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Toric generalized Kähler structures
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Given a compact symplectic toric manifold (M,ω,T), we identify
a class DGKT

ω(M) of T-invariant generalized Kähler structures for
which a generalisation the Abreu-Guillemin theory of toric Kähler
metrics holds. Specifically, elements of DGKT

ω(M) are character-
ized by the data of a strictly convex function τ on the moment
polytope associated to (M,ω,T) via the Delzant theorem, and an
antisymmetric matrix C. For a given C, it is shown that a toric
Kähler structure on M can be explicitly deformed to a non-Kähler
element of DGKT

ω(M) by adding a small multiple of C. This consti-
tutes an explicit realization of a recent unobstructedness theorem
of R. Goto [21, 22], where the choice of a matrix C corresponds to
choosing a holomorphic Poisson structure. Adapting methods from
S. K. Donaldson [13], we compute the moment map for the action
of Ham(M,ω) on DGKT

ω(M). The result introduces a natural no-
tion of “generalized Hermitian scalar curvature”. In dimension 4,
we find an expression for this generalized Hermitian scalar curva-
ture in terms of the underlying bi-Hermitian structure in the sense
of Apostolov-Gauduchon-Grantcharov [5].
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974 Laurence Boulanger

1. Introduction

This paper is concerned with the theory of generalized Kähler structures as
defined and studied by M. Gualtieri in [24] in the context of N. Hitchin’s
[29] generalized complex geometry. Our goal is to identify a natural notion
of scalar curvature for a generalized Kähler structure. The approach we use
to study this problem draws from the following three ingredients.

(1) The first concerns the interpretation of the scalar curvature as a
moment map. Given a compact symplectic 2m-manifold (M,ω), the space
AKω(M) of ω-compatible almost complex structures on M is a Fréchet
manifold endowed with a natural formal Kähler structure. A. Fujiki and
S. K. Donaldson oberved that the group Ham(M,ω) of hamiltonian diffeo-
morphisms acts on AKω(M) in a hamiltonian fashion, and that the moment
map can be identified with the Hermitian scalar curvature uJ of the almost
Hermitian structure (ω, J) as follows. Recall that uJ is defined as

(1) uJ =
2mρ ∧ ωm−1

ωm
,

where ρ is the real curvature 2-form of the hermitian connection induced on
the anticanonical bundle of (M,J) by the Chern connection of (ω, J).

Theorem 1 ([12, 16]). Let C∞0 (M) be the space of smooth functions on
M with zero mean, identified to the Lie algebra ham(M,ω) via the Poisson
bracket. Then the expression

(2) νf (J) := −
∫
M
fuJ

ωm

m!

is the moment map for the natural action of Ham(M,ω) on AKω(M).

The reader can consult [19] for a detailed proof.
(2) The second ingredient is the computation by S. K. Donaldson of

this moment map in the context of the Abreu-Guillemin theory of toric
Kähler metrics. Let (M,ω,T) be a symplectic toric 2m-manifold with mo-
ment map µ : M → t∗ and let KT

ω(M) be the subspace of T-invariant ω-
compatible complex structures. In his seminal work on toric Kähler struc-
tures, V. Guillemin discovered that the elements J ∈ KT

ω(M) can be de-
scribed, up to T-invariant biolomorphisms, in terms of convex functions on
the interior of the moment polytope ∆ for (M,ω,T) as follows.
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Toric generalized Kähler structures 975

Theorem 2 ([25]). For any J ∈ KT
ω(M) and any given choice of basis

(ξ1, . . . , ξm) of t, there exists momentum-angle coordinates (µj , tj) on M̊
such that

ω =

m∑
j=1

dµj ∧ dtj

and J is of the anti-diagonal form

(3) J
∂

∂µj
=

m∑
k=1

Ψjk
∂

∂tk
, Ψjk =

∂2τ

∂µj∂µk
,

where τ = τ(µ1, . . . , µm) is a strictly convex smooth function defined on ∆̊.
Conversely, for any smooth strictly convex function τ on ∆̊, formula (3)
defines an element of KT

ω(M̊).

For this reason, the function τ is often referred to as the symplectic
potential of J in the literature [13]. In [2], M. Abreu discovered that the
scalar curvature uJ of the Riemannian metric associated to J ∈ KT

ω(M) is
given by the formula

(4) uJ = −
m∑

i,j=1

∂2τ ij

∂µi∂µj
.

Here, (τ ij) = (Hess(τ)−1)ij . Equation (4) is commonly known as Abreu’s
formula. S. K. Donaldson [13] observed that Theorem 1 combined with the
description (3) of elements in KT

ω(M) gives an alternative way for deriving
(4), by directly showing that (4) computes the moment map for the action of
HamT(M,ω) on KT

ω(M). This observation suggested a similar form for the
Hermitian scalar curvature of elements in AKT

ω(M) which has been checked
directly by M. Lejmi [34].

(3) The third ingredient is the notion of generalized Kähler structure of
symplectic type and their realization as ω-tamed complex structures. Recall
that a generalized almost complex structure on a smooth 2m-manifoldM is a
complex structures J on the vector bundle TM ⊕ T ∗M which is orthogonal
with respect to the natural inner product 〈X ⊕ ξ, Y ⊕ η〉 = 1

2(ξ(Y ) + η(X)).
A generalized complex structure is a generalized almost complex structure
satisfying the integrability condition

[JU,J V ]C − J [JU, V ]C − J [U,J V ]C − [U, V ]C = 0
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with respect to the Courant bracket

[X ⊕ ξ, Y ⊕ η]C = [X,Y ] + LXη − LY ξ −
1

2
d(ιXη − ιY ξ).

Denote by GAC(M) and GC(M) the sets of generalized almost complex
and generalized complex structures on M respectively. For example [24], if
ω is a symplectic form on M , then Jω : X ⊕ ξ 7→ −ω−1(ξ)⊕ ω(X) defines
an element of GC(M). Following [24], a generalized almost Kähler structure
on M is defined as a pair (J1,J2) of elements of GAC(M) such that

(1) J1J2 = J2J1

(2) 〈−J1J2·, ·〉 > 0.

On a symplectic manifold (M,ω), we thus introduce the spaces GAKω(M),
GKω(M) of generalized almost Kähler (resp. generalized Kähler) structures
of symplectic type. These are defined by

GAKω(M) = {J ∈ GAC(M) | JωJ = JJω, 〈−JωJ ·, ·〉 > 0},
GKω(M) = GAKω(M) ∩GC(M).

As a trivial example, if (J, ω) is a genuine Kähler structure on M , then
JJ ∈ GKω(M) where JJ is the generalized complex structure associated to
J by JJ : X ⊕ ξ 7→ JX ⊕ Jξ.

One can endow the space GAKω(M) with a formal Kähler structure
such that Ham(M,ω) acts symplectically on it. Thus, a moment map for
this action, if it exists, could be interpreted as a scalar curvature by virtue
of Theorem 1. In order to compute this moment map, we specialize to the
case of a compact symplectic toric manifold (M,ω,T) with moment map
µ : M → ∆ ⊂ t∗ and Delzant polytope ∆. Let GAKT

ω(M) denote the T-
invariant elements of GAKω(M).

Following Donaldson’s argument in [13], we compute the moment map
and obtain a generalization of Abreu’s formula as follows.

Theorem 3 (cf. Theorem 8). Denote by C∞c,0(M)T the set of T-invariant

functions with zero mean supported in M̊ and by HamT
c (M,ω) the subgroup

of hamiltonian diffeomorphisms that it generates. The action of HamT
c (M,ω)

on GAKT
ω(M) is hamiltonian with moment map

ν : GAKT
ω(M)→ (C∞c,0(M)T)∗
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Toric generalized Kähler structures 977

given by

(5) νf (J ) = −
∫
M̊
f

 m∑
i,j=1

∂2Q̃ij
∂µi∂µj

 ωm

m!
,

where Q̃ij = ω
(
∂
∂ti , A

∂
∂tj

)
and A is the End(TM)-part of J .

In light of this result, we are led to define the generalized Hermitian
scalar curvature of J ∈ GAKT

ω(M) to be the function

uJ =

m∑
i,j=1

∂2Q̃ij
∂µi∂µj

.

We further investigate this formula when J is restricted to a certain class
DGKT

ω(M) of generalized Kähler metrics such that KT
ω(M) ( DGKT

ω(M) (
GKT

ω(M) (cf. section 3.2 for the precise definition). For this class, we prove
the following generalization of Theorem 2:

Theorem 4 (cf. Theorem 6). For any J0 ∈ DGKT
ω(M) and any choice

of basis (ξ1, . . . , ξm) of t, there exist momentum-angle coordinates (µj , tj) on
M̊ such that

ω =

m∑
j=1

dµj ∧ dtj

and J0 is determined by an (m×m)-matrix-valued smooth function Ψ0 of
the form

(Ψ0)jk =
∂2τ

∂µj∂µk
+ Cjk

for a smooth strictly convex function τ on ∆̊ and a (constant) antisymmetric
matrix C (cf. section 3.2 for details). Conversely, to any antisymmetric
matrix C and smooth strictly convex function τ on ∆̊, there corresponds an
element J ∈ DGKT

ω(M̊).

Besides this, the class DGKω(M) is interesting in its own right in the
context of generalized Kähler geometry because of the following compactifi-
cation theorem:

Theorem 5 (cf. Theorem 7). Consider J0 ∈ DGKT
ω(M) corresponding

to a matrix Ψ0 in the sense of Theorem 4 and J̊ ∈ DGKT
ω(M̊) corresponding

to a matrix Ψ̊ with respect to the (µj , tj) coordinates associated with J0. If
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(C1) Ψ̊−Ψ0 admits a smooth extension to ∆;

(C2) Ψ T
0 Ψ̊−1Ψ0 −Ψ T

0 admits a smooth extension to ∆;

(C3) β0+
∑m

i,j=1(Ψ̊−Ψ0)ijdµ
i⊗dµj+(Ψ T

0 Ψ̊−1Ψ0 −Ψ T
0 )ij(J0dµ

i)⊗(J0dµ
j)

is positive definite on M\M̊ ;

then J̊ is the restriction of an element J of DGKT
ω(M).

Corollary 1 (cf. Corollary 2). Let J0 ∈ KT
ω(M) be an ω-compatible com-

plex structure of the form (3). Given an antisymmetric matrix C, define a
family of matrix-valued functions Ψ̊(t) (t ∈ R) on ∆̊ by

Ψ̊jk(t) =
∂2τ

∂µj∂µk
+ tCjk,

and let J̊t ∈ DGKT
ω(M̊) be the corresponding family of generalized complex

structures (in the sense of Theorem 4). For sufficiently small values of |t|,
the family J̊t is the restriction to M̊ of a family Jt ∈ DGKT

ω(M).

This manner of deforming a Kähler structure into a generalized Kähler
can be viewed as an explicit realization of a recent unobstructedness the-
orem of R. Goto [21, 22], where the matrix C corresponds to choosing a
holomorphic Poisson structure σ in the setting of [21] (See Proposition 4).

Using our newly found notion of generalized Hermitian scalar curvature,
we generalize E. Calabi’s notion of extremal Kähler metrics, calling extremal
any element J of GAKT

ω(M) which is a critical point of the functional
J 7→

∫
M u 2

J
ωm

m! . We deduce, as it is done in [1] in the Kähler setting, that J ∈
DGKT

ω(M) is extremal if and only if uJ is an affine function of the momenta.
This, and Corollary 1, provide examples of extremal strictly generalized
Kähler metrics obtained as deformations of extremal Kähler toric varieties.
See [9, 13, 14, 37] for a general theory.

In the case of a compact symplectic toric manifold of dimension 4, we
are able to prove in Theorem 10 that the compactification conditions (C1),
(C2) of Theorem 5 are actually necessary. In the 4-dimensional context,
we also derive a closed form expression for the generalized Hermitian scalar
curvature of elements in DGKT

ω(M) in terms of the classical scalar curvature
(cf. Corollary 6). This result confirms the form of the generalized scalar
curvature suggested in [10] and gives an exact value to the dilaton φ in terms
of the angle between the complex structures of the underlying Hermitian
structures.
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After the submission of the first version of this article on the arXiv,
R. Goto [23] has extended the formal moment map picture beyond the toric
setting of this article.

Acknowledgements. The present paper is based on material originally
from my PhD thesis. I wish to thank my supervisor Vestislav Apostolov for
sharing his time and ideas so generously. I also thank Paul Gauchon for
accepting to share some of his personal notes with me and Marco Gualtieri
whose suggestions have helped to better the presentation of this paper.

2. Generalized Kähler structures of symplectic type

In this section, we introduce the notion of generalized almost Kähler struc-
ture of symplectic type which is the main object of the paper. We provide
three characterizations of these structures which will be used throughout
this paper depending on the situation. We shall also define a formal sym-
plectic structure on the space of generalized almost Kähler structures with
respect to which the action of the group of hamiltonian diffeomorphisms is
symplectic.

Recall that [31] a generalized complex structure on a smooth mani-
fold M is a complex structure J on the vector bundle TM ⊕ T ∗M which
is orthogonal with respect to the natural inner product 〈X ⊕ ξ, Y ⊕ η〉 =
1
2(ξ(Y ) + η(X)) and which satisfies the integrability condition

[JU,J V ]C − J [JU, V ]C − J [U,J V ]C − [U, V ]C = 0

with respect to the Courant bracket

[X ⊕ ξ, Y ⊕ η]C = [X,Y ] + LXη − LY ξ −
1

2
d(ιXη − ιY ξ).

If the integrability condition is omited, we refer to J as a generalized almost
complex structure. For instance, if ω is a non-degenerate 2-form and J is an
almost complex structure, then the endomorphisms of TM ⊕ T ∗M

Jω : X ⊕ ξ 7→ −ω−1(ξ)⊕ ω(X),

JJ : X ⊕ ξ 7→ JX ⊕ Jξ,

are generalized almost complex structures. The integrability of JJ is equiva-
lent to the usual integrability of J , while the integrability of Jω is equivalent
to dω = 0. A pair (J1,J2) of generalized almost complex structures such
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that J1 ◦ J2 = J2 ◦ J1 and the bilinear form 〈−J1J2·, ·〉 is positive definite
is called a generalized almost Kähler structure. It is a generalized Kähler
structure provided both J1 and J2 are integrable. As a trivial example,
if (ω, J) is a genuine Kähler structure on M , then (Jω,JJ) is generalized
Kähler.

Remark 1. The structure group of a generalized almost Kähler structure
is U(m)× U(m) ⊂ U(m,m) which is maximal compact (cf. [24]).

It turns out [24] that a generalized almost Kähler structure (J1,J2) on
M is equivalent to the data (J+, J−, g, b) of a Riemannian metric g, a 2-form
b and two g-compatible almost complex structures J+, J−.

Indeed, the involution −J1J2 induces a splitting of TM ⊕ T ∗M into its
(±1)-eigenbundles C±. The bilinear form 〈·, ·〉 is then positive definite on C+

and negative definite on C−. On the one hand this implies that C± are both
of dimension 2m, and on the other that C± ∩ TM = C± ∩ T ∗M = 0 (since
TM and T ∗M are isotropic in TM ⊕ T ∗M). It follows that C+ is the graph
of a map TM → T ∗M whose symmetric and antisymmetric parts we denote
by g and b respectively. Similarly C− is the graph of b− g and we have
isomorphisms ι± : TM → C± : X 7→ (X, ιX(b± g)). The generalized almost
complex structrures J1,J2 preserve C± and so we may use ι± to transfer
them to almost complex structures J± on TM :

(6)
J+ :=ι−1

+ ◦ J1 ◦ ι+ = ι−1
+ ◦ J2 ◦ ι+,

J− :=ι−1
− ◦ J1 ◦ ι− = −ι−1

− ◦ J2 ◦ ι−.

In fact, if ι+ is used to transfer 〈·, ·〉|C+
on TM , we obtain precisely g. It fol-

lows that the pairs (J±, g) are almost Hermitian structures. Explicitely, the
generalized almost Kähler structure (J1,J2) is given in terms of (J+, J−, g, b)
by

(7)

J1 =
1

2
eb
(

J+ + J− −(F−1
+ − F−1

− )
F+ − F− J∗+ + J∗−

)
e−b,

J2 =
1

2
eb
(

J+ − J− −(F−1
+ + F−1

− )
F+ + F− J∗+ − J∗−

)
e−b.

Here, F± = g(J±·, ·) are the fundamental 2-forms of the Hermitian structures
(J±, g) and eb is the automorphism of TM ⊕ T ∗M given by X ⊕ ξ 7→ X ⊕
b(X) + ξ. The integrability of (J1,J2) is then equivalent to the integrability
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of J+ and J− together with the relation

(8) dc±F± = ∓db,

where dc± is the operator J±dJ
−1
± for the action of J± on p-forms by J±ψ =

(−1)pψ(J±·, . . . , J±·).

Definition 1. Given a symplectic form ω on M , denote by GAKω(M) the
space of generalized almost complex structures J such that (Jω,J ) is a gen-
eralized almost Kähler structure. We shall refer to the elements ofGAKω(M)
as generalized almost Kähler structures of symplectic type. The set
of integrable elements of GAKω(M) will be denoted by GKω(M).

Recall that an almost complex structure J is called ω-tamed if the bilin-
ear form ω(·, J ·) is positive definite. Let us denote AC+(M,ω) the set of all
ω-tamed almost complex structures on M . The following is well known (see
for instance [15]):

Proposition 1. The correspondence GAKω(M)→ AC+(M,ω) : J 7→ J+

given by (6) is bijective. The inverse map is J 7→ (J+, J−, g, b), where

J+ = J, J− = J∗ω , g = −1

2
ω(J − J∗ω), b = −1

2
ω(J + J∗ω),

for J∗ω = −ω−1J∗ω the symplectic adjoint of J . Moreover, J ∈ GAKω(M)
is integrable if and only if J+ and J∗ω+ are integrable.

Note that in this context, the Kähler case corresponds to taking J inte-
grable and ω-compatible (in which case J− = −J+).

The material in the remainder of this section is adapted from unpub-
lished notes of P. Gauduchon [18]. Let (M,ω) be a compact symplectic mani-
fold of real dimension 2m. We denote by vω = ωm/m! the symplectic volume
form. It is straightforward to check that J ∈ GAKω(M) if and only if J is
of the form

J =

(
A Bω−1

−ωB A∗

)
,

where A,B are endomorphisms of TM satisfying

(9)

A2 −B2 = −Id,

AB +BA = 0,

A∗ω = −A,
B∗ω = B,
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as well as the positivity relation

(10) ω(X,AX) + ω(Y,AY ) + 2ω(BX,Y ) > 0 ∀X,Y ∈ TM.

In terms of the corresponding J ∈ AC+(M,ω), we have

(11) A = −2(J − J∗ω)−1, B = −(J + J∗ω)(J − J∗ω)−1.

Equations (9) suggests a complex description of the situation. Indeed, if we
define an endomorphism K = A+ iB of TCM = TM ⊗ C, then the first two
equations are equivalent to K2 = −Id, while the other two are equivalent to
K∗ω = −K. To express the positivity condition, it is natural to introduce the
(non-degenerate anti-Hermitian) bilinear form H(U, V ) = ω(U, V ). Indeed,
one may easily verify that (10) is then equivalent to positivity of HK =
H(·,K·). Viewing GAKω(M) as the set of such complex endomorphisms, we
endow it with the structure of a Fréchet manifold with a formal symplectic
structure in a manner analogous to [19]. Indeed, the tangent space at K is
given by

TK(GAKω(M))(12)

= {K̇ ∈ C∞(End(TCM)) | K̇∗ω = −K̇, K̇K +KK̇ = 0},

and the symplectic form is

ΩK(K̇1, K̇2) =
1

2

∫
M

tr(KK̇1K̇2)vω.

Remark 2. (1) It is straightfoward to check that for any K ∈ GAKω(M)
and K̇ ∈ TK(GAKω(M)), we have KK̇ ∈ TK(GAKω(M)). Using this
and the fact that the elements of TK(GAKω(M)) are symmetric with
respect to the Hermitian scalar product HK , we see that Ω is indeed
real and positive definite. In fact, if we define a formal almost complex
structure by KKK̇ := KK̇, it can be shown that the pair (Ω,K) defines
a formal Kähler structure on GAKω(M).

(2) Note that GAKω(M) naturally contains the set AKω(M) of almost
Kähler structures as a symplectic submanifold by considering the real
elements of GAKω(M) (ı.e. ImK = 0). In fact, the restriction of Ω to
AKω(M) is the symplectic form considered by A. Fujiki [16].

Before going further, recall that a hamiltonian vector field Xf on (M,ω)
is a symplectic vector field of the form gradωf = −ω−1df for a function
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f ∈ C∞(M). We denote by Ham(M,ω) the group of hamiltonian diffeomor-
phisms and by ham(M,ω) its Lie algebra which is the set of all hamiltonian
vector fields on M [7]. This Lie algebra can also be identified to the space
C∞0 (M) of smooth functions f normalized by the condition

∫
M fvω = 0,

and endowed with the Poisson bracket {f, g} = Xf · g = −Xg · f . In turn,
it is also possible to use the Ad-invariant euclidean scalar product (f, g) =∫
M fgvω to identify C∞0 (M) to a subset of C∞0 (M)∗.

The group Ham(M,ω) acts on GAKω(M) by ϕ ·K = ϕ∗Kϕ
−1
∗ and the

action vector field corresponding to V ∈ ham(M,ω) is given by

(13) V ]
K =

d

dt

∣∣∣∣
t=0

ϕVt ·K = −LVK.

By Theorem 1 the restriction of this action to AKω(M) is hamiltonian and
the moment map can be identified with the Hermitian scalar curvature uJ .

3. Toric generalized Kähler structures

In this section, we study generalized Kähler structures of symplectic type
on compact symplectic toric manifolds. Section 3.1 recalls the elements of
symplectic toric geometry, which will be used in this paper. A source for this
material is the monograph [26]. Section 3.2 introduces the class DGKT

ω(M)
of torus-invariant anti-diagonal generalized Kähler structures of symplectic
type, and we show that elements in this class are parametrized by the data
of an antisymmetric matrix C and a strictly convex smooth function τ de-
fined on the interior of the moment polytope. This generalizes the notion of
symplectic potential discovered by V. Guillemin [25] and M. Abreu [1, 2] in
the Kähler setting. In section 3.3, we adress the question of compactifica-
tion, which is to determine whether a given pair (τ, C) as above comes from
an element of DGKT

ω(M). In the spirit of [4], we list sufficient conditions
for compactification, and as a corollary, we obtain a simple and explicit pro-
cedure for deforming a toric Kähler metric to a strictly generalized Kähler
element of DGKT

ω(M).

3.1. Delzant theory

Recall that a compact symplectic toric manifold of dimension 2m is a triple
(M,ω,T) such that the torus T of dimension m acts on the compact con-
nected symplectic manifold (M,ω) of real dimension 2m in an effective and
hamiltonian fashion with moment map µ : M → t∗ : x 7→ (µ(x) : ξ 7→ µξ(x)).
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In turn, this means that µ is T-equivariant (in fact T-invariant as T is
abelian) and for all ξ ∈ t = Lie(T), µξ is a hamiltonian function for the ac-
tion vector field ξ] induced on M by ξ. According to M. F. Atiyah [6] and
Guillemin-Sternberg [27], the image ∆ = µ(M) ⊂ t∗ of the moment map is
the convex hull of the image by µ of the fixed points of the action. A theorem
of T. Delzant [11] states that compact symplectic toric manifolds are clas-
sified (up to equivariant symplectomorphisms) by their moment polytopes
∆. Recall the definition of these classifying polytopes:

Definition 2. Let t be a vector space of dimension m. A Delzant polytope
with d facets in t∗ is the data (∆,Λ, ν1, . . . , νd) of a set ∆ ⊂ t∗ which is the
convex hull of a finite number of points called vertices, a lattice Λ ⊂ t and
normals ν1, . . . , νd ∈ Λ such that

∆ = {x ∈ t∗ | Lj(x) ≥ 0, j = 1, . . . , d},

where the Lj ’s are functions of the form

Lj(x) = 〈νj , x〉+ λj

for certain numbers λ1, . . . , λd ∈ R, and such that for each vertex x ∈ ∆, the
normals νj for which Lj(x) = 0 make up a basis of Λ. The facets of ∆ are
the sets Fj of the form

Fj = {x ∈ ∆ | Lj(x) = 0}, j = 1, . . . , d.

A face of codimension k of ∆ is the intersection of k facets. For a face F ,
we call interior of F the set F̊ of points of F which are in no face of smaller
codimension. In other words, if F =

⋂k
j∈I Fj for a certain set in indices

I = {j1, . . . , jk}, then

F̊ = {x ∈ ∆ | Lj(x) = 0⇔ j ∈ I}.

It is shown in Delzant [11] that for any face F = Fj1 ∩ · · · ∩ Fjk of codi-
mension k and any p ∈ µ−1(F̊ ), the stabilizer of p in T is the sub-torus TF of
dimension k corresponding to the subalgebra tF generated by the normals
νj1 , . . . , νjk . Moreover, MF = µ−1(F ) is a symplectic toric submanifold of
codimension 2k for the action of T/TF . Its moment polytope is naturally
identified with F , in the following sense. The face F is supported by an
affine subspace of the form x0 + t0F , where t0F

∼= (t/tF )∗ is the annihilator of
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tF in t∗. A moment map for the effective action of T/TF is then µ|MF
− x0.

The preimage

M̊ := µ−1(∆̊)

of the interior of the moment polytope corresponds to the set of points where
the action of T is free, and this set is open and dense in M (cf. [28] Corol-
lary B.48). Finally, let us mention the observation in [35] (Proposition 7.3)
that the set of smooth functions C∞(∆) (ı.e. those functions which are the
restriction to ∆ of a function of C∞(t∗)) is pulled back to M via µ to the set
C∞(M)T of smooth T-invariant functions. Because of this, we shall freely
identify C∞(M)T and C∞(∆).

3.2. The symplectic potential

Let (M,ω,T) be a compact symplectic toric manifold of real dimension 2m,
with moment map µ : M → ∆ ⊂ t∗. In this section, we are concerned with
the generalized almost Kähler structures of symplectic type on (M,ω) (cf.
section 2) which are invariant under the action of T. In accordance with the
identification in Proposition 1, such a structure can also be regarded as an
ω-tamed T-invariant almost complex structure on M . Recall also that such
a J represents an integrable generalized almost Kähler structure if and only
if both J and J∗ω are integrable.

Notation 1. Let GAKT
ω(M) (resp. GKT

ω(M)) denote the set of T-invariant
generalized almost Kähler (resp. generalized Kähler) structures of symplec-
tic type as defined in section 2. Similarly, let AKT

ω(M) (resp. KT
ω(M)) denote

the set of T-invariant ω-compatible almost complex (resp. complex) struc-
tures.

Let J0 ∈ GKT
ω(M), (ξ1, . . . , ξm) a basis of t and Ki = ξ]i the correspond-

ing action vector fields on M . On M̊ where the orbits are of dimension m, the
Ki’s are linearly independent. Denote by K the Lagrangian distribution on
M̊ generated by the Ki. Then, we have K ⊕ J0K = TM̊ and one can check
that the Lie bracket of each pair of basis elements (K1, . . . ,Km, J0K1, . . . ,
J0Km) vanishes. Thus, we are led to the following definition.

Definition 3 (Holomorphic versus momentum-angle coordinates).
Let J0 ∈ GKT

ω(M). Given (ξ1, . . . , ξm) a basis of t and Ki = ξ]i the corre-
sponding action vector fields on M , there exists J0-pluriharmonic functions
uj on M̊ which, in a neighborhood of each point, can be completed by angle
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coordinates tj to form a system of J0-holomorphic coordinates (uj , tj) such
that

∂

∂uj
= −JKj ,

∂

∂tj
= Kj .

Moreover, for each such coordinate system, we may replace the functions
u1, . . . , um by the momentum functions µ1, . . . , µm (with Kj = gradωµ

j) to
obtain momentum-angle coordinates (µj , tj) on M̊ .

It is important to note that even though the functions uj and tj are only
defined locally, the coordinate fields ∂

∂uj , ∂
∂tj , ∂

∂µj (as well as the 1-forms duj ,

dtj , dµj) are well-defined globally on M̊ for a fixed choice of a basis (ξj) of
t. From now on, we fix once and for all a basis (ξj) of t and we denote (xj)
the coordinates on t∗ induced by the dual basis (ξ∗j ).

For J ∈ KT
ω(M), it is well known that the coordinates (µj , tj) from Def-

inition 3 are Darboux [4]. However, for a general J ∈ GKT
ω(M), we shall see

in Propostion 3 below that this is only the case if the symplectic dual J∗ω

is “anti-diagonal” in the sense of the following proposition.

Proposition 2. Let J0 ∈ GKT
ω(M) with corresponding momentum-angle

coordinates (µj , tj) as in Proposition 3.

(a) Locally on M̊ , J0 takes the anti-diagonal form

(14)

m∑
i,j=1

(Ψ0)ij
∂

∂ti
⊗ dµj −

m∑
i,j=1

(Ψ0)ij
∂

∂µi
⊗ dtj ,

where the matrix Ψ0 ∈ C∞(M̊,Rm×m) is given by

(15)
∂

∂µi
=

m∑
j=1

(Ψ0)ji
∂

∂uj
,

and where (Ψ0)ij = (Ψ −1
0 )ij.

(b) Let K denote the lagrangian distribution on M̊ generated by the ac-
tion of T. Then, for an almost complex structure J defined on M̊ , the
following statements are equivalent:
(i) JK = J0K;
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(ii) J is of the anti-diagonal form

(16) J =

m∑
i,j=1

Ψij
∂

∂ti
⊗ dµj −

m∑
i,j=1

Ψij ∂

∂µi
⊗ dtj

relative to momentum-angle coordinates (µj , tj) induced by J0 as
in Proposition 3.

Proof. Write

dui =

m∑
j=1

(Ψ0)ijdµ
j ,

so that J0dt
i =

∑m
j=1(Ψ0)ijdµ

j (this equation determines J0 entirely since

J 2
0 = −Id). It follows that Ψ0 verifies (15) and J0 is determined by

J0
∂

∂ti
= −

m∑
j=1

(Ψ0)ji
∂

∂µj
,

which is equivalent to (14).
Because of (15), we have

(17) J0K = span

(
∂

∂µ1
, . . . ,

∂

∂µm

)
,

and so an almost complex structure J verifies (i) if and only if it takes the
form

J
∂

∂ti
= −

m∑
j=1

Ψji ∂

∂µj

for a certain matrix Ψ, which is equivalent to (16). �

Notation 2. We shall be interested in the almost complex structures J ∈
GKT

ω(M) whose symplectic dual J∗ω is also anti-diagonal. Thus, set

DGKT
ω(M) = {J ∈ GKT

ω(M) | J∗ωK = JK},
DGAKT

ω(M) = {J ∈ GAKT
ω(M) | J∗ωK = JK}.

Proposition 3. For J0 ∈ GKT
ω(M), the following conditions are equiva-

lent:

(i) J ∗ω0 K = J0K (ı.e. J0 ∈ DGKT
ω(M)).
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(ii) The distribution J0K is Lagrangian.

(iii) The momentum-angle coordinates (µj , tj) induced by J0 as in Defini-
tion 3 are Darboux.

Moreover, if J0 ∈ DGKT
ω(M) and if J is an almost complex structure on M̊

of anti-diagonal form

J =

m∑
i,j=1

Ψij
∂

∂ti
⊗ dµj −

m∑
i,j=1

Ψij ∂

∂µi
⊗ dtj

with respect to momentum-angle coordinates (µj , tj) induced by J0, then J∗ω

is automatically also anti-diagonal with

(18) J∗ω = −
m∑

i,j=1

Ψji
∂

∂ti
⊗ dµj +

m∑
i,j=1

Ψji ∂

∂µi
⊗ dtj .

Proof. (i)⇔ (ii): Generally speaking, for a symplectic vector space (V, ω)
equipped with a complex structure J and a Lagrangian subspace L, the
subspace JL is Lagrangian if and only if J∗ωL = JL. Indeed, we have

ω(JL, J∗ωL) = ω(L,L) = 0,

and so J∗ωL ⊂ (JL)⊥ω . But, by definition, JL is Lagrangian if and only if
JL = (JL)⊥ω . The equivalence between (i) and (ii) thus holds for any almost
complex structure on M̊ .

(ii)⇔ (iii): In general, we have

ω

(
∂

∂ti
,
∂

∂tj

)
= ω (Ki,Kj) = 0,

ω

(
∂

∂µi
,
∂

∂tj

)
= −ω

(
Kj ,

∂

∂µi

)
= dµj

(
∂

∂µi

)
= δji .

The equivalence between (ii) and (iii) then follows immediately from equa-
tion (17).

From the fact that the coordinates (µj , tj) are Darboux, if J is of the
form (16), we deduce formula (18) from ω(J ·, ·) = ω(·, J∗ω ·). �

Since a complex structure J ∈ GKT
ω(M) is compatible with ω if and only

if J = −J∗ω and, in this case, the condition J∗ωK = JK is trivially satisfied,
the set DGKT

ω(M) is an intermediate class between the Kähler structures
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and the generalized Kähler structures, ı.e. we have the strict inclusions

KT
ω(M) ( DGKT

ω(M) ( GKT
ω(M).

Let us call admissible coordinates a momentum-angle coordinate sys-
tem (µj , tj) induced as in Definition 3 by a chosen reference complex struc-
ture J0 ∈ DGKT

ω(M).
There is a natural choice of admissible coordinates on (M,ω), obtained

by taking the complex structure J0 to be the standard Kähler structure on
M coming from Delzant’s construction1. In this case, V. Guillemin [25] has
found an explicit expression for the matrix Ψ0 in terms of the fonctions Lj
defining the moment polytope (cf Definition 2):

(Ψ0)ij =
∂2

∂µi∂µj

1

2

m∑
j=1

Lj logLj

 .

Remark 3. In this language, Propositions 2 and 3 imply that J ∈ GKT
ω(M)

belongs to DGKT
ω(M) if and only if there exists admissible coordinates

(µj , tj) with respect to which J takes the anti-diagonal form (14).

Our next theorem extends V. Guillemin’s notion of symplectic potential
[25, 26] of elements of Kω(M) to the case of elements of DGKT

ω(M).

Theorem 6. Let J be a T-invariant ω-tame almost complex structure on
M̊ given in terms of some admissible momentum-angle coordinates (µj , tj)
by

(19) J =

m∑
i,j=1

Ψij
∂

∂ti
⊗ dµj −

m∑
i,j=1

Ψij ∂

∂µi
⊗ dtj .

Then, J is integrable if and only if Ψij,k = Ψik,j ∀i, j, k, whereas J∗ω is
integrable if and only if Ψji,k = Ψki,j. If these two conditions are met (ı.e.
if (J, J∗ω) gives rise to an integrable generalized almost Kähler structure),

1Recall that in his famous theorem, Delzant constructs a toric symplectic mani-
fold with prescribed moment polytope as the symplectic quotient of Cd by a certain
sub-torus of the Td-action. In particular, this action preserves the standard com-
plex structure of Cd and so the Kähler structure descends to the quotient (cf. for
instance [32]).
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then Ψ is of the form

(20) Ψ = Hess(τ) + C,

where τ ∈ C∞(∆̊) is strictly convex and C is a constant antisymmetric ma-
trix. Conversely, given τ ∈ C∞(∆̊) strictly convex and C an antisymmetric
matrix, formulas (19) and (20) define an almost complex structure J on M̊
such that (J, J∗ω) gives rise to a T-invariant generalized Kähler structure in
DGKT

ω(M̊).

Proof. The almost complex structure (19) is given by

(21) Jdti =

m∑
j=1

Ψijdµ
j .

If J is integrable, the J-holomorphic coordinates (ũi, t̃i) from Definition 3
are such that (dũi, dt̃i) is the dual basis to (−JKi,Ki). Since JK = J0K, we
have dt̃i = dti, and so equation (21) can be written

dũi =

m∑
j=1

Ψijdµ
j .

Taking the exterior derivative of this equation, we obtain the condition
Ψij,k = Ψik,j ∀i, j, k. Conversely, if Ψij,k = Ψik,j ∀i, j, k, then taking the ex-
terior derivative of (21), we see that the 1-form J∗dti is closed. It is thus
locally exact which yields complex coordinates for J . We saw in Proposition
3 that J∗ω takes the form (18). The same argument as for J thus shows that
J∗ω is integrable if and only if Ψji,k = Ψjk,i ∀i, j, k.

If J and J∗ω are integrable, then taking the sum and difference of the cor-
responding differential identities Ψij,k = Ψik,j and Ψji,k = Ψjk,i, we obtain
the identities

Ψs
ij,k = Ψs

ik,j ,(22)

Ψa
ij,k = Ψa

ik,j ,(23)

where

Ψs =
Ψ + ΨT

2
, Ψa =

Ψ−ΨT

2
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are respectively the symmetric and antisymmetric parts of Ψ. Equation (23)
implies that the matrix Ψa is constant due to

Ψa
ij,k = Ψa

ik,j = −Ψa
ki,j = −Ψa

kj,i = Ψa
jk,i = −Ψa

ij,k.

As for equation (22), we make use of the general fact according to which a
smooth m×m symmetric matrix-valued function G defined on an open set
U ⊂ Rm with H1

dR(U) = 0 satisfying Gij,k = Gik,j ∀i, j, k is of the form G =
Hess(g) for some function g ∈ C∞(U). Thus, Ψs = Hess(τ) for some function
τ ∈ C∞(∆̊). The fact that J is ω-tamed is equivalent to the positivity of Ψ,
and since xTCx = 0 for all antisymmetric matrices C and column vectors x,
we have xTΨx = xTΨsx, from which it follows that τ is strictly convex. �

Definition 4. Given admissible coordinates (µj , tj) and J ∈ DGKT
ω(M̊) of

the form (19) with Ψ = Hess(τ) + C as in the statement of Theorem 6, we
will call τ the symplectic potential of J .

3.3. Compactification and deformation

We ask now whether a generalized almost Kähler structure J̊ ∈ DGAKT
ω(M̊)

on M̊ is the restriction of an generalized almost Kähler structure defined on
M?

Let (µj , tj) be admissible coordinates on M and J0 ∈ DGKT
ω(M) (glob-

ally defined) be of the form

(24) J0 =

m∑
i,j=1

(Ψ0)ij
∂

∂ti
⊗ dµj −

m∑
i,j=1

(Ψ0)ij
∂

∂µi
⊗ dtj .

Consider J̊ ∈ DGAKT
ω(M̊) (defined on M̊) of the form

(25) J̊ =

m∑
i,j=1

Ψ̊ij
∂

∂ti
⊗ dµj −

m∑
i,j=1

Ψ̊ij ∂

∂µi
⊗ dtj

and set

β0 = ω(·, J0·), β̊ = ω(·, J̊ ·).

It is possible to argue as in the almost Kähler setting treated in [4] in order
to obtain sufficient conditions for the compactification of such a J̊ . Because
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of

(26) J0dt
i = −

m∑
i,j=1

(Ψ0)ijdµ
j ,

we can write

β̊ − β0 =

m∑
i,j=1

(Ψ̊−Ψ0)ijdµ
i ⊗ dµj

+

m∑
i,j,k,l=1

(Ψ̊−1 −Ψ −1
0 )ij((Ψ0)ikJ0dµ

k)⊗ ((Ψ0)jlJ0dµ
l)

=

m∑
i,j=1

(Ψ̊−Ψ0)ijdµ
i ⊗ dµj(27)

+

m∑
k,l=1

(Ψ T
0 Ψ̊−1Ψ0 −Ψ T

0 )kl(J0dµ
k)⊗ (J0dµ

l).

Thus, if Ψ̊−Ψ0 and Ψ T
0 Ψ̊−1Ψ0 −Ψ T

0 admit smooth extensions to ∆, then
the right hand side of (27) defines a smooth T-invariant bilinear form on the
whole of M . It follows that β̊ (alternatively, J̊) admits a smooth extension
to M . As M̊ is dense in M , by continuity, the extension verifies J̊2 = −Id
everywhere on M and is integrable provided that J̊ is integrable. On the
other hand, a continuity argument only shows that β̊ is positive semi-definite
on M . In order that the compactification of J̊ be ω-tamed, we must make
sure that the bilinear form

β0 +

m∑
i,j=1

(Ψ̊−Ψ0)ijdµ
i ⊗ dµj + (Ψ T

0 Ψ̊−1Ψ0 −Ψ T
0 )ij(J0dµ

i)⊗ (J0dµ
j)

is positive definite on M\M̊ . We summarize the discussion in the following

Theorem 7. Let J0 ∈ DGKT
ω(M) be of the form (24) and J̊ ∈ DGAKT

ω(M̊)
(resp. J̊ ∈ DGKT

ω(M̊)) of the form (25). If the matrix Ψ̊ associated with J̊
verifies the three conditions

(C1) Ψ̊−Ψ0 admits a smooth extension to ∆;

(C2) Ψ T
0 Ψ̊−1Ψ0 −Ψ T

0 admits a smooth extension to ∆;

(C3) β0+
∑m

i,j=1(Ψ̊−Ψ0)ijdµ
i⊗dµj+(Ψ T

0 Ψ̊−1Ψ0 −Ψ T
0 )ij(J0dµ

i)⊗(J0dµ
j)

is positive definite on M\M̊ ;
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then J̊ is the restriction of an element J of DGAKT
ω(M) (resp. of

DGKT
ω(M)).

As in [4] (cf. Remark 4), conditions (C1), (C2) can be recasted as follows:

Lemma 1. The conditions (C1), (C2) is equivalent to

(C1) Ψ̊−Ψ0 admits a smooth extension to ∆,

(C2’) the smooth extension of Ψ −1
0 Ψ̊ on ∆ is invertible.

As an immediate consequence of Theorem 7, we obtain

Corollary 2. Let (µj , tj) be admissible coordinates on M induced by an
ω-compatible complex structure J0 ∈ KT

ω(M) on M . Then,

J0 =

m∑
i,j=1

Sij
∂

∂ti
⊗ dµj −

m∑
i,j=1

Sij
∂

∂µi
⊗ dtj

for some positive definite symmetric matrix S. Consider also an arbitrary
antisymmetric matrix C and define a family of complex structures J̊t ∈
DGKT

ω(M̊) (t ∈ R) on M̊ by

(28) J̊t =

m∑
i,j=1

Ψij(t)
∂

∂ti
⊗ dµj −

m∑
i,j=1

Ψij(t)
∂

∂µi
⊗ dtj ,

where

Ψ(t) = S + tC.

For sufficiently small values of |t|, the family J̊t is the restriction to M̊ of a
family Jt ∈ DGKT

ω(M).

Proof. By [4], we know that conditions (C1), (C2’) and (C3) are verified
for Ψ(0) = S. It suffices to notice that for t small enough, Ψ(t) continues to
verify conditions (C1), (C2’), (C3) as M is compact. �

By a theorem of R. Goto [21, 22] (see also [33]), on a compact Kähler
manifold (M,ω, J) equipped with a holomorphic Poisson bivector σ 6= 0, the
trivial generalized Kähler structure (Jω,JJ) can be deformed in the direc-
tion of [σω] ∈ H0,1(M,T 1,0) into a nontrivial generalized Kähler structure
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(J1(t),J2(t)). More precisely, the complex structures J±(t) of the underly-
ing hermitian structures depend analytically of t and if z1, . . . , zm are local
holomorphic coordinates for J+(0) with respect to which we have

d

dt

∣∣∣∣
t=0

J+(t)
∂

∂zj
=

m∑
k=1

αjk
∂

∂zk
+ βjk

∂

∂zk
,

then the Kodaira-Spencer class of the deformation J+(t) is locally repre-
sented by the tensor

∑m
j,k=1 αjkdz

j ⊗ ∂
∂zk with αjk =

∑m
`=1 ω`jσ

`k. The first
variation of J−(t) yields the opposite class.

Proposition 4. The Kodaira-Spencer class of the deformation Jt of Corol-
lary 2 is [σω] where σ is the holomorphic Poisson structure given by

σ = 2

m∑
j,k=1

CjkK
1,0
j ⊗K 1,0

k .

Proof. Let zj = uj + itj be the complex coordinates defined by J0 as in
Definition 3. By virtue of (15), we can write

Jt =

m∑
k,`,p=1

Ψk`(t)S
`p ∂

∂tk
⊗ dup −Ψk`(t)Spk

∂

∂up
⊗ dt`.

Using the relations

dup
(

∂

∂zj

)
= 1

2δpj , dt`
(

∂

∂zj

)
= i

2δ`j

as well as

(Ψ−1)′(0) = −S−1CS−1,

we compute

(29)
d

dt

∣∣∣∣
t=0

Jt
∂

∂zj
=

m∑
k=1

i(CS−1)kj
∂

∂zk
;

ı.e. αjk = i(CS−1)kj . On the one hand, we have

ω =
i

2

m∑
k,`=1

Sk`dzk ⊗ dz`,
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and using the relation ∂
∂zj = −iK 1,0

j , we can write locally

σ = −2

m∑
k,`=1

Ck`
∂

∂zk
⊗ ∂

∂z`
.

It follows that σ is a holomorphic Poisson structure, and

m∑
`=1

ω`jσ
`k = i(CS−1)kj .

�

Remark 4. It has been observed in [5] in dimension 4 and by N. Hitchin
[29] in general that for any generalized Kähler structure (g, J+, J−, b), the
bivector P = 1

2 [J+, J−]g−1 : T ∗M → TM gives rise to holomorphic Poisson
structures

(30) σ± =
(
[J+, J−]g−1

)2,0
= P − iJ±P.

The holomorphic Poisson structure σt associated with the family (28) is

σt = −4

m∑
j,k=1

(
tC + tS(Ψ(t)T )−1CS−1Ψ(t)T

)
jk

∂

∂zj
⊗ ∂

∂zk
.

It is not difficult to see that in dimension 4, this reduces to σt = 4tσ, whereas
in general, we have σt = 4tσ +O(t2).

4. The generalized Hermitian scalar curvature

In this section, we compute the moment map for the action of a subgroup
of Ham(M,ω) on GAKω(M) and on DGKω(M) in admissible coordinates.
This generalizes the formulae in [2, 13, 34] for the hermitian scalar curva-
ture of a toric almost Kähler metric and suggests a definition of a “scalar
curvature” for generalized Kähler structures in DGKT

ω(M). In section 5,
we use these definitions to introduce a natural notion of extremality in
GAKω(M). In the case of DGKT

ω(M), we show that extremality is equiva-
lent to the generalized Hermitian scalar curvature being an affine function
of the momentum-angle coordinates. This generalizes an important theorem
of M. Abreu [1].

Let (M,ω,T) be a compact symplectic toric manifold of real dimension
2m with moment map µ : M → ∆ ⊂ t∗. We adopt the viewpoint developped
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in section 2 and regard elements of GAKT
ω(M) as T-invariant complex endo-

morphisms of the complexified tangent bundle. The group HamT(M,ω) of T-
invariant hamiltonian diffeomorphisms acts on GAKT

ω(M) with action vec-
tor field V ] given by (13) for V ∈ hamT(M,ω). The Lie algebra hamT(M,ω)
consists of the T-invariant hamiltonian vector fields on M . Seen as a space of
functions, this is simply the T-invariant elements of C∞0 (M). If V = gradωh
for some function h ∈ C∞0 (M)T, then V ] takes the following form relative
to admissible coordinates (µj , tj):

(31) V ]
K =

m∑
j=1

(dh,j ◦K)⊗ ∂

∂tj
− dh,j ⊗K

∂

∂tj
,

where K is a section of End(TCM) (cf. section 2).
Let C∞c,0(M)T ⊂ C∞0 (M)T denote the ideal of functions with support in

M̊ and HamT
c (M,ω) E HamT(M,ω) the corresponding connected subgroup.

Theorem 8. In terms of he formal setting of section 2, the action of
HamT

c (M,ω) on GAKT
ω(M) is hamiltonian with moment map

ν : GAKT
ω(M)→ (C∞c,0(M)T)∗

given by

(32) νf (K) = −
∫
M̊
f

 m∑
i,j=1

∂2ReQij
∂µi∂µj

 vω,

where Qij = ω(KKi,Kj). For J ∈ DGKT
ω(M), the following alternative ex-

pression holds:

(33) νf (J) =

∫
M̊
f

 m∑
i,j=1

∂2Sij

∂µi∂µj

 vω,

where Sij = τ,ij for τ ∈ C∞(∆̊) the symplectic potential of J and Sij =
(S−1)ij.
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Proof. Formula (31) together with the fact that M\M̊ = µ−1(∂∆) has mea-
sure 0 allows us to write

ΩK(V ]
K , K̇) =

1

2

∫
M

tr(K ◦ V ]
K ◦ K̇)vω

=

m∑
j=1

∫
M̊

tr

(
(df,j ◦ K̇)⊗ ∂

∂tj

)
vω

=

m∑
j=1

∫
M̊
df,j

(
K̇

∂

∂tj

)
vω.

Since T acts freely on M̊ (with ∆̊ identified with the orbit space), µ :
M̊ → ∆̊ defines a trivial principal torus bundle: M̊ ∼= ∆̊× T. We have vω =
(−1)m−1dx1 ∧ · · · ∧ dxm ∧ dt1 ∧ · · · ∧ dtm so if we set Cm =

∫
T(−1)m−1dt1 ∧

· · · ∧ dtm, we can write

(34) ΩK(V ]
K , K̇) = Cm

m∑
j=1

∫
∆̊
df,j

(
K̇

∂

∂tj

)
v0,

where v0 = dx1 ∧ · · · ∧ dxm. If the matrix representation of K relative to the

basis
(
∂
∂µ ,

∂
∂t

)
de TCM̊ is

K =

(
P Q
R S

)
,

then (34) takes the form

(35) ΩK(V ]
K , K̇) = Cm

m∑
i,j=1

∫
∆̊
f,ijQ̇ijv0.

This computation suggests that the moment map is

(36) νf (K) = −Cm
m∑

i,j=1

∫
∆̊
f,ijQijv0.

Here, we observe that the functions Qij are well-defined and smooth on ∆
since we can write Qij = ω(KKj ,Ki) which is a smooth and T-invariant
function on M . Consequently, if f has support in ∆̊, a double integration
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by parts allows us to shift the derivatives over to Qij , and thus

νf (K) = −Cm
m∑

i,j=1

∫
∆̊
fQij,ijv0

= −
m∑

i,j=1

∫
M̊
fQij,ijvω.

It remains to check the equivariance of ν, namely the relation νϕ·f (ϕ ·K) =
νf (K) for ϕ ∈ HamT(M,ω). Let ϕ be the flow at time 1 of gradωh for h ∈
C∞0 (M)T. As in Remark 4, we compute

ϕ∗ =

(
I 0

(h,ij) I

)
,

so in particular, ϕ preserves the fields vector Ki. It follows that ϕ acts on
K by changing Qij to ω(ϕ∗Kϕ

−1
∗ Kj ,Ki) = Qij ◦ ϕ−1 = ϕ ·Qij . Next, using

the naturality of the Lie derivative on (ϕ ·Qij),ij = L∂/∂µiL∂/∂µj (ϕ ·Qij),
we get

(ϕ ·Qij),ij = ϕ · Lϕ−1
∗ ∂/∂µiLϕ−1

∗ ∂/∂µjQij ,

where

ϕ−1
∗

∂

∂µi
=

∂

∂µi
−

m∑
k=1

h,ki
∂

∂tk
.

But the functions Qij are T-invariant, so L∂/∂tkQij = 0 and it remains

(ϕ ·Qij),ij = ϕ · (Qij,ij).

Since ϕ preserves the symplectic volume form vω, we have

νϕ·f (ϕ ·K) = −
m∑

i,j=1

∫
M̊
ϕ · (fQij,ijvω) = νf (K).

Finally, note that the expression
∑m

i,i=1Qij,ij is real. This follows from the
fact that the imaginary part ofK is ω-self-dual (cf. (9)), and so the imaginary
part of Qij = ω(KKj ,Ki) is antisymmetric. We thus get (32).

To obtain (33), recall equation (11) to obtain the expression ReQij =
−ω((Ja)−1Kj ,Ki). In terms of the identification K ∼ (S,C) of Theorem 6,
we obtain ReQij = −Sij . �

Comparing the results of Theorem 8 with Theorem 1, we are naturally
led to the following definition.
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Definition 5. The generalized Hermitian scalar curvature of K ∈
GAKT

ω(M) (or, equivalently, of the corresponding almost complex structure
J , cf. section 2) is

(37) uK = uJ =

m∑
i,j=1

∂2ReQij
∂xi∂xj

,

where Qij = ω(KKi,Kj).

Remark 5. In terms of the characterisation of Theorem 6, the Hermitian
scalar curvature of an element J of DGKT

ω(M̊) is of the form

(38) uJ = −
m∑

i,j=1

∂2τ ij

∂µi∂µj
,

where τ ij = (Hess(τ)−1)ij .

Remark 6. (1) The function uJ is well-defined globally, since Qij =
ω(KKi,Kj) ∈ C∞(M)T ∼= C∞(∆).

(2) When J is an ω-compatible T-invariant Kähler structure, formula (38)
reduces to the formula found by M. Abreu [1] for the Riemannian scalar
curvature. Similarly, when J ∈ AKT

ω(M), formula (37) reduces to the
formula found by S. K. Donaldson [13] and more generally, by M. Lejmi
[34] for the Hermitian scalar curvature.

5. Extremal generalized Kähler structures

Let (M,ω,T) be a compact symplectic toric manifold of real dimension
2m with moment map µ : M → ∆ ⊂ t∗. It is clear that the moment map
in equation (2) can be replaced by νf (J) = −

∫
M f(uJ − uJ)vω (for uJ =∫

M uJvω) so that with respect to the identifications discussed in section 2, ν
can be seen as the map J 7→ −uJ + uJ ∈ C∞0 (M), where uJ is the Hermitian
scalar curvature. A simple computation reveals that the critical points of
‖ν‖2 : Kω(M)→ R are precisely the extremal Kähler metrics in the sense
of E. Calabi [8]. Indeed, we have

d(‖ν‖2)J(J̇) = 2(ν(J), dνJ(J̇))

= 2ΩJ((gradωuJ)], J̇) = −2ΩJ(LgradωuJ
J, J̇),
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where gradωuJ)] is the action vector field on Kω(M) corresponding to
gradωuJ ∈ ham(M,ω) and computed as in equation (13). Thus, J is a critical
point if and only if LgradωuJ

J = 0. Since J is ω-compatible, this is equiva-
lent to saying that gradωuJ is Killing. But as is well known [8], for fixed J
this condition also characterizes the Kähler metrics in a given DeRham class
a ∈ H2

dR(M) which are critical points of the Calabi functional g 7→
∫
M u 2

g vg.
More generally, the calculation above holds true on GAKT

ω(M) provided that
ν is replaced with the moment map from Theorem 8 and uJ is replaced with
the generalized Herminitian scalar curvature of Definition 5. In light of this,
the following definition is natural.

Definition 6. Let (M,ω,T, µ) be a compact symplectic toric manifold.
An element K ∈ GAKT

ω(M) is called extremal if it is a critical point of
the functional K 7→

∫
M (uK − uK)2vω, where uK =

∫
M uKvω. An equivalent

condition is

LgradωuK
K = 0.

M. Abreu has observed [1] that the toric Kähler metrics which are ex-
tremal are precisely those whose scalar curvature depends in an affine man-
ner upon the momentum-angle coordinates of Definition 3. This characteri-
zation admits a natural extension to DGKT

ω(M):

Proposition 5. For J ∈ DGKT
ω(M), the following statements are equiva-

lent.

(1) J is extremal.

(2) LgradωuJ
J = 0.

(3) The vector field gradωuJ is Killing with respect to g = ω(·, J ·)s and
also preserves the 2-form b = −ω(·, J ·)a, where ω(·, J ·)s and ω(·, J ·)a
are respectively the symmetric and antisymmetric parts of ω(·, J ·).

(4) uJ is an affine function in the momentum variables (µ1, . . . , µm).

Proof. Let K = A+ iB be the endomorphism of TCM corresponding to J
as in section 2 and let X be a vector field on M . The equation LXK = 0 is
equivalent to LXA = LXB = 0. According to (11), we have

LXA = 0⇔ (J − J∗ω)−1(LXJ − (LXJ)∗ω)(J − J∗ω)−1 = 0

⇔ LXJ = (LXJ)∗ω ,
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and since B = 1
2(J + J∗ω)A, we see that under the hypothesis LXA = 0, we

have

LXB = 0⇔ LXJ = −(LXJ)∗ω .

Hence, LXK = 0 is equivalent to LXJ = 0. Taking the Lie derivative of the
equation ω(·, J ·) = g − b, we obtain LXω(·, J ·) + ω(·,LXJ ·) = LXg − LXb.
If X = gradωuJ , the first term vanishes and we see that

LgradωuJ
J = 0⇔ LgradωuJ

g = LgradωuJ
b = 0.

This proves that (1) and (2) are equivalent. Statements (2) and (3) are
equivalent because gradωuJ preserves ω. Assume (4) holds, so that uJ =∑m

j=1 ajµ
j+b for certain numbers a1, . . . , am, b∈R. Then, duJ =

∑m
j=1 ajdµ

j

and so gradωuJ =
∑m

j=1 ajKj . Since J is T-invariant, we have LKj
J = 0 ∀j,

whence we see that (2) holds. Finally, let us show that (3) implies (4). Set

V := gradωuJ =

m∑
j=1

∂uJ
∂µj

Kj .

The fact that V is a Killing vector field means that the tensor

DV [ =

m∑
j,k=1

∂2uJ
∂µj∂µk

dµk ⊗K[
j +

∑
j

∂uJ
∂µj

DK[
j

is antisymmetric. Since the vector fields Kj are themselves Killing, this boils
down to the first term of the right hand side being antisymmetric. We have
K[
j =

∑m
`=1(Ψ−1)sj`dt

`, so

m∑
j,k=1

∂2uJ
∂µj∂µk

dµk ⊗K[
j =

m∑
k,`=1

(Hess(uJ)T (Ψ−1)s)k`dµ
k ⊗ dt`,

which implies Hess(uJ) = 0. �

Corollary 3. Let (M,ω,T, µ) be a compact symplectic toric manifold. If
there exists an extremal element J0 ∈ KT

ω(M), then there exists non Kähler
extremal elements J ∈ DGKT

ω(M).

Proof. According to a result of M. Abreu ([2] Theorem 4.1), J0 ∈ KT
ω(M)

is extremal if and only if sJ0
is an affine function of µ1, . . . , µm. Let Jt be

the deformation of J0 from Corollary 2 associated with an arbitrary nonzero
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antisymmetric matrix C. For t sufficiently small, Jt ∈ DGKT
ω(M)\KT

ω(M),
and uJt

= sJ0
. We obtain the desired conclusion by combining Abreu’s char-

acterization with our Proposition 5. �

6. The 4-dimensional case

In this section we focus on the 4-dimensional case. In section 6.1 we show
that, on compact 4-manifolds, the generalized Kähler structures of symplec-
tic type are, up to isomorphism, precisely those whose underlying complex
structures induce the same orientation. In section 6.2 we argue that, in di-
mension 4, the sufficient conditions of Theorem 7 are also necessary. We do
so by formulating an equivalent set of conditions as is done in the Kähler
setting of [4]. Finally, we provide a closed formula for the generalized Hermi-
tian scalar curvature of elements in DGKT

ω(M) in terms of the underlying
bi-Hermitian structure.

6.1. Generalized Kähler structures of symplectic type in
dimension 4

In this subsection, M denotes a smooth manifold of dimension 4. In this case,
the underlying complex structures J± of a generalized Kähler structure of
symplectic type (J+, J−, g, b) induce the same orientation [24]. In particular,
(J+, J−, g) forms a bi-Hermitian structure in the sense of [5] and we have
[36]:

Lemma 2. If (J+, J−, g, b) is a generalized Kähler structure with J+ and
J− inducing the same orientation on, then

(39) J+J− + J−J+ = −2pId,

where p = −1
4tr(J + J−) ∈ [−1, 1] is called the angle function. Moreover, p =

±1 if and only if J+ = ±J−.

Recall that the Lee form of an almost Hermitian metric (g, J) with fun-
damental form F = g(J ·, ·) is the 1-form θ = JδF , also characterized as the
unique 1-form such that dF = θ ∧ F . A Hermitian metric is called Gaudu-
chon [20] if δθ = 0.

Lemma 3 ([3]). If (J+, J−, g, b) is a generalized Kähler structure with J+

and J− inducing the same orientation, then the metric g is Gauduchon with
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respect to J+ and J−, and the Lee forms are related by

θ+ + θ− = 0, θ+ = ∗db.

Here, ∗ is the Hodge operator relative to g and the orientation induced by
J±.

Recall from [24] that the bundle isomorphisms of TM ⊕ T ∗M that pre-
serve both the natural inner product and the Courant bracket (called Courant
isomorphisms) are of the form f∗ ◦ eb for f ∈ Diff(M), b ∈ Ω2(M) a closed
2-form, and eb : X ⊕ ξ 7→ X ⊕ (b(X, ·) + ξ).

Theorem 9 ([30]). Let M be a compact 4-dimensional. A generalized
Kähler structure (J1,J2) on M is Courant equivalent to a generalized Kähler
structure of symplectic type if and only if the complex structures J+ and J−
induce the same orientation.

Proof. If (J1,J2) is Courant equivalent to a generalized Kähler structure
of symplectic type, then J+ and J− induce the same orientation [24]. For
the converse, assume J+ and J− induce the same orientation. Without loss
of generality, we may assume that J+ 6= ±J−. In this case, the first Betti
number of M is even [3] and we face the following alternative [5]:

(I) J+(x) 6= J−(x) ∀x ∈M ,

(II) J+(x) 6= −J−(x) ∀x ∈M .

Assume (I) holds, ı.e. p(x) < 1 ∀x ∈M , where p is the angle function intro-
duced in Lemma 2. Consider the 2-form

ω = F+ −
1

2(1− p)
g[J+, J−]J+,

where F+ = gJ+ is the fundamental form of the Hermitian structure (g, J+).
This form is globally defined on M and its codifferential was computed in the
proof of Proposition 4 of [5] to be δω = −1

2ω(θ+ + θ−)]. However, Lemma 3
implies that ω is co-closed. Since d = − ∗ δ∗ in dimension 4 and ω is self-dual,
we see that ω is closed. The symmetric part of ω(·, J+·) being g, it follows
that ω is symplectic. To conclude, it suffices to check that g = −1

2ω(J+ −
J−). Indeed, it will then follow from Proposition 1 that for bω = −1

2ω(J+ +
J−), the generalized Kähler structure corresponding to (J+, J−, g, bω) is of
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the form (Jω,J ). In particular, ebω−b · (J1,J2) = (Jω,J ). We have

ω(J+ − J−) = −g − gJ+J− −
1

2(1− p)
g[J+, J−]J+(J+ − J−).

Using that g([J+, J−]·, ·) is J+-anti-invariant along with the identity (J+ −
J−)2 = −2(1− p)Id, we may write

g([J+, J−]J+(J+ − J−)·, ·) = 2(1− p)g(J+ + J−)·, J+·)
= 2(1− p)(g − g(J+J−·, ·)).

We see then that ω(J+ − J−) = −2g.
If (II) holds, consider J ′− = −J− so that (J+, J

′
−) satisfies (I) and so

(J1,J2) is Courant equivalent to (J ,Jω). �

6.2. Compactification in dimension 4

Unless stated otherwise, we assume in this section that (M,ω,T) is a com-
pact symplectic toric manifold of real dimension 4 with moment map µ :
M → ∆ ⊂ t∗ and consider J̊ ∈ DGKT

ω(M̊) of the form (14) with respect
to admissible coordinates (µj , tj) on M̊ . We begin by writing down some
identities valid in dimension 4. According to Theorem 6, the decomposi-
tion Ψ̊ = Ψ̊s + Ψ̊a of Ψ̊ into its symmetric and antisymmetric parts is of
the form Ψ̊s = S, Ψ̊a = C for some positive definite symmetric matrix S
and a constant antisymmetric matrix C =

(
0 c
−c 0

)
. Therefor, we have the

decomposition Ψ̊−1 = (Ψ̊−1)s + (Ψ̊−1)a with

(40) (Ψ̊−1)s =
detS

det Ψ̊
S−1, (Ψ̊−1)a = − 1

det Ψ̊
C.

Also, the Riemannian metric g̊ defined as the symmetric part of ω(·, J̊ ·) is
given by

(41) g̊ =

2∑
i,j=1

Sijdµ
i ⊗ dµj +

detS

det Ψ̊
Sijdti ⊗ dtj .

The 2-form −̊b defined as the antisymmetric part of ω(·, J̊ ·) is given by

(42) b̊ = −cdµ1 ∧ dµ2 +
c

det Ψ̊
dt1 ∧ dt2.
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The angle function p̊ = −1
4tr(J̊ J̊∗ω) from Lemma 2 is given by

(43) p̊ =
c2 − detS

det Ψ̊
.

In particular,

(44)
1− p̊

2
=

detS

det Ψ̊
,

1 + p̊

2
=

c2

det Ψ̊
.

Finally, the determinants are related by the formula

(45) det Ψ̊ = detS + c2.

Theorem 10. Consider J0∈DGKT
ω(M) of the form (24) and J̊ ∈DGKT

ω(M̊)
of the form (25) with respect to admissible coordinates (µj , tj). If J̊ satis-
fies conditions (C1) and (C2) of Theorem 7 relative to J0, then J̊ is the
restriction of an element J of DGKT

ω(M).

Proof. By the arguments of section 3.3, J̊ is the restriction of a complex
structure J on M . It remains to show that the (non-degenerate) bilinear
form β = ω(·, J ·) is positive definite on M\M̊ . By continuity, we know that
β is positive semi-definite there. Consequently, β will be positive definite
provided that the antisymmetric part −b of β vanishes on M\M̊ . Using
(26), equation (42) can alternatively be writen

b̊ = −c
(

Id− det Ψ

det Ψ̊
J∗
)
dµ1 ∧ dµ2.

By continuity, this formula holds true everywhere. Indeed, the 1-forms dµi

are globally defined as is the quotient det Ψ
det Ψ̊

(cf. condition (C2’) of Lemma

1). However, dµ1 ∧ dµ2 vanishes on M\M̊ since dµi is ω-dual to Ki and the
Ki’s are linearly dependent on M\M̊ . �

Proposition 6. Consider J ∈ DGKT
ω(M)\KT

ω(M). Then

M\M̊ = {x ∈M | J(x) is compatible with ω(x)}
= {x ∈M | J(x) = −J∗ω(x)},
= {x ∈M | p(x) = −1},

where p = −1
4tr(JJ∗ω).
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Proof. Assume J is of the form (24) relative to admissible coordinates. Com-
bining (44) and (45), we obtain

(46)
1− p

2
=

detS

detS + c2
,

from where p(x) > −1 ∀x ∈ M̊ . Moreover, since β = ω(·, J ·) takes the form

β =

2∑
i,j=1

Ψijdµ
i ⊗ dµj + Ψijdti ⊗ dtj ,

we may write Ψij = β(Ki,Kj), where β(Ki,Kj) is a smooth function defined
on the whole of M . It follows that Ψ−1 ∈ C∞(∆). Moreover, det(Ψ−1) = 0
on ∂∆ since the vector fields Ki, i = 1, 2 are linearly dependent on M\M̊ .
By (45), this implies that detS → +∞ when x→ ∂∆. Taking the limit in
(46), this implies in turn that 1−p

2 = 1 on M\M̊ ; ı.e. p(x) = −1 ∀x ∈M\M̊ .

The equivalence between the various expressions of M\M̊ correspond to the
fact that p(x) = −1 if and only if J = −J∗ω . �

Corollary 4. Consider J ∈ DGKT
ω(M) and let g be the Riemannian metric

defined as the symmetric part of ω(·, J ·). Then, the metric

gAK :=

√
1− p

2
g

is smooth, T-invariant and ω-compatible.

Proof. Smoothness follows from the fact that 1− p vanishes nowhere on M .
This is so because p(x) = 1 if and only if J(x) = J∗ω(x) and this happens at
no point of M since J is tamed by ω. Using (44), it is trivial to check that
gAK is ω-compatible on M̊ , and hence on M by continuity. �

In terms of admissible coordinates (µj , tj) on M̊ , we have

gAK =

2∑
i,j=1

√
1− p

2
Sijdµ

i ⊗ dµj +

(√
1− p

2

)−1

Sijdti ⊗ dtj .

More generally, it is not hard to see that for any positive f ∈ C∞(M̊), the
metric defined on M̊ by

(47) g̊f =

2∑
i,j=1

fSijdµ
i ⊗ dµj + f−1Sijdti ⊗ dtj ,
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is compatible with ω. In particular, for f ≡ 1, the resulting metric is inte-
grable (Theorem 6). For this reason, we introduce the following notation:

Notation 3. Denote by g̊K the toric Kähler metric on M̊ corresponding
to the function f ≡ 1. In other words,

(48) g̊K =

2∑
i,j=1

Sijdµ
i ⊗ dµj + Sijdti ⊗ dtj .

Lemma 4. Let f ∈ C∞(M)T be a positive and T-invariant function such
that f |M\M̊ ≡ 1. Then, g̊f is the restriction to M̊ of a toric almost Kähler

metric defined on M if and only if g̊K is the restriction to M̊ of a toric
Kähler metric defined on M .

Remark 7. (1) In particular, since g̊AK = g̊f for f =
√

1−p
2 , it satisfies

the hypotheses of Lemma 4.

(2) It is known since [3] that every 4-manifold admitting a generalized
Kähler structure is Kählerian. Our construction associates in a canoni-
cal way a Kähler structure (the metric gK) to any element of
DGKT

ω(M).

The proof of Lemma 4 relies on the compactification criterion for toric
almost Kähler metrics of Apostolov-Calderbank-Gauduchon-Tønnesen-
Friedman [4] which we reproduce here in a form adapted to our needs.

Definition 7. Let (∆,Λ, ν1, . . . , νd) be a Delzant polytope (cf. Definition
2) and let x0 be a point in the interior of a k-dimensional face F of ∆.
Choose a vertex v of F . By reordering the normals ν1, . . . , νd if necessary, we
may assume that v is characterized by the vanishing of L1, . . . , Lm and that
F is characterized by the vanishing of L1, . . . , Lm−k. Since ∆ is a Delzant
polytope, the mapping

t∗ → Rm : x 7→ (L1(x), . . . , Lm(x))

is an affine isomorphism. The coordinates y = (yi) defined by yi = Li(x)−
Li(x0) for i = 1, . . . ,m are called adapted to F (centered on x0).

Proposition 7 ([4], Proposition 1). Let (M,ω,T) be a compact symplec-
tic toric manifold of real dimension 2m with moment map µ : M → ∆ ⊂ t∗.
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A toric almost Kähler structure J̊ ∈ AKT
ω(M̊) defined on M̊ is the restric-

tion of an element J of AKT
ω(M) if and only if for each k-dimensional face

F of ∆ with adapted coordinates (yi), the matrix Hij, defined on ∆̊ as the
matrix whose inverse is H ij(µ(p)) = g̊p(Xνi , Xνj ) (1 ≤ i, j ≤ m), satisfies
the following conditions:

(i) Hij admits a smooth extension to ∆;

(ii) on each facet Fi containing F ,

Hij(y) = 0 ∀j = 1, . . . ,m and
∂Hii

∂yi
= 2;

(iii) the sub-matrix (Hij)
m
i,j=m−k+1 is positive definite on F̊ (k > 0).

Alternatively, J̊ is the restriction of an element J of AKT
ω(M) if and only

if conditions (C1), (C2’) of Lemma 1 are satisfied.

Proof of Lemma 4. If Hij is the matrix corresponding to g̊K as in the state-
ment of Proposition 7, then fHij is the matrix corresponding to g̊f . It suffices
to realize that conditions (i)-(iii) are satisfied by Hij if and only if they are
satisfied by fHij . For (i) and (iii), it is trivial, while for (ii), we have

∂(fHii)

∂yi
(y) =

∂f

∂yi
(y)Hii(y) + f(y)

∂Hii

∂yi
(y)

=
∂Hii

∂yi
(y),

using (i) and the hypothesis f(y) = 1 for y ∈ ∂∆. �

Finally, we can prove the result announced at the begining of this section.

Theorem 11. Consider J̊ ∈ DGKT
ω(M̊) of the form (14) with respect to

admissible coordinates (µj , tj), and let Ψ̊ = S + C be the splitting of Ψ̊ into
its symmetric and antisymmetric parts. Consider also the Riemannian met-
ric g̊ defined as the symmetric part of ω(·, J̊ ·) and g̊K the toric almost Kähler
metric on M̊ definned by equation (48). Then, J̊ is the restriction of an
element J of DGKT

ω(M) if and only if g̊K is the restriction to M̊ of an ω-
compatible toric Kähler metric on M . In particular, this condition is equiv-
alent to the following conditions for the matrix Hij, defined on ∆̊ as the
matrix whose inverse is H ij(µ(p)) = g̊K |p(Xνi , Xνj ) (1 ≤ i, j ≤ 2): For each
k-dimensional face F of ∆ with adapted coordinates (yi),
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(i) Hij admits a smooth extension to ∆;

(ii) on each facet Fi containing F ,

Hij(y) = Hji(y) = 0, ∀j = 1, 2 and
∂Hii

∂yi
= 2;

(iii) the sub-matrix (Hij)
m
i,j=m−k+1 is positive definite on F̊ (k > 0).

Alternatively, J̊ is the restriction of an element J of DGKT
ω(M) if and only

if conditions (C1), (C2’) of Lemma 1 are satisfied.

Proof. By Proposition 7, conditions (i)-(iii) are equivalent to the compacti-
fication of g̊K .

If J̊ is the restriction to M̊ of an element of DGKT
ω(M), the by Re-

mark 7 (1), g̊K is the restriction to M̊ of a toric Kähler metric on M .
Suppose next that conditions (i)-(iii) are met, and let us show that this

implies conditions (C1), (C2’) of Lemma 1. This will prove that conditions
(i)-(iii) are sufficient to compactification and also that conditions (C1), (C2’)
are necessary. By Proposition 7, (C1) is satisfied for g̊K , ı.e. S −Ψ0 admits
a smooth extension to ∆, where Ψ0 comes from an element of DGKT

ω(M).
Since the matrix-valued function C is constant, it admits a smooth extension
to ∆ and so Ψ̊−Ψ0 admits a smooth extension to ∆, ı.e. (C1) is satisfied
for J̊ . For (C2’), we must show that for any point x0 ∈ ∂∆, we have

lim
x 7→x0

det Ψ̊

det Ψ0
6= 0.

Let F be the face of ∆ which contains x0 in its interior. It is shown in the
proof of Proposition 7 that with respect to coordinates y = (yi) adapted to
F centered on x0, we have

(detS(y))−1 = 2m−ky1 · · · ym−kP̊ (y),

(det Ψ0(y))−1 = 2m−ky1 · · · ym−kP0(y),

where k is the dimension of F and where P0, P̊ ∈ C∞(∆) are smooth func-
tion, positive at y = 0. It follows that

lim
x7→x0

det Ψ̊

det Ψ0
= lim

y 7→0

(
detS(y)

det Ψ0(y)
+

c2

det Ψ0(y)

)
=
P0(0)

P̊ (0)
> 0.

�

As a corollary, we have the converse of Corollary 3.
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Corollary 5. Let (M,ω,T, µ) be a compact symplectic toric manifold of
dimension 4. If there exists an extremal element J ∈ DGKT

ω(M), then there
exists extremal elements J0 ∈ KT

ω(M).

Proof. Let J ∈ DGKT
ω(M) be extremal and consider the Kähler structure

gK associated with it in the sense of Theorem 11. Clearly, the generalized
Hermitian scalar curvature uJ of J is equal to the scalar curvature sgK of
gK so that, by Proposition 5, uJ is an affine function in (µ1, µ2). By [1], this
property characterizes toric extremal Kähler metric. �

Remark 8. In dimension 4, we can use Theorem 11 to enlarge the scope of
Theorem 8 to the case of the action of the full group HamT(M,ω). Specifi-
cally, if (M,ω,T) is a compact symplectic toric manifold of real dimension
4 and ν : DGKT

ω(M)→ (C∞0 (M)T)∗ is the function given by (33), then for
any J ∈ DGKT

ω(M) et f ∈ C∞0 (M)T, we have

d(νf )J(J̇) = −ΩJ(V ]
J , J̇),

where V = gradωf and V ] is the corresponding vector field on AGKT
ω(M)

given by (13).

6.3. An explicit formula for the generalized Hermitian scalar
curvature in dimension 4

Since in the Kähler situation J = −J∗ω , the right hand side in equation (38)
corresponds to the scalar curvature of the associated Riemannian metric, it
is natural to try to relate uJ to the scalar curvatures of the corresponding
Hermitian structure (J, g), (J∗ω , g). Henceforth, let (M,ω,T) be a compact
symplectic toric manifold of real dimension 4 with moment map µ : M →
∆ ⊂ t∗ and consider J ∈ DGKT

ω(M) of the form

(49) J =

m∑
i,j=1

Ψij
∂

∂ti
⊗ dµj −

m∑
i,j=1

Ψij ∂

∂µi
⊗ dtj

with respect to momentum-angle coordinates (µj , tj) on M̊ .
Recall that given an almost Hermitian structure (g, J) on M with Chern

connection ∇, the induced Hermitian connection ∇̂ on the anticanonical
bundle

∧2(T 1,0M) has curvature R∇̂ =
√
−1ρ∇ ⊗ Id where the real 2-form

ρ∇ is called the Chern-Ricci form of the almost Hermitian structure. The
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Hermitian scalar curvature of the almost Hermitian structure is

(50) u =
4ρ∇ ∧ F
F ∧ F

,

where F = gJ . If J is integrable, ∇̂ is the Chern connection on the anti-
canonical bundle relative to the induced Hermitian metric and its natural
holomorphic structure, and the Ricci-Chern form admits the following local
expression:

(51) ρ∇ = −1

2
ddc log

√
det(gij),

where gij are the components of g relative to local holomorphic coordinates.
Since the metric g coming from a generalized Kähler structure of symplec-
tic type (J+, J−, g, b) is Gauduchon (cf. section 6.1), the Hermitian scalar
curvatures u± of the Hermitian pairs (g, J±) are related to the Riemannian
scalar curvature s of g by the Lee forms [20]:

(52) u± = s+
1

2
|θ±|2.

In particular, since |θ+| = |θ−|, we have u+ = u− and we refer to this func-
tion as the Hermitian scalar curvature of the generalized Kähler structure.

The following technical lemmas will be used in the proof of Theorem 12
below. In proving them, we shall make use of formulas (40)–(45) as well as
the relation

(53) vg =
detS

det Ψ
vω

between the volume forms induced by g and ω respectively.

Lemma 5. The matrix S satisfies the identity

2∑
i=1

(detS)Sij,i = −
2∑
i=1

(detS),iS
ij , j = 1, 2.

Proof. It suffices to differentiate the identity (detS)S−1 = CSC−1:

2∑
i=1

((detS)Sij),i =

2∑
i=1

(CSC−1)ij,i

=

2∑
i,α,β=1

CiαSαβ,iC
βj =

2∑
i,αβ=1

CiαSαi,βC
βj .
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But
∑2

i,α=1CiαSαi,β = tr(CS,β) which vanishes since C is antisymmetric
and S,β is symmetric. �

Lemma 6. For the angle function p = −1
4tr(JJ∗ω) and the Lee form θ of

the Hermitian pair (ω, J), we have:

∆p =

2∑
i,j=1

2c2

(det Ψ)2

(
(detS),ij −

3

det Ψ
(detS),i(detS),j

)
Sij ,

|θ|2 =

2∑
i,j=1

c2(detS),i(detS),j
(det Ψ)2 detS

Sij .

Proof. Using identity (45), we compute

dp =
−2c2

(det Ψ)2

2∑
i=1

(detS),idµ
i.

We have

∗dµi = S1i detS

det Ψ
dt1 ∧ dµ2 ∧ dt2 + S2i detS

det Ψ
dµ1 ∧ dt1 ∧ dt2

+ S1idµ
1 ∧ dµ2 ∧ dt2 + S2idµ

1 ∧ dt1 ∧ dµ2.

Thus, using the formula from Lemma 5,

∆p = − ∗ d

detS

det Ψ

2∑
i,j=1

p,i(S
1idt1 ∧ dµ2 ∧ dt2 + S2idµ1 ∧ dt1 ∧ dt2)


= ∗ 2c2

(det Ψ)2

2∑
i,j=1

(
(detS),ij −

3

det Ψ
(detS),i(detS),jS

ij

)
detS

det Ψ
vω.

The desired formula then follows from (53). To compute |θ|2, we use the
result from [5] (Lemma 7) according to which dp = 1

2 [J, J∗ω ]∗θ. Leaning on
(39), we easily show that [J, J∗ω ]2 = 4(p2 − 1)Id, which allows us to solve
for θ in the preceding formula:

(54) θ =
1

2(p2 − 1)
[J, J∗ω ]∗dp.
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Using the fact that [J, J∗ω ] is g-antisymmetric, we compute

|θ|2 =
(det Ψ)2

4c2 detS
|dp|2 =

2∑
i,j=1

c2

(det Ψ)2 detS
(detS),i(detS),jS

ij .

�

Theorem 12. Let (M,ω,T) be a compact symplectic toric manifold of real
dimension 4 with moment map µ : M → ∆ ⊂ t∗. Consider J ∈ DGKT

ω(M)
of the form (49) with respect to momentum-angle coordinates (µj , tj) on M̊
(cf. Proposition 3) and let g be the symmetric part of ω(·, J ·). The Hermitian
Ricci form of the Hermitian structure (g, J) is given on M̊ by

ρ∇ = −1

2
ddc log detS + ddc log det Ψ,

where Ψ = S + C is the decomposition of Ψ into its symmetric and anti-
symmetric parts. The Hermitian scalar curvature of the generalized Kähler
structure J is

(55) u± = −
2∑

i,j=1

Sij,ij +
4− 2p

1− p
|θ|2 − 2〈[J, J∗ω ], dθ〉

1− p
,

where p is the angle function (cf. Lemma 2) and where [J, J∗ω ] is seen as a
2-form by means of the metric g.

Proof. We shall compute u± from (50) and ρ∇ from (51). In terms of the
local holomorphic coordinates (uj , tj) from Definition 3, we have

g =

2∑
i,j=1

((Ψ−1)TSΨ−1)ijdu
i ⊗ duj +

detS

det Ψ

2∑
i,j=1

Sijdti ⊗ dtj ,

whence
√

det(gij) = detS
(det Ψ)2 and so

ρ∇ = −1

2
ddc log detS + ddc log det Ψ,(56)

u± =
4ρ∇ ∧ F
F ∧ F

=
4ddc log det Ψ ∧ F

F ∧ F
− 2ddc log detS ∧ F

F ∧ F
.

To develop the first term, we use the general formula

(detA)′ = (detA)tr
(
A−1A′

)
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for the t-derivative of the determinant of a non-singular matrix A = A(t).
In particular,

(log det Ψ),i =

2∑
α,β=1

ΨαβΨβα,i,

which yields

ddc log det Ψ =

2∑
i,j,k=1

(
(log det Ψ),iΨ

ij
)
,k
dµk ∧ dtj

=

2∑
i,j,k,α,β=1

(
ΨβαΨαβ,iΨ

ij
)
,k
dµk ∧ dtj

= −
2∑

i,j,k,α,β=1

(
ΨβαΨαiΨ

ij
,β

)
,k
dµk ∧ dtj

= −
2∑

i,j,k=1

Ψij
,ikdµ

k ∧ dtj

For the second equality, we have used the fact that Ψαβ,i = Sαβ,i = Sαi,β =
Ψαi,β (since S is a Hessian), and also the identity

2∑
i=1

Ψαi,βΨij = −
2∑
i=1

ΨαiΨ
ij
,β

obtained by differentiating ΨΨ−1 = I with respect to µβ. Finally, note that
F is the (1, 1) part of ω with respect to J . And since

∧3,1 =
∧1,3 = 0 in

dimension 4, we have

ddc log det Ψ ∧ F = ddc log det Ψ ∧ ω = −1

2

2∑
i,j=1

(
detS

det Ψ
Sij
)
,ij

ω ∧ ω.

Using F ∧ F = detS
det Ψω ∧ ω, we obtain

4ddc log det Ψ ∧ F
F ∧ F

= −2
det Ψ

detS

2∑
i,j=1

(
detS

det Ψ
Sij
)
,ij

.
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For the second term, we proceed as follows.

ddc log detS =

2∑
i,j,k=1

(
(detS),i

detS
Ψij

)
,k

dµk ∧ dtj ,

so

−2ddc log detS ∧ F
F ∧ F

=
det Ψ

detS

(
−2ddc log detS ∧ ω

ω ∧ ω

)
= −det Ψ

detS

2∑
i,j=1

(
(detS),i

detS
Ψij

)
,j

.

But, here also, we have Ψij = detS
det ΨS

ij − 1
det ΨCij with

2∑
i,j=1

(
(detS),i

detS
Cij
)
,j

=

2∑
i,j=1

(detS),ij
detS

Cij −
2∑

i,j=1

(detS),i(detS),j
(detS)2

Cij = 0,

so using the identity from Lemma 5,

−2ddc log detS ∧ F
F ∧ F

= −det Ψ

detS

2∑
i,j=1

(
(detS),i

det Ψ
Sij
)
,j

=
det Ψ

detS

2∑
i,j=1

(
detS

det Ψ
Sij,i

)
,j

.

We thus obtain

u± =
det Ψ

detS

2∑
i,j=1

(
−2

(
detS

det Ψ
Sij
)
,ij

+

(
detS

det Ψ
Sij,i

)
,j

)(57)

=
det Ψ

detS

2∑
i,j=1

(
−
(

detS

det Ψ

)
Sij,ij − 3

(
detS

det Ψ

)
,i

Sij,j − 2

(
detS

det Ψ

)
,ij

Sij

)

=

2∑
i,j=1

−Sij,ij −
2∆p

1− p
+

4 + 2p

1− p
|θ|2,

by using Lemma 5 on the middle term of the second expression. Finally, we
invoke formula (26) from [5] which reads

∆p = 2p|θ|2 + 〈[J, J∗ω ], dθ〉
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to land on the announced formula. �

Corollary 6. The generalized Hermitian scalar curvature of J admits the
following expression (which depends only on J and ω)

uJ = u± −
4− 2p

1− p
|θ|2 +

2〈[J, J∗ω ], dθ〉
1− p

.

Alternatively, we may write

(58) uJ = sg +
2∆p

1− p
− 1

1− p2

(
4 + 2p

1− p
− 1

2

)
|dp|2,

where sg is the scalar curvature of the associated Riemannian metric g de-
fined as the symmetric part of ω(·, J ·).

Proof. The first expression is obtained trivially by comparing formula (55)
with the definition of the generalized Hermitian scalar curvature uJ . The
second expression is obtained similarly from (57) by using (52) as well as
the identity

(59) |θ|2 =
1

1− p2
|dp|2

which one deduces from (54). �

Remark 9. In [10] a notion of generalized scalar curvature depending on
an arbitrary function φ ∈ C∞(M) and valid in all dimensions is invented.
This expression takes the following form ([17] p.22):

GSφ(J) = sg + 4∆φ− 4|dφ|2 − 1

2
|db|2.

In dimension 4, we have shown in Lemma 3 that db = ∗θ and so |db|2 = |θ|2 =
(1− p2)−1|dp|2 (by (59)). Comparing with (58), we conclude that GSφ(J) =
uJ if and only if φ = −1

2 log(1− p), which suggests a prefered choice for the
function φ of [17].
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