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1. Introduction

In this article we study the asymptotic behavior of multiplicities of Lie group
representations arising from group actions on manifolds.

If G is a compact connected Lie group, its irreducible representations
are parametrized by a semi-group Λ+

G of dominant weights. We consider
admissible G-representations, namely those admitting a decomposition

E =
⊕
µ∈Λ+

G

mE(µ)V G
µ .

Here V G
µ is the irreducible representation of G associated to µ ∈ Λ+

G, and

mE(µ) ∈ N is the (finite) multiplicity of V G
µ in the representation E. The

fonction mE : Λ+
G → N is called a multiplicity map.
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1390 Paul-Emile Paradan

Recently, Stembridge [28] has proposed to generalize a classical result
of Murnaghan by introducing the notion of stability. A weight µ ∈ Λ+

G is
called

• semi-stable if mE(nµ) = 1 for all n ≥ 1.

• stable if mE(µ) > 0, and if the sequence mE(λ+ nµ) converges for any
λ ∈ Λ+

G.

It is natural to consider weaker notions: a weight µ ∈ Λ+
G is called

• weakly semi-stable if the sequence mE(nµ) is bounded,

• weakly stable if the sequence mE(λ+ nµ) is bounded for any λ ∈ Λ+
G.

Obviously we see that weak stability =⇒ weak semi-stability.

Definition 1.1. The admissible representation E is fine if

{weakly stable weights for mE} = {weakly semi-stable weights for mE}

and {stable weights for mE} = {semi-stable weights for mE}.

When an admissible representation E is fine, we associate a stretched
multiplicity map

(1.1) mµ
E : Λ+

G → N

to any stable weight µ, by taking mµ
E(λ) = limn→∞mE(λ+ nµ).

The main purpose of this paper is to exhibit a large family of fine ad-
missible representations for which we are able to compute the stretched
multiplicity maps.

Consider a closed subgroup K of G, not necessarily connected, and a
finite dimension K-module V . We assume that the algebra Sym(V ∗) of poly-
nomial functions on V has finite K-multiplicities. Let

E = EG,K,V := IndGK(Sym(V ∗))

be the representation of G which is induced by the K-module Sym(V ∗). We
have E =

∑
µ mE(µ)V G

µ where each multiplicity

mE(µ) = dim
[
Sym(V ∗)⊗ (V G

µ )∗|K
]K

.

is finite.
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Stability property of multiplicities of group representations 1391

The main result of this paper is the following

Theorem 1.2.
• The admissible representations EG,K,V are fine.
• Let µ be a stable weight for mE. The stretched multiplicity map mµ

E
has the following expression:

mµ
E = mE′ ,

where E′ = EGµ,H,V ′. Here Gµ is the stabilizer subgroup of µ, H is a closed
subgroup of Gµ and V ′ is a H-module such that the algebra Sym((V ′)∗) has
finite H-multiplicities.

The following important example is concerned with the branching laws.

Example 1.3. Consider a morphism ρ : K → K̃ between two connected
compact Lie groups. Let us work with the groups G := K × K̃, K ↪→ G
embedded diagonally, and with the trivial K-module V = 0. In this setting
the multiplicity function mE corresponds to the branching laws1 between
the representations of K and K̃:

(1.2) mE(λ, λ̃) = dim
[
V K
λ ⊗ V K̃

λ̃
|K
]K

,

for (λ, λ̃) ∈ Λ+
K × Λ+

K̃
.

So Theorem 1.2 shows that any branching law defines fine multiplicity
map. This fact generalizes previous results obtained by Stembridge [28] and
Sam-Snowden [26] for the Kronecker coefficients (see Section 5.3 for more
details). Notice that Pelletier has also obtained a geometric proof of the
equivalence stability ' semi-stability for the Kronecker coefficients [25].

Our computation of the stretched multiplicity maps extends some results
obtained by Brion [9], Manivel [15] and Montagard [19] in the plethysm case.
In fact, when µ is weakly stable, we get a formula for mE(λ+ nµ) when n
is large enough.

Another interesting question is to produce examples of stable weights. In
the case of Kronecker coefficients, Vallejo [31] and Manivel [16] introduced a
notion of “additive matrix” that permits them to parametrize a large family
of stable elements. In Section 5 we show that this notion can be adapted

1In Section 2.2 we will use another convention for branching coefficients, taking
the dual of V Kλ in (1.2).
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1392 Paul-Emile Paradan

to any branching laws (see Definition 5.1), and we compute the stretched
multiplicity maps associated to the corresponding stable weights.

We finish this introduction by explaining a geometric result that we use
to obtain Theorem 1.2 and which is interesting for itself.

Let M be a compact complex manifold acted on by a compact Lie group
G. Let L →M be a G-equivariant holomorphic line bundle that is assumed
to be ample: the group G acts by holomorphic transformations on L. In
this context, we are interested in the family of vector spaces Γ(M,L⊗n)G

consisting of G-invariant holomorphic sections, and more particularly to the
sequence

H(n) := dim Γ(M,L⊗n)G, n ≥ 1.

For any holomorphic G-vector bundle E →M , we consider also the sequence

HE(n) := dim Γ(M, E ⊗ L⊗n)G, n ≥ 1.

We obtain the following geometric stability result.

Theorem 1.4. If H(n) is bounded, then the sequence HE(n) is bounded
and can be computed for large values of n.

Let us explain the contents of the different sections of the article.

• In Section 2.1 the precise statement of Theorem 1.4 is given in Theorem A.
• In Section 2.2 we apply Theorem A to the case of branching law coefficients.
See Theorem B.
• In Section 2.3 the precise statement of Theorem 1.2 is given in Theorem C.
• In Section 3 we recall some basic properties that follows from the [Q,R] = 0
theorem.
• Section 4 is dedicated to the proof of Theorems A and C.
• The final section is devoted to some examples.

Notations. Throughout the paper:

• G denotes a compact connected Lie group with Lie algebra g.

• T is a maximal torus in G with Lie algebra t.

• Λ ⊂ t∗ is the weight lattice of T : every µ ∈ Λ defines a 1-dimensional
T -representation, denoted by Cµ, where t=exp(X) acts by tµ :=ei〈µ,X〉.

• We denote by R(G) the representation ring ofG : an element E ∈ R(G)
can be represented as finite sum E =

∑
µ∈Λ+

G
mµV

G
µ , with mµ ∈ Z. The

multiplicity m0 of the trivial representation is also denoted [E]G.
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Stability property of multiplicities of group representations 1393

• We denote by R̂(G) the space of Z-valued functions on Ĝ. An element
E ∈ R̂(G) can be represented as an infinite sum E =

∑
µ∈Λ+

G
m(µ)V G

µ ,
with m(µ) ∈ Z.

• If K is a closed subgroup of G, the induction map IndGK : R̂(K)→
R̂(G) is the dual of the restriction morphism R(G)→ R(K).

• When G acts on a set X, the stabilizer subgroup of x ∈ G is denoted
by Gx := {g ∈ G | g · x = x}. The Lie algebra of Gx is denoted by gx.

Acknowledgements. The author would like to thank Pierre-Louis Mon-
tagard and Boris Pasquier for many valuable discussions, and Michèle Vergne
for her insightful comments.

2. Statement of the results

In this section, we consider the action of a compact connected Lie group G
on a complex manifold M .

2.1. Geometric stability

We assume here that M is compact and is equipped with a G-equivariant
holomorphic line bundle L that is assumed to be ample. Then there exists
an Hermitian metric h on L such that the curvature Ω := i(∇h)2 of its
Chern connection ∇h is a Kähler class : Ω is a symplectic form on M that
is compatible with the complex structure. By an averaging process we can
assume that the G-action leaves the metric and connection invariant.

The moment map Φ : M → g∗ is defined by Kostant’s relations

(2.3) L(X)− ι(XM )∇h = i〈Φ, X〉 for all X ∈ g.

Here L(X) is the Lie derivative on the sections of L, and XM (m) := d
dse
−sX ·

m|s=0 is the vector field generated by X ∈ g.
An important object here is the Marsden-Weinstein symplectic reduced

space

M0 := Φ−1(0)/G.

The first important result is that M0 is homeomorphic to the Mumford GIT
quotient M//GC = Proj

(
⊕n≥0Γ(M,L⊗n)G

)
[12, 27]. We can then deduce the

following basic fact.
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Lemma 2.1. The sequence H(n) := dim Γ(M,L⊗n)G, n ≥ 1 satisfies the
following equivalences:
• H(n) = 0, ∀n ≥ 1 ⇐⇒ M0 = ∅,
• H(n) is non-zero and bounded ⇐⇒ M0 = {pt}.

We take mo ∈ Φ−1(0) and we denote by H the stabilizer subgroup of
mo. Kostant’s relations implies that the action of the connected component
Ho on L|mo

is trivial and so the H-module L⊗n|mo
is periodic.

The following result is a particular case of the [Q,R] = 0 theorem of
Guillemin-Sternberg [10, 27, 29].

Proposition 2.2. When M0 = {pt}, we have H(n) := dim[L⊗n|mo
]H . In

particular if H(1) 6= 0, the H-module L|mo
is trivial and then H(n) = 1 for

all n ≥ 1.

Let us recall the geometric criterion that characterizes the fact that the
reduced space M0 is a singleton. The tangent space Tmo

M at mo is a H-
module and we consider the sub-module gC ·mo ⊂ Tmo

M consisting of the
tangent vectors at mo of the complex orbit GC ·mo.

The following H-module is important for our purpose:

(2.4) W := Tmo
M/gC ·mo.

Let Sym(W∗) be the H-module consisting of polynomial functions on
W. The following standard fact is explained in Section 3.

Proposition 2.3. We have Φ−1(0)=Gmo if and only if the H-multiplicities
of Sym(W∗) are finite.

Our “geometric stability” result takes the following form.

Theorem A. Let E →M be an holomorphic G-vector bundle, and consider
the sequence HE(n) := dim Γ(M, E ⊗ L⊗n)G, n ≥ 1.

• If H(n) = 0, ∀n ≥ 1, then HE(n) = 0 if n is large enough.

• If H(n) is bounded and non-zero, then

HE(n) = dim
[
Sym(W∗)⊗ E|mo

⊗ L⊗n|mo

]H
for n large enough. Thus, the sequence HE(n) is periodic from a certain
rank, and accordingly it is bounded.
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• If H(n) is bounded and H(1) 6= 0, the sequence HE(n) is increasing
and converging to dim [Sym(W∗)⊗ E|mo

]H .

In the next section we apply Theorem A to the branching laws between
compact Lie groups.

2.2. Stability of branching law coefficients

Let ρ : G→ G̃ be a morphism between two connected compact Lie groups.
We denote by dρ : g→ g̃ the induced Lie algebras morphism, and by π :
g̃∗ → g∗ the dual map.

Select maximal tori T in G and T̃ in G̃, and Weyl chambers t̃∗≥0 in t̃∗

and t∗≥0 in t∗, where t and t̃ denote respectively the Lie algebras of T and

T̃ . Let Λ+
G̃
⊂ t̃∗≥0, Λ+

G ⊂ t∗≥0 be the set of dominant weights.

For any (µ, µ̃) ∈ Λ+
G × Λ+

G̃
, we denote by V G

µ , V G̃
µ̃ the corresponding ir-

reducible representations of G and G̃, and we define

(2.5) mρ(µ, µ̃) ∈ N

as the multiplicity of V G
µ in V G̃

µ̃ |G.

To (µ, µ̃) ∈ Λ+
G×Λ+

G̃
we associate the coadjoint orbits Gµ and G̃µ̃, viewed

as Kähler manifolds, and the ample line bundles Lµ → Gµ and L̃µ̃ → G̃µ̃
that are defined by Lµ ' G×Gµ Cµ and L̃µ̃ ' G̃×G̃µ̃ Cµ̃. The G-invariant
complex structure on the homogeneous manifold Gµ is such that the tangent
space Tµ(Gµ) is isomorphic to

∑
(α,µ)>0(g⊗ C)α.

By Borel-Weil theorem, we have V G
µ = Γ(Gµ,Lµ) and V G̃

µ̃ = Γ(G̃µ̃, L̃µ̃),
so that

mρ(nµ, nµ̃) = dim Γ(Mµ,µ̃,L⊗nµ,µ̃)G, n ≥ 1,

where Mµ,µ̃ = (Gµ)− × G̃µ̃ is a G-compact complex manifold2 and Lµ,µ̃ :=
(Lµ)−1 � L̃µ̃ is a G-equivariant ample line bundle on Mµ,µ̃.

Another version of Borel-Weil theorem3 says that

V G
λ+nµ = Γ(Gµ, Eλ ⊗ L⊗nµ ), n ≥ 0,

where Eλ ' G×Gµ V
Gµ
λ is the holomorphic G-vector bundle associated to

the irreducible representation V
Gµ
λ of Gµ with highest weight λ. Finally we

2(Gµ)− denotes the manifold Gµ with the opposite complex structure.
3See Section 1 of [19] for an explanation.
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see that

mρ(λ+ nµ, λ̃+ nµ̃) = dim Γ(Mµ,µ̃, Eλ,λ̃ ⊗ L
⊗n
µ,µ̃)G n ≥ 1,

with Eλ,λ̃ := (Eλ)∗ � Ẽλ̃.

For any couple of weights (µ, µ̃), we denote by (G̃µ̃)µ the reduction
of the G-Hamiltonian manifold G̃µ̃ at µ : in other words (G̃µ̃)µ := G̃µ̃ ∩
π−1(Gµ)/G. Thanks to the shifting trick, we notice that the symplectic
reduction of the G-manifold Mµ,µ̃ at 0 coincides with (G̃µ̃)µ.

In this setting Lemma 2.1 gives the following

Lemma 2.4. We have the following equivalences

• mρ(nµ, nµ̃) = 0, ∀n ≥ 1 ⇐⇒ (G̃µ̃)µ = (Mµ,µ̃)0 = ∅

• mρ(nµ, nµ̃) is bounded and non-zero ⇐⇒ (G̃µ̃)µ = (Mµ,µ̃)0 = {pt}.

When (G̃µ̃)µ = ∅, Theorem A tell us that for any dominant weight (λ, λ̃),
mρ(λ+ nµ, λ̃+ nµ̃) = 0 when n is large enough.

Let us concentrate on the case where (G̃µ̃)µ = (Mµ,µ̃)0 = {pt}. Let ξo ∈
G̃µ̃ such that π(ξo) = µ. We consider the point mo = (µ, ξo) ∈Mµ,µ̃ and its
stabilizer subgroup H = Gmo

that is contained in Gµ.
We consider the following H-modules associated to mo = (µ, ξo):

1) Dµ,µ̃ := Lµ,µ̃|mo
= (Cµ)∗|H ⊗ L̃µ̃|ξo ,

2) Eλ,λ̃ := Eλ,λ̃|mo
= (V

Gµ
λ )∗|H ⊗ Eλ̃|ξo ,

3) W := Tmo
Mµ,µ̃/gC ·mo that is isomorphic to TξoG̃µ̃/ρ(pµ) · ξo. Here

(2.6) pµ := t⊗ C ⊕
⊕

(α,µ)≥0

(g⊗ C)α

is the parabolic subalgebra of g⊗ C associated to µ.

Note that Ho acts trivially on the 1-dimensional H-module Dµ,µ̃ (it is
a consequence of Kostant’s relations). Thus the sequence (D⊗nµ,µ̃)n≥1 of H-
modules is periodic.

In this setting Proposition 2.3 says that (G̃µ̃)µ = {pt} if and only if the
H-module Sym(W∗) has finite H-multiplicities. Theorem A becomes

Theorem B. Let (µ, µ̃) be a dominant weight such that mρ(nµ, nµ̃) is
bounded and non-zero.
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• We have mρ(nµ, nµ̃)=dim[D⊗nµ,µ̃]H , n≥1, and for any dominant weight

(λ, λ̃) the equality

mρ(λ+ nµ, λ̃+ nµ̃) = dim[Sym(W∗)⊗ Eλ,λ̃ ⊗ D⊗nµ,µ̃]H

holds for n large enough. In particular the sequence mρ(λ+ nµ, λ̃+
nµ̃) is bounded.

• If mρ(µ, µ̃) 6= 0, we have mρ(nµ, nµ̃) = 1, ∀n ≥ 1. Moreover the se-
quence mρ(λ+ nµ, λ̃+ nµ̃) is increasing and constant for large enough
n, equal to dim[Sym(W∗)⊗ Eλ,λ̃]H .

In Section 5 we give some examples where Theorem B applies.

2.3. Stability in a non-compact case

We consider here a closed subgroup K of G, not necessarily connected, and
a Hermitian K-module V . We denote by ΦV : V → k∗ the (moment) map
defined by 〈ΦV (v), X〉 = 1

i (v,Xv). In this section we assume that the algebra
Sym(V ∗) of polynomial functions on V has finite K-multiplicities.

Let E be theG-representation that is induced by theK-module Sym(V ∗).
We have E =

∑
µ mE(µ)V G

µ where mE(µ) = dim[Sym(V ∗)⊗ (V G
µ )∗|K ]K .

The study of the asymptotic behavior of the multiplicity function µ 7→
mE(µ) uses that the representation space E can be constructed as the “ge-
ometric quantization” of the Hamiltonian G-manifold

(2.7) M := G×K (k⊥ ⊕ V ).

The moment map on M is defined by the relation

Φ([g; ξ ⊕ v]) := g (ξ + ΦV (v)) ,

and the complex structure on M comes from the natural isomorphism M '
GC ×KC V .

We denote by Mµ := Φ−1(Gµ)/G the symplectic reduction of M at µ.
Here the [Q,R] = 0 theorem gives the following

Proposition 2.5. We have the following equivalences:
• mE(nµ) = 0, ∀n ≥ 1 ⇐⇒ Mµ = ∅,
• mE(nµ) is non-zero and bounded ⇐⇒ Mµ = {pt}.
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We fix a dominant weight µ. Let xo ∈M such that Φ(xo) = µ. Its sta-
bilizer subgroup H ⊂ G is contained in Gµ. Hence the 1-dimensional repre-
sentation Cµ of the group Gµ can be restricted to H. It is not difficult to see
that the connected component Ho acts trivially on Cµ. Hence the sequence
Cnµ|H of H-modules is periodic.

Let mo = (µ, xo) ∈ P = (Gµ)−×M . The H-module W := Tmo
P/gC ·mo

is canonically isomorphic to TxoM/pµ · xo, where pµ is the parabolic subal-
gebra of g⊗ C associated to µ (see (2.6)).

Recall that the H-multiplicities in Sym(W∗) are finite if and only if
Φ−1(Gµ) = Gxo.

In this non-compact setting, we obtain the following stability result.

Theorem C.

• If mE(nµ) = 0, ∀n ≥ 1, then for any dominant weight λ we have
mE(λ+ nµ) = 0 if n is large enough.

• If mE(nµ) is bounded and non-zero, then mE(nµ) = dim[Cnµ|H ]H , n ≥
0, and for any dominant weight λ

mE(λ+ nµ) = dim
[
Sym(W∗)⊗ (V

Gµ
λ )∗|H ⊗ C−nµ|H

]H
for n large enough. In particular the sequence mE(λ+ nµ) is bounded.

• If mE(nµ) is bounded and mE(µ) = 1, the sequence mE(λ+ nµ) is
increasing and constant for large enough n. This constant limit value
is equal to

dim
[
Sym(W∗)⊗ (V

Gµ
λ )∗|H

]H
.

3. Reduction of Kähler manifolds

We consider a complex manifold M , not necessarily compact, and a holo-
morphic Hermitian line bundle (L, h) on it. We assume that the curvature
Ω = i(∇h)2 of its Chern connexion ∇h is a Kähler class (we say that the line
bundle L prequantizes the symplectic form Ω).

We suppose furthermore that a compact connected Lie group G acts
on L →M leaving the metric and connection invariant. Hence we have a
moment map Φ : M → g∗ defined by Kostant’s relations (see (2.3)). Let
us assume that the G-action on M extends to a GC-action and that the
momentum map Φ is proper. Then the G-actions on L and on its smooth
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sections can both be uniquely extended to actions of GC, and the projection
L →M is equivariant [27].

When 0 is a regular value of Φ, the symplectic reduced space

M0 := Φ−1(0)/G

is an orbifold equipped with an induced Kähler structure form (Ω0, J0), and
the line orbibundle L0 := L|Φ−1(0)/G prequantizes (M0,Ω0).

In general the reduced space M0 has a natural structure of a singular
Kähler manifold that is defined as follows. A point m ∈M is (analytically)
semi-stable if the closure of the GC-orbit through m intersects the zero level
set Φ−1(0), and we denote the set of semi-stable points by M ss.

On M ss, we have a natural equivalence relation : x ∼ y ⇐⇒ GCx ∩
GCy ∩M ss 6= ∅. The Mumford GIT quotient M//GC is the quotient of M ss

by this equivalence relation (see [12, 20, 27]).
We have the following crucial fact

Theorem 3.1. The set M//GC has a canonical structure of a complex an-
alytic space, and the inclusion Φ−1(0) ↪→M ss induces an homeomorphism
M0 'M//GC.

To get a genuine line bundle on M0, we have to replace L by a suitable
power L := L⊗q such that for any m ∈ Φ−1(0) the stabilizer subgroup Gm
acts trivially on L|m. Then L0 := L⊗q|Φ−1(0)/G is an holomorphic line bundle
on M0.

We need the following result (see Theorem 2.14 in [27]).

Theorem 3.2. The line bundle L0 is positive in the sense of Grauert. The
reduced space M0 is a complex projective variety, a projective embedding
can be given by the Kodaira map M0 → P(Γ(M0,L⊗k0 )) for some sufficiently
large k.

The following theorem is the first instance of the [Q,R] = 0 phenomenon.
It was proved by Guillemin-Sternberg [10] in the case where 0 is a regular
value of Φ and M is compact. In [27] Sjamaar extends their result by dealing
with the non-smoothness of M0 and the non-compactness of M .

Theorem 3.3. The quotient map M ss →M0 and the inclusion M ss ⊂M
induce the isomorphisms Γ(M,L)G ' Γ(M ss,L)G ' Γ(M0, q

G
∗ L), where qG∗ L

is the sheaf of invariant sections induces by the line bundle L.
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In this paper we will use Theorems 3.2 and 3.3 to get basic results
concerning the sequence H(n) := dim Γ(M,L⊗n)G, n ≥ 1.

Proposition 3.4. For n large enough, the sequence H(nq) is polynomial
with a dominant term of the form cnα where α is the complex dimension of
the (smooth part of the) irreducible variety M0.

Proof. It is direct consequence of two facts: H(nq) := dim Γ(M0,L⊗n0 ) thanks
to Theorem 3.3 and the Kodaira map M0 → P(Γ(M0,L⊗n0 )) is a projective
embedding for n large enough. �

We get then the following useful result.

Lemma 3.5. • H(n) = 0, n ≥ 1 ⇐⇒ M0 = ∅.
• H(n) is non-zero and bounded ⇐⇒ M0 = {pt}.
• If H(n) is bounded and H(1) 6= 0, then H(n) = 1 for all n ≥ 1.

Proof. The implications =⇒ are a consequence of Proposition 3.4, and the
implications ⇐= are a consequence of Theorem 3.3. For the last point we
use first the [Q,R] = 0 theorem when M0 = {pt} : we have

H(n) := dim
[
L⊗n|mo

]H
where m ∈ Φ−1(0) and H is the stabilizer subgroup of mo. The H-module
L|mo

is trivial if and only if H(1) = 1. The third point follows then. �

We can now state the corresponding result that relates the multiplicities

mL(µ, n) := dim
[
Γ(M,L⊗n)⊗ (V G

µ )∗
]G
.

with the reduced spaces Mµ := Φ−1(Gµ)/G.

Lemma 3.6. • mL(nµ, n) = 0, n ≥ 1 ⇐⇒ Mµ = ∅.
• mL(nµ, n) is non-zero and bounded ⇐⇒ Mµ = {pt}.

Proof. It is a direct consequence of the shifting trick. We apply Lemma 3.5
to the Kähler manifold M × (Gµ)− prequantized by the holomorphic line
bundle L� L−1

µ . �

We finish this section by recalling the following basic facts.

Lemma 3.7. • Suppose that H(1) 6= 0. Then for any holomorphic vec-
tor bundle E →M , the sequence HE(n) = dim Γ(M, E ⊗ L⊗n)G is in-
creasing.
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• Let mo ∈ Φ−1(0) with stabilizer subgroup H. We consider the H-module
W := Tmo

M/gC ·mo. Then Φ−1(0) = Gmo if and only if the algebra
Sym(W∗) has finite H-multiplicities.

Proof. The first point follows from the fact that for any non-zero section
s ∈ Γ(M,L)G, the linear map w 7→ w ⊗ s defines a one to one map from
Γ(M, E ⊗ L⊗n)G into Γ(M, E ⊗ L⊗n+1)G.

Let us check the second point. The vector space g ·mo ⊂ Tmo
M is to-

tally isotropic, since Ωmo
(X ·mo, Y ·mo) = 〈Φ(mo), [X,Y ]〉 = 0. Hence we

can consider the vector space Emo
:= (g ·mo)

⊥/g ·mo that is equipped with
a H-equivariant symplectic structure ΩEmo : we denote by ΦEmo : Emo

→ h∗

the corresponding moment map. A local model for a symplectic neighbor-
hood of Gmo is G×H (h⊥ × Emo

) where the moment map is Φmo
[g; ξ, v] =

g(ξ + ΦEmo (v)). We see then that Φ−1(0) = Gmo if and only if the set
Φ−1
Emo

(0) is reduced to {0}, and it is a standard fact that Φ−1
Emo

(0) = {0}
if and only if the algebra Sym(E∗mo

) has finite H-multiplicities.
We are left to prove that Emo

'W. Let J be a complex structure on
Tmo

M compatible with the symplectic form Ωmo
. Since the vector space

gC ·mo is equal to the symplectic subspace g ·mo ⊕ J(g ·mo), the H-module
W has a canonical identification with its (symplectic) orthogonal (g ·mo ⊕
J(g ·mo))

⊥. Finally the orthogonal decomposition

(g ·mo ⊕ J(g ·mo))
⊥ ⊕ g ·mo = (g ·mo)

⊥

shows that the H-modules W and Emo
are equal. �

4. Witten deformation

Let us recall the basic definitions from the theory of transversally elliptic
symbols (or operators) defined by Atiyah-Singer in [1]. We refer to [8, 23]
for more details.

4.1. Elliptic and transversally elliptic symbols

LetM be a compactG-manifold with cotangent bundle T∗M . Let p : T∗M →
M be the projection. If E is a vector bundle on M , we may still denote
by E the vector bundle p∗E on the cotangent bundle T∗M . If E+, E− are
G-equivariant vector bundles over M , a G-equivariant morphism σ ∈
C∞(T∗M,Hom(E+, E−)) is called a symbol on M . For x ∈M , and ν ∈ T ∗xM ,
thus σ(x, ν) : E|+x → E|−x is a linear map. The subset of all (x, ν) ∈ T∗M
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where the map σ(x, ν) is not invertible is called the characteristic set of σ,
and is denoted by Char(σ). A symbol is elliptic if its characteristic set is
compact.

An elliptic symbol σ on M defines an element [σ] in the equivariant K-
theory of T∗M with compact support, which is denoted by K0

G(T∗M). The
index of σ is a virtual finite dimensional representation of G, that we denote
by IndexMG (σ) ∈ R(G) [3–6].

Recall the notion of transversally elliptic symbol. Let T∗GM be the fol-
lowing G-invariant closed subset of T∗M

T∗GM = {(x, ν) ∈ T∗M, 〈ν,X · x〉 = 0 for all X ∈ g} .

Its fiber over a point x ∈M consists of the cotangent vectors v ∈ T ∗xM which
vanish on the tangent space to the orbit of x under G, at the point x. Thus
each fiber (T∗GM)x is a linear subspace of T ∗xM . In general the dimension of
(T∗GM)x is not constant and this space is not a vector bundle. A symbol σ
is G-transversally elliptic if the restriction of σ to T∗GM is invertible outside
a compact subset of T∗GM (i.e. Char(σ) ∩ T∗GM is compact).

A G-transversally elliptic symbol σ defines an element of K0
G(T∗GM),

and the index of σ defines an element IndexMG (σ) of R̂(G).
Any elliptic symbol is G-transversally elliptic, hence we have a restriction

map K0
G(T∗M)→ K0

G(T∗GM), and a commutative diagram

(4.8) K0
G(T∗M) //

IndexMG
��

K0
G(T∗GM)

IndexMG
��

R(G) // R̂(G) .

Using the excision property, one can easily show that the index map
IndexUG : K0

G(T∗GU)→ R̂(G) is still defined when U is a G-invariant open
subset of a G-manifold (see [21, 24]).

Remark. In the following the manifold M will carry a G-invariant Rieman-
nian metric and we will denote by ν ∈ T∗M 7→ ν̃ ∈ TM the corresponding
identification.
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4.2. Localization of the Riemann-Roch character

Let M be a G-manifold equipped with an invariant almost complex struc-
ture J . Let p : TM →M be the projection. The vector bundle (T∗M)0,1

is G-equivariantly identified with the tangent bundle TM equipped with
the complex structure J . Let hM be an Hermitian structure on (TM,J).
The symbol Thom(M,J)∈C∞

(
T∗M,Hom(p∗(∧evenC TM), p∗(∧oddC TM))

)
at

(m, ν)∈TM is equal to the Clifford map

(4.9) cm(ν) : ∧evenC TmM −→ ∧oddC TmM,

where cm(ν).w = ν̃ ∧ w − ι(ν̃)w for w ∈ ∧•CTmM . Here ι(ν̃) : ∧•CTmM →
∧•−1
C TmM denotes the contraction map relative to hM . Since cm(ν)2 =
−‖ν‖2Id, the map cm(ν) is invertible for all ν 6= 0. Hence the symbol
Thom(M,J) is elliptic when the manifold M is compact.

Definition 4.1. Suppose that M is compact. To any G-equivariant vector
bundle E →M , we associate its Riemann-Roch character

RRJ
G(M, E) := IndexMG (Thom(M,J)⊗ E) ∈ R(G).

If the complex structure J is understood we simply denote by RRG(M,−)
the Riemann-Roch character.

Remark 4.2. The character RRG(M, E) is equal to the equivariant index
of the Dolbeault-Dirac operator DE :=

√
2(∂E + ∂

∗
E), since Thom(M,J)⊗ E

corresponds to the principal symbol of DE (see [7][Proposition 3.67]).

Let us briefly explain how we perform the “Witten deformation” of the
symbol Thom(M,J) with the help of an equivariant map φ : M → g∗ [14,
21, 24]. Consider the identification ξ 7→ ξ̃, g∗ → g defined by a G-invariant
scalar product on g∗. We define the Kirwan vector field:

(4.10) κφ(m) =
(
φ̃(m)

)
M

(m), m ∈M.

We denote by Zφ ⊂M the subset where κφ vanishes.

Definition 4.3. The symbol Thom(M,J) pushed by the vector field κφ is
the symbol cφ defined by the relation

cφ|m(ν) = Thom(M,J)|m(ν̃ − κφ(m))

for any (m, v) ∈ T∗M .
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Note that cφ|m(ν) is invertible except if ν̃ = κφ(m). If furthermore ν
belongs to the subset T∗GM of cotangent vectors orthogonal to the G-orbits,
then ν = 0 and m ∈ Zφ = {κφ = 0}. Indeed κφ(m) is tangent to G ·m while
ν is orthogonal. Finally we have Char(cφ) ∩ T∗GM ' Zφ.

Definition 4.4. When the critical set Zφ is compact, we define

RRG(M, E , φ) ∈ R̂(G) as the equivariant index of the transversally elliptic
symbol cφ ⊗ E ∈ K0

G(T∗GM).

When M is compact, it is clear that the classes of the symbols cφ ⊗ E
and Thom(M,J)⊗ E are equal in K0

G(T∗GM), hence the equivariant indices
RRG(M, E) and RRG(M, E , φ) are equal.

For any G-invariant open subset U ⊂M such that U ∩ Zφ is compact
in M , we see that the restriction cφ|T∗U is a transversally elliptic symbol on

U , and so its equivariant index is a well defined element in R̂(G).

Definition 4.5. • A closed invariant subset Z ⊂ Zφ is called a component
if it is a union of connected components of Zφ.
• For a compact component Z of Zφ, we denote by

RRG(M, E , Z, φ) ∈ R̂(G)

the equivariant index of cφ ⊗ E|T∗U , where U is any G-invariant open sub-
set such that U ∩ {κφ = 0} = Z. By definition, RRG(M, E , Z, φ) = 0 when
Z = ∅.

In this paper we will be particularly interested in the character

RRG(M, E , φ−1(0), φ) ∈ R̂(G),

that is defined when φ−1(0) is a compact component of Zφ.

4.3. [Q,R] = 0 theorem

When (M,Ω,Φ) is a compact Hamiltonian G-manifold, the Riemann-Roch
character RRG(M,−) is computed with an invariant almost complex struc-
ture J that is compatible with Ω. Here the Kirwan vector field κΦ is the
Hamiltonian vector field of the function −1

2 ‖Φ‖
2. Hence the set ZΦ of ze-

ros of κΦ coincides with the set of critical points of ‖Φ‖2. When M is non
compact but the critical set ZΦ is compact, we can define the localized
Riemann-Roch character RRG(M,−,Φ). If moreover the map Φ is proper,
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the set Φ−1(0) will be a compact component of ZΦ, so we can consider the
localized Riemann-Roch character RRG(M,−,Φ−1(0),Φ).

Let L →M be a Hermitian line bundle that prequantizes the data
(M,Ω,Φ). In this setting we are interested in the dimension of the trivial G-
representation in RRG(M,L⊗n) that we simply denote by [RRG(M,L⊗n)]G

∈ Z.
The main facts of this localization procedure is summarized in the fol-

lowing.

Theorem 4.6 ([21, 24]). Let (M,Ω,Φ) be a Hamiltonian G-manifold pre-
quantized by a line bundle L. Let E be an equivariant vector bundle on M .
• When M is compact, we have[

RRG(M,L⊗n)
]G

=
[
RRG(M,L⊗n,Φ−1(0),Φ)

]G
, for n ≥ 1,[

RRG(M,L⊗n ⊗ E)
]G

=
[
RRG(M,L⊗n ⊗ E ,Φ−1(0),Φ)

]G
, for n� 1.

• If Φ is proper and the critical set ZΦ is compact, we have[
RRG(M,L⊗n,Φ)

]G
=
[
RRG(M,L⊗n,Φ−1(0),Φ)

]G
, for n ≥ 1,[

RRG(M,L⊗n ⊗ E ,Φ)
]G

=
[
RRG(M,L⊗n ⊗ E ,Φ−1(0),Φ)

]G
, for n� 1.

Let us finish this section by explaining the case where the quantity[
RRG(M, E ,Φ−1(0),Φ)

]G
can be computed as an index on the reduced

space M0.
First suppose that 0 is a regular value of Φ. The reduced space M0 is

a symplectic orbifold, and we can define in this context a Riemann-Roch
character RR(M0,−) with the help of a compatible almost complex struc-
ture. For any equivariant vector bundle F on M we define the orbibundle
F0 := F|Φ−1(0)/G on M0, and we have

(4.11)
[
RRG(M,F ,Φ−1(0),Φ)

]G
= RR(M0,F0).

Suppose now that 0 is a quasi-regular value of Φ. By definition, this is
the case when there exists a sub-algebra h of g such that Z := Φ−1(0) is
contained in the sub-manifold M(h) = GMh where Mh = {m ∈M, gm = h}.
Let N be the normalizer subgroup of h in G, and let Ho be the closed
connected subgroup of G with Lie algebra h. Thus M(h) ' G×N Mh and
Z ' G×N Zh where Zh := Φ−1(0) ∩Mh is a compact N -submanifold of M
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with a locally free action of N/Ho. Then the reduced space

M0 := Φ−1(0)/G ' Zh/(N/H
o)

is a compact connected symplectic orbifold.
Let W → Z be the symplectic normal bundle of the submanifold Z in

M : for x ∈ Z,

W|x = (TxZ)⊥/(TxZ)⊥ ∩ TxZ,

were we have denoted by (TxZ)⊥ the orthogonal with respect to the symplec-
tic form. We can equip W with an H-invariant Hermitian structure h such
that the symplectic structure on the fibers of W → Z is equal to −Im(h).

The sub-algebra h acts fiber-wise on the vector bundle W|Zh
. We con-

sider the action of h on the fibers of the bundle Sym(W∗|Zh
). We will use

the following result ([24][Section 12.2]).

Lemma 4.7. The sub-bundle [Sym(W∗|Zh
)]h is reduced to the trivial bundle

[C]→ Zh.

Thanks to Lemma 4.7, we can introduce the following notion of reduction
in the quasi-regular case.

Definition 4.8. If F →M is a K-equivariant vector bundle, we define on
M0 the (finite dimensional) orbibundle

F0 :=
[
F|Zh

⊗ Sym(W∗|Zh
)
]h
/(N/Ho).

If h acts trivially on the fibers of F|Zh
, the bundle F0 is equal to F|Zh

/(N/Ho).

The following result is proved in [24][Section 12.2].

Theorem 4.9. Assume that Φ−1(0) ⊂M(h). For any G-equivariant vector
bundle F →M , we have[

RRG(M,F ,Φ−1(0),Φ)
]G

= RR(M0,F0).

With Theorem 4.9 in hand, we can restate Theorem 4.6 when 0 is a
quasi-regular value of Φ.

Theorem 4.10. Let (M,Ω,Φ) be a Hamiltonian G-manifold prequantized
by a line bundle L. Let E be an equivariant vector bundle on M . Suppose
that 0 is a quasi-regular value of Φ.
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• When M is compact, we have[
RRG(M,L⊗n)

]G
= RR(M0,L⊗n0 ), for n ≥ 1,[

RRG(M,L⊗n ⊗ E)
]G

= RR(M0,L⊗n0 ⊗ E0), for n� 1.

• If Φ is proper and the critical set ZΦ is compact, we have[
RRG(M,L⊗n,Φ)

]G
= RR(M0,L⊗n0 ), for n ≥ 1,[

RRG(M,L⊗n ⊗ E ,Φ)
]G

= RR(M0,L⊗n0 ⊗ E0), for n� 1.

The famous identity [RRG(M,L)]G = RR(M0,L0), commonly called the
“quantization commutes with reduction” theorem, was first obtained by Mein-
renken [17] and Meinrenken-Sjamaar [18].

A case of particular interest for us is when the reduced space M0 :=
Φ−1(0)/G is reduced to a point : we are in the quasi-regular case. Let H be
the stabilizer subgroup of mo ∈ Z := Φ−1(0): note that the group H is not
necessarily connected. Then Z = G ·mo ' G/H is contained in GMh.

By definition, the fiber of the vector bundle W → Z at mo is W|mo
=

(g ·mo)
⊥/g ·mo. We have checked in the proof of Lemma 3.7 that the H-

module W|mo
coincides with W := Tmo

M/gC ·mo. Recall that the equality
Φ−1(0) = G ·mo is equivalent to the fact that the H-module Sym(W∗) has
finite multiplicities.

In this case Theorem 4.10 gives the following result.

Corollary 4.11. Let (M,Ω,Φ) be a Hamiltonian G-manifold prequantized
by a line bundle L. Let E be an equivariant vector bundle on M . Suppose
that Φ−1(0) = G ·mo with Gmo

= H.
• When M is compact, we have[

RRG(M,L⊗n)
]G

=
[
L⊗n|mo

]H
, for n ≥ 1,[

RRG(M,L⊗n ⊗ E)
]G

=
[
Sym(W∗)⊗ E|mo

⊗ L⊗n|mo

]H
, for n� 1.

• If Φ is proper and the critical set ZΦ is compact, we have[
RRG(M,L⊗n,Φ)

]G
=
[
L⊗n|mo

]H
, for n ≥ 1,[

RRG(M,L⊗n ⊗ E ,Φ)
]G

=
[
Sym(W∗)⊗ E|mo

⊗ L⊗n|mo

]H
, for n� 1.
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4.4. Main proofs

4.4.1. Proof of Theorem A. Consider a G-compact complex manifold
M endowed with an ample holomorphic G-line bundle L →M with cur-
vature the symplectic two-form Ω. Let Φ : M → g∗ be the moment map
associated to the G-action on L (see (2.3)).

Let E →M be an holomorphic G-vector bundle. In this context, we are
interested in the family of G-modules Γ(M, E ⊗ L⊗n) consisting of the holo-
morphic sections. We denote by HE(n) the dimension of Γ(M, E ⊗ L⊗n)G.
When we take E = C, we denote by H(n) = dim Γ(M,L⊗n)G.

By Kodaira vanishing theorem, we know that

HE(n) = [RRG(M, E ⊗ L⊗n)]G

when n is sufficiently large.
Two cases are considered in Theorem A.

• Suppose that H(n) = 0 for all n ≥ 1. We have seen in Lemma 3.5 that
it means that Φ−1(0) = ∅. In this case Corollary 4.11 says that HE(n) = 0
if n is large enough.

• Suppose that the sequence H(n) is non-zero and bounded: here we
have that Φ−1(0) = G ·mo for some mo ∈M . Corollary 4.11 tell us that[

RRG(M, E ⊗ L⊗n)
]G

=
[
Sym(W∗)⊗ E|mo

⊗ L⊗n|mo

]H
,

for n large enough.
The proof of Theorem A is then completed.

4.4.2. Proof of Theorem C. Here K is a closed subgroup of G, and we
use a K-invariant decomposition : g = k⊕ q. Let V be a K-Hermitian vector
space such that the K-module Sym(V ∗) has finite multiplicities. The proof
of Theorem C is an adaptation of the previous arguments to the case where
we work with the non-compact manifold M := G×K (q∗ ⊕ V ) ' GC ×KC V .

The symplectic structure on M is defined as follows. Let θ ∈ A1(G)⊗ g
the canonical connection relatively to right translation : θ( ddt |t=0ge

tX) = X.
Let ΩV be the symplectic structure on V which is −1 times the imaginary
part of the hermitian structure of V . Let λV the invariant 1-form on V
defined by λV (v) = 1

2ΩV (v,−) : we have ΩV = dλV . The moment map ΦV :
V → k∗ associated to the K-action on (V,ΩV ) is defined by 〈ΦV (v), X〉 =
1
2ΩV (Xv, v). We will use the following basic Lemma.
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Lemma 4.12. The followings statements are equivalent.

1) The K-module Sym(V ∗) has finite multiplicities.

2) The map ΦV is proper.

3) One has the relation ‖ΦV (v)‖ ≥ c‖v‖2, ∀v ∈ V , for some c > 0.

We consider the 1-form λ := λV − 〈ξ ⊕ ΦV , θ〉 on G× (q∗ ⊕ V ), which is
G×K-equivariant and K-basic. It induces a 1-form λM on M .

We have the standard fact.

Proposition 4.13.
• The 2-form ΩM := dλM defines a G-invariant symplectic form on M .

The corresponding moment map is Φ([g; ξ ⊕ v]) = g(ξ ⊕ ΦV (v)).
• The moment map Φ is proper and ZΦ ' G/K is compact.
• The trivial line bundle C on M prequantizes the 2-form ΩM .

We equip M with an invariant almost complex structure compatible
with ΩM . Since the critical set ZΦ is compact, one can define the localized
Riemann-Roch character RRG(M,−,Φ). The following result is proved in
[22][Proposition 2.18].

Proposition 4.14. We have RRG(M,C,Φ) = IndGK (Sym(V ∗)).

In order to compute geometrically m(µ) = dim[Sym(V ∗)⊗ (V G
µ )∗|K ]K

we have to adapt the shifting trick to this non-compact setting. Let us fix
two dominant weights µ and λ. The G-manifold P = M × (Gµ)− is equipped
with the following data:
• the symplectic form ΩP := ΩM ×−ΩGµ,
• the line bundle LP := C� L−1

µ that prequantizes ΩP ,
• the proper moment map ΦP : P → g∗, ΦP (m, ξ) = Φ(m)− ξ,
• the vector bundle Eλ := C�G×Gµ V

Gµ
λ .

For any R ≥ 0, let M≤R be the compact subset of points [g; ξ ⊕ v] such
that ‖ξ‖ ≤ R and ‖v‖ ≤ R. We start with the following basic fact whose
proof is left to the reader.

Lemma 4.15. There exists c > 0, such that for any µ the critical set ZΦP ⊂
P = M ×Gµ is contained in the compact set M≤c‖µ‖ ×Gµ.

Since ZΦP is compact we can consider the localized Riemann-Roch char-
acter RRG(P,−,ΦP ).
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Lemma 4.16. We have m(λ+ nµ) =
[
RRG(P, E∗λ ⊗ L

⊗n
P ,ΦP )

]G
for any

n ≥ 0.

Proof. We consider the family of equivariant maps φt : P → g∗, t ∈ [0, 1] de-
fined by the relation φt(m, ξ) = Φ(m)− tξ. Let κt be the Kirwan vector field
attached to φt, and let Zφt be the vanishing set of κt: thanks to Lemma 4.15
we know that Zφt is a compact subset included in M≤c‖µ‖ ×Gµ for any
t ∈ [0, 1].

We know then that the family of pushed symbols cφt is an homotopy of
transversally elliptic symbols on P . We get then that

RRG(P, E∗λ ⊗ L⊗nP ,ΦP ) = RRG(P, E∗λ ⊗ L⊗nP , φ0)

= RRG(M,C,Φ)⊗ RRG((Gµ)−, E∗λ ⊗ L⊗−nµ )

= RRG(M,C,Φ)⊗ (V G
λ+nµ)∗.

As RRG(M,C,Φ) = IndGK (Sym(V ∗)), the proof of the Lemma is com-
pleted. �

Like in the previous section, thanks to Corollary 4.11, we know that

the term
[
RRG(P, E∗λ ⊗ L

⊗n
P ,ΦP )

]G
can be computed explicitly when the

reduced space Φ−1
P (0)/G 'Mµ is empty or a point:

• If Φ−1
P (0) = ∅, we have

[
RRG(P, E∗λ ⊗ L

⊗n
P ,ΦP )

]G
= 0 when n is large

enough.
• If Φ−1

P (0) = G · (xo, µ) for some xo ∈M , we have

[
RRG(P, E∗λ ⊗ L⊗nP ,ΦP )

]G
=
[
Sym(W∗)⊗ C−nµ ⊗ (V

Gµ
λ )∗|H

]H
when n is large enough.

Let us summarize what we have just demonstrated.

• If Mµ = ∅, we have m(λ+ nµ) = 0 if n is large enough, for any domi-
nant weight λ,

• If Mµ = {pt}, we have m(λ+ nµ) = [Sym(W∗)⊗ C−nµ ⊗ (V
Gµ
λ )∗|H ]H

if n is large enough, for any dominant weight λ.

The last thing that we need to check is the following

Proposition 4.17. • m(nµ) = 0, n ≥ 1 ⇐⇒ Mµ = ∅,
• m(nµ) is non-zero and bounded ⇐⇒ Mµ = {pt}.



i
i

“5-Paradan” — 2019/11/19 — 1:25 — page 1411 — #23 i
i

i
i

i
i

Stability property of multiplicities of group representations 1411

Proof. The symplectic manifold M = G×K (q⊕ V ) admits a natural identi-
fication with the complex manifoldGC ×KC V , through the map [g;X ⊕ v] 7→
[geiX ; v]. Hence M inherits a GC-action and a GC-invariant (integrable) com-
plex structure JM : it is not difficult to check that JM is compatible with the
symplectic form ΩM .

We are in the setting of Section 3, where the trivial line bundle C→
M prequantizes ΩM . In this context, the space Γ(M,C⊗n) of holomorphic
section does not depends on n ≥ 1 and is equal to the vector space Chol(M)
of holomorphic functions on M .

According to Lemma 3.6, the sequence

mhol(nµ) = dim[Chol(M)⊗ (V G
nµ)∗]G

is related to the reduced space Mµ as follows:
• mhol(nµ) = 0, n ≥ 1 ⇐⇒ Mµ = ∅,
• mhol(nµ) is non-zero and bounded ⇐⇒ Mµ = {pt}.
Since the vector space Chol(GC ×KC V ) admits the vector space

⊕
λ∈Λ+

G

V G
λ ⊗

[
(V G
λ )∗|K ⊗ Sym(V ∗)

]K

as a dense subspace, we know that the multiplicities mhol(µ) and m(µ)
coincide. The proof is then completed. �

5. Examples

Let ρ : G→ G̃ be a morphism between two connected compact Lie groups.
The purpose of this section is to give examples of stable weights for the
multiplicity function mρ.

5.1. Basic examples of stable weights

We denote by dρ : g→ g̃ the induced Lie algebras morphism, and π : g̃∗ → g∗

the dual map. Select maximal tori T in G and T̃ in G̃, such that ρ(T ) ⊂ T̃ .
We still denote by dρ : t→ t̃ the induced map, and π : t̃∗ → t∗ the dual map.
Let ΛG̃ ⊂ t̃∗, ΛG ⊂ t∗ be the set of weights for the torus T̃ and T : we have
naturally that π(ΛG̃) ⊂ ΛG.
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Let R̃ := R(G̃, T̃ ) (resp. R := R(G,T )) be the set of roots for the group
G̃ (resp. G). Recall that an element ξ̃ ∈ t̃∗ defines a parabolic sub-algebra

p̃ξ̃ := t̃C ⊕
∑

α∈R̃,(α,ξ̃)≥0

(g̃C)α

of the reductive Lie algebra g̃C. Its nilpotent radical is ñξ̃ :=
∑

α∈R̃,(α,ξ̃)>0

(g̃C)α.

Definition 5.1. An element ξ̃ ∈ t̃∗ is G-adapted if the image of {α ∈
R̃, (α, ξ̃) > 0} by the projection π is contained in an open half space, i.e. if
there exists ξo ∈ t∗ such that ∀α ∈ R̃, (α, ξ̃) > 0 =⇒ (π(α), ξo) > 0.

Let Õ be a coadjoint orbit of the group G̃. The moment map Õ → g∗

relative to the action of G on Õ is the restriction of π on Õ. Hence for any
ξ ∈ g∗, the G-reduction of Õ at ξ is Õξ := Õ ∩ π−1(Gξ)/G.

The main tool used in this section is the following

Proposition 5.2. Let ξ̃ ∈ t̃∗ and ξ = π(ξ̃). If ξ̃ is G-adapted, then

• the G-reduction of G̃ξ̃ at ξ is reduced to a point,

• ρ(Gξ) ⊂ G̃ξ̃,

• ρ(pξ) ⊂ p̃ξ̃,

• The linear map ρ : pξ → p̃ξ̃ factorizes to a linear map ρ : nξ → ñξ̃.

Proof. Let Õ := G̃ξ̃. It is immediate to see that the first two points are a
consequence of the following equality

(5.12) Õ ∩ π−1(ξ) = {ξ̃}.

Let us denote by πt̃ : g̃∗ → t̃∗ the projection. Since Õ ∩ π−1
t̃

(ξ̃) is reduced

to the singleton {ξ̃}, the identity (5.12) follows from

(5.13) πt̃(Õ) ∩ πt̃
(
π−1(ξ)

)
= {ξ̃}.

Thanks to the Convexity Theorem [13] we know that πt̃(Õ) is equal to the
convex hull Conv(W̃ ξ̃), where W̃ is the Weyl group of (G̃, T̃ ). On the other
hand the set πt̃

(
π−1(ξ)

)
is equal to the affine subspace ξ̃ + E where E ⊂ t̃∗

is equal to the kernel of π : t̃∗ → t∗. Let A ⊂ t̃∗ be the tangent cone at ξ̃ of
the convex set Conv(W̃ ξ̃): by standard computation we know that −A is
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the cone generated by α ∈ R̃, (α, ξ̃) > 0. Since πt̃(Õ) ⊂ ξ̃ +A we see that
(5.13) is a consequence of

(5.14) A ∩ E = {0}.

Our proof of (5.12) is now completed since (5.14) follows immediately from
the fact that for some ξo ∈ t we have: ∀α ∈ R̃, (α, ξ̃) > 0 =⇒ (π(α), ξo) > 0.

Let us concentrate on the third point. We know already that ρ(Gξ) ⊂ G̃ξ̃.
Hence to get the inclusion ρ(pξ) ⊂ p̃ξ̃ we have just to check that

(5.15) ρ((gC)β) ⊂ p̃ξ̃

for any β ∈ R such that (β, ξ) > 0. A small computation shows that (5.15)
is a consequence of

(5.16)
{
α ∈ R̃, (α, ξ̃) < 0

}⋂
π−1(β) = ∅.

It is proved in [11][Lemma 8.3], that

(5.17) {β ∈ R, (β, ξ) > 0} ⊂ π
({
α ∈ R̃, (α, ξ̃) > 0

})
.

Since ξ̃ ∈ t̃∗ is adapted to the group G, we have

(5.18) π
({
α ∈ R̃, (α, ξ̃) > 0

})⋂
π
({
α ∈ R̃, (α, ξ̃) < 0

})
= ∅.

Hence (5.16) follows from identities (5.17) and (5.18).
For the last point we just use that the linear map ρ : pξ → p̃ξ̃ sends

(gξ)C into (g̃ξ̃)C. Then it factorizes to a map ρ from nξ ' pξ/(gξ)C into
ñξ̃ ' p̃ξ̃/(g̃ξ̃)C. �

Let us fix the sets of dominant weights Λ+
G̃

, Λ+
G for the groups G̃ and

G. For any (µ, µ̃) ∈ Λ+
G × Λ+

G̃
, we denote by V G

µ , V G̃
µ̃ the corresponding ir-

reducible representations of G and G̃, and we define mρ(µ, µ̃) as the multi-

plicity of V G
µ in V G̃

µ̃ |G.

Here is a first type of examples of stable weights for the multiplicity map
mρ. Let W̃ = NG̃(T̃ )/T̃ be the Weyl group of G̃.

Theorem 5.3. Let (µ̃, w̃) ∈ Λ+
G̃
× W̃ such that w̃µ̃ is adapted to G. Up

to the conjugation by an element of the Weyl group of G we can assume that
µ := π(w̃µ̃) is a dominant weight. Then
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• (µ, µ̃) is a stable weight for mρ.

• For any dominant weight (λ, λ̃) the sequence mρ(λ+ nµ, λ̃+ nµ̃) is
increasing and equal to

dim
[
Sym(W∗)⊗ (V H

λ )∗ ⊗ V H̃
w̃λ̃
|H
]H

for n large enough. Here H ⊂ G and H̃ ⊂ G̃ are the respective stabi-
lizers4 of µ and w̃µ̃, and W corresponds to the H-module

(5.19) ñw̃µ̃/ρ(nµ).

Proof. The first point is due to the fact that the stabilizer of w̃µ̃ relative to
the G-action is equal to the connected subgroup H, hence the H-module D
is trivial. For the second point we have just to check the computation of the
H-module W. Let a = w̃µ̃ ∈ Õ := G̃µ̃. Here TaÕ ' p̃w̃µ̃/h̃C. As ρ(pµ) ⊂ p̃w̃µ̃
one sees directly that W = TaÕ/ρ(pµ) · a is equal to (5.19). �

We have another specialization of Theorem B that will be used in the
plethysm case. We suppose here that the sets of positive roots R̃+ and R+

are chosen so that the corresponding Borel subgroups B ⊂ GC and B̃ ⊂ G̃C
satisfy

(5.20) ρ(B) ⊂ B̃.

Let Λ+
G̃

, Λ+
G be the corresponding set of dominants weight. When we work

with this parametrization we have the following classical fact.

Lemma 5.4. Let µ̃ ∈ Λ+
G̃

and µ = π(µ̃). We have

• µ ∈ Λ+
G and mρ(µ, µ̃) 6= 0,

• ρ(pµ) ⊂ p̃µ̃ and ρ(Gµ) ⊂ G̃µ̃.

Proof. Let Ṽµ̃ be an irreducible representation of G̃ with highest weight µ̃.
There exists a non-zero vector vo ∈ Ṽµ̃ such that the line Cvo is fixed by B̃
and the maximal torus T̃ acts on Cvo through the character t̃ 7→ t̃µ̃.

Let V be the vector space generated by ρ(g)vo, g ∈ G. It is an irreducible
representation of G and vo is still a highest weight vector for the G-action :
the line Cvo is fixed by B and the maximal torus T acts on Cvo through the
character t 7→ tµ. This forces µ to be a dominant weight for G (relatively

4Observe that ρ(H) ⊂ H̃.
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to B) and then V ⊂ Ṽµ̃ is G-representation with highest weight µ : the first
point is proved.

For the second point we look at the G̃C-action (resp. GC-action ) on
the projective space P(Ṽµ̃) (resp. P(V )), the stabilizer subgroup of the line
Cvo is equal to the parabolic subgroup P̃µ̃ ⊂ G̃C (resp. Pµ ⊂ GC) : hence
ρ(Pµ) ⊂ P̃µ̃. If we work with the actions of the compact groups G and G̃ we
get similarly that ρ(Gµ) ⊂ G̃µ̃. �

Like in Proposition 5.2, the linear map ρ : pµ → p̃µ̃ factorizes to a linear
map ρ : nµ → ñµ̃. We have another specialization of Theorem B.

Theorem 5.5. Suppose that (5.20) holds. Let µ̃ ∈ Λ+
G̃

and µ := π(µ̃) ∈ Λ+
G.

We denote by H ⊂ G and H̃ ⊂ G̃ the respective stabilizers5 of µ and µ̃. Let
W := ñµ̃/ρ(nµ).

The following statements are equivalent:

a) m(nµ, nµ̃) = 1, for all n ≥ 1.

b) For any dominant weight (λ, λ̃) the sequence m(λ+ nµ, λ̃+ nµ̃) is in-
creasing and converging.

c) The algebra Sym(W∗) has finite H-multiplicities.

If these statements hold the limit of the sequence m(λ+ nµ, λ̃+ nµ̃) is

equal to the multiplicity of V H
λ in the H-module Sym(W∗)⊗ V H̃

λ̃
.

Proof. We have constructed (µ, µ̃) so that m(µ, µ̃) 6= 0. In this case Lemma
2.4 and Theorem B tells us that the following equivalences hold m(nµ, nµ̃) =
1,∀n ≥ 1⇐⇒m(nµ, nµ̃) is bounded ⇐⇒ (G̃µ̃)µ = {pt}. Hence we have
proved that a)⇔ c) and b)⇒ a). The other implication a)⇒ b) is also a
consequence of Theorem B. �

5.2. The Littlewood-Richardson coefficients

Here we work with G embedded diagonally in G̃ := G×G. The map π :
g∗ × g∗ → g∗ is defined by (ξ1, ξ2) 7→ ξ1 + ξ2.

5Note that ρ(H) ⊂ H̃.
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Here the multiplicity function m : Λ+
G × Λ+

G × Λ+
G → N is defined by

m(a, b, c) := dim
[
(V G
a )∗ ⊗ V G

b ⊗ V G
c

]G
We fix an element (µ1, µ2) ∈ (Λ+

G)2. It is easy to see that (µ1, µ2) is
adapted to G. Let µ = µ1 + µ2. The stabilizer subgroup Gµ is equal to Gµ1

∩
Gµ2

. We work with the Gµ-module

(5.21) Wµ1,µ2
:=

∑
(α,µ1)>0

(α,µ2)>0

(gC)α.

In this case Theorem 5.3 gives

Proposition 5.6. Let (µ1, µ2) ∈ (Λ+
G)2 and µ = µ1 + µ2.

• We have m(nµ, nµ1, nµ2) = 1 for any n ≥ 1.

• For any (a, b, c) ∈ (Λ+
G)3, the sequence m(a+ nµ, b+ nµ1, c+ nµ2) is

increasing and equal to

dim
[
Sym(W∗µ1,µ2

)⊗ (V Gµ
a )∗ ⊗ V Gµ1

b |Gµ ⊗ V
Gµ2
c |Gµ

]Gµ
.

for n large enough.

Proof. In the notations of Theorem 5.3, we have µ̃ = (µ1, µ2), w̃ = 1, µ =
µ1 + µ2, the parabolic subgroups p̃w̃µ̃, pµ are respectively equal to pµ1

× pµ2

and pµ1
∩ pµ2

and the subgroup H̃ is equal to Gµ1
×Gµ2

. We check then
easily that the Gµ-module ñw̃µ̃/ρ(nµw̃) is equal to Wµ1,µ2

. �

5.3. The Kronecker coefficients

Let U(E),U(F ) be the unitary groups of two hermitian vector spaces E,F .
The aim of this section is to detail our results for the canonical morphism

ρ : G := U(E)×U(F )→ G̃ := U(E ⊗ F ).

This problem is equivalent to the question on the decomposition of tensor
products of representations for the symmetric group.

A partition λ is a sequence λ = (λ1, λ2, . . . , λk) of weakly decreasing non-
negative integers. By convention, we allow partitions with some zero parts,
and two partitions that differ by zero parts are the same. For any partition
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λ, we define |λ| = λ1 + λ2 + · · ·+ λk and l(λ) as the number of non-zero
parts of λ.

Recall that the U(E) irreducible polynomial representations are in bi-
jection with the partitions λ such that l(λ) ≤ dimE. We denote by Sλ(E)
the representation associated to λ.

We consider the groups G := U(E)×U(F ) and G̃ := U(E ⊗ F ). Let γ
be a partition such that l(γ) ≤ dimE · dimF . We can decompose the irre-
ducible representation Sγ(E ⊗ F ) as a G-representation:

Sγ(E ⊗ F ) =
∑
α,β

g(α, β, γ) Sα(E)⊗ Sγ(F )

where the sum is taken over partitions α, β such that |α| = |β| = |γ|, l(α) ≤
dimE and l(β) ≤ dimF .

We fix an orthonormal basis (ei) for E, (fj) for F : let (ei ⊗ fj) the
corresponding orthonormal basis of E ⊗ F . We denote by TE (resp. TF ) the
maximal tori of U(E) (resp. U(F )) consisting of the endomorphisms that are
diagonal over (ei) (resp. (fj)). Let T = TE × TF be the maximal torus of G.
Similarly let T̃ be the maximal tori of G̃ associated to the endomorphisms
that diagonalize the basis (ei ⊗ fj). At the level of tori, the morphism ρ
induces a map ρ : T → T̃ sending ((ti), (sj)) to (tisj). At the level of Lie
algebra the map ρ : t→ t̃ is defined by

ρ(x, y) = (xi + yj)i,j

for x = (x1, . . . , xdimE) ∈ RdimE ' Lie(TE) and y = (y1, . . . , ydimF ) ∈ RdimF

' Lie(TF ).
Let θkl ∈ t̃∗ be the linear form that send an element (ai,j) ∈ t̃ to akl.

Then t̃∗ is canonically identified with the vector space of matrices of size
dimE × dimF through the use of the basis θkl, and the dual map π : t̃∗ → t∗

is given by π((ξij)) = ((
∑

j ξij)i, (
∑

i ξij)j).
Recall the following definition [16, 31].

Definition 5.7. Let A = (ai,j) be a matrix of size dimE × dimF . Then,
A is called additive if there exist real numbers x1, . . . , xdimE , y1, . . . , ydimF

such that

ai,j > ak,l =⇒ xi + yj > xk + yl,

for all i, k ∈ [1, . . . ,dimE] and all j, l ∈ [1, . . . ,dimF ].

The following easy fact is important.
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Lemma 5.8. Let ξ ∈ t̃∗ that is represented by a matrix (ξij). Then ξ is
adapted to the group G if and only if the matrix (ξij) is additive.

Proof. The system of roots for G̃ is R̃ = {θij − θkl, (i, j) 6= (k, l)}. By def-
inition ξ ∈ t̃∗ is adapted to G if and only if there exists (x, y) ∈ RdimE ×
RdimF ' t∗ such that

(θij − θkl, ξ) > 0 =⇒ (π(θij − θkl), (x, y)).

Our proof is completed since (θij−θkl, ξ) = ξij−ξkl and (π(θij−θkl), (x, y))
= xi + yj − (xk + yl). �

Definition 5.9. If A = (ai,j) is a matrix of size dimE × dimF with non
negative integral coefficients, we define the partition αA, βA, γA where αA '
(
∑

j aij)i, βA ' (
∑

i aij)j and γA ' (ai,j). Note that |αA| = |βA| = |γA|.

The first part of Theorem 5.3 permits us to recover the following result
of Vallejo [31] and Manivel [16].

Proposition 5.10. Let A = (ai,j) is a matrix of size dimE × dimF with
non negative integral coefficients. If the matrix A is additive then
• g(nαA, nβA, nγA) = 1 for all n ≥ 1,
• the sequence g(a+ nαA, b+ nβA, c+ nγA) is increasing and stationary

for any partition a, b, c such that |a| = |b| = |c|, l(a) ≤ dimE, l(b) ≤ dimF
and l(c) ≤ dimE · dimF .

Now we apply the second part of Theorem 5.3 to obtain a formula for
the stretched multiplicities.

Definition 5.11. Let A = (ai,j) is an additive matrix of size dimE × dimF
with non negative integral coefficients. For any partition a, b, c such that
|a| = |b| = |c|, we define gA(a, b, c) ∈ N as the limit of the sequence g(a+
nαA, b+ nβA, c+ nγA) when n→∞.

Let Eki (resp. F lj) be the orthogonal projection of rank 1 of E (resp. F )
that sends ei to ek (resp. fj to fl).

To an additive matrix A, we attach :
• The stabilizer H̃A ⊂ G̃ of the element A ∈ t̃∗, with Lie algebra h̃A.
• The stabilizer HA ⊂ G of the element π(A). We have HA = HE

A ×HF
A

with HE
A = U(E)αA and HF

A = U(F )βA .
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• The H̃A-module

p̃A :=
∑

aij≥akl

CEki ⊗ F lj

that corresponds to the parabolic sub-algebra of g̃C attached to A. Its nil-
radical is ñA =

∑
aij>akl

CEki ⊗ F lj .
• the sub-algebras nπ(A) ⊂ pπ(A) ⊂ gC and their images by ρ:

ρ(pπ(A)) =
∑
αi≥αk

CEki ⊗ IdF ⊕
∑
βj≥βl

C IdE ⊗ F lj

ρ(nπ(A)) =
∑
αi>αk

CEki ⊗ IdF ⊕
∑
βj>βl

C IdE ⊗ F lj

Thanks to proposition 5.2 we know that ρ(HA) ⊂ H̃A and that ρ(pπ(A)) ⊂
p̃A. We denote by ρ(nπ(A)) the projection of ρ(nπ(A)) ⊂ p̃A on p̃A/(h̃A)C '
ñA.

We define the HA-module

(5.22) WA = ñA/ρ(nπ(A))

and we know that Sym(W∗A) has finite HA-multiplicities.

For a partition a = (a1, a2, . . . , adimE), we define V
HE
A

a as the irreducible
representation of HE

A with highest weight a. If αA = (ln1

1 , ln2

2 , . . . , lnrr ) with
l1 > l2 > · · · > lr, the subgroup HE

A is isomorphic to U(E1)× · · · ×U(Er)

with dimEk = nk, and the representation V
HE
A

a is equal to the tensor product
Sa[1](E1)⊗ Sa[2](Er)⊗ · · · ⊗ Sa[r](Er) where a[k] is the partition

(an1+···+nr+1, . . . , an1+···+nr+1
).

We can define similarly the representations V H̃A
c and V

HF
A

b . Theorem 5.3
give us the following

Theorem 5.12. Let A = (ai,j) be a additive matrix of size dimE × dimF
with non negative integral coefficients. For any partition a, b, c such that
|a| = |b| = |c|, l(a) ≤ dimE, l(b) ≤ dimF and l(c) ≤ dimE · dimF , we have

gA(a, b, c) = dim
[
Sym(W∗A)⊗ (V HE

A
a )∗ ⊗ (V

HF
A

b )∗ ⊗ V H̃A
c |HE

A×HF
A

]HE
A×HF

A
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5.3.1. The partition (1pq). Let us work out the example of the partition
A = (1pq) where 1 ≤ p ≤ dimE and 1 ≤ q ≤ dimF .

We see A = (1pq) as an additive matrix (aij) of type dimE × dimF :
aij is non-zero, equal to 1, only if 1 ≤ i ≤ p and 1 ≤ j ≤ q. Let gpq be the
corresponding stretched Kronecker coefficients.

We use an orthogonal decomposition of our vector spaces : E = Ep ⊕ E′
and F = Fq ⊕ F ′ with dimEp = p and dimFq = q. For the tensor prod-
uct we have E ⊗ F = Ep ⊗ Fq ⊕ (Ep ⊗ Fq)⊥ where (Ep ⊗ Fq)⊥ = Ep ⊗ F ′ ⊕
E′ ⊗ Fq ⊕ E′ ⊗ F ′.

The stabiliser subgroup of A in G̃ is H̃pq := U(Ep ⊗ Fq)×U((Ep ⊗ Fq)⊥)
and the stabiliser subgroup of π(A) in G is Hpq := HE

p ×HF
q where HE

p =

U(Ep)×U(E′) and HF
q = U(Fq)×U(F ′).

If A = (1pq), we denote by WA = Wpq the Hpq-module introduced in
(5.22). A direct computation shows that

Wpq = hom(Ep, E
′)⊗ sl(Fq)

⊕
sl(Ep)⊗ hom(Fq, F

′)
⊕

hom(Ep, E
′)⊗ hom(Fq, F

′).

A partition a = (a1, . . . , adimE) defines the partitions a(p) := (a1, . . . , ap)
and a′ := (ap+1, . . . , adimE). Similarly a partition b = (b1, . . . , bdimF ) defines
the partitions b(q) := (b1, . . . , bq) and b′ := (aq+1, . . . , adimF ).

A partition c of length dimE × dimF is represented by a matrix (cij).
We define then the partition c(pq) of length pq represented by the coeffi-
cients cij when 1 ≤ i ≤ p and 1 ≤ j ≤ q, and the partition c′ which is the
complement of c(pq) in c.

Theorem 5.12 tell us that the stretched Kronecker coefficient gpq(a, b, c)
is equal to the multiplicity of the irreducible representation

Sa(p)(Ep)⊗ Sa′(E′)⊗ Sb(q)(Fq)⊗ Sb′(F ′)

in

Sym(W∗pq)⊗ Sc(pq)(Ep ⊗ Fq)⊗ Sc′((Ep ⊗ Fq)⊥).

When q = 1 the following expression for the stretched coefficient was
obtained by Manivel [16], extending the case p = q = 1 treated by Brion [9].

5.3.2. The triple (22), (22), (22). In this section we explain how our
technique allows us to recover the result of Stembridge [28] concerning the
stability of the triple (22), (22), (22). Moreover we compute the stretched
multiplicty map associated to this triple. Notice that the triple (22), (22), (22)
is not attached to an additive matrix.
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First we work with the morphism ρ : U(C2)×U(C2)→ U(C2 ⊗ C2). The
matrix

µ̃ := i

(
1 0
0 1

)
represents a weight of the maximal torus T̃ of G̃ = U(C2 ⊗ C2). The stabi-
lizer subgroup G̃µ̃ is canonically isomorphic with U(V1)× U(V2) where V1 =
Vect(e1 ⊗ f1, e2 ⊗ f2) and V2 = Vect(e1 ⊗ f2, e2 ⊗ f1). The character χµ̃ on
G̃µ̃ defined by the weight µ̃ is the morphism (g1, g2) ∈ U(V1)× U(V2) 7→
det(g1) det(g2).

The restriction of µ̃ to the maximal torus T of G = U(C2)×U(C2) de-
fines a weight µ = π(µ̃). We see that µ is the differential of the character
χµ := det×det.

The Kronecker coefficient g(n(1, 1), n(1, 1), n(1, 1)) corresponds to the

multiplicity of the character χ⊗nµ in V G̃
nµ̃|G. Let us check that the sequence

g(n(1, 1), n(1, 1), n(1, 1)) is bounded.
We consider the point mo = (µ, µ̃) ∈ Gµ× G̃µ̃. The stabilizer subgroup

Gmo
is equal to H = G ∩ ρ−1(G̃µ̃) since µ is G-invariant. A small compu-

tation shows that the connected component Ho is equal to the torus T .
Here we work with the H-module W := Tµ̃(G̃µ̃)/gC · µ̃.

Lemma 5.13. 1) The H-module W is reduced to {0}.

2) The reduced space (G̃µ̃)µ is a singleton.

3) The character χµ̃χ
−1
µ is trivial on Ho = T and defines an isomorphism

between H/Ho and {±1}.

4) g(n(1, 1), n(1, 1), n(1, 1)) = 1+(−1)n

2 .

Proof. If we compute the real dimensions we have

dim G̃µ̃ = dim U(4)− 2 dim U(2) = 8.

On the other hand,

dim gC · µ̃ = 2 dim g · µ̃ = 2(dimG− dimH).

AsHo = T we have dimH = 4 and then dim gC · µ̃ = dim G̃µ̃. The first point
is proved.

The second point is a consequence of the first point (see Lemma 2.4). At
this stage we know that g(n(1, 1), n(1, 1), n(1, 1)) = dim[(χµ̃χ

−1
µ )⊗n]H . The
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last point is a consequence of the third one. The easy checking of the third
point is left to the reader. �

We have proved that τ := {(22), (22), (22)} is a stable triple. We will
now compute the associated stretched multiplicity map. Consider partitions
a, b, c such that |a| = |b| = |c|, 2 ≤ l(a) ≤ p, 2 ≤ l(b) ≤ q and 2 ≤ l(c) ≤ pq.
We define

gτ (a, b, c) := lim
n→∞

g(a+ n(2, 2), b+ n(2, 2), c+ n(2, 2)).

Here we consider the morphism ρp,q : U(Cp)×U(Cq)→ U(Cp ⊗ Cq).
The subgroups of U(Cp), U(Cq) and U(Cp ⊗ Cq) that stabilizes the

weights (2, 2, 0, . . . , 0) are denoted respectively Kp'U(C2)×U(Cp−2), Kq'
U(C2)× U(Cq−2) and Kpq ' U(C2)× U(Cpq−2).

We work with the subgroup

H := ρ−1
p,q(Kpq) ⊂ Kp ×Kq.

A small computation shows that the connected component Ho is isomorphic
with U(C)× U(C)× U(Cp−2)× U(C)× U(C)× U(Cq−2).

We associate to the partition a = (a1, . . . , ap) the partitions a(2) :=
(a1, a2) and a′ := (a3, . . . , ap). Similarly we associate to the partitions b and
c the partitions b(2), c(2) and b′, c′.

We consider the following irreducible representations.

• Va,b := Sa(2)(C2)⊗ Sa′(Cp−2)⊗ Sb(2)(C2)⊗ Sb′(Cq−2) is a irreducible
representation of Kp ×Kq.

• Wc := Sc(2)(C2)⊗ Sc′(Cpq−2) is a irreducible representation of Kpq.

In this setting Theorem B gives that

gτ (a, b, c) = [Wc|H ⊗ (Va,b)
∗|H ]H .

5.4. Plethysm

Let ρ : G→ G̃ := U(V ) be an irreducible representation of the group G.
Let N = dimV . Let T be a maximal torus of G. The T -action on V can
be diagonalized: there exists an orthonormal basis (vj)j∈J and a family of
weights (αj)j∈J such that ρ(t)vj = tαjvj for all t ∈ T . Let T̃ be the maximal
torus of G̃ consisting of the unitary endomorphisms that are diagonalized
by the basis (vj)j∈J : we have then ρ(T ) ⊂ T̃ . We denote by π : t̃∗ → t∗ the
projection, and by ek ∈ t̃∗ the linear form that sends (xj)j∈J to xk.
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Let B be a Borel subgroup of G: there exists a Borel subgroup B̃ ⊂
G̃ such that ρ(B) ⊂ B̃. We work with the set of dominant weights Λ+

G̃
,

Λ+
G defined by this choice: the Borel subgroup B̃ fix an ordering > on the

elements of J , and a weight ξ̃ =
∑

j∈J ajej belongs to Λ+
G̃

only if j > k =⇒
aj ≥ ak. For simplicity we write J = {1, . . . , N} with the canonical ordering.

For the remaining part of this section we work with a fixed partition
σ = (σ1, σ2, . . . , σN ), and we denote by Sσ(V ) the corresponding irreducible
representation of U(V ). We can represent σ by the element

∑N
j=1 σjej ∈ t̃∗

(that we still denote by σ). Let µ = π(σ) =
∑

j=1 σjαj ∈ Λ+
G.

Let {0 = j0 > j2 > · · · > jp = N} be the set of element j ∈ [0, . . . , N ]
such that σj+1 > σj or j ∈ {0, N}. We have an orthogonal decomposition
V = ⊕pk=1V[k] where V[k] is the vector space generated by the vj for j ∈
[jk−1 + 1, . . . , jk]. The nilradical ñσ of the parabolic subgroup p̃σ ⊂ gl(V )
corresponds to the set of endomorphisms f such that f(V[k]) ⊂ ⊕j<kV[j].

The following Lemma is proved in [19].

Lemma 5.14. Let nµ the nilradical of the parabolic subgroup pµ ⊂ gC. The
morphism dρ : gC → gl(V ) defines an injective map from nµ into ñσ.

We define Wσ as the quotient ñσ/ρ(nµ). Recall that the image by ρ of
the stabilizer subgroup Gµ is contained in the stabilizer subgroup of σ: hence
Wσ is a Gµ-module.

For any partition θ = (θ1, . . . , θN ), we associate the partition of length
dimV[k], θ[k] :=(θjk−1+1, . . . , Vjk), and the irreducible representation Sθ[k](V[k])
of the unitary group U(V[k]).

For any partition θ of length N and any dominant weight of λ ∈ Λ+
G, let[

V G
λ+nµ : Sθ+nσ(V )

]
be the multiplicity of the irreducible representation V G

λ+nµ in the restriction
Sθ+nσ(V )|G.

The following theorem, which is a particular case of Theorem 5.5, was
first obtained by Manivel [15] when G = U(E) and by Brion [9] when σ =
(1). The following version was obtained by Montagard [19]: the only im-
provement that we obtain here is condition a).

Theorem 5.15. Let σ a partition of length dimV and µ = π(σ).
The following statements are equivalent:

a) [V G
nµ : Snσ(V )] = 1, for all n ≥ 1.
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b) For any couple (λ, θ) the increasing sequence [V G
λ+nµ : Sθ+nσ(V )] has

a limit.

c) The algebra Sym(Wσ
∗) has finite Gµ-multiplicities.

If these statements hold the limit of the sequence [V G
λ+nµ : Sθ+nσ(V )] is

equal to the multiplicity of V
Gµ
λ in the Gµ-module

Sym(W∗σ)⊗ Sθ[1](V[1])⊗ Sθ[2](V[2])⊗ · · · ⊗ Sθ[p](V[p]).
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(1997), 715–773.

[16] L. Manivel, On the asymptotics of Kronecker coefficients, Journal of
Algebraic Combinatorics 42 (2015), 999–1025.

[17] E. Meinrenken, Symplectic surgery and the Spinc-Dirac operator, Ad-
vances in Math. 134 (1998), 240–277.

[18] E. Meinrenken and R. Sjamaar, Singular reduction and quantization,
Topology 38 (1999), 699–762.

[19] P.-L. Montagard, Une nouvelle propriété de stabilité du pléthysme,
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