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Moduli spaces of witch curves

topologically realize the 2-associahedra

Nathaniel Bottman

For r ≥ 1 and n ∈ Zr
≥0 \ {0}, we construct the compactified mod-

uli space 2Mn of witch curves of type n. We equip 2Mn with
a stratification by the 2-associahedron Wn, and prove that 2Mn

is compact and metrizable. In addition, we show that the forget-
ful map 2Mn →Mr to the moduli space of stable disk trees is
continuous and respects the stratifications.
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1. Introduction

In [Bo1], the author constructed a collection of abstract polytopes (in partic-
ular, posets) called 2-associahedra. There is a 2-associahedron Wn for every
r ≥ 1 and n ∈ Zr≥0 \ {0}, and they were introduced to model degenerations
in the configuration space 2Mn of stable witch curves, whose interior
parametrizes configurations of r vertical lines in R2 with ni marked points
on the i-th line up to translations and positive dilations. By identifying
R2 ∪ {∞} ' S2, we can also view an element of 2Mn as a configuration of
marked circles on S2, where all the circles intersect at the south pole, up to
Möbius transformations; both views are depicted in the following figure:
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1650 Nathaniel Bottman

The purpose of this paper is to construct the compactified configuration
space 2Mn, and to validate the construction of both Wn and 2Mn via the
following main result:

Theorem 1.1. For any r ≥ 1 and n ∈ Zr≥0 \ {0}, 2Mn can be given the
structure of a compact metrizable space stratified by Wn. The forgetful map
Wn → Kr to an associahedron can be upgraded to a continuous map 2Mn →
Mr to the moduli space of stable disk trees that respects the stratifications.

This result is an important step toward the author’s goal of defining a sym-
plectic (A∞, 2)-category Symp, in which the objects are certain symplectic
manifolds and hom(M,N) := Fuk(M− ×N), where Fuk denotes the Fukaya
category of a symplectic manifold. Indeed, (2Mn) form the domain moduli
spaces involved in the structure maps in Symp. More progress toward the
construction of Symp is described in [Bo2, BW, Bo1].

In §D of [McDSa], McDuff–Salamon equip the compactified moduli space
Mr(C) of r-marked stable genus-0 curves with a topology by including it
into a product of CP1’s via a collection of cross-ratio maps. This is the
obvious approach to try here, too, but the author was unable to make this
technique work in this context. Instead, we adapt the techniques from §5
of the same book, in which McDuff–Salamon equipped the compactified
moduli space of stable maps into a symplectic manifold with a topology
in which the convergent sequences are those that Gromov-converge. While
this necessitates a certain amount of topological overhead in our setting, an
advantage is that it will be straightforward to adapt the current work to the
setting of witch maps when such a result is needed.

The construction of 2Mn generalizes several earlier constructions of do-
main moduli spaces for pseudoholomorphic quilts. Specifically, [MaWo] and
[MaWeWo] construct several configuration spaces of disks decorated by in-
terior circles, with marked points on the boundary and interior circles. The
data of such a configuration is equivalent to a configuration of circles with
marked points on a sphere, as illustrated in the figure above. [MaWeWo]

defines Rd, Rd,0, Rd,e, and Rd,0,0 (called associahedra, multiplihedra, bi-
associahedra, and bimultiplihedra, though the author of the current paper
would rather reserve these names for the underlying posets). In the notation
of the current paper, these configuration spaces are 2Md, 2Md0, 2Mde, and
2Md00.
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1.1. An example of Gromov convergence for witch curves

As a coda to the introduction, we illustrate and motivate the definition of
Gromov convergence in 2Mn by an example. For ε ∈ (0, 12), consider the
following configuration in 2M10010 (here pictured with ε = 2/5):

ε

0

0 1ε2

ε2 − ε3 + ε4ε2 − ε3

In the limit as ε→ 0, all lines but the right-most collide; the two marked
points also collide. We resolve these collisions using the well-known technique
of soft rescaling: whenever a marked point collides with a line (and in
particular, with another marked point), we zoom in on the collision with
just enough magnification that the colliding objects occupy a “window” of
unit size. If, in this zoomed-in view, there are still colliding objects, we again
rescale, and so on inductively.

A decision must be made about what to do when lines without marked
points collide; here, we have decided to remember the fashion in which such
lines collide, a choice that is motivated by considerations of pseudoholomor-
phic quilts. We implement this strategy by keeping track of the positions of
the lines as points in R and performing soft rescaling on these configurations
in parallel with our soft rescalings of the configurations of lines and points
in R2.

Finally, we are ready to demonstrate soft rescaling for the family pictured
above. This is shown in the following figure, where the left-most view is the
original configuration, and the remaining configurations are the rescaled
views. The arrows indicate that a configuration is produced by rescaling at
the point that the arrow points to, with magnification labeling the arrow.
In the bottom of the figure, we show the soft rescalings of the configurations
of the line positions in R.
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ε−1

ε−1

ε−2

ε−1

ε−1

ε−1

ε−1

We show the ε→ 0 limit of this family in the following figure. On the
right, we show an equivalent view: the planes with marked vertical lines are
replaced with spheres with marked circles. In the tree of decorated spheres,
the “nodal points” — where the south pole of one sphere is attached to one of
the circles on another sphere — indicate that we produced the upper sphere
via a sequence of further rescalings of the rescalings we used to produce
the lower sphere, and that these further rescalings were centered at the
attachment point.
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2. Construction of 2Mn

In this section we prove Thm. 1.1. Specifically, in §2.1 we construct 2Mn;
in §2.2 we show that every sequence in 2Mn has a Gromov-convergent sub-
sequence; in §2.3 we show that a Gromov-convergent sequence has a unique
limit; and in §2.4 we define a topology on 2Mn in which the convergent
sequences are the Gromov-convergent ones.

Before we construct 2Mn, we recall the compactified moduli space Mr

of disks with r “input” and 1 “output” boundary marked points. This
moduli space is well-known: see, for instance, §4 of [Liu], or Thm. 3.10
of [DeFeHeVa], which relies on ideas from [FuMa]. Nearly all of the re-
sults we describe below for 2Mn have analogues for Mr — in particular,
Mr can be given a topology in which the convergent sequences are the
Gromov-convergent ones, and with this topology it is compact, metrizable,
and stratified by Kr. We will make use of these analogous results throughout
this paper, mentioning them as we need them. We now recall the definition
of Mr, making use of the notation for rooted ribbon trees from §2, [Bo1].
After the definition, we will give some motivation and illustrate some of the
notation for rooted ribbon trees.

By convention, M1 = 2M(1) = pt.

Definition 2.1. A stable disk tree with r ≥ 2 input marked points
is a pair

(
T, (xρ)ρ∈Vint(Ts)

)
, where:

• T is a stable rooted ribbon tree (RRT) with r leaves.

• For ρ ∈ Vint(T ), xρ ∈ R#in(ρ) is a tuple satisfying xρ,1 < · · · < xρ,#in(ρ).

We say that two stable disk trees
(
T, (xρ)

)
,
(
T ′, (x′ρ)

)
are isomorphic

if there is an isomorphism of RRTs f : T → T ′ and a function Vint(T )→
G1 : ρ 7→ φρ (where G1 is the reparametrization group Ro R>0 acting on R
by translations and positive dilations) such that:

x′f(ρ),i = φρ(xρ,i) ∀ ρ ∈ Vint(T ).(1)

We denote by SDT r the collection of stable disk trees with r input
marked points, and we define the moduli space of stable disk trees
with r input marked points Mr to be the set of isomorphism classes of
stable disk trees of this type. For any stable RRT T with r leaves, define
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the corresponding strata SDT r,T ⊂ SDT r,Mr,T ⊂Mr to be the set of all
stable disk trees (resp. isomorphism classes thereof) of the form

(
T, (xρ)

)
.

We say that a stable disk tree is smooth if its underlying RRT T has only
one interior vertex; we denote a smooth stable witch curve by the tuple
x ∈ Rr associated to the root.

Remark 2.2 (motivation for Def. 2.1 from §1.1). On the left in the
following figure is the limit in 2M10010 from §1.1.

ρ = ρroot

σ

τ

υ

ρ
σ

τ
υ

As we explained in that subsection, this limit consists of a tree of decorated
spheres, together with a datum (shown here as a tree of disks with boundary
marked points) which tracks the seam positions. This datum can be formu-
lated as a stable disk tree

(
T, (xρ)

)
as in Def. 2.1, and on the right of this

figure we show the RRT T . Its interior vertices ρ, σ, τ, υ correspond to the
disks appearing on the left side of the figure, and the leaves correspond to
the marked points (except for the bottommost marked point, which does
not correspond to a vertex of T ). Each interior vertex ρ, σ, τ, υ is assigned a
tuple xρ,xσ,xτ ,xυ, which we think of as the x-positions of the seams.

Example 2.3. We recall a figure from §2, [Bo1], which illustrates some
RRT notation in the case of a particular stable RRT:

ρTroot

λT1

λT2 λT3 λT4

in(ρroot) Tint
Tρ

ρ

The leaves of T are denoted λT1 , . . . , λ
T
4 , and the root (which is not considered

a leaf) is denoted ρTroot. The interior vertices — denoted Tint or Vint(T ) —
are the non-leaf vertices. The tree is oriented toward the root, and the set
of incoming neighbors of a vertex ρ is denoted in(ρ). (In fact, in(ρ) inherits
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a total ordering from the ribbon structure of T .) For distinct ρ, σ ∈ T , Tρσ
is the subtree consisting of those vertices τ such that the path from ρ to τ
passes through σ. Finally, we denote Tσ := Tρrootσ.

This RRT is stable, because for every ρ ∈ Tint, in(ρ) has at least two
elements.

2.1. Definition of 2Mn as a set, and Gromov convergence

In this subsection we define stable witch trees, isomorphism classes of
which comprise 2Mn. Throughout, we will denote by R2 ∪ {∞} the one-
point compactification of R2 (so R2 ∪ {∞} ∼= S2). We will make use of
the reparametrization group G2 := R2 oR>0 acting on R2 by translations
and positive dilations. This action of G2 on R2 extends to an action on
R2 ∪ {∞}, by defining φ(∞) :=∞ for every φ ∈ G2. There is a projec-
tion p : G2 → G1, defined by sending

(
(x, y) 7→ (ax+ b1, ax+ b2)

)
∈ G2 to(

x 7→ ax+ b1
)
∈ G1. We will overload notation and also denote by p the

projection R2 → R1 onto the first factor. Finally, we freely use the stable
tree-pair notation introduced in §3, [Bo1]. In that paper, stable tree-pairs

were denoted Tb
f→ Ts; here, we will use the notation Tb

π→ Ts.

Definition 2.4. A stable witch curve of type n ∈ Zr≥0 \ {0} is a triple(
2T = (Tb

π→ Ts), (xρ)ρ∈Vint(Ts), (zα)α∈Vcomp(Tb)

)
,(2)

where:

• 2T is a stable tree-pair of type n.

• For ρ ∈ Vint(T ), xρ ∈ R#in(ρ) is a tuple satisfying xρ,1 < · · · < xρ,#in(ρ).

• For α ∈ Vcomp(Tb), zα ⊂ R2 is a collection

zα =

(
zα,ij = (xα,i, yα,ij)

∣∣∣∣ in(α) = (β1, . . . , β#in(α)),

1 ≤ i ≤ #in(α), 1 ≤ j ≤ #in(βi)

)
(3)

satisfying xα,1 < · · · < xα,#in(α) and yα,i,1 < · · · < yα,i,#in(βi) for ev-
ery i. Moreover, for α ∈ V ≥2comp(Tb) we require (xα,1, . . . , xα,#in(α)) =
(xπ(α),1, . . . , xπ(α),#in(π(α))).

We say that two stable witch curves
(
2T, (xρ), (zα)

)
,
(
2T ′, (x′ρ), (z

′
α)
)

are
isomorphic if there is an isomorphism of stable tree-pairs 2f : 2T → 2T ′

and functions Vint(Ts)→ G1 : ρ 7→ φρ and Vcomp(Tb)→ G2 : α 7→ ψα such
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that:

z′fb(α),ij = ψα(zα,ij) ∀ α ∈ Vcomp(Tb),

x′fs(ρ),i = φρ(xρ,i) ∀ ρ ∈ Vint(Ts),(4)

p(ψα) = φπ(α) ∀ α ∈ V ≥2comp(Tb).

We denote the collection of stable witch curves of type n by SWCn, and we
define the moduli space 2Mn of stable witch curves of type n to be the
set of isomorphism classes of stable witch curves of this type. For any stable
tree-pair 2T of type n, define the corresponding strata SWCn,2T ⊂ SWCn,
2Mn,2T ⊂ 2Mn to be the set of all stable witch curves (resp. isomorphism
classes thereof) of the form

(
2T, (xρ), (zα)

)
. We say that a stable witch

curve is smooth if its underlying stable tree-pair 2T has the property that
Vint(Ts) and Vcomp(Tb) each contain only one element; we denote a smooth
stable witch curve by the pair (x, z) ∈ Rr × R|n|+r associated to the roots
of Ts resp. Tb.

Remark 2.5 (motivation for Def. 2.4 from §1.1). Once again, on the
left in the following figure is the limit in 2M10010 from §1.1.

α = αTbroot

β

γ δ

ε

α

βγ

δ

ε

This limit can be formulated as a stable witch curve
(
2T, (xρ), (zα)

)
as in

Def. 2.4, and on the right of this figure we show the tree-pair 2T = Tb → Ts.
As explained in §3, [Bo1], the vertices of Tb are partitioned as V (Tb) =
Vcomp(Tb) t Vseam(Tb) t Vmark(Tb) (“component vertices”, “seam vertices”,
and “marked point vertices”). The component vertices are labeled as α, β,
γ, δ, ε in this figure, and they correspond to the spheres appearing on the
left side of the figure. Each component vertex α, β, γ, δ, ε is assigned a tuple
zα, zβ, zγ , zδ, zε, which we think of as the positions of the special (marked
and nodal) points. Each dashed edge corresponds to a marked or nodal
point.
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Example 2.6. We recall a figure from §3, [Bo1], which illustrates some
tree-pair notation in the case of a particular tree-pair 2T :

λTs1 λTs2 λ
Ts
3 λ

Ts
4 λTs5

µTb11 µTb21

µTb31 µ
Tb
32 µTb34µ

Tb
41

αTbroot

ρTsroot

π

= Vmark(Tb)
= Vseam(Tb)
= Vcomp(Tb)

µTb33

2T = Tb
π→ Ts consists of a “bubble tree”, a “seam tree”, and a map from

the former to the latter. Both Tb and Ts are RRTs, and Tb has additional
structure. In particular, the vertices of Tb are partitioned as Vcomp(Tb) t
Vseam(Tb) t Vmark(Tb), as shown on the right, and the edges alternate be-
tween solid and dashed ones. The elements of Vmark(Tb) are denoted µTbij , as

shown on the left, and the root of Tb is denoted αTbroot ∈ Vcomp(Tb). The co-
herence map π : Tb → Ts is required to satisfy several conditions, as recorded
in §3, [Bo1]. In the middle of this figure, we indicate how π acts: we color
the edges of Ts, and use those same colors to show which edges in Tb are
identified with the various edges of Ts. Some edges in Tb are contracted by
π, which we indicate by using black.

This tree-pair is stable, because (1) Ts is a stable RRT, and (2) for every
α ∈ Vcomp(Tb) with in(α) denoted (β1, . . . , βk), either k ≥ 2 and there is a
βi with #in(βi) ≥ 1, or k = 1 and #in(β1) ≥ 2.

If
(
2T, (xρ), (zα)

)
is a stable witch curve and α ∈ Vcomp(Tb), β ∈

Vcomp(Tb) ∪ (µij)i,j are distinct, then we define zαβ ∈ R2 ∪ {∞} like so: De-
fine (α = γ1, γ2, . . . , γk = β) to be the path from α to β. If γ2 is closer to the
root than α, then we define zαβ :=∞. If γ2 is the i-th incoming neighbor
of α and γ3 is the j-th incoming neighbor of γ2, then we define zαβ := zα,ij .
For distinct ρ ∈ Vint(Ts), σ ∈ V (Ts), we define xρσ similarly. For α, β as
above, we define xαβ := p(zαβ). For α ∈ Vcomp(Tb) and ρ ∈ V (Ts) \ {π(α)},
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set xαρ := xπ(α)ρ. For α ∈ V 1
comp(Tb), extend this definition by setting

xαρ :=

{
xα,1, λi ∈ (Ts)π(α),

∞, otherwise.
(5)

Finally, for any α ∈ Vcomp(Tb), we denote z
αµ

Tb
∞

:=∞, xαλTs∞ :=∞; here µTb∞
and λTs∞ are formal expressions, rather than vertices in Tb resp. Ts, which
represent the fact that the root of the bubble tree and seam tree should be
thought of as carrying a single “output” marked point.

We define the set of nodal points and set of special points of any
interior vertex α like so:

Znode
α := (zαβ | β ∈ Vcomp(Tb) \ {α}) ⊂ R2 ∪ {∞},(6)

Zspec
α := (zαβ | β ∈ (Vcomp(Tb) ∪ (µij)i,j ∪ {µTb∞}) \ {α}) ⊂ R2 ∪ {∞}.

Before we define Gromov convergence for stable witch curves, we need
two preliminaries: a way to express the property that two vertices in
Vcomp(Tb) correspond to two spheres attached via a nodal point, and a no-
tion of surjection for stable tree-pairs. The first notion is straightforward:
for any stable tree-pair Tb → Ts, we say that α, β ∈ Vcomp(Tb) ∪ (µij)i,j are
contiguous if the path from α to β consists of α, β, and a third vertex
(necessarily in Vseam(Tb)). The second notion is less obvious. If 2T ′ is the
result of making a single move on 2T (in the sense of §3.1, [Bo1]), then there
are evident maps T ′b → Tb, T

′
s → Ts. Composing these maps inductively, we

see that for any stable tree-pairs with 2T ′ < 2T , there are induced maps
T ′b → Tb, T

′
s → Ts. We call any map obtained in this fashion a stable tree-

pair surjection. Note that for any stable tree-pair surjection 2T ′ → 2T ,
the restriction T ′s → Ts to seam trees is an RRT surjection as in §2.1, [Bo1].

In the following definition, and throughout this paper, “u.c.s.” means
“uniformly on compact subsets”. We refer to the notion of Gromov-conver-
gence of a sequence

(
T ν , (xνρ)

)
of stable disk trees, which is similar to the

notion of Gromov convergence of a sequence of stable genus-0 curves as
in Def. D.5.1, [McDSa]. The main difference with that notion is that for
a sequence of stable disk trees to Gromov-converge, the maps fν : T ν → T
must be RRT homomorphisms.

Definition 2.7. A sequence
(
2T ν , (xνρ), (zνα)

)
∈ SWCn is said to Gromov-

converge to
(
2T, (xρ), (zα)

)
if the following conditions hold:
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•
(
T νs , (x

ν
ρ)
)

Gromov-converges to
(
Ts, (xρ)

)
via some fν : Ts → T νs and

(φνρ) ⊂ G1.

• For ν sufficiently large, there is a stable tree-pair surjection 2fν : 2T →
2T ν covering fν : Ts → T νs and a collection of reparametrizations
(ψνα)α∈Vcomp(Tb) ⊂ G2 such that the following hold:

(restriction) For α ∈ V ≥2comp(Tb), p(ψ
ν
α) = φνπ(α).

(rescaling) If α, β ∈ Vcomp(Tb) are contiguous, and if νj is a
subsequence such that f

νj
b (α) = f

νj
b (β), then the sequence ψ

νj
αβ :=

(ψ
νj
α )−1 ◦ ψνjβ converges to zαβ u.c.s. away from zβα.

(special point) If α ∈ Vcomp(T ), β ∈ Vcomp(Tb) ∪ (µij)i,j are con-
tiguous, and if νj is a subsequence such that f

νj
b (α) 6= f

νj
b (β), then:

zαβ = lim
j→∞

(ψνjα )−1
(
z
νj

f
νj
b (α)f

νj
b (β)

)
.(7)

Note that if
(
2T ν , (xνρ), (zνα)

)
Gromov-converges to

(
2T, (xρ), (zα)

)
via (φνρ)

and (ψνα), and (φ̃νρ)ρ∈Vint(T νs )
⊂G1 and (ψ̃να)α∈Vcomp(T νb )

⊂G2 are any sequences
of reparametrizations satisfying

p(ψ̃να) = φ̃νπν(α) ∀ α ∈ V
≥2
comp(T νb ),(8)

then
(
2T ν , (φ̃νρ(xνρ)), (ψ̃να(zνα))

)
Gromov-converges to

(
2T, (xρ), (zα)

)
via(

φ̃νfνs (ρ)
◦ φνρ

)
ρ∈Vint(Ts)

and
(
ψ̃νfνb (α)

◦ ψνα
)
α∈Vcomp(Tb)

.

The following lemma shows that Gromov convergence in 2Mn actually
implies a priori stronger versions of the (rescaling) and (special point)
axioms; for simplicity, we state it in the case that the surjection 2T → 2T ν

is fixed.

Lemma 2.8. Suppose that
(
2̃T , (xνρ̃), (zνα̃)

)
⊂ SWCn Gromov-converges to(

2T, (xρ), (zα)
)

via 2f : 2T → 2̃T , (φνρ), and (ψνα). Then the following prop-
erties hold.

(Rescaling’) For any distinct α, β ∈ Vcomp(Tb) with fb(α) = fb(β),
the sequence ψναβ converges to zαβ u.c.s. away from zβα.

(Special point’) For any α ∈ Vcomp(Tb), β ∈ Vcomp(Tb) ∪ (µij)i,j with
fb(α) 6= fb(β), the equality zαβ = limν→∞(ψνα)−1(zfb(α)fb(β)) holds.

Proof.

(Rescaling’) Denote by (α = γ1, . . . , γk = β) the vertices in Vcomp(Tb)
through which the path from α to β passes, and note that fb(α) =
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fb(β) implies fb(α = γ1) = fb(γ2) = · · · = fb(γk = β). We prove the
claim by induction on k. The k = 2 case is exactly (rescaling). Sup-
pose that we have proven the claim up to and including some partic-
ular k; we now must prove the claim in the case that the path from
α to β has length k + 1. By assumption, ψναγk converges to zαγk u.c.s.
away from zγkα and ψνγkβ converges to zγkβ u.c.s. away from zβγk . The
fact that (γ1, . . . , γk+1) does not intersect itself implies zγkβ 6= zγkα,
zαγk = zαβ, and zβγk = zβα, so it follows that ψναβ = ψναγk ◦ ψ

ν
γkβ

con-
verges to zαβ u.c.s. away from zβα.

(special point’) Denote by (α = γ1, . . . , γk = β) the vertices in
Vcomp(Tb) ∪ (µij)i,j through which the path from α to β passes. We
prove the claim by induction on k. The k = 2 case is exactly (special
point). Suppose that we have proven the claim up to and includ-
ing some particular k; we now must prove the claim in the case that
the path from α to β includes k + 1 elements of Vcomp(Tb) ∪ (µij)i,j . If
fb(γk−1) = fb(β), then the claim follows from the inductive hypothesis:

zαβ = zαγk−1
= lim

ν→∞
(ψνα)−1(zνf(α)f(γk−1)

) = lim
ν→∞

(ψνα)−1(zνfb(α)fb(β)).(9)

Otherwise, we use the inductive hypothesis and the inequality zγk−1β 6=
zγk−1α:

zαβ = zαγk−1
= lim

ν→∞
ψναγk−1

(
(ψνγk−1

)−1(zνfb(γk−1)fb(β)
)
)

(10)

= lim
ν→∞

(ψνα)−1(zνfb(α)fb(β)).

�

Next, we prove an alternate version of (special point) in the case of a
Gromov-convergent sequence of smooth stable witch curves.

Lemma 2.9. Suppose that (xν , zν) ⊂ SWCn Gromov-converges to
(
2T, (xρ),

(zα)
)

via (φνρ) and (ψνα). For any α ∈ V 1
comp(Tb) and λi ∈ V (Ts) \ Vint(Ts),

the equality xαλi = limν→∞ p
(
(ψνα)−1

)
(xνi ) holds.

Proof. Step 1: If β ∈ Vcomp(Tb) is closer to the root than α ∈ Vcomp(Tb),
and we denote ((ψνα)−1 ◦ ψνβ)(z) =: aνz + bν , then limν→∞ a

ν =∞.

By (rescaling’), (ψνα)−1 ◦ ψνβ converges to ∞ u.c.s. away from zβα ∈ R2.
The equality limν→∞ a

ν =∞ follows.

Step 2: We prove the claim in the case that α is further from the root from
a vertex β ∈ V ≥2comp(Tb) and closer to the root than a vertex γ ∈ V ≥2comp(Tb).
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First, suppose that λi does not lie in (Ts)π(α), and choose β to be the closest
vertex to α having the property just mentioned. The stability of 2T implies
that some µi′j ∈ Vmark(Tb) lies in (Tb)α. (Special point’) now yields the
equality limν→∞ p

(
(ψνα)−1(zνi′j)

)
= xα,1 ∈ R, hence

lim
ν→∞

p
(
(ψνα)−1

)
(xνi′) = xα,1 ∈ R.(11)

By our choice of i′ and β, xπ(β)λi and xπ(β)λi′ are distinct elements of R ∪
{∞}, hence by (restriction) and (special point’) we have

lim
ν→∞

p
(
(ψνβ)−1

)
(xνi ) = xπ(β)λi 6= xπ(β)λi′ = lim

ν→∞
p
(
(ψνβ)−1

)
(xνi′).(12)

Step 1, along with the last two displayed (in)equalities, yields

lim
ν→∞

p
(
(ψνα)−1

)
(xνi ) =∞,

which, by (5), is equal to xαλi .
A similar argument (using γ in place of β) proves that if λi lies in

(Ts)π(α), then p
(
(ψνα)−1

)
(xνi ) converges to xα,1.

Step 3: We prove the claim when α does not satisfy the hypothesis of Step 2.

In this case, π(α) must lie in (λi)i ∪ {ρTsroot}. Suppose π(α) = ρTsroot. If r = 1,
the claim clearly holds. Otherwise, choose γ to be the element of V ≥2comp(Tb)
closest to α. For every i′, (restriction) and (special point’) yield the
containment

lim
ν→∞

p
(
(ψνγ)−1

)
(xνi′) = xγλi′ ∈ R.(13)

By (special point’) and the stability condition for tree-pairs, there exist
i′′, j such that the equality limν→∞ p

(
(ψνα)−1(zi′′j)

)
= xα,1 holds, so Step 1

and the last displayed containment imply the claim. Indeed, write
(
(ψνα)−1 ◦

ψνγ
)
(z) = aνz + bν ; by Step 1, limν→∞ a

ν = 0. Now, for any i′, we have

p
(
(ψνα)−1(zi′j)

)
− p
(
(ψνα)−1(zi′′j)

)
(14)

= aν
(
p
(
(ψνγ)−1(zi′j)

)
− p
(
(ψνγ)−1(zi′′j)

)) ν→∞−→ 0,

hence limν→∞ p
(
(ψνα)−1(zi′j)

)
= xα,1.

A similar argument can be made in the case that π(α) is a leaf of Ts. �
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2.2. Gromov compactness for 2Mn

This subsection is devoted to establishing the following result, which will
later be used to show that the topology on 2Mn is compact.

Theorem 2.10. Any sequence
(
2T ν , (xνρ), (zνα)

)
⊂ SWCn has a Gromov-

convergent subsequence.

The central idea of the proof already occurs when the witch curves in the
sequence are smooth. In this case, we prove this theorem inductively, on
the total number of marked points. The idea is that when we add a new
marked point to a Gromov-convergent sequence of smooth witch curves,
there are four possibilities, illustrated in the following figure and made formal
in Lemma 2.11.

(2a)

(1)

(2b) (3)

Figure 1: The sources of the arrows are two points in SWC1000, which we
think of as limits of sequences of smooth witch curves. The targets show
examples of what the limit can become when we add an additional marked
point to the original sequence of smooth witch curves. Some of the seams in
this figure are the results of several seams merging; these seams are indicated
by small adjacent trees.

Lemma 2.11. Suppose that a sequence (xν , zν) ⊂ SWCn of smooth stable
witch curves Gromov-converges to

(
2T, (xρ), (zα)

)
via (φνρ) and (ψνα), and

that (ζν ∈ R2 \ zν) is a sequence with the property that

(15) ζα := lim
ν→∞

(ψνα)−1(ζν) ∈ R2 ∪ {∞}

exists for every α ∈ Vcomp(Tb). Then exactly one of the following conditions
holds:

(1) There exists a (unique) vertex α ∈ Vcomp(Tb) such that ζα ∈ R2 \ Zspec
α .
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(2a) There exists a (unique) contiguous pair α ∈ Vcomp(Tb), µij such that
ζα = zαµij .

(2b) The root αroot has ζαroot
=∞.

(3) There exists a (unique) contiguous pair α, β ∈ Vcomp(Tb) such that
ζα = zαβ and ζβ = zβα.

Proof. We imitate the proof of Lemma 5.3.4, [McDSa].

Step 1: We prove the implication

α, β ∈ Vcomp(Tb), ζα 6= zαβ =⇒ ζβ = zβα.(16)

This follows from the (rescaling’) part of Lemma 2.8 and the convergence
of (ψνα)−1(ζν) to ζα 6= zαβ:

(17) ζβ = lim
ν→∞

(ψνβ)−1(ζν) = lim
ν→∞

ψνβα
(
(ψνα)−1(ζν)

)
= zβα.

Step 2: We prove the lemma.

We begin by proving that the four cases are mutually exclusive.

• Suppose that α, β satisfy the condition in (3), and fix γ ∈ Vcomp(Tb) \
{α, β}. If γ lies in (Tb)αβ, then the inequality ζβ = zβα 6= zβγ and Step 1
imply ζγ = zγβ, so none of (1), (2a), and (2b) hold. Otherwise, the
inequality ζα = zαβ 6= zαγ and Step 1 imply ζγ = zγα, so none of (1),
(2a), and (2b) hold.

• Suppose that (2b) holds. Step 1 implies that every α ∈ Vcomp(Tb) has
ζα =∞, so neither (1) nor (2a) holds.

• Suppose that α, µij satisfy (2a). Step 1 implies that every β ∈
Vcomp(Tb) \ {α} has ζβ = zβα, so (1) does not hold.

Next, we prove uniqueness in (1), (2a), and (3). In (1) and (2a), this is
an immediate consequence of Step 1. To prove uniqueness in (3), suppose
for a contradiction that {α, β} and {α′, β′} are distinct pairs satisfying (3).
Switching α and β if necessary, we may assume that the paths from α′

resp. β′ to α pass through β. Similarly, we may assume that the paths from
α resp. β to β′ pass through α′. The inequality ζβ = zβα 6= zβα′ and Step
1 imply ζα′ = zα′β. This, together with the inequality zα′β 6= zα′β′ , imply
ζα′ = zα′β 6= zα′β′ , in contradiction with the assumption.

Finally, we show that at least one of these cases holds. Suppose that (1),
(2a), and (2b) do not hold; we must show that (3) holds. The assumption
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implies that for every α ∈ Vcomp(Tb), there exists a (unique) contiguous β ∈
Vcomp(Tb) with ζα = zαβ. Define a (possibly self-crossing) path like so: First,
choose any α1 ∈ Vcomp(Tb) and a contiguous vertex α2 ∈ Vcomp(Tb) with
ζα1

= zα1α2
. Inductively continue this path by defining αk+1 ∈ Vcomp(Tb) to

be the vertex in Vcomp(Tb) contiguous to αk satisfying ζαk = zαkαk+1
. The

quotient of Tb obtained by identifying each element of Vcomp(Tb) with its in-
coming neighbors is again a tree, and (α1, α2, . . .) is an infinite path in this
quotient, so there must exist k such that αk+2 = αk. Then ζαk = zαkαk+1

and
ζαk+1

= zαk+1αk , so αk, αk+1 satisfy the condition in (3). �

Proof of Thm. 2.10. Step 1: For any r ≥ 2 and n ∈ Zr≥0 with |n| = 1, there
is a bijection SDT r → SWCn that identifies Gromov-convergent sequences
with Gromov-convergent sequences.

Fix n as above, where the only nonzero entry is ni0 = 1. We begin by
identifying stable RRTs with r leaves with stable tree-pairs of type n.

• Given a stable RRT T with r leaves, we define a stable tree-pair 2T of
type n like so: set Ts := T . Define Tb by first setting T ′ to consist of
all vertices in the path [ρTroot, λi0 [ and all incoming neighbors of these
vertices; now, define Tb to be the result of inserting a dashed edge
at λi0 , and at every interior vertex of T ′ except the root. Here is an
illustration of this process, in which a stable RRT with 5 leaves is sent
to a stable tree-pair of type (0, 0, 0, 1, 0):

π

• Given a stable tree-pair 2T of type n, send it to its seam tree Ts.

The fact that these maps are inverses follows from the stability condition on
stable tree-pairs.

We now enhance this bijection to an identification of SDT r with SWCn.
Fix

(
T, (xρ)

)
∈ SDT r. Define 2T as above. Define

(
2T, (xρ), (zα)

)
∈ SWCn

like so: for α ∈ Vcomp(Tb), choose i0 with the property that the i0-th in-
coming neighbor β of α has in(β) 6= ∅, and set zα :=

(
(xπ(α),i0 , 0)

)
. It is

straightforward to check that this indeed defines a bijection, and that it
identifies Gromov-convergent sequences in SDT r with Gromov-convergent
sequences in SWCn.
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Step 2: If (xν , zν) ⊂ SWCn is a sequence of smooth stable witch curves,
then it has a Gromov-convergent subsequence.

We establish this claim by induction on |n|. The base case n = (2) follows
from the fact that any two elements of SWC(2) are isomorphic, while the
base case r ≥ 2, |n| = 1 follows from Step 1.

Next, say that the claim has been proven up to, but not including,
some |n| = a ≥ 1. (In the r = 1 case, start with a ≥ 2 instead.) Fix a se-
quence (xν , zν) ∈ SWCn, with |n| = a. Without loss of generality, we may
choose i0 such that the inequality yi0,ni0 ≥ yij holds for all i, j. Define ñ :=
(n1, . . . , ni0−1, ni0 − 1, ni0+1, . . . , nr) and z̃ν := (zνij | (i, j) 6= (i0, ni0)). By the
inductive hypothesis, we may assume that (xν , z̃ν) ⊂ SWCñ Gromov-
converges to some

(
2T, (xρ), (zα)

)
. Set ζν := zi0,ni0 . Passing to a subse-

quence, we may assume that for every α ∈ Vcomp(Tb), the limit ζα :=
limν→∞(ψνα)−1(ζν) ∈ R2 ∪ {∞} exists. (Indeed, enumerate Vcomp(Tb) as
α1, . . . , αn. Since R2 ∪ {∞} is compact, we may pass to a subsequence so that
the limit defining ζα1

exists. Next, we pass to a further subsequence so that
the limit defining ζα2

exists, and so forth.) We may now apply Lemma 2.11;
we divide the rest of the proof of this step into cases, depending on which
case of Lemma 2.11 holds.

(1) Fix α ∈ Vcomp(Tb) with the property ζα ∈ R2 \ Zspec
α . We begin by

defining a stable tree-pair 2T new of type n. Set T new
s := Ts. Enlarge

Tb to T new
b like so: define T ′ to be the subtree of Ts consisting of the

path ]π(α), λi0 [, together with all incoming neighbors of all vertices
in this path. Insert a dashed edge at every interior vertex in T ′, in-
cluding at its root. Add an incoming dashed edge to the vertex in T ′

corresponding to λi0 . Finally, graft this tree into Tb by identifying its
root with the vertex β ∈ in(α) with the property that the path from
π(α) to λi0 passes through π(β); declare that the element we have just
added to in(β) is maximal in in(β).

Next, we define a collection of reparametrizations (χνβρ), where βρ
denotes the vertex we added to T new

b corresponding to ρ ∈]f(α), λi0 [.
We characterize χνβρ by the following equations:

p(χνβρ) = φνρ, (χνβρ)
−1(xνi0 , y

ν
i0,ni0

) =
(
(φνρ)−1(xi0), 0

)
.(18)

The sequence (xν , zν) converges to
(
2T new, (xρ), (zα)

)
via (φνρ) and

(ψνα) ∪ (χνβρ).
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(2a) Fix a contiguous pair α ∈ Vcomp(Tb), µij with ζα = zαµij . We begin by
defining 2T new:

T new
s := Ts, T new

b := Tb ∪ {α′, µ
T new
b

i0,ni0−1
, µ

T new
b

i0,ni0
},(19)

where α′ is a new seam vertex attached via an outgoing solid edge
to β := µTbi0,ni0−1

(which is converted from an element of (µij)i,j to an

element of Vcomp(T new
b )), and where µ

T new
b

i0,ni0−1
, µ

T new
b

i0,ni0
are the incoming

neighbors of α′.
Next, we define χνβ by these equations:

(χνβ)−1(zνi0,ni0−1) = (0, 0), (χνβ)−1(zνi0,ni0 ) = (0, 1).(20)

Then (xν , zν) converges to
(
2T new, (xρ), (zα)

)
via (φνρ) and (ψνα) ∪

(χνβ).

(2b) Suppose ζαroot
=∞. Set T new

s := Ts, and define T new
b like so: define T ′

to be the subtree of Ts consisting of [ρTsroot, λi0 [ and all incoming neigh-
bors of these vertices. Insert dashed edges at all the interior vertices
of T ′ besides the root, and at the vertex of T ′ corresponding to λi0 .

Complete the construction of T new
b by introducing α′ =: α

T new
b

root , connect
α′ by an incoming solid edge to a new seam vertex α′′, and connect
both αTbroot and the root of T ′ to α′′ by dashed edges.

Next, we need to define reparametrizations χνβρ , χ
ν
α′ , where βρ is

the vertex in T ′ corresponding to ρ ∈ [ρTsroot, λ
Ts
i0

[. The definition of
χνβρ is similar to the construction of the reparametrizations in (1). To
define χνα′ , choose i1 ∈ [1, r] and j1 ∈ [1, ñi1 ] and characterize χνα′ by
the equations

(χνα′)
−1(zνi0,ni0 ) = (∗, 1), (χνα′)

−1(zi1j1) = (0, 0).(21)

(3) This case is similar to (2b), so we do not include all the details. As
illustrated in Fig. 1, to obtain the new stable witch curve we introduce
a new component between the spheres corresponding to α and β, and
possibly attach a further bubble tree to this new component. More
precisely, we first enlarge Vcomp(Tb) and Vseam(Tb) by adding a compo-
nent vertex γ to Vcomp(Tb) between α and β, adding a seam vertex δ to
Vseam(Tb), and setting in(γ) := (δ). To further enlarge Tb, set T ′ to be
the subtree of Ts consisting of ]π(α), λi0 [ and all incoming neighbors
of these vertices. As in (2b), insert dashed edges at all the interior
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vertices of T ′ besides the root, and at the vertex of T ′ corresponding
to λi0 . Finally, attach the root of T ′ to γ via a dashed edge.

The construction of the reparametrizations corresponding to the
new vertices is somewhat different than the constructions appearing
in (2b); we therefore concentrate on this detail. Specifically, we show
how to construct the reparametrizations χν corresponding to γ.

Suppose that α, β ∈ Vcomp(Tb) are contiguous and have the proper-
ties ζα = zαβ and ζβ = zβα. Assume w.l.o.g. that β is further from the
root than α is, which implies zβα =∞. We must construct a sequence
(χν) ⊂ G1 satisfying these conditions:

(χ1) (χν)−1(zνi0,ni0
) = (0, 1) for every ν.

(χ2) (ψνα)−1 ◦ χν converges to 0 u.c.s. away from ∞ and (ψνβ)−1 ◦ χν
converges to ∞ u.c.s. away from zαβ.

To do so, we first note that we may assume zαβ = 0: otherwise, set
ξ ∈ G2 to be translation by zαβ and replace ψνα by ψνα ◦ ξ and zνα
by ξ−1(zνα). The sequence (ψναβ) =

(
(ψνα)−1 ◦ ψνβ

)
converges to 0 u.c.s.

away from ∞, so if we write ψναβ(z) = aνz + bν , the sequences (aν) ⊂
R>0 and (bν) ⊂ R2 both converge to 0. Set wν := (ψνβ)−1(zνi0,ni0

); we
then have

(22)
lim
ν→∞

wν = ζβ = zβα =∞,

lim
ν→∞

aνwν = lim
ν→∞

ψναβ(wν) = ζα = zαβ = 0.

(Restriction) and Lemma 2.9 imply that Re(wν) is bounded; just
as we assumed zαβ = 0, we may therefore assume wν = (0, cν) for
cν ∈ R. Moreover, the inequality yi0,ni0 ≥ yi′j′ for all i′, j′ implies that
cν is eventually positive. The functions ξν defined by ξν(z) := (z −
bν)/(aνcν) therefore lie in G2 and satisfy these conditions:

(ξ1) ξν converges to ∞ u.c.s. away from 0.
(ξ2) ξν ◦ ψναβ = (z 7→ z/cν) converges to 0 u.c.s. away from ∞.
(ξ3) The following identity holds for every ν:

(
ξν ◦ (ψνα)−1

)
(zνi0,ni0 ) = (ξν ◦ ψναβ)

(
(ψνβ)−1(zνi0,ni0 )

)
(23)

= (ξν ◦ ψναβ)(wν) = (0, 1).

Now set

(24) χν := ψνα ◦ (ξν)−1.
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Then (ξ3) implies (χν)−1(zνi0,ni0
) = (0, 1), which establishes (χ1). (ξ1)

and (ξ2) imply (χ2), so we have constructed a suitable rescaling se-
quence (χν). �

2.3. Limits in 2Mn are unique

Lemma 2.12. Suppose that (xν , zν) ⊂ SWCn is a sequence of smooth sta-
ble witch curves that Gromov-converges to

(
2T, (xνρ), (zνα)

)
via (φνρ) and (ψνα),

that α, β ∈ Vcomp(Tb) are contiguous vertices, and that (χν) ⊂ G2 is a se-
quence with the property

(25)
(ψνα)−1 ◦ χν → zαβ u.c.s. away from w1,

(ψνβ)−1 ◦ χν → zβα u.c.s. away from w2

for some w1, w2 ∈ R2 ∪ {∞}. If α is closer to the root than β, then w1 =
∞; otherwise, w2 =∞. If µij lies in (Tb)αβ, then (χν)−1(zνij) converges to

w2; otherwise, (χν)−1(zνij) converges to w1. If xβλi 6= xβα, then p(χν)−1(xνi )

converges to p(w2); otherwise, p(χν)−1(xνi ) converges to p(w1).

Proof. To prove the first claim, it suffices by symmetry to consider the case
that α is closer to the root than β. In this case we have zαβ ∈ R2, so the first
equation in (25) and the equality

(
(ψνα)−1 ◦ χν

)
(∞) =∞ imply w1 =∞.

To prove the second claim, it suffices by symmetry to consider the
case that µij lies in (Tb)αβ. Suppose that (χν)−1(zνij) does not converge
to w2. Passing to a subsequence, we may assume that there exists a com-
pact set K 6 3 w2 with (χν)−1(zνij) ∈ K for all ν. By hypothesis, we have

(ψνβ)−1(zνij) =
(
(ψνβ)−1 ◦ χν

)(
(χν)−1(zνij)

)
→ zβα. On the other hand, (spe-

cial point’) implies that (ψνβ)−1(zνij) converges to zβµij , hence zβα = zβµij .
This contradicts the hypothesis that µij lies in (Tb)αβ.

A similar argument proves the third claim. �

Lemma 2.13. Suppose that (xν , zν) ⊂ SWCn and (ψνα) ⊂ G2 are as in
Lemma 2.12, and suppose that (χν) ⊂ G2 is a sequence of reparametriza-
tions with the following properties:

(a) For every i, j the limits

ζi := lim
ν→∞

p(χν)−1(xνi ), ξij := lim
ν→∞

(χν)−1(zνij)

exist.
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(b) Define Ys := (ζi)i ∪ {∞} and Yb := (ξij)i,j ∪ {∞}. Either #Yb ≥ 3, or
#Yb = 2 and #Ys ≥ 3.

Then there exists α ∈ Vcomp(Tb) such that
(
(ψνα)−1 ◦ χν

)
has a subsequence

that converges uniformly to an element of G2.

Proof. Step 1: If (τν) ⊂ G2 has no convergent subsequence, then it has a
subsequence converging to w u.c.s. away from w′ for some w,w′ ∈ R2 ∪ {∞}.

Write τν(z) = aνz + bν . After passing to a subsequence, we may assume that
the limits

(26) lim
ν→∞

aν =: a∞ ∈ R≥0 ∪ {∞}, lim
ν→∞

bν =: b∞ ∈ R2 ∪ {∞}

exist. It suffices to prove the claim for either (τν) or
(
(τν)−1

)
; replacing τν

by (τν)−1 if necessary, we may assume a∞ ∈ R≥0. By hypothesis, it cannot
be that the containments a∞ ∈ R>0, b

∞ ∈ R2 both hold. If b∞ =∞, then
τν converges to ∞ u.c.s. away from ∞. If a∞ = 0 and b∞ ∈ R2, then τν

converges to b∞ u.c.s. away from ∞.

Step 2: If τν := (ψνα)−1 ◦ χν has no uniformly-convergent subsequence, then
after passing to a subsequence, τν converges to w u.c.s. away from w′ for
some w ∈ Znode

α and w′ ∈ Yb.

By Step 1, we may pass to a subsequence such that τν converges to w u.c.s.
away from w′ for some w,w′ ∈ R2 ∪ {∞}; it remains to show w ∈ Znode

α ,
w′ ∈ Yb. Suppose for a contradiction that w does not lie in Znode

α . Then at
most one µ ∈ (µij) ∪ {µTb∞} satisfies zαµ = w. Assume from now on that there
is either (i) no such µ, or (ii) the only such µ is µ = µTb∞; the case w = zαµij
is similar. The reparametrizations (τν)−1 converge to w′ u.c.s. away from w
and (ψνα)−1(zνij) converges to zαµij 6= w by (special point’), so for every
i, j we have

(27) ξij = lim
ν→∞

(χν)−1(zνij) = lim
ν→∞

(τν)−1
(
(ψνα)−1(zνij)

)
= w′.

This and the inequality #Yb ≥ 2 implies that #Yb = 2. Moreover, (ii) must
hold rather than (i): #Yb ≥ 2 implies w′ 6=∞, and it is only possible for a
sequence in G2 to converge to w′ 6=∞ away from w ∈ R2 ∪ {∞} if w is equal
to ∞.
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Next, note that the facts w 6∈ Znode
α and w =∞ imply α = αTbroot, hence

lim
ν→∞

p(ψνα)−1(xνi ) = xαrootλi ∈ R ∀ i.(28)

The inequality w′ 6=∞ implies that p(τν)−1 converges to p(w′) u.c.s. away
from ∞. (28) now implies that for any i, we have

ζi = lim
ν→∞

p(χν)−1(xνi ) = lim
ν→∞

p(τν)−1
(
p(ψνα)−1(xνi )

)
= p(w′).(29)

Therefore #Ys ≤ 2. Together with the equality #Yb = 2, we have derived a
contradiction.

A similar argument shows w′ ∈ Yb.
Step 3: If the conclusion of Lemma 2.13 does not hold, then there is a
contradiction.

Suppose that no α ∈ Vcomp(Tb) has the property that a subsequence of(
(ψνα)−1 ◦ χν

)
converges uniformly; we will construct a non-self-intersecting

infinite sequence (α1, α2, . . .) in Vcomp(Tb) with every consecutive pair αi, αi+1

contiguous, a contradiction. We choose α1 to be any element of Vcomp(Tb).
By Step 2, we may pass to a subsequence such that (ψνα1

)−1 ◦ χν converges
to w1 ∈ Znode

α1
u.c.s. away from w′1 ∈ Yb; define α2 ∈ Vcomp(Tb) to be the

vertex contiguous to α1 with w2 = zα1α2
. Inductively defining our sequence

in this fashion, we obtain (α1, α2, . . .) with the property that (ψναi)
−1 ◦ χν

converges to zαiαi+2
u.c.s. away from w′i. This path does not intersect itself:

Indeed, assume that αi = αi+2 for some i. Then Lemma 2.12 with α := αi,
β := αi+1 implies #Yb ≤ 2 and #Ys ≤ 2, a contradiction. We have therefore
constructed an infinite sequence in Vcomp(Tb) with each consecutive pair
contiguous, a contradiction. �

Theorem 2.14. Suppose that
(
2T ν , (xνρ), (zνα)

)
⊂ SWCn Gromov-converges

to two stable witch curves
(
2T, (xρ), (zα)

)
and

(
2̃T , (x̃ρ̃), (z̃α̃)

)
. Then(

2T, (xρ), (zα)
)

and
(
2̃T , (x̃α̃), (z̃α̃)

)
are isomorphic.

Proof. Step 1: If (xν , zν) ⊂ SWCn is a sequence of smooth stable disk trees

Gromov-converging to
(
2T, (xρ), (zα)

)
and

(
2̃T , (x̃ρ̃), (z̃α̃)

)
, then

(
2T, (xρ),

(zα)
)

and
(
2̃T , (x̃ρ̃), (z̃α̃)

)
are isomorphic.

Step 1a: The stable disk trees
(
Ts, (xρ)

)
and

(
T̃s, (x̃ρ̃)

)
are isomorphic.

This is a consequence of the Hausdorffness ofMr. We may therefore assume(
Ts, (xρ)

)
=
(
T̃s, (x̃ρ̃)

)
.
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Step 1b: After passing to a subsequence, there is a unique bijection

g : Vcomp(Tb)→ Vcomp(T̃b)

such that the uniform limits

(30) χα := lim
ν→∞

(ψνα)−1 ◦ ψ̃νg(α) ∈ G2

exist.

Fix α̃ ∈ Vcomp(T̃b). Applying Lemma 2.13 with χν := ψ̃να̃, we see that there

exists α ∈ Vcomp(Tb) such that a subsequence of (ψνα)−1 ◦ ψ̃να̃ converges uni-
formly to an element of G2. Moreover, α is uniquely determined: indeed, for
any other β ∈ Vcomp(Tb), (rescaling’) implies that

(31) (ψνβ)−1 ◦ ψ̃να̃ =
(
(ψνβ)−1 ◦ ψνα

)
◦
(
(ψνα)−1 ◦ ψ̃να̃

)
converges to zβα u.c.s. away from a single point. By applying this argument

at every interior vertex of T̃b, we obtain a uniquely-determined function
h : Vcomp(T̃b)→ Vcomp(Tb) and a subsequence of our original data such that
the uniform limit

lim
ν→∞

(
ψνh(α̃)

)−1 ◦ ψ̃να̃ ∈ G2(32)

exists. Applying this reasoning with Tb and T̃b interchanged shows that h is
invertible; set g := h−1.

Step 1c: The reparametrizations χα satisfy

z̃g(α)µ̃ij = χ−1α (zαµij ), z̃g(α)g(β) = χ−1α (zαβ),(33)

x̃
g(α)λ̃i

= p(χα)−1(xαλi), x̃g(α)g(β) = p(χα)−1(xαβ).

The first equation follows from (30) and (special point’):

χ−1α (zαµij ) = χ−1α

(
lim
ν→∞

(ψνα)−1(zνij)
)

= lim
ν→∞

(
ψ̃νg(α)

)−1
(zνij) = z̃g(α)µ̃ij .(34)

A similar deduction proves the third equation. The second follows from
(rescaling’), the convergence of ψναβ to zαβ u.c.s. away from zβα, and

the convergence of ψ̃νg(α)g(β) to z̃g(α)g(β) u.c.s. away from z̃g(β)g(α). Indeed,
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choosing z ∈ R2 \ {zβα, χβ(z̃g(β)g(α))}, we have:

χ−1α (zαβ) = χ−1α

(
lim
ν→∞

ψναβ(z)
)

(35)

= lim
ν→∞

((
ψ̃νg(α)

)−1 ◦ ψνβ)(z)

= lim
ν→∞

(
ψ̃νg(α)g(β)

)−1(
χ−1β (z)

)
= z̃g(α)g(β).

Finally, the fourth equation follows from applying p to the second equation.

Step 1d: We extend g to a bijection V (Tb)→ V (T̃b).

We showed in Step 1b that g : Vcomp(Tb)→ Vcomp(T̃b) is a bijection. We now

extend g to a bijection between V (Tb) and V (T̃b). First, set g(µTbij ) := µT̃bij .

Next, suppose that α is an element of V ≥2comp(Tb). By (restriction), in(α) is
in bijection with the limit set

(
limν→∞ p

(
(ψνα)−1

)
(xνi ) | 1 ≤ i ≤ r

)
. It follows

from Step 1b that there is a bijection(
lim
ν→∞

p
(
(ψνα)−1

)
(xνi ) | 1≤ i≤r

)
'
(

lim
ν→∞

p
(
(ψ̃νg(α))

−1)(xνi ) | 1≤ i≤r
)
.(36)

It follows from Lemma 2.9 that g(α) lies in V ≥2comp(T̃b), so we can identify
in(α) and in(g(α)). A similar argument shows that if α lies in V 1

comp(Tb), then

g(α) lies in V 1
comp(T̃b), hence we can identify the incoming neighbor of α with

that of g(α). We have now extended g to a bijection g : V (Tb)→ V (T̃b).

Step 1e: Two vertices α, β in Vcomp(Tb) are contiguous if and only if (1)
there is no γ ∈ (µij) ∪ {µTb∞} satisfying both zαγ = zαβ and zβγ = zβα, and
(2) there is no δ ∈ (λi) ∪ {λTs∞} satisfying both xαδ = xαβ and xβδ = xβα.
Vertices α ∈ Vcomp(Tb), µij are contiguous if and only if there is no γ ∈
Vcomp(Tb) with zαµij 6= zαγ.

Suppose that α, β ∈ Vcomp(Tb) are contiguous, and fix γ ∈ (µij) ∪ {µTb∞}.
Switching α and β if necessary, we may assume that γ lies in (Tb)αβ. Then
zβα 6= zβγ . A similar argument produces δ ∈ (λi) ∪ {λTs∞} with xβα 6= xβδ.

Next, we prove the contrapositive of the converse: Suppose that α, β ∈
Vcomp(T ) are not contiguous, and define (α = γ1, γ2, . . . , γk = β) to be the
vertices in Vcomp(Tb) through which the path from α to β passes. Suppose
that γ2 lies in V 1

comp. Define (γ2 = δ1, δ2, . . . , δ`) to be a non-self-intersecting
sequence in Vcomp(Tb) ∪ Vmark(Tb) that starts at γ2, terminates at a vertex in
(µij)i,j ∪ {αTbroot}, has δi, δi+1 contiguous for each i, and intersects (γ1, . . . , γk)
only at γ2. (The existence of such a sequence follows from the stability of 2T .)
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Then if we set ε := δ` if δ` ∈ (µij) and ε := µTb∞ if δ` = αTbroot, we have zαε = zαβ
and zβε = zβα. On the other hand, suppose that γ2 lies in V ≥2comp(Tb). Define
(π(γ2) = ρ1, ρ2, . . . , ρ`) to be a path in Ts that starts at π(γ2), terminates
at a vertex in (λi)i ∪ {ρTsroot}, and intersects (π(γ1), . . . , π(γk)) only at π(γ2).
Then if we set σ := ρ` if ρ` ∈ (λi) and σ := λTs∞ if ρ` = ρTsroot, we have xασ =
xαβ and xβσ = zβα.

A similar, simpler argument proves the second assertion in Step 1e.

Step 1f: We show that f extends to an isomorphism of RRTs, then complete
Step 1.

It remains to prove the following facts:

• g(αroot) = α̃root, where we denote αroot := αTbroot and α̃root := αT̃broot.

• For α ∈ Vcomp(Tb), g induces a bijection from in(α) to in(g(α)).

• For α, β ∈ Vcomp(Tb) with β an incoming neighbor of the i-th incom-
ing neighbor of α, g(β) is an incoming neighbor of the i-th incoming
neighbor of g(α).

• For α ∈ Vseam(Tb) and µij ∈ in(α), g(µij) lies in in(g(α)).

• g respects the ribbon tree structure of Tb and T̃b.

First, we show g(αroot) = α̃root. Fix α̃ ∈ Vcomp(T̃b) \ {g(αroot)}, and write
α̃ = g(α) for some α∈Vcomp(Tb). Step 1c implies z̃g(αroot)α̃ = χ−1αroot

(zαrootα) 6=
∞. Since z̃g(αroot)α̃ is finite for every α̃ ∈ Vcomp(T̃b) \ {g(αroot)}, we must have
g(αroot) = α̃root.

The second bullet is an immediate consequence of the construction of g
on Vseam(Tb).

Next, fix α, β ∈ Vcomp(Tb) with β an incoming neighbor of the i-th in-
coming neighbor of α. By Step 1e, there is no γ ∈ (µij) ∪ {µ∞Tb} satisfying
both zαγ = zαβ and zβγ = zβα, nor is there δ ∈ (λi) ∪ {λTs∞} satisfying both
xαδ = xαβ and xβδ = xβα. Together with Step 1c, it follows that there is

no γ̃ ∈ (µ̃ij) ∪ {µT̃b∞} with both z̃g(α)γ̃ = z̃g(α)g(β) and z̃g(β)γ̃ = z̃g(β)g(α), nor

is there δ̃ ∈ (λ̃i) ∪ {λT̃s∞} with both x̃
g(α)δ̃

= x̃g(α)g(β) and x̃
g(β)δ̃

= x̃g(β)g(α).

Step 1e now implies that g(α) and g(β) are contiguous, and another ap-
plication of Step 1d implies that g(β) is an incoming neighbor of the i-th
incoming neighbor of g(α).

A similar argument to the previous paragraph shows that for α ∈
Vseam(Tb) and µij ∈ in(α), g(µij) lies in in(g(α)).
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It follows from Step 1c that for any α ∈ V (Tb), g induces an order-
preserving bijection from in(α) to in(g(α)).

Step 2: The general case.

We begin by noting that for any
(
2T, (xρ), (zα)

)
∈ SWCn and β ∈ Vcomp(Tb),

we can associate a smooth stable witch curve. This association depends on
whether β lies in V 1

comp(Tb) or V ≥2comp(Tb). If β lies in V 1
comp(Tb), we associate(

(xβ,1), zβ
)
. Otherwise, we associate

(
xπ(β), zβ

)
.

Step 2a: If
(
2T ′, (xνρ), (zνα)

)
Gromov-converges to

(
2T, (xρ), (zα)

)
and

(xν , zν) is the sequence of smooth stable witch curves associated as in the
previous paragraph to a vertex β ∈ Vcomp(T ′b), then (xν , zν) converges to a
restriction of

(
2T, (xρ), (zα)

)
.

The only nontrivial part of this step is to spell out which restriction of
2T to use. Denote by f : 2T → 2T ′ the stable tree-pair surjection involved
in the Gromov convergence of

(
2T ′, (xνρ), (zνα)

)
to
(
2T, (xρ), (zα)

)
. First,

suppose β lies in V ≥2comp(T ′b). Define a stable tree-pair 2T |β like so: Ts|β is the
preimage under fs of π(β) and its incoming neighbors. Tb|β is the preimage
under fb of β, its incoming neighbors, and the incoming neighbors of its
incoming neighbors. Then 2T |β is a stable tree-pair, and it is straightforward
to show that the smooth stable witch curves (xν , zν) associated to β Gromov-
converge to the restriction of

(
2T, (xρ), (zα)

)
to 2T |β. The same result can

be proven in the case that β lies in V 1
comp(Tb): in this case, set Ts|β to be a

single vertex.

Step 2b: We establish the general case.

We are now ready to prove Thm. 2.14. Since there are only finitely many
isomorphism classes of stable tree-pairs of type n, we may pass to a subse-
quence and assume that 2T ν ≡ 2T ′ and that all the stable tree-pair sur-
jections 2T → 2T ν and 2̃T → 2T ν coincide with maps f : 2T → 2T ′ and
f̃ : 2̃T → 2T ′. Since

(
2T ′, (xνρ), (zνα)

)
Gromov-converges to

(
2T, (xρ), (zα)

)
,

the smooth stable witch curves associated to β Gromov-converge to the
restriction of

(
2T, (xρ), (zα)

)
to 2T |β, as in Step 2a. Similarly, (xνπ(β), z

ν
β)

Gromov-converges to the restriction of
(
2̃T , (x̃ρ̃), (z̃α̃)

)
to 2̃T β. By Step

1, these two restrictions are isomorphic. Since this holds for every β ∈
Vcomp(T ′b),

(
2T, (xρ), (zα)

)
and

(
2̃T , (x̃ρ̃), (z̃α̃)

)
are isomorphic. �

2.4. The definition and properties of the topology on 2Mn

Recall that if X is a set and C ⊂ X ×XN is an arbitrary collection of se-
quences and “limits”, we can define a topology U(C) ⊂ 2X in which the open
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sets are those subsets U ⊂ X having the property that for every (x0, (xn)) ∈
C with x0 ∈ U , xn is eventually in U . The following lemma gives sufficient
conditions for the convergent sequences in U(C) to coincide with C.

Lemma 2.15 (Lemma 5.6.5, [McDSa]). Let X be a set and C ⊂ X ×
XN be a collection of sequences in X that satisfies the property that if
(x0, (xn)n) ∈ C and (y0, (xn)n) ∈ C, then x0 = y0. Suppose that for every
x ∈ X there exists a constant ε0(x) > 0 and a collection of functions X →
[0,∞] : x′ 7→ µε(x, x

′) for 0 < ε < ε0(x) satisfying the following conditions.

(a) If x ∈ X and 0 < ε < ε0(x), then µε(x, x) = 0.

(b) If x ∈ X, 0 < ε < ε0(x), and (xn)n ∈ XN, then

(x, (xn)n) ∈ C ⇐⇒ lim
n→∞

µε(x, xn) = 0.(37)

(c) If x ∈ X, 0 < ε < ε0(x), and (x′, (xn)n) ∈ C, then

µε(x, x
′) < ε =⇒ lim sup

n→∞
µε(x, xn) ≤ µε(x, x′).(38)

Then C = C(U(C)). Moreover, the topology U(C) is first countable and Haus-
dorff.

We will construct a topology on 2Mn by using this lemma. To begin,
we define the functions µε(x,−) : 2Mn → [0,∞].

Definition 2.16. For any two stable witch curves
(
2T, (xρ), (zα)

)
,(

2̃T , (x̃ρ̃), (z̃α̃)
)

of type n and for any ε > 0, define a nonnegative real num-

ber µε
((

2T, (xρ), (zα)
)
,
(
2̃T , (x̃ρ̃), (z̃α̃)

))
like so:

µε
((

2T, (xρ), (zα)
)
,
(
2̃T , (x̃ρ̃), (z̃α̃)

))
:= min

2f : 2T→2̃T
inf

(φρ)ρ∈Vint(Ts)
(ψα)α∈Vcomp(Tb)

µε
((

2T, (xρ), (xα)
)
,
(
2̃T , (x̃ρ̃), (z̃α̃)

)
; 2f, (φρ), (ψα)

)
,
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µε
((

2T, (xρ), (zα)
)
,
(
2̃T , (x̃ρ̃), (z̃α̃)

)
; 2f, (φρ), (ψα)

)
:=

∑
ρ,σ∈Vint(Ts),ρ 6=σ,

fs(ρ)=fs(σ)

sup
(R∪{∞})\Bε(xρσ)

d
(
φ−1σ ◦ φρ, xσρ

)
+

∑
α,β∈Vcomp(Tb),α 6=β,

fb(α)=fb(β)

sup
(R2∪{∞})\Bε(zαβ)

d
(
ψ−1β ◦ ψα, zβα

)
+

∑
ρ∈Vint(Ts),σ∈V (Ts),

fs(ρ)6=fs(σ)

d
(
φ−1ρ (x̃fs(ρ)fs(σ)), xρσ

)
+

∑
α∈Vcomp(Tb),

β∈Vcomp(Tb)∪(µij)i,j ,
fb(α) 6=fb(β)

d
(
ψ−1α (z̃fb(α)fb(β)), zαβ

)
,

where in the first line we take the minimum over all stable tree-pair surjec-
tions 2f : 2T → 2̃T and the infimum over all tuples (φρ) ⊂ G1 and (ψα) ⊂ G2

satisfying p(ψα) = φπ(α) for every α ∈ V ≥2comp(Tb), and where in the second
line we use the distance metrics on R ∪ {∞} and R2 ∪ {∞} induced by iden-
tifying these spaces with round spheres. By convention, if there is no stable
tree-pair surjection 2T → 2̃T , we set µε

((
2T, (xρ), (zα)

)
,
(
2̃T , (x̃ρ̃), (z̃α̃)

))
:=

∞.

Remark 2.17. It is an immediate consequence of the definition that for
any

(
2T, (xρ), (zα)

)
,

µε
((

2T, (xρ), (zα)
)
,−
)

descends to 2Mn. Our aim is to use the µε’s to define
a topology on 2Mn via Lemma 2.15, so we now extend the definition of µε
to a collection of functions

µε
([

2T, (xρ), (zα)
]
,−
)

: 2Mn → [0,∞](39)

like so: for any
[
2T, (xρ), (zα)

]
∈2Mn, choose a representative

(
2T, (xρ), (zα)

)
.

Now define

µε
([

2T, (xρ), (zα)
]
,−
)

:= µε
((

2T, (xρ), (zα)
)
,−
)
.(40)

We note that Lemma 2.15 does not require µε to have any continuity in its
first argument.

Remark 2.18. The quantity µε should be compared with a similar quan-
tity, ρε, which plays the analogous role in the definition of the Grothendieck–
Knudsen topology onMr. (Compare also the analogous quantity used in §5,
[McDSa] to define the topology on the space of stable maps.) For any two
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stable disk trees
(
T, (xρ)

)
,
(
T̃ , (x̃ρ̃)

)
with r leaves and for ε > 0, ρε

((
T, (xρ)

)
,(

T̃ , (x̃ρ̃)
))

is defined like so:

ρε
((
T, (xρ)

)
,
(
T̃ , (x̃ρ̃)

))
(41)

:= min
f : T→T̃

inf
(φρ)ρ∈Vint(T )

ρε
((
T, (xρ)

)
,
(
T̃ , (x̃ρ̃)

)
; f, (φρ)

)
,

ρε
((
T, (xρ)

)
,
(
T̃ , (x̃ρ̃)

)
; f, (φρ)

)
:=

∑
ρ,σ∈Vint(Ts),ρ 6=σ,

f(ρ)=f(σ)

sup
(R∪{∞})\Bε(xρσ)

d
(
φ−1σ ◦ φρ, xσρ

)
+

∑
ρ∈Vint(T ),σ∈V (T ),

f(ρ)6=f(σ)

d
(
φ−1ρ (x̃f(ρ)f(σ)), xρσ

)
,

where in the first line we take the minimum over all surjections f : T → T̃
between stable RRTs.

Lemma 2.19. Fix
(
2T, (xρ), (zα)

)
∈ SWCn. Then the following hold for

every ε > 0:

(convergence) A sequence
(
2T ν , (xνρ), (zνα)

)
⊂ SWCn Gromov-

converges to
(
2T, (xρ), (zα)

)
if and only if µε

((
2T, (xρ), (zα)

)
,(

2T ν , (xνρ), (zνα)
))

converges to 0.

(triangle) If
(
2̃T , (x̃ρ̃), (z̃α̃)

)
∈ SWCn satisfies µε

((
2T, (xρ), (zα)

)
,(

2̃T , (x̃ρ̃), (z̃α̃)
))
< ε and the sequence

(
2T ν , (xνρ), (zνα)

)
Gromov-

converges to
(
2̃T , (x̃ρ̃), (z̃α̃)

)
, then

lim sup
ν→∞

µε
((

2T, (xρ), (zα)
)
,
(
2T ν , (xνρ), (zνα)

))
(42)

≤ µε
((

2T, (xρ), (zα)
)
,
(
2̃T , (x̃ρ̃), (z̃α̃)

))
.

Proof.

(convergence) If
(
2T ν , (xνρ), (zνα)

)
Gromov-converges to

(
2T, (xρ),

(zα)
)

then it follows from (rescaling’) and (special point’), and
the analogous properties for Gromov convergence of stable disk trees,
that µε

((
2T, (xρ), (zα)

)
,
(
T ν , (xνρ), (zνα)

))
converges to 0.

Conversely, suppose µε
((

2T, (xρ), (zα)
)
,
(
2T ν , (xνρ), (zνα

))
converges

to 0. Then it is the case that for ν large enough there is a stable tree-
pair surjection 2fν : 2T → 2T ν and tuples (φνρ), (ψνα) with p(ψα) =
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φπ(α) for α ∈ V ≥2comp(Tb) such that the following inequality holds:

µν := µε
((

2T, (xρ), (zα)
)
,
(
2T ν , (xνρ), (zνα)

)
; 2fν , (φνρ), (ψνα)

)
≤ µε

((
2T, (xρ), (zα)

)
,
(
2T ν , (xνρ), (zνα)

))
+ 2−ν .

Since there are only finitely many stable tree-pair surjections with
domain 2T , we may assume all the stable tree-pairs 2T ν are equal to
a single 2̃T and all the maps 2fν : 2T → 2̃T are equal to a single 2f .
First, we verify (rescaling). Fix contiguous α, β ∈ Vcomp(Tb) with
fb(α) = fb(β); without loss of generality we may assume α is closer to
the root than β, so zαβ ∈ R2 and zβα =∞. The convergence µν → 0
implies that (ψνα)−1 ◦ ψνβ converges to zαβ uniformly on R2 \Bε(∞),

hence (ψνα)−1 ◦ ψνβ converges to zαβ u.c.s. away from ∞. From this

it follows that (ψνβ)−1 ◦ ψνα converges to ∞ u.c.s. away from zαβ, so
we have established (rescaling). The (special point) requirement
obviously holds. Finally, the inequality

ρε
((
Ts, (xρ)

)
,
(
T νs , (x

ν
ρ)
)
; fνs , (φ

ν
ρ)
)

(43)

≤ µε
((

2T, (xρ), (zα)
)
,
(
2T ν , (xνρ), (zνα)

)
; 2fν , (φνρ), (ψνα)

)
implies that the left-hand side converges to 0, so

(
T νs , (x

ν
ρ)
)

Gromov-
converges to

(
Ts, (xρ)

)
via fνs and (φνρ). (This uses the analogue of the

current lemma for SDT r.) We may conclude that
(
2T ν , (xνρ), (zνα)

)
Gromov-converges to

(
2T, (xρ), (zα)

)
.

(triangle) The inequality µε
((

2T, (xρ), (zα)
)
,
(
2̃T , (x̃ρ̃), (z̃α̃)

))
< ε

implies that there exists a stable tree-pair surjection 2g : 2T → 2̃T and
tuples (χρ)ρ∈Vint(Ts) ⊂ G1, (ξα)α∈Vcomp(Tb) ⊂ G2 with p(ξα) = χπ(α) for
α ∈ V ≥2comp(Tb) such that

µε
((

2T, (xρ), (zα)
)
,
(
2̃T , (x̃ρ̃), (z̃α̃)

)
, 2g, (χρ), (ξα)

)
< ε.(44)

It follows that for every pair α, β ∈ Vcomp(Tb) with gb(α) 6= gb(β) we
have

d
(
ξ−1α (z̃gb(α)gb(β)), zαβ

)
< ε;(45)

similarly, for every ρ, σ ∈ Vint(Ts) with gs(α) 6= gs(β) we have

d
(
χ−1ρ (x̃gs(ρ)gs(σ)), xρσ

)
< ε.(46)
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Now suppose that
(
2T ν , (xνρ), (zνα)

)
Gromov-converges to

(
2̃T , (x̃ρ̃),

(z̃α̃)
)

via stable tree-pair surjections 2fν : 2̃T→2T ν and reparametriza-
tions (φνρ̃) and (ψνα̃). To prove (triangle), it suffices to prove the
following equality:

µε
((

2T, (xρ), (zα)
)
,
(
2̃T , (x̃ρ̃), (z̃α̃)

)
; 2g, (χρ), (ξα)

)
(47)

= lim
ν→∞

µε
((

2T, (xρ), (zα)
)
,
(
2T ν , (xνρ), (zνα)

)
;

2fν ◦ 2g, (φνgs(ρ) ◦ χρ), (ψ
ν
gb(α)

◦ ξα)
)
.

Since there are only finitely many stable tree-pair surjections with
domain 2̃T , we may assume 2T ν ≡ 2T ′ and 2fν ≡ 2f : 2̃T → 2T ′. For
any distinct α, β ∈ Vcomp(Tb) with gb(α) = gb(β) we have ξ−1β ◦ ξα =

(ψνgb(β) ◦ ξβ)−1 ◦ (ψνgb(α) ◦ ξα), hence

sup
(R2∪{∞})\Bε(zαβ)

d
(
ξ−1β ◦ ξα, zβα

)
(48)

= sup
(R2∪{∞})\Bε(zαβ)

d
(
(ψνgb(β) ◦ ξβ)−1 ◦ (ψνgb(α) ◦ ξα), zβα

)
.

Similarly, for distinct ρ, τ ∈ Vint(Ts) with gs(ρ) = gs(τ), we have

sup
(R∪{∞})\Bε(xρσ)

d
(
χ−1σ ◦ χρ, xσρ

)
(49)

= sup
(R∪{∞})\Bε(xρσ)

d
(
(φνgs(σ) ◦ χσ)−1 ◦ (φνgs(ρ) ◦ χρ), xσρ

)
.

If α, β ∈ Vcomp(Tb) have gb(α) 6= gb(β) and fνb (gb(α)) = fνb (gb(β)), then
(rescaling’) implies that (ψνgb(β))

−1 ◦ ψνgb(α) converges to z̃gb(β)gb(α)
u.c.s. away from z̃gb(α)gb(β), hence by (45) (ψνgb(β) ◦ ξβ)−1 ◦ (ψνgb(α) ◦ ξα)

converges to ξ−1β (z̃gb(β)gb(α)) uniformly on (R2 ∪ {∞}) \Bε(zαβ). We
therefore have

d
(
ξ−1β (z̃gb(β)gb(α)), zβα

)
(50)

= lim
ν→∞

sup
(R2∪{∞})\Bε(zαβ)

d
(
(ψνgb(β) ◦ ξβ)−1 ◦ (ψνgb(α) ◦ ξα), zβα

)
.
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Similarly, it follows from (46) that if ρ, σ ∈ Vint(Ts) have gs(α) 6= gs(σ)
and fνs (gs(ρ)) = fνs (gs(σ)), we have

d
(
χ−1σ (z̃gs(σ)gs(ρ)), xσρ

)
(51)

= lim
ν→∞

sup
(R∪{∞})\Bε(xρσ)

d
(
(φνgs(σ) ◦ χσ)−1 ◦ (φνgs(ρ) ◦ χρ), xσρ

)
.

Finally, if α ∈ Vcomp(Tb) ∪ Vmark(Tb), β ∈ Vcomp(Tb) have fνb (gb(α)) 6=
fνb (gb(β)), then (special point’) implies the convergence of

(ψ̃νgb(β))
−1(zνfνb (gb(β))fνb (gb(α))

) to z̃gb(β)gb(α), hence

d
(
ξ−1β (z̃gb(β)gb(α)), zβα

)
= lim
ν→∞

d
(
(ψνgb(β) ◦ ξβ)−1(zνfνb (gb(β))fνb (gb(α))), zβα

)
.(52)

Similarly, if ρ ∈ V (Ts), σ ∈ Vint(Ts) have fνs (gs(ρ)) 6= fνs (gs(σ)), then
we have

d
(
χ−1σ (x̃gs(σ)gs(ρ)), xσρ

)
= lim
ν→∞

d
(
(φνgs(σ) ◦ χσ)−1(xνfνs (gs(σ))fνs (gs(ρ))), zσρ

)
.(53)

(48), (49),(50), (51), (52), and (53) together yield (47), by showing that
each term on the left-hand side of (47) is equal to a corresponding term
on the right-hand side. �

We now define the Grothendieck–Knudsen topology on 2Mn to be
U(C), where C are the Gromov-convergent sequences. Moreover, we equip
2Mn with the Wn-stratification defined by sending

(
2T, (xρ), (zα)

)
to 2T .

It is immediate from the definition of Gromov convergence that this map is
continuous with respect to the Alexandroff topology on Wn.

Proof of Thm. 1.1. It follows from Thm. 2.14 that Gromov-convergent se-
quences have unique limits. This, together with Rmk. 2.17 and Lemma 2.19,
imply that Gromov-convergent sequences satisfy the hypotheses of Lemma
2.15. This proves that convergence in the Grothendieck–Knudsen topol-
ogy on 2Mn is equivalent to Gromov convergence, and that 2Mn is first-
countable and Hausdorff.

The rest of the proof of the topological properties of 2Mn hinges on
showing that 2Mn is second-countable, just as the analogous result forMr

depends similarly on showing that Mr is second-countable. The proof of
this result for Mr in §5, [McDSa] contains a gap; McDuff–Salamon have
communicated to the author a fix, which they intend to include in future
editions of [McDSa]. This fix applies equally well to the current proof.
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Finally, we observe that the forgetful map Wn → Kr extends to a map
2Mn →Mr, sending

(
2T, (xρ), (zα)

)
to
(
Ts, (xρ)

)
. This map sends Gromov-

convergent sequences to Gromov-convergent sequences, and 2Mn is first-
countable, so this map is continuous. �
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