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Motivated by work of the first author, this paper studies symplec-
tic embedding problems of lagrangian products that are sufficiently
symmetric. In general, lagrangian products arise naturally in the
study of billiards. The main result of the paper is the rigidity of a
large class of symplectic embedding problems of lagrangian prod-
ucts in any dimension. This is achieved by showing that the la-
grangian products under consideration are symplectomorphic to
toric domains, and by using the Gromov width and the cube ca-
pacity introduced by Gutt and Hutchings to obtain rigidity.
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1. Introduction

The study of symplectic embeddings lies at the heart of symplectic topology
and was kickstarted by Gromov’s celebrated non-squeezing theorem [16].
Since then, many surprising results have been discovered highlighting the
boundary between flexibility and rigidity in symplectic topology (cf. [8, 22,
32] for thorough overviews). For the purposes of this paper, it is important
to remark the role that symplectic capacities play in solving symplectic
embedding problems, especially in the case of four-dimensional toric domains
(cf. [7, 10, 28]).

Recently, in [30], the first author studied symplectic embedding problems
involving the 4-dimensional lagrangian bidisk, an example of a class of sym-
plectic manifolds that are known as lagrangian products and arise naturally
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1448 V. G. B. Ramos and D. Sepe

in the study of billiards (cf. [2, 29]). The main result in [30] is the compu-
tation of the optimal symplectic embeddings of the lagrangian bidisk into a
ball and an ellipsoid. The novelty of [30] is to identify the lagrangian bidisk
with a concave toric domain using the standard billiard in the disk, thus
allowing one to use the machinery of embedded contact homology (ECH)
capacities to solve the problem.

Inspired by [30], this paper studies symplectic embedding problems for
a large class of lagrangian products in any dimension. The main result of
the paper is that, for all lagrangian products under consideration, the corre-
sponding symplectic embedding problems are rigid, meaning that one can-
not do better than inclusion (see Theorem 4 for a precise statement). The
strategy for the proof is similar to that employed in [30]. Firstly, the rele-
vant lagrangian products are shown to be symplectomorphic to some toric
domains (see Theorem 7). It is worthwhile observing that these symplec-
tomorphisms are constructed by understanding the symplectic geometry of
the billiard in the interval (see Section 3). Secondly, the above identification
allows us to use two symplectic capacities, the well-known Gromov width
and the cube capacity recently introduced by Gutt and Hutchings in [20],
to solve the problem (see Theorem 11). To the best of our knowledge, the
results of this paper are the first in the study of symplectic embeddings of
lagrangian products in any dimension.

The results of the present paper, as well as those of [30], corroborate
the connection between integrable billiards and lagrangian products admit-
ting an integrable Hamiltonian torus action. We plan on investigating this
relation further in future papers.

1.1. Lagrangian products

We start by defining the main object of study of this paper.

Definition 1. Given A,B ⊂ Rn, the lagrangian product of A and B, de-
noted by A×L B, is the following subset of R2n

A×LB =
{

(x1, y1, . . . , xn, yn)∈R2n | (x1, . . . , xn)∈A and (y1, . . . , yn)∈B
}
,

endowed with the restriction of the symplectic form ω0 =
∑n

i=1 dxi ∧ dyi.

This article studies symplectic embedding problems of lagrangian prod-
ucts and the main result is that many of these embeddings problems are rigid
(see Theorem 4). Inspired by [30], one of the key ingredients in the proof of
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On the rigidity of lagrangian products 1449

the main result is to endow lagrangian products that are ‘sufficiently sym-
metric’ with an integrable Hamiltonian toric action (see Theorem 7). To
make the above notion precise, we introduce the following terminology.

Definition 2. An open and bounded subset A ⊂ Rn is said to be

• a balanced region if (x1, . . . , xn) ∈ A⇒ [−|x1|, |x1|]× · · · × [−|xn|, |xn|] ⊂
A;

• a symmetric region if it is balanced and invariant under permutation of
any two coordinates.

A balanced or symmetric region A is convex if A ⊂ Rn is a convex subset,
while it is concave if Rn≥0 rA is a convex subset of Rn (see Figure 1 (a) and
(b)).

Example 3. For any n ≥ 1 and any p ∈ [1,∞], the open unit ball in the
Lp-norm in Rn, denoted by Bn

p , is a symmetric region.

Given X1, X2 ⊂ R2n, we say that X1 symplectically embeds into X2 if
there exists a smooth embedding from X1 into X2 preserving ω0. If X1

symplectically embeds in X2, we write X1 ↪→ X2. The following theorem is
the main result of this paper.

Theorem 4. Let A and A′ be subsets of Rn satisfying one of the conditions
below.

(i) A ∈ {Bn
1 , B

n
∞} and A′ is a convex or concave balanced region,

(ii) A is a convex symmetric region, and A′ ∈ {Bn
1 , B

n
∞},

(iii) A is a convex symmetric region, and A′ is a concave symmetric region,

(iv) A = Bn
p and A′ = r ·Bn

q for some p, q ∈ [1,∞] and r ∈]0,∞[.

Then

Bn
∞ ×L A ↪→ Bn

∞ ×L A′ ⇐⇒ A ⊂ A′.

Remark 5. To the best of our knowledge, Theorem 4 is one of very few
symplectic embedding results in dimensions greater than four, particularly
for (families of) bounded sets. Some results in higher dimensions can be
found in [6, 11, 19, 21].

The proof of Theorem 4 goes in two steps. First, we prove the exis-
tence of a symplectomorphism between any lagrangian product of the form
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A

(a) Convex balanced region.

A

(b) Concave symmetric region.

4|A|

(c) Convex toric domain.

4|A|

(d) Concave symmetric toric domain.

Figure 1. Balanced regions and their corresponding toric domains

Bn
∞ ×L A, where A is balanced, and an appropriate toric domain (see Def-

inition 6 and Theorem 7). This allows to reformulate Theorem 4 in terms
of symplectic embeddings between certain toric domains and their moment
map images (see Theorem 11). To solve the latter problem, we use two sym-
plectic capacities to show that we cannot do better than inclusion in the
corresponding cases: the Gromov width and the cube capacity. The latter
was recently introduced in [20].

1.2. Toric domains

Consider the standard integrable toric action Tn = Rn/Zn y
(
R2n = Cn, ω0

)
defined by

(θ1, . . . , θn) · (z1, . . . , zn) =
(
e2πiθ1z1, . . . , e

2πiθnzn

)
.

Identifying the dual of the Lie algebra of Tn with Rn, one of the moment
maps for the above action is µ(z1, . . . , zn) =

(
π|z1|2, . . . , π|zn|2

)
.

Definition 6. Given an open subset Ω ⊂ Rn≥0, the toric domain associated
to Ω is the symplectic manifold (XΩ, ωΩ), where XΩ := µ−1 (Ω) and ωΩ =
ω0|XΩ

.

Henceforth, to simplify notation, we denote the toric domain associated
to Ω by XΩ.
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On the rigidity of lagrangian products 1451

Given a balanced region A ⊂ Rn, we set |A| := A ∩ Rn≥0. We note that,
since A is balanced, A is determined by |A|; moreover, |A| ⊂ Rn≥0 is open.
For any subset U ⊂ Rn, we set

4U :=

{
(x1, . . . , xn) ∈ Rn

∣∣∣∣ (1

4
x1, . . . ,

1

4
xn

)
∈ U

}
.

The following result is the first step towards proving Theorem 4.

Theorem 7. Let A ⊂ Rn be a balanced region. Then there is a symplecto-
morphism

Bn
∞ ×L A ∼= X4|A|.

Figures 1 (c) and (d) show the moment map images of the toric domains
obtained from the regions in Figures 1 (a) and (b) respectively. The proof of
Theorem 7, carried out in Section 3, uses the integrability of a system which
models billiards on an interval and the fact that we decompose Bn

∞ ×L Rn as
a product of n symplectic factors (see Section 3). This is the main novelty of
this paper and might be of independent interest. In spirit, it is a similar result
to the existence of a symplectomorphism between the lagrangian bidisk and
a concave toric domain proved in [30], although the integrable system in [30]
is different from the one in the current paper.

Remark 8. Some particular cases of Theorem 7 are known or could be
easily deduced from existing results in the literature. For instance, the ideas
in [31, Section 2] allow to prove Theorem 7 in the case in which A is a
parallelepiped. Besides this family, little seems to be known in general, al-
though it is worth mentioning that, if n = 2, [25, Corollary 4.2] proves the
case A = B2

1 by using a non-trivial result due to McDuff (cf. [27, Theorem
1.1]), which is intrinsically different from our constructive techniques and
only applicable in this specific case.

Assuming Theorem 7, Theorem 4 can be restated in terms of toric do-
mains. To this end, we introduce the following notion.

Definition 9. Given a convex (respectively concave) balanced region A ⊂
Rn, X|A| is said to be a convex (respectively concave) toric domain. If, in
addition, A is symmetric, X|A| is said to be symmetric.
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Remark 10. If Ω ⊂ Rn≥0 is open and bounded, the existence of a balanced
region A such that Ω = |A| is equivalent to the following condition:

(1) (x1, . . . , xn) ∈ Ω⇒ [0, x1]× · · · × [0, xn] ⊂ Ω.

In particular, the notions of convex and concave toric domains from [7, 23]
coincide with those of Definition 9, except that we consider open domains
instead of compact domains. We note that the definition of convex toric
domain in [10] is slightly different and allows for toric domains that do not
satisfy (1).

For any n ≥ 1 and any p ∈ [1,∞], we set Ωn
p := |Bn

p |. Assuming Theo-
rem 7, Theorem 4 is a straightforward consequence of the following result.

Theorem 11. Let Ω and Ω′ be open subsets of Rn≥0 satisfying one of the
conditions below.

(i) Ω ∈ {Ωn
1 ,Ω

n
∞} and XΩ′ is a convex or concave toric domain,

(ii) XΩ is a convex symmetric toric domain and Ω′ ∈ {Ωn
1 ,Ω

n
∞},

(iii) XΩ is a convex symmetric toric domain and XΩ′ is a concave sym-
metric toric domain,

(iv) Ω = Ωn
p and Ω′ = r · Ωn

q for some p, q ∈ [1,∞] and r ∈]0,∞[.

Then

XΩ ↪→ XΩ′ ⇐⇒ Ω ⊂ Ω′,

Remark 12. The domains XΩn
1

and XΩn
∞

are usually known as the ball
B(1) = E(1, . . . , 1) and the polydisk P (1, . . . , 1), respectively.

1.3. Symplectic capacities

The proof of Theorem 11 provided below uses symplectic capacities. A sym-
plectic capacity is a map c from a certain class of symplectic manifolds to
[0,∞] with the following properties:

(a) c(X, r · ω) = r · c(X,ω), for r ∈]0,∞[;

(b) (X1, ω1) ↪→ (X2, ω2)⇒ c(X1, ω1) ≤ c(X2, ω2).
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For star-shaped domains X ⊂ R2n equipped with the standard symplectic
form1, the following quantities are symplectic capacities:

c1(X) = sup
{
r ∈ R | Xr·Ωn

1
↪→ X

}
,

c∞(X) = sup
{
r ∈ R | Xr·Ωn

∞
↪→ X

}
.

Remark 13. The capacity c1(X) was first introduced by Gromov in [16]
and is known in the literature as the Gromov width of X, while c∞(X) is
shown to be a capacity by Gutt and Hutchings in [20] and is the analog of
c1(X) for a cube.

The following result is a simple consequence of some results in [20].

Theorem 14. Let XΩ be a convex or concave toric domain. Then

c1(XΩ) = max{r ∈ R | r · Ωn
1 ⊂ Ω},(2)

c∞(XΩ) = max{r ∈ R | r · Ωn
∞ ⊂ Ω}.(3)

Proof. In [20] Gutt and Hutchings define a normalized symplectic capacity
cSH1 for star-shaped domains in R2n, i.e. on balls and cylinders, cSH1 agrees
with c1. In particular, for any star-shaped domain X ⊂ R2n,

(4) c1(X) ≤ cSH1 (X).

Moreover, they show in [20, Theorem 1.6] that for a convex toric domain
XΩ,

cSH1 (XΩ) = min
i=1,...,n

sup{r ∈ R | r · ei ∈ Ω}.

From the convexity of Ω and the definition of c1, we obtain

(5) cSH1 (XΩ) = max{r ∈ R | r · Ωn
1 ⊂ Ω} ≤ c1(XΩ).

Combining (4) and (5), we obtain (2) for a convex toric domain. For a
concave toric domain, (2) is a direct consequence of [20, Corollary 1.16].

To complete the proof, observe that [20, Theorem 1.18] gives (3) for
convex and concave toric domains. �

The capacities c1 and c∞ can be used to prove Theorem 11, which, in
turn, provides a proof of the main result of this paper assuming Theorem 7.

1Since we only use capacities of subsets of R2n equipped with the standard sym-
plectic form, we drop the symplectic form from the notation.
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Proof of Theorem 11. Given open subsets Ω,Ω′ ⊂ Rn≥0, the inclusion Ω ⊂ Ω′

implies the existence of a symplectic embedding XΩ ↪→ XΩ′ (without impos-
ing any restrictions). Therefore, it remains to prove the other implication.
To this end, suppose that XΩ ↪→ XΩ′ where Ω and Ω′ satisfy one of the
conditions (i) – (iv). The aim is to show that Ω ⊂ Ω′. We proceed case by
case.

(i) This is a direct consequence of Theorem 14. First consider the case Ω =
Ωn

1 . It follows from (2) that c1(XΩn
1
) = 1. So 1 = c1(XΩn

1
) ≤ c1(XΩ′).

Again from (2) we obtain Ωn
1 ⊂ Ω′. The case Ω = Ωn

∞ is dealt with
analogously using c∞ and (3).

(ii) Suppose first that Ω′ = Ωn
1 . It follows from (3) that 1/n = c∞(XΩn

1
) ≥

c∞(XΩ). Since Ω is symmetric and convex, it follows from (3) that
Ω lies below the hyperplane normal to (1, . . . , 1) passing through the
point (c∞(XΩ), . . . , c∞(XΩ)). So x1 + · · ·+ xn < n · c∞(XΩ) ≤ 1 for
all (x1, . . . , xn) ∈ Ω. Therefore Ω ⊂ Ωn

1 .
On the other hand, suppose that Ω′ = Ωn

∞. If {e1, . . . , en} denotes
the canonical basis of Rn, Ω being symmetric implies that for all i, j =
1, . . . , n,

sup{r > 0 | r · ei ∈ Ω} = sup{r > 0 | r · ej ∈ Ω}.

In particular, since Ω is convex, it follows from (2) that, for any i =
1, . . . , n, c1(XΩ) = sup{r > 0 | r · ei ∈ Ω}. Therefore, Ω ⊂ [0, c1(XΩ)]n;
since c1(XΩ) ≤ c1(XΩn

∞
) = 1, it follows that Ω ⊂ [0, 1]n. As Ω is open,

Ω ⊂ [0, 1[n= Ωn
∞ as desired.

(iii) Arguing as in the first part of (ii), it follows that if XΩ′ is concave and
symmetric, then c∞(XΩ′) · Ωn

1 ⊂ Ω′. Since XΩ ↪→ XΩ′ , it follows from
(ii) that

Ω ⊂ c∞(XΩ) · Ωn
1 ⊂ c∞(XΩ′) · Ωn

1 ⊂ Ω′.

(iv) Suppose first that p ≤ q. It follows from (2) that c1(Ωn
p ) = c1(Ωn

q ) =
1. So Ωn

p ↪→ r · Ωn
q implies that 1 ≤ r. Since p ≤ q, we conclude that

Ωn
p ⊂ Ωn

q ⊂ r · Ωn
q .

Suppose that q ≤ p. From (3) we obtain c∞(XΩn
s
) = 1

n1/s . So

(6)
1

n1/p
≤ r

n1/q
.
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Let (x1, . . . , xn) ∈ Ωn
p . It follows from Hölder’s inequality and (6) that

n∑
i=1

(xi
r

)q
≤ 1

rq

(
n∑
i=1

xpi

) q

p

n
p−q

p ≤

(
n

p−q

pq

r

)q
≤ 1,

which implies that (x1, . . . , xn) ∈ r · Ωn
q . �

1.4. Outline of the paper

The rest of this paper is structured as follows. In Section 2, we give another
application of Theorems 4 and 7 to symplectic embeddings in dimension 4.
Section 3 contains the proof of Theorem 7, which relies on understanding a
family of integrable systems modeling the billiard in the interval.

Acknowledgments. The first author was partially supported by a grant
from the Serrapilheira Institute, the FAPERJ grant Jovem Cientista do
Nosso Estado and the CNPq grant Bolsa de Produtividade em Pesquisa
305416/2017-0. The second author was partially supported by CNPq grant
Bolsa de Produtividade em Pesquisa 3058/2015-0 and by CNPq Universal
grant 409552/2016-0. This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil (CAPES) – Finance
code 001.

2. Symplectic embeddings

In this section, we discuss the rigidity of some symplectic embeddings in-
volving the lagrangian bidisk studied in [30], proving that both rigidity and
flexibility occur (see Theorem 17 and Corollary 18). First we introduce an
equivalence relation for four-dimensional lagrangian products.

Definition 15. Let A1, B1, A2 and B2 be open sets of R2 containing the
origin. The lagrangian products A1 ×L B1 and A2 ×L B2 are equivalent if
there exist a > 0 and U ∈ SO(2) such that A1 = aU ·A2 and B1 = a−1U ·
B2, or B1 = aU ·A2 and A1 = a−1U ·B2. In this case, we write A1 ×L B1 ∼
A2 ×L B2

Observe that two equivalent lagrangian products are symplectomorphic.

Definition 16. Let A, B, C andD be connected, open sets of R2 containing

the origin. The symplectic embedding problem A×L B
?
↪→ C ×L D is rigid
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if

A×L B ↪→ (aC)×L D for some a > 0

⇒ A×L B ∼ A′ ×L B′ ⊂ (aC ′)×L D′ ∼ C ×L D,

for some open subsets A′, B′, C ′, D′ of R2 containing the origin.

The following theorem is the main result of this section.

Theorem 17. For any p ∈ [2,+∞] the symplectic embedding problems

B2
2 ×L B2

2
?
↪→ B2

∞ ×L B2
p and B2

∞ ×L B2
p

?
↪→ B2

2 ×L B2
2

are rigid.

Combining Theorems 4 and 17, we obtain the following result.

Corollary 18. For any p, q, r, s ∈ {1, 2,∞} with

(7) (p, q, r, s) 6∈ {(1,∞, 2, 2), (∞, 1, 2, 2), (2, 2, 1,∞), (2, 2,∞, 1)},

the symplectic embedding problem B2
p ×L B2

q
?
↪→ B2

r ×L B2
s is rigid.

In fact, Corollary 18 is optimal, in the sense that if (7) does not hold,

then B2
p ×L B2

q
?
↪→ B2

r ×L B2
s is not rigid (see Section 2.2).

2.1. The lagrangian bidisk

The lagrangian bidisk B2
2 ×L B2

2 is the only lagrangian product that appears
in Theorem 17 and not in Theorem 4. While the techniques of the present
paper do not allow to identify the lagrangian bidisk with a toric domain, the
first author proved in [30] that B2

2 ×L B2
2 can be endowed with an effective

Hamiltonian T2-action. This is the content of the following result, stated
below without proof.

Theorem 19 ([30, Theorem 3]). Let Ω0 ⊂ Rn≥0 be the open subset of
bounded by the coordinate axes and the curve parametrized by

γ(α) = 2 (sinα− α cosα, sinα+ (π − α) cosα) , α ∈ [0, π].

Then B2
2 ×L B2

2 is symplectomorphic to the toric domain XΩ0
.
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Proof of Theorem 17. Fix p ∈ [2,∞[. It follows from Theorem 19 and for-
mulae (2) and (3) that

c1

(
B2

2 ×L B2
2

)
= c1(XΩ0

) = 4,(8)

c∞
(
B2

2 ×L B2
2

)
= c∞(XΩ0

) = 2.(9)

Suppose first that B2
2 ×L B2

2 ↪→ B2
∞ ×L aB2

p for some a > 0. It follows from
Theorems 7 and 19 that XΩ0

↪→ X4a·Ω2
p
. From (2) and (8) we obtain

4 = c1(XΩ0
) ≤ 4a · c1(XΩ2

p
) = 4a.

So a ≥ 1. Since B2
2 ⊂ B2

p ⊂ B2
∞, it follows that B2

2 ×L B2
2 ⊂ B2

∞ ×L B2
p .

Therefore B2
2 ×L B2

2

?
↪→ B2

∞ ×L B2
p is rigid.

Suppose that B2
∞ ×L B2

p ↪→ aB2
2 ×L B2

2 for some a > 0, so that X4·Ω2
p
↪→

Xa·Ω0
. From (3) and (9) we obtain

4

21/p
= c∞(XΩ2

p
) ≤ a · c∞(XΩ0

) = 2a.

So a ≥ 2
21/p . It follows from a simple calculation that

B2
p ⊂

21/2

21/p
B2

2 and B2
∞ ⊂ 21/2B2

2 .

Hence

B2
∞ ×L B2

p ⊂
(

21/2

21/p
B2

2

)
×L
(

21/2B2
2

)
∼ 2

21/p
B2

2 ×L ×B2
2 .

Therefore B2
p ×L B2

∞
?
↪→ B2

2 ×L B2
2 is rigid.

The case p =∞ can be dealt with analogously by substituting Ω2
p by

Ω2
∞ and 1/p by 0 in the above calculations. �

2.2. Diamonds, disks and squares

The aim of this section is to prove Corollary 18 and explain why it is optimal.

Proof of Corollary 18. Begin by observing that there exist a > 0 and U ∈
SO(2) such that B2

1 = aU ·B2
∞, and that B2

2 is SO(2)-invariant. So

(10) B2
2 ×L B2

1 ∼ B2
∞ ×L aB2

2 ∼ aB2
∞ ×L B2

2 ∼ B2
1 ×L B2

2 ,
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Moreover

(11) B2
1 ×L B2

1 ∼ a2B2
∞ ×L B2

∞ and B2
∞ ×L B2

1 ∼ B2
∞ ×L B2

1 .

Fix p, q, r, s ∈ {1, 2,∞} satisfying (7). It follows from (10) and (11) that

the B2
p ×L B2

q
?
↪→ B2

r ×L B2
s is equivalent to one of the embedding problems

considered either in Theorem 4 or in Theorem 17. �

It remains to show that the symplectic embedding problems

B2
∞ ×L B2

1
?
↪→ B2

2 ×L B2
2 and B2

2 ×L B2
2

?
↪→ B2

∞ ×L B2
1

are not rigid. It follows from a simple calculation that 4Ω2
1 ⊂ Ω0. So B2

∞ ×L
B2

1 ↪→ B2
2 ×L B2

2 . However, if B2
1 ⊂ aB2

2 and B2
∞ ⊂ bB2

2 , then a ≥ 1 and

b ≥
√

2. So ab ≥
√

2 > 1. Therefore the embedding problem B2
∞ ×L B2

1

?
↪→

B2
2 ×L B2

2 is not rigid.
On the other hand, it is shown in [30] that XΩ0

↪→ X3
√

3·Ω2
1
. So B2

2 ×L
B2

2 ↪→ B2
∞ ×L 3

√
3

4 B2
1 . However, if B2

2 ⊂ aB2
1 and B2

2 ⊂ bB2
∞, then a ≥

√
2

and b ≥ 1 and hence

ab ≥
√

2 >
3
√

3

4
.

Therefore the embedding problem B2
2 ×L B2

2 ↪→ B2
1 ×L B2

∞ is not rigid.

Remark 20. We could say that an embedding problem of toric domains

XΩ
?
↪→ XΩ′ is rigid if

XΩ ↪→ Xa·Ω′ ⇒ Ω ⊂ a · Ω′.

Based on the calculations above, B2
∞ ×L B2

1

?
↪→ B2

2 ×L B2
2 is not rigid as an

embedding problem of lagrangian products, but it is rigid as an embedding

problem of toric domains. However, B2
2 ×L B2

2

?
↪→ B2

∞ ×L B2
1 is not rigid in

either sense.

3. From balanced regions to toric domains

The aim of this section is to prove Theorem 7, thus completing the proof of
the main result of the paper, Theorem 4. Our strategy to prove Theorem 7
is inspired by some of the arguments in [30, Section 2] and can be broken
down in the following three steps:
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(i) For any n ≥ 1 and any ε > 0, we define an integrable system Φε :
Bn
∞ ×L Rn → Rn related to n uncoupled billiards in the interval. We

prove that, for any ε > 0, Φε : Bn
∞ ×L Rn → Rn is isomorphic to µ :

R2n → Rn, the integrable system obtained by considering (one of) the
moment map(s) of the standard Hamiltonian Tn-action on R2n (see
Section 1.2). If (Ψε, Iε) denotes the above isomorphism for a fixed ε,
we also show that, in some sense, the maps Iε possess a limit as ε→ 0,
which we denote by I0.

(ii) Fix n ≥ 1 and a balanced region A ⊂ Rn. Using the family of iso-
morphisms of integrable systems (Ψε, Iε) and the map I0 of (i), we
construct a family of nested symplectic submanifolds of Bn

∞ ×L A
parametrized by ε whose images under Ψε are a nested family of sym-
plectic submanifolds exhausting X4|A| (see Lemma 44 for a precise
statement).

(iii) Using the symplectic isotopy extension theorem (cf. [3, Proposition 4]
and [4]) and the compact exhaustions of (ii), we construct the desired
symplectomorphism between Bn

∞ ×L A and X4|A|.

The structure of this section is as follows. Section 3.1 constructs the
desired family of integrable systems on Bn

∞ ×L Rn, while Section 3.2 deals
with steps (ii) and (iii), thus completing the proof of Theorem 7 and, hence,
of the main result, Theorem 4.

3.1. A family of integrable systems on Bn
∞ ×L Rn

3.1.1. The category of integrable systems. Before constructing the
desired family of integrable systems on Bn ×L Rn, we recall some basic no-
tions pertaining to integrable systems that are used throughout the paper.

Definition 21. An integrable system on a 2n-dimensional symplectic man-
ifold (M,ω) is a smooth map

Φ := (h1, . . . , hn) : (M,ω)→ Rn

satisfying the following conditions

• for all i, j = 1, . . . , n, {hi, hj} = 0, where {·, ·} is the Poisson bracket on
C∞(M) induced by ω, and

• the map Φ is a submersion on a dense subset of M .
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Example 22. For the purposes of this paper, the following are important
examples of integrable systems:

(a) If n = 1, an integrable system on a surface (M,ω) is a function H ∈
C∞ (M) whose differential does not vanish on a dense subset.

(b) For i = 1, 2, let Φi : (Mi, ωi)→ Rni be an integrable system. Then the
map Φ := (Φ1,Φ2) : (M1 ×M2, ω1 ⊕ ω2)→ Rn1+n2 is an integrable sys-
tem, where ω1 ⊕ ω2 = pr∗1ω1 + pr∗2ω2 and, for i = 1, 2, pr : M1 ×M2 →
Mi denotes the canonical projection.

(c) A symplectic toric manifold is a triple (M,ω, µ), where (M,ω) is a
2n-dimensional symplectic manifold and µ is the moment map of an
effective Hamiltonian Tn-action on (M,ω). Given a symplectic toric
manifold (M,ω) and identifying the dual of the Lie algebra of Tn with
Rn, the map µ : (M,ω)→ Rn defines an integrable system. (The fact
that µ is a submersion on a dense set follows from the Marle-Guillemin-
Sternberg local normal form for effective Hamiltonian actions, cf. [17,
26].) In particular, the following maps define integrable systems:
• the moment map µ : R2n → Rn of the standard Hamiltonian Tn-

action on R2n, and
• the moment map of the cotangent lift of the Tn-action on Tn by left

(or right) multiplication. Using the canonical trivialization T ∗Tn ∼=
Rn × Tn so that the canonical symplectic form becomes

n∑
i=1

dai ∧ dθi,
this moment map becomes the projection

pr1 :

(
Rn × Tn,

n∑
i=1

dai ∧ dθi

)
→ Rn

onto the first component.

An important role in this paper is played by the following notion of
equivalence of integrable systems.

Definition 23. Two integrable systems Φ1 : (M1, ω1)→ Rn1 and Φ2 :
(M2, ω2)→ Rn2 are isomorphic if there exists a pair (Ψ, g) consisting of
a symplectomorphism Ψ : (M1, ω1)→ (M2, ω2) and a diffeomorphism2 g :
Φ1 (M1)→ Φ2 (M2) such that Φ2 ◦Ψ = g ◦ Φ1.

2A map g : C ⊂ Rn1 → Rn2 between is said to be smooth if there exists an open
set V containing C and a smooth map g̃ : U → Rn2 that extends g.
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Remark 24. The above notion of isomorphism of integrable systems be-
haves well with respect to the product construction (b) of Example 22. More
precisely, if, for i = 1, 2, (Ψi, gi) is an isomorphism between Φi : (Mi, ωi)→
Rni and Φ′i : (M ′i , ω

′
i)→ Rn′i , then the pair (Ψ1 ×Ψ2, g1 × g2) is an iso-

morphism between Φ = (Φ1,Φ2) : (M1 ×M2, ω1 ⊕ ω2)→ Rn1+n2 and Φ′ =
(Φ′1,Φ

′
2) : (M ′1 ×M ′2, ω′1 ⊕ ω′2)→ Rn′1+n′2 .

Another construction that is relevant for our purposes is that of restrict-
ing integrable systems to suitable subsets.

Definition 25. Given an integrable system Φ : (M,ω)→ Rn and an open
subset U ⊂M , the subsystem relative to U is the integrable system Φ|U :
(U, ω|U )→ Rn.

For any n ≥ 1, the family of integrable systems Φε : Bn
∞ ×L Rn → Rn

that we are interested in is going to be constructed using the product con-
struction (b) of Example 22, since Bn

∞ ×L Rn is symplectomorphic to the
(symplectic) product of n copies of B1

∞ ×L R. Thus, firstly we define the
relevant family of integrable systems and prove all desired properties in the
case n = 1 (see Section 3.1.2), and, secondly, we consider the general case
(see Section 3.1.3).

3.1.2. The one dimensional case. For any ε > 0, consider the inte-

grable system Hε : B1
∞ ×L R→ R, where Hε(x, y) = 1

2

(
y2 + ε 1

1−x2

)
and let

x, y denote canonical coordinates on R2.

Remark 26. The family of integrable systems
{
Hε : B1

∞ ×L R→ R
}
ε>0

is
related to the dynamics of the billiard in the interval [−1,+1] as follows.
Firstly, observe that B1

∞ ×L R is symplectomorphic to
(
T ∗B1

∞, ωcan

)
. Sec-

ondly, the potential V (x) = 1
2(1−x2) satisfies the properties to fit in the ap-

proximation scheme first introduced in [5] that allow us to study the billiard
in the interval [−1,+1] as a limit of Hamiltonian systems on the cotangent
bundle of B1

∞.

The following result, stated below without proof, establishes some basic
properties of Hε : B1

∞ ×L R→ R for any ε > 0.

Proposition 27. For any ε > 0,

(1) the image of Hε equals
[
ε
2 ,+∞

[
;

(2) the only singular point of Hε is (0, 0), which equals the fiber H−1
ε

(
ε
2

)
;
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(3) the Hessian of Hε at (0, 0) is positive definite;

(4) the map Hε : B1
∞ ×L R→ R is proper.

Remark 28. Property (3) is equivalent to stating that, for any ε > 0, the
point (0, 0) is a non-degenerate singular point of elliptic type for the inte-
grable system Hε : B1

∞ ×L R→ R, cf. [15, Introduction] and [13, Section I.3]
for more details.

An immediate consequence of Proposition 27 is the following simple, yet
useful, result.

Corollary 29. For any ε > 0, the fibers of Hε are compact and connected.

Proof. Fix ε > 0. Property (4) implies that the fibers of Hε are compact. Us-
ing property (2), it remains to check that the fiber H−1

ε (c), for c ∈
]
ε
2 ,+∞

[
,

is connected. To this end, consider the restriction of Hε to
(
B1
∞ ×L R

)
r

{(0, 0)} as a map onto
]
ε
2 ,+∞

[
. This is a proper surjective submersion

by properties (2) and (4); thus it is a locally trivial fiber bundle. Since
its codomain is simply connected and its domain is connected, the long
exact sequence in homotopy for the above restriction implies that, for all
c ∈

]
ε
2 ,+∞

[
, H−1

ε (c) is connected, as desired. �

Proposition 27 and Corollary 29 provide a complete topological descrip-
tion of the map Hε for any ε > 0: for any c ∈

]
ε
2 ,+∞

[
, the fiber H−1

ε (c) is
regular and diffeomorphic to S1, while H−1

ε

(
ε
2

)
is a point.

Next we study the symplectic geometry of Hε : B1
∞ ×L R→ R for a

fixed ε > 0. Since the regular fibers of Hε are compact and connected, the
Liouville-Arnol’d theorem ensures the existence of local action-angle vari-
ables (cf. [1, Section 50], [14], [18, Section 44] for details in general). For
the case at hand, this can be phrased as follows. By Properties (1) and (2)
in Proposition 27, the intersection of the set of regular values of Hε with
Hε

(
B1
∞ × R

)
equals

]
ε
2 ,+∞

[
. Then the Liouville-Arnol’d theorem applied

to Hε : B1
∞ × R→ R yields the following result, stated below without proof.

Lemma 30. For any ε > 0 and for any c0 ∈
]
ε
2 ,+∞

[
, there exist an open

neighborhood U ⊂
]
ε
2 ,+∞

[
of c0, a local diffeomorphism IUε : U → R, and a

symplectomorphism ΨU
ε :
(
H−1
ε (U), dx ∧ dy

)
→
(
IUε (U)× S1, da ∧ dθ

)
such

that
(
ΨU
ε , I

U
ε

)
is an isomorphism between the subsystems of Hε : B1

∞ ×L R→
R and pr1 :

(
R× S1, da ∧ dθ

)
→ R relative to H−1

ε (U) and pr−1 (Iε (U)) re-
spectively.
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Remark 31. The smooth map IUε of Lemma 30 is referred to as a local
action near c0; an explicit, well-known formula for IUε is given by

(12) IUε (c) =

∮
H−1

ε (c)
y(x, c)dx,

where y(x, c) is the smooth function defined implicitly by the equation
Hε(x, y) = c (cf. [1, Section 50])3. Moreover, the map

IUε ◦Hε :
(
H−1
ε (U), dx ∧ dy

)
→ R

is the moment map of an effective Hamiltonian S1-action. This is because(
ψUε , I

U
ε

)
is an isomorphism of integrable systems and

(
IUε (U)× S1, da ∧

dθ,pr1

)
is a symplectic toric manifold (see Example 22(c)).

A priori, Lemma 30 only holds locally, i.e. in a neighborhood of any given
regular value. In general, there are well-known topological obstructions to
gluing these local isomorphisms (cf. [14]). However, in the case at hand the
situation is particularly simple.

Corollary 32. For any ε > 0, there exist a smooth map Iε :
]
ε
2 ,+∞

[
→ R

which is a diffeomorphism onto its image, and a symplectomorphism Ψε :(
B1
∞ ×L R

)
r {(0, 0)} →

(
Iε
(]
ε
2 ,+∞

[)
× S1, da ∧ dθ

)
such that (Ψε, Iε) is

an isomorphism between the subsystems of Hε : B1
∞ ×L R→ R and pr1 :(

R× S1, da ∧ dθ
)
→ R relative to H−1

ε

(]
ε
2 ,+∞

[)
and pr−1

1

(
Iε
(]
ε
2 ,+∞

[))
respectively. In particular, the map Iε ◦Hε :

(
B1
∞ ×L R

)
r {(0, 0)} → R is

the moment map of an effective Hamiltonian S1-action.

Proof. Fix ε > 0. The topological obstructions to gluing the local isomor-
phisms of Lemma 30 depend on the topology of the intersection of the set
of regular values of Hε with the image of Hε (cf. [14]). In particular, they
vanish if this intersection is contractible. Therefore, since the intersection
under consideration equals

]
ε
2 ,+∞

[
, the local isomorphisms of Lemma 30

can be glued together to obtain an isomorphism (Ψε, Iε) between the sub-
systems of Hε : B1

∞ ×L R→ R and pr1 :
(
R× S1, da ∧ dθ

)
→ R relative to

H−1
ε

(]
ε
2 ,+∞

[)
and Iε

(]
ε
2 ,+∞

[)
respectively. It remains to show that Iε is

a diffeomorphism onto its image. Since, for any open subset U as in Lemma
30, Iε|U = IUε , for any c ∈

]
ε
2 ,+∞

[
, I ′ε(c) 6= 0. Connectedness of

]
ε
2 ,+∞

[
3Equation (12) differs by the standard formula for local actions by a factor of 2π

(cf. [1, Section 50]). This is due to the fact that, in this paper, we identify S1 with
R/Z while it is customary in the literature to use the identification S1 ∼= R/2πZ.
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gives that Iε is strictly monotone and, therefore, a diffeomorphism onto its
image. �

Remark 33. As a consequence of the proof of Corollary 32, the right hand
side of (12) equals the function Iε(c) for any c ∈

]
ε
2 ,+∞

[
. Substituting the

function y(x, c) obtained by solving explicitly Hε(x, y) = c in equation (12),
we obtain

Iε(c) = 4

√
1− ε

2c∫
0

√
2c− ε

1− x2
dx(13)

= 4
√

2c− ε

√
1− ε

2c∫
0

√
1− εx2

(2c− ε)(1− x2)
dx.

Formula (13) gives that the action Iε varies continuously with ε.

For each ε > 0, Corollary 32 describes the symplectic geometry of the
restriction of the integrable system Hε : B1

∞ ×L R→ R to its regular points.
In fact, it is possible to strengthen Corollary 32 to provide a description of
the integrable system that includes its singular point; this can be achieved
by exploiting the linearization results for non-degenerate singular elliptic
points (cf. [13, 15] for further details in general). For the purposes at hand,
it suffices to state the linearization result in the simplest case, which is a
consequence of the main theorem in [9].

Theorem 34 (Colin de Verdière and Vey, [9]). Let H :
(
R2, dx ∧ dy

)
→

R be an integrable system such that (0, 0) is a singular point of H and the
Hessian of H at (0, 0) is positive definite. Then there exist open neighbor-
hoods U ⊂ H(R2), V ⊂ [0,+∞[ of H(0, 0) and of 0 respectively, a local dif-
feomorphism I : U → V with I(H(0, 0)) = 0, and a symplectomorphism Ψ :(
H−1(U), dx ∧ dy

)
→
(
µ−1(V ), du ∧ dv

)
such that (Ψ, I) is an isomorphism

between the subsystems of H :
(
R2, dx ∧ dy

)
→ R and of µ :

(
R2, du ∧ dv

)
→

R relative to H−1(U) and µ−1(V ) respectively, where µ(u, v) = π
(
u2 + v2

)
.

In particular, I ◦H :
(
H−1(U), dx ∧ dy

)
→ R is the moment map of an ef-

fective Hamiltonian S1-action.

Applying Theorem 34 to the family of integrable systems Hε : B1
∞ ×L

R→ R, we obtain the following result.
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Lemma 35. For each ε > 0, the action function Iε :
]
ε
2 ,+∞

[
→ R of Corol-

lary 32 extends to a smooth function defined on
[
ε
2 ,+∞

[
.

Proof. Fix ε > 0. The integrable system Hε : B1
∞ ×L R→ R satisfies the

hypotheses of Theorem 34. Therefore it is possible to find open neigh-
borhoods U ⊂

[
ε
2 ,+∞

[
and V ⊂ [0,+∞[ of ε

2 and 0 respectively, and an
isomorphism (Ψ, I) between the subsystems of Hε : B1

∞ ×L R→ R and of
µ :
(
R2, du ∧ dv

)
→ R relative to H−1

ε (U) and µ−1(V ) respectively. Shrink-
ing U if needed, it may be assumed that U is connected and that I is a
diffeomorphism onto V . By abuse of notation denote the restrictions of I
and Ψ to U ∩

]
ε
2 ,+∞

[
and H−1

ε

(
U ∩

]
ε
2 ,+∞

[)
respectively by I and Ψ.

Since pr1 ◦Ψε ◦Ψ−1 is the moment map of an effective Hamiltonian S1-
action, so is Iε ◦ I−1 ◦ µ. Moreover, if Xµ and XIε◦I−1◦µ denote the Hamilto-
nian vector fields of the functions µ and XIε◦I−1◦µ respectively, then

XIε◦I−1◦µ =

(
d
(
Iε ◦ I−1

)
dc

◦ µ

)
Xµ.

Since µ and d(Iε◦I−1)
dc ◦ µ Poisson commute and are moment maps of effective

Hamiltonian S1-actions, it follows that the function d(Iε◦I−1)
dc ◦ µ takes values

in {±1}. Since µ−1(V ) r {(0, 0)} is connected, then d(Iε◦I−1)
dc ◦ µ is constant.

Moreover, since µ is a submersion restricted to µ−1(V ) r {(0, 0)}, it follows

that d(Iε◦I−1)
dc is constant and equal to ±1. Thus the function Iε ◦ I−1 is

the restriction of an element h of AGL(1;Z) := GL(1;Z) nR to V r {0}. In
particular, since I can be extended smoothly at ε

2 , so can Iε, which proves
the desired result. �

By abuse of notation, denote the extension given by Lemma 35 also by
Iε :

[
ε
2 ,+∞

[
→ R.

Lemma 36. For a fixed ε > 0, the map Iε :
[
ε
2 ,+∞

[
→ [0,+∞[ is a diffeo-

morphism.

Proof. Fix ε > 0. The proofs of Theorem 34 and of Lemma 35 imply that
the derivative of Iε at ε

2 does not vanish, which, together with Corollary 32,
gives that I ′ε does not vanish on

[
ε
2 ,+∞

[
. To prove the desired result, it

suffices to show that Iε
(
ε
2

)
= 0, that Iε is strictly increasing, and that the

image of Iε is not bounded. To prove the first result, we have to show that
lim
c→ ε

2
+
Iε(c) = 0. Using equation (13), it suffices to prove that the integral



i
i

“7-Ramos” — 2019/11/18 — 0:00 — page 1466 — #20 i
i

i
i

i
i

1466 V. G. B. Ramos and D. Sepe

√
1− ε

2c∫
0

√
1− εx2

(2c−ε)(1−x2)dx is bounded. Since the integrand is non-negative,

this integral is certainly non-negative; on the other hand, the integrand is
less than 1, which implies that the integral is, in fact, bounded as required.
This shows that Iε

(
ε
2

)
= 0.

Let c1 > c2 ≥ ε
2 . Then

Iε(c1) = 4

√
1− ε

2c1∫
0

√
2c1 −

ε

1− x2
dx > 4

√
1− ε

2c2∫
0

√
2c1 −

ε

1− x2
dx

> 4

√
1− ε

2c2∫
0

√
2c2 −

ε

1− x2
dx = Iε(c2),

where the first inequality follows from the fact that the function
√

2c1 − ε
1−x2

is positive on
[√

1− ε
2c2
,
√

1− ε
2c1

]
, while the second is a consequence of

the fact that c1 > c2 implies that, for all x ∈
[
0,
√

1− ε
2c2

]
,
√

2c1 − ε
1−x2 >√

2c2 − ε
1−x2 . Therefore, Iε is strictly increasing as desired.

Finally, to see that Iε is unbounded, observe that, by equation (13), it
suffices to show that, for all c sufficiently large, the integral

√
1− ε

2c∫
0

√
1− εx2

(2c− ε)(1− x2)
dx

is bounded away from 0. To this end, observe that this integral depends
continuously on c so that, as c→ +∞, the above integral tends to 1, thus
implying the desired property. �

In order to strengthen Corollary 32 to include the singular point of
Hε : B1

∞ ×L R→ R, we need the following result, which is a consequence
of [24, Theorem 1.3] (and a generalization of the well-known classification
of compact symplectic toric manifolds due to Delzant, cf. [12]), and is stated
below without proof.
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Theorem 37. For i = 1, 2, let (Mi, ωi, µi) be a symplectic toric manifold
with connected fibers with µi (Mi) contractible. Then there exists a symplecto-
morphism Ψ : (M1, ω1)→ (M2, ω2) with µ2 ◦Ψ = µ1 if and only if µ1 (M1) =
µ2 (M2).

Remark 38. While not explicitly stated in [24], it follows from ideas
therein that if {(M,ω, µε)}ε>0 is a family of symplectic toric manifolds de-
pending continuously on a parameter ε such that

• for all ε > 0, the fibers of µε are connected, and

• there exists a symplectic toric manifold (M ′, ω′, µ′) with µ′ (M ′) = µε (M)
for all ε > 0,

then the family of symplectomorphisms Ψε : (M,ω)→ (M ′, ω′) can be cho-
sen to depend continuously on ε.

In analogy with Corollary 32, we have the following result describing the
symplectic geometry of the integrable system Hε : B1

∞ ×L R→ R.

Corollary 39. For any ε>0, there exists a symplectomorphism Ψε : B1
∞×L

R→
(
R2, du ∧ dv

)
such that (Ψε, Iε) is an isomorphism between Hε : B1

∞ ×L
R→ R and µ :

(
R2, du ∧ dv

)
→ R, where µ(u, v) = π

(
u2 + v2

)
. Moreover,

the family {Ψε}ε>0 may be chosen to depend continuously on ε.

Proof. Fix ε > 0. By construction, the composite Iε ◦Hε is the moment
map of an effective Hamiltonian S1-action with connected fibers whose im-
age equals [0,+∞[ by Lemma 36. Thus

(
B1
∞ ×L R, dx ∧ dy, Iε ◦Hε

)
and(

R2, du ∧ dv, µ
)

are symplectic toric manifolds satisfying the hypotheses of
Theorem 37. Seeing as they have equal moment map images, Theorem 37
ensures the existence of the desired symplectomorphism Ψε. The fact that
Ψε may be chosen to depend continuously on ε follows from Remark 38. �

An important consequence of Corollary 39, which plays a key role in the
proof of Theorem 7, is the following result.

Proposition 40. For all ε1 > ε2 and for all c ≥ ε1

2 ,

(14) Ψε1

(
H−1
ε1

([ε1

2
, c
[ ))

⊂ Ψε2

(
H−1
ε2

([ε2

2
, c
[ ))

.
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Proof. Fix ε1 > ε2 and c ≥ ε1

2 . Firstly, observe that (14) is equivalent to

(15) µ−1 ([0, Iε1
(c)[) ⊂ µ−1 ([0, Iε2

(c)[) .

This can be seen as follows: for i = 1, 2, we have that

(16) µ ◦Ψεi

(
H−1
εi

([εi
2
, c
[ ))

= Iεi

([εi
2
, c
[ )

= [0, Iεi(c)[ ;

the first equality follows from Corollary 39, while the second from Lemma
36. Corollary 39 also implies that, for i = 1, 2, the subset Ψεi

(
H−1
εi

([
εi
2 , c
[ ))

is saturated with respect to µ. This fact, together with equation (16) im-
plies the inclusion of equation (14) holds if and only if that of equation
(15) does. To show that equation (15) is true, it suffices to prove that
[0, Iε1

(c)[ ⊂ [0, Iε2
(c)[ or, equivalently, that Iε1

(c) < Iε2
(c). The proof of this

last statement is analogous to an argument used in Lemma 36. Using equa-
tion (13), it can be seen that, for fixed c, Iε(c) is a continuous, decreasing
function of ε. This yields the desired result. �

To conclude this section, we observe that equation (13) implies that, in
some sense, the family of diffeomorphisms {Iε}ε>0 converges uniformly as ε
goes to 0.

Lemma 41. For all c > 0, lim
ε→0+

Iε(c) = 4
√

2c =: I0(c). Moreover, for any

ε0 > 0, any decreasing sequence εk converging to 0 with the property that
ε0 > ε1, and any compact subset K ⊂ R≥0, Iεk → I0 uniformly in the set
K ∩

[
ε0

2 ,+∞
[
.

Proof. Fix c > 0. Then c is in the domain of Iε for all ε sufficiently small;
therefore, it makes sense to consider lim

ε→0+
Iε(c). The result follows from ob-

serving that Iε depends continuously on ε; thus equation (13) yields that

lim
ε→0+

Iε(c) = 4

1∫
0

√
2c dx = 4

√
2c.

This proves the first assertion. To prove the second, fix ε0, a decreasing se-
quence εk converging to 0 and a compact set K as in the statement. Then
K ′ := K ∩

[
ε0

2 ,+∞
[

is compact, the family of functions {Iεk |K′}n is mono-
tone (see the proof of Proposition 40), and the function I0|K′ is continuous.
The result then follows by Dini’s theorem. �



i
i

“7-Ramos” — 2019/11/18 — 0:00 — page 1469 — #23 i
i

i
i

i
i

On the rigidity of lagrangian products 1469

3.1.3. The general case. For any n ≥ 1, consider the family of smooth
maps {Φε : Bn

∞ ×L Rn → Rn}ε>0, where

(17) Φε (x,y) = (Hε(x1, y1), . . . ,Hε(xn, yn)) ,

and Hε : B1
∞ ×L R→ R is the smooth function introduced in Section 3.1.2.

Viewing Bn
∞ ×L Rn as the symplectic product of n copies of B1

∞ ×L R, it
follows from the construction (b) in Example 22 that, for each ε > 0, Φε :
Bn
∞ ×L Rn → Rn is an integrable system. In fact, much more is true.

Corollary 42. For any ε > 0, there exist a diffeomorphism Iε :
[
ε
2 ,+∞

[n →
[0,+∞[n and a symplectomorphism Ψε : Bn

∞ ×L Rn →
(
R2n, ω0

)
such that

(Ψε, Iε) is an isomorphism between

Φε : Bn
∞ ×L Rn → Rn and µ :

(
R2n,

n∑
i=1

dui ∧ dvi

)
→ Rn,

where µ(u,v) = π
(
u2

1 + v2
1, . . . , u

2
n + v2

n

)
. In particular, Iε ◦ Φε is the mo-

ment map of an effective Hamiltonian Tn-action on Bn ×L Rn. Moreover,
the family {Ψε}ε>0 may be chosen to depend continuously on ε.

Proof. Setting Iε (c) := (Iε(c1), . . . , Iε(cn)) and Ψε (x,y) := (Ψε(x1, y1), . . . ,
Ψε(xn, yn)), where Iε and Ψε are as in equation (13) and Corollary 39 re-
spectively, the desired result follows from Remark 24 and Corollary 39. �

Lemma 41 and Corollary 42 imply that the family of diffeomorphisms
{Iε}ε>0 converges uniformly as ε goes to 0.

Corollary 43. For any c ∈ ]0,+∞[n, lim
ε→0+

Iε (c) = I0 (c), where I0 (c) :=

(I0(c1), . . . , I0(cn)) and I0(c) = 4
√

2c. Moreover, for any ε0 > 0, any de-
creasing sequence εk converging to 0 with ε0 > ε1, and any compact subset
K ⊂ Rn≥0, Iεk → I0 uniformly in K ∩

[
ε0

2 ,+∞
[n

.

Proof. The first statement is an immediate consequence of Lemma 41 and
Corollary 42. The second statement follows similarly upon observing that,
without loss of generality, it may be assumed that K is of the form K1 ×
· · · ×Kn ⊂ R≥0 × · · · × R≥0 = Rn≥0, where, for each i = 1, . . . , n, Ki ⊂ R≥0

is compact. �
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3.2. Constructing the symplectomorphism

The aim of this section is to prove Theorem 7, which endows any lagrangian
product of the form Bn

∞ ×L A, where A ⊂ Rn is a balanced region (see Def-
inition 2), with an effective Hamiltonian Tn-action. As a first step, we con-
struct a suitable compact exhaustion of any lagrangian product of the above
form (see Step (ii)). Henceforth, given B ⊂ Rl, we denote its closure by
cl (B).

Lemma 44. For any balanced region A ⊂ Rn, there exists a family of sym-
plectic submanifolds {Pε}ε>0 of Bn

∞ ×L A, with compact closure in Bn
∞ ×L

A, satisfying the following properties:

(a)
⋃
ε>0

cl (Pε) = Bn
∞ ×L A and

⋃
ε>0

Ψε (cl (Pε)) = X4|A|;

(b) if ε1 > ε2, then cl (Pε1
) ⊂ cl (Pε2

) and Ψε1
(cl (Pε1

)) ⊂ Ψε2
(cl (Pε2

)),

where 4|A| ⊂ Rn≥0 is as in Section 1.2, and
{
Ψε : Bn

∞ ×L Σ→ R2n
}
ε>0

is
the family of symplectomorphisms of Corollary 42 depending continuously
on ε.

Proof. Fix a balanced region A ⊂ Rn. For any ε > 0, let Φε : Bn
∞ ×L Rn →

Rn be the integrable system defined by equation (17). For ε > 0, set

Pε := Φ−1
ε

(
I−1

0 (4|A|)
)
⊂ Bn

∞ ×L Rn,

where I0 : Rn≥0 → Rn≥0 is the map of Corollary 43. The claim is that {Pε}ε>0

is the required family. Begin by observing that, since A is open, so is 4|A| ⊂
Rn≥0. Continuity of Φε for any ε > 0 and of I0 implies that, for each ε > 0,
Pε is an open subset of Bn

∞ ×L Rn and, thus, a symplectic submanifold of
Bn
∞ ×L Rn. For each ε > 0, the closure of Pε is mapped to the closure of

4|A| in Rn≥0 under I0 ◦ Φε. Since A is bounded, so is 4|A| is bounded, which
implies that cl (4|A|) ⊂ Rn≥0 is compact. Moreover, the maps Φε and I0 are
proper, the former by Property (4) of Proposition 27 and by construction,
while the latter by virtue of being a homeomorphism onto a closed subset
of Rn. Therefore, for each ε > 0, the closure of Pε is contained in a compact
subset and is, therefore, compact. To simplify the argument of the rest of
the proof, we deal with each statement separately.

Claim 45.
⋃
ε>0

cl (Pε) = Bn
∞ ×L A.
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Proof of Claim 45. Fix ε > 0 and let (x,y) ∈ cl (Pε). By definition, x ∈ Bn
∞

and I0 (Φε (x,y)) ∈ cl (4|A|). Using the definition of I0 and Φε, the latter
condition gives that

(18)

(
4

√
y2

1 +
ε

1− x2
1

, . . . , 4

√
y2
n +

ε

1− x2
n

)
∈ cl (4|A|) .

However, since 4|A| satisfies (1), equation (18) implies that[
0, 4

√
y2

1 +
ε

1− x2
1

[
× · · · ×

[
0, 4

√
y2
n +

ε

1− x2
n

[
⊂ 4|A|,

which, in particular, yields that (4|y1|, . . . , 4|yn|) ∈ 4|A|. By definition of
4|A|, this last condition gives that y ∈ A. Thus (x,y) ∈ Bn

∞ ×L A; since
(x,y) ∈ cl (Pε) and ε > 0 are arbitrary, for all ε > 0, cl (Pε) ⊂ Bn

∞ ×L A.
Hence, for all ε > 0, Pε is a symplectic submanifold of Bn

∞ ×L A with com-
pact closure in Bn

∞ ×L A, and
⋃
ε>0

cl (Pε) ⊂ Bn
∞ ×L A.

It remains to prove the opposite inclusion. Suppose that (x,y) ∈ Bn
∞ ×L

A. Then, by definition, (4|y1|, . . . , 4|yn|) ∈ 4|A|; since 4|A| ⊂ Rn≥0 is open, for

all sufficiently small ε > 0,
(

4
√
y2

1 + ε
1−x2

1
, . . . , 4

√
y2
n + ε

1−x2
n

)
∈ 4|A|, which

is equivalent to (x,y) ∈ Pε. Since (x,y) ∈ Bn
∞ ×L A is arbitrary, this gives

that Bn
∞ ×L A ⊂

⋃
ε>0

Pε ⊂
⋃
ε>0

cl (Pε). �

Claim 46.
⋃
ε>0

Ψε (cl (Pε)) = X4|A|.

Proof of Claim 46. Fix ε > 0; firstly we show that Ψε (cl (Pε)) ⊂ X4|A|. Since
X4|A| is saturated with respect to µ, it suffices to prove that µ (Ψε (cl (Pε)))⊂
µ
(
X4|A|

)
= 4|A|. By Corollary 42, µ ◦Ψε = Iε ◦ Φε and, by definition, Pε =

Φ−1
ε

(
I−1

0 (4|A|)
)
, so that Φε (cl (Pε)) ⊂ I−1

0 (cl (4|A|)); therefore it suffices
to prove that Iε

(
I−1

0 (cl (4|A|))
)
⊂ 4|A|. In fact, since the domain of Iε is[

ε
2 ,+∞

[n
, it suffices to show that

Iε

(
I−1

0 (cl (4|A|)) ∩
[ε

2
,+∞

[n)
⊂ 4|A|.

Suppose that a ∈ cl (4|A|) is such that I−1
0 (a) ∈

[
ε
2 ,+∞

[n
; the aim is to

show that Iε
(
I−1

0 (a)
)
∈ 4|A|. Observe that, by definition of I0 (see Corol-

lary 43), I−1
0 (a) =

(
I−1

0 (a1) , . . . , I−1
0 (an)

)
; moreover, by definition of Iε (see
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the proof of Corollary 42),

Iε
(
I−1

0 (a)
)

=
(
Iε
(
I−1

0 (a1)
)
, . . . , Iε

(
I−1

0 (an)
))
.

By assumption, for each i = 1, . . . , n, I−1
0 (ai) ≥ ε

2 . The definitions of Iε and
of I0 (see (13) and Lemma 41) imply that, for all i = 1, . . . , n, Iε

(
I−1

0 (ai)
)
<

I0

(
I−1

0 (ai)
)

= ai. In particular,

Iε
(
I−1

0 (a)
)
∈ [0, a1[× · · · × [0, an[ ;

on the other hand, the right hand side of the above equation is a subset of
4|A| since a ∈ cl (4|A|) and 4|A| satisfies (1). Thus Iε

(
I−1

0 (a)
)
∈ 4|A|; since

a ∈ 4|A| is arbitrary, the above argument shows that Iε
(
I−1

0 (cl (4|A|))
)
⊂

4|A| and, therefore, Ψε (cl (Pε)) ⊂ X4|A|. Since ε > 0 is arbitrary, we have
that

⋃
ε>0

Ψε (cl (Pε)) ⊂ X4|A|.

To prove the opposite inclusion, suppose that z ∈ X4|A|; it suffices to
show that there exists ε > 0 and (x,y) ∈ Pε ⊂ cl (Pε) such that Ψε (x,y) =
z. By Corollary 42, we know that, for any ε > 0, there exists a unique point
(xε,yε) ∈ Bn

∞ ×L Rn with Ψε (xε,yε) = z. Hence, it suffices to show that,
for some ε > 0, (xε,yε) ∈ Pε, which is equivalent to I0 (Φε (xε,yε)) ∈ 4|A|,
since Pε is saturated with respect to Φε. To see that this holds, we argue as
follows. Choose a decreasing sequence εk converging to 0 and, for any k, set
ck = (ck,1, . . . , ck,n) := Φεk (xεk ,yεk), and µ (z) =: (a1, . . . , an). By assump-
tion, we have that, for all k and all i = 1, . . . , n, Iεk (ck,i) = ai. Let l > k and
suppose that there exists i = 1, . . . , n such that cl,i > ck,i. Then

(19) ai = Iεk (ck,i) < Iεl (ck,i) < Iεl (cl,i) < ai,

where the first inequality follows from the fact that if ε > ε′ and c ≥ ε
2 , then

Iε(c) < Iε′(c) (see the proof of Proposition 40), while the second follows from
the fact that Iεl is a strictly increasing function (see the proof of Lemma
36). The inequalities (19) yield a contradiction; thus, for all l > k and all
i = 1, . . . , n, cl,i ≤ ck,i. Together with the fact that, for all k, ck ∈ Rn≥0, this
fact implies that the sequence {ck}k ⊂ Rn≥0 is bounded. Therefore, without
loss of generality, it may be assumed that ck → c∞ ∈ Rn≥0. Hence,

(20) lim
k→+∞

(
lim

j→+∞
Iεj (ck)

)
= lim

k→+∞
I0 (ck) = I0 (c∞) ,
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where the first equality follows from Corollary 43 and the second from con-
tinuity of I0. On the other hand,

(21) lim
k→+∞

Iεk (ck) = µ (z) ,

since, by definition, for all k, Iεk (ck) = µ (z). Comparing equations (20)
and (21), we obtain that I0 (c∞) = µ (z). Since 4|A| ⊂ Rn≥0 is open and
µ(z) ∈ 4|A|, there exists a δ > 0 such that if a′ ∈ Rn≥0 and ‖µ (z)− a′‖ < δ,

then a′ ∈ 4|A|. Choose k sufficiently large so that ‖I0 (c∞)− I0 (ck)‖ < δ
2 ;

this can be achieved since I0 is continuous and ck → c∞ as k → +∞. Hence,

(22) ‖µ (z)− I0 (Φεk (xεk ,yεk))‖ = ‖I0 (c∞)− I0 (ck)‖ <
δ

2
;

moreover, by definition of I0, I0 (Φεk (xεk ,yεk)) ∈ Rn≥0. Thus

I0 (Φεk (xεk ,yεk)) ∈ 4|A|

as desired, which, unraveling the above argument, implies that X4|A| ⊂⋃
ε>0

Ψε (Pε) ⊂
⋃
ε>0

Ψε (cl (Pε)) and completes the proof. �

Claims 45 and 46 yield that the family of symplectic submanifolds {Pε}ε>0

satisfies property (a).

Claim 47. If ε1 > ε2, then cl (Pε1
) ⊂ cl (Pε2

).

Proof of Claim 47. Fix ε1>ε2. It suffices to show that Pε1
⊂Pε2

. Fix (x,y)∈
Pε1

. By definition, I0 (Φε1
(x,y)) ∈ 4|A|, i.e.(

4

√
y2

1 +
ε1

1− x2
1

, . . . , 4

√
y2
n +

ε1

1− x2
n

)
∈ 4|A|.

On the other hand, observe that, since ε1 > ε2, for all i = 1, . . . , n,√
y2

1 +
ε1

1− x2
1

>

√
y2

1 +
ε2

1− x2
1

.

Since 4|A| satisfies property (1), arguing as in the proof of Claim 45, we
obtain that (

4

√
y2

1 +
ε2

1− x2
1

, . . . , 4

√
y2
n +

ε2

1− x2
n

)
∈ 4|A|,



i
i

“7-Ramos” — 2019/11/18 — 0:00 — page 1474 — #28 i
i

i
i

i
i

1474 V. G. B. Ramos and D. Sepe

which gives that I0 (Φε2
(x,y)) ∈ 4|A|. By definition of Pε2

, (x,y) ∈ Pε2
.

Since (x,y) ∈ Pε1
is arbitrary, this shows that Pε1

⊂ Pε2
as desired. �

Claim 48. If ε1 > ε2, then Ψε1
(cl (Pε1

)) ⊂ Ψε2
(cl (Pε2

)).

Proof of Claim 48. Fix ε1 > ε2. Since, for i = 1, 2, Ψεi is a homeomorphism,
it suffices to show that Ψε1

(Pε1
) ⊂ Ψε2

(Pε2
). As, for i = 1, 2, the subset

Ψεi (Pεi) is saturated with respect to µ, in order to prove the desired result
it suffices to show that µ (Ψε1

(Pε1
)) ⊂ µ (Ψε2

(Pε2
)), which is equivalent

to Iε1
(Φε1

(Pε1
)) ⊂ Iε2

(Φε2
(Pε2

)) in light of Corollary 42. Observe that, for
i = 1, 2, Φεi (Pεi) = I−1

0 (4|A|) ∩
[
εi
2 ,+∞

[n
; thus, since ε1 > ε2, Φε1

(Pε1
) ⊂

Φε2
(Pε2

). Let c = (c1, . . . , cn) ∈ Φε1
(Pε1

) ⊂ Φε2
(Pε2

); the fact that 4|A| sat-
isfies property (1) implies that

(23)
[ε2

2
, c1

]
× · · · ×

[ε2

2
, cn

]
⊂ Φε2

(Pε2
) .

For, the condition c ∈ Φε2
(Pε2

) implies that I0 (c) =
(
4
√

2c1, . . . , 4
√

2cn
)
∈

4|A|. Since 4|A| satisfies property (1), then[
0, 4
√

2c1

]
× · · · ×

[
0, 4
√

2cn
]
⊂ 4|A|.

Thus

(24) I−1
0

([
0, 4
√

2c1

]
× · · · ×

[
0, 4
√

2cn
])
⊂ I−1

0 (4|A|) ;

however, by definition of I0 (see Corollary 43),

I−1
0

([
0, 4
√

2c1

]
× · · · ×

[
0, 4
√

2cn
])

(25)

=
(
I−1

0

([
0, 4
√

2c1

]))
× · · · ×

(
I−1

0

([
0, 4
√

2cn
]))

= [0, c1]× · · · × [0, cn] .

Equation (23) follows by combining equations (24) and (25) with the equality
Φε2

(Pε2
) = I−1

0 (4|A|) ∩
[
ε2

2 ,+∞
[n

. Equation (23) implies that

[0, Iε2
(c1)]× · · · × [0, Iε2

(cn)] = Iε2

([ε2

2
, c1

]
× · · · ×

[ε2

2
, cn

])
(26)

⊂ Iε2
(Φε2

(Pε2
)) ,

where the first equality follows from the definition of Iε2
and properties

of Iε2
(see the proof of Lemma 36). Since ε1 > ε2, the proof of Propo-

sition 40 gives that, for all i = 1, . . . , n, Iε1
(ci) < Iε2

(ci), which, together
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with equation (26) gives that Iε1
(c) = (Iε1

(c1), . . . , Iε1
(cn)) ∈ Iε2

(Φε2
(Pε2

)).
Since c ∈ Φε1

(Pε1
) is arbitrary, the above argument shows that Iε1

(Φε1
(Pε1

))
⊂ Iε2

(Φε2
(Pε2

)) as desired. �

Claims 47 and 48 yield that the family of symplectic submanifolds {Pε}ε>0

satisfies property (b). This completes the proof. �

Lemma 44 allows to prove Theorem 7.

Proof of Theorem 7. Fix a balanced region A ⊂ Rn. The aim is to construct
a symplectomorphism between Bn

∞ ×L A and the toric domain X4|A|. Let
{Pε}ε>0 be the family of symplectic submanifolds with compact closure of
Bn
∞ ×L A as in Lemma 44. Pick a decreasing sequence εk converging to 0. By

property (b), for all l > k, cl (Pεl) ⊂ cl (Pεk); moreover, combining properties
(a) and (b) in Claim 44,

⋃
k≥1

cl (Pεk) = Bn
∞ ×L A and

⋃
k≥1

Ψεk (cl (Pεk)) =

X4|A|.
To construct the desired symplectomorphism we use an argument of [27]

which also appears in [30, Proof of Theorem 3]. Fix k ≥ 2. Observe that, for
any t ∈ [εk, εk−1],

Ψεk−1

(
cl
(
Pεk−1

))
⊂ Ψt (cl (Pt)) ⊂ Ψεk (cl (Pεk)) ,

where the inclusions follow from property (b) in Claim 44. Thus it is possible
to consider an isotopy of symplectic embeddings Ψ−1

t ◦Ψεk−1
: cl
(
Pεk−1

)
↪→

cl (Pεk) for t ∈ [εk, εk−1]. Using the symplectic isotopy extension theorem (cf.
[3, Proposition 4] and [4]), there exists an isotopy of symplectomorphisms
χt : cl (Pεk)→ cl (Pεk) for t ∈ [εk, εk−1] such that

• χt|Pεk−1
= Ψ−1

t ◦Ψεk−1
, and

• χt is the identity away from some neighborhood of cl
(
Pεk−1

)
.

The map Ψ̃εk := Ψεk ◦ χεk : cl (Pεk) ↪→ R2n is a symplectic embedding sat-
isfying

• Ψ̃εk |cl(Pεk−1) = Ψεk−1
, and

• Ψ̃εk equals Ψεk away from some neighborhood of cl
(
Pεk−1

)
.

Setting

Ψ (x,y) :=

{
Ψε1

(x,y) if (x,y) ∈ cl (Pε1
) ,

Ψ̃εk (x,y) if (x,y) ∈ cl (Pεk) r cl
(
Pεk−1

)
,
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we obtain a well-defined map Ψ :
⋃
k≥1

cl (Pεk) = Bn
∞ ×L A→ R2n. The above

properties imply that Ψ is a symplectic embedding of Bn
∞ ×L A into R2n

whose image equals
⋃
k≥1

Ψεk (cl (Pεk)) = X4|A| as desired. �
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