−1(W ).

As we have shown, the homological dimension of W is at most equal to `0.
The lemma follows for k < 2n− 1− `0.
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For k = 2n− 1− `0, it remains to show that H`0(W ) is a torsion-free
group. Since W0 has the homotopy type of an `0-dimensional complex, the
homology group H`0(W0) is torsion-free. From the homology exact sequence
of the pair (W0,M) we see with Poincaré duality and the universal coefficient
theorem that H`0(M) ∼= H`0(W0), so H`0(M) is likewise torsion-free.

For `0 < n− 1, the cohomology exact sequence of the pair (W,M) redu-
ces with the universal coefficient theorem to

0 −→ H2n−1−`0(M) −→ H2n−`0(W,M) −→ 0,

and hence H`0(M) ∼= H`0(W ) by Poincaré duality. For `0 = n− 1 we observe
that Hn(W,M) ∼= THn−1(W ) by Poincaré duality and the universal coeffi-
cient theorem, and then the relevant part of the homology exact sequence
of the pair (W,M) becomes

0 −→ THn−1(W ) −→ Hn−1(M).

Since Hn−1(M) = H`0(M) is torsion-free, this implies THn−1(W ) = 0. �

Remark 2.6. Alternatively, one sees from the commutative diagram that
Hk(W ;F) vanishes for k ≥ `0 + 1 and all fields F. One then deduces the
vanishing of the relative homology groups in the lemma over F with Poincaré
and Kronecker duality. Since this vanishing holds for any field F, it must also
hold over Z.

With this lemma, Theorem 1.2 (a) is an immediate consequence of the
homology exact sequence of the pair (W,M).

2.5. Proof of Theorem 1.2 (b)

The image of M×{1} under the evaluation map lies in V × {1}, which we
may regard as a subset of (V × C) \ Int(W0). This gives us the commutative
diagram

M×{1}
ev
- (V × C) \ Int(W0)

M× C

i

? ev
- Z.

j

?
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The inclusion map i induces an isomorphism on fundamental groups, and
the proper degree 1 map ev at the bottom, an epimorphism. The latter
follows from the fact that ev : M× C→ Z factors through the covering of Z
corresponding to the characteristic subgroup ev∗

(
π1(M× C)

)
⊂ π1(Z). The

covering map has degree equal to the index of ev∗
(
π1(M× C)

)
in π1(Z),

and the degree of proper maps is multiplicative under composition.
Hence, j also induces an epimorphism on fundamental groups. Up to

deformation retraction, j may be regarded as the inclusion map M ⊂W .
If π1(M) is abelian, so is its image π1(W ) = j∗

(
π1(M)

)
, in which case

these fundamental groups equal the respective first homology group. Then,
by part (a) of the theorem, the inclusion M ⊂W is π1-isomorphic.

2.6. A homology epimorphism for Liouville fillings

A close inspection of the proof of Theorem 1.2 shows that the requirement
that the filling (W0, ω0) carry a Stein structure is not essential; the crucial
point was the (W0, ω0) is a split manifold V0 ×D2 ⊂ V × C, where the ‘end’
V \ V0 is of the form R+

0 × ∂V0 and has suitable convexity properties for an
analogue of Lemma 2.1 to hold.

Recall the following definitions from [9, Chapter 11].

Definition. A Liouville manifold is an exact symplectic manifold (V,dλ)
such that the corresponding Liouville vector field Y , defined by iY dλ = λ
is complete, and V has an exhaustion by compact domains with smooth
boundaries, along which Y is outward pointing. Such compact domains in
(V,dλ) are called Liouville domains.

Let M be a compact, connected manifold with a cooriented contact
structure ξ. A compact symplectic manifold (W,ω) with boundary is called
a Liouville filling of (M, ξ) if ∂W = M as oriented manifolds and there is
a global primitive 1-form λ for ω such that λ|TM is a contact form for ξ.

Remark 2.7. Whenever we restrict attention to a compact subset of the
Liouville manifold (V,dλ) — for instance, when we consider compactly sup-
ported symplectic isotopies — we may assume without loss of generality that
the Liouville manifold is of finite type, that is, it looks like the completion

(V0, dλ) ∪∂V0

(
R+

0 × ∂V0, d(etλ0)
)

of a Liouville domain (V0, dλ), where λ0 := λ|T∂V0
.
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Theorem 2.8. Let (M, ξ) be a (2n− 1)-dimensional compact, connected
contact manifold admitting a split symplectic filling V0 ×D2 (with corners
rounded), where (V0,dλ) is a Liouville domain. Let (W,ω) be any symplec-
tically aspherical filling of (M, ξ). Then there is a surjective homomorphism

Hk(V0) −→ Hk(W )

in all degrees k ≥ 0.
If V0 has the homotopy type of an `0-dimensional complex with `0 ≤

n− 1, then the other conclusions of Theorem 1.2 hold true as well.

Proof. In the proof of Theorem 1.2 above, we now take V to be the com-
pletion of V0. In the analogue of Lemma 2.1, we work with End := (V ×
CP1) \ (V0 ×D2

ρ) for a disc D2
ρ ⊂ C ⊂ CP1 of suitable radius ρ. For (i), it is

sufficient to know that V is exact symplectic. For (ii) — assuming u(CP1)
intersects End but not the hypersurface H — one applies the maximum
principle to the V -component of u, if that component intersects V \ V0, or
to the C-component, if that hits C \D2

ρ. The proof of (iii) is analogous. Then
the argument as in Section 2.4 yields the claimed homology epimorphism.

Under the additional homotopical assumption on V0, Lemma 2.5 still
holds, and then one concludes as in the proof of Theorem 1.2. �

3. Applications of Theorem 1.2

3.1. Fillings of the standard sphere

Theorem 1.1 from the Introduction is contained in Theorem 1.2. Indeed,
(S2n−1, ξst) has a Stein filling given by the unit ball in Cn, so we have `0 = 0
in the notation of Theorem 1.2. This theorem then says that any other
symplectically aspherical filling (W,ω) of (S2n−1, ξst) is a simply connected
homology ball of dimension 2n ≥ 6, and hence diffeomorphic to the standard
ball by Proposition A on page 108 of [32].

3.2. Liouville fillings

Using relative de Rham theory, we now derive a general property of the
fillings that can arise in the situation of Theorem 1.2.

Proposition 3.1. Let (M, ξ) be a contact manifold that admits a subcritical
Stein filling. Then any symplectically aspherical filling (W,ω) of (M, ξ) is a
Liouville filling.
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Proof. Write i : M →W for the inclusion map. The kth relative de Rham
chain group of the pair (W,M) is given by Ωk(i) = Ωk(W )⊕ Ωk−1(M), and
the differential is given by d(η, µ) = (dη, i∗η − dµ), see [3, p. 78].

By assumption on (W,ω) being a symplectic filling of (M, ξ), there is a
Liouville vector field Y defined near M and pointing transversely outwards
such that the 1-form λ := iY ω, defined near M , restricts to a contact form
α := i∗λ for ξ. We want to show that we can find a global primitive λ with
this property.

The pair (ω, α) is closed, since d(ω, α) = (dω, i∗ω − dα) = (0, 0), so this
pair defines a class in H2

dR(W,M) ∼= H2n−2(W ;R), where as before we take
the dimension of W to be 2n. By Theorem 1.2, this last homology group
vanishes, so the pair (ω, α) is actually exact. This means we can find a 1-form
µ on W and a smooth function f on M such that (ω, α) = (dµ, i∗µ− df).

Extend f to a smooth function F on W and set λ := µ− dF . Then
dλ = ω and i∗λ = i∗µ− df = α. �

3.3. A result of Oancea–Viterbo

The following is Theorem 2.6 of [35].

Theorem 3.2 (Oancea–Viterbo). Let (M1, ξ1) be a compact, connected
contact manifold admitting an embedding into a subcritical Stein manifold as
a hypersurface of contact type. Let (W1, ω1) be any symplectically aspherical
filling of (M1, ξ1) satisfying one of the following conditions:

(i) H2(W1,M1) = 0;

(ii) M1 is simply connected.

Then the homomorphism

Hk(M1) −→ Hk(W1)

induced by the inclusion M1 ⊂W1 is surjective in all degrees k.

Remark 3.3. (1) The indexing 1 is used here merely to avoid notational
confusion when we reprove this result below.

(2) In case (i), symplectic asphericity of any filling (W1, ω1) of (M1, ξ1) is
a direct consequence of the homological assumption H2(W1,M1) = 0, for the
homomorphism H2(M1)→ H2(W1) induced by inclusion is then surjective,
and ω1 is exact near M1.
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(3) If W1 is itself Stein (not a priori subcritical), then condition (i)
is automatic for dimW1 = 2n ≥ 6, since W1 then has the homotopy type
of an n-dimensional complex, and so H2(W1,M1) ∼= H2n−2(W1) is zero for
2n− 2 > n.

We now prove Theorem 3.2. As in Section 2.1 we have a contact type
embedding of (M1, ξ1) into a split Stein manifold V × C. Then M1 separates
V × C into a compact and a non-compact component. By assumption, there
is a Liouville vector field for the symplectic form on V × C, defined near and
transverse to M1; by [16, Theorem 3.4], this Liouville vector field points out
of the compact component.

Choose a level set M of the plurisubharmonic function ψ on V × C for
a level so large that M1 is contained in its sublevel set. Equip M with
the contact structure ξ induced by the Stein structure. Then the compact
region between M1 and M defines a symplectic cobordism (W2, ω2 = dλ2)
from (M1, ξ1) to (M, ξ).

Now, given a symplectically aspherical filling (W1, ω1) of (M1, ξ1), we
can glue it along this contact boundary to the cobordism (W2, ω2), resulting
in a filling (W,ω) of the contact manifold (M, ξ). The corresponding sublevel
set of ψ defines a subcritical Stein filling of (M, ξ), so the first assumption
of Theorem 1.2 is satisfied.

Lemma 3.4. Under either of the assumptions (i) or (ii) in Theorem 3.2,
(W,ω) is symplectically aspherical.

Proof. Let S be a 2-sphere in W (i.e. a map φ : S2 →W , without loss of
generality assumed to be smooth, with image S). We need to show that∫
S ω :=

∫
S2 φ

∗ω = 0. The part (W1, ω1) of (W,ω) is symplectically aspherical
by assumption; (W2, ω2) is symplectically aspherical since ω2 = dλ2 is exact.
So S cannot be entirely contained in only one of these two parts.

Make S transverse to M1 and write S1, S2 for the parts of S contained
in W1,W2, respectively.

(i) If H2(W1,M1) = 0, the relative cycle S1 represents the zero class, so
there is a relative 3-chain C with ∂C = S1 ∪ Σ, where Σ is a 2-chain in M1

with ∂Σ = −∂S1. It follows that

∫
S1

ω +

∫
Σ
ω =

∫
∂C
ω =

∫
C

dω = 0,
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and further∫
S1

ω = −
∫

Σ
ω = −

∫
Σ

dλ2 = −
∫
∂Σ
λ2 = −

∫
∂S2

λ2 = −
∫
S2

ω2.

This gives
∫
S ω = 0.

(ii) If M1 is simply connected, then S1 and S2 can be closed off to 2-
spheres Ŝ1, Ŝ2 by 2-discs in M1. Then∫

S
ω =

∫
S1

ω1 +

∫
S2

ω2 =

∫
Ŝ1

ω1 +

∫
Ŝ2

ω2 = 0

by the symplectic asphericity of (W1, ω1) and (W2, ω2). �

Thanks to this lemma, we can use the information from Theorem 1.2 (a)
as input in the Mayer–Vietoris sequence of the decomposition W = W1 ∪
W2. For k ≥ n we have Hk(W ) = 0, and hence the exact sequence

Hk(M1) −→ Hk(W1)⊕Hk(W2) −→ 0;

in particular, the homomorphism Hk(M1)→ Hk(W1) is surjective.
For k ≤ n− 1 we still have that the homomorphism Hk(M)→ Hk(W )

is surjective. Consider the commutative diagram

Hk(M)

Hk(M1)
(i1, i2)

- Hk(W1) ⊕ Hk(W2)
j1 − j2-

iM

�
Hk(W ),

jM

??

where all homomorphisms are induced by inclusion maps, the row is exact,
and the vertical homomorphism is surjective. We want to show that the
homomorphism i1 is surjective. Given a class a1 ∈ Hk(W1), set a := j1(a1) ∈
Hk(W ). Choose A ∈ Hk(M) with jM (A) = a. Set a2 := iM (A) ∈ Hk(W2), so
that j2(a2) = a. It follows that (a1, a2) ∈ Hk(W1)⊕Hk(W2) maps to zero
under j1 − j2, and so this pair lies in the image of (i1, i2). This shows that
i1 is an epimorphism, which completes the proof of Theorem 3.2.

3.4. Extension of the Oancea–Viterbo result to π1

Using Theorem 1.2 (b), we can formulate a result analogous to Theorem 3.2
for the fundamental group.
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Proposition 3.5. Under the assumptions of Theorem 3.2, the normal sub-
group N

(
i1#(π1(M1))

)
generated by the image of π1(M1) in π1(W1) equals

the full group π1(W1).

Proof. By Lemma 3.4 we may apply Theorem 1.2 (b) to the symplectic mani-
fold (W = W1 ∪W2, ω) constructed in the preceding section. Thus, we know
that the homomorphism π1(M)→ π1(W ) is surjective. This homomorphism
factors through π1(W2), so π1(W2)→ π1(W ) is likewise surjective. Here all
fundamental groups are taken with a base point ∗ ∈M , but the last epi-
morphism continues to hold when we switch to a base point ∗1 ∈M1. From
now on, this base point ∗1 will be understood.

By Seifert–van Kampen, the fundamental group π1(W ) is an amalga-
mated product

π1(W1)

π1(M1) -

-

π1(W ) = π1(W1) ∗π1(M1) π1(W2).

-

π1(W2)

--

-

Form a CW complex W ′2 from W2 by attaching discs to loops in W1 \M1

freely homotopic to a set of generators of π1(W2). Then π1(W ′2) = {1} and
W1 ∩W ′2 = M1. Moreover, since the homomorphism π1(W2)→ π1(W ) is
surjective, the space W1 ∪W ′2 is simply connected. With Seifert–van Kam-
pen we have

{1} = π1(W1 ∪W ′2) = π1(W1) ∗π1(M1) {1} = π1(W1)/N
(
i1#(π1(M1))

)
.

�

3.5. Milnor fillable contact structures

Let f : (Cn+1, 0)→ (C, 0), n ≥ 3, be a complex polynomial function with an
isolated singularity at the origin, i.e. an isolated common zero of the partial
derivatives ∂zjf , j = 0, . . . , n. Choose ε > 0 sufficiently small so that the
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ε-disc around the origin in Cn+1 does not contain any further singularities
of f . Then the link Mf of the singularity,

Mf := S2n+1
ε ∩ {f = 0},

is a (2n− 1)-dimensional manifold with contact structure ξf given by the
complex tangencies,

ξf := TMf ∩ i(TMf ),

see [5]. For δ ∈ C∗ with |δ| sufficiently small, the smoothing

Wf := D2n+2
ε ∩ {f = δ}

with its canonical Stein symplectic structure ωf is, by Gray stability of
contact structures, a Stein filling of (Mf , ξf ). We call this Stein manifold,
which is unique up to deformation equivalence, the Milnor filling of (Mf , ξf ).
(In [5], that name refers to the singular filling.)

The Milnor number µ is the degree of the map

S2n+1
ε −→ S2n+1

ε

z 7−→ g(z)/|g(z)|,

where g := (∂z0f, . . . , ∂znf). This number is always non-negative, and it
equals zero precisely when the origin is actually a non-singular point of f .

Proposition 3.6. Suppose the contact manifold (Mf , ξf ) admits a subcrit-
ical Stein filling (W0, ω0). Then the following holds:

(i) W0 and Wf are diffeomorphic to the disc D2n.

(ii) The Stein structure on the Milnor filling Wf is the standard Stein
structure on the disc.

(iii) (Mf , ξf ) is contactomorphic to (S2n−1, ξst).

Proof. The map

f/|f | : S2n+1
ε \Mf −→ S1

is a locally trivial fibration, the closure of whose fibre (the so-called Milnor
fibre) is diffeomorphic to Wf , see [34, Theorem 5.11]. Then, by [34, Theo-
rem 6.6], which applies for n ≥ 3, and [34, Theorem 7.2], the Milnor filling
Wf is diffeomorphic to a 2n-dimensional handlebody obtained by attaching
µ handles of index n to D2n; in particular, it is homotopy equivalent to a
bouquet of µ spheres of dimension n.
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Now, by Theorem 1.2 (a), the assumption on the existence of a subcritical
Stein filling (W0, ω0) implies that Hk(Wf ) = 0 for k ≥ n, which forces µ = 0.
Thus, Wf is diffeomorphic to D2n.

In particular, Mf is diffeomorphic to S2n−1. For the argument that fol-
lows, it would be enough to know that Mf is simply connected, which holds
by [34, Theorem 5.2] and our assumption n ≥ 3. Theorem 1.2 (b), applied
to W0, tells us that W0 is likewise simply connected. Part (a) of the theo-
rem, applied to both Wf and W0, tells us that W0 is a homology ball. Then,
as in Section 3.1, we conclude that W0 is also diffeomorphic to D2n. This
proves (i).

In order to prove (ii), we observe that, because of µ = 0, the origin is
a non-singular point of f . By relabelling the coordinates and multiplying f
by a suitable complex constant, we may assume that ∂z0f(0) = 1. Then, for
ε > 0 sufficiently small, the linear interpolation between f and the function
z 7→ z0 does not develop any singularity in D2n

ε . This interpolation provides
the Stein deformation of (Wf , ωf ) to the standard Stein structure on D2n.

Statement (iii) is an immediate consequence of (ii). �

For applications of Theorem 3.2 to Milnor fillable contact manifolds
see [35, Section 6].

3.6. Distinguishing contact structures

The homological information in Theorem 1.2 gives a simple criterion to
distinguish contact structures ξ, ξ′ on a given manifold M . Suppose (M, ξ) is
subcritically Stein fillable with a Stein manifold of homotopical dimension `0,
or Liouville fillable as in Theorem 2.8 (including the homotopical assumption
there), and (M, ξ′) has a symplectically aspherical filling of homotopical
dimension greater than `0, then ξ and ξ′ are not diffeomorphic.

We illustrate this with two simple examples. With λQ we denote the
canonical Liouville 1-form on the cotangent bundle of a manifold Q.

Example 3.7. (1) The unit sphere bundle S(T ∗S2 ⊕ C) of the stabilised
cotangent bundle of S2 is diffeomorphic to S3 × S2, and it inherits a contact
structure ξ from the symplectic structure dλS2 + dx ∧ dy on the unit disc
bundle D(T ∗S2 ⊕ C). By [14, Example 6.2.8], we can think of (S3 × S2, ξ)
and its filling as the result of attaching a symplectic 2-handle to the standard
symplectic 6-ball along a standard isotropic S1 ⊂ (S5, ξst).
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On the other hand, the standard contact structure ξ′ on ST ∗S3 ∼= S3 ×
S2 with symplectically aspherical filling (S3 ×D3,dλS3) is the result of at-
taching a symplectic 3-handle along a Legendrian S2 ⊂ (S5, ξst).

Both contact structures have vanishing first Chern class, so their under-
lying almost contact structures are homotopic [14, Proposition 8.1.1], but
by Theorem 1.2 the contact structures are not diffeomorphic. See also [19,
Example 1.9] and, for the handle descriptions, the discussion in [13, p. 1196].

(2) Likewise, the contact structures on S7 × S6 coming from the descrip-
tion as S(T ∗S6 ⊕ C) and ST ∗S7, respectively, are not diffeomorphic. This
also follows from [10, Corollary 1.18], whose proof employs Rabinowitz Floer
homology.

Remark 3.8. Given a (stabilised) cotangent bundle, there is a Stein struc-
ture on the unit disc bundle that provides a Stein filling of the standard
contact structure on the unit sphere bundle. This follows from the explicit
description of a Weinstein structure in [9, Example 11.12 (b)] and the Stein
existence theorem [9, Theorem 13.5].

3.7. Fillings of unit cotangent bundles

The examples above can also be regarded as an instance of the following
result.

Proposition 3.9. The unit cotangent bundle (ST ∗Q, kerλQ) of a closed
manifold Q does not admit a subcritical Stein filling.

Proof. If it did, this would produce a contradiction to Theorem 1.2, since
the symplectically aspherical filling (DT ∗Q,dλQ) has non-trivial homology
in the critical dimension. �

Remark 3.10. For related results see [10, Corollary 1.18] and [1, Corol-
lary 2.2].

4. Dehn–Seidel twists

Let L ∼= Sn−1 be a Lagrangian sphere in a symplectic manifold (V, ω) of
real dimension 2n− 2. By the Weinstein neighbourhood theorem, cf. [29,
Theorem 3.33], there is a neighbourhood of L symplectomorphic to a neigh-
bourhood of the zero section in the cotangent bundle T ∗Sn−1 with its canon-
ical symplectic structure dλSn−1 . The inclusion Sn−1 ⊂ Rn gives us a global



i
i

“1-Geiges” — 2019/10/3 — 0:39 — page 948 — #20 i
i

i
i

i
i

948 K. Barth, H. Geiges, and K. Zehmisch

coordinate description of the Liouville 1-form λSn−1 . In terms of Cartesian
coordinates (q,p) ∈ Rn × Rn, the cotangent bundle T ∗Sn−1 ⊂ R2n is de-
scribed by the equations

q · q = 1 and q · p = 0;

then λSn−1 = p dq.
Define a map

τ : (T ∗Sn−1, dλSn−1) −→ (T ∗Sn−1,dλSn−1)

as follows. Consider the normalised geodesic flow σt on T ∗Sn−1 \ Sn−1 given
by

σt(q,p) =

(
cos t |p|−1 sin t

−|p| sin t cos t

)(
q

p

)
.

Then set

τ(q,p) = σg(|p|)(q,p),

where r 7→ g(r) is a smooth function that interpolates monotonically be-
tween π near r = 0 and 0 for large r. For p = 0 this is read as τ(q, 0) =
(−q, 0). Then τ is a symplectomorphism of (T ∗Sn−1, dλSn−1), equal to the
identity for |p| large. Thus, τ may be regarded as a symplectomorphism
of (V, ω), and it is then called a right-handed Dehn twist along L ⊂ V ; for
n = 2 this coincides with the classical notion of a Dehn twist.

These generalised Dehn twists have been introduced and studied exten-
sively by Seidel, see [38, Section 6] and [39], and they are nowadays often
referred to as Dehn–Seidel twists.

Remark 4.1. For n− 1 odd, the model Dehn twist τ on T ∗Sn−1 is of
infinite order in π0(Diffc(T ∗Sn−1)), where Diffc denotes the group of com-
pactly supported diffeomorphisms. For n− 1 = 2 or 6, the order of τ is two;
for other even n− 1 it is four or eight, see [40, p. 3311] for a discussion and
references.

One example where τ2 is even symplectically trivial (i.e. isotopic to the
identity via compactly supported symplectomorphisms) is the Dehn twist
along the anti-diagonal in S2 × S2 with the monotone product symplectic
structure (i.e. of equal area on the two factors). Seidel proved that this ex-
ample is atypical. For instance, it is shown in [39], based on the work of
Gromov [20], that the group of compactly supported symplectomorphisms
of (T ∗S2,dλS2) is homotopy equivalent to Z, generated by τ . Other results
of [39] concern the symplectic non-triviality of τ2 in dimension four; in [40,
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Section 5] it is shown that the Dehn twist in the cotangent bundle of any
higher-dimensional sphere is of infinite order symplectically. Seidel’s argu-
ments involve subtle methods from Floer homology.

We now want to prove Theorem 1.4 from the introduction, which estab-
lishes the symplectic non-triviality of any non-empty composition of right-
handed Dehn twists for a broad class of symplectic manifolds, including, in
particular, the cotangent bundle (T ∗Sn−1,dλSn−1) per se. Thus, let (V,dλ)
be a Liouville manifold of dimension at least four. Write Sympc(V ) for the
group of compactly supported symplectomorphisms φ of (V,dλ).

Remark 4.2. We want to detect the symplectic non-triviality of compo-
sitions of right-handed Dehn twists in Sympc(V ). To this end, we shall be
using an argument by contradiction, starting from the assumption that there
is a symplectic isotopy from a given symplectomorphism of that type to the
identity. This allows us, by Remark 2.7, to assume without loss of contra-
diction that all relevant maps and isotopies are supported in the interior of
a Liouville domain V0 whose symplectic completion is V .

If φ ∈ Sympc(V ) is exact, i.e. φ∗λ− λ = dh for some smooth function
h : V → R with compact support in Int(V ), there is a canonical construction
due to Giroux, see [14, Theorem 7.3.3] of a contact structure on the open
book with page Int(V0) and monodromy φ. We denote this contact manifold
by Open(V0, φ). We want to show that if φ lies in the identity component
Sympc0(V ) of Sympc(V ), i.e. if φ is isotopic to the identity via compactly
supported but not, a priori, exact symplectomorphisms, then the resulting
contact manifold does not depend, up to contactomorphism, on the specific
choice of such φ.

Proposition 4.3. If φ ∈ Sympc0(V ) is exact, then Open(V0, φ) is contac-
tomorphic to Open(V0, id).

Proof. As shown in [29, Chapter 10], there is an exact sequence

0 −→ Hamc(V ) −→ Sympc0(V ) −→ H1
c (V ;R) −→ 0,

φ 7−→ [φ∗λ− λ]

where Hamc(V ) denotes the group of compactly supported Hamiltonian dif-
feomorphisms, that is, symplectomorphisms that are the time-1 map of a
Hamiltonian isotopy with support in a compact subset (depending on the
isotopy), and H1

c (V ;R) denotes the compactly supported de Rham coho-
mology of V .
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Thus, our assumptions imply that the symplectomorphism φ is actu-
ally Hamiltonian. Let (Ht)t∈[0,1] be the time-dependent Hamiltonian func-
tion generating the Hamiltonian isotopy (φt)t∈[0,1] with φ0 = id and φ1 = φ.
Write Xt for the corresponding time-dependent Hamiltonian vector field.
Then

(1) φ∗tλ− λ = dht,

where

ht :=

∫ t

0
φ∗s(λ(Xs)−Hs) ds,

see [29, Proposition 9.19].
With (1) one deduces Open(V, id) ∼= Open(V, φ) from the explicit con-

struction of the contact open book in [14, Theorem 7.3.3], using Gray sta-
bility. �

The following lemma will allow us to apply this observation to compo-
sitions of Dehn twists. Here the assumption dimV ≥ 4 is used.

Lemma 4.4. Any composition of Dehn twists on (V,dλ) is an exact sym-
plectomorphism.

Proof. For the model Dehn twist τ on (T ∗Sn−1, dλSn−1), an explicit function
h with τ∗λSn−1 − λSn−1 = dh is described in [24]. The choice of primitive
λSn−1 for the symplectic form, however, is irrelevant for the exactness of τ ,
as follows from a simple homological consideration.

If (U,dµ) is any open (2n− 2)-dimensional symplectic manifold (without
boundary) with H2n−3(U ;R) = 0, such as a tubular neighbourhood of a
Lagrangian sphere (for n ≥ 3), then H1

c (U ;R) = 0 by Poincaré duality for
compactly supported cohomology [3, p. 44]. Then, any compactly supported
symplectomorphism of (U,dµ) is exact, regardless of the choice of primitive
µ for the symplectic form. Hence, this remains true if (U,dµ) admits a (not
necessarily exact!) symplectic embedding into a larger symplectic manifold
(V,dλ), and the symplectomorphism is regarded as an automorphism of V .
In particular, Dehn twists on exact symplectic manifolds of dimension 2n−
2 ≥ 4 are always exact.

A straightforward calculation shows that the composition of exact sym-
plectomorphisms is likewise exact. �

Proof of Theorem 1.4. Arguing by contradiction, we assume that φ is a
non-trivial composition of right-handed Dehn twists on the Liouville mani-
fold (V,dλ) which is symplectically isotopic to the identity, i.e. contained
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in Sympc0(V ). By Lemma 4.4 and Proposition 4.3, the contact open book
Open(V0, φ

N ) is contactomorphic to the open book Open(V0, id) for any
natural number N ∈ N.

The contact open book (M, ξ) := Open(V0, id) is symplectically filled
by V0 ×D2 (after rounding corners inside V × C). This places us in the
situation of Theorem 2.8.

Now we use the specific nature of φ as a composition of right-handed
Dehn twists. By [23, Lemma 4.2], a Lagrangian sphere L in the page of a
contact open book may be assumed to be Legendrian in the open book.
Then, by [23, Theorem 4.4], composing the monodromy of the given open
book with the right-handed Dehn twist along L is equivalent to performing a
Weinstein surgery on the open book along L; see [15] for a simpler description
in the 3-dimensional situation.

This gives us a Liouville (and hence symplectically aspherical) filling
(WN , ωN ) of Open(V0, φ

N ) ∼= (M, ξ) for any N ∈ N. By Theorem 2.8, we
have, in particular, a homology epimorphism Hn(V0)→ Hn(WN ).

On the other hand, WN is obtained from V0 ×D2 by attaching kN han-
dles of index n, where k is the number of Dehn twists in the composition φ.
Think of WN as decomposed into V0 ×D2 and the handles, with intersection
given by the disjoint neighbourhoods, each diffeomorphic to Sn−1 ×Dn, of
kN attaching spheres in ∂(V0 ×D2). The relevant part of the Mayer–Vietoris
sequence,

Hn(WN ) −→ Hn−1(tkNSn−1) −→ Hn−1(V0),

gives us the estimate

bn(WN ) + bn−1(V0) ≥ kN

on Betti numbers. Together with the epimorphism Hn(V0)→ Hn(WN ) we
have

bn(V0) + bn−1(V0) ≥ kN
for all N ∈ N, which is a contradiction. �

Remark 4.5. With the notation from this section, Theorem 1.4 can be
rephrased as saying that for any non-trivial composition φ of right-handed
Dehn twists on a Liouville manifold (V,dλ), the class of φ is of infinite order
in π0(Sympc(V )).

Remark 4.6. For the iteration of a single Dehn twist on a Liouville domain,
Theorem 1.4 has been proved by Uljarević [43, Corollary 5.6.3], using Floer-
theoretic methods. The analogue of the theorem for iterations of a single
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fibred or fractional Dehn twist, under various technical assumptions, are
proved in [6, Theorem B], [7, Corollary 1.2] and [42, Corollary 1.4]. The
papers [6, 7] also build on the idea to use the iterated (fractional or fibred)
Dehn twist as the monodromy of an open book. The infinite order of the
Dehn twist is then established by considering the mean Euler characteristic
in symplectic homology, or by studying filling obstructions.

5. Proof of Theorem 1.5

Let (M, ξ) be a simply connected contact manifold of dimension at least
five, with a subcritical Stein filling (W0, ω0), and let (W,ω) be any other
symplectically aspherical filling of (M, ξ). Our aim is to show that W must
be diffeomorphic to W0.

As in the proof of Theorem 1.2, we may think of M as a level set of a
plurisubharmonic potential on a split Stein manifold V × C, and of W0 as
the corresponding sublevel set.

V

C

W

W0

W1

M0 M1

V1

V0

Figure 2: The cobordism X = W1 \ Int(W0).

Consider the schematic picture shown in Figure 2. From now on, the
argument is essentially topological. This allows us to think of W0 as V0 ×D2,
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where V0 is a Stein domain with symplectic completion V (in the sense of
Remark 2.7).

We build a manifold W1 as follows. Add a (sufficiently large) collar neigh-
bourhood to W0, i.e. pass to a higher sublevel set of the plurisubharmonic
potential, with boundary M1

∼= M . There is a topological copy of W0 inside
this neighbourhood (and it is this which is shown in Figure 2), disjoint from
the original one, simply given by translation in the C-direction. Cut out the
original copy of W0 and replace it by W ; this can be done symplectically.
The resulting symplectic manifold W1 with boundary M1

∼= M is simply W
with a collar added, and Theorem 1.2 applies to it.

The boundary M0
∼= M of W0 contains as a subset a copy of V0, which

we can think of as V0 × {1} ⊂ V0 ×D2 = W0. There is a corresponding copy
V1 of V0 inside M1. Apart from the inclusion W0 →W1, there is a second
embedding W0 →W1 that maps V0 diffeomorphically to V1, obtained by
extending an isotopy that moves V0 to V1.

Now set X = W1 \ Int(W0), which is a cobordism between M0 and M1.
This gives us the following diagram of maps. We shall refer to it in the sequel
as the ‘cobordism diagram’.

V0

∼= - V1

W0
(iii)

-

'

-

W1

(ii)

�

M0

(i)

? (iv)
-

g.p.
-

X

g.p.

6

�
(ii)

M1

(i′)

?

(o)

�

All maps in this diagram are inclusions, except for V0 → V1, which is the
diffeomorphism just mentioned, and W0 →W1, which indicates both the in-
clusion and the alternative embedding just described. With this understood,
the cobordism diagram is homotopy commutative.

By Theorem 1.2, the inclusion M1 →W1, which is essentially the in-
clusion M →W , is always π1-surjective. Under the assumption that M is
simply connected, it is of course also π1-injective. Since, later on, we shall be
considering more general situations, we formulate the next result in terms
of this assumption.
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Lemma 5.1. If the inclusion M →W is π1-injective, then the inclusion
maps M0,M1 → X are π1-isomorphic.

Proof. The following steps refer to the maps with the corresponding labels
in the cobordism diagram.

(g.p.) This label stands for ‘general position’. First consider the inclusion
M0 →W0. By assumption, W0 has a handle decomposition with handles of
index at most n− 1. This allows us to define a Morse–Smale function on W0

whose negative gradient flow contracts W0 onto a subcomplex of dimension
at most n− 1, which we call the skeleton. (Notice that the dimension of the
skeleton may be larger than the homotopical dimension of W0. We do not
care about homologically inessential handles, as long as they have subcritical
index.) Under the positive gradient flow, the complement of the skeleton
flows into the boundary M0.

Now consider a relative k-disc in W0, in other words, a continuous map
(Dk, Sk−1)→ (W0,M0). By general position, we can make this disc (rel
boundary) disjoint from the skeleton, provided that k + n− 1 < 2n. The
gradient flow of the Morse–Smale function then allows us to push that disc
(rel boundary) into M0.

For k ∈ {1, 2}, that inequality is satisfied for all n ≥ 2. It follows that
the relative homotopy groups π1(W0,M0) and π2(W0,M0) are trivial, which
implies that the inclusion M0 →W0 is π1-isomorphic.

In an analogous fashion, we can deal with the inclusion X →W1. Given
a relative k-disc (Dk, Sk−1)→ (W1, X), for k ∈ {1, 2} we can again make it
disjoint from the skeleton of W0, and then use the gradient flow to push it
into X.

(o) The map M1 →W1 is π1-isomorphic by Theorem 1.2 and our as-
sumption.

(i) The inclusion V0 →M0 is π1-isomorphic, since both the homotopy
equivalence V0 →W0 and the inclusion M0 →W0 have this property.

(i’) The inclusion V1 →M1 is then likewise π1-isomorphic, since the pair
(M1, V1) is a diffeomorphic copy of (M0, V0).

(ii) With (i’) it follows that V1 →W1 is π1-isomorphic, and the same is
true for M1 → X by (g.p.).

(iii) Interpreting W0 →W1 as the ‘alternative embedding’, we conclude
from (ii) that this map is π1-isomorphic.

(iv) It now follows that M0 → X is π1-isomorphic. �

Next we analyse the maps in the cobordism diagram with a view to
homology. The following lemma does not presuppose any information on
the fundamental group of M . The input previously provided by a general
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position argument or by the assumption on π1-injectivity now comes directly
from Theorem 1.2.

Lemma 5.2. The relative homology groups Hk(X,M0) and Hk(X,M1)
vanish for all k ∈ N0.

Proof. By Theorem 1.2, the inclusions M0 →W0 and M1 →W1 induce iso-
morphisms on Hk for k = 0, . . . , `0.

(i), (i’) It follows that the inclusion V0 →M0 induces isomorphisms in
homology up to degree `0, and hence so does the inclusion V1 →M1.

(ii) The same is then true for the inclusion V1 →W1.
(iii) Since the homology groups of W0 and W1 in degree k > `0 are

trivial by Theorem 1.2, we conclude that the inclusion W0 →W1 induces
an isomorphism in homology, and hence Hk(W1,W0) = 0 for all k.

(iv) By excision we have Hk(X,M0) ∼= Hk(W1,W0) = 0. With Poincaré
duality and the universal coefficient theorem we conclude Hk(X,M1) = 0.

�

Proof of Theorem 1.5. By Lemmata 5.1 and 5.2 and the relative Hurewicz
theorem, the simply connected cobordism {M0, X,M1} is an h-cobordism.
Hence, as n ≥ 3, it is diffeomorphic to a product [0, 1]×M by the h-cobor-
dism theorem. It follows that W , which is diffeomorphic to W1, is obtained
from W0 by attaching this collar [0, 1]×M , so W and W0 are diffeomorphic.

�

A closer inspection of the argument in this section immediately yields the
following generalisation of Theorem 1.5. For a classical survey on Whitehead
groups and Whitehead torsion see [33].

Theorem 5.3. Let (M, ξ) be a manifold as in Theorem 1.2 with π1(M)
finite. Then the symplectically aspherical fillings (W,ω) of (M, ξ) for which
the inclusion M →W is π1-injective (which by Theorem 1.2 are all sym-
plectically aspherical fillings when π1(M) is finite abelian) are pairwise ho-
motopy equivalent. If, in addition, n ≥ 3 and the fundamental group π1(M)
has trivial Whitehead group Wh(π1(M)) = 0, then these fillings are pairwise
diffeomorphic.

Proof. As observed in the proof of Lemma 5.1, the inclusion M →W0 into
the subcritical Stein filling is always π1-isomorphic by a general position
argument. The same is true for the inclusion M →W by assumption and
Lemma 5.1. It follows that the (compact!) universal cover of (M, ξ) is filled
by either of the universal covers of (W0, ω0) and (W,ω).
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As before, we now investigate the cobordism {M0, X,M1}. Again by

Lemma 5.1, here too we can pass to the compact cobordism {M̃0, X̃, M̃1} of
universal covers. Our previous argument shows that this is an h-cobordism,
hence so is {M0, X,M1}. It follows that W1, which is a diffeomorphic copy
of W , is homotopy equivalent to W0, since W1 = W0 ∪M0

{M0, X,M1}.
Under the assumption Wh(π1(M)) = 0, the cobordism {M0, X,M1} is

an s-cobordism, and hence trivial for n ≥ 3. �

6. Coverings

Starting from a symplectically aspherical filling (W,ω) of (M, ξ) as in Theo-
rem 1.2, we now analyse the argument for a covering W ′ →W . This covering
is not assumed to be finite, so it includes the case of the universal covering
W̃ →W when π1(W ) has infinite order. Our main applications will concern

the situation when the universal cover W̃0 of the presumed subcritical Stein
filling (W0, ω0) of (M, ξ) is contractible.

We shall assume throughout that W ′ is connected. The covering W ′ →
W induces a covering ∂W ′ =: M ′ →M . Since, by Theorem 1.2 (b), the inclu-
sion M →W is π1-surjective, the manifold M ′ must likewise be connected,
as is seen by a standard covering space argument.

As observed in the proof of Lemma 5.1, the inclusion M →W0 is π1-
isomorphic thanks to W0 being contractible onto its skeleton of dimension at
most n− 1. So there is a covering W ′0 →W0 inducing the covering M ′ →M
on the boundary, and a corresponding covering V ′ → V in the notation of
Section 2.1. Given this information, we can then define symplectic mani-
folds (Z ′,Ω′) and (Ẑ ′, Ω̂′) in complete analogy with the construction in that
section. Write J ′ for the lifted almost complex structure on Ẑ ′. Then J ′

is uniformly tamed by Ω̂′, and the metric g′ := Ω̂′( . , J ′ . ) is complete and
admits both an upper bound on the sectional curvature and a positive lower
bound on the injectivity radius, that is, (Ẑ ′, Ω̂′) is geometrically bounded in
the sense of [2, Definition 2.2.1].

As before, we now define a moduli space M′ of holomorphic spheres
u′ : CP1 → (Ẑ ′, J ′) subject to the analogous conditions (M1) and (M2). The
composition of such holomorphic spheres with the covering map p : Ẑ ′ → Ẑ
defines a covering M′ →M.

Proposition 2.3 holds unchanged; we need only establish properness of
the evaluation map in the new setting.
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Lemma 6.1. The evaluation map

ev′ : M′ × CP1 −→ Ẑ ′

(u′, z) 7−→ u′(z)

is proper.

Proof. Given a compact subset K ⊂ Ẑ ′, consider a sequence (u′ν , zν) in
(ev′)−1(K). We may assume that zν → z0 ∈ CP1 and u′ν(zν)→ p′0 ∈ K for
ν →∞. By Proposition 2.3, we may further assume that the sequence uν :=
p ◦ u′ν of holomorphic curves in Ẑ is C∞-convergent.

For a given w ∈ CP1, let γν be a unit speed geodesic in CP1 of length
Lν ≤ π/2 with respect to the Fubini–Study metric, connecting w with zν .
Then, thanks to (Ẑ ′, Ω̂′) being geometrically bounded, the distance between
u′ν(w) and u′ν(zν) in Ẑ ′ with respect to the metric g′ can be estimated from
above by

dist
(
(u′ν(w), u′ν(zν)

)
≤
∫ Lν

0

∣∣∣ d

dt
(u′ν ◦ γν)

∣∣∣ dt ≤ const. · ‖Tuν‖C0 ≤ const.,

with constants that do not depend on w. Hence, the images u′ν(CP1) are
all contained in a sufficiently large closed metric ball about p′0, which is a
compact subset of the complete Riemannian manifold (Ẑ ′, g′).

This guarantees the existence of a Gromov-convergent subsequence of
(u′ν). The argument then concludes as in the proof of Proposition 2.3. �

The arguments in Sections 2.3 and 2.4 then go through, mutatis mutan-
dis, for the covering spaces, with the proviso that cohomology be replaced
by cohomology with compact supports in all arguments requiring (implicitly
or explicitly) Poincaré duality. See [21, pp. 242–249] for a good exposition
of Poincaré duality in this context.

In particular, again we obtain an epimorphism Hk(V
′)→ Hk(W

′) in
homology for all k. The following proposition is the simplest consequence of
this fact, but one that has wide-ranging applications, as we shall see.

Proposition 6.2. With M,W0,W as in Theorem 1.2, suppose that the
inclusion M →W is π1-injective and W̃0 is contractible. Then W̃ is likewise
contractible.

Proof. Under the assumption that the inclusion M →W is π1-injective and
hence, by Theorem 1.2 (b), π1-isomorphic, the universal covering W̃ →W

restricts to the universal covering M̃ →M on the boundary. The assumption
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on W̃0 being contractible is the same as saying that the universal cover Ṽ
is contractible. The mentioned homology epimorphism then implies that W̃
is a simply connected space with vanishing reduced homology, and hence
contractible. �

In Section 8 we shall make use of the following lemma.

Lemma 6.3. With M,W0,W as in Theorem 1.2, suppose that the inclusion
M →W is π1-injective. Then the inclusion M̃0 → X̃ induces a surjective
homomorphism in homology.

Proof. The assumption on π1 allows us to pass to universal covers in the
cobordism diagram in Section 5. Consider the following commutative dia-
gram with exact rows:

Hk(M̃0) - Hk(X̃)
i
- Hk(X̃, M̃0)

Hk(W̃0)

?
j1- Hk(W̃1)

?
j2- Hk(W̃1, W̃0)

∼=
?

The vertical map on the right is the excision isomorphism. The homology
epimorphism Hk(V

′)→ Hk(W
′) for any covering gives us, in particular, an

epimorphism Hk(Ṽ1)→ Hk(W̃1). From the cobordism diagram we then see
that j1 is likewise surjective, and hence j2 the zero homomorphism. This in
turn implies that i is the zero homomorphism. �

7. Handle decompositions

In this section we discuss the homotopy and diffeomorphism classification
of fillings of a given closed, connected contact manifold (M, ξ) of dimension
2n− 1 under the assumption that information is given on the maximal index
in a handle decomposition of the filling. Applications include the homotopy
classification of subcritical Stein fillings.

Thus, let M,W,W0, `0 be as in Theorem 1.2, with the additional as-
sumption that W has a handle decomposition involving handles of index
≤ ` only. Then a general position argument as in the proof of Lemma 5.1
yields the following result.
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Lemma 7.1. For k ≤ 2n− 1− `0, the relative homotopy groups πk(W0,M)
and homology groups Hk(W0,M) are trivial. The same is true for the relative
groups πk(W1, X) and Hk(W1, X). For k ≤ 2n− 1− `, the relative groups
πk(W,M) and Hk(W,M) are trivial. �

In particular, for ` ≤ 2n− 3 the inclusion M →W is π1-isomorphic.
Then, by the proof of Lemma 5.1, the same will be true for all the other
maps in the cobordism diagram, so that we can pass simultaneously to the
universal covers of all spaces in that diagram. From now on, this assumption
will be understood.

Theorem 7.2. If `0 + max(`0, `) ≤ 2n− 2, then W and W0 are homotopy
equivalent.

Proof. From the lemma it follows that all maps in the cobordism diagram,
also at the level of universal covers, are πk- and Hk-isomorphic for k ≤ 2n−
2−max(`0, `). By the assumption in the theorem, this holds in particular
for k ≤ `0.

This implies that the inclusion W̃0 → W̃1 induces an isomorphism in
homology in all degrees, since

Hk(W̃0) = 0 = Hk(W̃1) for k ≥ `0 + 1;

for W̃0 this follows from the homotopical assumptions; for W̃1
∼= W̃ , from

the homology epimorphism in Section 6.
The homology exact sequence of the pair (W̃1, W̃0) then shows the van-

ishing ofHk(W̃1, W̃0) in all degrees. By excision, we also haveHk(X̃, M̃0) = 0
for all k.

With the relative Hurewicz theorem we deduce πk(X̃, M̃0) = 0 for all k.
Since the inclusion M0 → X is already known to be a π1-isomorphism, M0

is a strong deformation retract of X by Whitehead’s theorem [21, Theo-
rem 4.5]. Hence

W 'W1 = W0 ∪M0
X 'W0,

as we wanted to show. �

The proof of the result that all subcritical Stein fillings of a given contact
manifold are homotopy equivalent is now straightforward.

Proof of Theorem 1.6. For a subcritical filling we have ` ≤ n− 1, and hence
`0 + max(`0, `) ≤ 2n− 2. �
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The required estimate is also satisfied for ` ≤ n, provided that `0 ≤ n−
2. This gives the following corollary.

Corollary 7.3. If (M, ξ) admits a subcritical Stein filling with `0 ≤ n− 2,
then all Stein fillings (including critical ones) are homotopy equivalent.

8. Simple spaces

In this section we prove Theorem 1.7. Thus, consider manifolds M,W0,W
as in Theorem 1.2 under the additional assumption that M is a simple space
and n ≥ 3. In particular, since the action of π1 on itself is given by conju-
gation, π1(M) must be abelian. Thus, by Theorem 1.2 (b) and Lemma 5.1,
all maps in the cobordism diagram are π1-isomorphic, and we can pass to
universal covers. Also, from Lemma 5.2 we know that the relative homology
groups Hk(X,M0) and Hk(X,M1) vanish for all k.

The assumptions of Theorem 1.7 are taken for granted in this section.

Lemma 8.1. The relative homotopy groups πk(X,M0) are trivial.

Proof. The statement holds for k = 0, 1, since M0 and X are connected, and
the inclusion map M0 → X is π1-isomorphic.

Inductively, we assume that the vanishing of πi(X,M0) has been estab-
lished for i ≤ k − 1. We want to show πk(X,M0) = 0.

Write γ(η) ∈ πk(X,M0) for the element obtained by the action of γ ∈
π1(M0) on η ∈ πk(X,M0). By the relative Hurewicz theorem, the Hurewicz
homomorphism

hk : πk(X,M0) −→ Hk(X,M0)

is an epimorphism whose kernel is the subgroup of πk(X,M0) generated
by elements of the form γ(η)− η. Notice that the inclusion M0 → X being
π1-isomorphic implies that π2(X,M0) is isomorphic to a quotient group of
π2(X), and hence abelian; so are all higher relative homology groups. Since
Hk(X,M0) = 0, the kernel of hk is the full group.

The action of π1, by its definition, commutes with the boundary homo-
morphism ∂ : πk(X,M0)→ πk−1(M0). Hence

∂
(
γ(η)− η

)
= γ(∂η)− ∂η = 0,

as M0 is a simple space. Thus, ∂ is the zero homomorphism.
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Consider the commutative diagram

πk(X̃, M̃0)
∂̃
- πk−1(M̃0)

πk(X,M0)

∼=

? ∂ = 0
- πk−1(M0).

?

The vertical homomorphism on the left is an isomorphism for all k ≥ 2. For
k ≥ 3, this is a general consequence of the five-lemma; for k = 2 one needs to
use that ∂ = 0. The vertical homomorphism on the right is an isomorphism
for k ≥ 3; for k = 2 we have πk−1(M̃0) = 0. In either case we conclude that
∂̃ is also the zero homomorphism.

Next we consider the commutative diagram coming from the ‘homotopy-
homology ladder’ of the pair (X̃, M̃0):

πk(X̃, M̃0)
∂̃ = 0
- πk−1(M̃0)

Hk(X̃)
i
- Hk(X̃, M̃0)

∼=
?

j
- Hk−1(M̃0)

?

The vertical isomorphism on the left is the Hurewicz isomorphism. The com-
mutative square implies the triviality of the homomorphism j. The homo-
morphism i was shown to be trivial in the proof of Lemma 6.3. We conclude
Hk(X̃, M̃0) = 0, hence πk(X,M0) = πk(X̃, M̃0) = 0. �

Lemma 8.2. The relative homotopy groups πk(X,M1) are trivial.

Proof. Again we argue inductively; the inductive assumption for k = 0, 1
is satisfied. Assume that πi(X,M1) vanishes for i ≤ k − 1. From the pre-
ceding lemma we know that M0 is a deformation retract of X. It follows
that X is likewise a simple space. As in the foregoing proof we see that
πk(X,M1) is generated by elements of the form γ(ζ)− ζ with ζ ∈ πk(X,M1)
and γ ∈ π1(M1). Again, M1 being simple implies the triviality of the bound-
ary homomorphism ∂ : πk(X,M1)→ πk−1(M1). Thus, the homomorphism
πk(X)→ πk(X,M1) is surjective. It follows that (X,M1) is simple. With
the information on the generators of πk(X,M1), this shows that πk(X,M1)
is trivial. �
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Proof of Theorem 1.7. The two lemmata show that {M0, X,M1} is an h-
cobordism and hence, under the assumption Wh(π1(M)) = 0, an s-cobor-
dism. �

For an application of this theorem see Example 9.3.

9. Unit stabilised cotangent bundles

We now return to contact manifolds of the kind described in Example 3.7.
Given a closed Riemannian manifold Q of dimension q, consider the unit
sphere bundle M := S(T ∗Q⊕ Cm), m ≥ 1, of the m-fold stabilised cotan-
gent bundle of Q. Then dimM = 2n− 1 with n = q +m. We always equip
this manifold with the canonical contact structure ξ given by the contact
form

λQ +
1

2

m∑
j=1

(xj dyj − yj dxj).

Theorem 9.1. Let M = S(T ∗Q⊕ Cm), m ≥ 1, with its standard contact
structure ξ, where Q is a closed q-dimensional manifold subject to the fol-
lowing conditions:

(i) Q is aspherical, i.e. the universal cover Q̃ is contractible.

(ii) The fundamental group π1(Q) is abelian and it has trivial Whitehead
group Wh(π1(Q)).

(iii) n = q +m ≥ 3, that is, dimM ≥ 5.

Then every symplectically aspherical filling of (M, ξ) is diffeomorphic to the
total space of the disc bundle W0 := D(T ∗Q⊕ Cm).

Proof. The assumption (ii) on π1(Q) being abelian implies that the inclusion
M →W , for any symplectically aspherical filling (W,ω) of (M, ξ), is π1-
isomorphic by Theorem 1.2 (b), and so all maps in the cobordism diagram
are π1-isomorphic by Lemma 5.1 and its proof. This allows us to pass to
universal covers in that diagram.

Remark 9.2. If the assumption on π1(Q) being abelian is dropped, the
conclusion of the theorem still holds true for all fillings (W,ω) for which the
inclusion M →W is π1-injective.

Since Q̃ is contractible (Q̃ ' ∗) by assumption (i), we also have W̃0 ' ∗.
Proposition 6.2 then tells us that W̃ ' ∗. From the homology sequence of
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the pair (W̃1, W̃0), where W1 is the diffeomorphic copy of W in the notation

of the preceding sections, we see that Hk(W̃1, W̃0) = 0 in all degrees, and

Hk(X̃, M̃0) = 0 by excision.
Thus, as in the proof of Theorem 7.2 we find that M0 is a strong deforma-

tion retract of X. In particular, we have Hk(X,M0) = 0 for all k, and hence
Hk(X,M1) = 0 for all k by Poincaré duality and the universal coefficient
theorem.

In order to show that the ‘upper’ inclusion M1 → X is likewise a homo-
topy equivalence, we need to establish πk(X,M1) = 0 for all k; we already
know this for k = 0, 1. To this end, analogous to the proof of Theorem 7.2,
we have to show the vanishing of the relative homology groups Hk(X̃, M̃1).

From Hk(X̃, M̃0) = 0 for all k we know that Hk(X̃) is isomorphic to

Hk(M̃) for all k. Hence, if Hk(M̃) = 0, then Hk(X̃) = 0, and the inclusion

M̃1 → X̃ obviously induces an isomorphism on Hk; the same is true on H0.
In our situation, the only non-zero homology group of M̃ in higher degree
is Hq+2m−1(M̃) ∼= Z.

From the Gysin homology sequence of the sphere bundle M → Q we see
that Hq+2m−1(M) ∼= Z, generated by the fibre class. The same is true for

the universal cover M̃ , which implies that the homomorphism

Z ∼= Hq+2m−1(M̃) −→ Hq+2m−1(M) ∼= Z

is an isomorphism. The relevant part of the homology exact sequences of
the pairs (X̃, M̃0) and (X,M0) becomes

Hq+2m−1(M̃0)
∼=- Hq+2m−1(X̃)

Hq+2m−1(M0)

∼=

? ∼=- Hq+2m−1(X),
?

so the homomorphism

Z ∼= Hq+2m−1(X̃) −→ Hq+2m−1(X) ∼= Z

is likewise an isomorphism.
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Finally, from the homology exact sequences of the pairs (X̃, M̃1) and
(X,M1) we have

Hq+2m−1(M̃1) - Hq+2m−1(X̃)

Hq+2m−1(M1)

∼=

? ∼=- Hq+2m−1(X),

∼=

?

which gives us an isomorphism

Z ∼= Hq+2m−1(M̃1) −→ Hq+2m−1(X̃) ∼= Z.

Thus, the inclusion M̃1 → X̃ is a homology isomorphism.
It follows that {M0, X,M1} is an h-cobordism. Under the assumption

that Wh(π1(Q)) = 0 it is an s-cobordism, and hence trivial under the di-
mension assumption (iii). �

Example 9.3. (1) Any closed Riemannian manifold Q with abelian funda-
mental group and non-positive sectional curvature satisfies the assumptions
of the theorem, since Q is aspherical by the Hadamard–Cartan theorem, and
Wh(π1(Q)) is trivial by the work of Farrell and Jones [12].

(2) The conclusions of the theorem hold whenever Q is a product of
unitary groups and spheres. Indeed, in this case π1(M) ∼= π1(Q) is a free
abelian group, which has trivial Whitehead group. The manifold Q has a
trivial stable tangent bundle, and Q is a simple space, hence so is M ∼=
Q× Sq+2m−1. Then appeal to Theorem 1.7.

When information is given on the handle structure of the filling, as in the
next theorem, we can use the results from Section 7 to remove the condition
on π1(Q) being abelian.

Theorem 9.4. Let M = S(T ∗Q⊕ Cm), m ≥ 1, with its standard contact
structure ξ, where Q is a closed q-dimensional manifold subject to the fol-
lowing conditions:

(i) Q is aspherical.

(ii) Wh(π1(Q)) is trivial.

(iii) n = q +m ≥ 3, that is, dimM ≥ 5.
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Then the following holds:

(a) All subcritical Stein fillings of M are diffeomorphic to the manifold
W0 := D(T ∗Q⊕ Cm).

(b) If m ≥ 2, then all Stein fillings of M are diffeomorphic to W0.

Proof. In the notation of Lemma 7.1 we have `0 = q ≤ n− 1 and ` ≤ n− 1
in case (a); `0 = q ≤ n− 2 and ` ≤ n in case (b). In either case, the inclusion
M →W (where W is any filling of the described type) is π1-isomorphic by
Lemma 7.1.

Also, the assumption of Theorem 7.2 is satisfied, so the argument there
shows that the ‘lower’ inclusion M0 → X in the cobordism {M0, X,M1} is
a homotopy equivalence.

The argument for the ‘upper’ inclusion M1 → X is then as in the pre-
ceding proof. �

Example 9.5. The conclusions of Theorem 9.4 hold for the following mani-
folds Q.

(1) Any closed surface. For orientable surfaces of genus at least 1 and
non-orientable surfaces of genus at least 2, Theorem 9.4 applies directly
thanks to the results cited in Example 9.3. For Q = S2 even Theorem 9.1
holds true; this example is covered by Theorem 1.5.

ForQ = RP2, the Whitehead group of the fundamental group π1(RP2) =
Z2 vanishes. We claim that, again, Theorem 9.1 holds true in this case. In-
deed, the only part of the argument that needs to be adapted is where we
show that Hk(X̃, M̃1) vanishes for all k. As long as we only pass to finite
covers X ′,M ′1, this vanishing result holds by Poincaré duality. Thus, for the
argument in the proof of Theorem 9.1 to go through it suffices to find a
finite cover M ′1 of M1 such that the projection map M̃1 →M ′1 induces an

isomorphism on Hk whenever Hk(M̃1) is non-trivial. In the present exam-

ple, we can take M ′1 = M̃1 = S2 × S2m+1. Of course, in this case of a finite
fundamental group we can alternatively appeal directly to Theorem 5.3.

(2) Any closed, irreducible aspherical 3-manifold. This follows from the
result of Roushon [37] that the fundamental group of such a manifold has a
trivial Whitehead group.

(3) Any closed, irreducible 3-manifold Q covered by S3 with trivial
Whitehead group Wh(π1(Q)) = 0. Here the argument is as in (1). Exam-
ples of the allowed fundamental groups are Z2, Z3, Z4, Z6.
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10. Symplectomorphism type

We now assume that (M, ξ) is a closed, connected contact manifold of di-
mension 2n− 1, n ≥ 3, that admits a 2-subcritical Stein filling (W0, ω0),
that is, where the Stein handles are all of index at most n− 2. In particular,
we have `0 ≤ n− 2. Under this assumption, we want to formulate topolog-
ical conditions on M that allow us to classify all subcritical fillings up to
symplectomorphism.

For the notion of Stein deformation equivalence see [9, p. 311]. Deforma-
tion equivalent Stein fillings are symplectomorphic in the sense of [9, p. 318].
The concept of flexible Stein fillings is defined in [9, Definition 11.29]. Suffice
it to say here that all subcritical Stein fillings are flexible.

Theorem 10.1. Let (M, ξ) be a (2n− 1)-dimensional closed, connected
contact manifold, n ≥ 3, admitting a 2-subcritical Stein filling (W0, ω0). Fur-
ther, we make the following topological assumptions:

(i) Wh(π1(M)) = 0.

(ii) M (or some finite cover of M) is a simple space, or M (or some finite

cover) has the property that the homomorphism Hk(M̃)→ Hk(M) is

an isomorphism whenever Hk(M̃) 6= 0.

Then all flexible Stein fillings of (M, ξ) are Stein deformation equivalent.

Example 10.2. The assumptions of the theorem are satisfied by the stan-
dard sphere (S2n−1, ξst) and by any sphere bundle S(T ∗Q⊕ Cm) with its
standard contact structure, provided m ≥ 2, Wh(π1(Q)) = 0, and Q is a Lie
group or satisfies the homological assumption (ii) on coverings.

Proof of Theorem 10.1. Given a flexible Stein filling (W,ω) of (M, ξ), we
consider the cobordism {M0, X,M1} as in Section 5. As we saw in the proof
of Theorem 7.2, the lower inclusion M0 → X is a homotopy equivalence. The
topological condition (ii) guarantees that the upper inclusion is likewise a
homotopy equivalence, see Section 8 for the case that M is a simple space,
and the argument in Example 9.5 (2) for the case when the homological

information on M̃ is given. Together with condition (i) this implies that
{M0, X,M1} is an s-cobordism, so that W and W0 are diffeomorphic.

We now construct a Stein structure on the cobordism {M0, X,M1}. To
this end, consider a Stein structure on C with two 0-handles and one 1-
handle; the gradient flow of the plurisubharmonic potential is shown in Fig-
ure 3. The assumption on W0 being 2-subcritical translates into saying that
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the Stein manifold (V, JV ) — in the notation of Section 2 — has a plurisub-
harmonic potential ψV with finitely many critical points up to index n− 2
only. On the product V × C we then still have a subcritical potential ψ.
Each critical point of ψV gives rise to three critical points of ψ; the ones
sitting over the index 1 point in C have their index shifted up by 1.

Figure 3: A Stein structure on C.

Now we build the cobordism X as before, where the copy of W0 that is
replaced by W and the copy of W0 that is removed are each placed, in the
C-direction, in a neighbourhood of one of the critical points of index 0. This
induces a Stein structure on the cobordism. This structure is flexible since,
apart from the flexible handles coming from W , it only contains subcritical
handles. So the theorem follows from the Stein h-cobordism theorem [9,
Corollary 15.12]. �

Acknowledgements. We thank Paul Biran and Dietmar Salamon for use-
ful conversations. The commutative diagrams have been produced with Paul
Taylor’s TEX macros. H. G. and K. Z. are partially supported by DFG grants
GE 1245/2-1 and ZE 992/1-1, respectively, and by the SFB/TRR 191 ‘Sym-
plectic Structures in Geometry, Algebra and Dynamics’.

References

[1] P. Albers and U. Frauenfelder, Rabinowitz Floer homology: a survey,
in: Global Differential Geometry, Springer Proc. Math. 17, Springer-
Verlag, Berlin (2012), 437–461.



i
i

“1-Geiges” — 2019/10/3 — 0:39 — page 968 — #40 i
i

i
i

i
i

968 K. Barth, H. Geiges, and K. Zehmisch

[2] M. Audin, F. Lalonde, and L. Polterovich, Symplectic rigidity: La-
grangian submanifolds, in: Holomorphic Curves in Symplectic Geo-
metry, Progr. Math. 117, Birkhäuser Verlag, Basel (1994), 271–321.

[3] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Grad.
Texts in Math. 82, Springer-Verlag, New York, (1982).

[4] G. E. Bredon, Topology and Geometry, Grad. Texts in Math. 139,
Springer-Verlag, New York, (1993).

[5] C. Caubel, A. Némethi, and P. Popescu-Pampu, Milnor open books and
Milnor fillable contact 3-manifolds, Topology 45 (2006), 673–689.

[6] R. Chiang, F. Ding, and O. van Koert, Open books for Boothby–Wang
bundles, fibered Dehn twists and the mean Euler characteristic, J. Sym-
plectic Geom. 12 (2014), 379–426.

[7] R. Chiang, F. Ding, and O. van Koert, Non-fillable invariant contact
structures on principal circle bundles and left-handed Dehn twists, In-
ternat. J. Math. 27 (2016), 1650024, 55pp.

[8] K. Cieliebak, Subcritical Stein manifolds are split, arXiv:math/020435.

[9] K. Cieliebak and Ya. Eliashberg, From Stein to Weinstein and Back
– Symplectic Geometry of Affine Complex Manifolds, Amer. Math.
Soc. Colloq. Publ. 59, American Mathematical Society, Providence, RI,
(2012).

[10] K. Cieliebak, U. Frauenfelder, and A. Oancea, Rabinowitz Floer homo-
logy and symplectic homology, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010),
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[42] I. Uljarević, Floer homology of automorphisms of Liouville domains,
J. Symplectic Geom. 15 (2017), 861–903.
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