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We show that the novel figure eight singularity in a pseudoholo-
morphic quilt can be continuously removed when composition of
Lagrangian correspondences is cleanly immersed. The proof of this
result requires a collection of width-independent elliptic estimates
that allow for nonstandard complex structures on the domain.
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1. Introduction

We consider compact Lagrangian correspondences L01 ⊂M−0 ×M1 and
L12 ⊂M−1 ×M2, where M0,M1,M2 are closed symplectic manifolds, and
where M−i := (Mi,−ωMi

). The geometric composition of the Lagrangian
correspondences is L01 ◦ L12 := π02(L01 ×M1

L12), the image under the pro-
jection π02 : M−0 ×M1 ×M−1 ×M2 →M−0 ×M2 of the fiber product

L01 ×M1
L12 := (L01 × L12) ∩ (M−0 ×∆M1

×M2).
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Figure 1: The left figure illustrates a figure eight bubble, the middle figure
illustrates its reparametrization as a pseudoholomorphic quilt whose domain
is the punctured sphere, and the right figure illustrates an inverted figure
eight (defined in §2, and equivalent to the left figure via z 7→ −1/z). The
domain of the left and right figures is C, and the point at infinity in the left
figure corresponds to the punctures in the middle and right figures.

Here ∆M1
⊂M1 ×M−1 is the diagonal. If L01 × L12 intersects M−0 ×∆1 ×

M2 transversely then π02 : L01 ×M1
L12 →M−0 ×M2 is a Lagrangian immer-

sion (see [GS, WW2]), in which case we call L01 ◦ L12 an immersed com-
position. In the case of embedded composition, where the projection
is injective and hence a Lagrangian embedding, monotonicity and Maslov
index assumptions allowed Wehrheim–Woodward [WW1] to establish an
isomorphism of quilted Floer cohomologies (as defined in [WW2])

(1) HF (. . . , L01, L12, . . .) ∼= HF (. . . , L01 ◦ L12, . . .).

The analytic core of the proof was a strip-shrinking degeneration, in
which a triple of pseudoholomorphic strips coupled by Lagrangian seam
conditions degenerates to a pair of strips, via the width of the middle strip
shrinking to zero. The monotonicity and embeddedness assumptions allowed
for an implicit exclusion of all bubbling, which was conjectured to include
a novel figure eight bubbling that (unlike disk or sphere bubbling) could
be an algebraic obstruction to (1).

1.1. Removal of singularity

The current author and Katrin Wehrheim prove in [BW] that a blowup
of the gradient in a sequence of pseudoholomorphic quilts with an annu-
lus or strip of shrinking width gives rise to one of the standard bubbling
phenomena (pseudoholomorphic spheres and disks) or a nontrivial figure
eight bubble, as depicted in Figure 1. The latter is a tuple of finite energy
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Pseudoholomorphic quilts with figure eight singularity 3

pseudoholomorphic maps

(2)
w0 : R× (−∞,−1

2 ]→M0, w1 : R× [−1
2 ,

1
2 ]→M1,

w2 : R× [1
2 ,∞)→M2

satisfying the seam conditions

(w0(s,−1
2), w1(s,−1

2)) ∈ L01, (w1(s, 1
2), w2(s, 1

2)) ∈ L12 ∀ s ∈ R.

In the current paper we apply this Gromov Compactness Theorem to show
that the figure eight singularity can be removed, as [WW1] conjectured:

Removal of Singularity Theorem 2.2: If the composition L01 ◦ L12

is cleanly immersed (immersed, and in addition the local branches of
L01 ◦ L12 intersect one another cleanly), then w0 resp. w2 extend to contin-
uous maps on D2 ∼= (R× (−∞, 0]) ∪ {∞} resp. D2 ∼= (R× [0,∞)) ∪ {∞},
and w1(s,−) converges to constant paths as s→ ±∞. If L01 ◦ L12 is embed-
ded, then the latter limits are equal.

This theorem is the first step in the program outlined in [B], which proposes
a collection of composition operations amongst Fukaya categories of different
symplectic manifolds.

In support of [B], Appendix A also proves the analogous removal of singu-
larities for pseudoholomorphic disks with boundary values in an immersed
Lagrangian with clean self-intersections. These results are not necessarily
new, see Appendix A for citations, but provided for the sake of complete-
ness. It is also conceptually useful to recast the (possibly singular) disk
bubbles with boundary on L01 ◦ L12 as squashed eight bubbles, that is
as triples of finite energy pseudoholomorphic maps

w0 : R× (−∞, 0]→M0, w1 : R→M1, w2 : R× [0,∞)→M2

satisfying the generalized seam condition(
w0(s, 0), w1(s), w1(s), w2(s, 0)

)
∈ L01 ×M1

L12 ∀ s ∈ R.

1.2. Uniform elliptic estimates for varying widths and
complex structures

There is a further logical dependence between [BW] and the current paper:
In Lemma 3.8 we substantially strengthen the strip-shrinking estimates in
[WW1] — in particular, from embedded to immersed geometric composition.
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4 Nathaniel Bottman

These strengthened estimates form the analytic core of Theorem 3.1, which
is used to prove a Gromov Compactness Theorem in [BW]. One of the
ingredients in Lemma 3.8 is a special connection that allows us to obtain
estimates without boundary terms for quilted Cauchy–Riemann operators,
with uniform constants for all small widths of a strip. This allows us to
strengthen the uniform H2 ∩W 1,4 estimates established in [WW1] to H3

and thus C1, which is e.g. needed to deduce nontriviality of bubbles with
generalized boundary condition in L01 ◦ L12.

Our estimates allow for nonstandard complex structures on the shrinking
strip. This is necessitated by the following analytic formulation for the figure
eight singularity: In cylindrical coordinates for a neighborhood of infinity
in (2), the two seams become two pairs of curves approaching each other
asymptotically (see the right figure in Figure 1). On finite cylinders, the
standard complex structure on this quilted surface can be pulled back to a
quilted surface in which the width of the strips is constant and the complex
structures are nonstandard, but converge in C0 and stay within a controlled
Ck-distance from the standard structure for any k ≥ 1.

The hypothesis that M0,M1,M2 are closed is not essential: As explained in
[BW], it is enough for the symplectic manifolds to be geometrically bounded
and to have a priori C0-bounds on the various pseudoholomorphic curves. In
a future paper we will treat the noncompact setting in a systematic fashion.
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2. Removal of singularity for the figure eight bubble

In this section and the next we will be working with symplectic manifolds
M0,M1,M2, almost complex structures J0, J1, J2, and pseudoholomorphic



i
i

“1-Bottman” — 2020/3/11 — 0:37 — page 5 — #5 i
i

i
i

i
i

Pseudoholomorphic quilts with figure eight singularity 5

curves with seam conditions defined by compact Lagrangian correspondences

L01 ⊂M−0 ×M1, L12 ⊂M−1 ×M2,(3)

with L01 ◦ L12 either immersed or cleanly immersed:

• L01 and L12 have immersed composition if the intersection

L01 ×M1
L12 = (L01 × L12) ∩ (M0 ×∆M1

×M2)

is transverse. This implies that π02 : L01 ×M1
L12 →M−0 ×M2 is a La-

grangian immersion, e.g. by [WW2, Lemma 2.0.5], and in this situation
we will denote the image by L01 ◦ L12 := π02(L01 ×M1

L12).

• If L01, L12 have immersed composition and furthermore any two local
branches of L01 ◦ L12 intersect cleanly — i.e. at any intersection of two
local branches there is a chart for M−0 ×M2 (as a smooth manifold) in
which each of those two branches is identified with an open subset of
a vector subspace of Rn — then the composition L01 ◦ L12 is cleanly
immersed.

The purpose of §2 is to prove a removal of singularity theorem for inverted
figure eight bubbles.

Definition 2.1. An inverted figure eight bubble between L01 and
L12 is a triple of smooth maps

w =

 w0 : B1(−i)r{0} →M0

w1 : C∗r(B1(i) ∪B1(−i))→M1

w2 : B1(i)r{0} →M2


satisfying the Cauchy–Riemann equations ∂sw` + J`(w`)∂tw` = 0 for ` ∈
{0, 1, 2} and the seam conditions

(w0(−i+ eiθ), w1(−i+ eiθ)) ∈ L01 ∀ θ 6= π
2 ,

(w1(i+ eiθ), w2(i+ eiθ)) ∈ L12 ∀ θ 6= 3π
2 ,

and which have finite energy∫
w∗0ω0 +

∫
w∗1ω1 +

∫
w∗2ω2 = 1

2

(∫
|dw0|2 +

∫
|dw1|2 +

∫
|dw2|2

)
<∞,
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6 Nathaniel Bottman

where we have endowed M` with the metric

g` := ω`(−, J`−).(4)

Throughout §2, the norm of a tangent vector on M` will always be defined
using g`.

Fix for §2 closed symplectic manifolds M0,M1,M2, compatible al-
most complex structures J` ∈ J (M`, ω`), ` ∈ {0, 1, 2}, compact La-
grangians L01, L12 as in (3) with cleanly-immersed composition, and
an inverted figure eight bubble w between L01 and L12.

In fact, only the arguments in §2.2 require the composition L01 ◦ L12 to be
cleanly immersed, rather than just immersed, but we assume the stronger
hypothesis throughout §2 for cohesiveness.

The following theorem says that the singularity at 0 of a figure eight bub-
ble can be continuously removed, under the hypothesis of cleanly-immersed
composition.

Theorem 2.2. The maps w0, w2 continuously extend to 0, and the limits
limz→0, Re(z)>0w1(z) and limz→0, Re(z)<0w1(z) both exist. If moreover the
immersion π02 : L01 ×M1

L12 →M−0 ×M2 is an embedding, then the latter
limits are equal so that w1 also extends continuously to 0.

The proof of this theorem draws on the removal of singularity strategies in
[AH, §7.3] and in [MS, §4.5]. First, we follow [AH] and establish a uniform
gradient bound in cylindrical coordinates near the puncture (Lemma 2.4),
which we use to show that the lengths of the paths θ 7→ w`(εe

iθ) converge to
zero as ε→ 0 (Lemma 2.3). The substantial modification to the argument of
[AH] is that we must use the Gromov Compactness Theorem [BW] in order
to prove uniform gradient bounds in Lemma 2.4. Once we have proven that
lengths go to zero, we follow [MS] and prove an isoperimetric inequality for
the energy (Lemma 2.9), which we use to show that the energy on disks
around the puncture decays exponentially with respect to the logarithm of
the radius. Here the nontrivial modification is in the quilted nature of our
isoperimetric inequality. Finally, an argument from [AH] allows us to con-
clude that w0 and w2 extend continuously to the puncture. The continuous
extension of w1 follows from the gradient bound in cylindrical coordinates
and the immersed composition of L01 and L12. The formal proof of Theo-
rem 2.2 is given in §2.2.
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Pseudoholomorphic quilts with figure eight singularity 7

2.1. Lengths tend to zero

The first step toward the Removal of Singularity Theorem 2.2 is to show
that the lengths of the paths θ �→ w�(εe

iθ) converge to zero as ε → 0. This
is nontrivial since the conformal structure of the quilted surface near the
singularity does not allow us to apply mean value inequalities effectively,
as in previous removal of singularity results for pseudoholomorphic curves.
Hence the finiteness of energy only provides a sequence εν → 0 along which
the lengths tend to zero. This allowed Bottman–Wehrheim to deduce a weak
removal of singularity in [BW], but the stronger Theorem 2.2 will require
the full strength of the generalized strip-shrinking analysis developed in §3
and the resulting Gromov Compactness Theorem in [BW]. We record a
consequence of the latter as Corollary 2.7 below.

1
1− θ
1
2 + θ
1
2 − θ

θ
0

· · · · · ·
V0

V2

V1

Figure 2: Two views of the domains V0, V1, V2 ⊂ (−∞, 0]× R/Z used in §2.1,
as a half-infinite strip and cylinder, respectively.

In this subsection we will work in cylindrical coordinates centered at the
singularity, hence we define the reparametrized maps

(5) v�(s, t) := w�

(
e2π(s+it)

)
for � ∈ {0, 1, 2},

whose domains V0, V1, V2 ⊂ (−∞, 0]× R/Z are given by

V0 :=
{
(s, t)

∣∣ s ≤ 0, |t− 3
4 | ≤

1
4 − θ(s)

}
,

V2 :=
{
(s, t)

∣∣ s ≤ 0, |t− 1
4 | ≤

1
4 − θ(s)

}
,

V1 :=
{
(s, t)

∣∣ s ≤ 0, |t− 1
2 | ≤ θ(s) ∨ |t− 1| ≤ θ(s)

}
,

with

(6) θ(s) := 1
2π arcsin

(
1
2e

2πs
)
.
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8 Nathaniel Bottman

(See Fig. 2 for an illustration of these domains.) Now the paths w`(εe
iθ) for

fixed ε ∈ (0, 1] correspond to the following paths for fixed s = log ε
2π ≤ 0:

γ0
s := v0(s,−) : [1

2 + θ(s), 1− θ(s)] −→M0,

γ2
s := v2(s,−) : [θ(s), 1

2 − θ(s)] −→M2,(7)

γ1
s := v1(s,−) : [1

2 − θ(s),
1
2 + θ(s)] ∪ [1− θ(s), 1 + θ(s)] −→M1.

The length of γ`s is given by the integral `(γ`s) :=
∫
| d
dtγ

`
s| dt over the re-

spective domain, and will be controlled by the following main result of this
subsection.

Lemma 2.3. The L2-lengths of the paths γ0
s , γ

1
s , γ

2
s defined in (7) converge

to zero as s→ −∞:∫ 1−θ(s)

1/2+θ(s)
| d
dtγ

0
s |2 dt+

(∫ 1/2+θ(s)

1/2−θ(s)
+

∫ 1+θ(s)

1−θ(s)

)
| d
dtγ

1
s |2 dt

+

∫ 1/2−θ(s)

θ(s)
| d
dtγ

2
s |2 dt −→

s→−∞
0.

In particular, the length `(γs) := `(γ0
s ) + `(γ1

s ) + `(γ2
s ) tends to zero as s→

−∞.

The proof of Lemma 2.3 will use ideas from [AH]. The novel difficulty — due
to the conformal structure — is to establish the following uniform gradient
bound on |dv|, the upper semicontinuous function defined by

|dv| : (−∞, 0]× R/Z→ [0,∞),(8)

|dv(s, t)|2 := |dv0(s, t)|2 + |dv1(s, t)|2 + |dv2(s, t)|2,

where the functions |dv`(s, t)| are set to zero where they are not defined.

Lemma 2.4. The gradient |dv| defined in (8) is uniformly bounded.

We will prove Lemma 2.4 below. For now, we sketch the proof. It proceeds by
contradiction: if |dv`| is not bounded for some `, then there is a sequence of
points (sν , tν) (necessarily with sν → −∞) at which |dv`| diverges. Rescal-
ing at these points produces a nonconstant quilted map, as illustrated in
Figure 3, but this contradicts the finite-energy hypothesis on v. The techni-
cal input is the Gromov Compactness Theorem in [BW], a consequence of
which we record as Theorem 2.7. This theorem is needed to deduce that the



�

�
“1-Bottman” — 2020/3/11 — 0:37 — page 9 — #9 �

�

�

�

�

�

Pseudoholomorphic quilts with figure eight singularity 9

s = −∞

(s1, t1)
(s2, t2)

(s3, t3)

Figure 3: To prove Lemma 2.4, we assume that the cylindrical
reparametrizations v� do not have uniformly bounded gradient, then bubble
off a nonconstant quilted map. In this illustration, the bubbled-off map is a
figure eight bubble.

rescaled maps actually converge. In order to state it, we need to define the
domains of the maps and a controlled fashion in which the strip-width can
tend to zero.

The following definition is the only instance in §2 where we allow the
almost complex structures to be domain-dependent, so that the notion of a
squiggly strip quilt is flexible enough to be used in §3.

Definition 2.5. Fix ρ > 0, a real-analytic function f : [−ρ, ρ] → (0, ρ/2],
domain-dependent compatible almost complex structures J� : [−ρ, ρ]2 →
J (M�, ω�), � ∈ {0, 1, 2}, and a complex structure j on [−ρ, ρ]2.

• A (J0,J1,J2, j)-holomorphic size-(f , ρ) squiggly strip quilt for
(L01,L12) is a triple of smooth maps

v =



v0 : {(s, t) ∈ (−ρ, ρ)2 | t ≤ −f(s)} → M0

v1 : {(s, t) ∈ (−ρ, ρ)2 | |t| ≤ f(s)} → M1

v2 : {(s, t) ∈ (−ρ, ρ)2 | t ≥ f(s)} → M2


(9)

that fulfill the seam conditions

(
v0(s,−f(s)), v1(s,−f(s))

)
∈ L01,(10) (

v1(s, f(s)), v2(s, f(s))
)
∈ L12 ∀ s ∈ (−ρ, ρ),

satisfy the Cauchy–Riemann equations

dv�(s, t) ◦ j(s, t)− J�(s, t, v�(s, t)) ◦ dv�(s, t) = 0 ∀ � ∈ {0, 1, 2}(11)

for (s, t) in the relevant domains, and have finite energy

E(v) :=
∫
v∗0ω0 +

∫
v∗1ω1 +

∫
v∗2ω2 < ∞.
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• A (J0,J2, j)-holomorphic size-ρ degenerate strip quilt for
L01 ×M1

L12 with singularities is a triple of smooth maps

v =

v0 : (−ρ, ρ)× (−ρ, 0] r S × {0} →M0

v1 : (−ρ, ρ) r S →M1

v2 : (−ρ, ρ)× [0, ρ) r S × {0} →M2

(12)

defined on the complement of a finite set S ⊂ R that fulfill the lifted
seam condition(
v0(s, 0), v1(s), v1(s), v2(s, 0)

)
∈ L01 ×M1

L12 ∀ s ∈ (−ρ, ρ)rS,(13)

satisfy the Cauchy–Riemann equation (11) for ` ∈ {0, 2} and (s, t) in
the relevant domains, and have finite energy

E(v) :=
∫
v∗0ω0 +

∫
v∗2ω2 < ∞.

When j is the standard complex structure i : ∂s 7→ ∂t, ∂t 7→ −∂s, the
Cauchy–Riemann equation (11) can be expressed in coordinates as:

∂tv`(s, t)− J`(s, t, v`(s, t))∂sv`(s, t) = 0.

The novel hypothesis necessary for a sequence of squiggly strip quilts of
widths (fν)ν∈N to converge C∞loc away from the gradient blow-up points is
that the widths “obediently shrink to zero”:

Definition 2.6. Fix ρ > 0. A sequence
(
fν
)
ν∈N of real-analytic functions

fν : [−ρ, ρ]→ (0, ρ/2] obediently shrinks to zero, fν ⇒ 0, if

max
s∈[−ρ,ρ]

fν(s) −→
ν→∞

0

and

sup
ν∈N

maxs∈[−ρ,ρ]

∣∣ dk

dsk f
ν(s)

∣∣
mins∈[−ρ,ρ] fν(s)

=: Ck <∞ ∀ k ∈ N,

and in addition there are holomorphic extensions F ν : [−ρ, ρ]2 → C of fν(s)
= F ν(s, 0) such that (F ν) converges C∞ to zero.

The key to the following special case of the Gromov Compactness Theo-
rem from [BW] is a collection of width-independent elliptic estimates proven
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in §3 for the linearized Cauchy–Riemann operator. Those elliptic estimates
allow for a nonstandard domain complex structure, which is necessary in
order to allow widths fν that are not constant in s.

Corollary 2.7 (consequence of Gromov Compactness Theorem,
[BW]). Fix ρ > 0, a sequence (fν : [−ρ, ρ]→ (0, ρ2 ]) of real-analytic func-
tions shrinking obediently to zero, and a sequence (vν)ν∈N of (J0, J1, J2, i)-
holomorphic size-(fν , ρ) squiggly strip quilts for (L01, L12) of bounded energy
E := supν∈NE(vν) <∞.

If (sν , tν)→ (s∞, t∞) ∈ (−ρ, ρ)2 is a sequence of points where the gradi-
ent blows up, i.e.

lim sup
ν→∞

|vν |(sν , tν) =∞,

then there must be a concentration of energy ~ > 0 at (s∞, t∞), i.e. radii
rν → 0 such that:

lim inf
ν→∞

∫
Brν (s∞,t∞)

1
2 |dv

ν |2 > 0.

We are finally in a position to bound the gradients of the reparametrized
maps v` from (5).

Proof of Lemma 2.4. We will prove the equivalent statement that the “folded
maps”

u` : U` →M` ×M−` , u`(s, t) := (v`(s, t), v`(s,
1
2 − t)) for ` = 0, 1, 2

have uniformly-bounded gradients, where the domains U` are given by

U0 := {(s, t) | s ≤ 0, −1
4 ≤ t ≤ −θ(s)},

U2 := {(s, t) | s ≤ 0, θ(s) ≤ t ≤ 1
4},

U1 := {(s, t) | s ≤ 0, −θ(s) ≤ t ≤ θ(s)}.

These maps are pseudoholomorphic with respect to the almost complex
structures Ĵ` := J` ⊕ (−J`) and satisfy the following boundary and seam
conditions for s ≤ 0:

u0(s,−1
4) ∈ ∆M0

, (u0(s,−θ(s)), u1(s,−θ(s))) ∈ (L01 × L01)T ,

u2(s, 1
4) ∈ ∆M2

, (u1(s, θ(s)), u2(s, θ(s))) ∈ (L12 × L12)T .

(Here θ(s) = 1
2π arcsin(1

2e
2πs) as in (6), and (Lij × Lij)T is the image of

Lij × Lij under the permutation (xi, xj , yi, yj) 7→ (xi, yi, xj , yj).) Finiteness
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of the energy of the inverted figure eight w translates into convergence of
the integral limS→−∞

∫
(S,0]×[−1/4,1/4]

1
2 |du|

2 <∞ of the energy density

|du| : (−∞, 0]×
[
−1

4 ,
1
4

]
→ [0,∞),

|du(s, t)|2 := |du0(s, t)|2 + |du1(s, t)|2 + |du2(s, t)|2,

where the functions |du`(s, t)| are set to zero where they are not already
defined (so |du| is upper semi-continuous). This convergence in particular
implies

(14)
∫

(−∞,S]×[−1/4,1/4]
1
2 |du|

2 −→
S→−∞

0.

Now assume for a contradiction that there exists a sequence (sν , tν) ∈
(−∞, 0]× [−1/4, 1/4] with |du(sν , tν)| → ∞. Since the u` are smooth, this
is possible only for sν → −∞; passing to a further subsequence, we may in
fact assume sν+1 ≤ sν − 1 and s1 ≤ 1/4. Depending on whether t∞ is ±1/4
or is contained in (−1/4, 1/4), we derive a contradiction to (14):

t∞ = ±1/4. Assume t∞ = −1/4; the t∞ = 1/4 case can be treated in anal-
ogous fashion. Define a sequence (uν0) by:

uν0 : B1/8(0) ∩H→M0 ×M−0 , uν0(s, t) := u0(s+ sν , t− 1/4).

The map uν0 is Ĵ0-holomorphic and satisfies the Lagrangian boundary con-
dition u0(s, 0) ∈ ∆M0

for s ∈ (−1/8, 1/8). Furthermore, |duν0(0, tν + 1/4)| →
∞, tν + 1/4→ 0 by assumption, and the energy of uν0 is bounded by the en-
ergy of v, so [MS, Lemma 4.6.5] implies the inequality

lim inf
ν→∞

∫
B1/8(0)

1
2 |du

ν
0 |2 > 0,

which contradicts (14).

t∞ ∈ (−1/4,1/4). Define a sequence (uν0 , u
ν
1 , u

ν
2) of (Ĵ0, Ĵ1, Ĵ2, i)-holo-

morphic size-(θν , 1
4) squiggly strip quilts, with

θν : [−1
4 ,

1
4 ]→ (0, 1

8 ], θν(s) := 1
2π arcsin(1

2e
2π(s+sν)),

by:

uν` (s, t) := u`(s+ sν , t).
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The energy
∫
B1/8(0)

1
2 |du

ν |2 is bounded by the energy of v, and by assump-

tion, the gradient |duν(0, tν)| tends to ∞. In the following sublemma we
establish the last hypothesis needed to apply Corollary 2.7.

Sublemma 2.8. The functions θν(s) = 1
2π arcsin(1

2e
2π(s+sν)) obediently

shrink to zero as ν →∞.

Proof of Sublemma 2.8. The convergence sν → −∞ implies 1
2e

2π(s+sν) → 0
in C0, so the equality arcsin(0) = 0 implies the C0-convergence of θν to zero.

To check the second condition for obedient shrinking, fix k ≥ 1 and
note that dkθν

dsk (s) = dkθ
dsk (s+ sν), with θ(s) = 1

2π arcsin(1
2e

2πs) as above. The

derivative dkθ
dsk (s) is a linear combination of the functions

f`(s) := (4− e4πs)−(`−1/2)e4π(`−1/2)s

for ` = 1, . . . ,m. (This can be seen by induction starting from dθ(s)
ds = (4−

e4πs)−1/2e2πs.) This decomposition, the inequality arcsin(x)≥x for x∈ [0, 1],
and the convergence sk → −∞ allows us to establish the second condition:

sup
ν∈N

maxs∈[−1/4,1/4] |f`(s)|
mins∈[−1/4,1/4] θν(s)

≤ sup
ν∈N

exp(4π(`− 1
2)(sν + 1/4))

1
4π exp(2π(sν − 1/4))

= sup
ν∈N

4π exp(4π((`− 1)sν + 1
4))

≤ 4π exp(π).

The arcsine function extends to a holomorphic function arcsin : B1(0)→
C by the power series arcsin(z) :=

∑∞
k=0

(2k

k )z2k+1

4k(2k+1) , so fν extends to a holo-

morphic function F ν from [−1/4, 1/4]2 to C. Since the functions 1
2e

2π(z+sν)

tend C∞ to zero and since arcsin(0) = 0, the extensions F ν also tend C∞ to
zero. �

Part (2) of Corollary 2.7 now implies the inequality

lim inf
ν→∞

∫
B1/8(0)

1
2 |du

ν |2 > 0,

which contradicts (14). �

Proof of Lemma 2.3. First, note that the domain [1/2− θ(s), 1/2 + θ(s)] ∪
[1− θ(s), 1 + θ(s)] of γ1

s has total length 4θ(s) = 2
π arcsin

(
1
2e

2πs
)
, which con-

verges to 0 as s→ −∞. Hence the gradient bounds of Lemma 2.4 immedi-
ately imply that the L2-length of γ1

s converges to zero as s→ −∞. Moreover,
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these gradient bounds imply that to show the L2-lengths of γ0
s , γ

2
s converge

to zero, it suffices to fix an arbitrary ε > 0 and show that the L2-lengths of
γ0
s |[ε,1/2−ε], γ2

s |[1/2+ε,1−ε] converge to zero as s→ −∞.
Fix ε > 0. We will show that the L2-length of γ0

s |[1/2+ε,1−ε] converges to
zero as s→ −∞; the proof for γ2 is similar. Choose s0 so that the domain
of γ0

s contains [1/2 + ε/2, 1− ε/2] for all s ≤ s0. Now the C0-bound on |dv0|
from Lemma 2.4 induces a Cm-bound on v0|(−∞,s0−1]×[1/2+ε,1−ε] for any m ≥
0. Indeed, we can apply the interior elliptic estimates (e.g. [AH, §6.3]) on
each of the precompactly-nested domains

[s0 − k − 1, s0 − k]× [1/2 + ε, 1− ε]
⊂ [s0 − k − 2, s0 − k + 1]× [1/2 + ε/2, 1− ε/2]

for k ∈ N. Since for different k these domains are translations of one other,
the constants in the elliptic estimates are independent of k, and thus yield
the desired Cm-bounds.

For s ≤ s0, define

Φ(s) := 1
2

∫ s
−∞
∫ 1−ε

1/2+ε

(
|∂sv0|2 + |∂tv0|2

)
.

Then Φ: (−∞, s0]→ [0,∞) is nondecreasing with lims→−∞Φ(s) = 0 and

Φ′(s) = 1
2

∫ 1−ε

1/2+ε
(|∂sv0(s, τ)|2 + |∂tv0(s, τ)|2) dτ =

∫ 1−ε

1/2+ε
|∂sv0(s, τ)|2 dτ,

Φ′′(s) = 2

∫ 1−ε

1/2+ε
〈∂sv0(s, τ),∇2

LC,sv0(s, τ)〉dτ,

where in the last quantity we are using the Levi-Civita connection with
respect to the metric g0 defined in (4). By the previous paragraph, there
exists a constant c > 0 so that Φ′′(s) ≤ c for all s ≤ s0 − 1. Now for any
fixed δ > 0 we can choose s1 ≤ s0 − 1 such that Φ(s1) ≤ δ2/4c. For s ≤ s1,
we obtain:

δ2

4c
≥ Φ(s1) ≥ Φ(s)− Φ(s− δ

2c) =

∫ s

s−δ/2c
Φ′(σ) dσ ≥ δ

2c
(Φ′(s)− δ

2),

where the last step uses the bound on Φ′′ to deduce Φ′(σ) ≥ Φ′(s)− c|s− σ|.
This inequality can be rearranged to yield Φ′(s) ≤ δ for all s ≤ s1, and thus
proves lims→−∞Φ′(s) = 0. Since Φ′(s) is equal to ‖ d

dtγ
0
s‖2L2([1/2+ε,1−ε]) and

since | d
dtγ

0
s | is uniformly bounded, we have now shown that the L2-norm of

γ0
s converges to zero as s→ −∞.
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Pseudoholomorphic quilts with figure eight singularity 15

The Cauchy–Schwarz inequality implies that the L1-norm of d
dtγ

s
0 — i.e.

the length `(γs1) — also tends to zero as s→ −∞. �

2.2. An isoperimetric inequality and the proof of
removal of singularity

In this subsection, we prove Theorem 2.2. The crucial inputs will be Lemma
2.3 from §2.1 together with the following isoperimetric inequality for the
energy on (−∞, s0]× R/Z,

E(v; s0) :=
∫

(−∞,s0]×R/Z
1
2 |dv|

2 dsdt.

Lemma 2.9. There exists C > 0 depending only on M`, L`(`+1), ω`, J` such
that the following inequality holds for all s ≤ 0:

E(v; s) ≤ C
∑

i∈{0,1,2}

`(γis)
2.

We defer the proof to later in §2.2; now, we turn to the proof of removal of
singularity. Throughout this subsection we denote

M0112 := M−0 ×M1 ×M−1 ×M2, M02 := M−0 ×M2.

Proof of Theorem 2.2.

Step 1. There exist C1, C2 > 0 such that the inequality E(v; s) ≤
C1 exp(C2s) holds for all s ≤ 0.

Fix s ≤ 0. The following inequality follows from Lemma 2.9:

E(v; s)
Lem. 2.9
≤ C

∑
`∈{0,1,2}

`(v`(s,−))2

≤ C

2

(∫ 1
0|dv(s, t)|dt

)2
≤ C

2

∫ 1
0|dv(s, t)|2 dt = C

d

ds
(E(v; s)).

Manipulating this inequality and integrating from s to 0, we obtain E(v; s) ≤
E(v; 0) exp(s/C).

Step 2. The limit lims→−∞ v0(s,−) exists in C0([5/8, 7/8],M0).
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16 Nathaniel Bottman

Fix a C1 embedding i : M0 → RN ; we will show that

Λ := lim
s→−∞

(i ◦ v0|[5/8,7/8])

exists in C0.
We will do so by showing that Λ exists inW 1,2, whereW 1,2([5/8, 7/8],RN )

is defined using the Euclidean metric on RN . Fix s2 ≤ s1 < 0. Cauchy–
Schwarz implies the following inequality:

‖(i ◦ v0)(s1,−)− (i ◦ v0)(s2,−)‖L2([5/8,7/8])(15)

=

(∫ 7/8

5/8

∣∣∣∣∫ s1

s2

∂s(i ◦ v0) ds

∣∣∣∣2 dt

)1/2

≤ (s1 − s2)1/2

(∫ 7/8

5/8

∫ s1

s2

|∂s(i ◦ v0)|2geuc dsdt

)1/2

.

Since M0 is compact, there exists a constant of equivalence µ > 0 for the
norms induced by gM0

and i∗geuc, so (15) yields the following:

‖(i ◦ v0)(s1,−)− (i ◦ v0)(s2,−)‖L2([5/8,7/8])(16)

(15)

≤ µ(s1 − s2)1/2

(∫ 7/8

5/8

∫ s1

s2

|∂sv0|2gM0
dsdt

)1/2

Step 1
≤ µ C1/2

1 (s1 − s2)1/2 exp(C2s1/2)

=: C3(s1 − s2)1/2 exp(C2s1/2).

Write s2 = (m+ ε)s1 for m ∈ N and ε ∈ [0, 1). We have:

‖(i ◦ v0)(s1,−)− (i ◦ v0)((m+ ε)s1,−)‖L2([5/8,7/8])(17)

≤ ‖(i ◦ v0)(ms1,−)− (i ◦ v0)((m+ ε)s1,−)‖L2([5/8,7/8])

+

m−1∑
j=1

‖(i ◦ v0)(js1,−)− (i ◦ v0)((j + 1)s1,−)‖L2([5/8,7/8])

(16)

≤ C3|s1|1/2
m∑
j=1

exp(jC2s1/2)

≤ C3|s1|1/2 exp(C2s1/2)

1− exp(C2s1/2)
.
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Pseudoholomorphic quilts with figure eight singularity 17

This estimate would be enough to show that Λ exists in L2; we now make
a further estimate in order to upgrade this convergence to W 1,2. Define
f(s) := | d

dt(i ◦ v0)(s,−)|L2([5/8,7/8]). This quantity tends to zero as s→ −∞:

lim sup
s→−∞

f(s) ≤ lim sup
s→−∞

µ| d
dtv0(s,−)|L2([5/8,7/8])

Lem. 2.3
= 0.

We can now show that Λ exists in W 1,2: We have

|(i ◦ v0)(s1,−)− (i ◦ v0)(s2,−)|W 1,2([5/8,7/8])

≤ |(i ◦ v0)(s1,−)− (i ◦ v0)(s2,−)|L2([5/8,7/8]) + f(s1) + f(s2)

(17)

≤ C3|s1|1/2 exp(C2s1/2)

1− exp(C2s1/2)
+ f(s1) + f(s2),

which implies the equality

lim sup
s1→−∞

sup
s2∈(−∞,s1]

|(i ◦ v0)(s1,−)− (i ◦ v0)(s2,−)|W 1,2([5/8,7/8]) = 0.

Since W 1,2([5/8, 7/8],RN ) is complete, Λ exists in W 1,2. The Sobolev em-
bedding W 1,2 ↪→ C0 for one-dimensional domains now implies that Λ exists
in C0.

Step 3. We prove Theorem 2.2.

By Lemma 2.3, the first claim of Theorem 2.2 would follow from the existence
of the limits

Λ0 := lim
s→−∞

v0(s, 3
4), Λ1 := lim

s→−∞
v1(s, 1

2),

Λ′1 := lim
s→−∞

v1(s, 1), Λ2 := lim
s→−∞

v2(s, 1
4).

It follows from Step 2 that Λ0 exists, and an analogous argument shows that
Λ2 exists. It remains to show that Λ1,Λ

′
1 exist.

To show that Λ1 exists, we will show convergence of the path

γ : s 7→ (v0(s, 1
2 + θ(s)), v1(s, 1

2), v1(s, 1
2), v2(s, 1

2 − θ(s))

as s→ −∞. This path takes values in M0 ×∆M1
×M2 and

lim
s→−∞

dM0112
(γ(s), L01 × L12) = 0 (by Lemma 2.4),
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18 Nathaniel Bottman

so the distances dM0112
(γ(s), L01 ×M1

L12) converge to zero. Hence there ex-
ists a path β : (−∞, 0]→ L01 ×M1

L12 satisfying the equality

lim
s→−∞

dM0112
(γ(s), β(s)) = 0.(18)

(Indeed, define β by choosing a tubular neighborhood U of L01 ×M1
L12,

and compose γ with the projection U → L01 ×M1
L12.) We will show that

lims→−∞ γ(s) exists by showing that lims→−∞ β(s) exists.
Lemma 2.3, the existence of Λ0 and Λ2, and (18) imply that x02 :=

lims→−∞ π02(β(s)) exists. Since π02 restricts to an immersion of L01 ×M1

L12 into M02, there exist finitely many preimages x1
0112, . . . , x

k
0112 of x02

in L01 ×M1
L12. Choose ε > 0 small enough that the preimage of Bε(x02)

under π02|L01×M1
L12

consists of k connected components U1, . . . , Uk, with

xj0112 contained in U j . Now choose s0 ∈ (−∞, 0] such that π02(β((−∞, s0]))
is contained in Bε(x02). The image β((−∞, s2]) must then be contained
in a single Uj . If (sν), (s′ν) are sequences with limit −∞ such that xj10112 :=

limν→∞ β(sν) and xj20112 := limν→∞ β(s′ν) exist, then j1 and j2 must be equal;
since L01 ×M1

L12 is compact, this is enough to conclude that lims→−∞ β(s)
exists. As noted above, this is enough to conclude the first statement of
Theorem 2.2.

The points (Λ0,Λ1,Λ1,Λ2) and (Λ0,Λ
′
1,Λ

′
1,Λ2) are lifts in L01 ×M1

L12

of (Λ0,Λ2), so if the projection from L01 ×M1
L12 to M02 is injective, then

Λ1,Λ
′
1 are the same point. �

s1s2

M2

M0

M1M1

L12

L01

Figure 4: The start of our argument for Lemma 2.9 is to restrict an inverted
figure eight to an annulus centered at the singular point (the portion in the
left figure between the dotted circles), then reparametrize to a quilted tube
with straight seams (the tubular part of the boundary of the cylinder on the
right). Next, we piecewise-smoothly extend to the interior of the cylinder.
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Our proof of Lemma 2.9 is an adaptation to the quilted setting of [MS,
Lemma 4.5.1], which is an isoperimetric inequality for the energy near an
interior point of a J-holomorphic curve. Their argument went like this: re-
stricting the map to an annulus, then reparametrizing, yields a map defined
on the curved part of the boundary of a cylinder. By a lengths-go-to-zero re-
sult analogous to our Lemma 2.3, they extend this map to the entire cylinder.
Their result now follows from Stokes’ theorem, along with the isoperimetric
inequality for the symplectic area applied to the top and bottom caps of the
cylinder. The difficulty in adapting this result to the quilted setting is in the
extension to the cylinder (see Figure 4 for an illustration of the setup); the
key will be the consequences of cleanly-immersed composition recorded in
the following lemma.

Lemma 2.10. There exist C > 0, ε > 0 such that:

(i) If x02, y02 ∈ L01 ◦ L12 have lifts

x, x′ ∈ π−1
02 {x02} ∩ (L01 ×M1

L12), y, y′ ∈ π−1
02 {y02} ∩ (L01 ×M1

L12)

with small distances

max{dM0112
(x, y), dM0112

(x′, y′)} ≤ ε,

then there exists a smooth path γ02 : [0, 1]→M02 with image in L01 ◦
L12 and smooth lifts γ, γ′ : [0, 1]→ L01 ×M1

L12 that have bounded
lengths

`(γ02) + `(γ) + `(γ′) ≤ C dM02
(x02, y02)

and satisfy γ(0) = x, γ(1) = y, γ′(0) = x′, and γ′(1) = y′.

(ii) For x, x′ ∈ L01 ×M1
L12 with dM02

(π02(x), π02(x′)) ≤ ε, there exists a
point y02 ∈ L01 ◦ L12 and preimages y, y′ ∈ π−1

02 (y02) ∩ L01 ×M1
L12

such that the following inequality holds:

dM02
(π02(x′), y02) + dM02

(π02(x), y02) + dM0112
(x, y) + dM0112

(x′, y′)

≤ C dM02
(π02(x), π02(x′)).

We will give only a brief sketch, since a formal proof is no more enlighten-
ing. The key is that the cleanly-immersed hypothesis implies that any two
branches of L01 ◦ L12 meet like two vector subspaces.
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(i) If x, x′, y, y′ lie in the same local branch of L01 ◦ L12, then the conclu-
sion is immediate. Otherwise, x and y lie in one branch, and x′ and
y′ lie in another. Represent these branches as open subsets of vector
subspaces V, V ′ ⊂ RN . Then x02, y02 lie in V ∩ V ′, and we may define
γ02 to be a path in V ∩ V ′ from x02 to y02 and γ (resp. γ′) to be the
lift to the portion of L01 ×M1

L12 corresponding to V (resp. to V ′).

(ii) If x, x′ lie in the same local branch of L01 ◦ L12, the conclusion is
again immediate. Otherwise, represent the branches containing x, x′ as
open subsets of V, V ′ ⊂ RN . Set y02 to be the nearest point in V ∩ V ′
to x, and let y (resp. y′) be the lift to the portion of L01 ×M1

L12

corresponding to V (resp. to V ′).

p12

p01p30

p23
U2

U0

U1U3

A0

A1A3

A2

Figure 5: The domains used in the proof of Lemma 2.9.

Proof of Lemma 2.9.

Step 1. We prove Lemma 2.9 up to an extension result, which we defer to
Steps 2 and 3.
It suffices to prove the lemma for s ≤ s0 ≤ 0, where s0 is chosen so that
sups≤s0 `(γ

i
s), i ∈ {0, 1, 2} is bounded by a constant δ > 0 to be determined

later. As illustrated in Figure 5, partition the unit circle S1(0) into four
segments by

A0 := {(x, y) ∈ S1(0) | y ≤ x, y ≤ −x},
A1 := {(x, y) ∈ S1(0) | x ≥ y, x ≥ −y},
A2 := {(x, y) ∈ S1(0) | y ≥ x, y ≥ −x},
A3 := {(x, y) ∈ S1(0) | x ≤ y, x ≤ −y}
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and set pi(i+1) := Ai ∩Ai+1 for i ∈ Z/4Z. Given s1, s2 with s2 < s1 ≤ s0,
define maps1 σi : Ai × [s2, s1]→Mi, i ∈ {0, 1, 2, 3} (where we set M3 := M1)
like so:

σ0(exp(2πit), s) := v0

(
s, 1

2 + θ(s) + 4(1
2 − 2θ(s))(t− 5

8)
)
,

σ1(exp(2πit), s) := v1

(
s, 8θ(s)t

)
,

σ2(exp(2πit), s) := v2

(
s, θ(s) + 4(1

2 − 2θ(s))(t− 1
8)
)
,

σ3(exp(2πit), s) := v1

(
s, 1

2 + 8θ(s)(t− 1
2)
)
,

where we take t ∈ [−1/8, 7/8]. These maps satisfy the seam condition

(σi(pi(i+1), s), σi+1(pi(i+1), s)) ∈ Li(i+1), ∀ i ∈ Z/4Z, s ∈ [s2, s1],

where we set L23 := LT12, L30 := LT01.
In order to apply Stokes’ theorem, we will extend the maps σi to the

domains Ui × [s2, s1], where Ui are the following four quadrants of the closed
unit disk (refer again to Fig. 5):

U0 := {(x, y) ∈ B(0, 1) | y ≤ x, y ≤ −x},
U1 := {(x, y) ∈ B(0, 1) | x ≥ y, x ≥ −y},
U2 := {(x, y) ∈ B(0, 1) | y ≥ x, y ≥ −x},
U3 := {(x, y) ∈ B(0, 1) | x ≤ y, x ≤ −y}.

Choose s2 = t0 < t1 < · · · < tk = s1 such that for every j, the diameters of
the images σi(Ai × [tj , tj+1]) are bounded by δ. As long as δ is small enough,
Steps 2 and 3 below allow us to extend σi to a continuous map σ̃i : Ui ×
[s2, s1]→Mi that is smooth on Ui × [tj , tj+1], such that the extended maps
satisfy the Lagrangian seam conditions

(σ̃i(p, s), σ̃i+1(p, s)) ∈ Li(i+1) ∀ p ∈ Ui ∩ Ui+1, s ∈ [s2, s1].(19)

Indeed, use Step 2 to define the maps σ̃i on the slices Ui × {tj}, then use
Step 3 to extend σ̃i to all of Ui × [s2, s1].

1The maps σi are simply the reparametrizations of v0, v1, v2 from the intersections
of V0, V1, V2 with {(s, t) | s2 ≤ s ≤ s1} to the domains Ai × [s2, s1]. We are doing
nothing in the s factor and rescaling in the t factor. See Fig. 4 for an illustration
of this reparametrization.
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Since ω0, ω1, ω2 are closed, Stokes’ theorem yields the following:

E(v; [s2, s1]× R/Z) ≤
∑

i∈{1,2}

∣∣∣∣∣∣
∑

j∈{0,1,2,3}

∫
Uj×{si}σ̃

∗
jωj

∣∣∣∣∣∣
≤ C

∑
i∈{1,2}

∑
j∈{1,2,3}

`(γjsi)
2,

where in the first inequality we have used the seam conditions (19), and
in the second inequality we have used the isoperimetric inequality for the
symplectic area [MS, Theorem 4.4.1]. Taking the limit as s2 goes to −∞ and
applying Lemma 2.3 yields the conclusion of the lemma.

Throughout the final two steps, the constants Ci may depend on the
geometry of L01, L12, ω`, and J`, but are independent of κ.

Step 2. There exist C > 0, κ0 > 0 so that if σ0, σ1, σ2, σ3 are smooth maps
with

σi : Ai →Mi, (σi(pi(i+1)), σi+1(pi(i+1))) ∈ Li(i+1),

κ := max
i∈{0,1,2,3}

diamσi(Ai) ≤ κ0,

then there exist extensions σ̃i : Ui →Mi of σi such that:

(σ̃i(p), σ̃i+1(p)) ∈ Li(i+1) ∀ p ∈ Ui ∩ Ui+1,

max
i∈{0,1,2,3}

`(σ̃i|∂Ui) + max
i∈{0,1,2,3}

diam σ̃i(Ui) ≤ Cκ.

The points

z := (σ0(p01), σ1(p01), σ1(p12), σ2(p12)),

z′ := (σ0(p30), σ3(p30), σ3(p23), σ2(p23))

lie in L01 × L12. Since the intersection (L01×L12) ∩ (M0×∆M1
×M2) defin-

ing L01 ×M1
L12 is transverse, there are points x, x′ ∈ L01 ×M1

L12 that are
close to z resp. z′,

dM0112
(x, z) ≤ C1κ, dM0112

(x′, z′) ≤ C1κ,(20)

for a uniform constant C1 > 0. The triangle inequality bounds the distance
between the projections of z, z′:
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dM02
(π02(x), π02(x′)) ≤ dM02

(π02(x), π02(z)) + dM02
(π02(z), π02(z′))

+ dM02
(π02(z′), π02(x′))

≤ 2(C1 + 1)κ.

As long as κ0 is chosen to be small enough, it follows from Lemma 2.10(ii)
that there exist lifts y, y′ ∈ L01 ×M1

L12 of a single point y02 ∈ L01 ◦ L12

with small distances to x resp. x′:

dM0112
(x, y) ≤ C2κ, dM0112

(x′, y′) ≤ C2κ,(21)

where C2 > 0 is another constant. We can now define the extensions σ̃i at
the origin:

(σ̃0(0), σ̃1(0), σ̃1(0), σ̃2(0)) := y, (σ̃0(0), σ̃3(0), σ̃3(0), σ̃2(0)) := y′.

Inequalities (20) and (21) and the triangle inequality yield:

dM0112
(y, z) ≤ (C1 + C2)κ, dM0112

(y′, z′) ≤ (C1 + C2)κ.

The local triviality of smooth submanifolds implies that there exists a con-
stant C3 > 0 such that after redefining κ0 if necessary, we may extend the
maps σ̃i to the set {(a, b) ∈ B(0, 1) | b = ±a} such that the seam conditions
(19) hold and the length of the loop σ̃i|∂Ui is bounded by C3κ. Once more
redefining κ0 if necessary, we may extend each map σ̃i to Ui in such a way
that the diameter of σ̃i(Ui) is bounded by C4κ for C4 > 0 another constant.

Step 3. There exists λ > 0 such that the following holds. Assume that
σ0, σ1, σ2, σ3 are smooth maps and a < b are real numbers with:

σi : Ai × [a, b] ∪ Ui × {a, b} →Mi, max
i∈{0,1,2,3}

diam imσi ≤ λ,

(σi(q), σi+1(q)) ∈ Li(i+1) ∀ q ∈
(
pi(i+1) × [a, b]

)
∪
(
(Ui ∩ Ui+1)× {a, b}

)
.

Then each σi can be extended to a smooth map σ̃i : Ui × [a, b]→Mi such
that the following seam conditions hold:

(σ̃i(q), σ̃i+1(q)) ∈ Li(i+1) ∀ q ∈ (U0 ∩ U1)× [a, b].
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Define x, x′, y, y′ ∈ L01 ×M1
L12 like so:

x := (σ0, σ1, σ1, σ2)(0, a), x′ := (σ0, σ3, σ3, σ2)(0, a),

y := (σ0, σ1, σ1, σ2)(0, b), y′ := (σ0, σ3, σ3, σ2)(0, b).

Then π02(x) = π02(x′) and π02(y) = π02(y′), and x resp. x′ are close to y
resp. y′:

dM0112
(x, y) ≤ 4λ, dM0112

(x′, y′) ≤ 4λ.

It follows from Lemma 2.10(i) that as long as λ is chosen to be small enough,
there exists a path γ02 : [a, b]→ L01 ◦ L12 and lifts γ, γ′ : [a, b]→ L01 ×M1

L12 from x to y resp. from x′ to y′ of small lengths:

`(γ) + `(γ′) ≤ C5λ

for C5 > 0 a constant. Define σ̃0, σ̃1, σ̃2, σ̃3 on {0} × [a, b] like so:

(σ̃0, σ̃1, σ̃1, σ̃2)(0, t) := γ(t), (σ̃0, σ̃3, σ̃3, σ̃2)(0, t) := γ′(t).

The diameter of the loop (σ̃0, σ̃1)|∂((U0∩U1)×[a,b]) is bounded by 2(C5 + 1)λ,
so by redefining λ if necessary, we may extend (σ̃0, σ̃1) to a map (U0 ∩ U1)×
[a, b]→M−0 ×M1 with small diameter:

diam ((σ̃0, σ̃1)((U0 ∩ U1)× [a, b])) ≤ C6λ

for C6 > 0 a constant. Extend (σ̃1, σ̃2), (σ̃2, σ̃3), (σ̃3, σ̃0) to (U1 ∩ U2)× [a, b],
(U2 ∩ U3)× [a, b], (U3 ∩ U0)× [a, b] in the same fashion. Finally, σ̃i|∂(Ui×[a,b])

is a map to Mi from a domain homeomorphic to S2, and its diameter is small:

diam (σ̃i(∂(Ui × [a, b]))) ≤ (2C6 + 1)λ.

Redefining λ if necessary, we may extend σ̃i to all of Ui × [a, b]. �

3. Convergence modulo bubbling for strip-shrinking

The purpose of this section is to prove a convergence-mod-bubbling result,
which we state as Thm. 3.1 below. It is a strengthening of the strip-shrinking
analysis of [WW1] from H2 ∩W 1,4-convergence to Ck-convergence; we also
allow the domain to be equipped with nonstandard complex structures and
the geometric composition L01 ◦ L12 to be immersed, rather than embedded.
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Thm. 3.1 is used to prove the Gromov Compactness Theorem in [BW],
which we in turn rely on in §2 of the current paper to prove the Removal
of Singularity Theorem 2.2. The proof of Thm. 3.1 (which we will give in
§3.3) relies on a collection of δ-independent elliptic estimates, which we will
formulate and prove in §3.2.

Theorem 3.1. There exists ε > 0 such that the following holds: Fix k ∈
N≥1, positive reals δν → 0 and ρ > 0, symmetric complex structures2 jν on
[−ρ, ρ]2 that converge C∞ to j∞ with ‖j∞ − i‖C0 ≤ ε, and Ck+2

loc -bounded
sequences of domain-dependent compatible almost complex structures Jν` :
[−ρ, ρ]2 → J`(M`, ω`), ` ∈ {0, 1, 2} such that the Ck+1-limit of each (Jν` ) is
a compatible C∞ almost complex structure J∞` : [−ρ, ρ]2 → J (M`, ω`).

Then if (vν0 , v
ν
1 , v

ν
2 ) is a sequence of size-(δν , ρ) (Jν0 , J

ν
1 , J

ν
2 , j

ν)-holo-
morphic squiggly strip quilts for (L01, L12) with uniformly bounded gradients,

sup
ν∈N, (s,t)∈[−ρ,ρ]2

|dvν |(s, t) <∞,

then there is a subsequence in which (vν0 (t− δν)), (vν1 |t=0), (vν2 (t+ δν))
converge Ckloc to a (J∞0 , J∞2 , j∞)-holomorphic size-ρ degenerate strip quilt
(v∞0 , v

∞
1 , v

∞
2 ) for L01 ×M1

L12.
If the inequality lim infν→∞,(s,t)∈[−ρ,ρ]2 |dvν |(s, t) > 0 holds, then v∞0 , v

∞
2

are not both constant.

We now fix some data and explain the basic setup we will use for the
proof of Thm. 3.1.

Fix for §3 closed symplectic manifolds M0,M1,M2 and compact La-
grangians L01 ⊂M−0 ×M1, L12 ⊂M−1 ×M2 with immersed compo-
sition as defined in the beginning of §2.

For convenience, we will denote by (M02, ω02), (M0211, ω0211) the symplectic
manifolds

(M0211, ω0211) := M0 ×M−2 ×M
−
1 ×M1

= (M0 ×M2 ×M1 ×M1, ω0 ⊕ (−ω2)⊕ (−ω1)⊕ ω1),

(M02, ω02) := M−0 ×M2 = (M0 ×M2, (−ω0)⊕ ω2)

and by (L01 × L12)T ⊂M0211 the transposed Lagrangian gotten by permut-
ing the factors of M0211 by (x0, x1, y1, x2) 7→ (x0, x2, x1, y1).

2See §3.1 for the definition of a symmetric complex structure.
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The analysis in our proof of Theorem 3.1 will be phrased in terms of
pairs of smooth maps3 (w02, ŵ) = ((w0, w2), (w′0, w

′
2, w

′
1, w1)):

w02 : (−ρ, ρ)× [0, ρ− 2δ)→M02, ŵ : (−ρ, ρ)× [0, δ]→M0211,(22)

(w02, ŵ)(s, 0) ∈ ∆M02
×∆M1

, ŵ(s, δ) ∈ (L01 × L12)T ∀ s ∈ (−ρ, ρ),

where δ is nonnegative. From now on we denote the domains of w02 and ŵ
by

Q02,δ,ρ := (−ρ, ρ)× [0, ρ− 2δ), Q̂δ,ρ := (−ρ, ρ)× [0, δ],

and combine them into the notation Qδ,ρ := (Q02,δ,ρ, Q̂δ,ρ). We denote the
closures in R2 by

Q02,δ,ρ := [−ρ, ρ]× [0, ρ− 2δ], Q̂δ,ρ := [−ρ, ρ]× [0, δ].

For δ > 0, ρ > 0 (resp. δ = 0, ρ > 0), the setup4 (22)δ,ρ is equivalent to a
triple of smooth maps (v0, v1, v2) with the same domain and targets as a size-
(δ, ρ) squiggly strip quilt for (L01, L12) (9)f=δ (resp. as a size-ρ degenerate
strip quilt for L01 ×M1

L12 (12)) and that fulfill the seam conditions (10)f=δ

(resp. (13)) but are not necessarily pseudoholomorphic or of finite energy.
Indeed, given such (v0, v1, v2), define (w02, ŵ) like so:

w02(s, t) := (v0(s,−t− 2δ), v2(s, t+ 2δ)),(23)

ŵ(s, t) := (v0(t− 2δ), v2(s,−t+ 2δ), v1(s,−t), v1(s, t)).

Conversely, for δ ≥ 0 and (w02, ŵ) satisfying (22)δ,ρ, define (v0, v1, v2) satis-
fying (9)f=δ, (10)f=δ (for δ > 0) or (12), (13) (for δ = 0) like so:

3This “folded” setup was first used in [WW1]. It is more convenient to work with
maps of this form, e.g. when we construct the compatible connection in Lem. 3.4
and prove the first estimate in Lem. 3.10.

4Here we use the notation (22)δ,ρ to explicitly indicate the dependence of (22)
on δ and ρ. We will use similar notation elsewhere; it will be a succinct way to refer
to equations with the parameters specialized in various ways.
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v0(s, t) :=

{
w′0(s, t+ 2δ), −2δ ≤ t ≤ −δ,
w0(s,−t− 2δ), t ≤ −2δ,

v2(s, t) :=

{
w′2(s,−t+ 2δ), δ ≤ t ≤ 2δ,

w2(s, t− 2δ), 2δ ≤ t,
(24)

v1(s, t) :=

{
w′1(s,−t), −δ ≤ t ≤ 0,

w1(s, t), 0 ≤ t ≤ δ.

The transformations (23), (24) are inverse to one another.

3.1. Complex and almost complex structures in the folded and
unfolded setups

The Gromov Compactness Theorem in [BW] is proved by “straightening”
the seams of a squiggly strip quilt. Pushing forward the standard complex
structure from the squiggly strip quilt to the new quilt with horizontal seams
produces a nonstandard complex structure, which is symmetric under con-
jugation. We axiomatize this property in the following definition.

Definition 3.2. Fix ρ > 0. A symmetric complex structure on [−ρ, ρ]2

is a complex structure j such that the equality

j(s, t) = −σ ◦ j(s,−t) ◦ σ

holds for any (s, t) ∈ [−ρ, ρ]2, where σ is the conjugation α∂s + β∂t 7→ α∂s −
β∂t.

When a symmetric complex structure, almost complex structures, and a
pseudoholomorphic squiggly strip quilt are “pushed forward” by the folding
operation (23), the result is a “coherent system of complex structures”, a
“coherent pair of almost complex structures”, and a “pseudoholomorphic
folded strip quilt”, defined as follows.

Definition 3.3. Fix δ > 0 and ρ > 0.

• A coherent collection of complex structures j on Qδ,ρ is a pair

j = (j02, ĵ) = ((j0, j2), (j′0, j
′
2, j
′
1, j1)), where j0, j2 (resp. j′0, j

′
2, j
′
1, j1) are

complex structures on Q02,δ,ρ (resp. on Q̂δ,ρ) such that the following
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equalities hold for all s ∈ (−ρ, ρ):

j`(s, 0) = −σ ◦ j′`(s, 0) ◦ σ,(25)

j′0(s, δ) = j′2(s, δ), j′1(s, δ) = j1(s, δ), j′1(s, δ) = −σ ◦ j′0(s, δ) ◦ σ.(26)

• A coherent pair of almost complex structures J on Qδ,ρ is a

pair J = (J02, Ĵ), where J02, Ĵ are almost complex structures

J02 : Q02,δ,ρ → J (M02, ω02), Ĵ : Q̂δ,ρ → J (M0211, ω0211)

satisfying the following compatibility condition: For s ∈ (−ρ, ρ), Ĵ(s, 0)
decomposes as

Ĵ(s, 0) = (−J02(s, 0))⊕ Ĵ11(s),

where Ĵ11(s), s ∈ (−ρ, ρ) is some almost-complex structure on M11.

• Fix a coherent collection j of complex structures and a coherent pair
J of almost complex structures on Qδ,ρ. A (J, j)-holomorphic size-
(δ, ρ) folded strip quilt is a collection of smooth maps w = (w02, ŵ) =
((w0, w2), (w′0, w

′
2, w

′
1, w1)) satisfying (22) that have finite energy,∫

Q02,δ,ρ
u∗02ω02 <∞,

∫
Q̂δ,ρ

û∗ω0211 <∞,

and satisfy the Cauchy–Riemann equations

∂J,jw = (∂02,J02,j02w02, ∂̂Ĵ ,ĵŵ) = 0,

where ∂J,j = (∂02,J02,j02 , ∂̂Ĵ ,ĵ) is the pair of operators defined by:

∂02,J02,j02w02 := (dw0,dw2) ◦ (j0, j2)(∂s)− J02(−, w02) ◦ (∂sw0, ∂sw2),

∂̂Ĵ ,ĵŵ := (dw′0,dw
′
2, dw

′
1,dw1) ◦ (j′0, j

′
2, j
′
1, j1)(∂s)(27)

− Ĵ(−, ŵ) ◦ (∂sw
′
0, ∂sw

′
2, ∂sw

′
1, ∂sw1).

Given a (J0, J1, J2, j)-holomorphic squiggly strip quilt (v0, v1, v2) with j sym-
metric, we can produce a folded strip quilt like this: Define a coherent col-
lection j of complex structures by

j02(s, t) = (j0, j2)(s, t) := (−σ ◦ j(s,−t− 2δ) ◦ σ, j(s, t+ 2δ)),(28)

ĵ(s, t) = (j′0, j
′
2, j
′
1, j1)(s, t) := (j(s, t− 2δ),−σ ◦ j(s,−t+ 2δ) ◦ σ,

− σ ◦ j(s,−t) ◦ σ, j(s, t))
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and a coherent pair J of almost complex structures by

J02(s, t) := (−J0(s,−t− 2δ))⊕ J2(s, t+ 2δ),(29)

Ĵ := J0(t− 2δ)⊕ (−J2(−t+ 2δ))⊕ (−J1(s,−t))⊕ J1(s, t).

If (w02, ŵ) is defined by applying (23) to (v0, v1, v2), then (w02, ŵ) is a (J, j)-
holomorphic size-(δ, ρ) folded strip quilt. Indeed, (w02, ŵ) have the correct
domains and codomains and satisfy the seam conditions, as discussed earlier,
and the finite-energy hypothesis on (v0, v1, v2) implies that (w02, ŵ) has finite
energy. The Cauchy–Riemann equation (11) for v0 on (−ρ, ρ)× (−ρ,−2δ]
can be rewritten as

dw0(s, t) ◦ (−σ ◦ j(s,−t− 2δ) ◦ σ)

− (−J0(s,−t− 2δ, w0(s, t))) ◦ dw0(s, t) = 0

for w0(s, t) := v0(s,−t− 2δ) as in (23), so w0 is (−J0(s,−t− 2δ), j0(s, t))-
holomorphic on Q02,δ,ρ. Five similar calculations complete the check that
(w02, ŵ) is (J, j)-holomorphic.

Finally, we consider the coordinate representation of a coherent collec-
tion of complex structures. Fix a coherent collection

j = ((j0, j2), (j′0, j
′
2, j
′
1, j1))

of complex structures on Qδ,ρ. Define a0(s, t), c0(s, t) ∈ R by

j0(s, t)(∂s) =: a0(s, t)∂s + c0(s, t)∂t,(30)

and define aj(s, t), cj(s, t) for j ∈ {1, 2} and a′k(s, t), c
′
k(s, t) for k ∈ {0, 1, 2}

in the same way. Then (25) and (26) translate into the following conditions
on these coefficients:

aj(s, 0) = −a′j(s, 0), cj(s, 0) = c′j(s, 0) ∀ j ∈ {0, 1, 2},(31)

a0(s, δ) = a2(s, δ), a′1(s, δ) = a1(s, δ), a0(s, δ) = −a′1(s, δ),

c0(s, δ) = c2(s, δ), c′1(s, δ) = c1(s, δ), c0(s, δ) = c′1(s, δ).

We will use this coordinate representation in §3.2.

3.2. A collection of δ-independent elliptic estimates

This subsection is devoted to proving Lemma 3.8, which is the crucial δ-
independent elliptic estimate needed for the proof of Theorem 3.1.
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In addition to the data fixed at the beginning of §3, fix for §3.2 ρ > 0
and a pair of maps u = (u02, u) satisfying (22)δ=0,ρ.

Furthermore, we continue to denote by i the standard coherent collection of
complex structures defined in (60), and for any δ ∈ (0, ρ/4] we define a pair
uδ = (u02,δ, ûδ) of smooth maps satisfying (22)δ,ρ by:

u02,δ := u02|Q02,δ,ρ
, ûδ(s, t) := u(s).(32)

Our approach is inspired by [WW1], but we deviate from that approach
by working with a special connection which allows us to drop boundary
terms from the H2-estimate [WW1, Lemma 3.2.1(b)]. This special connec-
tion is constructed in the following lemma, which is a generalization to the
immersed case of a connection constructed in [W2].

Lemma 3.4. There is an assignment δ 7→ ∇δ = (∇02,δ, ∇̂δ) that sends δ ∈
(0, ρ/4] to a pair of connections ∇02,δ resp. ∇̂δ on u∗02,δTM02 → Q02,δ,ρ resp.

û∗δTM0211 → Q̂δ,ρ such that the following hold:

• Parallel transport under ∇̂δ preserves û∗δT(L01×L12)T and û∗δT(M02×
∆M1

);

• For a section ζ̂∈Γ(û∗δT(M02×∆M1
)) we have ∇02,δ,s(p ◦ ζ̂)=p ◦ ∇̂δ,sζ̂,

where p : û∗δT(M02 ×∆M1
)→ u∗02,δTM02|t=0 is the projection;

• For δ1 < δ2, the restrictions of ∇δ1 ,∇δ2 agree:

∇02,δ1 |Q02,δ2,ρ
= ∇02,δ2 , ∇̂δ2 |Q̂δ1,ρ = ∇̂δ1 .

Proof. Fix metrics on u∗02TM02 and u∗TM0211 so that given a smooth sub-
bundle, we may form its orthogonal complement. For any fixed s ∈ (−ρ, ρ)
we denote:

Λ0211 := Tu(s)(L01 × L12)T , ∆ := Tu(s)(M02 ×∆M1
),

Λ̂02 := Λ0211 ∩∆, Λ02 := Tπ02,u(s)(Λ̂02).

The transversality of L01 × L12 tM0 ×∆M1
×M2 implies Λ̂02 = Tu(s)L̂02,

so the projection from Λ̂02 to Λ02 is injective (see e.g. [WW2, Lemma 2.0.5]).
Hence the intersection of Λ̂02 and {0} × T(u1(s),u1(s))∆M1

is trivial. It follows

that if we let C1 denote the complement of Λ̂02 + ({0} × T(u1(s),u1(s))∆M1
)

in ∆, the diagonal decomposes as ∆ = Λ̂02 ⊕ C1 ⊕ ({0} × T(u1(s),u1(s))∆M1
).
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Let C2 be the complement of Λ̂02 in Λ0211. Transversality implies

Tu(s)M0211 = Λ0211 + ∆,

so we have deduced the following decomposition:

Tu(s)M0211 = C2 ⊕ Λ̂02 ⊕ C1 ⊕ ({0} × T(u1(s),u1(s))∆M1
).

The subspace Λ0211 (resp. ∆) is given by the sum of the first two factors
(resp. the sum of the last three factors) in this decomposition. Therefore, if
we choose connections on each of these four subbundles and set ∇ to be the
product connection, then extend ∇ to a connection ∇̂δ on û∗δTM0211 → Q̂δ,ρ
by defining ∇̂δ,s((s, t) 7→ ζ̂(s, t)) := ∇s(s 7→ ζ̂(s, t)) and defining ∇̂δ,t((s, t) 7→
ζ̂(s, t)) := ∇ĝ,t(t 7→ ζ̂(s, t)) in terms of the Levi-Civita connection ∇ĝ, ∇̂δ
satisfies the first bullet.

Denote by p : u∗T(M02 ×∆M1
)→ u∗02TM02|t=0 projection and by i :

u∗02TM02|t=0 → u∗02T(M02 ×∆M1
) the inclusion defined by sending v ∈

Tu02(s,0)M02 to (v, 0) ∈ Tu(s)(M02 ×∆M1
). Define a connection p∗∇ on

u∗02TM02|t=0 by (p∗∇)(ζ02) := p ◦ ∇(i ◦ ζ02). Extend p∗∇ in any way to a
connection ∇02 on u∗02TM02; for δ ∈ (0, ρ/4], define ∇02,δ := ∇02|Q02,δ,ρ

. The

second bullet now follows from a computation, in which (ζ02, ζ̂1, ζ̂1) is an
arbitrary section of û∗δT(M02 ×∆M1

):

p ◦ ∇̂δ,sζ̂ = p ◦ ∇̂δ,s(ζ̂02, ζ̂1, ζ̂1)

= p ◦ ∇̂δ,s(i ◦ p ◦ ζ̂) + p ◦ ∇̂δ,s(0, ζ̂1, ζ̂1) = ∇02,δ,s(p ◦ ζ̂).

The term p ◦ ∇̂δ,s(0, ζ̂1, ζ̂1) in the third quantity vanishes since the subbundle

{0} × T(ŵδ,1,ŵδ,1)∆M1
is preserved under parallel transport by ∇̂δ,s. �

We will use the connections ∇δ just constructed throughout the rest of §3.2.
Due to the third property in Lemma 3.4, it is unambiguous to drop the
subscript and refer to ∇δ simply as ∇. Note that this pair of connections
induce connections on the pullbacks by u02,δ or ûδ of any tensor bundle of
TM02 or TM0211 in a canonical way.

Before we state the elliptic estimate Lemma 3.8, we need to define our
function spaces and delbar operators.

Definition 3.5. Fix r ∈ (0, ρ), δ > 0, and k ≥ 2. Define the space of sec-
tions Γk

uδ(Qδ,r) and the norms ‖ − ‖Hk(Qδ,r), ‖ − ‖H̃k(Qδ,r) as follows.
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• Define Γk
uδ(Qδ,r) by:

Γkuδ(Qδ,r) :=

{(
ξ02 ∈ Hk(Q02,δ,r, u

∗
02,δTM02),

ξ̂ ∈ Hk(Q̂δ,r, û
∗
δTM0211)

)∣∣∣∣∣ (33)

}
,

where (33) denotes the following linearized boundary conditions:

(ξ02(s, 0), ξ̂(s, 0)) ∈ T∆M02
× T∆M1

,(33)

ξ̂(s, δ) ∈ T(L01 × L12)T ∀ s ∈ (−r, r).

• Define two norms ‖ − ‖Hk(Qδ,r), ‖ − ‖H̃k(Qδ,r) on Γkuδ by:

‖(ξ02, ξ̂)‖2Hk(Qδ,r)
:= ‖ξ02‖2Hk(Q02,r,u∗02,δTM02) + ‖ξ̂‖2

Hk(Q̂δ,r,û∗δTM0211)
,

‖(ξ02, ξ̂)‖2H̃k(Qδ,r)
:= ‖(ξ02, ξ̂)‖2Hk(Qδ,r)

+

k−2∑
l=0

‖(∇lξ02,∇lξ̂)‖2C0H1(Qδ,r)

:= ‖(ξ02, ξ̂)‖2Hk(Qδ,r)

+

k−2∑
l=0

(
sup

t∈[0,r−2δ)
‖∇l02ξ02(−, t)‖2H1((−r,r),u02,δ(−,t)∗TM02)

+ sup
t∈[0,δ]

‖∇̂lξ̂(−, t)‖2H1((−r,r),ûδ(−,t)∗TM0211)

)
.

Note that ‖ − ‖H̃k(Qδ,r)
is a well-defined norm on Γkuδ(Qδ,r) due to the em-

bedding H1 ↪→ C0 for one-dimensional domains. However, the constant in
the bound ‖ − ‖H̃k(Qδ,r)

≤ C(δ, r)‖ − ‖Hk(Qδ,r) is δ-dependent.

In [WW1], Wehrheim–Woodward introduced an exponential map with
quadratic corrections, which allowed them to treat the Lagrangian boundary
conditions as totally geodesic. Wehrheim–Woodward assumed the compo-
sition L01 ◦ L12 to be embedded, but their construction of the corrected
exponential map only used the immersedness of that composition. We may
therefore import their corrected exponential map into our setting:

Definition 3.6. Given r > 0 and δ > 0, define the corrected exponential
map euδ and its linearization deuδ and s- and t-derivatives as follows.

• Let euδ = (eu02,δ
, eûδ) be the pair of maps defined in [WW1, Lemma

3.1.2]; euδ sends ζ ∈ Γ2
uδ(Qδ,r) with ‖ζ‖C0(Qδ,r) sufficiently small to a

pair of maps euδ(ζ) = (eu02,δ
(ζ02), eûδ(ζ̂)) satisfying (22).
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• For p02∈u∗02,δTM02|(s,t), deu02,δ
(p02) : u∗02,δTM02|(s,t)→Teu02,δ (p02)M02

is defined by including the fiber u∗02,δTM02|(s,t) into Tp02u
∗
02,δTM02

as the vertical vectors, then postcomposing with the tangent map
T(eu02,δ

)p02 : Tp02u
∗
02,δTM02→Teu02,δ (p02)M02. The linearization deûδ(p̂)

is defined analogously.

• For p02 ∈ u∗02,δTM02|(s,t), define Dsew02
(p02) ∈ Tew02 (p02)M02 to be

the vector gotten by choosing a flat section σ of w∗02TM02|(s−ε,s+ε)×{t}
for ε small, then setting Dsew02

(p02) := Ts(ew(σ))(∂s). The deriva-
tives Dtew02

(p02),Dseŵ(p̂),Dteŵ(p̂) are defined analogously, and each
of these derivatives depends smoothly on the argument p02 or p̂.

This exponential map will allow us to define fiberwise complex structures in
the following, which are parametrized by vector fields rather than by maps.

In the following definition of the linear delbar operator, we must go into
coordinates. Fix δ > 0 and a coherent collection j = ((j0, j2), (j′0, j

′
2, j
′
1, j1))

of complex structures on Qδ,ρ. Then j induces via (30) two pairs of endo-

morphisms A = (A02, Â), C = (C02, Ĉ) of u∗02,δTM02, û
∗
δTM0211, with C02, Ĉ

defined as follows and A02, Â defined in analogous fashion:

(34)

C02(s, t) : Tu02,δ(s,t)M02 → Tu02,δ(s,t)M02,

(v0, v2) 7→ (c0(s, t)v0, c2(s, t)v2),

Ĉ(s, t) : Tûδ(s,t)M0211 → Tûδ(s,t)M0211,

(v′0, v
′
2, v
′
1, v1) 7→ (c′0(s, t)v′0, c

′
2(s, t)v′2, c

′
1(s, t)v′1, c1(s, t)v1).

Note that the conditions (31) (which are equivalent to the coherence condi-
tions (25), (26)) imply that for any s ∈ [−ρ, ρ], the endomorphisms

Ĉ(s, δ), C02(s, 0)× (Ĉ|(u′0,u′2)∗TM02
)(s, 0), (Ĉ|(u′1,u1)∗TM11

)(s, 0)

are scalar multiples of the identity; we will use this fact later in §3.2. In
addition, the reader may find it helpful to note that in the case that j is
the standard collection i, A02 and Â are zero and C02 and Ĉ are identity
operators.

Definition 3.7. For δ > 0, r > 0, k ≥ 2, a coherent collection j of complex
structures and a coherent pair of almost complex structures J on Qδ,r, and
ξ ∈ Γ2

uδ(Qδ,r), define the linear delbar operator Dξ to be the following

map fromH1(Q02,δ,r, u
∗
02,δTM02)×H1(Q̂δ,r, û

∗
δTM0211) toH0(u∗02,δTM02)×
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H0(û∗δTM0211):

Dξζ := A∇sζ + C∇tζ − J(ξ)∇sζ
:=
(
A02∇02,sζ02 + C02∇02,tζ02 − J02(ξ02)∇02,sζ02,

Â∇̂sζ̂ + Ĉ∇̂tζ̂ − Ĵ(ξ̂)∇̂sζ̂
)
,

where J(ξ) is the pulled-back complex structure

J(ξ)(s, t) := deuδ(ξ(s, t))
−1J(s, t, euδ(ξ(s, t)))deuδ(ξ(s, t))

:=
(
deu02,δ

(ξ02(s, t))−1J02(s, t, eu02,δ
(ξ02(s, t)))deu02,δ

(ξ02(s, t)),

deûδ(ξ̂(s, t))
−1Ĵ(s, t, eûδ(ξ̂(s, t)))deûδ(ξ̂(s, t))

)
.

If ζ = (ζ02, ζ̂) is a pair of sections in Γ2
uδ(Qδ,r), we can write ∂s(ew(ζ)) and

∂t(ew(ζ) in terms of deuδ ,Dseuδ ,Dteuδ :

(35)

∂s(euδ(ζ)) := (∂s(eu02,δ
(ζ02)), ∂s(eûδ(ζ̂)))

:= (deu02,δ
(ζ02)(∇02,sζ02)

+ Dseu02,δ
(ζ02),deûδ(ζ̂)(∇̂sζ̂) + Dseûδ(ζ̂)),

∂t(euδ(ζ)) := (∂t(eu02,δ
(ζ02)), ∂t(eûδ(ζ̂)))

:= (deu02,δ
(ζ02)(∇02,tζ02)

+ Dteu02,δ
(ζ02),deûδ(ζ̂)(∇̂tζ̂) + Dteûδ(ζ̂)).

This decomposition allows us to relate the delbar operator ∂J,j from (27)
with the linear delbar operator Dξ just defined:

∂J,j(euδ(ζ)) = A∂s(euδ(ζ)) + C∂t(euδ(ζ))− J(s, t, euδ(ζ))∂s(euδ(ζ))

= deuδ(ζ)
(
A∇sζ + C∇tζ − deuδ(ζ)−1J(s, t, ew(ζ))deuδ(ζ)∇sζ

)
+
(
ADseuδ(ζ) + C Dteuδ(ζ)− J(s, t, euδ(ζ))Dseuδ(ζ)

)
=: deuδ(ζ)Dζζ + F (ζ).(36)

The inhomogeneous term F depends smoothly on ζ, which is crucial for the
proof of Theorem 3.1.

The following is the main result of §3.2. It generalizes [WW1, Lemma
3.2.1], which bounds the H1-norm of ζ when the domain complex structure
is standard.
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Lemma 3.8. There is a constant ε > 0 and for every C0 > 0, k ≥ 0, and
r1, r2 with 0 < r1 < r2 < ρ there is a constant C1 such that the inequality

‖ζ‖H̃k+1(Qδ,r1
) ≤ C1

(
‖Dζζ‖H̃k(Qδ,r2

) + ‖ζ‖H0(Qδ,r2
)

)
(37)

holds for any choice of δ ∈ (0, r1/4], a coherent collection j of complex struc-
tures on Qδ,ρ with ‖j− i‖C0 ≤ ε and ‖j− i‖Cmax{k,1} ≤ C0, a coherent pair J

of almost complex structures on Qδ,ρ which are contained in a Cmax{k,1}-ball
of radius C0 and which induce by (4) metrics whose pairwise constants of
equivalence are bounded above by C0, and a pair of sections ζ ∈ Γk+2

uδ (Qδ,r2)
with ‖ζ‖C0 ≤ ε, ‖ζ‖C1 ≤ C0, and ‖ζ‖H̃k(Qδ,r2 ) ≤ C0.

We begin by establishing δ-independent Sobolev estimates for elements
of Γkuδ(Qδ,r).

Lemma 3.9. Fix C0 > 0, k ≥ 0, and r1, r2 with 0 < r1 < r2 < ρ. Then
there is a constant C1 and a polynomial P such that the inequality

‖∇kζ‖C0H1(Qδ,r) ≤ C1

(
‖ζ‖Hk+2(Qδ,r) + ‖∇k−1Dξζ‖C0H1(Qδ,r)

)
(38)

+ P

(
k−1∑
l=1

‖∇lξ‖C0H1(Qδ,r)

)

×

(
‖ζ‖Hk+1(Qδ,r) +

k−2∑
l=0

‖∇lDξζ‖C0H1(Qδ,r)

)

(where the term ‖∇k−1Dξζ‖C0H1(Qδ,r) is to be omitted when k = 0) holds for
any choice of δ ∈ (0, r1/4], r ∈ [r1, r2], a coherent collection j of complex
structures on Qδ,ρ with ‖j− i‖Ck ≤ C0, a coherent pair J of compatible al-

most complex structures on Qδ,ρ which are contained in a Ck-ball of radius
C0 and which induce by (4) metrics whose pairwise constants of equiva-
lence are bounded above by C0, and pairs of sections ζ, ξ ∈ Γk+2

uδ (Qδ,r) with
‖ξ‖C1 ≤ C0.

Here is the idea of the proof: [WW1, Lemma 3.1.4] is a uniform Sobolev
inequality for sections ζ satisfying the linearized boundary conditions. Since
the special connection constructed in Lemma 3.4 preserves the linearized
boundary conditions, [WW1, Lemma 3.1.4] immediately gives a bound on
‖∇ksζ‖C0H1(Qδ,r). To derive a bound on ‖∇αζ‖C0H1(Qδ,r) for α ∈ {s, t}k, we
trade indices using the operator Dξ.
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Proof. We prove this lemma in two steps: first, we prove a slightly differ-
ent inequality, which has terms of the form ‖∇lζ‖C0H1 on the right-hand
side. Then, we prove the desired inequality by inductively removing these
unwanted terms.

Throughout this proof, C1 and P will denote a δ-independent constant
and δ-independent polynomial that may change from line to line.

Step 1. We prove the following inequality:

‖∇kζ‖C0H1 ≤ C1

(
‖ζ‖Hk+2 + ‖∇k−1Dξζ‖C0H1(39)

+ P

(
k−1∑
l=1

‖∇lξ‖C0H1

)
·
k−1∑
l=0

‖∇lζ‖C0H1

)
.

We begin by proving the k = 0 case of (39), which is essentially a conse-
quence of [WW1, Lemma 3.1.4]. One modification must be made to that
lemma: we must relax the hypothesis that the composition L01 ◦ L12 is
embedded to the hypothesis that this composition is immersed. To make
this modification, change the proof of [WW1, Lemma 3.1.4] like so: instead
of using [WW1, Lemma 3.1.3(c)], use the fact that for ξ̂ = (ξ′02, ξ

′
1, ξ1) ∈

C∞((−r, r), u∗TM0211),

‖ξ̂‖H1((−r,r)) ≤ C1

(
‖ξ′02‖H1((−r,r)) + ‖ξ′1 − ξ1‖H1((−r,r)) + ‖π⊥0211ξ̂‖H1((−r,r))

)
,

where π⊥0211 is the projection onto the orthogonal complement of the tangent
space of (L01 × L12)T . This inequality follows from the pointwise estimate
|ξ̂| ≤ C(|ξ′02|+ |ξ′1 − ξ1|+ |π⊥0211ξ̂|), which can be proved like [WW1, Lemma
3.1.3b].

Next, fix k ≥ 1; let us prove (39) for this k. Let ζ, ξ be sections in Γk+2
uδ ,

and assume that the other hypotheses of the lemma are satisfied. We will
show that for every tuple α = (α1, . . . , αk) ∈ {s, t}k, there is a polynomial
Pα so that the following inequality holds:

‖∇αζ‖C0H1 ≤ C1

(
‖ζ‖Hk+2 + ‖∇k−1Dξζ‖C0H1(40)

+ Pα

(
k−1∑
l=1

‖∇lξ‖C0H1

)
·
k−1∑
l=0

‖∇lζ‖C0H1

)
.

We prove this by induction on nt(α) := #{m ∈ [1, k] | αm = t}.
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nt(α) = 0. If α = (s, . . . , s), then since the special connection we have
constructed preserves the boundary conditions of Γk+2

uδ , the desired in-
equality follows immediately from the k = 0 case of the current lemma:
‖∇ksζ‖C0H1 ≤ C1‖∇ksζ‖H2 .

nt(α) ∈ [1, k]. Let us prove the inductive step (i.e. that there is a
polynomial Pα for which (40) holds) for some nt(α) ∈ [1, k]. Write α =
(α′, αm = t, s, . . . , s). Using the assumed bound on j, we estimate:

‖∇αζ‖C0H1 = ‖∇α′(C−1(Dξ(∇k−ms ζ)− (A− J(ξ))∇k−m+1
s ζ))‖C0H1

≤ C1

(
‖∇α′Dξ(∇k−ms ζ)‖C0H1 + ‖∇α′∇k−m+1

s ζ‖C0H1

+ ‖∇α′(J(ξ)∇k−m+1
s ζ)‖C0H1 +

m−2∑
l=0

‖∇k−m+l+1ζ‖C0H1

+

m−2∑
l=0

‖∇l(J(ξ)∇k−m+1ζ)‖C0H1

)
.

Let us bound separately the five terms in the last expression.

‖∇α′Dξ(∇k−ms ζ)‖C0H1 . We estimate:

‖∇α′Dξ(∇k−ms ζ)‖C0H1

≤ ‖∇α′∇k−ms Dξζ‖C0H1

+

k−m−1∑
l=0

‖∇α′∇ls(∂sA∇k−m−ls ζ + ∂sC∇k−m−l−1
s ∇tζ)‖C0H1

+

k−m∑
l=1

‖∇α′∇ls(J(ξ))∇k−m−l+1
s ζ‖C0H1

+

k−m−1∑
l=0

‖∇α′(C∇ls[∇s,∇t]∇k−m−l−1
s ζ)‖C0H1 .

Let us bound each of the four terms on the right-hand side. The first
term on the right-hand side, ‖∇α′∇k−ms Dξζ‖C0H1 , is bounded by
‖∇k−1Dξζ‖C0H1 . Due to the assumed bound on j, the term

k−m−1∑
l=0

‖∇α′∇ls(∂sA∇k−m−ls ζ + ∂sC∇k−m−l−1
s ∇tζ)‖C0H1
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is bounded by a constant times
∑k−1

l=0 ‖∇lζ‖C0H1 . To bound the term∑k−m
l=1 ‖∇α′∇ls(J(ξ))∇k−m−l+1

s ζ‖C0H1 , observe that the assumed bound
on J yields:

k−m∑
l=1

‖∇α′∇ls(J(ξ))∇k−m−l+1
s ζ‖C0H1

≤
∑
β,γ≥0,

β+γ=k−2

‖∇β+1(J(ξ))∇γ+1ζ‖C0H1

≤ P

(
k−1∑
l=1

‖∇lξ‖C0H1

)
·
k−1∑
l=1

‖∇lζ‖C0H1 .

(In the last inequality we have used the Banach algebra property of
C0H1.) Finally, the curvature of ∇ is a tensor, so the term

k−m−1∑
l=0

‖∇α′(C∇ls[∇s,∇t]∇k−m−l−1
s ζ)‖C0H1

can be bounded by a constant times
∑k−2

l=0 ‖∇lζ‖C0H1 .

‖∇α′∇k−m+1
s ζ‖C0H1 . By the inductive hypothesis, this term is bounded

appropriately:

‖∇α′∇k−m+1
s ζ‖C0H1 ≤ C1

(
‖ζ‖Hk+2 + ‖∇k−1Dξζ‖C0H1

+ P(α′,s,...,s)

(
k−1∑
l=1

‖∇lξ‖C0H1

)
·
k−1∑
l=0

‖∇lζ‖C0H1

)
.

‖∇α′(J(ξ)∇k−m+1
s ζ)‖C0H1 . To bound this term, it suffices to bound

‖J(ξ)∇α′∇k−m+1
s ζ‖C0H1 and ‖∇β+1(J(ξ))∇γ+1ζ‖C0H1 separately, where

in the second term β and γ are nonnegative integers with β + γ = k − 2.
The quantity ‖J(ξ)∇α′∇k−m+1

s ζ‖C0H1 can be bounded using the Banach
algebra property of C0H1, the assumed C1-bounds on ξ, and the induc-
tive hypothesis. Using the Banach algebra property of C0H1, the quan-

tity ‖∇β+1(J(ξ))∇γ+1ζ‖C0H1 can be bounded by P
(∑k−1

l=1 ‖∇lξ‖C0H1

)
·∑k−1

l=1 ‖∇lζ‖C0H1 .
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m−2∑
l=0

‖∇k−m+l+1ζ‖C0H1 . This term is already bounded appropriately.

m−2∑
l=0

‖∇l(J(ξ)∇k−m+1ζ)‖C0H1 . By the Banach algebra property of C0H1,

this term is bounded by P
(∑k−2

l=1 ‖∇lξ‖C0H1

)
·
∑k−1

l=1 ‖∇lζ‖C0H1 .

This establishes the inductive step, so we have proven (39) for all k ≥ 0.

Step 2. We prove (38) by induction on k.

As in Step 1, the k = 0 case follows from [WW1, Lemma 3.1.4]. Next, say
that (38) holds up to, but not including, some k ≥ 1. By (39), we have:

‖∇kζ‖C0H1 ≤ C1

(
‖ζ‖Hk+2 + ‖∇k−1Dξζ‖C0H1

+ P

(
k−1∑
l=1

‖∇lξ‖C0H1

)
·
k−1∑
l=0

‖∇lζ‖C0H1

)
.

Replacing the sum
∑k−1

l=0 ‖∇lζ‖C0H1 appearing in the last term using the
inductive hypothesis finishes the inductive step. �

We now turn to the proof of Lemma 3.8. Here is our strategy: in Lemma
3.10, we bound ‖ζ‖H1 in terms of ‖ζ‖H0 and ‖Dζζ‖H0 , for ζ supported in
Qδ,r. In Lemma 3.11, we use Lemma 3.10 to bound ‖η∇kζ‖H1 in terms of
‖ζ‖H̃k and ‖Dζζ‖H̃k , where η is supported in Q02,δ,r and ζ has arbitrary
support. Finally, we use Lemma 3.11 to prove Lemma 3.8.

Lemma 3.10 (elliptic estimate for k=0 and ζ compactly supported).
There is a constant ε > 0 and for every C0 > 0, k ≥ 0, and r1, r2 with
0 < r1 < r2 < ρ there is a constant C1 such that the inequality

‖∇ζ‖H0(Qδ,r) ≤ C1

(
‖Dξζ‖H0(Qδ,r) + ‖ζ‖H0(Qδ,r)

)
(41)

holds for any choice of δ ∈ (0, r1/4], r ∈ [r1, r2], a coherent collection j of
complex structures on Qδ,ρ with ‖j− i‖C0 ≤ ε and ‖j− i‖C1 ≤ C0, a coherent

pair J of almost complex structures on Qδ,ρ which are contained in a C1-
ball of radius C0 and which induce by (4) metrics whose pairwise constants



i
i

“1-Bottman” — 2020/3/11 — 0:37 — page 40 — #40 i
i

i
i

i
i

40 Nathaniel Bottman

of equivalence are bounded above by C0, and sections ζ, ξ ∈ Γ2
uδ(Qδ,r) with

‖ξ‖C0 ≤ ε, ‖ξ‖C1 ≤ C0, and supp ζ02, supp ζ̂ compact subsets of Q02,δ,r, Q̂δ,r.

Proof. Throughout this proof, C1 will denote a δ-independent constant that
may change from line to line, and A = (A02, Â), C = (C02, Ĉ) will be the
endomorphisms of u∗02,δTM02 and û∗δTM0211 defined in (34).

We begin by fixing convenient metrics on M02 and M0211 that will be
used for the pointwise norms in the definition of the Sobolev norms. Via
(4), J induces fiberwise metrics g02, ĝ on u∗02,δTM02 and û∗δTM0211. In this
proof, however, we will use the pullback metrics gξ = (g02,ξ, ĝξ) of g02, ĝ

under deu02,δ
(ξ02), deûδ(ξ̂); note that gξ is J(ξ)-invariant. If we pick ε > 0 to

be sufficiently small, then deuδ(ξ) is C0-close to the identity, and hence the

induced norm ‖ − ‖ξ,Hk :=
(∫

Qδ,r
| − |2ξ dsdt

)1/2
on Γkuδ(Qδ,r) is equivalent

to the standard norms ‖ − ‖Hk = ‖ − ‖0,Hk . (Here we have denoted | − |ξ :=
gξ(−,−)1/2.)

With these metrics we calculate for ζ ∈ Γ2
uδ compactly supported and

ξ ∈ Γ2
uδ satisfying ‖ξ‖C0(Qδ,r) ≤ ε and ‖∇ξ‖C0(Qδ,r) ≤ C0:

‖Dξζ‖2ξ,H0 =
∫
Qδ,r

(
(|∇sζ|2ξ + |A∇sζ|2ξ) + 2gξ(A∇sζ, C∇tζ) + |C∇tζ|2ξ

)
dsdt

+
∫
Qδ,r

(
gξ(C∇sζ,J(ξ)∇tζ)− gξ(C∇tζ,J(ξ)∇sζ)

)
dsdt.(42)

Let us estimate the two integrals on the right-hand side separately. We begin
with the first integral:

∫
Qδ,r

(
(|∇sζ|2ξ + |A∇sζ|2ξ) + 2gξ(2A∇sζ, 1

2C∇tζ) + |C∇tζ|2ξ
)

dsdt(43)

AM-GM
≥

∫
Qδ,r

(
(|∇sζ|2ξ − 3|A∇sζ|2ξ) + 3

4 |C∇tζ|
2
ξ

)
dsdt

≥ 5
8‖∇ζ‖

2
ξ,H0 ,

where the last inequality follows from the hypothesis ‖j− i‖ ≤ ε as long as
ε is chosen small enough.

To bound the second integral on the right-hand side of (42), we first
derive a convenient formula for its integrand:
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gξ(C∇sζ,J(ξ)∇tζ)− gξ(C∇tζ,J(ξ)∇sζ)(44)

=
(
∂s(gξ(Cζ,J(ξ)∇tζ))− (∇sgξ)(Cζ,J(ξ)∇tζ)

− gξ((∇sC)ζ,J(ξ)∇tζ)− gξ(Cζ,∇s(J(ξ))∇tζ)

− gξ(Cζ,J(ξ)∇s∇tξ)
)

−
(
∂t(gξ(Cζ,J(ξ)∇sζ))−∇t(gξ)(Cζ,J(ξ)∇sζ)

− gξ((∇tC)ζ,J(ξ)∇sζ)− gξ(Cζ,∇t(J(ξ))∇sζ)

+ gξ(Cζ,J(ξ)[∇s,∇t]ζ)− gξ(Cζ,J(ξ)∇s∇tξ)
)

=
(
∂s(gξ(Cζ,J(ξ)∇tζ))− ∂t(gξ(Cζ,J(ξ)∇sζ))

)
−
(
(∇sgξ)(Cζ,J(ξ)∇tζ)− (∇tgξ)(Cζ,J(ξ)∇sζ)

)
−
(
gξ((∇sC)ζ,J(ξ)∇tζ)− gξ((∇tC)ζ,J(ξ)∇sζ)

)
− gξ(Cζ,∇s(J(ξ))∇tζ −∇t(J(ξ))∇sζ)− gξ(Cζ,J(ξ)[∇s,∇t]ζ).

We can now use Green’s formula and the assumed C1-bounds on j, J, and ξ
to bound the second integral on the right-hand side of (43):∫

Qδ,r

(
gξ(C∇sζ,J(ξ)∇tζ)− gξ(C∇tζ,J(ξ)∇sζ)

)
dsdt(45)

(44)
=
∫

(−r,r)×{0}gξ(Cζ,J(ξ)∇sζ) dsdt−
∫

(−r,r)×{δ}ĝξ(Ĉζ̂, Ĵ(ξ̂)∇̂sζ̂) dsdt

−
∫
Qδ,r

(
(∇sgξ)(Cζ,J(ξ)∇tζ)− (∇tgξ)(Cζ,J(ξ)∇sζ)

)
dsdt

−
∫
Qδ,r

(
gξ((∇sC)ζ,J(ξ)∇tζ)− gξ((∇tC)ζ,J(ξ)∇sζ)

)
dsdt

−
∫
Qδ,r

gξ(Cζ,∇sJ(ξ))∇tζ −∇t(J(ξ))∇sζ) dsdt

−
∫
Qδ,r

gξ(Cζ,J(ξ)[∇s,∇t]ζ) dsdt

≥ −
∫
Qδ,r

C1|ζ|ξ(|ζ|ξ + |∇ζ|ξ) dsdt
AM-GM
≥ −1

2‖∇ζ‖
2
ξ,H0 − C1‖ζ‖2ξ,H0 ,

where in the first inequality we have eliminated the integrals over the t =
0 and t = δ boundary via the coherence condition on j and the fact that
gξ(ζ,J(ξ)∇sζ)|t=0 and ĝξ(ζ̂, Ĵ(ξ̂)∇̂sζ̂)|t=δ vanish. Indeed, ĝξ(ζ̂, Ĵ(ξ̂)∇̂sζ̂)|t=δ
vanishes by the Lagrangian boundary condition:

〈ζ̂, Ĵ(ξ̂)∇̂sζ̂〉ξ̂|t=δ = ω0211(deûδ(ξ̂)ζ̂, Ĵ(eûδ(ξ̂))
2deûδ(ξ̂)∇̂sζ̂)|t=δ

= −ω0211(deûδ(ξ̂)ζ̂,deûδ(ξ̂)∇̂sζ̂)|t=δ = 0,

where we crucially used the fact that both the exponential map deûδ(ξ̂)
and the connection ∇̂ preserve T(L01 × L12)T . The boundary term
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gξ(ζ,J(ξ)∇sζ)|t=0 vanishes due to the facts that deuδ(ξ) preserves T∆M02
×

T∆M1
, ∇ satisfies ∇02,sζ02|t=0 = p ◦ ∇̂sζ̂|t=0 for p : M0211 →M02 the pro-

jection, and ω02, ω0211 satisfy ω0211|TM02×T∆M1
= −p∗ω02:

〈ζ,J(ξ)∇sζ〉ζ |t=0 = −ω02(deu02,δ
(ξ02)ζ02,deu02,δ

(ξ02)∇02,sζ02)|t=0

− ω0211(deûδ(ξ̂)ζ̂,deûδ(ξ̂)∇̂sξ̂)|t=0

= −ω02(deu02,δ
(ξ02)(p ◦ ζ̂),deu02,δ

(ξ02)(p ◦ ∇̂sζ̂))|t=0

+ p∗ω02(deûδ(ξ̂)ζ̂,deûδ(ξ̂)∇̂sζ̂)|t=0 = 0.

Combining (42), (43), and (45) yields the following inequality:

‖Dξζ‖2ξ,H0 ≥ 1
8‖∇ζ‖

2
ξ,H0 − C1‖ζ‖2ξ,H0 .

Adding C1‖ζ‖2ξ,H0 to both sides of this inequality and taking the square root
of the result, we obtain:

‖∇ζ‖ξ,H0 ≤ C1(‖Dξζ‖2ξ,H0 + ‖ζ‖2ξ,H0)1/2 ≤ C1(‖Dξζ‖ξ,H0 + ‖ζ‖ξ,H0).

In this estimate, we may replace ‖ − ‖ξ,H0 with ‖ − ‖H0 by using the δ-
independent uniform equivalence of these norms, which yields (41). �

Lemma 3.11 (elliptic estimate for k ≥ 0). There is a constant ε > 0
and for every C0 > 0, k ≥ 0, and 0 < r1 < r2 < ρ there is a constant C1

such that the inequality

‖η∇kζ‖H1(Qδ,r) ≤ C1

(
‖Dζζ‖H̃k(Qδ,r)

+ ‖ζ‖H̃k(Qδ,r)

)
(46)

holds for any choice of δ ∈ (0, r1/4], r ∈ [r1, r2], a coherent collection j of
complex structures on Qδ,ρ with ‖j− i‖C0 ≤ ε and ‖j− i‖Cmax{k,1} ≤ C0, a

pair J of compatible almost complex structures on Qδ,ρ which are contained

in a Cmax{k,1}-ball of radius C0 and which induce by (4) metrics whose
pairwise constants of equivalence are bounded above by C0, a pair of sec-
tions ζ ∈ Γk+2

uδ (Qδ,r) with ‖ζ‖C0 ≤ ε, ‖ζ‖C1 ≤ C0, and ‖ζ‖H̃k(Qδ,r)
≤ C0, and

a smooth function η : Q02,δ,r → R with ‖η‖Ck+1 ≤ c0 and supp η ⊂ Q02,δ,r.

Proof. Throughout this proof, C1 will denote a δ-independent constant and
P will denote a δ-independent polynomial, and both may change from line
to line.

We break down the proof into several steps: in Step 1, we establish (46),
but with an extra term on the right-hand side. In Step 2, we bound this extra
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term, using different arguments in the k 6= 3 and k = 3 cases. In Step 3, we
establish (46).

Step 1a. We prove the following inequality:

‖η∇αζ‖H1 ≤ C1

‖Dζζ‖Hk + ‖ζ‖Hk +
∑

β≥1,γ≥0,

β+γ=k

‖η∇β(J(ζ))∇γ∇sζ‖H0


(47)

for α = (s, . . . , s)︸ ︷︷ ︸
k

.

Since the connection ∇ preserves the linearized boundary conditions and η
is supported in Q02,δ,r, we may estimate ‖η∇ksζ‖H1 using Lemma 3.10:

‖η∇ksζ‖H1 ≤ C1(‖Dζ(η∇ksζ)‖H0 + ‖η∇ksζ‖H0)

= C1

(
‖η∇ksζ‖H0 +

∥∥∥∥η∇ksDζζ − k∑
l=1

(
k

l

)
η(∂lsA∇k−l+1

s ζ

+ ∂lsC∇k−ls ∇tζ) +

k∑
l=1

(
k

l

)
η∇ls(J(ζ))∇k−l+1

s ζ

−
k∑
l=1

Cη∇l−1
s [∇s,∇t]∇k−ls ζ

− (∂sη(A− J(ζ)) + C∂tη)∇ksζ
∥∥∥∥
H0

)

≤ C1

(
‖Dζζ‖Hk + ‖ζ‖Hk +

∑
β≥1,γ≥0,

β+γ=k

∥∥η∇β(J(ζ))∇γ∇sζ
∥∥
H0

)
.

Step 1b. We prove (47) for a general multiindex α of length k.

We establish Step 1b by induction on nt(α) := {#m ∈ [1, k] | αm = t}. Step
1a is the base case for this induction. For the inductive step, fix α with
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nt(α) ≥ 1, and write α = (α′, αm = t, s, . . . , s︸ ︷︷ ︸
k−m

). We estimate:

‖η∇αζ‖H1 = ‖η∇α′(C−1(Dζ(∇k−ms ζ)− (A− J(ζ))∇k−m+1
s ζ))‖H1

≤ C1(‖ζ‖Hk + ‖η∇α′Dζ(∇k−ms ζ)‖H1 + ‖η∇α′∇k−m+1
s ζ‖H1

+ ‖η∇α′(J(ζ)∇k−m+1
s ζ)‖H1)

= C1

(
‖ζ‖Hk +

∥∥∥∥η∇α′(∇k−ms Dζζ −
k−m∑
l=1

(
k −m
l

)
(∂lsA∇k−m−l+1

s ζ

+ ∂lsC∇k−m−ls ∇tζ) +

k−m∑
l=1

(
k −m
l

)
∇ls(J(ζ))∇k−m−l+1

s ζ

−
k−m∑
l=1

C∇l−1
s [∇s,∇t]∇k−m−ls ζ

)∥∥∥∥
H1

+ ‖η∇α′∇k−m+1
s ζ‖H1

+ ‖η∇α′(J(ζ)∇k−m+1
s ζ)‖H1

)

≤ C1

(
‖Dζζ‖Hk + ‖ζ‖Hk +

∑
β≥1,γ≥0,

β+γ=k

‖η∇β(J(ζ))∇γ∇sζ‖H0

)
,

where in the last inequality we have used the inductive hypothesis to bound
‖η∇α′∇k−m+1

s ζ‖H1 .

Step 2a. In the k 6= 3 case, we prove the following inequality:∑
β≥1,γ≥0,

β+γ=k

‖η∇β(J(ζ))∇γ∇sζ‖H0 ≤ C1‖ζ‖Hk .(48)

It follows from the assumption k 6= 3 that if β, γ ≥ 1 satisfy β + γ = k + 1,
then min{β, γ} ≤ max{k − 2, 1}. Furthermore, the assumption ‖ζ‖H̃k ≤ C0

implies the inequality ‖ζ‖Ck−2 ≤ C1 by the embedding of H1 ↪→ C0 for one-
dimensional domains whose lengths are bounded away from zero. This, along
with the assumed C1-bound on ζ, yields (48) in the k 6= 3 case.

Step 2b. In the k = 3 case, we prove the following inequality:∑
β≥1,γ≥0,

β+γ=3

‖η∇β(J(ζ))∇γ∇sζ‖H0 ≤ C1(‖Dζζ‖H̃3 + ‖ζ‖H̃3 + δ1/2‖η∇3ζ‖H1).(49)
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The assumed C1-bound on ζ implies that the only term in the left-hand side
of (49) that is not immediately bounded by C1‖ζ‖H3 is ‖η∇2(J(ζ))∇∇sζ‖H0 .

Choose smooth maps

S,U : û∗TM0211 → û∗ hom((TM0211)⊗2,TM0211),

T : û∗TM0211 → û∗ hom((TM0211)⊗3,TM0211),

V : û∗TM0211 → u∗ hom(TM0211,TM0211)

so that the formula

∇̂2(Ĵ(ζ̂)) = S(ζ̂)(∇̂2ζ̂) + T (ζ̂)(∇̂ζ̂, ∇̂ζ̂) + U(ζ̂)(∇̂ζ) + V (ζ̂)(50)

holds, where the maps S, T, U, V preserve fibers but may not respect their
linear structure. Since J is bounded in C3, S, T, U, V must be bounded in
C1. We may now use (50) to bound the hat-part of ‖η∇2(J(ζ))∇∇sζ‖H0 :

‖η∇̂2(Ĵ(ζ̂))∇̂∇̂sζ̂‖H0(51)

≤ C1(‖ζ̂‖H2 + ‖S(ζ̂)(∇̂2ζ̂)∇̂∇̂sζ̂‖H0)

= C1

(
‖ζ̂‖H2 + ‖∇̂s(S(ζ̂)(η∇̂2ζ̂)∇̂ζ̂)

− ∇̂s(S(ζ̂)(η∇̂2ζ̂))∇̂ζ̂ + S(ζ̂)(η∇̂2)[∇̂, ∇̂s]ζ̂‖H0

)
≤ C1(‖ζ̂‖H3 + δ1/2‖S(ζ)(η∇̂2ζ̂)∇̂ζ̂‖C0H1)

≤ C1(‖ζ̂‖H3 + δ1/2‖S(ζ)(η∇̂2ζ̂)‖C0H1‖∇̂ζ̂‖C0H1),

where in the last inequality we have used the δ-independent Banach algebra
property of C0H1. By Lemma 3.9, ‖∇̂ζ̂‖C0H1 is bounded by C1(‖Dζζ‖H̃2 +
‖ζ‖H3) and therefore by C1‖ζ‖H̃3 ; on the other hand, the C1-bound on S and

the C1-bound on ζ implies the inequality ‖S(ζ̂)(η∇̂2ζ̂)‖C0H1≤C1‖η∇̂2ζ̂‖C0H1 .
Substituting these inequalities into (51), we obtain:

‖η∇̂2(Ĵ(ζ̂))∇̂∇̂sζ̂‖H0 ≤ C1(‖ζ‖H3 + δ1/2‖ζ‖H̃3‖η∇2ζ‖C0H1)(52)

≤ C1(‖ζ‖H3 + δ1/2‖η∇2ζ‖C0H1).

Next, we use Lemma 3.9 to bound ‖η∇2ζ‖C0H1 :

‖η∇2ζ‖C0H1 ≤ C1(‖ζ‖H̃3 + ‖∇2(ηζ)‖C0H1)(53)

≤ C1(‖ηζ‖H4 + ‖∇Dζ(ηζ)‖C0H1 + ‖ζ‖H̃3)

+ P (‖∇ζ‖C0H1)(‖ζ‖H3
δ,ρ

+ ‖Dζζ‖C0H1)

≤ C1(‖Dζζ‖H̃3 + ‖ζ‖H̃3 + ‖η∇3ζ‖H1) + P (‖ζ‖H̃3)‖ζ‖H̃3

≤ C1(‖Dζζ‖H̃3 + ‖ζ‖H̃3 + ‖η∇3ζ‖H1),



i
i

“1-Bottman” — 2020/3/11 — 0:37 — page 46 — #46 i
i

i
i

i
i

46 Nathaniel Bottman

where the last inequality follows from the assumed bound on ‖ζ‖H̃3 . Substi-
tuting (53) into (52), we obtain:

‖η∇̂2(Ĵ(ζ̂))∇̂∇̂sζ̂‖H0(54)

≤ C1(‖ζ‖H3 + δ1/2(‖Dζζ‖H̃3 + ‖ζ‖H̃3 + ‖η∇3ζ‖H1))

≤ C1(‖Dζζ‖H̃3 + ‖ζ‖H̃3 + δ1/2‖η∇3ζ‖H1).

To bound the 02-part of ‖η∇2(J(ζ))∇∇sζ‖H0 , we use the the fact that
the domains Q02,δ,r satisfy a uniform cone condition:

‖η∇2
02(J02(ζ02))∇02∇02,sζ02‖H0)

Hölder
≤ C1‖∇2

02(J02(ζ02))‖L4‖∇2
02ζ‖L4(55)

≤ C1(1 + ‖ζ‖H3)‖ζ‖H3 ,

where the second inequality follows from the Sobolev embedding H1 ↪→ L4

for two-dimensional domains satisfying a cone condition. Combining (54)
and (55) and using the assumed bound on ‖ζ‖H̃3 yields the desired bound:

‖η∇2(J(ζ))∇∇sζ‖H0 ≤ C1(‖Dζζ‖H̃3 + ‖ζ‖H̃3 + δ1/2‖η∇3ζ‖H1).

Step 3. We prove Lemma 3.11.

The k 6= 3 case of Lemma 3.11 is an immediate consequence of Steps 1b
and 2a.

Toward the k = 3 case of Lemma 3.11, let us show that there exists
δ0 ∈ (0, r1] such that (46) holds for δ ∈ (0, δ0]. Combining (47) and (49)
yields the following inequality:

‖η∇3ζ‖H1 ≤ C1(‖Dζζ‖H̃3 + ‖ζ‖H̃3 + δ1/2‖η∇3ζ‖H1).(56)

If we set δ0 := min{(2C1)−2, r1}, where C1 is the constant appearing in (56),
then (56) yields the uniform inequality ‖η∇3ζ‖H1 ≤ C1(‖Dζζ‖H̃3 + ‖ζ‖H̃3)
for all δ ∈ (0, δ0].

It remains to establish the k = 3 case of (46) for δ ∈ [δ0, r1]. To do so,
we begin by bounding ‖∇2(J(ζ))∇2ζ‖H0 , using the fact that the domains
Qδ,r satisfy a uniform cone condition for δ ∈ [δ0, r1/4]:

‖∇2(J(ζ))∇2ζ‖H0

Hölder
≤ C1‖∇2(J(ζ))‖L4‖∇2ζ‖L4(57)

Sobolev
≤ C1(1 + ‖ζ‖H2,4)‖ζ‖H2,4

≤ C1(1 + ‖ζ‖H3)‖ζ‖H3 ≤ C1‖ζ‖H3 .
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Substituting (57) into (47) yields the k = 3 case of (46) for δ ∈ [δ0, r1/4]:

‖η∇3ζ‖H1 ≤ C1

(
‖Dζζ‖H3 + ‖ζ‖H3 +

∑
β≥1,γ≥0,

β+γ=3

‖η∇β(J(ζ))∇γ∇sζ‖H0

)

≤ C1(‖Dζζ‖H3 + ‖ζ‖H3).
�

Proof of Lemma 3.8. Lemma 3.8 follows immediately from Lemmata 3.9
and 3.11. Indeed, choose η : Q02,δ,r2 → R to be a smooth function with
η|Q02,δ,r1

≡ 1 and supp η ⊂ Q02,δ,r2 . C1 and P will denote a δ-independent

constant and a δ-independent polynomial that may change from line to line.
Lemma 3.11 yields a bound on ‖ζ‖Hk+1(Qδ,r1

):

‖ζ‖Hk+1(Qδ,r1 ) ≤ ‖ηζ‖Hk+1(Qδ,r2 ) ≤ C1

(
‖ζ‖H̃k(Qδ,r2

) + ‖Dζζ‖H̃k(Qδ,r2
)

)
.(58)

Lemma 3.9 yields a bound on
∑k−1

l=0 ‖∇lζ‖C0H1(Qδ,r1 ):

k−1∑
l=0

‖∇lζ‖C0H1(Qδ,r1
)(59)

≤ C1

(
‖ζ‖Hk+1(Qδ,r1

) + ‖Dζζ‖H̃k(Qδ,r1
)

)
+ P

(
‖ζ‖H̃k(Qδ,r1

)

)
·
(
‖ζ‖Hk(Qδ,r1

) + ‖Dζζ‖H̃k−1(Qδ,r1
)

)
(58)

≤ C1

(
‖Dζζ‖H̃k(Qδ,r2

) + ‖ζ‖H̃k(Qδ,r2
)

)
,

where in the second inequality we have used the assumed bound on
‖ζ‖H̃k(Qδ,r1 ). Combining (58) and (59) yields

‖ζ‖H̃k+1(Qδ,r1
) ≤ C1(‖Dζζ‖H̃k(Qδ,r2

) + ‖ζ‖H̃k(Qδ,r2
)),

which can be used to inductively prove the desired inequality (37). �

We will not use the following proposition in this paper. However, it will
be used in [B] to show that the linearized Cauchy–Riemann operator defines
a Fredholm section.
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Proposition 3.12 (linear elliptic estimate for k = 2). There is a con-
stant ε > 0 and for every C0 > 0, k ≥ 0, and 0 < r1 < r2 < ρ there is a con-
stant C1 such that the inequality

‖ζ‖Hk+1(Qδ,r1
) ≤ C1

(
‖Dξζ‖Hk(Qδ,r2

) + ‖ζ‖H0(Qδ,r2
)

)
holds for any choice of δ ∈ (0, r1/4], a coherent collection j of complex struc-
tures on Qδ,ρ with ‖j− i‖C0 ≤ ε and ‖j− i‖C2 ≤ C0, a pair J of compatible

almost complex structures on Qδ,ρ which are contained in a C2-ball of ra-
dius C0 and which induce by (4) whose pairwise constants of equivalence
are bounded above by C0, and two pairs of sections ζ, ξ ∈ Γk+2

uδ (Qδ,r2) with
‖ξ‖C0 ≤ ε and ‖ξ‖C1 ≤ C0.

The proof is an easier version of the proof of Lemma 3.8.

3.3. Proof of Thm. 3.1

Now that we have established the necessary definitions and estimates in
§§3.1–3.2, we are finally ready to prove Thm. 3.1.

Proof of Theorem 3.1. We divide the proof into steps: in Step 1, we show
that the squiggly strip quilts converge C0

loc in a subsequence. In Step 2, we
upgrade this convergence to Ckloc. Finally, we prove in Step 3 that if the
gradient satisfies a lower bound at a sequence of points with limit on the
boundary, then at least one of v∞0 , v

∞
2 is nonconstant. Throughout this proof,

C1 will be a constant that may change from line to line.

Step 1. After passing to a subsequence, (vν0 (t− δν)), (vν1 |t=0), (vν2 (t+ δν))
converge C0

loc to a (J∞0 , J∞2 , i)-holomorphic size-ρ degenerate strip quilt
(v∞0 , v

∞
1 , v

∞
2 ) for L01 ×M1

L12.

The Arzelà–Ascoli theorem implies that there exist continuous maps

v∞0 : (−ρ, ρ)× (−ρ, 0]→M0, v∞1 : (−ρ, ρ)→M1,

v∞2 : (−ρ, ρ)× [0, ρ)→M2

such that after passing to a subsequence, (vν0 (s, t− δν)), (vν1 |t=0), (vν2 (s, t+
δν)) converge C0

loc to v∞0 , v∞1 , v∞2 . Standard compactness for pseudoholomor-
phic curves (e.g. [MS, Theorem B.4.2]) implies that this convergence takes
place in Ckloc on the interior (i.e. away from the line t = 0); in particular,
v∞0 resp. v∞2 are J∞0 - resp. J∞2 -holomorphic on the interior, hence C∞ by
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[MS, Theorem B.4.1]. In fact, we claim that v∞0 and v∞2 are C∞ on their full
domains, and that they satisfy a generalized Lagrangian boundary condition
in L01 ×M1

L12 at t = 0.
Denote by v the map

v := (v∞0 (−, 0), v∞1 (−), v∞1 (−), v∞2 (−, 0)) : (−ρ, ρ)→M−0 ×M1 ×M−1 ×M2.

To show that v∞0 , v∞2 satisfy a generalized Lagrangian boundary condition
in L01 ◦ L12, we will show that for any s ∈ (−ρ, ρ), v(s) lies in L01 ×M1

L12.
The containment v(s) ∈M0 ×∆M1

×M2 is clear. To show the containment
v(s) ∈ L01 × L12, we will show that (v∞0 (s, 0), v∞1 (s)) lies in L01; the proof
that (v∞1 (s), v∞2 (s, 0)) lies in L12 is analogous. Since (vν0 (s,−δν), vν1 (s,−δν))
lies in L01, and since (vν1 |t=0) converges C0

loc to v∞1 , it suffices to show that
the distances d(vν1 (s,−δν), vν1 (s, 0)) converge to zero. This follows from the
uniform gradient bound on (vν1 ) and the convergence of δν to zero.

Let us show that v∞0 and v∞2 are C∞. We have already concluded that
these maps are C∞ on the interior, so it only remains to show that they are
C∞ at the boundary points, w.l.o.g. at (0, 0). For that purpose we choose
a neighborhood U ⊂ L01 ×M1

L12 of v(0) such that π02|U : U →M02 is a
smooth embedding, hence π02(U) ⊂M02 is a noncompact embedded La-
grangian. Since v∞0 and v∞2 are continuous we find ε > 0 such that v((−ε, ε))
is contained in U , which implies that (v∞0 , v

∞
2 )((−ε, ε)× {0}) is contained

in π02(U). The maps vν0 and vν2 have uniformly-bounded derivatives and
converge C1

loc to v∞0 , v
∞
2 on the interior of their domains, hence (v∞0 (s,−t),

v∞2 (s, t)) is in W 1,4((−ε, ε)× [0, ε)). Standard elliptic regularity (e.g. [MS,
Theorem B.4.1]5) applied to (v∞0 (s,−t), v∞2 (s, t)) now shows that v∞0 and
v∞2 are C∞ at (0, 0). Since π02|U is a diffeomorphism onto its image, v is C∞
at 0 and thus we have shown that v∞0 , v

∞
1 , v

∞
2 are C∞.

Step 2. After passing to a further subsequence, the convergence of (vν0 (s, t−
δν)), (vν1 |t=0), (vν2 (s, t+ δν)) takes place in Ckloc.

In order to establish Ckloc convergence near (−ρ, ρ)× {0}, we cannot rely on
[MS, Theorem B.4.2]. Rather, we will establish uniform Sobolev bounds for
all three sequences of maps. The compact Sobolev embeddings Hk+2 ↪→ Ck
resp. Hk+1 ↪→ Ck for two-dimensional resp. one-dimensional domains will
then provide Ckloc-convergent subsequences.

5The hypothesis of [MS] that the Lagrangian submanifold is closed can be re-
moved.
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Set Jν resp. jν to be the coherent pair of almost complex structures resp.
coherent collection of complex structures resulting from the transformations
(29) resp. (28) applied to Jν0 , J

ν
1 , J

ν
2 resp. jν , and set (wν02, ŵ

ν) to be the
(Jν , jν)-holomorphic size-(δν , ρ) folded strip quilt resulting from the trans-
formation (23) applied to (vν0 , v

ν
1 , v

ν
2 ). Then wν02 resp. ŵν |t=0 converge C0

loc to
u02(s, t) := (v∞0 (s,−t), v∞2 (s, t)) resp. u(s, t) := (v∞0 (s, 0), v∞2 (s, 0), v∞1 (s),
v∞1 (s)), where we have used the assumed C1-bounds on (vν0 ), (vν2 ). Since
(Jν0 ) resp. (Jν1 |t=0) resp. (Jν2 ) converge Ck+1 to J∞0 resp. J∞1 resp. J∞2 , and
since (Jν0 ), (Jν1 ), (Jν2 ) are Ck+2-bounded, (Jν02) resp. (Ĵν |t=0) converge Ck+1

to J∞02 resp. Ĵ∞; since jν converges in C∞loc to the standard complex structure
i : ∂

∂s 7→
∂
∂t ,

∂
∂t 7→ −

∂
∂s , the components of jν converge in C∞loc to the standard

coherent collection i of complex structures,

i := ((i, i), (i, i, i, i)).(60)

Fix ρ′ ∈ (0, ρ) and choose ρ > ρ1 > ρ2 > · · · > ρk+2 = ρ′. Set uδν to be
the restriction and extension to Qδν ,ρ1 of u as defined in (32). Due to the C0

loc-
convergence of wν02 resp. ŵν |t=0 to u02 resp. u and the uniform C1-bounds on
ŵν , we can express wν02 resp. ŵν on Q02,δ,ρ1 resp. Q̂δν ,δ,ρ1 for sufficiently large
ν in terms of the corrected exponential maps eu02,δν

resp. eûδν and sections

(ζν02, ζ̂
ν) ∈ Γk+1

uδν as introduced in §3.2:

wν02 = eu02,δν
(ζ02), ŵν = eûδν (ζ̂).

The sections ζν02, ζ̂
ν converge to zero in C0 as ν →∞, are uniformly bounded

in C1, and satisfy boundary conditions (33) in the linearizations of (L01 ×
L12)T and M0 ×∆M1

×M2.

Iteration claim. We bound ‖Dνζνζν‖H̃l(Qδν,ρl
) and ‖ζν‖H̃l(Qδν,ρl

) for l ∈
[1, k + 2] by induction on l, where H̃ l and Dν are the modified Sobolev space
and the linear delbar operator defined in §3.2 using Jν , jν , and the pair of
connections ∇ = (∇02, ∇̂) constructed in Lemma 3.4.

The first key fact for this claim is the formula

Dνζνζν = deuδν (ζν)−1
(
∂Jν ,jν (euδν (ζν))− F ν(ζν)

)
=: Gν(ζν),(61)

justified in (36), where ∂Jν ,jν is the nonlinear delbar operator defined in (27).
The relevant fact here is that Gν is a pair of smooth maps

Gν02 : u∗02,δνTM02 → u∗02,δνTM02, Ĝν : û∗δνTM0211 → û∗δνTM0211
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that preserve fibers but do not necessarily respect their linear structure.
Furthermore, for any k, Gν is uniformly bounded in Ck. The second key fact
is Lemma 3.8, which is a collection of δ-independent elliptic estimates.

Since ζν is uniformly bounded in C1, ‖ζν‖H1(Qδν,ρ1 ) and ‖Dνζνζν‖H1(Qδν,ρ1
)

= ‖Gν(ζν)‖H1(Qδν,ρ1
) are uniformly bounded. This establishes the base case

of the iteration.
Next, say that ζν and Dνζνζν are uniformly bounded in H̃ l(Qδν ,ρl) for

some l ∈ [1, k + 1]. Lemma 3.8 yields:

‖ζν‖H̃l+1(Qδν,ρl+1
) ≤ C1

(
‖Dνζνζν‖H̃l(Qδν,ρl

) + ‖ζν‖H0(Qδν,ρl
)

)
.(62)

It remains to bound ‖Dνζνζν‖H̃l+1(Qδν,ρl+1
). Since ζν is uniformly bounded

in H̃ l+1(Qδν ,ρl+1
), it is uniformly bounded in Cl−1(Qδν ,ρl+1

) by Lemma 3.9,
which allows us to bound ‖Dνζνζν‖H̃l+1(Qδν,ρl+1

):

‖Dνζνζν‖H̃l+1(Qδν,ρl+1
)

(61)

≤ C1

( ∑
λ1,...,λm≥1,

λ1+···+λm≤l+1

∥∥|∇λ1ζν | · · · |∇λmζν |
∥∥
H0(Qδν,ρl+1

)

+
∑

λ1,...,λm≥1,

λ1+···+λm

∥∥|∇λ1ζν | · · · |∇λmζν |
∥∥
C0H0(Qδν,ρl+1

)

+
∑

λ1≥0,λ2,...,λm≥1,

λ1+···+λm≤l−1

∥∥|∇s∇λ1ζν ||∇λ2ζν | · · · |∇λmζν |
∥∥
C0H0(Qδν,ρl+1

)

)

≤ C1

(
‖ζν‖Hl+1(Qδν,ρl+1

) +

l−1∑
m=0

‖∇mζν‖C0H1(Qδν,ρl+1
) + 1

)
≤ C1

(
‖ζν‖H̃l+1(Qδν ,ρl+1) + 1

)
.

This, together with (62), establishes the iteration step and completes the
Iteration Claim.

The uniform bounds on ‖ζν‖H̃k+2(Qδν,ρk+2
) and the Ck-bounds that

result from Lemma 3.9 yield uniform bounds on ‖wν02‖Hk+2(Qδν,ρk+2
),

‖ŵν‖Hk+2(Qδν,ρk+2
), and ‖ŵν |t=0‖Hk+1((−ρk+2,ρk+2)). These bounds induce uni-

form bounds on the Hk+2-norms of vν0 , v
ν
2 on the relevant subdomains of

(−ρk+2, ρk+2)2 and on the Hk+1-norms of vν1 |(−ρk+2,ρk+2)×{0}. The compact
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embeddings Hk+2 ↪→ Ck resp. Hk+1 ↪→ Ck for two-dimensional resp. one-
dimensional domains implies the desired Ckloc-convergence of (vν0 (s, t− δν))
resp. (vν1 (s, 0)) resp. (vν2 (s, t+ δν)) to v∞0 resp. v∞1 resp. v∞2 .

Step 3. We show that if for some ` ∈ {0, 1, 2} and κ > 0 the gradient sat-
isfies a lower bound |dvν` (0, τν)| ≥ κ for some τν → τ∞ ∈ (−ρ, ρ), then at
least one of v∞0 , v

∞
2 is nonconstant.

In the notation of Step 2, it suffices to show that if for some τν → τ∞ ∈
[0, ρ) and κ > 0 the inequality |dwν(0, τν)| := |dwν02(0, τν)|+ |dŵν(0, τν)| ≥
κ is satisfied, then u02 is not constant. We prove the contrapositive of this
statement: assuming that u02 is constant, we will show that the quantities
limν→∞ supt∈[0,ρ) |dwν02(0, t)| and limν→∞ supt∈[0,δν ] |dŵν(0, t)| are both zero.

Since the convergence of (wν02) to u02 takes place in C1
loc, the quantity

limν→∞ supt∈[0,ρ) |dwν02(0, t)| is zero. To see that the quantity

lim
ν→∞

sup
t∈[0,δν ]

|dŵν(0, t)|

is also zero, note that by the last paragraph of Step 1, the limit u of (ŵν) is
also constant, which implies the formula dŵν = deûδν (ζ̂ν)(∇ζ̂ν). It follows
that to prove the equality limν→∞ supt∈[0,δν ] |∇̂ŵν(0, t)| = 0, it suffices to

prove the equality limν→∞ supt∈[0,δν ] |∇̂ζ̂ν(0, t)| = 0. We can now estimate,
using the Sobolev inequality ‖ − ‖C0 ≤ C1‖ − ‖H1 for one-dimensional do-
mains whose lengths are bounded away from zero:

lim sup
ν→∞

sup
t∈[0,δν ]

|∇̂ζ̂ν(0, t)| ≤ lim
ν→∞

sup
t∈[0,δν ]

|∇̂ζ̂ν(0, 0)|

+ lim
ν→∞

sup
t∈[0,δν ]

|∇̂ζ̂(0, t)− ∇̂ζ̂(0, 0)|

= lim
ν→∞

sup
t∈[0,δν ]

|∇̂ζ̂ν(0, t)− ∇̂ζ̂ν(0, 0)|

≤ lim
ν→∞

C1

∫ δν
0 |∇̂t∇̂ζ̂

ν(0, t)|dt

≤ lim
ν→∞

C1(δν)1/2
(∫ δν

0 |∇̂t∇̂ζ̂
ν(0, t)|2 dt

)1/2

Sobolev
≤ lim

ν→∞
C1(δν)1/2‖ζ̂‖H3(Q̂δν,ρ) = 0.

This completes the contrapositive of Step 3, which concludes our proof of
Theorem 3.1. �
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Appendix A. Removal of singularity for cleanly
intersecting Lagrangians

In this appendix, we sketch a proof of removal of singularity for a holo-
morphic curve satisfying a generalized Lagrangian boundary condition in
an immersed Lagrangian with locally-clean self-intersection. We emphasize
that this is not a new result, see e.g. [Ab, CEL, F, IS, Sc]. We have included
the following proposition in this paper because our methods allow us to give
a short proof.

This removal of singularity will be stated for maps u with Lagrangian
boundary conditions lifting to paths γ, γ′:

u : (B(0, 1) ∩H)r{0} →M, γ′ : (−1, 0)→ L′, γ : (0, 1)→ L,(A.1)

ϕ′(γ′(s′)) = u(s′, 0), ϕ(γ(s)) = u(s, 0) ∀ s′ ∈ (−1, 0), s ∈ (0, 1),

∂su+ J(s, t, u)∂tu = 0, E(u) :=
∫
u∗ω <∞,

where (M,ω) is a closed symplectic manifold, ϕ : L→M and ϕ′ : L′ →M ′

are Lagrangian immersions with L,L′ closed, and J is an almost complex
structure J : B(0, 1) ∩H→ J (M,ω). We will assume that ϕ(L), ϕ′(L′) in-
tersect locally cleanly, which means that there are finite covers L =

⋃k
i=1 Ui,

L′ =
⋃l
i=1 U

′
i such that ϕ resp. ϕ′ restrict to an embedding on each Ui resp.

U ′i , and ϕ(Ui), ϕ
′(U ′j) intersect cleanly for all i, j.

Proposition A.1. If u, γ, γ′ satisfy (A.1), then u extends continuously
to 0.

Sketch proof of Proposition A.1. The first part of the proof of [AH, Theo-
rem 7.3.1] yields a uniform gradient bound on u in cylindrical coordinates
near the puncture. We must make a minor modification due to the fact
that the Lagrangians defining our boundary conditions are immersed, not
embedded: Recall that the uniform gradient bound in cylindrical coordi-
nates is established in [AH] by assuming that there is a sequence ((sk, tk)) ⊂
(−∞, 0]× [0, 1

2 ] so that limk→∞ |du(sk, tk)| =∞, which necessarily has sk →
−∞. Rescaling at the points (sk, tk) yields a sequence of maps that con-
verges in C∞loc to a nonconstant map on either R2 or ±H, which contradicts
the finiteness of the energy. To adapt this proof to our situation, let δ be a
Lebesgue number for L =

⋃k
i=1 Ui and L′ =

⋃l
i=1 U

′
i . That is, if A is a subset

of L (resp. of L′) with diamA ≤ δ, then A ⊂ Ui (resp. A ⊂ U ′i) for some i.
Now rescale at the points (sk, tk) as in [AH], but restrict the resulting maps
to the intersection of B(0, 1

4δ) with their domain. The gradient bound on
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these rescaled maps and our choice of δ allows us to pass to a subsequence
so that for some i, j, all the rescaled maps have boundary values in π(Ui) or
π′(U ′j). A further subsequence converges in C∞loc, so we get a contradiction
and therefore a uniform bound on |∇u| in cylindrical coordinates.

The analogue of Lemma 2.3 holds in this setting; the proof is the same
as for Lemma 2.3 but simpler. As in the first paragraph, some care must be
taken with the immersed Lagrangians.

The analogue of Lemma 2.9 holds in this setting, though the proof must
be modified. Specifically, the domains U0, U1, U2, U3 used in the proof of that
lemma must be replaced by the domain B(0, 1) ∩H.

A slight modification of the proof of Theorem 2.2 establishes Proposi-
tion A.1. �
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