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We consider the Tarski–Bang problem about covering of convex
bodies by planks. The results of this kind give a lower bound on
the sum of widths of planks (regions between a pair of parallel
hyperplanes) covering a given convex body.

Previously we have applied some notions of symplectic geome-
try to study convex bodies, and here we show that the symplectic
techniques may be useful in this problem as well. We are able to
handle some particular cases with the symplectic techniques, and
show that the general cases would follow from a certain “subaddi-
tivity conjecture” in symplectic geometry, motivated by the results
of K. Ball. We also prove several related results by more elementary
methods.
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1. Introduction

1.1. The Moese–Tarski–Bang problem

We start from recalling the classical problem attributed to Alfred Tarski and
Thøger Bang and the known results on this problem, in particular those of
Keith Ball, that give motivation to the whole discussion in this text.

The earliest version of this problem appeared when Tarski studied [29,
30] certain degree of equivalence τ(x) of a unit square Q and a rectangle
P of size x× 1

x , defined as the smallest number of parts one has to cut the
rectangle into to assemble the square from the parts. To solve a particular
case of this problem and show that τ(n) = n for natural numbers n, Hen-
ryk Moese [23] inscribed a disk K into Q and noticed that this disk cannot
be covered by less than n parts Pi of P . The solution used the trick of pro-
jecting the sphere in R3 onto K and counting the areas of the preimages of
Pi on the sphere. This gave the solution of what was called later “the Bang
problem” for the round disk K and the Euclidean norm.

Bang had [9] a different (non-volumetric) solution of the more general
problem: If a convex body K ⊂ Rn is covered by planks P1, . . . , Pm (a plank
is a set bounded by a pair of parallel hyperplanes) then the sum of Euclidean
widths of the planks is at least the Euclidean width of K. Bang also conjec-
tured [9] that whenever a convex body K is covered by planks P1, . . . , Pm,
the sum of relative widths of the planks is at least 1. Here the relative width
is the width of Pi in the norm with the unit ball K −K (the symmetrization
of K), and this version would certainly imply the original result of Bang.

To date, the best result on Bang’s conjecture belongs to Ball [6], who es-
tablished it for all centrally symmetric convex bodies K. For non-symmetric
bodies the problem remains open.

There is essentially one general approach to Bang’s problem known so
far, designed by Bang himself. For any plank Pi, we take a pair of points
on its bounding hyperplanes at which the distance between the bounding
hyperplanes (the width of the plank) is attained, call such two-point set Ii.
The first easy step is to show that the Minkowski sum

X = I1 + · · ·+ Im = {p1 + · · ·+ pm : p1 ∈ I1, . . . , pm ∈ Im}
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can be translated to fit into any given convex body of minimal width

w(K) ≥
m∑
i=1

w(Pi).

The second step, the main lemma of Bang, asserts that at least one point
of this Minkowski sumX is not covered by the interiors of Pi. This only works
in the Euclidean case, lifting the dimension allows to consider planks Pi and
sets Ii centered at the origin, and then it is relatively easy to see that the
point from X with the largest distance from the origin is not covered by the
interiors of Pi (see how this simple idea works in the recent work [20] on a
similar problem). After a simple approximation argument to pass from the
interiors of the planks to closed planks, this lemma immediately proves the
Euclidean case of Bang’s problem. This construction together with several
other technical tools was also used in Ball’s proof of the general symmetric
case [6]. In [8] Ball proved another version of this problem for complex vector
spaces, which we also discuss in Section 4.

In contrast to the general case, the approach of Moese to the cases
of dimension 2 and 3 is volumetric. The crucial observation is that for a
plank Pi the area of its intersection with the round two-sphere S2 ⊂ R3

is proportional to the plank width. It is also known that the volumetric
approach fails in larger dimensions.

1.2. Symplectic tools

In this paper we are going to propose another “quantitative” approach to the
Bang conjecture based on certain invariants of symplectic manifolds, known
as symplectic capacities, introduced by Helmut Hofer and Eduard Zehnder
(see their nice book [19]), with first nontrivial examples given previously by
Mikhail Gromov [16]. This approach has already proved to be useful in the
intersection of symplectic and convex geometry in [3–5], and allows either
to solve a problem in convex geometry by symplectic methods or provides a
good intuition to pose the “right questions” in convex geometry.

This time we are going to do the opposite: Use the knowledge on the
convex problem to pose the corresponding “right problem” in symplectic ge-
ometry. The central theme of our discussion if the following (rather imprecise
at this point) conjecture about symplectic capacities:

Conjecture 1.1. If a convex body K ⊂ Cn is covered by a finite set of
convex bodies {Ki} then, for some symplectic capacity c(·) (the cases of
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interest are the Hofer–Zehnder capacity and the displacement energy),∑
i

c(Ki) ≥ c(K).

In the moment such a conjecture seems rather unmotivated and the
purpose of this text is to show that it has direct relation to the Bang problem.
In particular, the known results by Ball [6, 8] follow from this conjecture (and
even its weaker form, Conjecture 4.2 explained below). Therefore positive
results on this conjecture would be useful, because Ball’s proofs are rather
technical. The Bang conjecture for not necessarily centrally symmetric K
does not follow from this conjecture, but a worse estimate of the sum of
widths, tending to 1/2 for high dimensions, would follow from an appropriate
version of Conjecture 4.2.

Theorem 3.6 and Corollary 3.7 present our partial results on the Bang
problem. However, here we are only able to handle these results in a par-
ticular case of the Bang problem with “almost parallel planks” (see the
explanation of this term in Theorem 2.2), the general case being dependent
on the subadditivity conjecture.

1.3. Organization of the paper

In Sections 2–4 we explain how the results of Ball are expressed in terms of
subadditivity of certain symplectic capacities. In particular, in Section 3 we
establish the estimate (Theorem 3.6)

cHZ(K × (K −K)◦) ≥ 1 +
1

n
,

that extends the work of [2, 4] on lower bounds for symplectic capacities
and close billiard trajectories of Minkowski billiards.

In Section 5 we provide examples showing that the convexity assumption
seems crucial in the subadditivity conjecture, prove this conjecture for the
simple case of splitting the ball in Cn by a hyperplane cut (already general-
ized in a parallel work [17]), and discuss other evidence of subadditivity.

In Section 6 we bound from below the oscillation of a function on a
convex set given its differential is bounded from below. A version of this is
obtained by a simple application of known symplectic results without any
conjectural assumptions, but eventually it turns our that the optimal result
of this kind (Theorem 6.3) is proved without using any symplectic technique.

In Section 7 we establish another particular case of the Bang problem
with elementary means, and in Section 8 we discuss fractional versions of
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the Bang problem as well as covering of the Euclidean ball by Euclidean
cylinders. Here symplectic techniques do not seem to give much.

Acknowledgments

The authors thank Yaron Ostrover for useful discussions and numerous re-
marks, Leonid Polterovich for the useful Example 5.3, the unknown referees
for lots of useful remarks, Wac law Marzantowicz and Jakub Byszewski for
scanning the old Polish papers [23, 29, 30] for us.

2. Displacing a Lagrangian product

Let us demonstrate the relation of the Bang conjecture to some notions of
symplectic geometry. Denote by V the ambient vector space of a convex body
K, and let V ∗ be its dual; we remind that a convex body is a compact convex
set with nonempty interior. The reader may safely assume V = V ∗ = Rn, but
in order to use the symplectic viewpoint further we emphasize the duality
and use the canonical bilinear product 〈·, ·〉 : V × V ∗ → R.

Consider some norm ‖ · ‖ on V whose unit ball we denote by B. Let
‖ · ‖∗ be the dual norm on V ∗, its unit ball is the polar B◦ of B. In the Bang
conjecture the natural choice of the norm ‖ · ‖ is the norm with the unit ball

K −K := {x− y : x ∈ K, y ∈ K},

but we do not restrict ourselves and allow arbitrary norms, unless otherwise
stated.

We always assume that the norms ‖ · ‖ and ‖ · ‖∗ are sufficiently smooth.
For the Bang conjecture this is not a problem, since a standard approxima-
tion argument allows to approximate any convex body (the unit ball B in
this particular case) by an infinitely smooth and strictly convex body con-
tained in it (or containing it). We also assume that K has sufficiently smooth
boundary when this is needed in the argument.

Our idea is to start from a covering of K by planks P1, . . . , Pm with
widths w1, . . . , wm and show that a symplectic capacity of the convex body
K ×B◦ ⊂ V × V ∗ is bounded in terms of

∑
iwi. Let us recall that a plank

is a closed region between a pair of parallel hyperplanes in V and its width
is the distance between the hyperplanes in the norm ‖ · ‖ we work with.
For arbitrary convex body K ⊂ V , we call the (minimal) width of K the
minimal width of a plank containing K.
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First of all, the space V × V ∗ is, in more general terms, the cotangent
space of the manifold V . The cotangent space always inherits the canonical
symplectic structure, which in this particular case is given by the formula

ω((x1, y1), (x2, y2)) = 〈x1, y2〉 − 〈x2, y1〉.

Consider the convex body K ×B◦ ⊂ V × V ∗, which is called a Lagran-
gian product in [5] and subsequent works, and try to figure out how the
assumption that K is covered with a set of planks of given total width
bounds a symplectic capacity of K ×B◦. In this problem it is natural to
start with the displacement energy, which is a particular case of an external
symplectic capacity of a subset of the symplectic space V × V ∗ (see [19]
for the details). The definition of the displacement energy operates with a
time dependent compactly supported Hamiltonian H(x, y, t) on V × V ∗ ×
[T1, T2], whose total oscillation is defined to be

‖H‖ =

∫ T2

T1

sup
x,y

H(x, y, t)− inf
x,y

H(x, y, t) dt,

see [19, Ch. 5] or [26] for further details. Sometimes the segment [T1, T2] is
normalized to be [0, 1], but actually this and the following definitions do not
depend on this normalization. It is always possible to scale the time segment
by α and multiply the Hamiltonian by 1/α without changing the result of
the Hamiltonian flow.

The displacement energy of X ⊂ V × V ∗, denoted by e(K ×B◦), is the
infimum of ‖H‖ over all compactly supported time dependent Hamiltonians
such that the corresponding time dependent Hamiltonian flow ϕt takes X
off itself, that is

X ∩ ϕT2
(X) = ∅.

Now we are ready to state the first version of the conjectured property
of symplectic capacities that is related to the Bang problem:

Conjecture 2.1. If a convex body K ⊂ V can be covered with a finite set
of planks with the sum of widths (measured relative to the unit ball B) equal
to w then e(K ×B◦) ≤ 2w.

Now we use a simple argument to establish a particular case of Conjec-
ture 2.1. For every plank Pi in question, we may choose either of the unit
normals ±ni ∈ V ∗, where by a unit normal to a plank Pi we mean an el-
ement ni ∈ V ∗ such that ‖ni‖∗ = 1 and the defining hyperplanes of Pi are
defined by {x ∈ V : 〈ni, x〉 = const}.
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Theorem 2.2. Conjecture 2.1 holds if the unit normals ni ∈ V ∗ of the
planks can be chosen so that, for any sequence of non-negative coefficients
ci, at least one of which is 1, the following inequality holds:

(2.1)

∥∥∥∥∥∑
i

cini

∥∥∥∥∥
∗

≥ 1.

Let us call the assumption almost parallel planks. In the Euclidean case
this assumption is guaranteed by a simpler assumption that ni · nj ≥ 0 for
any pair of indices. This rarely happens for a random set of normals.

Proof. Let a plank Pi have width wi. Consider the Hamiltonian Hi(x, y, t)
defined for t ∈ [2i− 2, 2i] so that Hi is independent of t and y, equals zero
for x on one side of P , equals wi for x on the other side of Pi, and changes
linearly in x inside Pi. The effect of the corresponding (discontinuous!) flow
is as follows: (x, y) ∈ V × V ∗ remains fixed if x is outside Pi and gets shifted
by (0, 2ni), where ni = dxHi is the unit normal to Pi, for x in the interior
of Pi. For x ∈ ∂Pi we have a discontinuity. From the definition it follows
that the part (K ∩ Pi)×B◦ gets shifted outside K ×B◦, spending the total
oscillation 2wi.

The idea is to shift this way everything outside K ×B◦ in a finite se-
quence of such steps for all planks Pi. The total oscillation of such a sequence
of Hamiltonians is therefore twice the sum of widths. To make this idea work
we need some care. First, the function Hi(x, y, t) is not smooth for x ∈ ∂Pi
and therefore the Hamiltonian flow is discontinuous. This could be remedied
by a certain smoothening changing the value of dH in a small neighborhood
of ∂Pi × V ∗; but after that we have to keep in mind that some parts near
boundaries of planks are “incompletely shifted” by vectors (0, 2ci(x)ni) for
some 0 ≤ ci(x) ≤ 1.

A more serious problem, is that we have made several shifts and it may
happen that something, previously shifted outside K ×B◦, returns inside
K ×B◦ on a subsequent shift. The assumption of the theorem means that
the total shift of the V ∗ component over a point x ∈ V , which is equal to∑

i

2ci(x)ni,

always has ‖ · ‖∗-norm at least 2 and therefore indeed shifts the considered
point (x, y) outside K ×B◦. �

Remark 2.3. Here we observe a strange phenomenon. The classical method
of Bang works better when the planks are far from parallel, see [7] for an
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impressive example. But the displacement energy approach presented above
likes the opposite situation, when the planks are almost parallel.

Remark 2.4. Yaron Ostrover has noted in private communication that the
proof of the above theorem does not use the convexity of K. This may be
useful, though lower bounds for the symplectic invariants of K ×B◦ seem
less accessible for non-convex K.

It is well known that the Hofer–Zehnder symplectic capacity cHZ(U) (see
the definition and discussion in [19]) gives a lower bound for the displacement
energy of U , where U is an open bounded set in V × V ∗. Therefore it makes
sense to consider a version of Conjecture 2.1 for the Hofer–Zehnder capacity
in place of the displacement energy.

Conjecture 2.5. If K can be covered with a finite set of planks with the
sum of relative widths equal to w then cHZ(K ×B◦) ≤ 2w.

This conjecture is weaker than Conjecture 2.1 in view of the inequality
cHZ(X) ≤ e(X) (see [19]). If fact, for convex bodies X ⊂ R2n there is still
no evidence that the different symplectic capacities may have different val-
ues, and therefore there is no evidence that the versions of this conjecture
with different capacities are really different. Moreover, in [4, Remark 4.2]
it was shown that for centrally symmetric convex K ⊂ V and T ⊂ V ∗ the
value cHZ(K × T ) always coincides with the displacement energy and the
cylindrical capacity of K × T just because K × T can be put to a convex
symplectic cylinder (see also Definition 4.1 below) of capacity cHZ(K × T ).
Therefore in the case of centrally symmetric K and B these conjectures
coincide.

3. Billiards and capacity

3.1. Overview of known results on the symplectic approach
to billiards

If Conjecture 2.5 (or a similar conjecture) holds, in order to produce Bang-
type results we still need to calculate of estimate from below the capacity
cHZ(K ×B◦). Fortunately, Shiri Artstein-Avidan and Yaron Ostrover es-
tablished [5] a nice elementary description of this capacity (all the bodies
are assumed to be sufficiently smooth):
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Theorem 3.1 (Artstein-Avidan, Ostrover, 2012). The Hofer–Zehnder
capacity cHZ(K ×B◦) is equal to the length of the shortest closed Minkowski
billiard trajectory in K, where the length is measured in the norm ‖ · ‖ with
unit ball B and the reflection rule reflects the momentum coordinate from
one point on ∂B◦ to the other point on ∂B◦ by combining it with a multiple
of the normal to ∂K at the hit point.

Remark 3.2. In [5] closed geodesics of ∂K were also considered as a par-
ticular case of a billiard trajectory, with length measured with ‖ · ‖ norm.
But in [2] it was shown that such closed trajectories can never be shorter
than the ordinary piece-wise linear trajectories that reflect at the boundary
of K a finite number (in fact not exceeding dimK + 1) of times.

Conjecture 2.5 and Theorem 3.1 imply the following claim: If for a
smooth strictly convex body K the shortest closed Minkowski billiard tra-
jectories in K (with ‖ · ‖-length) have length L then any system of planks
covering K has the sum of ‖ · ‖-widths at least L/2. In the Bang conjecture
we consider the norm with unit ball K −K. In particular, for the original
version of the Bang conjecture we need L = 2 and no less. Unfortunately,
the following example shows that we cannot guarantee L = 2 already in the
plane.

Example 3.3. If K is the triangle in the plane (from the affine invariance
we may assume K regular) and the norm is defined by K −K, then the
small triangle formed by its midpoints of sides can be verified to be a closed
Minkowski billiard trajectory and have relative length 3/2. The triangle is
not smooth, but it can be smoothened without increasing the number 3/2
too much. Thus the billiard approach together with Conjecture 2.5 is not
sufficient to establish the Bang conjecture already in this simple case.

Moreover, for the Euclidean norm, the regular triangle of unit width
has a billiard trajectory along the midpoints of length

√
3. So the billiard

approach fails even for the known case of the Bang theorem, which estimates
the sum of Euclidean widths of the covering planks by the Euclidean minimal
width of K.

This shows that the symplectic method is not directly applicable to the
still open non-symmetric case of the Bang conjecture (although Theorem 3.6
below shows it can still produce a very good estimate). On the positive side,
for the already known symmetric case the required bound was established
in [4]:
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Theorem 3.4 (Artstein-Avidan, Karasev, Ostrover, 2013). Let ‖ · ‖
be a smooth norm and let its dual ‖ · ‖∗ be also smooth. Then any closed
billiard trajectory in the unit ball B, being measured with ‖ · ‖, has length at
least 4 and cHZ(B ×B◦) = e(B ×B◦) = 4.

In this theorem, the segment [x,−x] ∈ B, where we take any x ∈ ∂B,
passed forth and back is a closed billiard trajectory of length 4 in the norm
associated with B. Theorem 3.4 asserts that this is the shortest one, and
together with Conjecture 2.5 implies Ball’s theorem from [6] about the Bang
problem in the centrally symmetric case. Clearly, this result together with
Theorem 2.2 already gives a symplectic proof for the particular case of Ball’s
theorem, when the “almost parallel planks” assumption (2.1) is satisfied.

For possibly non-symmetric convex bodies a similar result was estab-
lished in [2] (in this theorem we allow a norm to violate the reflexivity
property ‖x‖ = ‖ − x‖):

Theorem 3.5 (Akopyan, Balitskiy, Karasev, Sharipova, 2014). Let
‖ · ‖ be a smooth non-symmetric norm in Rn and let its dual ‖ · ‖∗ be also
smooth. Then any closed billiard trajectory in the unit ball K, measured with
‖ · ‖, has length at least 2 + 2/n.

3.2. Billiard estimate for the Lagrangian product in
the Bang problem

Now we prove one more estimate related to the non-symmetric case of Bang’s
problem. It resembles Theorem 3.5, but we give a separate proof and do not
see if one of the results follows from another.

Theorem 3.6. Let K be a smooth strictly convex body in Rn. Consider the
norm with the unit ball B = K −K, then any closed billiard trajectory in K
with this norm has length at least 1 + 1

n .

We postpone the proof and discuss the result first. This estimate is
obviously tight for n = 1, 2, and is actually tight for n ≥ 3, as it was checked
by Yoav Nir [24, Ch. 4]. In fact, a closed polygonal line with vertices at all
the centers of mass of facets of any simplex K is a closed billiard trajectory
in K with respect to the norm with unit ball K −K.

Assuming Conjecture 2.5 (or a similar conjecture), this theorem would
imply a weaker result than the Bang conjecture, that is the sum of relative
widths of planks would be proved to be at least n+1

2n . This is not what was
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conjectured by Bang, but would be a good step towards the Bang conjecture.
Evidently, for almost parallel planks we have the following corollary:

Corollary 3.7. Assume a convex body K ⊂ V , dimV = n, is covered by
planks P1, . . . , PN . Let us measure the widths with the norm ‖ · ‖ with unit
ball K −K, and assume that the unit (with respect to the dual norm) nor-
mals to the planks, n1, . . . , nN ∈ V ∗ can be chosen “almost parallel”, that is
for any sequence of non-negative coefficients ci, at least one of which is 1,
the following inequality holds:

(3.1)

∥∥∥∥∥∑
i

cini

∥∥∥∥∥
∗

≥ 1.

Then the sum of widths of the planks ca be estimated as

∑
i

w(Pi) ≥
n+ 1

2n
.

Now we go down to the proof of Theorem 3.6. We need the following
lemma to prove this theorem and Theorem 6.3 below.

Lemma 3.8. Let K ⊂ Rn be a convex body and ‖ · ‖ be the norm with unit
ball K −K. If C ∈ Rn is a connected graph with total ‖ · ‖-length at most
h, then C can be covered by a translate of the homothet hK.

Remark 3.9. If we consider arbitrary centrally symmetric norm ‖ · ‖B with
unit ball B, not connected to K −K, then Lemma 3.8 holds true with the
modified assumption: ‖ · ‖B-length of the graph must be at most hwB(K),
where wB(K) is the minimal ‖ · ‖B-width of K. This generalization evidently
follows from the inequality wB(K)‖ · ‖K−K ≤ ‖ · ‖B.

Proof of Lemma 3.8. We may assume that C has straight line segments as
edges. For an edge [a, b] the inequality

‖a− b‖ ≤ δ

in the norm with unit ball K −K is equivalent to saying that [a, b] can be
covered with a translate of δK. So we cover all edges of C (that is the whole
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C) by translates δ1K + t1, . . . , δmK + tm with

δ1 + δ2 + · · ·+ δm ≤ h.

Then we observe that if two sets δiK + ti and δjK + tj intersect then
they can be covered by a single set (δi + δj)K + t′. Indeed, we may consider
K smooth and strictly convex, having in mind an approximation argument.
Then the smallest homothet Kij = hK + t′ containing Ki = δiK + ti and
Kj = δjK + tj must have a common supporting hyperplane with Ki at a
point pi ∈ ∂Kij ∩ ∂Ki and must have a common supporting hyperplane with
Kj at a point pj ∈ ∂Kij ∩ ∂Kj . Moreover, from the minimality of this homo-
thet Kij we may conclude that the supporting hyperplanes to Kij at pi and
pj are parallel, see Figure 1. Hence the segment pipj is covered by a trans-
late of hK, but if we make this segment slightly longer then it will no more
be covered by a translate of hK; from the definition of the norm ‖ · ‖ this
means ‖pj − pi‖ = h. But if pij ∈ Ki ∩Kj , then from the same definition

‖pi − pij‖ ≤ δi, ‖pj − pij‖ ≤ δj ⇒ h = ‖pj − pi‖ ≤ δi + δj

from the triangle inequality.
Using the connectedness of C we can repeat this step several times to

cover the whole C with a translate of (δ1 + · · ·+ δm)K. �

pi

pj

Ki

Kj

Ki,j

Fig. 1.

Proof of Theorem 3.6. By [2, Theorem 2.1] the shortest closed billiard tra-
jectory in K has at most n+ 1 bounce points {qi}mi=1 and cannot be covered
by a smaller positive homothet of K. Applying Lemma 3.8 (explained later)
to the closed trajectory with one segment removed we have:

m∑
i=2

‖qi − qi−1‖ ≥ 1,
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If L is the ‖ · ‖-length of the closed polygonal line q1, q2, . . . , qm, q1 then the
above inequality is a lower bound for L minus the length of the segment
[qm, q1]. The same argument applies to any other segment, and since at least
one of them has length at least L

n+1 (remember that m ≤ n+ 1) then(
1− 1

n+ 1

)
L ≥ 1,

that is L ≥ n+1
n . �

Remark 3.10. Following [4] and assuming a version of Claude Viterbo’s

conjecture [33] (volume of a convex X ⊂ R2n is at least cHZ(X)n

n! ), this theo-
rem would also imply a Mahler-type inequality:

(3.2) volK · vol(K −K)◦ ≥
(
1 + 1

n

)n
n!

.

The unknown referee has made the following observation about this inequal-
ity. Combining the classical Rogers–Shephard inequality

volK ≥ 1(
2n
n

) vol(K −K)

with the conjectured Mahler inequality

vol(K −K) · vol(K −K)◦ ≥ 4n

n!

we obtain

volK · vol(K −K)◦ ≥ 4n

n!
(
2n
n

) ,
which is of order

√
n
n! and is better than (3.2). A particular conclusion is

that K × (K −K)◦ is far from symplectic balls or other convex bodies that
satisfy the Viterbo inequality.

4. Covering by symplectic cylinders

In [8] Ball established another result similar to the Bang problem: When the
unit ball in Cn is covered by unitary cylinders Zi of radii ri then

∑
i r

2
i ≥ 1.
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Here Cn is endowed with the standard Hermitian form

h(u, v) =

n∑
i=1

uivi

and the corresponding norm ‖u‖ =
√
h(u, u). The unit ball is considered in

this metric, and a unitary cylinder of radius r is an r-neighborhood (in the
Hermitian norm) of a complex hyperplane.

This result seems even more suitable for the application of symplectic
methods, because Cn itself has the symplectic structure Imh and the unitary
cylinders Zi are symplectic cylinders with the capacities cHZ(Zi) = e(Zi) =
πr2i . So we are forced to state a more general conjecture, that would also
imply Conjecture 2.5.

Definition 4.1. For a convex body S ⊂ C call Z = S × Cn−1 ⊂ Cn, and
all its images under linear symplectic transformations plus translations, a
convex symplectic cylinder with cross-section S.

It is relatively clear that, for such linear and even more general non-
linear images of such cylinders, the invariants cHZ(Z) = e(Z) equal the area
of S. In general, the term “symplectic cylinder” means arbitrary symplec-
tomorphic image of a standard cylinder, but here we are only interested
in the linear images of convex cylinders. The corresponding version of our
conjecture now becomes:

Conjecture 4.2. If a convex body K ⊂ Cn is covered by a finite set of
convex symplectic cylinders {Zi} then

cHZ(K) ≤
∑
i

cHZ(Zi).

Example 5.3 and other examples in Section 5.1 show that the convex-
ity assumption for the cylinders is crucial in this conjecture. We state two
obvious by now lemmas:

Lemma 4.3. Ball’s complex plank theorem follows from Conjecture 4.2.

Proof. The unit ball B ⊂ Cn has capacity cHZ(B) = π and a unitary cylin-
der of radius r is a particular case of a convex symplectic cylinder with all
capacities equal to πr2. �

Lemma 4.4. Conjecture 2.5 follows from Conjecture 4.2.
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Proof. For a convex body K ⊂ Rn (not in Cn) and every plank Pi of its
covering, the convex body Pi ×B◦ ⊂ V × V ∗ can be covered by a symplectic
cylinder of capacity 2w(Pi). Indeed if ni ∈ V ∗ is the unit normal of Pi (with
‖ni‖∗ = 1) and Pi is given by the inequality {a ≤ 〈ni, x〉 ≤ b}, then w(Pi) =
b− a. Also take a vector vi such that ‖vi‖ = 1 and 〈ni, vi〉 = 1. Then the set

Zi = {(x, y) ∈ V × V ∗ : x ∈ Pi, |〈y, vi〉| ≤ 1}

is a convex symplectic cylinder (ni and vi produce a pair of symplectic
canonical coordinates) of capacity 2w(Pi).

Since K is covered by the Pi, the product K ×B◦ is covered by the
Pi ×B◦, and is therefore covered by the convex symplectic cylinders Zi. It
remains to apply Conjecture 4.2. �

Conjecture 4.2 looks like a subadditivity property of the Hofer–Zehnder
capacity: The capacity of the union is at most the sum of capacities. In the
next section we collect negative and positive evidence on the subadditivity
property of symplectic capacities.

5. Evidence on the subadditivity of capacities

5.1. Examples when subadditivity fails

In this section we discuss possible subadditivity properties of a symplectic
capacity in more detail. We provide examples, which would show the absence
of subadditivity of capacities when the convexity assumption is dropped.
There exist a range of capacities (see for example [15]) c(X) between the
Hofer–Zehnder capacity cHZ(X) and the displacement energy e(X), our
examples actually apply to any such capacity.

Example 5.1. The first example is very simple. Let B be a unit disc in the
plane an let S− and S+ be the halves of its boundary. If we thicken S− and
S+ slightly, their capacities still remain very close to zero. But their union
has at least the same capacity as B itself, which is π.

Example 5.2. In the notation of Section 2, let B be the unit ball in the
Euclidean space Rn, the polar unit ball will be identified with B. Then
the set X = (B \ rB)×B has displacement energy at most 2(1− r), the
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Hamiltonian

H(x) =


1− r, ‖x‖ ≤ r
1− ‖x‖, r ≤ ‖x‖ ≤ 1

0, ‖x‖ ≥ 1

does the job after certain smoothening, because its gradient has norm is
at least 1 over the base B \ rB of X, which is sufficient to displace the ball
bundle over this base constituting the set X. Hence the capacity if this set is
also at most 2− 2r. The other part Y = rB ×B obviously has displacement
energy and any capacity at most 4r.

In total we have at most 2 + 2r for c(X) + c(Y ), but the union set X ∪
Y = B ×B has c(B ×B) ≥ 4, according to Theorem 3.1. Here the set X
was topologically nontrivial, but we can easily remove a cylinder of radius r,
passing from the origin to the boundary of B from X, and add this cylinder
to Y , without increasing the capacity of Y by Theorem 3.1. Moreover, after
removing the cylinder it is possible to slightly modify X and Y so that they
both, together with their intersection, become starshaped. In this example
the sets and their intersection cannot be distinguished from convex sets from
the topological viewpoint.

Example 5.3. We describe the construction communicated by Leonid
Polterovich (a version of which appeared in [27]) showing that the sub-
additivity fails when we cover any set by not necessarily convex symplectic
cylinders, that is non-linear symplectomorphic images of symplectic cylin-
ders. First observe that any bounded subset K ⊂ Cn can be covered by a
cubic grid with diameter of cubes at most ε > 0. Then we can partition all
the cubes of the grid into 22n disjoint families of cubes, “colors”, sorting
them by the parity vectors of their coordinates. A more careful procedure
with a modified grid [27] allows to use 2n+ 1 colors, but here it is not
relevant.

After that we consider a color of disjoint small cubes and produce a
Hamiltonian symplectomorphism ϕ : Cn → Cn that keeps the shape of all
these cubes, but arranges their centers along a given straight line. Indeed,
we can continuously move (in a certain order of the cubes) a small cube
Ci to its desired position C ′i on the line so that it does not come more
than δ close to any other cube of the same color during this movement,
for some positive δ < ε. This motion corresponds to a Hamiltonian motion
of the whole Cn (with a time-dependent linear on Cn Hamiltonian), and it
is possible to modify this time dependent Hamiltonian so that it remains
the same on the moving cube and becomes zero outside the δ-neighborhood
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of the moving cube. Thus modified Hamiltonian symplectomorphism moves
one cube to its desired place not touching the other small cubes of the same
color; composing several such symplectomorphisms we arrange all the cubes
of a given color in a line and easily cover them by a symplectic cylinder of
capacity at most ε2.

Looking at the situation the other way, we cover the original color of
disjoint cubes by the inverse symplectomorphic image of the final cylinder
of capacity ε2. Applying the above observation to every one of the 22n colors
of small disjoint cubes, we spend the total capacity at most 22nε2 to cover
them with cylinders. This example shows that in the case of covering by
cylinders their convexity must be essential.

The given examples show that the subadditivity seems to strongly de-
pend on convexity, thus we only restrict ourselves to convex sets in Conjec-
ture 1.1.

5.2. Cutting the Euclidean ball into two convex pieces

In [34, Theorem 2.2] an opposite inequality for the Hofer–Zehnder capacity
was proved in a particular case using pseudoholomorphic curves: If two dis-
joint convex bodies K1 and K2 are contained in the Euclidean ball B ⊂ Cn
then

cHZ(K1) + cHZ(K2) ≤ cHZ(B).

In view of the monotonicity of capacities and the hyperplane separation of
convex bodies by the Hahn–Banach theorem, this inequality is equivalent to
its particular case when the two convex bodies are produced by a hyperplane
cut of the ball. For a hyperplane cut of the ball, the validity of Conjecture 1.1
would thus imply equality; we prove this equality directly, using that the
characteristics on the boundary of the ball are relatively easy to understand.

Lemma 5.4. If a ball B ⊂ R2n is cut by a hyperplane into pieces K1 and
K2 then

cHZ(K1) + cHZ(K2) = cHZ(B).

Remark 5.5. After the preprints of this text appeared, Pazit Haim-Kislev
proved in [17], using Frank H. Clarke’s approach to closed characteristics
from [13]), that the subadditivity actually holds for any hyperplane cut of
any convex body K ⊂ Cn, thus providing much stronger evidence of the
subadditivity property.
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Proof. Assume that the radius of B is 1 and identify R2n = Cn. Using the
transitivity of the U(n) action on ∂B assume that the cutting hyperplane is
Π = {Re z1 = cos τ0}.

Let us use the description of the Hofer–Zehnder capacity of convex bodies
in terms of the minimal action of a closed characteristic on the boundary.
Obviously, the closed characteristic (eit, 0, . . . , 0) ⊂ ∂B is broken by Π into
two closed characteristics of K1 and K2 respectively, and their actions sum
up to cHZ(B) = π. This establishes

cHZ(K1) + cHZ(K2) ≤ cHZ(B) = π,

moreover, this also proves that K1 and K2 can be covered by convex sym-
plectic cylinders based on the two-dimensional sections of K1 and K2 with
sum of the capacities equal to π.

It remains to show that other closed characteristics on ∂K1 or ∂K2 have
larger actions.

Assume a closed characteristic forK1 = {Re z1 ≥ cos τ0} starts at a point
(z1, . . . , zn) such that Re z1 = cos τ0 and Im z1 < 0. Put z1 = ρe−iτ . We must
have ρ ≤ 1 and if ρ = 1 then this closed characteristic is the one already
considered. So we assume ρ < 1.

Let us check how this point evolves along a characteristic on ∂K1. First,
it moves along ∂B as (ρei(−τ+t), z2e

it, . . . , zne
it) for t ∈ [0, 2τ ]. Then it moves

in Π along the direction of Im z1 getting from (ρeiτ , z2e
2iτ , . . . , zne

2iτ ) to
(ρe−iτ , z2e

2iτ , . . . , zne
2iτ ). Then everything is repeated. In order for this

point to get to its original position we must have

τ = π
k

m
.

Then the total number of turns will be m and the action will be:

A = k
(
ρ2(τ − sin τ cos τ) + π(1− ρ2)

)
,

What remains to show is the inequality:

ρ2(τ − sin τ cos τ) + π(1− ρ2) ≥ τ0 − sin τ0 cos τ0.

Note that x− sinx cosx increases on [0, π] from 0 to π. In the case τ, τ1 ≥
π/2 we have

ρ2(τ − sin τ cos τ) + π(1− ρ2) ≥ τ − sin τ cos τ ≥ τ0 − sin τ0 cos τ0,
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because from ρ cos τ = cos τ0 it follows that τ ≥ τ0 when they both are
greater than π/2.

In the remaining case τ ≤ τ0 ≤ π/2 we substitute ρ cos τ = cos τ0 and we
have to prove the inequality

cos2 τ0(τ − sin τ cos τ − π) + π ≥ cos2 τ(τ0 − sin τ0 cos τ0).

In the considered range the left hand side is increasing and the right hand
side is decreasing in τ , hence it remains to consider the case τ = 0, when
the inequality is

π − π cos2 τ0 ≥ τ0 − sin τ0 cos τ0.

Putting x = 2τ0 ∈ (0, π) and using the trigonometric identities we have to
prove

π(1− cosx) ≥ x− sinx,

the latter is true since for x ≥ π/2 the left hand side is at least π and the right
hand side is at most π, while for x ∈ [0, π/2] the inequality is true since it
holds for x = 0 and after taking the derivative is becomes π sinx ≥ 1− cosx,
which is obviously true for x ∈ [0, π/2]. �

5.3. Decomposing Hamiltonian symplectomorphisms

Let us just mention one sort of subadditivity that exists near the notion
of a symplectic capacity. One way is to define capacities through action
selectors that choose an action of a fixed point of a compactly supported
Hamiltonian symplectomorphism ϕ : R2n → R2n through certain topological
constructions. In particular, Viterbo in [32] uses the generalized generating
functions for Hamiltonian symplectomorphisms and defines an action selec-
tor c+(ϕ) for compactly supported Hamiltonians ϕ : R2n → R2n satisfying

c+(ϕψ) ≤ c+(ϕ) + c+(ψ).

This action selector gives rise to a symplectic capacity cV (U) for open
bounded subsets U ⊂ R2n, as defined in [32, Definition 4.11] by

cV (U) = sup{c+(ϕ) : suppϕ ⊂ U}.

Now, in order to have a subadditivity for cV it were sufficient to have a
claim like this: For two bounded open subsets U, V ⊂ R2n and a Hamilto-
nian symplectomorphism τ supported in U ∪ V , there exist two Hamiltonian
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symplectomorphisms ϕ and ψ with supports in U and V respectively such
that τ = ϕ ◦ ψ. Unfortunately, this claim cannot be true, since any τ taking
a point from U \ V to V \ U cannot be decomposed this way. Already in
the plane we can consider U and V as unions of several disjoint squares
obtained from Q0 = (−ε, 1 + ε)× (−ε, 1 + ε) by translations (m, 0), with m
odd for U and even for V . If U ∪ V is connected and consists of 2N copies
of Q0, then an appropriately chosen diffeomorphism of it evidently cannot
be decomposed in less than 2N diffeomorphisms supported in either U or
V . Of course this latter example does not apply to connected sets.

If one wants to utilize this decomposition approach somehow, some ex-
tra properties like the convexity of K in Conjecture 1.1 must be used. For
example, we might want to bound cV (K) (or cHZ(K)) in the left hand side
and note that this number is achieved for convex K at very special time-
independent Hamiltonians, which might turn out to be decomposable.

6. Inequalities between the oscillation and the norm
of the differential

In this section we consider another problem that resembles the Bang problem
and allows similar approaches. First, we start with an elementary particular
case (see also [14, P. 113]):

Theorem 6.1. Let F be a C1-smooth function on the unit ball B of a norm
‖ · ‖. Then

max
x∈B

F (x)−min
x∈B

F (x) ≥ 2 min
x∈B
‖dF (x)‖∗,

where ‖ · ‖∗ is the corresponding dual norm.

Proof. By the standard approximation argument we assume the norms ‖ · ‖
and ‖ · ‖∗ to be infinitely smooth and strictly convex. We also assume F to
be infinitely smooth. For any x consider the unique unit vector y(x) such
that

〈dF (x), y(x)〉 = ‖dF (x)‖∗.

Under the above assumptions this unit vector depends smoothly on x and
we can consider the differential equation:

ẋ = y(x).

We consider its solution with the initial condition x(0) = 0. Since this solu-
tion has the unit velocity it cannot get outside B in a period of time less
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than 1. By the extension of solutions theorem the solution x(t) is defined
for t ∈ (−1, 1). Then we calculate

d

dt
F (x(t)) = 〈dF (x), ẋ〉 = 〈dF (x), y(x)〉 = ‖dF (x)‖∗.

The value F (x(t)) increases with t and if we put m = minx∈B ‖dF (x)‖∗ then
d
dtF (x(t)) ≥ m, and therefore F (x(t)) oscillates by at least 2m on (−1, 1).

�

The symplectic approach allows to prove a similar estimate:

Theorem 6.2. Let F be a C1-smooth function on a convex body K, and
let us measure everything with a norm ‖ · ‖ whose unit ball is B. Then

max
x∈K

F (x)−min
x∈K

F (x) ≥ 1

2
e(K ×B◦) ·min

x∈K
‖dF (x)‖∗.

Proof. Consider F as a Hamiltonian on K × V ∗ (where V ⊃ K is the am-
bient space) and observe that its gradient flow has velocity dF (x) in the
direction of V ∗, hence it shifts K ×B◦ off itself in time 2

minx∈K ‖dF (x)‖∗ . So
the total displacement energy of K satisfies

e(K ×B◦) ≤ 2

minx∈K ‖dF (x)‖∗

(
max
x∈K

F (x)−min
x∈K

F (x)

)
,

which is equivalent to what we need to prove. �

It turns out that the following version of Theorem 6.2 can be proved
without any symplectic techniques:

Theorem 6.3. Let F be a C1-smooth function on a convex body K ⊂ Rn
and let ‖ · ‖ be the norm with unit ball K −K. Then

max
x∈K

F (x)−min
x∈K

F (x) ≥ min
x∈K
‖dF (x)‖∗,

where ‖ · ‖∗ is the corresponding dual norm.

Proof. Let us assume everything smooth and even real-analytic, and consider
again the trajectories of the normalized gradient (in the sense of the K −K
unit ball norm) vector field in a neighborhood of K. Observe that assigning a
trajectory of this vector field to a point x ∈ K gives a continuous map ϕ from
K to a topological space of all trajectories, which has covering dimension at
most n− 1.
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The non-symmetric version [22, Theorem 6.2] of the theorem on the
Alexandrov width from [1, 28], see also [31, Proposition 1, pp. 84–85, and
Theorem 1, p. 268]) asserts that whenever a convex body K of dimension
n is continuously mapped, ϕ : K → X, to a topological space of covering
dimension at most n− 1, there exists a connected subset C ⊆ K that is
mapped by ϕ to a single point and that cannot be covered by a smaller
homothet of K.

Thus obtained set C (mapped to a single point by ϕ) is in fact a curve
segment of the intersection of a trajectory of the vector field with K. If the
‖ · ‖-length of the trajectory C is at least 1 then we are done by integrating
over this trajectory as in the proof of Theorem 6.1. Otherwise Lemma 3.8
asserts that C can be covered with a smaller homothet of K, which is a
contradiction.

The above argument (essentially due to Abramov and Sitnikov) seems
to have never been published in English as a whole; below we provided
an expanded and relatively self-contained version of it. Assume that for
arbitrary ε > 0 we have a trajectory γ of the gradient flow such that γ ∩K
cannot be covered by a translate of the homothet (1− ε)K. Then by Lemma
3.8 the length of the smallest curve segment S of γ containing γ ∩K (the
latter set may not be connected) is at least 1− ε. Integrating over this curve
segment S we see the oscillation of F at least (1− ε) minx∈K ‖dF (x)‖∗. The
theorem holds true if we have such inequality for every ε > 0.

So assuming the contrary we take some ε > 0 such that for every tra-
jectory of the gradient flow γ its part γ ∩K can be covered by a translated
(1− ε)K. Assume also that the origin is in the interior of K, this implies
hK ⊂ inth′K for h < h′.

Consider a trajectory of the gradient flow γ, we may assume the gradient
flow is extended to a neighborhood of K and so is γ. From the assumption
we cover the set γ ∩K by a translate of (1− ε)K. Moreover, we can take
two parameters t0, t1 on the curve so that γ(t0), γ(t1) 63 K, γ only gets into
K between γ(t0) and γ(t1), and the curve segment γ[t0, t1] is still covered
by a translate of (1− ε/2)K, put h = 1− ε/2 for brevity. It is clear that
other close to γ trajectories γ′ still have the part γ′ ∩K covered by the
same translate hK + v.

Now we observe that the space of all trajectories that we work with
has covering dimension at most n− 1. In the real-analytic case we may
parametrize such trajectories by the first point they enter K through ∂K,
thus making a parametrization by a semianalytic subset of ∂K (we assume
∂K real-analytic) and using the nice structural properties of semianalytic
sets, e.g. from [18].
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Now we are going to construct a map ψ : K → Rn that has mutually
exclusive properties: Its image lies in at most (n− 1)-dimensional subset of
K, and at the same time its image has nonempty interior. The definition of
the covering dimension allows to produce a covering of the space of trajec-
tories by open sets Ui with multiplicity at most n and such that for every Ui
there is a translate hiK + vi that contains all γ ∩K for any γ ∈ Ui. Make a
partition of unity {ρi} subordinated to {Ui} and put

ψ(x) =
∑
i

ρi(γx)vi,

where γx is the trajectory through x. From the covering property we always
have

‖x− ψ(x)‖ ≤ h < 1.

Let us show that this implies that the convex body (1− h)K is covered by
the image of ψ. Indeed, for any point y ∈ (1− h)K the map σ : ∂K → ∂K
defined by

σ(x) =
ψ(x)− y
‖ψ(x)− y‖

through the homotopy

(1− t)ψ(x) + tx− y
‖(1− t)ψ(x) + tx− y‖

becomes x 7→ x−y
‖x−y‖ . The homotopy is well defined because the inequality

‖x− ψ(x)‖+ ‖y‖ < 1 prevents the equality x = (1− t)(x− ψ(x)) + y and
keeps nonzero denominator. The additional homotopy

x− (1− t)y
‖x− (1− t)y‖

eventually takes σ to the identity map of ∂K of degree 1. Hence σ cannot
be extended continuously to a map K → ∂K showing that for some x ∈ K
we must have ψ(x) = y.

Now the image of ψ contains (1− h)K and therefore has nonempty in-
terior, while the formula of its definition and the n-fold covering assumption
show that the image is lying in the union of countably many convex hulls of
n-tuples of points in Rn, (n− 1)-dimensional simplices. This is a contradic-
tion. �
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Remark 6.4. Theorem 6.3 is optimal because any linear function F pro-
vides the equality case in Theorem 6.3, since B = K −K and the norm of
a linear function F , as an element of (Rn)∗, precisely equals its oscillation
on K.

If we consider an arbitrary norm with centrally symmetric unit ball B
then for the corresponding norms of a vector v we have

‖v‖B ≥ wB(K) · ‖v‖K−K

and for a linear form λ ∈ (Rn)∗ and its dual norms we have

wB(K) · ‖λ‖∗,B ≤ ‖λ‖∗,K−K .

Since the minimal width wB(K) of K in the norm B corresponds to a forth
and back billiard trajectory, it follows that

cHZ(K ×B◦) ≤ 2wB(K)

and therefore Theorem 6.3 implies

1

2
cHZ(K ×B◦) ·min

x∈K
‖dF (x)‖∗,B ≤ wB(K) ·min

x∈K
‖dF (x)‖∗,B

≤ min
x∈K
‖dF (x)‖∗,K−K

≤ max
x∈K

F (x)−min
x∈K

F (x).

This shows that Theorem 6.3 is stronger than Theorem 6.2 in the case of
symmetric B and cHZ(K ×B◦) = e(K ×B◦).

Remark 6.5. It is curious that the proof of Theorem 6.1 works in infinite
dimensional Banach spaces (for decent functions f), while the above argu-
ment to prove Theorem 6.3 is essentially finite dimensional. Therefore its
extension to infinite dimensional Banach spaces is an open problem.

7. Bang’s problem for two directions of planks

In this section we prove a particular case of Bang’s problem using elementary
methods. It is independent of the symplectic considerations, but we thought
it makes sense to confirm another particular case of the conjecture. One may
check that it does not follow from the result under the “almost parallel”
assumption of Theorem 2.2.
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Theorem 7.1. Let a convex body K ⊂ Rn be covered by a family of planks
P1, . . . , Pm, whose normals have only two distinct directions. Then the sum
of widths of the planks in the norm with the unit ball K −K is at least 1,
that is the Bang conjecture holds in this case.

Proof. If all the planks are parallel to each other then the assertion is ev-
idently true. Assume there are two distinct normals n1, n2 ∈ V ∗ (we put
V = Rn and normalize n1 and n2 by the norm with unit ball (K −K)◦).
Obviously, the projection

π : V → R2, π(x) = (n1(x), n2(x))

reduces the problem to the following planar case: The projection (denote it
by K again) is inscribed in the unit square abcd (let a be the left bottom
and b be left top), that is K contains points on every side of abcd. The unit
square appears because the normalization of n1 and n2 simply means that
their ranges on K both have unit lengths.

Let the points where the projection of K touches the sides ab and cd be p,
q respectively, see Figure 2. Assume K to be covered by a set of horizontal
and vertical planks with sum of widths (now the vertical and horizontal
widths are in fact Euclidean) less than 1. Also choose such a covering with
the minimal number of planks.

c1

d1

M1

a

b c

d

p
q

Fig. 2.

M2

a

b c

d

p
q

Fig. 3.

If there are only two planks then the result is well known, see [25] or [10,
Lemma 10.1.1]. So we assume that there are k vertical planks and at least
k horizontal planks (we interchange the axes if needed), k > 1.

Consider the points of K not covered with the vertical planks, they split
into k + 1 convex sets M1 ∪M2 ∪ · · · ∪Mk+1 ordered from left to right, some
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of the Mi may be empty. These sets have to be covered with horizontal
planks and this reduces to cover their projection to the 0y axis with a set
of segments. Definitely, one needs at most k + 1 segments to cover those
projections, and we know that k segments are really needed. Now consider
the cases (Figure 3 may be of help):

1) The setM1 3 p is nonempty and its projection to 0y has no intersection
with the projections of other Mi’s. Then one horizontal plank is needed
to cover M1 separately from the other parts. But it makes sense to
replace this plank with a vertical one, indeed, the set M1 contains the
triangle pc1d1 (see Figure 2) homothetic to pcd, whose vertical and
horizontal widths coincide. Therefore the vertical width of M1 is at
least its horizontal width. So we replace the horizontal plank of M1

with a vertical one and merge this vertical plank with the first vertical
plank in the list. After that the sum of widths does not increase and
the number of planks does decrease.

2) The case when the projection of the last Mk+1 3 q to 0y does not
intersect the other projections of Mi’s is considered similarly.

3) The set M1 is empty and Mk+1 is also empty. Then the projections of
Mi’s to 0y can be covered with k − 1 segments, but we have assumed
that the number of segments is at least k.

4) M1 = ∅, Mk+1 is not empty and its projection to 0y intersects some
of the projections of other Mi’s. Again, in this case at most k − 1
horizontal planks are sufficient.

5) Similar to the previous case, when we interchange M1 and Mk+1.

6) Both the projections of M1 3 p and Mk+1 3 q to 0y are nonempty and
both of them intersect other Mi’s. Again, we know that we really need
at least k horizontal planks to cover Mi’s. This may only happen when
the projections of M1 and Mk+1 do intersect and the projections of
Mi’s with 2 ≤ i ≤ k are disjoint from them and are disjoint from each
other.

Therefore there is a horizontal plank Ph that covers both M1 and
Mk+1. Other sets M2, . . . ,Mk then have to be disjoint from Ph since
the total number of needed horizontal planks is precisely k. It is left to
note, that the segment [p, q] is covered by Ph, but [p, q] should intersect
all Mi, Figure 3, that leads to contradiction.

�
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8. Fractional Bang-type results

8.1. Linear programming considerations and covering by
Euclidean cylinders

A fractional Bang theorem would be a result showing that if a convex body
K is covered by a family of planks so that every point of K is covered at
least k times, then the sum of widths is at least Wk for some constant W .
Below we calculate W for certain cases and show that it generally must be
less than the constant from the original Bang-type results.

Another equivalent statement (explaining the term “fractional”) would
be to consider the planks with non-negative weights covering any point in
K with the sum of weights at this point at least 1, and deduce that the
weighed sum of widths of the planks is at least W . Again, we in principle
measure the width of a plank in arbitrary norm.

Minimization of the weighted sum of the planks is a linear program-
ming problem with an infinite number of variables (weights of the planks)
and constraints (the points with their requirements to be covered at least 1
time). A lower bound W in this problem is evidently given by any probabil-
ity Borel measure µ in K satisfying w(P ) ≥Wµ(P ∩K). A version of the
Farkas lemma then concludes that the maximum of such lower bounds (the
maximum is attained because of the compactness of the space of measures)
is in fact equal to the minimum in the original problem, is we extend the
original problem from finite collections of planks to integrals over a measure
on the set of planks.

This technique is hard to apply for arbitrary bodies and norms, so we
concentrate on the case of the Euclidean norm in Rn and its unit ball Bn.

Theorem 8.1. If the unit Euclidean ball B ⊂ Rn, for n ≥ 3, is covered by a
set of weighted planks P1, . . . , PN with respective weights t1, . . . , tN (so that
every its point is covered with sum of weights at least 1) then the weighted
sum ∑

i

tiw(Pi) ≥Wn =
Γ
(
n−1
2

)
Γ
(
1
2

)
Γ
(
n
2

) .

Proof. For n ≥ 3 we take µ to be a properly normalized surface area on ∂Bn.
Its projection to a one-dimensional line will be a measure on the segment
[−1, 1] with density proportional to (1− x2)

n−3

2 , for n ≥ 3 this density has
maximum 1 at zero. When we normalize this measure to make it probability
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measure, there appear the factor 1/Wn at the projected density, where

Wn =

∫ 1

−1
(1− x2)

n−3

2 dx =
Γ
(
n−1
2

)
Γ
(
1
2

)
Γ
(
n
2

) .

After such a normalization for any plank perpendicular to our projection we
have

w(Pi) ≥Wnµ(Pi ∩Bn),

and from the radial symmetry this applies to any plank in fact. Summation
with weights then shows∑

i

tiw(Pi) ≥Wn

∑
i

tiµ(Pi ∩Bn) ≥Wnµ(Bn) = Wn.
�

Then constant Wn is of order 1√
πn

for large n (and equals 2 for n = 3

as expected). Actually, this constant cannot be improved, as the following
argument shows. Take a sufficiently small δ > 0 and consider a set of N
random centrally symmetric planks of width δ. Each such plank covers∫ δ/2

−δ/2(1− x
2)

n−3

2 dx∫ 1
−1(1− x2)

n−3

2 dx

of the surface area, which is close to δ/Wn for small δ. Then the sum
of widths is δN and the expected covering multiplicity is approximately
δN/Wn. Then some kind of central limit theorem shows that the minimal
covering multiplicity can get sufficiently close to δN/Wn thus showing that
Wn is tight.

A similar argument with the uniform measure on ∂Bn is applicable when
we want to fractionally cover the Euclidean unit ball Bn with m-dimensional
Euclidean cylinders, that is sets congruent to Z = X × Rm, where X is an
(n−m)-dimensional convex body. We denote by σn−m(Z) = voln−mX the
(n−m)-dimensional cross-section of Z.

Theorem 8.2. Let m ≥ 2. For a weighted covering of Bn with m-dimen-
sional Euclidean cylinders Z1, . . . , ZN with respective weights t1, . . . , tN , we
have:

N∑
i=1

tiσn−m(Zi) ≥
nπn/2

Γ(n/2 + 1)

Γ(m/2)

2πm/2
=
π

n−m

2 Γ(m/2)

Γ(n/2)
.
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Proof. We again use the uniform measure on ∂Bn. As in the previous proof,
the right hand side must be the ratio of the total measure of ∂Bn and the
maximum density of the projection of this measure to Rn−m. The latter
density is given by (as the reader can check by elementary integration):

ρm(x) =
2πm/2

Γ(m/2)
(1− |x|2)m/2−1.

�

For m = 2 the above theorem gives the precise estimate for a non-
fractional covering by 2-dimensional Euclidean cylinders, extending the orig-
inal proof of Moese:

Corollary 8.3. If the Euclidean unit ball is covered by 2-dimensional Eu-
clidean cylinders Z1, . . . , ZN then

N∑
i=1

σn−2(Zi) ≥ voln−2(B
n−2) =

πn/2−1

Γ(n/2)
.

A similar result for m = 1 was proved by Károly Bezdek and Alexander
Litvak in [12, Theorem 3.1].

In [21] Vladimir Kadets showed the following. For any ε > 0, there is a
covering of the Hilbert space by Hilbert cylinders Zi isometric to Bi ×H,
where Bi is a 3-dimensional ball, such that∑

i

σ(Zi) =
∑
i

vol3(Bi) < ε.

Here σ denotes the 3-dimensional cross-section. In [11] Károly Bezdek seem-
ingly thought that from Kadets’ construction it follows that, for any ε > 0,
there exists sufficiently large n such that the unit ball Bn can be covered by
(n− 3)-cylinders Zi with sum of their cross-section less than vol(B3). Actu-
ally it does not follow from Kadets’ construction, which was essentially based
on infinite-dimensional properties of the Hilbert space. So [11, Problem 3.5]
can be restated in the following natural form:

Conjecture 8.4. If the Euclidean unit ball Bn is covered by m-dimensional
Euclidean cylinders Z1, . . . , ZN then

N∑
i=1

σn−m(Zi) ≥ voln−m(Bn−m) =
π(n−m)/2

Γ((n−m)/2 + 1)
.
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8.2. Fractional covering by almost parallel planks

Now, in addition to the above elementary considerations, we prove a result
about covering of a Euclidean ball using symplectic methods. Informally, it
shows that the constant W from the above discussion gets closer to 2 when
the planks are “almost parallel”:

Theorem 8.5. Let {Pi} be a family of planks, covering every point of the
Euclidean ball B ⊂ Rd at least k times. Assume also that the normals to the
planks ni may be oriented so that for every i 6= j, ni · nj ≥ C, where C ≥ 0
is a constant. Then ∑

i

w(Pi) ≥ 2
√

((k − 1)C + 1)k.

Proof. For every Pi we consider the function Fi with dFi = ni on Pi and
dFi = 0 outside Pi. These functions are not smooth but the following argu-
ment remains valid after a suitable smoothening of every Fi.

Then we consider the sum F (x) =
∑

i Fi(x). The assumption ni · nj ≥
C implies that |dF (x)| ≥

√
((k − 1)C + 1)k. Then using the displacement

energy of B ×B as in the proof of Theorem 2.2, or using Theorem 6.1, we
obtain:

max
B

F (x)−min
B

F (x) ≥ 2
√

((k − 1)C + 1)k.

But the difference of every summand Fi is at most w(Pi), and the result
follows. �
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