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Contact surgeries on Legendrian

figure-eight knots

James Conway

We show that all positive contact surgeries on every Legendrian
figure-eight knot in (S3, ξstd) result in an overtwisted contact struc-
ture. The proof uses convex surface theory and invariants from
Heegaard Floer homology.

1. Introduction

Dehn surgery on knots has been a fruitful way to construct new contact
structures on 3-manifolds, and in particular to try to construct new tight
contact manifolds. When the knot in question is a Legendrian knot (ie. its
tangent vectors lie in the contact planes), Dehn surgery with framing equal
to the contact framing always results in an overtwisted contact manifold.
The remaining framings break into two classes: those less than the contact
framing, and those greater. Surgeries with these framings give rise to nega-
tive and positive contact surgery, respectively.

In [25], Wand showed that given a tight contact manifold, the result of
negative contact surgery on any Legendrian knot is a tight contact manifold.
Regarding positive contact surgery, much less is known; existing tightness
results can be found in [2, 11, 16, 17, 19–21].

Most of the results for positive contact surgery prove tightness using var-
ious flavours of Heegaard Floer homology. In particular, the non-vanishing
of the Heegaard Floer contact class shows that a contact manifold is tight,
however its vanishing is not equivalent to a contact manifold being over-
twisted. Several of the above results give conditions under which contact
(+1)-surgery (ie. positive contact surgery with framing one more than the
contact framing) has vanishing Heegaard Floer contact class.

There are fewer results that show that positive contact surgeries start-
ing from a tight contact structure result in an overtwisted one. Lisca and
Stipsicz showed in [18] that there exists a configuration in the front projec-
tion of a Legendrian knot that ensures contact (+1)-surgery on the knot is
overtwisted. This configuration is not present in the figure-eight knot under
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consideration in this paper (but it is present in the negative torus knots, for
example). In [2], the author used versions of the Bennequin inequality (an
inequality of Legendrian knot invariants that holds in tight contact mani-
folds) to give general results for when positive contact surgery on Legendrian
knots is overtwisted.

After the unknot and the trefoils, the figure-eight knot is next natural
knot to study (contact surgeries on the others were understood by [3, 16] for
the unknot, [17] for the right-handed trefoil, and [2, 18] for the left-handed
trefoil). The classification of Legendrian figure-eight knots in (S3, ξstd) was
undertaken by Etnyre and Honda in [8], who proved that all such Legen-
drian knots are classified up to isotopy by their Thurston–Bennequin number
(tb) and rotation class (rot), and that all such knots destabilise to a Leg-
endrian knot with tb = −3 and rot = 0. Lisca and Stipsicz showed in [18]
that the result of contact (+1)-surgery on any Legendrian figure-eight knot
has vanishing Heegaard Floer contact class; we answer the natural follow-up
question:

Theorem 1.1. The results of all positive contact surgeries on any Legen-
drian figure-eight knot in (S3, ξstd) are overtwisted.

Remark 1.2. One should not conclude from Theorem 1.1 that the man-
ifolds resulting from surgery on the figure-eight support no tight contact
structure: in fact, they all support tight contact structures. However, they
do not arise from positive contact surgery on a figure-eight knot in (S3, ξstd).

The proof uses convex surfaces and the Heegaard Floer contact class. In
particular, given any Legendrian knot L we show that if any positive contact
surgery on L is tight, then a particular contact structure on S3\N(K) is also
tight. For the figure-eight knot, we can show that this contact structure ξ on
S3\N(K) has vanishing Heegaard Floer contact class. We then use convex
surfaces to classify all tight contact structures on S3\N(K) that induce a
particular set of dividing curves on a convex Seifert surface (the same set
of curves can also be found in ξ). We then construct these tight contact
structures, and show that they have non-vanishing Heegaard Floer contact
class. This shows that ξ is overtwisted, and proves Theorem 1.1.

Beyond the figure-eight knot, it is unclear how successful this approach
will be. The facts that the figure-eight knot is fibred and has genus 1 play
a large role in making the classification of relevant tight contact structures
on S3\N(K) possible. However, the approach of showing that a particular
contact structure on S3\N(K) is overtwisted is more widely applicable, as
can be seen in [2].



“4-Conway” — 2019/10/9 — 0:20 — page 1063 — #3

Contact surgeries on Legendrian figure-eight knots 1063

In all known cases where the result of positive contact surgery on a
Legendrian knot (S3, ξstd) is tight, we also know that the Heegaard Floer
contact invariant is non-vanishing. This paper, along with the results in [2],
lend support toward a positive answer to this question:

Question 1.3. Let (M, ξ) be the result of some positive contact surgery on
a Legendrian knot in (S3, ξstd). Is ξ tight if and only if its Heegaard Floer
contact class is non-vanishing?
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2. Contact geometric background

We begin with a brief reminder of standard theorems about contact struc-
tures on 3-manifolds which we will use throughout this paper. We assume a
basic knowledge of contact structures at the level of [6, 7].

2.1. Farey graph

The Farey graph is the 1-skeleton of a tessellation of the hyperbolic plane by
geodesic triangles shown in Figure 1, where the endpoints of the geodesics
are labeled. The labeling, shown in Figure 1, is determined as follows: let the
left-most point be labeled ∞ = 1/0 and the right-most point be labeled 0.
Given a geodesic triangle where two corners are already labeled a/b and c/d,
then the third corner is labeled (a+ c)/(b+ d). For triangles in the upper
half of the plane, we treat 0 as 0/(−1), whereas for triangles in the lower
half of the plane, we treat 0 as 0/1. Thus, the labels on the upper half are all
negative, and those on the lower half are all positive. Every rational number
and infinity is found exactly once as a label on the Farey graph.

2.2. Convex surfaces

We introduce the basics of convex surfaces. See [5] for more details.
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Figure 1: The Farey graph.

A surface Σ (possibly with boundary) in a contact manifold (M, ξ) is
called convex if there exists a contact vector field v such that v is transverse
to Σ. Here, a contact vector field is a vector field whose flow preserves the
contact planes. Using the contact vector field v, it is not hard to see that
convex surfaces have a neighbourhood contactomorphic to Σ× R with an R-
invariant contact structure, called a vertically-invariant neighbourhood of Σ.

Given a surface Σ in (M, ξ) and the characteristic foliation F on Σ
induced by ξ, we say that a multi-curve Γ on Σ divides F if

• Σ\Γ = Σ+ t Σ−,

• Γ is transverse to the singular foliation F , and
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• there is a volume form ω on Σ and a vector field w such that
– ±Lwω > 0 on Σ±,
– w directs F , and
– w points out of Σ+ along Γ.

Theorem 2.1 (Giroux [10]). A closed surface Σ is C∞-close to a convex
surface. If Σ is a surface with Legendrian boundary such that the twisting
of the contact planes along each boundary component is non-positive when
measured against the framing given by Σ, then Σ can be C0-perturbed in a
neighbourhood of the boundary and C∞-perturbed on its interior to be convex.

If Σ ⊂ (M, ξ) is an orientable surface, and its boundary (if it is non-
empty) is Legendrian, then Σ is a convex surface if and only if its charac-
teristic foliation has a dividing set. Given a convex surface Σ with dividing
curves Γ, and any singular foliation F on Σ divided by Γ, then Σ can be
perturbed to a convex surface with characteristic foliation F .

In particular, convex surfaces are generic, and the germ of the contact
structure at a convex surface is determined (up to a C0-perturbation of the
surface) by its dividing curves and the signs of the regions Σ±.

A properly-embedded graph G on a convex surface Σ is non-isolating if
G intersects the dividing curves Γ transversely, and each component of Σ\G
has non-trivial intersection with Γ.

Theorem 2.2 (Honda [12]). If G is a non-isolating properly-embedded
graph on a convex surface Σ, then there is an isotopy of Σ relative to its
boundary such that G is contained in the new characteristic foliation. If G
is a simple closed curve, then the twisting of the contact planes along L with
respect to the framing on G given by Σ is equal to

tw(G,Σ) = −|G ∩ Γ|
2

.

This is commonly called the Legendrian realisation principle. In par-
ticular, a simple closed curve in Σ that is non-separating can always be
Legendrian realised on a convex surface. If L is a null-homologous Leg-
endrian knot bounding a convex surface, then tw(L,Σ) = tb(L), and so
tb(L) = −|L ∩ Γ|/2.

Giroux has shown that there are restrictions on dividing curves in tight
manifolds. This result is often called Giroux’s Criterion.

Theorem 2.3 (Giroux [10]). If Σ=S2 is convex, then a vertically-invariant
neighbourhood of Σ is tight if and only if the dividing set Γ is connected. If
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Σ 6= S2, then a vertically-invariant neighbourhood of Σ is tight if and only
if Γ has no contractible components.

Given two convex surfaces Σ1 and Σ2 that intersect in a Legendrian curve
L, Kanda [14] and Honda [12] have shown that between each intersection of
L with ΓΣ1

is exactly one intersection of L with ΓΣ2
, as in Figure 2. Honda

further showed that there is a way to “round edges” at L and get a new
convex surface. The dividing set on the new surface is derived from ΓΣi

as
in Figure 3.

22 JOHN B. ETNYRE

4. Distinguishing contact structures and the first
classification results

The power of convex surfaces is contained largely in Theorem 2.26 in
conjunction with the ability to transfer information from one convex surface
to another one meeting it along a Legendrian curve.

Lemma 4.1 (Kanda 1997, [6]; Honda 2000, [3]). Suppose that Σ and Σ′ are
convex surfaces, with dividing curves Γ and Γ′, and ∂Σ′ ⊂ Σ is Legendrian.
Let S = Γ ∩ ∂Σ′ and S′ = Γ′ ∩ ∂Σ′. Then between each two adjacent points
in S there is one point in S′ and vice verse. See Figure 10. (Note the sets

Figure 10. Transferring information about dividing curves
from one surface to another. The top and bottom of the
picture are identified.

S and S′ are cyclically ordered since they sit on ∂Σ′)

To prove this lemma one just considers a “standard model”. More specif-
ically, consider R

3/ ∼, where (x, y, z) ∼ (x, y, z + 1), with the contact struc-
ture ξ = ker(sin(2nπz)dx + cos(2nπz)dy. Let Σ = {(x, y, z) : x = 0} and
Σ′ = {(x, y, z) : y = 0, x ≥ 0}. Note both these surface are convex and the
boundary of Σ′ is a Legendrian curve in Σ. In Figure 10 we see the situation
for n = 2. The choice of n in this model is clearly determined by tw(∂Σ′,Σ′).
Lemma 4.1 clearly follows form considering this model.

Exercise 4.2. Show that the situation described in Lemma 4.1 can always be
modeled as described above.

Using this model it is also easy to see how to “round corners”.

Lemma 4.3 (Honda 2000, [3]). Suppose that Σ and Σ′ are convex surfaces,
with dividing curves Γ and Γ′, and ∂Σ′ = ∂Σ is Legendrian. Suppose Σ
and Σ′ are modeled as above with Σ = {(x, y, z) : x = 0, y ≥ 0}, then we
may form a surface Σ′′ from S = Σ ∩ Σ′ by replacing S intersect a small
neighborhood N of ∂Σ (thought of as the z-axis) with the intersection of N
with {(x, y, z) : (x − δ)2 + (y − δ)2 = δ2} For a suitably chosen δ, Σ′ will

Σ1

Σ2

Figure 2: Two convex surfaces intersecting in a Legendrian curve. This figure
is reproduced from [5, Figure 10].

A special case of “rounding edges” at the intersection of two convex
surfaces is when Σ2 is a bypass. This is when Σ2 is a disc with Legendrian
boundary with tb = −1, such that Σ1 ∩ Σ2 is an arc α intersecting ΓΣ1

in
three points, two of which are the endpoints of α; we further require that the
endpoints of α are elliptic singularities of the characteristic foliation on Σ2.
By the above discussion, the dividing set ΓΣ2

is a single arc with endpoints
on α. By Theorem 2.1, we can arrange for there to be a unique hyperbolic
singularity on ∂Σ2 that lies on α and is between the two points α ∩ ΓΣ2

.
The sign of this hyperbolic singularity is called the sign of the bypass.

Honda proved [12] that in a neighbourhood of Σ1 ∪ Σ2, there is a one-
sided neighbourhood Σ1 × [0, 1] of Σ1 such that Σ1 × {0, 1} is convex, the
dividing curves on Σ1 × {0} are ΓΣ1

, and the dividing curves on Σ1 × {1}
are ΓΣ1

changed along a neighbourhood of α as in Figure 4. We say that the
convex surface Σ1 × {1} is obtained from Σ1 by a bypass attachment along
Σ2.
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be a smooth surface (actually just C1, but it can then be smoothed by a C1

small isotopy which of course does not change the characteristic foliation)
with dividing curve as shown in Figure 11.

Figure 11. Rounding a corner between two convex surfaces.

Remark 4.4. Note this lemma says that as you round a corner then the
dividing curves on the two surfaces connect up as follows. Moving from Σ
to Σ′ the dividing curves move up (down) if Σ′ is to the right (left) of Σ.

4.1. Neighborhoods of Legendrian curves. We can now give a simple
proof of the following result which is essentially due to Makar-Limanov [14],
but for the form presented here see Kanda [6]. Though this theorem seems
easy, it has vast generalizations which we indicate below.

Theorem 4.5 (Kanda 1997, [6]). Suppose M = D2×S1 and F is a singular
foliation on ∂M that is divided by two parallel curves with slope 1

n (here slope
1
n means that the curves are homotopic to n[∂D2 × {p}] + [{q}× S1] where
p ∈ S1 and q ∈ ∂D2). Then there is a unique tight contact structure on M
whose characteristic foliation on ∂M is F .

Proof. To see existence simply consider a standard neighborhood of a Leg-
endrian knot or similarly consider the tori Ta in the proof of Lemma 3.8.

Suppose we have two tight contact structures ξ0 and ξ1 on M inducing F
as the characteristic foliation on ∂M. We will find a contactomorphism from
ξ0 to ξ1 (in fact this contactomorphism will be isotopic to the identity). Let
f : M → M be the identity map. By Theorem 1.1 we can isotop f rel. ∂M to
be a contactomorphism in a neighborhood N of ∂M. Now let T be a convex
torus in N isotopic to ∂M. Moreover we can assume that the characteristic
foliation on T is in standard form. We know the slope of the Legendrian
divides is 1

n and we choose the slope of the ruling curves to be 0. Let D
be a meridianal disk whose boundary is a ruling curve. We can perturb D
so that it is convex and using Lemma 4.1 we know that the dividing curves
for D intersect the boundary of D in two points. Moreover, since there
are no closed dividing curves on D (since the contact structure is tight, see

Σ1

Σ2

Figure 3: “Rounding edges” of intersecting convex surfaces. This figure is
reproduced from [5, Figure 11].

α
>

Figure 4: The result of performing a bypass on the dividing curves.

If Σ1 is a convex T 2 (resp. T 2\D2) with 2 parallel dividing curves, then
we can choose the characteristic foliation on Σ1 such that it consists of
two curves called Legendrian divides parallel to the dividing curves along
with a linear foliation of the torus by curves not parallel to the dividing
curves, called ruling curves. Under these hypotheses, Honda proved [12] how
the slopes of the dividing curves change under bypass attachments along a
ruling curve. Denote the slope of curves parallel to ( q

p ) by p/q, as in the
Farey graph.

Theorem 2.4 (Honda [12]). Let Σ1 have two dividing curves of slope s
and ruling curves of slope r. Let Σ2 be a bypass attached to Σ1 along a ruling
curve. Then the result Σ′1 of a bypass attachment along Σ2 has two dividing
curves with slope s′, where s′ is the label on the Farey graph clockwise of r
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and counter-clockwise of s, and such that s′ is the label closest to r with an
edge to s.

Remark 2.5. If Σ2 is a bypass for Σ1 attached along the back of Σ1, then
the bypass attachment will change ΓΣ1

in a manner similar to Figure 4 but
reflected in the vertical axis. Theorem 2.4 will hold after reversing the words
“clockwise” and “counter-clockwise”.

Bypasses are only useful if we can find them. To that effect, we have the
Imbalance Principle, which allows us to find bypasses on annuli.

Theorem 2.6 (Honda [12]). Let Σ and A = S1 × [0, 1] be two convex
surfaces with Legendrian boundary, such that Σ ∩A = S1 × {0}. Then, if
the twisting of the contact planes along the boundary of A satisfies

tw(S1 × {0}, A) < tw(S1 × {1}, A) ≤ 0,

then there is a bypass for Σ along A, ie. some subsurface of A is a bypass
for Σ.

In particular, if S1 × {1} sits on a convex surface Σ′, and∣∣ΓΣ ∩
(
S1 × {0}

)∣∣ > ∣∣ΓΣ′ ∩
(
S1 × {0}

)∣∣ ,
then the hypotheses of Theorem 2.6 hold, and there is a bypass for Σ along A.

2.3. Basic slices

Consider the manifold (T 2 × I, ξ), with ξ tight. Let the two boundary com-
ponents be convex with two dividing curves each, with slopes s0 and s1.
If s0 and s1 are labels on the Farey graph connected by a geodesic, then
(T 2 × I, ξ) is called a basic slice if the contact structure is minimally twist-
ing, ie. if any boundary-parallel convex torus has dividing curves of slope
clockwise of s0 and counter-clockwise of s1. If not, then the manifold can be
cut up into basic slices along boundary parallel convex tori, following the
path between s0 and s1 along the Farey graph.

Theorem 2.7 (Honda [12]). There are exactly two tight contact struc-
tures up to isotopy (and only one up to contactomorphism) on T 2 × I with a
fixed singular foliation on the boundary that is divided by two dividing curves
on T 2 × {i} for i = 0, 1 each of slope si, where s0 and s1 are labels in the
Farey graph connected by a geodesic.
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Given a contact structure ξ on M that is trivialised by v on ∂M , we can
define a relative Euler class e(ξ, v) ∈ H2(M,∂M ;Z). Given a convex surface
Σ with boundary on ∂M , whose oriented tangent vector on ∂Σ agrees with
v, we can calculate

e(ξ, v)([Σ]) = χ(Σ+)− χ(Σ−).

For a basic slice with s0 = −∞ and s1 = −1, the relative Euler class
acts as 0 on the annulus ( 1

0 )× [0, 1] and as ±1 on the annulus
(

0
−1

)
×

[0, 1], where the slope of ( q
p ) is p/q. Every other basic slice can be put in

this standard form by an element of SL2(Z). This calculation allows us to
distinguish the basic slices by calling them positive and negative basic slices;
this sign choice is also such that when gluing a negative (resp. positive) basic
slice to the boundary of the complement of a standard neighbourhood of a
Legendrian knot, the result is the complement of a standard neighbourhood
of its negative (resp. positive) stabilisation.

In addition, this classification implies that if we have a basic slice (T 2 ×
I, ξ) that can be broken up into two basic slices (T 2 × [0, 1/2], ξ1) and
(T 2,×[1/2, 1], ξ2), then the sign of each of the latter two basic slices agrees
with the sign of (T 2 × I, ξ). Thus, if the signs disagree, then (T 2 × I, ξ) is
overtwisted (and hence by definition is not a basic slice).

2.4. Contact surgery

Given a null-homologous Legendrian knot L ⊂ (M, ξ), we start by removing
the interior of a standard neighbourhood N(L) of L, ie. the interior of a
tight solid torus with convex boundary, where the dividing curves have the
same slope as the contact framing tb(L)µ+ λ, where µ is a meridian and λ
is the Seifert framing of L.

To do positive contact surgery on L, we first glue a basic slice to ∂N(L)
such that the new contact structure on M\N(L) has convex boundary with
two meridional dividing curves. Different sign choices on this basic slice in
general give rise to distinct contact structures; we denote by ξ+(L) (resp.
ξ−(L)) the contact structure on M\N(L) coming from gluing on a positive
(resp. negative) basic slice. Finally, we then glue a solid torus to the bound-
ary such that the desired topological surgery is achieved, and we extend
the contact structure over the solid torus such that it is tight on the solid
torus. Different choices of sign on the basic slice and different extensions
over the solid torus will in general give rise to distinct contact structures on
the surgered manifold, see [12, 14].
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2.5. Heegaard Floer homology

We make use of invariants of contact structures coming from Heegaard
Floer theory: for closed contact manifolds (M, ξ), we have an element

c(ξ) ∈ ĤF (−M) (see [22]), and for contact manifolds (M ′,Γ, ξ′) with convex
boundary, where Γ ⊂ ∂M ′ is the dividing set, we have an element EH(ξ) ∈
SFH(−M ′,−Γ) (see [13]). If (M ′,Γ, ξ′) ⊂ (M, ξ) is a contact embedding,

then there is a map SFH(−M ′,−Γ)→ ĤF (−M) that sends EH(ξ′) to
c(ξ).

To a Legendrian knot L ⊂ (M, ξ), we associate an element L̂(L) (de-

fined in [15]) in the knot Heegaard Floer group ĤFK(−M,−L). For knots
in (S3, ξstd), L̂(L) was identified (up to an automorphism of the ambient
group) in [1] with a more easily calculable invariant defined in [23]; this lat-
ter invariant can be shown to vanish for any Legendrian figure-eight knot L
(as ĤFK(−S3,−L) is trivial in the required grading). In [24], the element
L̂(L) was also identified with the class EH(ξ−std(L)) of (S3\N(K), ξ−std(L)),

under an isomorphism ĤFK(−S3,−L) ∼= SFH(−S3\N(K),−Γmeridional).

3. Surgeries on the figure-eight knot

Consider the figure-eight knot K in S3 (see Figure 5). We will show that
the result of any positive contact surgery on any Legendrian realisation of
the figure-eight knot in (S3, ξstd) is overtwisted.

Figure 5: On the left is a smooth figure-eight knot K. On the right is a
Legendrian representative L of K with tb(L) = tb(K) = −3. We omit choices
of orientation, since K is amphichiral.
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Let L be a Legendrian figure-eight knot in (S3, ξstd). Define a con-
tact structure ξ−(L) (resp. ξ+(L)) on S3\N(K) by gluing a negative (resp.
positive) basic slice to the complement of N(L) ⊂ (S3, ξstd) such that
∂
(
S3\N(K)

)
is convex with two meridional dividing curves.

Proposition 3.1. Let L be a Legendrian figure-eight knot in (S3, ξstd).

1) If tb(L)− rot(L) = −3 and tb(L) < −3, then (S3\N(K), ξ+(L)) is
overtwisted.

2) If tb(L) + rot(L) = −3 and tb(L) < −3, then (S3\N(K), ξ−(L)) is
overtwisted.

3) If tb(L)± rot(L) < −3, then (S3\N(K), ξ±(L)) is overtwisted.

Proof. For any Legendrian knot L, (S3\N(K), ξ−(L)) is contactomorphic to
(S3\N(K), ξ+(L)), where L is the mirror Legendrian knot to L. Since the
figure-eight knot is amphichiral, L is also a figure-eight knot, and rot(L) =
−rot(L). Thus, (1) and (2) are equivalent. Also, if L satisfies tb(L)±rot(L)<
−3, then so does L, so to prove the proposition, it suffices to consider ξ−(L)
for L satisfying the hypotheses of (2) and (3).

By [8], the figure-eight knot is a Legendrian simple knot (ie. Legen-
drian figure-eight knots are classified up to isotopy by their tb and rot) with
tb(L)− rot(L) ≤ −3. Thus, any L satisfying the hypotheses of (2) or (3) is
a positive stabilisation of some other Legendrian knot L′. By the discus-
sion in Section 2.3, gluing a positive basic slice (with appropriate slopes of
dividing curves) to the complement of a standard neighbourhood of L′ re-
covers the complement of a standard neighbourhood of L. Thus, gluing a
negative basic slice to the complement of a standard neighbourhood of L —
which constructs the contact structure ξ−(L) on S3\N(K) — is the same
as first gluing a positive basic slice to the complement of a standard neigh-
bourhood of L′, and then gluing on a further negative basic slice to get to
ξ−(L). These two basic slices (the positive and the negative) glue together
to give a single T 2 × I, but since the two basic slices have opposite signs,
the contact structure on this T 2 × I is overtwisted (see the discussion after
Theorem 2.7). This T 2 × I embeds into (S3\N(K), ξ−(L)), so we conclude
that (S3\N(K), ξ−(L)) is overtwisted. �

Let Lt have tb(Lt) = t ≤ −3 and tb(Lt)− rot(Lt) = −3. The negative
basic slice with dividing curve slopes −3 and ∞ can be divided into two
negative basic slices, one with dividing curve slopes −3 and t, and one with
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dividing curve slopes t and ∞. Hence,

(S3\N(Lt), ξ
−(Lt)) = (S3\N(L−3), ξ−(L−3))

for all t ≤ −3. A similar statement holds for ξ+ for L satisfying tb(L) +
rot(L) = −3. Additionally, as in the proof of Proposition 3.1, the amphichi-
rality of the figure-eight knot gives a contactomorphism between ξ−(L−3)
and ξ+(L−3). Thus, to prove Theorem 1.1, it is sufficient to show that
(S3\N(K), ξ−(L−3)) is overtwisted.

For the rest of this section, let L denote the Legendrian figure-eight knot
in (S3, ξstd) with tb(L) = −3 (called L−3 above). Recall that the knot in-
variant L̂(L) coming from Heegaard Floer vanishes for all Legendrian figure-
eight knots, which implies that the contact invariant EH(ξ−(L)) = 0 as well
(see Section 2.5).

Proposition 3.2. All positive contact surgeries on L are overtwisted.

Sketch of Proof. Assuming ξ is tight, we will use convex surfaces to show
that (S3\N(K), ξ−(L)) is contactomorphic to a unique contact manifold
(see Lemma 3.3 and Lemma 3.4). We will then construct this contact man-
ifold, and show that it has non-vanishing Heegaard Floer contact class EH.
However, since L̂(L) = 0, we know that EH(ξ−(L)) vanishes, and so we ar-
rive at a contradiction, and (S3\N(K), ξ−(L)) is overtwisted. We are then
done, by the discussion preceding the proposition. �

Given a Seifert surface Σ for L, we can think of Σ as sitting inside
S3\N(K) with boundary on ∂

(
S3\N(K)

)
. After perturbing Σ to be convex,

we first wish to normalise the dividing curves of Σ in (S3\N(K), ξ−(L)).
We will use the fact that S3\N(K) is fibred over S1 with fibre Σ, and the
monodromy (after choosing a basis for Σ) is given by

φ =

(
2 1
1 1

)
up to twisting along the boundary of Σ; choose the representative without
any boundary twisting.

Lemma 3.3. If (S3\N(K), ξ−(L)) is tight, there is an isotopic copy of Σ
in (S3\N(K), ξ−(L)) such that it is convex and the dividing curves consist
of a single boundary-parallel arc.
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Figure 6: Possible dividing curves on the annulus A. The tops are identified
with the bottoms, and the left-hand side sits on ∂

(
S3\N(K)

)
.

Proof. During this proof, we will perturb Σ and swing it around the fibration
to get new surfaces isotopic to Σ; we will call each new copy Σ.

Etnyre and Honda showed in [8] that there exists a convex copy of Σ
in the complement of N(L) with dividing curves consisting of three arcs,
parallel to ( 0

1 ), ( 1
1 ), and ( 1

2 ).
After gluing on a negative basic slice to get (S3\N(K), ξ−(L)), we extend

Σ to the new boundary by gluing on an annulus A whose dividing curves
are of one of the forms given in Figure 6, a translate of one of those forms
(ie. the right-hand side endpoints are shifted up/down in the S1-direction
from what is shown in the figure), or the image of one of those forms in
a power of a Dehn twist along the core of the annulus. Note that we have
already excluded from our list of possibilities the cases where the dividing
curves on A trace a boundary-parallel curve along ∂

(
S3\N(K)

)
. In these

cases, the dividing curves on Σ would consist of a boundary-parallel curve
and a contractible curve. Since we are assuming that (S3\N(K), ξ−(L)) is
tight, these cases would contradict Theorem 2.3.

In any of the remaining cases, the resulting dividing curves on Σ ∪A
consist either of a single boundary-parallel arc or one non-boundary-parallel
arc and one closed curve. We claim that the second case cannot occur.
Indeed, we claim that a the relative Euler class acting on Σ ∪A must be
non-zero, whereas it would be zero in the second case.
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Indeed, in the second case, the dividing curves divide Σ ∪A into posi-
tive and negative regions that have the same Euler characteristic. Since the
relative Euler class is the difference of these Euler characteristics, it must
vanish. On the other hand, using the description of the dividing curves of Σ,
it is straightforward to calculate that its relative Euler class vanishes (alter-
natively, this is the value of rot(L), which is 0). Then, by the additivity of
this invariant, the relative Euler class of Σ ∪A is equal to the relative Euler
class of A in the basic slice.

To calculate this, we convert our basic slice to the standard picture
described in Section 2.3. The matrix

(
1 0
2 1

)
∈ SL2(Z) takes the slopes −∞

and −3 of our basic slice to the standard slopes −∞ and −1, respectively.
Since (

1 0
2 1

)(
1
0

)
=

(
1
2

)
=

(
1
0

)
− 2 ·

(
0
−1

)
,

we see that the relative Euler class of the basic slice evaluated on A is ∓2,
which is non-zero, as claimed. �

Lemma 3.4. Up to contactomorphism, there is at most one tight contact
structure on S3\N(K) inducing a convex boundary with two meridional di-
viding curves and such that there exists a copy of Σ with dividing curves of
the form described in Lemma 3.3.

Proof. First, we claim we can switch the signs of the regions Σ± of Σ. Indeed,
since φ = (−id) ◦ φ ◦ (−id)−1, we can apply −id to Σ, which keeps the same
dividing curves, but switches the signs of the regions.

Given Σ with fixed dividing curves Γ and signs of the regions Σ\Γ, this
uniquely determines a tight vertically-invariant contact structure on some
neighbourhood N(Σ) of Σ. We will show that there exists a unique tight
contact structure on M\N(Σ). Then, given two tight contact structures on
M inducing the same dividing curves on Σ with the same signs, a contacto-
morphism of N(Σ) can be extended to a contactomorphism on all of M .

Observe that M\N(Σ) ∼= Σ× [0, 1] is a genus 2 handlebody. The contact
structure has a convex boundary obtained by rounding the edges of Σ× {i}
and ∂Σ× [0, 1], where the dividing curves on Σ× {0} are Γ, those on Σ× {1}
are φ(Γ) = Γ (since Γ is boundary-parallel), and those on ∂Σ× [0, 1] are
two copies of {pt} × [0, 1]. We will look for compressing discs D1 and D2

such that their boundaries are Legendrian with tb = −1. After making the
compressing discs convex, there will be a unique choice of dividing curves
for Di, since their dividing curves intersect the boundary of the disc at
exactly two points, by Theorem 2.2, and there can be no contractible dividing
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Σ× {0} Σ× {1}

Figure 7: In each picture, the top and bottom are identified, as are the left
and right sides. The dotted lines represent the dividing curves. The solid
lines represent the intersection of the boundaries ∂Di of the compressing
discs with Σ× {0, 1}.

curves, by Theorem 2.3. This allows us to uniquely define the tight contact
structure in a neighbourhood of ∂ (M\N(Σ)) ∪D1 ∪D2. The complement
of this neighbourhood is diffeomorphic to B3, and by [4], we can uniquely
extend the tight contact structure over B3.

The dividing curves on Σ× {0, 1} are shown as dotted lines in Figure 7.
The compressing discs are shown as solid lines. Figure 8 shows the divid-
ing curves in ∂Σ× [0, 1]. As the curves ∂Di pass from Σ× {0} to Σ× {1}
through the region ∂Σ× [0, 1], they do not intersect any dividing curves,
but they do switch which side of the dividing curves they are on. Thus, ∂Di

intersects the dividing curves exactly twice for each i = 0, 1, as required. �

We now construct this tight contact manifold, and show that the Hee-
gaard Floer contact class is non-vanishing:

Consider the open book for S3 given by the figure-eight knot. The sup-
ported contact structure ξot on S3 is overtwisted, but given any Legendrian
approximation L′ of the binding of the open book, it was shown in [9] that
L̂(L′) is non-vanishing. After gluing a negative basic slice to the complement
of a standard neighbourhood of L′, we arrive at S3\N(K) with contact struc-
ture ξ−ot(L

′) (in the language of Section 2.4). By the discussion in Section 2.5,
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Σ× {0}

Σ× {1}

∂Σ× [0, 1]

Figure 8: The left and right sides are identified in this picture. The dotted
lines represent the dividing curves. The annulus in the middle is the region
∂Σ× [0, 1], and the darker regions above and below are interpolating regions
representing how the dividing curves get connected while smoothing the
boundary of M\N(Σ).

the fact that L̂(L′) 6= 0 implies that ξ−ot(L
′) is tight, and that the Heegaard

Floer contact class satisfies EH(ξ−ot(L
′)) =6= 0. It is also shown in [9] that

in (S3\N(K), ξ−ot(L
′)), there is a copy of Σ (which is a page of the open

book) that is convex, with dividing set consisting of one boundary-parallel
arc. Thus, the unique contactomorphism class from Lemma 3.4 of type (2)
has non-vanishing Heegaard Floer contact invariant.

Proof of Theorem 1.1. By Proposition 3.1 and the discussion below it, it
suffices to consider the case tb(L) = −3. The result of any positive con-
tact surgery on L has a contact submanifold that can be identified with
(S3\N(K), ξ−(L)) or (S3\N(K), ξ+(L)). The Heegaard Floer contact class
EH(ξ±(L)) vanishes, as L̂(L) = 0 and L is amphichiral. Since if tight, ξ−(L)
and ξ+(L) would have to be contactomorphic to the contact structure on
S3\N(K) constructed above with non-vanishing Heegaard Floer contact
class, we conclude that ξ−(L) and ξ+(L) are overtwisted. Thus, any manifold
which contains them as a contact submanifold must also be overtwisted. �
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