# On $L_{2}$-cohomology of almost Hermitian manifolds 

Richard Hind and Adriano Tomassini


#### Abstract

We prove two results regarding the $L_{2}$ cohomology of almostcomplex manifolds. First we show that there exist complete, $d$ bounded almost Kähler manifolds of any complex dimension $n \geq 2$ such that the space of harmonic 1-forms in $L_{2}$ has infinite dimension. By contrast a theorem of Gromov [6] states that a complete $d$-bounded Kähler manifold $X$ has no nontrivial harmonic forms of degree different from $n=\operatorname{dim}_{\mathbb{C}} X$. Second let $(X, J, g)$ be a complete almost Hermitian manifold of dimension four. We prove that the reduced $L_{2} 2^{\text {nd }}$-cohomology group decomposes as direct sum of the closure of the invariant and anti-invariant $L_{2}$-cohomology. This generalizes a decomposition theorem by Drăghici, Li and Zhang [4] for 4 -dimensional closed almost complex manifolds to the $L_{2}{ }^{-}$ setting.


## 1. Introduction

Cohomological properties of closed complex manifolds have recently been studied by many authors, focusing on their relations with other special structures (see e.g. [1, 4, 9] and the references therein). The aim of this paper is to study cohomological properties of non compact almost complex manifolds. In this context, $L_{2}$-cohomology provides a useful tool to study the relationship between such properties and the existence of further structures, e.g., Kähler, almost Kähler structures.

In [6] Gromov developed $L_{2}$-Hodge theory for complete Riemannian manifolds, respectively Kähler manifolds, proving an $L_{2}$-Hodge decomposition Theorem for $L_{2}$-forms.

The first author is partially supported by Simons Foundation grant \# 317510. The second author is partially supported by the Project PRIN "Varietà reali e complesse: geometria, topologia e analisi armonica", Project PRIN 2017 "Real and Complex Manifolds: Topology, Geometry and holomorphic dynamics" and by GNSAGA of INdAM

As a consequence, for a complete and $d$-bounded Kähler manifold $X$, denoting by $\mathcal{H}_{2}^{k}$, respectively $\mathcal{H}_{2}^{p, q}$, the space of $\Delta$-harmonic $L_{2}$-forms of degree $k$, respectively $\Delta_{\bar{\partial}}$-harmonic $L_{2}$-forms of bi-degree $(p, q)$, he showed that $\mathcal{H}_{2}^{k} \simeq \oplus_{p+q=k} \mathcal{H}_{2}^{p, q} ;$ furthermore, denoting by $m=\operatorname{dim}_{\mathbb{C}} X$, that $\mathcal{H}_{2}^{k}=\{0\}$, for all $k \neq m$ and hence $\mathcal{H}_{2}^{p, q}=\{0\}$, for all $(p, q)$ such that $p+q \neq m$. A key ingredient in the proof is the Hard Lefschetz Theorem.

In the present paper we show that such a conclusion no longer holds in the category of non compact almost Kähler manifolds. Indeed, by using methods of contact geometry, starting with a contact manifold ( $M, \alpha$ ) having an exact symplectic filling (see Definition 3.1), we construct a $d$-bounded complete almost Kähler manifold $Y$ satisfying $L_{2} H^{1}(Y) \neq\{0\}$. More precisely, we prove the following main result (see Theorem 3.9).

Theorem. There exist d-bounded, complete almost Kähler manifolds $Y$ of every real dimension $2 n \geq 4$ with $L_{2} H^{1}(Y)$ infinite dimensional.

Next we focus on $L_{2}$-cohomology of almost complex 4-dimensional manifolds. In the closed case a theorem of Drăghici, Li and Zhang [4] states that the $2^{n d}$-de Rahm cohomology group decomposes as the direct sum of $J$ invariant and $J$-anti-invariant cohomology subgroups, which can be viewed as a sort of $L_{2}$-Hodge decomposition theorem for almost complex manifolds. We generalize this to $L_{2}$ cohomology defined with respect to a complete Hermitian metric, see Theorem 4.8.

Theorem. Let $(X, J, g)$ be a complete almost Hermitian 4-dimensional manifold. Then,

$$
L_{2} H^{2}(X ; \mathbb{R})=\overline{L_{2} H^{+}(X)} \oplus \overline{L_{2} H^{-}(X)}
$$

The paper is organized as follows: in Section 2 we recall some generalities regarding $L_{2}$-cohomology. Section 3 is devoted to the proof of non vanishing of the first $L_{2}$-cohomology group. In Section 4 we prove the decomposition Theorem 4.8 and also give cohomological obstructions for an almost complex structure to admit a compatible complete symplectic form.
Finally, we would like mention an open question. An almost-complex manifold of dimension at least 6 may have a taming symplectic form but not a compatible symplectic form (see e.g., [8]). For closed 4-dimensional manifolds however, there are no local obstructions and Donaldson in [2] raised the following question:

Donaldson's Question([2])If $J$ is an almost complex structure on a compact 4-manifold which is tamed by a symplectic form, is there a symplectic form compatible with J?

Moving to the complex case, it is still unknown whether a closed complex manifold $X$ of dimension at least 6 with a taming symplectic form also has a compatible symplectic form, in other words, whether it is Kähler. Such a question has a positive answer by Li and Zhang for complex surfaces [9, Theorem 1.2]. Here is an analogue of the question for open manifolds.
Question. Let $(X, J)$ be a complex $2 n$-dimensional manifold. Suppose there exists a d-bounded symplectic form $\omega$ taming $J$ such that $g(\cdot, \cdot)=\frac{1}{2}(\omega(\cdot, J \cdot)-$ $\omega(J \cdot, \cdot))$ is complete. Does $(X, J)$ admit a complete d-bounded Kähler structure whose corresponding metric is uniformly comparable to $g$ ?

Our construction in section 3 gives $d$-bounded complete almost complex manifolds $Y$ which admit a compatible symplectic form and corresponding complete metric satisfying $L_{2} H^{1}(Y ; \mathbb{R}) \neq\{0\}$. If our construction could be upgraded to give examples of (integrable) complex manifolds which still admit a taming symplectic form with corresponding complete metric and satisfy $L_{2} H^{1}(Y ; \mathbb{R}) \neq\{0\}$ then by Gromov's theorem there could not be a compatible Kähler structure with comparable metric, thus implying a negative answer.

Acknowledgments. We thank Weiyi Zhang for useful comments. We are also pleased to thank the referee for fruitful suggestions and remarks leading to a better presentation of the results. The second author would like to thank the Math Departments of Stanford and Notre Dame Universities for their warm hospitality.

## 2. Preliminaries

We start by recalling some notions about $L_{2}$-cohomology. Let $(X, g)$ be a Riemannian manifold and denote by $\Omega^{k}(X)$ the space of smooth $k$-forms on $X$. Then $\alpha \in \Omega^{k}(X)$ is said to be bounded if the $L_{\infty}$-norm of $\alpha$ is finite, namely,

$$
\|\alpha\|_{L_{\infty}(X)}=\sup _{x \in X}|\alpha(x)|<+\infty
$$

where $|\alpha(x)|$ denotes the pointwise norm induced by the metric $g$ on the space of forms. By definition, a (smooth) $k$-form $\alpha$ is said to be $d$-bounded if $\alpha=d \beta$, where $\beta$ is a bounded $(k-1)$-form. Furthermore, a $k$-form $\alpha$ is said to be $L_{2}$, namely $\alpha \in L_{2} \Omega^{k}(X)$ if

$$
\|\alpha\|_{L_{2}(X)}:=\left(\int_{X}|\alpha(x)|^{2} d x\right)^{\frac{1}{2}}<+\infty
$$

that is the pointwise norm $|\alpha|^{2}$ is integrable. Denote by $\left(L_{2} A^{\bullet}(X), d\right)$ the sub-complex of $\left(\Omega^{\bullet}(X), d\right)$ formed by differential forms $\alpha$ such that both $\alpha$ and $d \alpha$ are in $L_{2}$. Then the reduced $L_{2}$-cohomology group of degree $k$ of $X$ is defined as

$$
L_{2} H^{k}(X ; \mathbb{R})=L_{2} A^{k}(X) \cap \operatorname{ker} d / \overline{d L_{2}\left(A^{k-1}(X)\right)}
$$

We recall the following (see [6, Lemma 1.1.A])
Lemma 2.1. Let $(X, g)$ be a complete Riemannian manifold of dimension $n$ and let $\alpha \in L_{1} \Omega^{n-1}(X)$, that is

$$
\int_{X}|\alpha(x)| d x<+\infty
$$

Assume that also $d \alpha \in L_{1} \Omega^{n}(X)$. Then

$$
\int_{X} d \alpha=0
$$

Let $\Delta=d \delta+\delta d$ denote the Hodge Laplacian and set

$$
\mathcal{H}_{2}^{k}=\left\{\alpha \in L_{2} \Omega^{k}(X) \mid \Delta \alpha=0\right\}
$$

namely, $\mathcal{H}_{2}^{k}$ is the space of harmonic $L_{2}$-forms on $(X, g)$ of degree $k$. Then, under the assumption that $(X, g)$ is complete, Gromov proved the following Hodge decomposition for $L_{2}$-forms (see [6]), namely,

$$
\begin{equation*}
L_{2} \Omega^{k}(X)=\mathcal{H}_{2}^{k} \oplus \overline{d\left(L_{2} \Omega^{k-1}(X)\right)} \oplus \overline{\delta\left(L_{2} \Omega^{k+1}(X)\right)} \tag{1}
\end{equation*}
$$

where $\overline{d\left(L_{2} \Omega^{k-1}(X)\right)}$ means the closure in $L_{2} \Omega^{k}(X)$ of

$$
L_{2} \Omega^{k}(X) \cap d\left(L_{2} \Omega^{k-1}(X)\right)
$$

and similarly for $\overline{\delta\left(L_{2}\left(\Omega^{k+1}(X)\right)\right.}$. Given any $\alpha, \beta \in \Omega^{k}(X)$, we set

$$
\langle\alpha, \beta\rangle=\int_{X} g(\alpha, \beta) d x
$$

We have the following

Lemma 2.2. Let $(X, g)$ be a complete Riemannian manifold and let $\alpha \in$ $L_{2} \Omega^{k}(X)$. Denote by

$$
\alpha=\alpha_{H}+\lambda+\mu
$$

the Hodge decomposition of $\alpha$, where

$$
\alpha_{H} \in \mathcal{H}_{2}^{k}, \quad \lambda \in \overline{d\left(L_{2} \Omega^{k-1}(X)\right)}, \quad \mu \in \overline{\delta\left(L_{2} \Omega^{k+1}(X)\right)}
$$

Then
i) $d \lambda=0$.
ii) If $d \alpha=0$, then $\mu=0$.

Proof. i) Let $\lambda$ be a smooth $k$-form. First of all note that $d \lambda=0$ if and only if for every compactly supported $(k+1)$-form $\varphi$ we have $\langle\lambda, \delta \varphi\rangle=0$.
Let $\left\{d \lambda_{j}\right\}_{j \in \mathbb{N}}$ be a sequence of $d$-exact forms in $L_{2} \Omega^{k}(X)$ such that $\lambda_{j} \in$ $L_{2} \Omega^{k-1}(X)$ for every $j \in \mathbb{N}$ and $d \lambda_{j} \rightarrow \lambda$ in $L_{2}$. Then

$$
\langle\lambda, \delta \varphi\rangle=\lim _{j \rightarrow \infty}\left\langle d \lambda_{j}, \delta \varphi\right\rangle=0
$$

since $\delta$ is the adjoint of $d$.
ii) Let $\left\{\delta \mu_{j}\right\}_{j \in \mathbb{N}}$ be a sequence of $\delta$-exact forms in $L_{2} \Omega^{k}(X)$ such that $\mu_{j} \in$ $L_{2} \Omega^{k+1}(X)$ for every $j \in \mathbb{N}$ and $\delta \mu_{j} \rightarrow \mu$ in $L_{2}$. Then, by Lemma 2.1, we obtain

$$
\left\langle\alpha, \delta \mu_{j}\right\rangle=\left\langle d \alpha, \mu_{j}\right\rangle=0
$$

Now

$$
\begin{aligned}
\left|\langle\alpha, \mu\rangle-\left\langle\alpha, \delta \mu_{j}\right\rangle\right| & =\left|\int_{X} g\left(\alpha, \mu-\delta \mu_{j}\right) d x\right| \leq \int_{X}|\alpha|\left|\mu-\delta \mu_{j}\right| d x \\
& \leq\|\alpha\|_{L_{2}(X)}\left\|\mu-\delta \mu_{j}\right\|_{L_{2}(X)}
\end{aligned}
$$

Hence, the sequence $\left\{\left\langle\alpha, \delta \mu_{j}\right\rangle\right\}_{j \in \mathbb{N}}$ converges to $\langle\alpha, \mu\rangle$. and consequenltly, $\langle\alpha, \mu\rangle=0$. Therefore, by the $L_{2}$-orthogonality of the $L_{2}$-Hodge decomposition, it follows that $\mu=0$.

## 3. $L_{2}$-cohomology and contact structures

Let now $(X, J)$ be a complex manifold and $g$ be a Hermitian metric. Then according to Gromov [6, 1.2.B], if $X$ is a complete $n$-dimensional Kähler manifold whose Kähler form $\omega$ is $d$-bounded, then $\mathcal{H}_{2}^{k}=\{0\}$, unless $k=\frac{n}{2}$.

In this section we will see that the same conclusion does not hold in the category of almost Kähler manifolds.

To begin, let $M$ be a $(2 n-1)$-dimensional compact contact manifold, $n>1$ and denote by $\alpha$ a contact form. Let $\xi=\operatorname{ker} \alpha$ be the contact distribution and $R$ be the Reeb vector field.
On the product manifold $X=M \times(3,+\infty)$, with $t$ the coordinate on $(3, \infty)$, let $\rho=\rho(t)$ be a positive smooth function, such that $\rho^{\prime}>0$ and let $\omega_{\rho}=$ $d(\rho \alpha)$. Then $\omega_{\rho}$ is a symplectic form on $X$.

Definition 3.1. We say that a contact manifold $M$ with contact form $\alpha$ has an exact symplectic filling if there exists a compact exact symplectic manifold $(W, \omega=d \lambda)$ with $\partial W=M$ and $\left.\lambda\right|_{M}=\alpha$. Furthermore we require the Liouville field $\zeta$ defined by $\zeta\rfloor \omega=\lambda$ to be outward pointing along $M$.

We remark that if a particular contact form on $M$ has an exact symplectic filling then so do all other contact forms which generate the same contact structure, that is, all $\alpha^{\prime}$ such that $\operatorname{ker} \alpha^{\prime}=\operatorname{ker} \alpha$.

A version of Darboux' Theorem implies that a tubular neighborhood of $M=\partial W$ in $W$ can be identified symplectically with $\left(M \times(-\delta, 0], d\left(e^{t} \alpha\right)\right)$, and we may choose a primitive on $W$ equal to $e^{t} \alpha$ in this neighborhood.

Proposition 3.2. Suppose that $(M, \alpha)$ has an exact symplectic filling and $\rho(3)>1$. Then there exists an exact symplectic manifold $(Y, \omega=d \beta)$ such that the complement of a compact set may be identified with $X=M \times$ $(3,+\infty)$ via a diffeomorphism pulling back $\rho \alpha$ to $\beta$.

Proof. We set $Y=W \cup(M \times(-\delta, \infty))$ where we identify $M \times(-\delta, 0]$ with a tubular neighborhood of $M=\partial W$ as above. Then define $\left.\beta\right|_{W}=\lambda$ and $\left.\beta\right|_{M \times(0, \infty)}=\rho(t) \alpha$ where $\rho$ is extended to $(-\delta,+\infty)$ such that $\rho=e^{t}$ for $t$ close to 0 and $\rho^{\prime}>0$ for all $t>0$.

Remark 3.3. We note that if $\rho \alpha$ is bounded (with respect to a choice of metric) on $M \times[3,+\infty) \subset Y$ then it is globally bounded; any compatible almost complex structure on $M \times[3,+\infty)$ extends to a compatible almost complex structure on $Y$; any exact 1 -form $\gamma$ on $M \times[3,+\infty)$ extends to an exact 1-form on $Y$, and if $\gamma$ lies in $L_{2}$ then so does its extension.

Suppose the contact form has a closed Reeb orbit and we can choose coordinates $\left(x_{i}, y_{i}, z\right) \in \mathbb{R}^{2(n-1)} \times \mathbb{R} / \mathbb{Z}$ in a tubular neighborhood of the orbit such that the contact form is given by $\alpha=d z+\frac{1}{2}\left(\sum_{i=1}^{n-1} x_{i} d y_{i}-y_{i} d x_{i}\right)$.

Hence the Reeb vector field $R=\frac{\partial}{\partial z}$. Set

$$
\begin{aligned}
r^{2} & =\sum_{i=1}^{n-1} x_{i}^{2}+y_{i}^{2}, \quad U=\frac{\partial}{\partial r^{2}}=2 \sum_{i=1}^{n-1}\left(x_{i} \frac{\partial}{\partial x_{i}}+y_{i} \frac{\partial}{\partial y_{i}}\right) \\
V & =\sum_{i=1}^{n-1}\left(-y_{i} \frac{\partial}{\partial x_{i}}+x_{i} \frac{\partial}{\partial y_{i}}\right)+\frac{1}{2} r^{2} \frac{\partial}{\partial z}
\end{aligned}
$$

Observe that the vector fields $U, V \in \xi=\operatorname{ker} \alpha$. Then define $\xi^{\prime} \subset \xi$ by

$$
\xi^{\prime}=\langle U, V\rangle^{\perp d \alpha}
$$

the symplectic orthogonal complement of the span of $U$ and $V$ in $\xi$ with respect to $d \alpha$. Accordingly, we have a direct sum decomposition

$$
\begin{equation*}
T X=\langle R\rangle \oplus\left\langle\frac{d}{d t}\right\rangle \oplus\langle U\rangle \oplus\langle V\rangle \oplus \xi^{\prime} \tag{2}
\end{equation*}
$$

We will call an almost complex structure $J$ on $X$ adapted to the local coordinates, if there exist smooth functions $f, \varepsilon:(3,+\infty) \rightarrow(0,+\infty)$ such that

$$
J \frac{d}{d t}=f R, \quad J R=-\frac{1}{f} \frac{d}{d t}, \quad J(\xi)=\xi
$$

on $T X$. Further, on a subset $A<r^{2}<B$, we have in addition

$$
J U=\frac{1}{\varepsilon} V, \quad J V=-\varepsilon U, \quad J \xi^{\prime}=\xi^{\prime}
$$

We will denote by $g_{J, \rho}$ the Riemannian metric associated with $\left(\omega_{\rho}, J\right)$, that is $g_{J, \rho}(\cdot, \cdot)=\omega_{\rho}(\cdot, J \cdot)$. Note that the direct sum (2) is an orthogonal decomposition with respect to $g_{J, \rho}$.

Theorem 3.4. Let $\rho(t)=\log t, \varepsilon(t)=\rho(t) t^{1-n}$ and $f(t)=\frac{1}{t \log ^{2} t}$. Then $\left(X, \omega_{\rho}, J\right)$ is an almost Kähler manifold, and if $(M, \alpha)$ has an exact symplectic filling then the structure extends to $Y$. Further:
i) $\omega_{\rho}$ is d-bounded.
ii) $\left(Y, \omega_{\rho}, J, g_{J, \rho}\right)$ is complete.
iii) Let $b=b\left(r^{2}\right)$ be a smooth function satisfying $b^{\prime}=0$ if $r^{2} \notin(A, B)$. Set $\gamma=d b$. Then $\gamma \in L_{2} \Omega^{1}(X)$. Moreover, $\gamma \in \overline{\overline{d L_{2}\left(\mathcal{C}^{\infty}(X)\right)}}$ only if $\gamma=0$. The 1-form $\gamma$ extends to a 1-form on $Y$ and the conclusions hold for the extension.

For the proof of Theorem 3.4, we will need the following general
Lemma 3.5. Let $(Z, g)$ be a Riemannian manifold and let $\gamma \in L_{2} \Omega^{k}(Z)$, $\gamma \neq 0$. Let $\left\{d \varphi_{j}\right\}_{j \in \mathbb{N}}$ be a sequence in $d\left(L_{2} \Omega^{k-1}(Z)\right) \cap L_{2} \Omega^{k}(Z)$ such that $d \varphi_{j} \rightarrow \gamma$ in $L_{2}$. Then, for all $j \gg 1$,

$$
\left\|\varphi_{j}\right\|_{L_{2}(Z)} \geq C(\gamma)
$$

for a suitable positive constant $C(\gamma)$.
Proof. Since $\gamma \neq 0$ there exists a bump function $a$ such that $\langle\gamma, a \gamma\rangle>0$. We have:

$$
\begin{aligned}
\langle\gamma, a \gamma\rangle-\left\langle d \varphi_{j}, a \gamma\right\rangle & =\left\langle\gamma-d \varphi_{j}, a \gamma\right\rangle=\int_{Z} g\left(\gamma-d \varphi_{j}, a \gamma\right) d x \\
& \leq \int_{Z}\left|\gamma-d \varphi_{j}\|a \gamma \mid d x \leq\| \gamma-d \varphi_{j}\left\|_{L_{2}(Z)}\right\| a \gamma \|_{L_{2}(Z)}\right.
\end{aligned}
$$

Set

$$
C_{j}=\left\|\gamma-d \varphi_{j}\right\|_{L_{2}(Z)}\|a \gamma\|_{L_{2}(Z)}
$$

Note that $C_{j} \rightarrow 0$ for $j \rightarrow+\infty$. We obtain

$$
\langle\gamma, a \gamma\rangle-C_{j} \leq\left\langle d \varphi_{j}, a \gamma\right\rangle=\left\langle\varphi_{j}, \delta(a \gamma)\right\rangle \leq\left\|\varphi_{j}\right\|_{L_{2}(Z)}\|\delta(a \gamma)\|_{L_{2}(Z)}
$$

For $j$ large the left hand side is positive, hence $\|\delta(a \gamma)\|_{L_{2}(Z)}>0$ and therefore setting

$$
C(\gamma)=\frac{\langle\gamma, a \gamma\rangle}{2\|\delta(a \gamma)\|_{L_{2}(Z)}}
$$

we get

$$
\left\|\varphi_{j}\right\|_{L_{2}(Z)} \geq C(\gamma)>0
$$

We give now the proof of Theorem 3.4
Proof of Theorem 3.4. By Remark 3.3 it suffices to work on $X$. By construction, $J$ is an almost complex structure on $X$ which is compatible with $\omega_{\rho}$. Therefore, $g_{J, \rho}(\cdot, \cdot)=\omega_{\rho}(\cdot, J \cdot)$ is a Riemannian metric on $X$ and
$\left(X, \omega_{\rho}, J, g_{J, \rho}\right)$ is an almost Kähler manifold. Then

$$
\omega_{\rho}^{n}=2 \rho^{\prime} \rho^{n-1} d t \wedge \alpha \wedge(d \alpha)^{n-1}
$$

is a volume form on $X$ and $\operatorname{Vol}_{M}=2 \alpha \wedge(d \alpha)^{n-1}$ is a volume form on the compact contact manifold $M$, so that

$$
\omega_{\rho}^{n}=\rho^{\prime} \rho^{n-1} d t \wedge \mathrm{Vol}_{M}
$$

i) By assumption, $\omega=d(\rho \alpha)=d \lambda$, where $\lambda=\rho \alpha$; by definition $\omega_{\rho}$ is $d$ bounded if $\lambda \in L_{\infty}(X)$. Recalling that $J R=-\frac{1}{f} \frac{d}{d t}$, we have,

$$
|R|^{2}=\omega_{\rho}(R, J R)=-\omega_{\rho}\left(R, \frac{1}{f} \frac{d}{d t}\right)=\frac{\rho^{\prime}}{f}
$$

Since $J$ preserves the contact distribution $\xi$, we see that $\alpha$ is dual to $\frac{f}{\rho^{\prime}} R$ with respect to $g_{J, \rho}$. Therefore $|\lambda|^{2}=\rho^{2} \frac{f}{\rho^{\prime}}$. Hence $\lambda \in L_{\infty}(X)$ if and only if

$$
\begin{equation*}
f \leq C \frac{\rho^{\prime}}{\rho^{2}} \tag{3}
\end{equation*}
$$

where $C$ is a positive constant. By our assumptions,

$$
\rho=\log t, \quad f=\frac{1}{t \log ^{2} t},
$$

so that (3) is satisfied.
ii) In order to check completeness of $\left(Y, \omega_{\rho}, J\right)$ it is enough to estimate $\int_{3}^{+\infty}\left|\frac{d}{d t}\right| d t$. We obtain:

$$
\left|\frac{d}{d t}\right|^{2}=\omega_{\rho}\left(\frac{d}{d t}, J \frac{d}{d t}\right)=\omega_{\rho}\left(\frac{d}{d t}, f R\right)=f \rho^{\prime}
$$

Therefore,

$$
\int_{3}^{+\infty}\left|\frac{d}{d t}\right|=\int_{3}^{+\infty} \sqrt{\rho^{\prime} f} d t=+\infty
$$

that is $\left(Y, \omega_{\rho}, J_{\varepsilon, f}, g_{\varepsilon, f, \rho}\right)$ is complete.
iii) First of all we check that $\gamma \in L_{2} \Omega^{1}(X)$. We have the pointwise estimate valid on the support of $\gamma$ :

$$
|\gamma|^{2}=b^{\prime 2}\left|d r^{2}\right|^{2}=b^{2} \frac{\left(d r^{2}(U)\right)^{2}}{|U|^{2}}
$$

since $d r^{2}$ vanishes on the orthogonal complement of $\langle U\rangle$ in the decomposition (2), indeed, $d r^{2}=-2 V\lfloor d \alpha$. Therefore,

$$
|\gamma|^{2}=b^{\prime 2} \frac{\left(d r^{2}(U)\right)^{2}}{|U|^{2}} \leq\left\|b^{\prime}\right\|_{L_{\infty}}^{2} \frac{\varepsilon}{2 \rho A}
$$

since

$$
|U|^{2}=\omega(U, J U)=\frac{1}{\epsilon} \omega(U, V)=\frac{2 \rho r^{2}}{\epsilon}
$$

Therefore, as $\varepsilon=\rho t^{1-n}$, for suitable constants $c_{1}, c_{2}$ we get:

$$
\begin{aligned}
\|\gamma\|_{L_{2}(X)}^{2} \leq c_{1} \int_{X} \frac{\varepsilon}{\rho} \omega_{\rho}^{n} & =c_{1} \int_{X} t^{1-n} \rho^{n-1} \rho^{\prime} d t \wedge \operatorname{Vol}_{M} \\
& =c_{2} \int_{3}^{+\infty} \frac{\log ^{n-1} t}{t^{n}} d t<+\infty
\end{aligned}
$$

Let $\gamma \neq 0$. We show that $\gamma \notin \overline{d L_{2}\left(\mathcal{C}^{\infty}(X)\right)}$.
By contradiction: assume that there exists a sequence $\left\{\varphi_{j}\right\}_{j \in \mathbb{N}}$ in $L_{2}\left(\mathcal{C}^{\infty}(X)\right)$ such that $d \varphi_{j} \in L^{2} \Omega^{1}(X)$ for every $j \in \mathbb{N}$ and $d \varphi_{j} \rightarrow \gamma$ in $L_{2} \Omega^{1}(X)$. Set $\gamma_{j}=d \varphi_{j}$. We also write

$$
f_{j}(t):=\int_{M \times\{t\}}\left(\varphi_{j}\right)^{2} \operatorname{Vol}_{M}
$$

Then

$$
\begin{aligned}
\left\|\varphi_{j}\right\|_{L_{2}(M \times[a, b])}^{2} & =\int_{a}^{b} \frac{(\log t)^{n-1}}{t} d t \int_{M \times\{t\}}\left(\varphi_{j}\right)^{2} \mathrm{Vol}_{M} \\
& =\int_{a}^{b} \frac{(\log t)^{n-1}}{t} f_{j}(t) d t
\end{aligned}
$$

We will show that $f_{j}(t)$ is bounded away from 0 for large $j$, contradicting the assumption that $\varphi_{j} \in L_{2}\left(\mathcal{C}^{\infty}(X)\right)$. First, for the pointwise norm of $\gamma$,
since $\gamma\left(\frac{d}{d t}\right)=0$, we have the estimate:

$$
\begin{align*}
\left|\gamma_{j}\left(\frac{d}{d t}\right)\right| & =\left|\left(\gamma_{j}-\gamma\right)\left(\frac{d}{d t}\right)\right|  \tag{4}\\
& \leq\left|\gamma-\gamma_{j}\right|\left|\frac{d}{d t}\right|=\left|\gamma-\gamma_{j}\right| \sqrt{f \rho^{\prime}}=\frac{1}{t \log t}\left|\gamma-\gamma_{j}\right|
\end{align*}
$$

Now

$$
f_{j}^{\prime}(t)=\int_{M \times\{t\}} 2 \varphi_{j} d \varphi_{j}\left(\frac{d}{d t}\right) \operatorname{Vol}_{M}=\int_{M \times\{t\}} 2 \varphi_{j} \gamma_{j}\left(\frac{d}{d t}\right) \operatorname{Vol}_{M}
$$

Therefore, by (4), setting

$$
\psi_{j}(t):=2\left\|\gamma-\gamma_{j}\right\|_{L_{2}(M \times\{t\})}
$$

we obtain:

$$
\begin{align*}
\left|f_{j}^{\prime}(t)\right| & \leq \int_{M \times\{t\}} 2\left|\varphi_{j}\right|\left|\gamma_{j}\left(\frac{d}{d t}\right)\right| \operatorname{Vol}_{M}  \tag{5}\\
& \leq \frac{2}{t \log t}\left\|\varphi_{j}\right\|_{L_{2}(M \times\{t\})}\left\|\gamma-\gamma_{j}\right\|_{L_{2}(M \times\{t\})} \\
& =\frac{1}{t \log t} \sqrt{f_{j}(t)} \psi_{j}(t)
\end{align*}
$$

From the last expression,
(6) $\left[\sqrt{f_{j}(t)}\right]_{a}^{b} \leq \frac{1}{2} \int_{a}^{b} \frac{1}{t \log t} \psi_{j}(t) d t$

$$
\begin{aligned}
& \leq \frac{1}{2}\left(\int_{a}^{b} \frac{1}{t(\log t)^{n+1}} d t\right)^{\frac{1}{2}}\left(\int_{a}^{b} \frac{(\log t)^{n-1}}{t} \psi_{j}^{2}(t) d t\right)^{\frac{1}{2}} \\
& =\frac{1}{2} \sqrt{\left[-\frac{1}{n(\log t)^{n}}\right]_{a}^{b}}\left(\int_{a}^{b} \frac{(\log t)^{n-1}}{t} \psi_{j}^{2}(t) d t\right)^{\frac{1}{2}}
\end{aligned}
$$

Now, by definition,
(7)

$$
\begin{aligned}
\int_{a}^{b} \frac{(\log t)^{n-1}}{t} \psi_{j}^{2}(t) d t & =4 \int_{a}^{b}\left(\int_{M \times\{t\}}\left|\gamma-\gamma_{j}\right|^{2} \operatorname{Vol}_{M}\right) \frac{(\log t)^{n-1}}{t} d t \\
& \leq 4\left\|\gamma-\gamma_{j}\right\|_{L_{2}(X)}^{2}
\end{aligned}
$$

In view of (6) and (7), we obtain

$$
\begin{equation*}
\sqrt{f_{j}(b)}-\sqrt{f_{j}(a)} \leq 2 \sqrt{\frac{1}{n(\log a)^{n}}-\frac{1}{n(\log b)^{n}}}\left\|\gamma-\gamma_{j}\right\|_{L_{2}(X)} \tag{8}
\end{equation*}
$$

By assumption, $d \varphi_{j} \rightarrow \gamma$ in $L_{2}(X)$, and consequently $d \varphi_{j} \rightarrow \gamma$ also in $L_{2}(M \times[3,3+\delta])$. By Lemma 3.5, it follows that there exists a constant $C(\gamma, \delta)$ such that that

$$
\left\|\varphi_{j}\right\|_{L_{2}(M \times[3,3+\delta])}^{2} \geq C(\gamma, \delta)
$$

for all $j \gg 1$, where $C(\gamma, \delta)>0$ is independent of $j$, that is

$$
C(\gamma, \delta) \leq \int_{3}^{3+\delta} \frac{(\log t)^{n-1}}{t} f_{j}(t) d t
$$

But

$$
\int_{3}^{3+\delta} \frac{(\log t)^{n-1}}{t} f_{j}(t) d t \leq \sup _{3 \leq t \leq 3+\delta}\left|f_{j}(t)\right| \int_{3}^{3+\delta} \frac{(\log t)^{n-1}}{t} d t
$$

which implies

$$
\sup _{3 \leq t \leq 3+\delta}\left|f_{j}(t)\right| \geq \frac{n C(\gamma, \delta)}{(\log (3+\delta))^{n}-(\log 3)^{n}}
$$

Therefore, for all large $j$ there exists a $t \in[3,3+\epsilon]$ such that

$$
f_{j}(t) \geq \frac{n C(\gamma, \delta) / 2}{(\log (3+\delta))^{n}-(\log 3)^{n}}
$$

and we note that the lower bound is independent of $j$. By (8), this implies that $f_{j}(t)$ is bounded below for large $j$ and all $t$, since $\gamma_{j} \rightarrow \gamma$ in $L_{2}(X)$. This gives our contradiction as required.

Corollary 3.6. Let $\left(Y, \omega_{\rho}, J, g_{J, \rho}\right)$ be an almost Kähler structure adapted to a contact form $\alpha$ as above. Then for $\gamma, \varepsilon, f$ as in Theorem 3.4 we have

$$
L_{2} H^{1}(Y ; \mathbb{R}) \neq\{0\}
$$

Proof. Let $\gamma$ be a non-zero exact 1-form on $M$ satisfying the hypothesis iii) of Theorem 3.4. Then the pull-back of $\gamma$ to $X$ extends to a 1-form on $Y$, still denoted by $\gamma$, such that $[\gamma] \neq 0$.

Corollary 3.7. Suppose $b_{1}\left(r^{2}\right), b_{2}\left(r^{2}\right), \ldots$ is an infinite family of linearly independent real valued smooth functions on $M$ such that $b_{1}^{\prime}=0, b_{2}^{\prime}=0, \ldots$ for $r^{2} \notin(A, B)$. Let $\gamma_{j}$ be an extension to $Y$ of the pull-back of $\gamma_{j}=d b_{j}$ to $X$. Then $\left(Y, \omega_{\rho}, J, g_{J, \rho}\right)$ is an almost Kähler structure and $L_{2} H^{1}(Y)$ is infinite dimensional.

Proof. Any finite linear combination $\sum_{j=1}^{r} c_{j} \gamma_{j}$, for $c_{i} \in \mathbb{R}, j=1, \ldots, r$ satisfies the assumptions of Corollary 3.6. Hence

$$
\sum_{j=1}^{r} c_{j}\left[\gamma_{j}\right] \neq 0
$$

Corollary 3.8. The almost complex structure $J$ is not integrable.
Proof. By [6, 1.2.B], complete $d$-bounded Kähler manifolds have $L_{2} H^{1}=$ $\{0\}$.

We collect the previous results in the following
Theorem 3.9. There exist d-bounded, complete almost Kähler manifolds $Y$ of every dimension $2 n \geq 4$ so that $L_{2} H^{1}(Y)$ is infinite dimensional.

## 4. $L_{2}$-Decomposition for almost complex 4-manifolds

Let $(X, J, g)$ be a 4 -dimensional almost Hermitian manifold. Then $J$ acts as an involution on the space of smooth 2 -forms $\Omega^{2}(X)$ : given $\alpha \in \Omega^{2}(X)$, for every pair of vector fields $u, v$ on $X$

$$
J \alpha(u, v)=\alpha(J u, J v)
$$

Therefore the bundle $\Lambda^{2} X$ splits as the direct sum of $\pm 1$-eigenspaces $\Lambda_{ \pm}$, i.e., $\Lambda^{2} X=\Lambda_{+} \oplus \Lambda_{-}$. We will refer to the sections of $\Lambda_{J}^{+}$, respectively $\Lambda_{J}^{-}$ as to the invariant respectively anti-invariant forms, denoted by $\Omega^{+}(X)$, respectively $\Omega^{-}(X)$. Let us denote by $L_{2} \mathcal{Z}(X)$ the space of closed 2-forms which are in $L_{2}$ and set

$$
L_{2} \mathcal{Z}^{ \pm}=L_{2} \mathcal{Z}(X) \cap \Omega^{ \pm}(X)
$$

Define

$$
L_{2} H^{ \pm}(X)=\left\{\mathfrak{a} \in L_{2} H^{2}(X ; \mathbb{R}) \mid \exists \alpha \in L_{2} \mathcal{Z}^{ \pm} \text {such that } \mathfrak{a}=[\alpha]\right\}
$$

We will assume that $g$ is a complete $J$-Hermitian metric on $X$ and we will denote by $\omega$ the corresponding fundamental form. Let $\Lambda_{g}^{ \pm}$be the $\pm 1$ eigenbundle of the $*$ Hodge operator associated with $g$. Then, we have the following relations

$$
\begin{equation*}
\Lambda_{J}^{+}=\operatorname{Span}_{\mathbb{R}}\langle\omega\rangle \oplus \Lambda_{g}^{-}, \quad \Lambda_{g}^{+}=\operatorname{Span}_{\mathbb{R}}\langle\omega\rangle \oplus \Lambda_{J}^{-} \tag{9}
\end{equation*}
$$

In general if $\alpha^{-}$is anti-invariant then

$$
\begin{equation*}
* \alpha^{-}=\alpha^{-} . \tag{10}
\end{equation*}
$$

Therefore,
Corollary 4.1. Closed anti-invariant forms are harmonic, that is, we have an inclusion $L_{2} \mathcal{Z}^{-} \hookrightarrow \mathcal{H}_{2}^{2}$. All anti-invariant forms are self-dual, while anti self-dual forms are invariant.

For closed almost complex 4-manifolds Drǎghici, Li and Zhang showed in [4] that there is a direct sum decomposition

$$
H_{d R}^{2}(X ; \mathbb{R})=H^{+}(X) \oplus H^{-}(X)
$$

In this section we generalize such a decomposition to the $L_{2}$ setting. The arguments follow closely those in 4].
First of all, by the $L_{2}$-Hodge decomposition and Lemma 2.2 the vector space $L_{2} H^{2}(X ; \mathbb{R})$ is isomorphic to the space $\mathcal{H}_{2}^{2}$ of $L_{2}$-harmonic forms on $X$, which is a topological subspace of the Hilbert space $L_{2} \Omega^{2}(X)$. The following lemma is well known.

Lemma 4.2. $\mathcal{H}_{2}^{2}$ is a closed subspace of $L_{2} \Omega^{2}(X)$, and hence inherits the structure of a Hilbert space.

Proof. We recall the proof for the sake of completeness. Let $\left\{\alpha_{j}\right\}_{j \in \mathbb{N}}$ be a sequence in $\mathcal{H}_{2}^{2}$ such that $\alpha_{j} \rightarrow \alpha$, for $j \rightarrow+\infty$ in $L_{2}$. Then, for every smooth compactly supported 2 -form $\varphi$ on $X$ we have:

$$
\langle\alpha, \delta \varphi\rangle=\lim _{j \rightarrow+\infty}\left\langle\alpha_{j}, \delta \varphi\right\rangle=0
$$

In the same way,

$$
\langle\alpha, d \varphi\rangle=\lim _{j \rightarrow+\infty}\left\langle\alpha_{j}, d \varphi\right\rangle=0,
$$

that is $\alpha$ is harmonic in the sense of distributions. Therefore, by elliptic regularity, $\alpha \in \mathcal{H}_{2}^{2}$.

Lemma 4.3. Let $\alpha \in L_{2} \Omega^{2}(X)$ be self-dual and let $\alpha=\alpha_{H}+\lambda+\mu$ be its $L_{2}$-Hodge decomposition (1). Then,

$$
\lambda_{g}^{s d}=\mu_{g}^{s d}, \quad \lambda_{g}^{a s d}=-\mu_{g}^{a s d}
$$

where $\lambda=\lambda_{g}^{s d}+\lambda_{g}^{\text {asd }}$ and $\mu=\mu_{g}^{s d}+\mu_{g}^{a s d}$ denote the $*$-decomposition. Furthermore, the forms

$$
\begin{equation*}
\alpha+2 \lambda_{g}^{a s d}=\alpha_{H}+2 \lambda . \tag{11}
\end{equation*}
$$

are closed.
Proof. By assumption $* \alpha=\alpha$. Hence, if

$$
\alpha=\alpha_{H}+\lambda+\mu,
$$

where $\lambda \in \overline{d\left(L_{2} \Omega^{1}(X)\right)}, \mu \in \overline{\delta\left(L_{2} \Omega^{3}(X)\right)}$ then,

$$
* \alpha=* \alpha_{H}+* \lambda+* \mu=\alpha_{H}+\lambda+\mu
$$

Now, if $\left\{\lambda_{j}\right\}_{j \in \mathbb{N}},\left\{\mu_{j}\right\}_{j \in \mathbb{N}}$ are sequences in $d\left(L_{2} \Omega^{1}(X)\right)$, respectively $\delta\left(L_{2} \Omega^{3}(X)\right)$ such that
$\lambda_{j}=d \lambda_{j}^{\prime}, \quad \mu_{j}=d \mu_{j}^{\prime}, \quad \lambda_{j} \in L_{2} \Omega^{1}(X), \mu_{j} \in L_{2} \Omega^{3}(X), \quad d \lambda_{j}^{\prime} \rightarrow \lambda, d \mu_{j}^{\prime} \rightarrow \mu$ in the $L_{2}$-norm, then

$$
\left\|\lambda_{j}-\lambda\right\|_{L_{2}(X)}=\left\|d \lambda_{j}^{\prime}-\lambda\right\|_{L_{2}(X)}=\left\|* d \lambda_{j}^{\prime}-* \lambda\right\|_{L_{2}(X)}
$$

so that $* d \lambda_{j}^{\prime} \rightarrow * \lambda$ in $L_{2}$ and, similarly, $* d \mu_{j}^{\prime} \rightarrow * \mu$. Therefore, since

$$
* d \lambda_{j}^{\prime} \in \delta\left(L_{2} \Omega^{3}(X)\right), \quad * \delta \mu_{j}^{\prime} \in d\left(L_{2} \Omega^{2}(X)\right)
$$

we obtain that

$$
* \lambda \in L_{2} \Omega^{2}(X), \quad * \mu \in L_{2} \Omega^{2}(X), \quad * \lambda \in \overline{\delta\left(L_{2} \Omega^{3}(X)\right.}, \quad * \mu \in \overline{d\left(L_{2} \Omega^{2}(X)\right.} .
$$

Therefore, by the uniqueness of the $L_{2}$-Hodge decomposition,

$$
* \lambda=\mu, \quad * \mu=\lambda .
$$

Then (11) follows. The form $\alpha_{H}+2 \lambda$ is closed since $\alpha_{H}$ is harmonic and $\lambda$ is closed by Lemma 2.2.

Lemma 4.4. The following holds

$$
\overline{L_{2} H^{+}(X)} \cap \overline{L_{2} H^{-}(X)}=\{0\}
$$

Proof. Let $\left\{\alpha_{i}\right\}_{i \in \mathbb{N}},\left\{\beta_{j}\right\}_{i \in \mathbb{N}}$ be sequences of harmonic forms in $L_{2} \Omega^{2}(X)$ with $\left[\alpha_{i}\right] \in L_{2} H^{+}(X)$ and $\left[\beta_{i}\right] \in L_{2} H^{-}(X)$ such that $\alpha_{i} \rightarrow \alpha$, for $i \rightarrow+\infty$ in $L_{2}$ and $\beta_{i} \rightarrow \alpha$, for $i \rightarrow+\infty$ in $L_{2}$. Then, using Lemma 2.2 and Corollary 4.1 we can write

$$
\alpha_{i}=\theta_{i}^{+}+\lambda_{i}, \quad \beta_{i}=\eta_{i}^{-}
$$

where $\theta_{i}^{+} \in L_{2} \mathcal{Z}^{+}, \eta_{i}^{-} \in L_{2} \mathcal{Z}^{-}, \lambda_{i} \in \overline{d L_{2}\left(\Omega^{1}(X)\right)}$. Then, as anti-invariant forms are self-dual we can use Lemma 2.1 to obtain

$$
0=\int_{X} \theta_{i}^{+} \wedge \eta_{i}^{-}=\int_{X} \theta_{i}^{+} \wedge * \eta_{i}^{-}=\int_{X} \alpha_{i} \wedge * \beta_{i}=\left\langle\alpha_{i}, \beta_{i}\right\rangle
$$

Taking a limit this implies

$$
\|\alpha\|_{L_{2}(X)}^{2}=0
$$

that is, $\overline{L_{2} H^{+}(X)} \cap \overline{L_{2} H^{-}(X)}=\{0\}$.

## Lemma 4.5.

$$
\left(L_{2} H^{+}(X) \oplus L_{2} H^{-}(X)\right)^{\perp}=\{0\}
$$

The orthogonal complement is defined by recalling that $L_{2} H^{ \pm}(X)$ can be thought of as subspaces of the Hilbert space $\mathcal{H}_{2}^{2}$.

Proof. By contradiction: assume that there exists $0 \neq[\alpha] \in L_{2} H^{2}(X ; \mathbb{R})$ such that, for every $\left[\theta^{+}\right]+\left[\theta^{-}\right] \in L_{2} H^{+}(X) \oplus L_{2} H^{-}(X)$,

$$
<\alpha, \theta^{+}+\theta^{-}>=0
$$

To compute the inner product we assume that $\alpha, \theta^{+}$and $\theta^{-}$are harmonic representatives. By taking $\theta^{+}$to be the anti self-dual part of $\alpha$ (which is invariant by Corollary 4.1) and $\theta^{-}=0$ we see immediately that the anti self-dual part of $\alpha$ must vanish, that is, $\alpha$ is self-dual. Therefore, by (9) we have

$$
\alpha=c \omega+\theta^{-}
$$

where $c$ is a function on $X$ such that $c \neq 0$ and $\theta^{-} \in \Omega^{-}(X)$.

Since $[\alpha] \notin L_{2} H^{-}(X)$ we may assume that there exists $x \in X$ such that $c(x)>0$. Let $a$ be a bump function and $W$ be a compact neighborhood of $x$ such that $\left.a\right|_{W}=1$ and

$$
\operatorname{supp} a \subset\{x \in X \mid c(x)>0\}
$$

Let $\Phi: X \rightarrow \mathbb{R}$ be defined as

$$
\Phi(x)=g(\alpha, a \omega)(x)
$$

Then

$$
\Phi(x)=g(\alpha, a \omega)(x)=g\left(c \omega+\theta^{-}, a \omega\right)(x)=c(x) a(x) \geq 0
$$

Now we apply Lemma 4.3 to the self-dual form $a \Phi \omega$. Let $\lambda$ be the exact part of the $L_{2}$ Hodge decomposition of $a \Phi \omega$. Then Lemma 4.3 gives

$$
(a \Phi \omega)_{H}+2 \lambda=a \Phi \omega+2 \lambda_{g}^{a s d} \in L_{2} H^{+}(X)
$$

Therefore, using Lemma 2.1, 2.2 and noting that self-dual and anti self-dual forms are pointwise $g$-orthogonal, we obtain

$$
\begin{aligned}
0 & =<\left(a \Phi \omega+2 \lambda_{g}^{a s d}\right)_{H}, \alpha>=\int_{X}\left(a \Phi \omega+2 \lambda_{g}^{a s d}\right) \wedge * \alpha \\
& =\int_{X} g(\alpha, a \Phi \omega)+2 g\left(\alpha, \lambda_{g}^{a s d}\right) \operatorname{Vol}_{X}=\int_{X} g(\alpha, a \Phi \omega) \operatorname{Vol}_{X}=\int_{X} \Phi^{2} \operatorname{Vol}_{X}
\end{aligned}
$$

Hence $\Phi=0$ and $c(x)=0$. This gives a contradiction.
Lemma 4.6. We have

$$
L_{2} H^{2}(X ; \mathbb{R})=\overline{L_{2} H^{+}(X) \oplus L_{2} H^{-}(X)}
$$

Proof.

$$
\overline{L_{2} H^{+}(X) \oplus L_{2} H^{-}(X)}=\left(\left(L_{2} H^{+}(X) \oplus L_{2} H^{-}(X)\right)^{\perp}\right)^{\perp}=\{0\}^{\perp}=\mathcal{H}_{2}^{2}
$$

using Lemma 4.5.
Lemma 4.7. The subspace $\overline{L_{2} H^{+}(X)} \oplus \overline{L_{2} H^{-}(X)}$ is closed in $L_{2} H^{2}(X ; \mathbb{R})$. Proof. As $\overline{L_{2} H^{+}(X)}$ and $\overline{L_{2} H^{-}(X)}$ are orthogonal, we can check that a sequence $\left\{\left(\alpha_{i}, \beta_{i}\right)\right\}$ in t he direct sum is Cauchy if and only if both $\left\{\alpha_{i}\right\}$ and $\left\{\beta_{i}\right\}$ are Cauchy.

Theorem 4.8. Let $(X, J, g)$ be a complete almost Hermitian 4-dimensional manifold. Then, we have the following decomposition

$$
L_{2} H^{2}(X ; \mathbb{R})=\overline{L_{2} H^{+}(X)} \oplus \overline{L_{2} H^{-}(X)}
$$

Proof. Indeed, by Lemma 4.7 the direct sum is closed and so by Lemma 4.6 contains $L_{2} H^{2}(X ; \mathbb{R})=\overline{L_{2} H^{+}(X) \oplus L_{2} H^{-}(X)}$.

Let now $J$ be an almost complex structure on a manifold $X$ of any dimension. The following Proposition provides a cohomological obstruction on $J$ in order that there exists a compatible symplectic form $\omega$ such that the associated Hermitian metric $g_{J}(\cdot, \cdot)=\omega(\cdot, J \cdot)$ is complete.

Proposition 4.9. Let $\left(X, J, \omega, g_{J}\right)$ be an almost Kähler manifold such that $g_{J}$ is complete. Then

$$
L_{2} H^{+}(X) \cap L_{2} H^{-}(X)=\{0\}
$$

Proof. Let $[\alpha] \in L_{2} H^{+}(X) \cap L_{2} H^{-}(X)$. Then, there exist $\alpha^{ \pm} \in L_{2} \mathcal{Z}^{ \pm}$such that

$$
\alpha=\alpha^{+}+\lambda, \quad \alpha=\alpha^{-}+\mu,
$$

where $\alpha^{ \pm} \in L_{2} \mathcal{Z}^{ \pm}$. Then

$$
\begin{equation*}
\alpha^{+}=\alpha^{-}+\eta \tag{12}
\end{equation*}
$$

where $\eta \in \overline{d\left(L_{2} A^{1}(X)\right)}$. Let $\left\{\eta_{j}\right\}_{j \in \mathbb{N}}$ be a sequence in $L_{2}(X)$ such that $\eta_{j}=$ $d \eta_{j}^{\prime}, \eta_{j}^{\prime} \in L_{2}(X)$ and $d \eta_{j}^{\prime} \rightarrow \eta$ in $L_{2}(X)$. Then, by bi-degree reasons,

$$
\begin{equation*}
\int_{X} \alpha^{+} \wedge \alpha^{-} \wedge \omega^{n-2}=0 \tag{13}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\int_{X} \eta \wedge \alpha^{-} \wedge \omega^{n-2}=0 \tag{14}
\end{equation*}
$$

Indeed,

$$
\begin{aligned}
& \left|\left\langle d \eta_{j}^{\prime} \wedge \alpha^{-}, * \omega^{n-2}\right\rangle-\left\langle\eta \wedge \alpha^{-}, * \omega^{n-2}\right\rangle\right| \\
\leq & \int_{X}\left|\left(d \eta_{j}^{\prime}-\eta\right) \wedge \alpha^{-}\right|\left|* \omega^{n-2}\right| \operatorname{Vol}_{X} \leq C \int_{X}\left|\left(d \eta_{j}^{\prime}-\eta\right) \| \alpha^{-}\right| \operatorname{Vol}_{X} \\
\leq & \left\|d \eta_{j}^{\prime}-\eta\right\|_{L_{2}(X)}\left\|\alpha^{-}\right\|_{L_{2}(X)}
\end{aligned}
$$

that is $\left\langle d \eta_{j}^{\prime} \wedge \alpha^{-}, * \omega^{n-2}\right\rangle \rightarrow\left\langle\eta \wedge \alpha^{-}, * \omega^{n-2}\right\rangle$, for $j \rightarrow+\infty$. On the other hand, by Lemma 2.1,

$$
0=\lim _{j \rightarrow \infty}\left\langle d \eta_{j}^{\prime} \wedge \alpha^{-}, * \omega^{n-2}\right\rangle=\int_{X} \eta \wedge \alpha^{-} \wedge \omega^{n-2}
$$

that is, (14). Therefore, by (10), (12) and (13) we have

$$
\begin{aligned}
0 & =\int_{X} \alpha^{+} \wedge \alpha^{-} \wedge \omega^{n-2} \\
& =\int_{X}\left(\alpha^{-}+\eta\right) \wedge \alpha^{-} \wedge \omega^{n-2}=\int_{X} \alpha^{-} \wedge \alpha^{-} \wedge \omega^{n-2} \\
& =(n-2)!\int_{X} \alpha^{-} \wedge * \alpha^{-}=(n-2)!\left\|\alpha^{-}\right\|_{L_{2}(X)}^{2}
\end{aligned}
$$

since given any $J$-anti-invariant form $\alpha^{-}$on a $2 n$-dimensional almost Hermitian manifold $X$, we have $* \alpha^{-}=\frac{1}{(n-2)!} \alpha^{-} \wedge \omega^{n-2}$. Hence $[\alpha]=0$.

Example 4.10. Let $\Delta^{2}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\left|<r_{1},\left|z_{2}\right|<r_{2}\right\}\right.$ be a polydisc in $\mathbb{C}^{2}$ endowed with the complete and $d$-bounded Kähler metric

$$
\omega=i \partial \bar{\partial} \sum_{j=1}^{2} \log \left(1-\left|z_{j}\right|^{2}\right)
$$

Then, the real $J$-anti-invariant forms

$$
\frac{1}{2}\left(d z_{1} \wedge d z_{2}+d \bar{z}_{1} \wedge d \bar{z}_{2}\right), \quad \frac{1}{2 i}\left(d z_{1} \wedge d z_{2}-d \bar{z}_{1} \wedge d \bar{z}_{2}\right)
$$

and the real $J$-invariant forms

$$
\frac{1}{2}\left(d z_{1} \wedge d \bar{z}_{2}+d \bar{z}_{1} \wedge d z_{2}\right), \quad \frac{1}{2 i}\left(d z_{1} \wedge d \bar{z}_{2}-d \bar{z}_{1} \wedge d z_{2}\right)
$$

are $L_{2}$-harmonic, so that $L_{2} H^{ \pm}\left(\Delta^{2}\right) \neq\{0\}$.
Remark 4.11. Notice that for the de Rham cohomology, Drăghici, Li and Zhang in [5, Theorem 3.24] constructed non-compact complex surfaces for which $H^{+}(M) \cap H^{-}(M) \neq\{0\}$.

## References

[1] D. Angella, A. Tomassini, and W. Zhang, On decomposablity of almostKähler structures, Proc. Amer. Math. Soc. 142 (2014), 3615-3630.
[2] S. K. Donaldson, Two-forms on four-manifolds and elliptic equations, Inspired by S. S. Chern, Nankai Tracts Math., Vol. 11, World Sci. Publ., Hackensack, NJ, (2006), pp. 153-172.
[3] H. Donnelly and C. Fefferman, $L^{2}$-cohomology and index theorem for the Bergman metric, Ann. of Math. 118 (1983), 593-618.
[4] T. Drăghici, T.-J. Li, and W. Zhang, Symplectic form and cohomology decomposition of almost complex four-manifolds, Int. Math. Res. Not. 2010 (2010), no. 1, 1-17.
[5] T. Drǎghici, T.-J. Li, and W. Zhang, On the J-anti-invariant cohomology of almost complex 4-manifolds, Q. J. Math. 64 (2013), 83-111.
[6] M. Gromov, Kähler hyperbolicity and $L_{2}$-Hodge theory, J. Differential Geom. 33 (1991), 263-292.
[7] R. Hind, C. Medori, and A. Tomassini, On taming and compatible symplectic forms, J. Geom. Anal. 25 (2015), 2360-2374.
[8] M. Migliorini and A. Tomassini, Local calibrations of almost complex structures, Forum Math. 12 (2000), 723-730.
[9] T.-J. Li and W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. and Geom. 17 (2009), 651-684.

Department of Mathematics, University of Notre Dame
Notre Dame, IN 46556, USA
E-mail address: hind.1@nd.edu

Dipartimento di Scienze Matematiche, Fisiche e Informatiche
Unità di Matematica e Informatica, Università degli studi di Parma
Parco Area delle Scienze 53/A, 43124, Parma, Italy
E-mail address: adriano.tomassini@unipr.it
Received August 29, 2017
Accepted October 17, 2018

