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A characterisation of toric locally

conformally Kähler manifolds

Nicolina Istrati

We prove that a compact toric locally conformally Kähler manifold
which is not Kähler admits a toric Vaisman structure. This is the
final step leading to the classification of compact toric locally con-
formally Kähler manifolds. We also show, by constructing an ex-
ample, that unlike in the symplectic case, toric locally conformally
symplectic manifolds are not necessarily toric locally conformally
Kähler.

1. Introduction

In the present paper, we are interested in the incarnation of toric geometry
for locally conformally Kähler (LCK), or more generally, for locally con-
formally symplectic (LCS) manifolds. The beginnings of this study can be
traced down to the article of I. Vaisman [16], where he argues that LCS
manifolds are the natural phase spaces for Hamiltonian mechanics and is
the first to give a good notion of Hamiltonians in this context.

An LCS structure on a smooth manifold is a non-degenerate two-form
which, around every point of the manifold, differs from a local symplectic
form by a conformal factor. In analogy, an LCK structure is an LCS structure
together with a compatible complex structure, such that the non-degenerate
form in this case is locally conformal to a Kähler form. As they appear in the
current definitions and in the motivations given by I. Vaisman, LCS/LCK
manifolds generalise symplectic/Kähler manifolds. However, in many ways,
and in particular in the context of this paper, there exists a duality between
the behaviour of strict LCS manifolds and (conformally) symplectic mani-
folds, and since the latter are already well understood in toric geometry, we
will call LCS manifolds only the former.

General Hamiltonian group actions and the corresponding reduction pro-
cedure in the LCS and LCK context have been considered by S. Haller and
T. Rybicki in [8], by R. Gini, L. Ornea and M. Parton in [7], or by A. Oti-
man in [13]. But only recently were Hamiltonian actions of maximal tori on
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LCK manifolds studied towards a classification, by M. Pilca in [14] and by
F. Madani, A. Moroianu and M. Pilca in [12]. The program is as follows:
there exists a class of LCK manifolds, called Vaisman manifolds, which is
better understood via its many geometric properties. In particular, the uni-
versal cover of a Vaisman manifold is a Kähler cone over a Sasaki manifold.
In [14], toric Vaisman manifolds are studied and it is shown that for every
known existing equivalence of categories between them and some other class
of manifolds, the Hamiltonian toric action also is equivalent to a natural
Hamiltonian toric action in the given category. Then, in [12], it is shown
that the toric Sasaki manifold corresponding to a toric Vaisman manifold
is actually compact. But Sasaki manifolds are in particular contact, and
compact toric contact manifolds have been classified by E. Lerman in [11].

On the other hand, in [12] toric LCK manifolds of complex dimension 2
have been given a classification, and it turns out that they all admit toric
Vaisman metrics. Hence the question was raised of whether this is always the
case, regardless of dimension. The main result of this paper is an affirmative
answer to it, and so, together with the above cited papers, amounts to a
classification of toric LCK manifolds as complex manifolds with a torus
action.

Theorem A. Let (M,J,Ω) be a compact LCK manifold that admits an
effective holomorphic twisted Hamiltonian action of a torus of maximal di-
mension. Then there exists a (possibly different) LCK form Ω′ with respect
to which the same action is still twisted Hamiltonian, and such that the
corresponding metric g′ is Vaisman.

Remark that the universal cover of an LCK manifold is a non-compact
Kähler manifold, so one might want to use the theory of toric symplectic
manifolds in order to prove the result. However, in the non-compact world
the theorems of convexity and connectedness for moment maps of Atiyah
and Guillemin-Sternberg fail, and one no longer has a characterisation of the
symplectic manifold in terms of the image of the moment map. As proven
by E. Lerman and S. Tolman in [10], classification results still are possible,
but in terms of more complicated objects. Hence we chose to give a direct
proof, not relying on the known facts from toric symplectic geometry.

The proof occupies Section 5 and roughly goes as follows. First we remark
that the holomorphic action of the compact torus T on the manifold M
naturally extends to a holomorphic action of the complexified torus Tc. In
particular, on the minimal Kähler cover M̂ of M , Tc has a dense connected
open orbit, since the T-action is Hamiltonian. This allows us to view the
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A characterisation of toric LCK manifolds 1299

deck group Γ of M̂ as a subgroup of Tc, and to extend it to a one-parameter
subgroup of Tc. However, there is no reason for this group to act conformally
on the LCK form, so at this point we have to construct, by averaging, a new
LCK form, still compatible with the T-action. Finally, we are able to identify
a complex one-dimensional subgroup of the group of automorphisms of the
new LCK form, and we conclude by applying a result of Kamishima and
Ornea [9], ensuring the existence of a Vaisman metric in the conformal class
of the averaged metric.

The rest of the paper is organised as follows: in Section 2 we speak briefly
of equivalent definitions of LCS/LCK manifolds and of properties of their
infinitesimal automorphisms. In particular, in Lemma 2.10 we show that an
LCS structure is exact (see Definition 2.9) if and only if a certain a natural
character on the Lie algebra of its conformal automorphisms is surjective.

In Section 3 we introduce Hamiltonian group actions in the LCS context.
Section 4 puts together the results we use for our proof. In particular, we
explain when the action of a compact Lie group on an LCS manifold lifts
to the minimal symplectic cover (Proposition 4.3), and then show that the
maximal dimension of a torus acting effectively on a 2n-dimensional LCS
manifold is n+ 1 (Proposition 4.6).

We also show in Lemma 5.3 that the rank of any Lee form of a toric
LCK metric is always one. This result can also be obtained more indirectly
as a consequence of Theorem A and of [12, Proposition 5.4], which states
that a compact toric Vaisman manifold has first Betti number equal to one.

Finally, it is known that compact toric symplectic manifolds are actually
toric Kähler, as a consequence of the Delzant classification. It is natural to
ask if the analogous fact holds in our setting. It turns out that the answer
is negative: in Section 6 we show, by exhibiting an example, that the class
of compact toric LCS manifolds strictly contains the compact toric LCK
manifolds.

Acknowledgements. I thank Andrei Moroianu for introducing me to the
problem and for all the useful suggestions.

2. Preliminaries on LCS and LCK geometry

2.1. Definitions and notations

Let M be a differential manifold.

Definition 2.1. A non-degenerate 2-form Ω ∈ Ω2
M is called locally confor-

mally symplectic or LCS if there exists a closed non-exact 1-form θ ∈ Ω1
M ,
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called the Lee form, such that:

(1) dΩ = θ ∧ Ω.

Moreover, if there exists an integrable complex structure J with respect to
which Ω becomes a positive (1, 1)-form, i.e. such that g(·, ·) := Ω(·, J ·) is a
J-invariant Riemannian metric, then Ω is caled locally conformally Kähler
or LCK.

Equivalently, Ω is LCS (or LCK respectively) if and only if there exists
a covering of M with open sets {Uα}α∈I such that Ω restricted to each of
them is conformal to a symplectic (respectively Kähler) form:

Ω|Uα = eϕαΩα with dΩα = 0

where ϕα ∈ C∞(Uα) and Ωα ∈ Ω2
M (Uα). Moreover, we have θ|Uα = dϕα and

the fact that θ is not (globally) exact corresponds to (M,Ω) being non
conformal to a symplectic (or Kähler) manifold. Also, it can be seen directly
that if a form Ω is LCS or LCK, then for any u ∈ C∞(M), the form Ωu := euΩ
is also LCS or LCK with corresponding Lee form θu = θ + du, thus these
notions are conformal in essence. We will denote by [Ω] := {Ωu|u ∈ C∞(M)}
the conformal class of Ω.

Remark 2.2. This notion is only interesting for us on manifolds of real
dimension at least 4. Indeed, on manifolds of dimension 2, any 2-form is
automatically closed, hence LCS forms coincide with symplectic forms. On
the other hand, in dimension greater than 2, any 1-form θ verifying (1) is
uniquely determined by the LCS form Ω.

Definition 2.3. A differential manifold endowed with a conformal class
of an LCS form (M, [Ω]) is called a locally conformally symplectic or LCS
manifod. A complex manifold endowed with a conformal class of a compat-
ible LCK form (M,J, [Ω]) is called a locally conformally Kähler or LCK
manifold.

Remark 2.4. Our definition of an LCS/LCK form corresponds to what
is usually called a strict LCS/LCK form, and for the classical definition,
the class of LCS/LCK forms contains the globally conformally symplec-
tic/Kähler forms. However, from certain points of view, the category of
conformally symplectic manifolds and that of (strict) LCS manifolds behave
differently, and for our purposes we are only interested in the second one.
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In particular, in the complex setting, there is a theorem of I.Vaisman ([15])
stating that an LCK form on a complex manifold (M,J) is globally confor-
mally Kähler if and only if the manifold admits some Kähler metric. Thus
for our definition, the class of LCK manifolds is disjoint form the class of
Kählerian manifolds.

Let (M, [Ω]) be an LCS manifold. On the universal cover πM̃ : M̃ →M ,
π∗
M̃
θ = dϕ is exact and hence Ω0 := e−ϕπ∗

M̃
Ω ∈ Ω2

M̃
is a symplectic form.

Since π∗
M̃
θ is π1(M)-invariant, we have that γ∗ϕ− ϕ is constant for any

γ ∈ π1(M), hence we have a group morphism

ρ : π1(M)→ (R,+)

γ 7→ γ∗ϕ− ϕ.

We also have that π1(M) acts on Ω0 by homotheties:

γ∗Ω0 = e−ρ(γ)Ω0.

The data (M̃, π1(M), ρ,Ω0) completely determines the LCS manifold
(M, [Ω]). Actually, in order to get a symplectic manifold, one need not con-
sider the universal cover of M , but only its minimal cover with respect to
which θ becomes exact. This is precisely M̂ := M̃/Ker ρ and its deck group
over M is Γ = π1(M)/Ker ρ ∼= Im ρ, which is a free abelian subgroup of
(R,+), hence isomorphic to Zk for some k. Of course, the sympectic form
of M̃ descends to M̂ , and we will denote it also by Ω0.

Note that the de Rham class of the Lee form [θ]dR ∈ H1
dR(M,R) is in-

variant under a conformal change of the LCS form Ω, hence also the minimal
cover M̂ with the corresponding symplectic form Ω0, up to multiplication by
positive constants, depends only on the conformal class [Ω]. Also note that if
Ω is an LCK form with respect to a complex structure J , then the sympectic
form Ω0 is Kähler with respect to the pull-back complex structure.

For a given LCS form Ω with its Lee form θ, we have the twisted differen-
tial dθ := d− θ ∧ · which verifies dθΩ = 0 and dθ ◦ dθ = 0. There is a result
specific to the LCS geometry which is not valid in conformal symplectic
geometry, that will be useful to us:

Lemma 2.5. ([16],[12]) The map dθ : C∞(M)→ Ω1(M) is injective on an
LCS manifold (M,Ω).

In LCK geometry, there is a special class of manifolds that behaves
particularly nicely, characterised by a metric property:
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Definition 2.6. Let (M,J,Ω) be an LCK manifold with corresponding
metric g and Lee form θ. The metric g is called Vaisman if the form θ is
parallel with respect to the Levi-Civita connection corresponding to g.

Vaisman manifolds are closely related to Sasaki manifolds: the universal
cover of a Vasiman manifold with its Kähler metric is isometric to the Kähler
cone over a Sasaki manifold. We recall that a Sasaki manifold (S, gS , J̃) is a
Riemannian manifold (S, gS) together with a complex structure J̃ on S × R
with respect to which the cone metric gK := e−2t(gS + dt2) is Kähler, and
the homotheties ψs(z, t) = (z, t+ s), s ∈ R are holomorphic.

We will not insist at all on the properties of Vaisman manifolds, but
invite the reader to consult [5] and the references therein.

Remark 2.7. From now on, for an LCS manifod (M,Ω) we will always use
the notations θ, M̂ ,Γ, ρ, ϕ or Ω0 to denote the uniquely associated objects
as seen above, without redefining them. Also, we will always suppose, unless
otherwise stated, that the LCS/LCK manifolds are compact connected of
real dimension at least 4.

2.2. Infinitesimal automorphisms

In this section we will take a closer look at the Lie algebra of infinitesimal
automorphisms of LCS or LCK manifolds, and will distinguish a special
subalgebra that will play a particular role.

For an LCS manifold (M, [Ω]), the automorphism group Aut(M, [Ω]) is
formed by all the conformal diffeomorphisms Φ : M →M , Φ∗Ω ∈ [Ω]. By
obvious analogy, for an LCK manifold (M,J, [Ω]), the automorphism group
Aut(M,J, [Ω]) is given by all the conformal biholomorphisms. Denote by
aut(M, [Ω]) and by aut(M,J, [Ω]) respectively the corresponding Lie algebras
of infinitesimal automorphisms.

First of all, note that X ∈ aut(M, [Ω]) means LXΩ = fXΩ. This im-
plies (fX − θ(X))Ω = dθ(ιXΩ). Hence dθ((fX − θ(X))Ω) = 0, or also (dfX −
d(θ(X))) ∧ Ω = 0 and since we are working under the supposition that
dimM ≥ 4, it follows that θ(X)− fX = cX ∈ R. By straightforward com-
putations it can be seen that the constants cX are conformally invariant.
Hence we have a linear map:

l : aut(M, [Ω])→ R
X 7→ cX = θ(X)− fX

(2)
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which actually can be seen to be a Lie algebra morphism (see [16] for all the
details). Consider the kernel of this map, which is also conformally invariant:

aut′(M, [Ω]) := {X ∈ Γ(TM)|LXΩ = θ(X)Ω}.

We will call elements of this subalgebra horizontal or special conformal vec-
tor fields.

On the other hand, for X ∈ Γ(TM) and X̂ := π∗X ∈ Γ(TM̂) its lift to
M̂ , we have the following formula:

(3) LX̂Ω0 = e−ϕπ∗(LXΩ− θ(X)Ω).

In particular, for X ∈ aut(M, [Ω]) we have LX̂Ω0 = −l(X)Ω0.
Also, under the hypothesis dimM ≥ 4, every conformal automorphism

of the symplectic form Ω0 is in fact a homothety:

LXΩ0 = fΩ0 ⇒ 0 = d(LXΩ0) = df ∧ Ω0 ⇒ df = 0.

Hence we have proved the following lemma, which emphasises the role of
aut′(M, [Ω]):

Lemma 2.8. We have a natural isomorphism between aut(M, [Ω]) and
aut(M̂, [Ω0])Γ given by π∗. In particular, under this isomorphism, aut′(M, [Ω])
is in bijection with aut(M̂,Ω0)Γ, the Lie algebra of Γ-invariant infinitesimal
symplectomorphisms of Ω0.

Definition 2.9. An LCS form (Ω, θ) is called exact if Ω is dθ exact, i.e.
Ω = dθη, for some form η ∈ Ω1

M . Remark that, in this case, for any other
LCS form in the same conformal class Ωu = euΩ with Lee form θu = θ + du
we have Ωu = dθu(euη). Hence we can call an LCS manifold (M, [Ω]) LCS
exact if some, and hence any representative Ω is exact.

The map l defined in (2) is studied by I.Vaisman in [16], and in particular
its restriction to aut(M,Ω). He names LCS manifolds of the first kind those
for which this restriction is not identically zero and studies their structure.
As noted in [16], being of the first kind is not a conformally invariant notion.
However, we have the following result in the conformal setting:

Lemma 2.10. The map l is surjective iff (M, [Ω]) is LCS exact.
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Proof. First of all fix Ω ∈ [Ω] an LCS form. Suppose l 6≡ 0 and choose B ∈
aut(M, [Ω]) such that l(B) = 1. Then we have:

θ(B)Ω− Ω = LBΩ = dιBΩ + θ(B)Ω− θ ∧ ιBΩ

hence:

Ω = dθ(−ιBΩ).

Conversely, suppose Ω = dη − θ ∧ η. Define B ∈ Γ(TM) by: ιBΩ = −η. We
compute:

LBΩ = dιBdη − d(θ(B)η) + ιB(θ ∧ dη)

= d(θ(B)η − η)− d(θ(B)η) + θ(B)dη − θ ∧ (θ(B)η − η)

= (θ(B)− 1)Ω.

Hence B ∈ aut(M, [Ω]) and l(B) = 1. �

3. Twisted Hamiltonian vector fields

In this section, we study the corresponding notions of Hamiltonian vector
field and Hamiltonian group action to the LCS context. The definitions, as
presented, were introduced by I.Vaisman in [16], where one can also see a
number of reasons for why these are the natural analogues to the ones from
the symplectic world.

Definition 3.1. A vector field X ∈ Γ(TM) on an LCS manifold (M,Ω, θ)
is called twisted Hamiltonian if there exits a function f ∈ C∞(M) such that
ιXΩ = dθf .

Remark 3.2. Although it is not apparent from the definition, the above no-
tion is actually conformally invariant. Indeed, if X = Xf is a twisted Hamil-
tonian vector field for Ω with corresponding function f ∈ C∞(M) and Ω′ :=
euΩ is another conformal form with corresponding Lee form θ′ = θ + du,
then we have:

(4) ιXΩ′ = eu(df − θf) = dθ
′
(feu).
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Remark 3.3. As in the symplectic setting, an LCS form Ω defines on
C∞(M) a Poisson bracket:

{f, g} := Ω(Xg, Xf ) ∀f, g ∈ C∞(M)

and by straightforward calculations it can be seen that X{f,g} = [Xf , Xg].
Hence the set of twisted Hamiltonian vector fields ham(M, [Ω]) := {X ∈
Γ(TM)|∃f ∈ C∞(M) ιXΩ = dθf} forms a Lie subalgebra of Γ(TM).

Remark 3.4. Actually, ham(M, [Ω]) ⊂ aut′(M, [Ω]). Indeed, for X = Xf ∈
ham(M, [Ω]) we have:

LXfΩ = ιXfdΩ + dιXfΩ = ιXf (θ ∧ Ω) + d(df − θf) = θ(Xf )Ω.(5)

Remark 3.5. The pull-back morphism π∗ establishes an injection between
ham(M, [Ω]) and the Lie algebra of Hamiltonian vector fields of the symplec-
tic form on the minimal cover ham(M̂,Ω0). Indeed, if X = Xf ∈ ham(M,Ω)

and X̂ = π∗X is the pull-back vector field to M̂ , by writing Ω0 = e−ϕπ∗Ω
we have:

ιX̂Ω0 = e−ϕ(dπ∗f − π∗fdϕ) = d(e−ϕπ∗f).

For Ω ∈ [Ω], define the map AΩ : C∞(M)→ ham(M, [Ω]) by sending a
function f to its corresponding Hamiltonian vector field Xf with respect to
Ω. By Remark 3.3, if we consider on C∞(M) the Lie algebra structure given
by Ω, AΩ is a Lie algebra morphism. Note that since dθ : C∞(M)→ Ω1

M is
injective by Lemma 2.5, also AΩ is, hence AΩ is actually an isomorphism of
Lie algebras. By (4) we have Ae

uΩ(f) = AΩ(euf).

Definition 3.6. Let (M, [Ω]) be an LCS manifold. We say that an action
of a Lie group G is twisted Hamiltonian if g := Lie(G) ⊂ ham(M, [Ω]).

Remark 3.7. If the Lie group G is compact and acts conformally on [Ω],
then we can find an LCS form in the given conformal class that is G-
invariant. Indeed, take any LCS form Ω ∈ [Ω]. Then, for any g in G, we
have g∗Ω = efgΩ, with fg ∈ C∞(M). Let dv be a normalised Haar measure
on G, and take h :=

∫
G fgdv(g), so that ΩG :=

∫
G g
∗Ωdv(g) = ehΩ. Then

ΩG ∈ [Ω] is, by definition, a G-invariant LCS form with corresponding Lee
form θG = dh+ θ.

Suppose that a compact Lie groupG has a twisted Hamiltonian action on
the LCS manifold (M, [Ω]). As soon as we choose an LCS form Ω ∈ [Ω], there



i
i

“2-Istrati” — 2019/11/4 — 1:38 — page 1306 — #10 i
i

i
i

i
i

1306 Nicolina Istrati

automatically exists a moment map, that is a Lie algebra morphism µΩ : g→
C∞(M) which is a section of AΩ. More precisely, for any X ∈ g, if we denote
by µΩ

X := µΩ(X) ∈ C∞(M), we have ιXΩ = dθµΩ
X . This comes from the fact

that AΩ is an isomorphism of Lie algebras, hence µΩ = (AΩ)−1|g.

Remark 3.8. Similarly to the symplectic context, µΩ can also be seen as
a map µΩ : M → g∗ via 〈µΩ, X〉 = µΩ

X . However, the fact that the first map
is a Lie algebra morphism does not automatically imply that the second
one is G-equivariant. In fact, being a Lie algebra morphism is conformally
invariant, while being equivariant is not. Nonetheless, if G is abelian, the
equivariance of µΩ is equivalent to g ⊂ ker θ, or also to Ω being G-invariant.

Remark 3.9. If (M, [Ω]) is an exact LCS manifold, and G is a compact
Lie group that acts conformally on it such that g = Lie(G) ⊂ aut′(M, [Ω]),
then this action is automatically twisted Hamiltonian. Indeed, as before, we
can choose from the beginning, in the given conformal class, Ω = dθη and θ
G-invariant. Now define ηG :=

∫
G g
∗ηdv(g). Then, since θ is G-invariant, we

have:

dθηG :=

∫
G
g∗(dη)dv(g)− θ ∧

∫
G
g∗ηdv(g)

=

∫
G
g∗(dη − θ ∧ η)dv(g) =

∫
G

Ωdv(g) = Ω.

Hence, there exists a momentum map given by the G-invariant form −ηG.
More precisely, we have, for any X ∈ g:

ιXΩ = ιXdη
G + θηG(X) = LXηG − d(ηG(X)) + θηG(X) = dθ(−ηG(X)).

4. Torus actions on LCS manifolds

In this section we assemble mostly already known results concerning tori
actions that we will need in the sequel. In particular we will make use of
the following well-known general result about the orbits of smooth actions
of compact Lie groups, which is a consequence of the slice theorem. We
refer the reader to [2] or to [4] for a proof of the result and for a detailed
presentation of the subject.

Theorem 4.1. Let N be a connected smooth manifold and G be a com-
pact Lie group which acts effectively by diffeomorphisms on N . For any
x ∈ N , denote by Gx := {g ∈ G|g.x = x} the stabiliser of x in G, and let
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r = infx∈N dimGx. Then Nr := {x ∈ N |dimGx = r}, called the set of prin-
cipal G-orbits, is a dense connected open submanifold of N , and N −Nr is
a union of submanifolds of codimension ≥ 2. Moreover, if G is abelian and
acts effectively on N , then r = 0.

Remark 4.2. In general, if G = T is a compact torus which acts effectively
on N as in the above theorem, the stabilisers Gx need not be connected.
However, if in addition we have a symplectic form on N which is preserved
by G and such that the orbits of the action are isotropic, then indeed all
the stabilisers are connected tori. For a proof of this, see for instance [1,
Lemma 6.7]. In particular, the set N0 is acted upon freely. As we will see
soon, cf. Proposition 4.6, this hypothesis will be verified in our context.

Since we will need to switch between the compact LCK manifold and
the non-compact Kähler covering, we need to know what happens with a
given torus action in the process. Its behaviour actually does not involve the
complex structure of the manifold, so next we give an analogue of [12, Propo-
sition 4.4] in the LCS setting, when the group is a torus. The above result
can be shown to hold for any compact Lie group, following the arguments
of [12] and using the structure theorem of compact Lie groups.

Proposition 4.3. Let (M, [Ω]) be an LCS manifold and T be a compact
torus acting on M by conformal automorphisms. Then the action of T lifts
to the minimal cover M̂ iff Lie(T) = t ⊂ aut′(M, [Ω]).

Proof. We can suppose that T = S1, for otherwise we make use of the same
argument for each generator of the T-action. Fix an LCS form Ω. Denote by
X the generator of the infinitesimal action of S1 on M , by X̂ its lift to M̂
and by Φt and Φ̂t their corresponding flows, so that Φ0 = Φ1 = idM . Then
the action of T lifts to M̂ iff Φ̂t is periodic in t.

Suppose first that t ⊂ aut′(M, [Ω]). Equation (3) implies then that X̂ ∈
aut(M̂,Ω0), hence {Φ̂t}t are symplectomorphisms. On the other hand, Φ̂1 is
an element of Γ since it covers the identity of M . Thus Φ̂1 ∈ Ker ρ = {id}
by the definition of the minimal cover.

Conversely, suppose Φ̂t is periodic in t. As we already saw, X̂ acts by
homotheties on Ω0, hence the exists a periodic C∞ function c : R→ R such
that Φ̂∗tΩ0 = c(t)Ω0. Moreover, we have, for any t1, t2 ∈ R:

c(t1 + t2)Ω0 = Φ̂∗t1(Φ̂
∗
t2Ω0) = Φ̂∗t1(c(t2))Φ̂∗t1Ω0 = c(t2)c(t1)Ω0.
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Hence, for any t ∈ R:

ċ(t) = lim
h→0

c(t+ h)− c(t)
h

= lim
h→0

c(t)c(h)− c(t)c(0)

h
= c(t)ċ(0).

On the other hand, since c is periodic, it must have some critical point,
implying that ċ(0) = 0. Therefore LX̂Ω0 = ċ(0)Ω0 = 0, or also, by (3), X ∈
aut′(M, [Ω]). �

Remark 4.4. Note that, in general, an action of a group G on M̂ descends
to an action of G on M iff G commutes with Γ.

Corollary 4.5. Any twisted Hamiltonian action of a compact torus T on
an LCS manifold (M, [Ω]) lifts to a Hamiltonian action of T to the minimal
symplectic cover (M̂,Ω0).

Proof. Indeed, by (5), t sits in aut′(M, [Ω]), so the T-action lifts to M̂ . More-
over, the lifted action is still Hamiltonian, since it admits the moment map
µ̂ : M̂ → t∗, µ̂(x̂) = e−ϕ(x̂)µΩ(π(x̂)). Remark that we chose a form Ω ∈ [Ω]
in order to define µ̂, but actually µ̂ is conformally invariant. �

Recall that, for a symplectic manifold, the maximal dimension of a torus
acting symplectically and effectively on it is bounded from above only by
the dimension of the manifold and, moreover, in many cases the orbits are
not isotropic. The next proposition shows that things are different in the
LCS setting. A variant of this result can again be found as Proposition 3.9
in [12].

Proposition 4.6. Suppose that a real torus Tm acts conformally end ef-
fectively on an LCS manifold (M2n, [Ω]). Then m ≤ n+ 1 and, moreover,
if t = Lie(Tm) ⊂ aut′(M, [Ω]), then m ≤ n and the orbits are isotropic with
respect to any representative in [Ω].

Proof. Denote by T ⊂ TM the distribution generated by Tm on M , and by
T̂ the one on M̂ . Suppose first that t ⊂ aut′(M, [Ω]). By (3) it follows that
Γ(T̂ ) ⊂ aut(M̂,Ω0). Hence, using the formula:

(6) ι[X,Y ] = LXιY − ιY LX

we have, for any X̂ and Ŷ in Γ(T̂ ):

0 = ι[X̂,Ŷ ]Ω0 = LX̂ιŶ Ω0 = dιX̂ιŶ Ω0 + ιX̂dιŶ Ω0.
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But we also have:

dιŶ Ω0 = LŶ Ω0 = 0

implying that d(Ω0(X̂, Ŷ )) = 0, or also that Ω0(X̂, Ŷ ) = c ∈ R. It follows
that eϕc = π∗(Ω(X,Y )), and since eϕ is not Γ-invariant, c = 0. Therefore,
for any x̂ ∈ M̂ , T̂x̂ is isotropic with respect to (Ω0)x̂, so T̂ and also T have
maximal rank at most n.

On the other hand, let M0 ⊂M be the dense open set composed by all
the m-dimensional orbits, as in Theorem 4.1. Then M0 × t injects into T |M0

as a vector subbundle in a natural way, hence m ≤ n.
In the general case, if t 6⊂ aut′(M, [Ω]), then by (2) there exists B ∈

t− aut′(M, [Ω]) such that l(B) = 1. Then we have a splitting t = RB ⊕ t′

with t′ ⊂ aut′(M, [Ω]) and by the above, t′ has dimension at most n, hence
the conclusion follows. �

Definition 4.7. An LCS manifold (M2n, [Ω]) is called toric LCS if the
maximal compact torus Tn acts effectively in a twisted Hamiltonian way on
it. An LCK manifold (M2n, J, [Ω]) is called toric LCK if (M2n, [Ω]) is toric
LCS with respect to an action of Tn which is moreover holomorphic.

The first examples of toric LCS/LCK manifolds are given by the diagonal
Hopf surfaces C2 − {0}/Γ with the Vaisman metrics constructed in [6] and
with the standard torus action. For a detailed proof, see [14] where toric
LCK manifolds were first considered. See also [14] for another construction
of toric LCK manifolds out of toric Hodge manifolds.

5. Proof of Theorem A

We are now ready to give the proof of the main result:

Theorem A. Let (M,J, [Ω]) be a compact toric LCK manifold. Then there
exists an LCK form Ω′ (possibly nonconformal to Ω) with respect to which
the same action is still twisted Hamiltonian, and such that the corresponding
metric g′ is Vaisman.

Proof. Denote by T the n-dimensional compact torus that acts on the LCK
manifold as in the hypotheses of the theorem. Then the holomorphic action
of T naturally extends to a holomorphic action of the complexified torus
Tc = (C∗)n on M . Indeed, on one hand the induced inclusion homomorphism
τ : t→ aut(M,J) extends to a Lie algebra morphism τ : Lie(Tc) = t⊗ C→
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aut(M,J) by:

τ(ξ1 + iξ2) = τ(ξ1) + Jτ(ξ2) = Xξ1 + JXξ2 .

On the other hand, we have the Cartan decomposition Tc = T× (R>0)n

and it ⊂ tc is isomorphic to (R>0)n under the exponential map. Hence, if
ξ1, . . . , ξn form a basis of the Lie algebra t, then JXξ1 , . . . , JXξn ∈ aut(M,J),
being complete vector fields, generate the holomorphic action of (R>0)n

on M .
Let (M̂, Ĵ ,Ω0) be the minimal Kähler cover of (M,J, [Ω]) of deck group

Γ. The action of Tc evidently lifts to M̂ , and T also acts in a Hamiltonian
way with respect to Ω0. Denote by µ̂ : M̂ → Rn the moment map of this
action, and let M̂0 ⊂ M̂ be the corresponding connected dense open set of
principal T-orbits, as in Theorem 4.1. Following the proof of Proposition 4.6,
the orbits of T on M̂ are isotropic, hence cf. Remark 4.2, M̂0 coincides with
the set of points of M̂ on which T acts freely.

Fact 1: Tc preserves M̂0 and acts freely on it.
By the above, Tc = T× (R>0)n preserves M̂0 iff ∀u ∈ (R>0)n, ∀x̂ ∈ M̂0,

∀t ∈ T− {1}, tu.x̂ 6= u.x̂. But this is obvious since t and u commute.
To show that the action of Tc is free on M̂0, let g ∈ Tc and x̂ ∈ M̂0

with g.x̂ = x̂. With the above remarks on Tc, we have g = tu with t ∈ T and
u = exp(iξ), ξ ∈ t. By letting ŷ := t.x̂, it follows that u.ŷ = x̂ ∈ Tx̂ = Tŷ.
Let c : R→ M̂ be the curve c(s) = exp(isξ).ŷ. Since µ̂ξ is constant on the
orbits of T, it follows that:

(7) µ̂ξ(c(0)) = µ̂ξ(ŷ) = µ̂ξ(x̂) = µ̂ξ(c(1)).

On the other hand, the vector field τ(iξ) = JXξ is, by definition, the gradient
of the Hamiltonian µ̂ξ. So, if ξ 6= 0, then µ̂ξ would be strictly increasing along
c, but this contradicts (7). Thus ξ = 0 and we have t.x̂ = x̂, implying again
that t is the trivial element in T, hence g is the trivial element in Tc.

Fact 2: Tc acts transitvely on M̂0.
For any x̂ ∈ M̂0, the map Tc → M̂0, g 7→ g.x̂ is a holomorphic open em-

bedding. Therefore, the connected open set M̂0 is a reunion of disjoint open
orbits of Tc, hence it must contain (and be equal to) a sole orbit.

In conclusion, for any choice of a point x̂0 ∈ M̂0 we have a Tc-equivariant
biholomorphism Fx̂0

: (C∗)n → M̂0, g 7→ g.x̂0, where (C∗)n acts on itself by
(left) multiplication. On the other hand, Γ preserves M̂0, hence we can view
Γ as a subgroup of biholomorphisms of (C∗)n acting freely.

Fact 3: Γ ⊂ Tc.
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Let ŷ = Fx̂0
(g), with g ∈ Tc, be any element of M̂0 and let γ ∈ Γ. Denote

by gγ ∈ Tc the element verifying γ(x̂0) = Fx̂0
(gγ). Since the action of Tc on

M̂ is the lift of the action of Tc on M , following Remark 4.4, Γ commutes
with Tc. We thus have:

γ(ŷ) = γ(g.x̂0) = g.γ(x̂0) = g.gγ .x̂0 = gγ .ŷ

implying that γ = gγ ∈ Tc.
Remark that, if gjγ ∈ C∗ are the components of gγ , then for at least one

1 ≤ j ≤ n, |gjγ | 6= 1. Otherwise we would have Γ ⊂ T and so T would not act
effectively on M .

Let now γ ∈ Γ ∼= Zk be a nontrivial primitive element and denote by Γ′

the subgroup generated by γ. With the same notations as before, we can
extend the action of Γ′ on M̂0

∼= (C∗)n to a holomorphic action of R on M̂0.
Indeed, if γ expresses, as an automorphism of (C∗)n, as:

γ(z1, . . . , zn) = (α1z1, . . . , αnzn),

with αj = ρje
iθj in polar coordinates, then define the one-parameter group:

R 3 t 7→ Φt ∈ Aut((C∗)n)

Φt(z1, . . . , zn) = (ρt1e
itθ1z1, . . . , ρ

t
ne
itθnzn).

Remark that R ∼= {Φt}t∈R is a subgroup of Tc ⊂ Aut((C∗)n), hence its action
on M̂0 actually extends to the whole of M̂ . Moreover, this also implies that Γ
commutes with R, so the action of R descends on M to an effective action of
R/Γ′ ∼= S1. Let C ∈ Γ(TM) be the real holomorphic vector field generating
this action.

Lemma 5.1. There exists on M an LCK form ΩC compatible with the
complex structure J , with corresponding Lee form θC , so that C preserves
both ΩC and θC . Moreover, the given action of T is still Hamiltonian with
respect to this new form.

Proof. For any t ∈ R let ft := Φ∗tϕ− ϕ ∈ C∞(M̂) and define h :=
∫ 1

0 ftdt ∈
C∞(M̂). Note that the functions {ft}t∈R are Γ-invariant:

δ∗ft = Φ∗t δ
∗ϕ− δ∗ϕ = Φ∗t (ϕ+ ρ(δ))− (ϕ+ ρ(δ)) = ft, ∀δ ∈ Γ(8)

hence so is h and they all descend to M . Moreover, since t ⊂ ker θ, ϕ is
T-invariant. As T commutes with {Φt}t∈R, it follows that also the function
h is T-invariant.
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Let the new Lee form be:

(9) θC :=

∫
R/Γ′

Φ∗t θdt = d

∫ 1

0
Φ∗tϕdt = d(ϕ+ h) = θ + dh.

By definition, it is C-invariant, but also T-invariant since t commutes with C.
Let now Ωh := ehΩ ∈ Ω2(M) and define the new LCK form as:

ΩC :=

∫
R/Γ′

Φ∗tΩhdt.

Since dΩh = θC ∧ Ωh by (9), we see that the Lee form of ΩC is indeed θC :

dΩC =

∫
R/Γ′

Φ∗t (dΩh)dt =

∫
R/Γ′

Φ∗t θ
C ∧ Φ∗tΩhdt =

= θC ∧
∫
R/Γ′

Φ∗tΩhdt = θC ∧ ΩC .

Again, the C-invariance of ΩC follows from its definition. Moreover, since h
is T-invariant and T commutes with R/Γ′, also ΩC is T-invariant.

Finally, LCθC = 0 implies that θC(C) is constant. On the other hand
θC(C) = LCϕ, and since ϕ is not even Γ-invariant, it follows that θC(C) =
λ 6= 0. Hence, by Lemma 2.10, the form η = − 1

λ ιCΩC ∈ Ω1
M verifies ΩC =

dθ
C

η. Moreover, η is automatically T-invariant, since both C and ΩC are.
Therefore, cf. Remark 3.9, we have a moment map for the action of T on
(M,J,ΩC) given by µC(X) = −η(X), implying that the action is still Hamil-
tonian. �

Lemma 5.2. The minimal cover corresponding to the form ΩC is M̂ .

Proof. Let pC : M̂C →M be the minimal Kähler cover corresponding to ΩC

with deck group ΓC , and denote by p : M̂ →M the projection corresponding
to Ω. We have pΦt = Φtp for any t ∈ R, by making no distinction of notation
between objects on M and on M̂ . We see, by (9) in Lemma 5.1, that p∗θC =
dϕC is exact, where ϕC = ϕ+ p∗h. So M̂ is a covering of M̂C and ΓC is a
subgroup of Γ′. On the other hand, by the same lemma, h is Γ-invariant, so
for any δ ∈ Γ′ we have δ∗ϕC = ρ(δ) + ϕC . Thus no element of Γ′ preserves
ϕC , therefore M̂C = M̂ . �

We also give here a lemma since it follows directly from the above con-
siderations, but we will not make use of it in the sequel.



i
i

“2-Istrati” — 2019/11/4 — 1:38 — page 1313 — #17 i
i

i
i

i
i

A characterisation of toric LCK manifolds 1313

Lemma 5.3. The rank of Γ is 1.

Proof. With the same notations as before, suppose there existed some γ′ ∈ Γ
independent (over Z) of γ. Then, in the same way, γ′ would generate another
real holomorphic vector field C ′ ∈ Γ(TM), independent of C. Indeed, if this
was not the case, then suppose we have C = aC ′ with a ∈ R. Then the
corresponding flows would verify Φt

C = Φt
aC′ = Φat

C′ . In particular, for any
m ∈ Z we would have that Φm

C = Φam
C′ ∈ Γ. From the independence of γ and

γ′ it follows that a 6∈ Q, so the additive subgroup Λ generated by 1 and a
in (R,+) is not discrete. Now, if we fix some x̂ ∈ M̂ , the map F : R→ M̂ ,
t 7→ Φt

C′(x̂) is continuous, so also F (Λ) ⊂ M̂ is not discrete. But F (Λ) is
contained in the fiber of the covering map through x̂ which must be discrete,
hence we have a contradiction.

Now let Ω′ be the LCK form obtained by averaging ΩC with respect to
C ′, as in Lemma 5.1. We would thus have an effective holomorphic action of
Tn+2 on M generated by t⊕ RC ⊕ RC ′, which is moreover conformal with
respect to Ω′. But by Proposition 4.6 this is impossible. �

To conclude the proof, let πit : tc → it and πt : tc → t be the natural pro-
jections, and consider the real vector field B := πit(C) ∈ it. As Jπit = πtJ ,
we also have JB = πt(JC). Since B = C − πt(C) is a difference of vector
fields preserving ΩC , it also preserves ΩC and so does JB, being in t. There-
fore, the holomorphic vector field V := B − iJB generates a one-dimensional
complex Lie group C of biholomorphic automorphisms of ΩC . But by a re-
sult of Kamishima and Ornea [9, Theorem A], the presence of a group with
these properties implies the existence of a Vaisman metric in the conformal
class of ΩC . This ends the proof of the theorem. �

Now, as a consequence of the main result, of [12, Proposition 5.4] and
of [3, Theorem 9.1] we have:

Corollary 5.4. Let (M,J, [Ω]) be a toric LCK manifold, strict or not. If
(M,J) is Kählerian, then M is simply connected, and in particular b1(M),
the first Betti number of M , is 0. If not, then b1(M) = 1.

6. Final remarks

Remark 6.1. Lemma 5.3 can also be seen, a posteriori, as a consequence
of [12, Proposition 5.4], where it is shown that a compact toric Vaisman
manifold has first Betti number 1.
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Remark 6.2. In the symplectic setting it follows, by using the Delzant
classification, that every compact toric symplectic manifold is in fact a toric
Kähler manifold, i.e. there exists an integrable complex structure, preserved
by the torus action, compatible with the given symplectic form. It turns out
that this does not happen in the LCS setting, i.e. a toric LCS manifold is not
necessarily toric LCK. We illustrate this by the following simple example.

Example 6.3. Consider on the compact manifold M = (S1)4 the action of
T = T2 given by:

(eit1 , eit2).(eiθ1 , eiθ2 , eiθ3 , eiθ4) = (ei(t1+θ1), ei(t2+θ2), eiθ3 , eiθ4)

where θ1, . . . , θ4 and t1, t2 are the polar coordinates on M , respectively T ,
given by the exponential map exp : R→ S1, θ 7→ eiθ. Let ν be the volume
form on S1 such that exp∗ ν = dθ, let pj : M → S1 be the canonical projec-
tion on the j-th factor of M and let νj := p∗jν, where j ∈ {1, 2, 3, 4}. Define
the T -invariant 1-forms on M :

θ := ν4 and η := sin θ3ν1 + cos θ3ν2.

Then we have:

dη = cos θ3ν3 ∧ ν1 − sin θ3ν3 ∧ ν2 and dη ∧ η = ν3 ∧ ν1 ∧ ν2

implying that η induces a contact form on p∗1S
1 × p∗2S1 × p∗3S1, hence Ω =

dθη ∈ Ω2(M) is a T -invariant LCS form on M . Moreover, clearly Lie(T ) ⊂
ker θ, so Lie(T ) ⊂ aut′(M, [Ω]). Thus, by Remark 3.9, the T -invriant form
−η gives a moment map for the T -action, hence (M, [Ω]) is a toric LCS
manifold. On the other hand, b1(M) = 4 /∈ {0, 1}, so by Corollary 5.4 M
cannot admit a toric LCK structure (strict or not).

Theorem A together with the papers [14], [12] and [11] lead to a classifi-
cation of toric LCK manifolds, at least as toric complex manifolds. Indeed,
now we know that we have a toric Vaisman metric on any toric LCK mani-
fold. Next, since the universal cover of the Vaisman manifold is the Kähler
cone over a Sasaki manifold, [14] shows that the corresponding Sasaki mani-
fold is also toric in a natural way. Moreover, Lemma 5.3 or also [12, Proposi-
tion 5.4] imply that the Sasaki manifold is compact. Finally, any toric Sasaki
manifold is in particular a toric contact manifold, and the last ones, when
compact, were given a classification in [11].
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