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Scalar curvature as moment map in

generalized Kähler geometry

Ryushi Goto

It is known that the scalar curvature arises as the moment map
in Kähler geometry. In pursuit of the analogy, we develop the mo-
ment map framework in generalized Kähler geometry of symplectic
type. Then we establish the definition of the scalar curvature on a
generalized Kähler manifold of symplectic type from the moment
map view point. We also obtain the generalized Ricci form which
is a representative of the first Chern class of the anticanonical
line bundle. We show that infinitesimal deformations of general-
ized Kähler structures with constant generalized scalar curvature
are finite dimensional on a compact manifold. Explicit descriptions
of the generalized Ricci form and the generalized scalar curvature
are given on a generalized Kähler manifold of type (0, 0). Poisson
structures constructed from a Kähler action of Tm on a Kähler-
Einstein manifold give rise to intriguing deformations of gener-
alized Kähler-Einstein structures. In particular, the anticanonical
divisor of three lines on CP 2 in a general position yields nontrivial
examples of generalized Kähler-Einstein structures
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1. Introduction

Let (X,ω) be a compact symplectic manifold with a symplectic structure ω.
An almost complex structure J is compatible with ω if a pair (J, ω) gives an
almost Kähler structure on M . We denote by C̃ω the set of almost complex
structures which are compatible with ω. Then C̃ω is an infinite dimensional
Kähler manifold on which Hamiltonian diffeomorphisms of (M,ω) act C̃ω
preserving the Kähler structure. Each J ∈ C̃ω gives a Riemannian metric
g(J) and we denote by s(J) the scalar curvature of g(J) which is regarded
as a function on C̃ω. Then the following theorem was established in Kähler
geometry by Fujiki and Donaldson.

Theorem 1.1. [Fu], [Do] The scalar curvature is the moment map on C̃ω
for the action of Hamiltonian diffeomorphisms.

The moment map framework in Kähler geometry suggests that the existence
of constant scalar curvature Kähler metrics is inevitably linked with the cer-
tain stability in algebraic geometry which leads to well-known Donaldson-
Tian-Yau conjecture in Kähler geometry.

Generalized Kähler geometry is a successful generalization of ordinary
Kähler geometry which is equivalent to bihermitian geometry satisfying the
certain torsion conditions.

Many interesting examples of generalized Kähler manifolds were already
constructed by holomorphic Poisson structures [Go1], [Go2], [Go3], [Go4],
[Gu1], [Hi1], [Hi2], [Lin1].
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Main theme of this paper is to pursue an analogue of moment map frame-
work in generalized Kähler geometry and to establish the notion of the scalar
curvature on a generalized Kähler manifold. In this paper we assume that
a generalized Kähler structure consists of commuting two generalized com-
plex structures (J ,Jψ), where J is an arbitrary almost generalized complex
structure and Jψ is induced from a d-closed nondegenerate, pure spinor ψ of
symplectic type∗1.We construct an invariant function from J and ψ which
is referred to the generalized scalar curvature GR. Then it turn out that
a moment map in generalized Kähler geometry is given by the generalized
scalar curvature GR. From the view point of moment map, the notion of
generalized Ricci curvature is introduced and the definition of generalized
Kähler-Einstein structure is provided.

In order to obtain moment map framework, one may try to follow the
same way as in Kähler geometry by using the Levi-civita connection and
the curvature. However, we need to pave a way without the use of the Levi-
civita connection and the curvature in this paper because the notion of
Levi-civita connection and the curvature in generalized Kähler geometry
are very different from the ones in Kähler geometry and are not suitable
for our purpose. Nondegenerate, pure spinors play a central role rather than
generalized complex structures in this paper. A nondegenerate, pure spinor
is a differential form on a manifold M which induces an almost generalized
complex structure J by kerφ = EJ and kerφ = EJ . Conversely, the canon-
ical line bundle KJ of an almost generalized complex structure J gives a
nondegenerate, pure spinor unique up to multiplication by nonzero complex
functions. Let {φα} be trivializations of KJ , where φα is a nondegenerate,
pure spinor which induces an almost generalized complex structure J . Then
the exterior derivative of the differential form φα is given by

dφα = ηα · φα +Nα · φα

where ηα is a real section TM ⊕ T ∗M and Nα is also a real section of ∧3EJ ⊕
∧3EJ . A real function ρα is defined by

〈φα, ψ〉s = ρα〈ψ, ψ〉s,

∗1Thus ψ is given by ψ = eb+
√
−1ω, where ω is a real symplectic form. A pair

(J ,Jψ) is called a generalized Kähler structure of symplectic type. We can obtain
further generalization of moment map framework for any d-closed nondegenerate,
pure spinor ψ.



i
i

“4-Goto” — 2020/3/20 — 10:29 — page 150 — #4 i
i

i
i

i
i

150 Ryushi Goto

where 〈 , 〉s denotes the inner metric of Spin representation which is a 2n-
form on M . Then J acts on ηα by J ηα ∈ TM ⊕ T ∗M . By Spin representation,
J ηα acts on the differential form ψ by J ηα · ψ. Taking the exterior derivative
d, we have a differential form d(J ηα · ψ) which is locally defined. We also
obtain a differential form d(J d log ρα · ψ). Then it turns out that −2d(J ηα ·
ψ) + d(J d log ρα · ψ) does not depend on the choice of trivializations of KJ
which defines a differential form on M (see Proposition 5.1). Since ψ =
eb+
√
−1ω, it follows that d(−2J ηα + J d log ρα) · ψ is given by

(1.1) d(−2J ηα + J d log ρα) · ψ = (P −
√
−1Q) · ψ,

where P,Q are real d-closed 2-forms. Thus we define a generalized Ricci form
and a generalized scalar curvature GR by

GRic := −P generalized Ricci form ,

GR := n
P ∧ ωn−1

ωn
generalized scalar curvature

where ω is a symplectic form and GR is a real function (see Definition5.3).
An almost generalized complex structure J is compatible with ψ if a pair
(J ,Jψ) is an almost generalized Kähler structure. We denote by Ãψ(M)
the set of almost generalized complex structures which are compatible with
ψ. Then it turns out that Ãψ(M) admits a Kähler structure on which the
generalized Hamiltonian group acts preserving its Kähler structure. The Lie
algebra of generalized Hamiltonian group is given by real smooth functions.

Then our main theorem is the following:

Theorem 6.4 There exists a moment map µ : Ãψ(M)→ C∞0 (M)∗ for the
generalized Hamiltonian action which is given by the generalized scalar cur-
vature GR,

〈µ(J ), f〉 = (
√
−1)−n

∫
M
f(GRJ )〈ψ, ψ〉s

In Section 2, we shall give a brief review of almost generalized complex struc-
tures focusing on nondegenerate, pure spinors and in Section 3, we define
an almost generalized Kähler structure. In Section 4, we recall the stability
theorem of generalized Kähler structures which is crucial to construct non-
trivial examples of generalized Kähler manifolds. In Section 5, we define a
generalized Ricci form GRic and we show that GRic is a representative of
the first Chern class of the anticanonical line bundle KJ . The generalized
scalar curvature is obtained from the generalized Ricci form. The generalized
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scalar curvature is an invariant function under the action of the extension of
volume-preserving diffeomorphisms by d-closed b fields. In Section 6, we for-
mulate the moment map framework of generalized Kähler geometry. After
preliminary results are shown in Section 7, our main theorem is proved in
Section 8. In Section 9, we show that infinitesimal deformations of general-
ized Kähler structures with constant generalized scalar curvature are given
by an elliptic complex. In particular, the infinitesimal deformations are finite
dimensional on a compact manifold. In Section 10, we give simple expres-
sions of the generalized Ricci form and the generalized scalar curvature of a
generalized Kähler structure of type (0, 0).† A generalized Kähler structure
(Jφ,Jψ) of type (0, 0) is, by definition, induced from a pair

(φ = eB+
√
−1ω1 , ψ = e

√
−1ω2)

of d-closed, nondegenerate, pure spinors of symplectic types, where B is a
real 2-form and ω1 and ω2 are symplectic forms respectively. Then the 2-form
GRic and the function GR are given by

GRic = −dBω−1
1

(
d log

ωn1
ωn2

)
(GR)ωn2 = ωn−1

2 ∧ dBω−1
1

(
d log

ωn1
ωn2

)
,

where B : TM → T ∗M and ω−1
i : T ∗M → TM (i = 1, 2). Then it turns out that

the generalized Kähler structures coming from hyperKähler structures have
vanishing GRic form. In Section 11, we define a generalized Kähler-Einstein
structure. In Section 12, we provide nontrivial examples of generalized
Kähler-Einstein structures which arise as Poisson deformations from Kähler-
Einstein manifolds on which Tm acts preserving its Kähler structure. In par-
ticular, the anticanonical divisor of three lines in a general position on CP 2

gives a nontrivial example of a generalized Kähler-Einstein structure.
Boulanger obtained remarkable results on the moment map in the cases

of toric generalized Kähler manifolds from the view point of toric Kähler
manifolds [Bou]. A generalized Kähler structure is equivalent to a biher-
mitian structure with the certain torsion condition. From the viewpoint of
bihermitian geometry, generalized Kähler Ricci flow was introduced [St1].
Apostolov and Streets discuss Calabi-Yau problem in generalized Kähler ge-
ometry [AS]. It is interesting to find out an expression of our moment map

†A generalized Kähler structure of type (0, 0) corresponds to a degenerate biher-
mitian structure, i.e, [J+, J−]x 6= 0 for all x ∈M .
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in terms of bihermitian geometry. There is a remarkable link between gener-
alized geometry and noncommutative algebraic geometry. It is quite natural
to ask whether the existence of generalized Kähler structure with constant
generalized scalar curvature is related with a stability on a noncommutative
algebraic manifold.

Acknowledgement. The author would like to thank Prof. N. J. Hitchin
for his interests and remarkable comments on his results. The author also
thanks Shinnosuke Okawa for valuable discussions on the relation between
generalized geometry and noncommutative algebraic geometry. The author
would like to thank Marco Gualtieri and Vesti Apostolov for valuable com-
ments.

2. Generalized complex structures

Let M be a differentiable manifold of real dimension 2n. The bilinear form
〈 , 〉T⊕T ∗ on the direct sum TM ⊕ T ∗M over a differentiable manifold M of
dim= 2n is defined by

〈v + ξ, u+ η〉T⊕T∗ =
1

2
(ξ(u) + η(v)) , u, v ∈ TM , ξ, η ∈ T ∗M .

Let SO(TM ⊕ T ∗M ) be the fibre bundle over M with fibre SO(2n, 2n) which
is a subbundle of End(TM ⊕ T ∗M ) preserving the bilinear form 〈 , 〉s An al-
most generalized complex structure J is a section of SO(TM ⊕ T ∗M ) satis-
fying J 2 = −id. Then as in the case of almost complex structures, an al-
most generalized complex structure J yields the eigenspace decomposition
: (TM ⊕ T ∗M )C = EJ ⊕ EJ , where EJ is −

√
−1-eigenspaces and EJ is the

complex conjugate of EJ . The Courant bracket of TM ⊕ T ∗M is defined by

[u+ ξ, v + η]cou = [u, v] + Luη − Lvξ −
1

2
(diuη − divξ),

where u, v ∈ TM and ξ, η is T ∗M . If EJ is involutive with respect to the
Courant bracket, then J is a generalized complex structure, that is,
[e1, e2]cou ∈ Γ(EJ ) for any two elements e1 = u+ ξ, e2 = v + η ∈ Γ(EJ ).

Let CL(TM ⊕ T ∗M ) be the Clifford algebra bundle which is a fibre bun-
dle with fibre the Clifford algebra CL(2n, 2n) with respect to 〈 , 〉T⊕T ∗ on
M . Then a vector v acts on the space of differential forms ⊕2n

p=0 ∧p T ∗M
by the interior product iv and a 1-form acts on ⊕2n

p=0 ∧p T ∗M by the exte-
rior product θ∧, respectively. Then the space of differential forms gives a
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representation of the Clifford algebra CL(TM ⊕ T ∗M ) which is the spin rep-
resentation of CL(TM ⊕ T ∗M ). Thus the spin representation of the Clifford
algebra arises as the space of differential forms

∧•T ∗M = ⊕p ∧p T ∗M = ∧evenT ∗M ⊕ ∧oddT ∗M .

The inner product 〈 , 〉s of the spin representation is given by

〈α, β〉s := (α ∧ σβ)[2n],

where (α ∧ σβ)[2n] is the component of degree 2n of α ∧ σβ ∈ ⊕p ∧p T ∗M
and σ denotes the Clifford involution which is given by

σβ =

{
+β deg β ≡ 0, 1 mod 4

−β deg β ≡ 2, 3 mod 4

We define ker Φ := {e ∈ (TM ⊕ T ∗M )C | e · Φ = 0 } for a differential form
Φ ∈ ∧even/oddT ∗M . If ker Φ is maximal isotropic, i.e., dimC ker Φ = 2n, then
Φ is called a pure spinor of even/odd type.

A pure spinor Φ is nondegenerate if ker Φ ∩ ker Φ = {0}, i.e., (TM ⊕
T ∗M )C = ker Φ⊕ ker Φ. Then a nondegenerate, pure spinor Φ ∈ ∧•T ∗M gives
an almost generalized complex structure JΦ which satisfies

JΦe =

{
−
√
−1e, e ∈ ker Φ

+
√
−1e, e ∈ ker Φ

Conversely, an almost generalized complex structure J locally arises as JΦ

for a nondegenerate, pure spinor Φ which is unique up to multiplication by
non-zero functions. Thus an almost generalized complex structure yields the
canonical line bundle KJ := C〈Φ〉 which is a complex line bundle locally
generated by a nondegenerate, pure spinor Φ satisfying J = JΦ. An gen-
eralized complex structure JΦ is integrable if and only if dΦ = η · Φ for a
section η ∈ TM ⊕ T ∗M . The type number of J = JΦ is defined as the mini-
mal degree of the differential form Φ. Note that type number Type J is a
function on a manifold which is not a constant in general.

Example 2.1. Let J be a complex structure on a manifold M and J ∗ the
complex structure on the dual bundle T ∗M which is given by J∗ξ(v) = ξ(Jv)
for v ∈ TM and ξ ∈ T ∗M . Then a generalized complex structure JJ is given
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by the following matrix

JJ =

(
J 0
0 −J∗

)
,

Then the canonical line bundle is the ordinary one which is generated by
complex forms of type (n, 0). Thus we have Type JJ = n.

Example 2.2. Let ω be a symplectic structure on M and ω̂ the isomor-
phism from TM to T ∗M given by ω̂(v) := ivω. We denote by ω̂−1 the inverse
map from T ∗M to TM . Then a generalized complex structure Jψ is given
by the following

Jψ =

(
0 −ω̂−1

ω̂ 0

)
, Type Jψ = 0

Then the canonical line bundle is given by the differential form ψ = e
√
−1ω.

Thus Type Jψ = 0.

Example 2.3 (b-field action). A d-closed 2-form b acts on a generalized
complex structure by the adjoint action of Spin group eb which provides a
generalized complex structure AdebJ = eb ◦ J ◦ e−b.

Example 2.4 (Poisson deformations). Let β be a holomorphic Poisson
structure on a complex manifold. Then the adjoint action of Spin group eβ

gives deformations of new generalized complex structures by Jβt := AdβRetJJ .
Then Type Jβtx = n− 2 rank of βx at x ∈M , which is called the Jumping
phenomena of type number.

Let (M,J ) be a generalized complex manifold and EJ the eigenspace
of eigenvalue

√
−1. Then we have the Lie algebroid complex ∧•EJ :

0 −→ ∧0EJ
∂J−→ ∧1EJ

∂J−→ ∧2EJ
∂J−→ ∧3EJ −→ · · ·

The Lie algebroid complex is the deformation complex of generalized com-
plex structures. In fact, ε ∈ ∧2EJ gives deformed isotropic subbundle Eε :=
{e+ [ε, e] | e ∈ EJ }. Then Eε yields deformations of generalized complex
structures if and only if ε satisfies Generalized Mauer-Cartan equation

∂J ε+
1

2
[ε, ε]Sch = 0,

where [ε, ε]Sch denotes the Schouten bracket. The Kuranishi space of gener-
alized complex structures is constructed.



i
i

“4-Goto” — 2020/3/20 — 10:29 — page 155 — #9 i
i

i
i

i
i

Scalar curvature as moment map 155

Then the second cohomology group H2(∧•EJ ) of the Lie algebraic com-
plex gives the infinitesimal deformations of generalized complex structures
and the third one H3(∧•EJ ) is the obstruction space to deformations of
generalized complex structures.

Let {ei}ni=1 be a local basis of EJ for an almost generalized complex
structure J , where 〈ei, ej〉T⊕T∗ = δi,j . The the almost generalized complex
structure J is written as an element of Clifford algebra,

J =

√
−1

2

∑
i

ei · ei,

where J acts on TM ⊕ T ∗M by the adjoint action [J , ]. Thus we have [J , ei] =
−
√
−1ei and [J , ei] =

√
−1ei. An almost generalized complex structure J

acts on differential forms by the Spin representation which gives the decom-
position:

(2.1) ∧• T ∗M = U−n ⊕ U−n+1 ⊕ · · ·Un

3. Almost generalized Kähler structures

Definition 3.1. An almost generalized Kähler structure is a pair (J1,J2)
consisting of two commuting almost generalized complex structures J1,J2

such that Ĝ := −J1 ◦ J2 = −J2 ◦ J1 gives a positive definite symmetric
form G := 〈Ĝ , 〉 on TM ⊕ T ∗M , We call G a generalized metric. A gener-
alized Kähler structure is an almost generalized Kähler structure (J1,J2)
such that both J1 and J2 are generalized complex structures.

Ji gives the decomposition (TM ⊕ T ∗M )C = EJi ⊕ EJi for i = 1, 2. Since
J1 and J2 are commutative, we have the simultaneous eigenspace decom-
position

(TM ⊕ T ∗M )C = (EJ1
∩ EJ2

)⊕ (EJ1
∩ EJ2

)⊕ (EJ1
∩ EJ2

)⊕ (EJ1
∩ EJ2

).

Since Ĝ2 = +id, The generalized metric Ĝ also gives the eigenspace decom-
position: TM ⊕ T ∗M = C+ ⊕ C−, where C± denote the eigenspaces of Ĝ of
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eigenvalues ±1. We denote by E±J1
the intersection EJ1

∩ CC
±. Then it fol-

lows

EJ1
∩ EJ2

= E+
J1
, EJ1

∩ EJ2
= E

+
J1

EJ1
∩ EJ2

= E−J1
, EJ1

∩ EJ2
= E

−
J1

Example 3.2. Let X = (M,J, ω) be a Kähler manifold. Then the pair
(JJ ,Jψ) is a generalized Kähler where ψ = exp(

√
−1ω).

4. The stability theorem of generalized Kähler manifolds

It is known that the stability theorem of ordinary Kähler manifolds holds

Theorem 4.1 (Kodaira-Spencer). Let X = (M,J) be a compact Kähler
manifold and Xt small deformations of X = X0 as complex manifolds. Then
Xt inherits a Kähler structure.

The following stability theorem of generalized Kähler structures shows
that there are many intriguing examples of generalized Kähler manifolds of
symplectic type.

Theorem 4.2. [Go2] Let X = (M,J, ω) be a compact Kähler manifold and
(JJ ,Jψ) the induced generalized Kähler structure, where ψ = e

√
−1ω. If there

are analytic deformations {Jt} of J0 = JJ as generalized complex structures,
then there are deformations of d-closed nondegenerate, pure spinors {ψt}
such that pairs (Jt,Jψt) are generalized Kähler structures, where ψ0 = ψ

5. Generalized Ricci curvature and generalized
scalar curvature

We use the same notation as before. Let J be an almost complex structure
on M with trivializations {φα} of the canonical line bundle KJ . Then recall
that ηα is given by

(5.1) dφα = ηα · φα +Na · φα,

where ηα ∈ TM ⊕ T ∗M and Nα ∈ ∧3EJ ⊕ ∧3EJ are real sections, i.e., ηa =
ηα, Nα = Nα. Because of the reality condition, ηα and Nα are uniquely de-
termined. Let (J , ψ) be an almost generalized Kähler structure of symplectic



i
i

“4-Goto” — 2020/3/20 — 10:29 — page 157 — #11 i
i

i
i

i
i

Scalar curvature as moment map 157

type. Then recall that a real function ρα on Uα is given by

(5.2) 〈φa, φα〉s = ρα〈ψ,ψ〉s

Proposition 5.1. A differential form d(−2J ηα + J d log ρα) · ψ does not
depend on the choice of trivializations {φα} of KJ .

Proof. Let eκα,β be the transition function on the intersection Uα ∩ Uβ. Then
we have φα = eκα,βφβ. Since dφβ = (ηβ +Nβ) · φβ, we have

dφα = d(eκα,βφβ) = dκα,β · eκα,βφβ + eκα,β(ηβ +Nβ)φβ

= dκα,β · φα + (ηβ +Nβ) · φα

Thus we have

(ηα +Nα) · φα = (ηβ + dκα,β +Nβ) · φα.

Since Nα, Nβ ∈ ∧3EJ ⊕ ∧3EJ and ηa, ηb, dκα,β ∈ TM ⊕ T ∗M , we have Nα =
Nβ and ηα · φα = (ηβ + dκα,β) · φa. Since ηα, ηβ are real, it follows that we
have

(5.3) ηα = ηβ + ∂J κα,β + ∂J κα,β

We also have

(5.4) ρα = ρβe
κα,β+κα,β

Since d((dκα,β) · ψ) = 0, it follows from dκα,β = ∂J κα,β + ∂J κα,β that we
have

(5.5) d(∂J κα,β) · ψ + d(∂Jκα,β) · ψ = 0

Since d((dκα,β) · ψ) = 0, we also have

(5.6) d(∂J κα,β) · ψ + d(∂Jκα,β) · ψ = 0

Applying (5.3), (5.5) and (5.6), we have

d(−2J ηα + J d log ρα) · ψ − d(−2J ηβ + J d log ρβ) · ψ
= −2dJ (∂J κα,β + ∂J κα,β) · ψ + dJ d(κα,β + κα,β) · ψ
= −2

√
−1d(∂J κα,β − ∂J κα,β) · ψ

+
√
−1d(∂J κα,β − ∂J κα,β + ∂J κα,β − ∂J κα,β) · ψ

= −2
√
−1d∂J (κα,β + κα,β) · ψ + 2

√
−1d∂J (κα,β + κα,β) · ψ = 0
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Thus we have the result∗2 . �

Hence d(−2J ηα + J d log ρα) · ψ yields a globally defined differential form
on M . Since ψ = eb+

√
−1ω, it follows that d(−2J ηα + J d log ρα) · ψ is given

by

(5.7) d(−2J ηα + J d log ρα) · ψ = (P −
√
−1Q) · ψ,

where P,Q are real d-closed 2-forms. In fact, −2J ηα + J d log ρα is writ-
ten as v + θ ∈ TM ⊕ T ∗M for a vector v and a 1-form θ and then −2J ηα +
J d log ρα · ψ is given by (ivb−

√
−1ivω + θ) ∧ ψ. Thus P and Q are given

by P = divb+ dθ and Q = divω.

Remark 5.2. Since Nα = Nβ, we have a globally defined section N ∈
∧3EJ ⊕ ∧3EJ which is the Nijenhuis type tensor, that is, J is integrable if
and only if N = 0.

Definition 5.3. [Generalized Ricci form and generalized scalar curvature]
We define a generalized Ricci form GRic to be a d-closed 2-form P in (5.7)
and we define a generalized scalar curvature GR to be a real function on M
which is given by the following,

GRic := −P generalized Ricci form ,

GR :=
nP ∧ ωn−1

ωn
: generalized scalar curvature

where ω is a symplectic form.

A diffeomorphism F of M acts on (J , ψ) to give an almost generalized
Kähler structure (J ′, ψ′). We denote by GR’ generalized scalar curvature of
(J ′, ψ′). Then we have

Proposition 5.4.

GR′ = F ∗(GR),

that is , GR is equivalent under the action of diffeomorphisms. Further GR
is invariant under the action of d-closed b−fields.

Proof. A diffeomorphism F of M induces the bundle map F# of TM ⊕ T ∗M
by F#(v + θ) = F−1

∗ (v) + F ∗θ for v ∈ TM and θ ∈ TM . Then we see that

∗2In this proof, note that we do not use the integrability of J .
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F#(v + θ) · F ∗(α) = F ∗((v + θ) · α) for a differential form α. Let b be a
real d-closed 2-form. Then eb is regarded as an element of Spin group of
the Clifford algebra of TM ⊕ T ∗M which acts on differential forms by the
wedge produce of eb. Then we have the adjoint action Adeb on TM ⊕ T ∗M by
Adeb(v + θ) := eb(v + θ)e−b = v − ivb+ θ. Then we see that

(J ′, ψ′) = (F# ◦ J ◦ F−1
# , F ∗ψ).

Then it follows that φ′α = F ∗φα is the nondegenerate pure spinor which
induces J ′. We define η′α by dφ′α = η′α · φ′α. Thus we have

dφ′α = F ∗dφα = F ∗(ηα · φα) = F#(ηα) · φ′α

Thus we see that η′α = F#(ηα). The function ρ′α is given by

〈φ′α, φ
′
α〉s = ρ′α〈ψ′, ψ

′〉s

Thus we have ρ′α = F ∗ρα. Then we see

(J ′η′α) · ψ′ = F# ◦ J ◦ F−1
# (F#(ηα)) · F ∗ψ(5.8)

= F#(J ηα) ◦ F ∗ψ(5.9)

= F ∗(J ηα · ψ)(5.10)

We also have

J ′(d log ρ′α) · ψ′ = F# ◦ J ◦ F−1
# (F ∗(d log ρα)F ∗ψ)(5.11)

= F#(J (d log ρα)) · F ∗ψ(5.12)

= F ∗(J (d log ρα) · ψ)(5.13)

Thus we obtain

(5.14) d(−2J ′η′α + J ′d log ρ′α) · ψ′ = F ∗
(
d(−2J ηα + J d log ρα) · ψ

)
Since GR is given by the real part of the following:

GR := Re

√
−1

2

〈ψ, d(−2J ηα + J d log ρα) · ψ〉s
〈ψ, ψ〉s

From (5.14), we have GR’= F ∗(GR).
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We denote by (Jb, ψb) the pair given by the action of eb on (J , ψ). Then
Jb is induced from eb · φα and ψb = eb · ψ. Thus we have ηbα = Adeb(ηα) and
ρbα = ρα. Then we see that

d(−2Jbηbα + Jbd log ρbα) · ψb = eb
(
d(−2J ηα + J d log ρα) · ψ

)
Since 〈 , 〉s is invariant under the action of eb, we see that GR is invariant
under the action of eb. �

We denote by [GRic] the cohomology class of a real d-closed 2-form GRic.
Then we have

Proposition 5.5. The cohomology class [GRic] is given by the 1-st Chern
class,

[GRic] = 4πc1(K−1
J ) ∈ H2(M)

Proof. We calculate the spectral sequence from de Rham to Čeck cohomol-
ogy to determine a representative of Čeck cohomology group given by d-
closed form GRic. d(−2J ηα + J d log ρα) · ψ is d-exact on Uα. On Uα ∩ Uβ,
it follows from (5.3) and (5.4) that we have

(−2J ηα + J d log ρα) · ψ − (−2J ηβ + J d log ρβ) · ψ
= (−2J (ηα − ηβ) + J d(κα,β + κα,β)) · ψ
= −2J (∂J κα,β + ∂κα,β) + J (∂J κα,β + ∂J κα,β + ∂J κα,β + ∂J κα,β) · ψ
= −
√
−1d(κα,β − καβ) · ψ

= 2dkIm
α,β · ψ,

where κIm
α,β denotes the imaginary part of κα,β. Thus we have a Čeck repre-

sentative,

2(κIm
α,β + κIm

β,γ + κIm
γ,α) · ψ

Thus the representative of the class [P ] is given by 2(κIm
α,β + κIm

β,γ + κIm
γ,α).

The 1-st Chern class c1(KJ ) has a Čeck representative

cα,β,γ =
1

2π
√
−1

(κα,β + κβ,γ + κγ,α) ≡ 1

2π
(κIm
α,β + κIm

β,γ + κIm
γ,α)

Thus we have [P ] = 4πc1(KJ ). Since GRic = −P , we obtain the result. �

Example 5.6. A GK structure (JJ , ψ = e
√
−1ω) is induced from the gen-

uine Kähler structure. Then GRic and GR are the ordinary Ricci curvature
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and scalar curvature, respectively. In fact, we have φα to be a holomorphic n
form φα = dz1 ∧ · · · ∧ dzn and ψ = e

√
−1ω and 〈Ωα,Ωα〉S = ρα〈ψ,ψ〉S . Thus

dJ d log ρα = −2
√
−1∂∂ log det gi,j is the ordinary Ricci form.

Remark 5.7. We can generalize our construction of GR to the cases where
ψ is an arbitrary d-closed, nondegenerate, pure spinor. In fact, d(−2J ηα +
J d log ρα) · ψ is still a representative of the first Chern class of KJ together
with the class [ψ] and

GRC :=

√
−1

2

〈ψ, , d(−2J ηα + J d log ρα) · ψ〉s
〈ψ, ψ〉s

is an equivalent complex function under the action of diffeomorphisms which
is invariant under the action of d-closed b-fields. In this general case, we
define GR to be the real part of GRC. Then we have

(
√
−1)−n(GR)〈ψ, ψ〉s = Re(

√
−1)−n+1〈ψ, d(−J ηα +

1

2
J d log ρα) · ψ〉s,

where Re stands for the real part. The real part is also written as

(
√
−1)−n(GR)〈ψ, ψ〉s = cn

〈
ψ, d

(
−J ηα +

1

2
J d log ρα

)
· ψ
〉
s

− cn
〈
d

(
−J ηα +

1

2
J d log ρα

)
· ψ, ψ

〉
s

,(5.15)

where cn = 1
2(
√
−1)−n+1.

Example 5.8 (generalized Calabi-Yau metrical structure). If a gen-
eralized Kähler structure is induced from a pair (φ, ψ) which consists of
d-closed, nondegenerate, pure spinors such that 〈φ, φ〉S = 〈ψ,ψ〉S , then it is
called a generalized Calabi-Yau metrical structure. Since ρα = 1 and ηα = 0,
it follows that we have GRC = 0.

6. Generalized scalar curvature as moment map

Let GC(M) be the set of generalized complex structures on a differentiable
compact manifold M of dimension 2n, that is,

GC(M) := {J : generalized complex structure on M }.
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We denote by GK(M) the set of generalized Kähler structures on M , that
is,

GK(M) := {(J0,J1) : generalized Kähler structure on M }.
We also define G̃C(M) as the set of almost generalized complex structures
on M ,

G̃C(M) := {J : almost generalized complex structure on M }.

We denote by G̃K(M) the set of almost generalized Kähler structures,

G̃K(M) := {(J0,J1) : almost generalized Kähler structure on M }.

Let ψ be a d-closed, non-degenerate, pure spinor which induces Jψ. The
spinor inner product of ψ is given by 〈ψ,ψ〉S = (φ ∧ σψ)[2n]. In particular,

if ψ := eb+
√
−1

2
ω, then we have the volume form

〈ψ,ψ〉S =
(
√
−1)n

n!
ωn.

An almost generalized complex structure J is ψ-compatible if and only if
the pair (J ,Jψ) is an almost generalized Kähler structure. Let Aψ(M) be
the set of ψ-compatible generalized complex structure, that is

Aψ(M) := {J ∈ GC : (J ,Jψ) ∈ GK }.

We also define Ãψ(M) to be the set of ψ-compatible almost generalized
complex structures,

Ãψ(M) := {J ∈ G̃C : (J ,Jψ) ∈ G̃K }.

For each point x ∈M , we define Ãψ(M)x to be the set of ψx-compatible
almost generalized complex structures , that is,

Ãψ(M)x := {Jx |(Jx,Jψ,x) : almost generalized Kähler structure at x }.

Then we see that Ãψ(M)x is given by the Riemannian Symmetric space of
type AIII†

U(n, n)/U(n)× U(n)

†In Kähler geometry, the set of almost complex structures compatible with a
symplectic structure ω is given by the Riemannian symmetric space Sp(2n)/U(n)
which is biholomorphic to the Siegel upper half plane {h ∈ GLn(C) | 1n − h∗h >
0, ht = h}.
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which is biholomorphic to the complex bounded domain {h ∈Mn(C) | 1n −
h∗h > 0 }, where Mn(C) denotes the set of complex matrices of n× n. Let
Pψ be the fibre bundle over M with fibre Ãψ(M)x, that is,

Pψ :=
⋃
x∈M
Ãψ(M)x →M,

Then Ãψ(M) is given by sections Γ(M,Pψ) which contains Aψ(M). We can

introduce a Sobolev norm on Ãψ(M) such that Ãψ(M) becomes a Banach

manifold in the usual way. The tangent bundle of Ãψ(M) at J is given by

TJ Ãψ(M) = { J̇ ∈ so(TM ⊕ T ∗M ) : J̇ J + J J̇ = 0, J̇ Jψ = JψJ̇ },

where so(TM ⊕ T ∗M ) denotes the set of sections of Lie algebra bundle of
SO(TM ⊕ T ∗M ). Then it follows that there exists an almost complex structure

JÃψ on Ãψ(M)which is given by

JÃψ(J̇ ) := J J̇ , ( J̇ ∈ TJ Ãψ(M) )

We also have a Riemannian metric gÃψ and a 2-form ωÃψ on Ãψ(M) by

gÃψ(J̇1, J̇2) :=
1

(
√
−1)n

∫
M

tr(J̇1J̇2)〈ψ, ψ〉S(6.1)

ωÃψ(J̇1, J̇2) :=
−1

(
√
−1)n

∫
M

tr(J J̇1J̇2)〈ψ, ψ〉S(6.2)

for J̇1, J̇2 ∈ TJ Ãψ(M).

Proposition 6.1. JÃψ is integrable almost complex structure on Ãψ(M)

and ωÃψ is a Kähler form on Ãψ(M).

Proof. Let JV be an almost generalized complex structure on a real vector
space V of dimension 2n. We denote by Xn the Riemannian symmetric space
U(n, n)/U(n)× U(n) which is identified with the set of almost generalized
complex structures compatible with JV . We already see that Ãψ(M) is the
set of global sections of the fibre bundle Pψ over a manifold M with fibre Xn

which is biholomorphic to the bounded domain {h ∈Mn(C) | 1n − h∗h >
0 }. If Ãψ(M) is not empty, we have a global section J0. Then the fibre
bundle is identified with the space of maps from M to the complex bounded
domain {h ∈Mn(C) | 1n − h∗h > 0 } which is open set in the complex vector
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space Mn(C). Since the almost complex structure JÃψ is induced from the
one of the complex bounded domain, wee see that JÃψ is integrable. Xn

admits a Riemannian metric gXn and a 2-form ωXn which are given by

gXn(J̇1, J̇2) = tr(J̇1J̇2)

ωXn(J̇1, J̇2) = −tr(J J̇1J̇2),

where J̇1, J̇2 ∈ TJXn. The complex bounded domain {h ∈ GLn(C) | 1n −
h∗h > 0 } admits a Kähler structure which is given by

4
√
−1∂∂ log det(1n − h∗h).

Then under the identification Xn
∼= {h ∈Mn(C) | 1n − h∗h > 0 } by using

JV , we have ω = 4
√
−1∂∂ log det(1n − h∗h). Then the space of maps Ãψ(M)

inherits a Riemannian metric and a Kähler structure which are given by

1

(
√
−1)n

∫
M

tr(J̇1J̇2)〈ψ, ψ〉S

ωÃψ =
4

(
√
−1)n−1

∂∂

∫
M

log det(1n − h∗h)〈ψ, ψ〉S

Hence ωÃψ is closed. Thus (Ãψ(M), JÃψ , ωÃψ) is a Kähler manifold. �

Let D̃iff(M) be an extension of diffeomorphisms of M by 2-forms which is
defined as

D̃iff(M) := { ebF : F ∈ Diff(M), b : 2-form }.
Note that the product of D̃iff(M) is given by

(eb1F1)(eb2F2) := eb1+F ∗1 (b2)F1 ◦ F2,

where F1, F2 ∈ Diff(M) and b1, b2 are real 2-forms. The action of D̃iff(M)
on GC(M) by

ebF# ◦ J ◦ F−1
# e−b,

where F ∈ Diff(M) acts on J by F# ◦ J ◦ F−1
# and and eb is regarded as

an element of SO(TM ⊕ T ∗M ) and F# denotes the bundle map of TM ⊕ T ∗M
which is the lift of F. We define D̃iff(M)ψ to be a subgroup consists of

elements of D̃iff(M) which preserves ψ,

D̃iffψ(M) = { ebF ∈ D̃iff(M) : ebF ∗ψ = ψ }.

Then from (6.1), we have the following,
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Proposition 6.2. The symplectic structure ωÃψ is invariant under the ac-

tion of ψ-preserving group ˜Diffψ(M).

We assume that type number of Jψ is 0, i.e., ψ is given by ψ = eb+
√
−1ω,

where b is a real 2-form and ω denotes a symplectic form. We denote by
Hamω(M) the Hamiltonian diffeomorphisms of (M,ω).

Definition 6.3. By using the 2-form b, we define generalized Hamiltonian
diffeomorphisms Hamb

ω(M) by

Hamb
ω(M) := { ebFe−b |F ∈ Hamω(M) }.

Since ebFe−bψ = ψ, we see that Hamb
ω(M) is a subgroup of D̃iffψ(M).

Thus Hamb
ω(M) acts on Ãψ(M) preserving the symplectic structure ωÃψ

The Lie algebra of Hamb
ω(M) is also given by C∞0 (M), where C∞0 (M) =

{ f ∈ C∞(M) |
∫
M f〈ψ, ψ〉s = 0 }. A Hamiltonian vector field v is given by

ivω = df for f ∈ C∞0 (M). Then e := v − ivb = Jψ(df) ∈ TM ⊕ T ∗M is called
a generalized Hamiltonian element. Note that we have e · ψ =

√
−1df · ψ.

We denote by GRJ the generalized scalar curvature of (J ,Jψ) for J ∈
Ãψ(M), where GRJ is a real function on M . The following is our main
theorem:

Theorem 6.4. There exists a moment map µ : Ãψ(M)→ C∞0 (M)∗ for the
generalized Hamiltonian action which is given by the generalized scalar cur-
vature GR,

〈µ(J ), f〉 = (
√
−1)−n

∫
M

(GRJ )f〈ψ, ψ〉s,

where f ∈ C∞0 (M) and 〈µ(J ), f〉 denotes the coupling between µ(J ) and f .

Our proof of Theorem 6.4 will be given in Section 8.

7. Preliminary results for proof of the main theorem

In order to show our main theorem, we shall rewrite the symplectic form
ωÃψ by using the Clifford algebra and the pure spinors φα and ψ. Such
descriptions in terms of the Clifford algebra and pure spinors are suitable
to obtain our main theorem by using Stokes’ theorem. Let J be an almost
generalized complex structure which is compatible with ψ. We denote by
{φα} trivializations of the canonical line bundle KJ , where each φα is a
nondegenerate, pure spinor on Uα which induces the generalized complex
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structure J . Arbitrary small deformations of almost generalized complex
structures of J are given by the adjoint action,

eh(t) ◦ J ◦ e−h(t),

where h(t) = h2,0(t) + h0,2(t) denotes a real section depending smoothly on
a parameter t which satisfies h2,0(t) ∈ ∧2EJ and h0,2(t) = h2,0(t) ∈ ∧2EJ .
Then the infinitesimal deformation J̇h is given by

J̇h :=
d

dt
eh(t) ◦ J ◦ e−h(t)|t=0 = [h,J ],

where h and J are regarded as elements of the Clifford algebra CL(TM ⊕
T ∗M ) and [h,J ] denotes the commutator of h and J which is identified
with the bracket of Lie algebra so(TM ⊕ T ∗M ). The real element h ∈ ∧2EJ ⊕
∧2EJ ⊂ CL(TM ⊕ T ∗M ) acts on nondegenerate pure spinors φα on Uα by
φ̇α := h · φα. Let J1 and J2 are two almost generalized complex structures
which are locally induced from {φα,1} and {φα,2} respectively. Two real
elements h1 and h2 give rise to infinitesimal deformations ˙Jh1

of J1 and ˙Jh2

of J2, respectively. We also denote by φ̇α,hi an element hi · φα,i for i = 1, 2.
Then the symplectic form ωÃψ as in (6.1) is given by

ωÃψ(J̇h1
, J̇h2

) =
−1

(
√
−1)n

∫
M

trJ J̇h1
J̇h2
〈ψ, ψ〉s,

where h1, h2 are real elements of ∧2EJ ⊕ ∧2EJ . We shall begin to write the
symplectic form ωÃψ in terms of pure spinors.

Lemma 7.1.

trJ J̇h1
J̇h2
〈ψ, ψ〉s = −

√
−1

2
{ρ−1

α 〈φ̇α,h1
, φ̇α,h2

〉s − ρ−1
α 〈φ̇α,h2

, φ̇α,h1
〉s}

Proof. The formula is shown by a local calculation. Let {ei}2ni=1 be a local
basis of EJ such that 〈ei, ej〉T⊕T∗ = δi,j . Then the basis of {ei} of EJ is re-
garded as the dual basis of E∗J . A real element h ∈ ∧2EJ ⊕ ∧2EJ is written

as h =
∑

i,j hi,jei ∧ ej + hi,jei ∧ ej and J̇h = [h,J ] is given by

J̇h = hJ − J h =
√
−1
∑
i,j

hi,jei ∧ ej − hi,jei ∧ ej
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Thus we have

trJ J̇h1
J̇h2

= 4
√
−1
∑
i,j

(
h1,ijh2,ji − h1,ijh2,ji

)
,

where J̇h acts on TM ⊕ T ∗M by the adjoint [J̇h, ]. By using the formula
〈e · φα, φα〉s = −〈φα, e · φα〉s, we have

〈ei · ej · φα, ek · el · φα〉s = 〈el · ek · ei · ej · φα, φα〉s.

Applying ek · ei + ei · ek = −2〈ek, ei〉T⊕T∗ , we have

〈ei · ej · φα, ek · el · φα〉s = −4 (δkjδli − δkiδlj) 〈φα, φα〉s.

Thus we obtain

〈φ̇α,h1
, φ̇α,h2

〉s =
∑
i,j,k,l

h1,ijh2,kl〈ei · ej · φα, ek · el · φα〉s

=− 8
∑
i,j

h1,ijh2,ji〈φα, φα〉s

We also have

〈φ̇α,h2
, φ̇α,h1

〉s = −8
∑
i,j

h1,ijh2,ji〈φα, φα〉s

Applying 〈φa, φα〉s = ρα〈ψ, ψ〉s, we have

trJ J̇h1
J̇h2
〈ψ, ψ〉s = −

√
−1

2
{ρ−1

α 〈φ̇α,h1
, φ̇α,h2

〉s − ρ−1
α 〈φ̇α,h2

, φ̇α,h1
〉s}

�

Proposition 7.2. The symplectic form ωÃψ is given by

c−1
n ωÃψ(J̇h1

, J̇h2
) =

∫
M
ρ−1
α 〈φ̇α,h1

, φ̇α,h2
〉s −

∫
M
ρ−1
α 〈φ̇α,h2

, φ̇α,h1
〉s

where cn = 1
2(
√
−1)n−1

and ρα is the function as in (5.2) and φ̇α,hi = h · φα,i
for i = 1, 2.

Proof. [Proposition 7.2] The result directly follows from Lemma 7.1 . �
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Remark 7.3. Since ρ−1
α 〈φ̇α,h1

, φ̇α,h2
〉s = ρ−1

β 〈φ̇β,h1
, φ̇β,h2

〉S for α, and β, the

2n-form ρ−1
α 〈φ̇α,h1

, φ̇α,h2
〉s gives a globally defined 2n-form on M .

Note that ωA is also written as

c−1
n ωA( ˙Jh1

, ˙Jh2
) =

∫
M
h1 · φα ∧ σ(h2 · φα)ρ−1

α(7.1)

−
∫
M
h2 · φα ∧ σ(h1 · φα)ρ−1

α

Lemma 7.4. We have the following identity with respect to σ and d for a
differential form ω

dσω =

{
+σdα (degω = even)

−σdω (degω = odd)

Proof. σω is given by

σω =

{
+ω, (degω ≡ 0, 1 (mod4)

−ω, (degω ≡ 2, 3 (mod4)

Then the result follows. �

Lemma 7.5. For e1, e2 ∈ TM ⊕ T ∗M and differential forms ω1, ω2 ∈ ∧•T ∗M ,
we have

〈e1 · ω1, e2 · ω2〉s + 〈e2 · ω1, e1 · ω2〉s = 2〈e1, e2〉T⊕T∗ 〈ω1, ω2〉s

Proof. For e ∈ TM ⊕ T ∗M and ω1, ω2 ∈ ∧•T ∗M , we have

〈e · ω1, ω2〉S + 〈ω1, e · ω2〉S = 0.

Then we have

〈e1 · ω1, e2 · ω2〉S + 〈e2 · ω1, e1 · ω2〉S
= −〈e2 · e1 · ω1, ω2〉S − 〈e1 · e2 · ω1, ω2〉S(7.2)

= −〈(e2 · e1 + e1 · e2) · ω1, ω2〉S(7.3)

= 2〈e1, e2〉T⊕T∗ 〈ω1, ω2〉S(7.4)

�
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Lemma 7.6. Let θ = θ1,0 + θ0,1 be a 1-form, where θ1,0 ∈ EJ and θ0,1 ∈
EJ . For h = h2,0 + h0,2 ∈ ∧2EJ ⊕ ∧2EJ , we have the following:

[[h,J ], θ] · ψ = 2
√
−1
(
[h2,0, θ0,1]− [h0,2, θ1,0]

)
· ψ

Proof. Let ω be a differential form satisfying Jω =
√
−1kω for −n ≤ k ≤ n.

Then we have

[h,J ]ω = hJω − J hω
=
√
−1k(h2,0 + h0,2)ω −

√
−1(k − 2)h2,0ω −

√
−1(k + 2)h0,2ω

= 2
√
−1(h2,0 − h0,2)ω

Since [h2,0, θ1,0] = 0, we have

[[h,J ], θ] · ψ = 2
√
−1[(h2,0 − h0,2), θ] · ψ

= 2
√
−1
(
[h2,0, θ0,1]− [h0,2, θ1,0]

)
· ψ

�

Remark 7.7. If an infinitesimal deformation [h,J ] preserves ψ, then it fol-
lows [h,J ] · ψ = 0. We shall consider an infinitesimal deformation [h,J ] pre-
serving ψ. Since J · ψ = 0 and [h,J ] · ψ = 0, then it follows that [[h,J ], θ] ·
ψ = [h,J ]θ · ψ.

Lemma 7.8. For real elements e, θ ∈ TM ⊕ T ∗M and h = h2,0 + h0,2 ∈
∧2EJ ⊕ ∧2EJ , we have

2〈e · φα, θ · h · φα〉sρ−1
α − 2〈θ · h · φα, e · φα〉sρ−1

α(7.5)

=
√
−1〈e · ψ, [[h,J ], θ] · ψ〉s +

√
−1〈〈[[h,J ], θ] · ψ, e · ψ〉s

Proof. Since h2,0 · φα = 0 and [h2,0, θ1,0] = 0 and θ0,1 · φα = 0, the left hand
side of (7.5) is given by

(L.H.S) = 2〈e · φα, θ · h2,0 · φα〉sρ−1
α − 2〈θ · h0,2 · φα, e · φα〉sρ−1

α

= 2〈e · φα, θ0,1 · h2,0 · φα〉sρ−1
α − 2〈θ1,0 · h0,2 · φα, e · φα〉sρ−1

α

= −2〈e · φα, [h2,0, θ] · φα〉sρ−1
α + 2〈[h0,2, θ] · φα, e · φα〉sρ−1

α

By applying Lemma 7.5 and [h2,0, θ] · φα = 0, we have

(L.H.S) = −4〈e, [h2,0, θ]〉T⊕T∗〈φα, φα〉sρ−1
α

+ 4〈e, [h0,2, θ]〉T⊕T∗〈φα, φα〉sρ−1
α
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It follows from 〈φα, φα〉s = ρα〈ψ, ψ〉s and Lemma 7.5 that we have

(L.H.S) = −2〈e · ψ, [h2,0, θ] · ψ〉s − 2〈[h2,0, θ] · ψ, e · ψ〉s
+ 2〈[h0,2, θ] · ψ, e · ψ〉s + 2〈e · ψ, [h0,2, θ] · ψ〉s

From [h2,0,J ] = 2
√
−1h2,0, [h0,2,J ] = −2

√
−1h0,2 , we have

(L.H.S) =
√
−1〈e · ψ, [[h2,0,J ], θ] · ψ〉s +

√
−1〈[[h2,0,J ], θ] · ψ, e · ψ〉s

+
√
−1〈[[h0,2,J ], θ] · ψ, e · ψ〉s +

√
−1〈e · ψ, [h0,2,J ], θ] · ψ〉s

=
√
−1〈e · ψ, [[h,J ], θ] · ψ〉s +

√
−1〈[[h,J ], θ] · ψ, e · ψ〉s

Thus we have the result. �

Lemma 7.9. Let N = N3,0 +N0,3 be a real section of ∧3EJ ⊕ ∧3EJ , where
N3,0 ∈ ∧3EJ and N0,3 = N3,0 ∈ ∧3EJ . Then we have

〈e · φα, N · h · φα〉s = 〈N · h · φα, e · φα〉s = 0

Proof. Let UkJ be the eigenspace of an eigenvalue
√
−1k with respect to the

action of J . Then e · φα ∈ U−n+1
J . Since h0,2 · φα = 0, we have

N · h · φα = (N3,0 · h2,0 +N3,0 · h0,2 +N0,3 · h2,0 +N0,3 · h0,2) · φα
= N3,0 · h2,0 · φα +N0,3 · h2,0 · φα

Then we have N3,0 · h2,0 · φα ∈ Un−5
J . Since Un+1

J = {0}, N0,3 · h2,0 · φα =

0 ∈ Un+1
J . Thus we have 〈e · φα, N · h · φα〉s = 0. Then it follows 〈N · h ·

φα, e · φα〉s = 0. �

Lemma 7.10. Let N be as in before. Then we have

N · ψ = 0

Proof. Let {ei} be a local basis of EJ . Since dφα = ηα · φα +N · φα, then
we have

〈N · φα, ei · ej · ek · φα〉s = 〈dφα, ei · ej · ek · φα〉s
= −〈ei · ej · dφα, ek · φα〉s
= 〈[ei, ej ]cou · φα, ek · φα〉s
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Thus the component N3,0
i,j,k := N(ei, ej , ek) is given by

N3,0
i,j,k = 〈[ei, ej ]cou, ek〉T⊕T∗ .

Each ei is decomposed into ei = e+
i + e−i , where e±i ∈ E

±
J . From e−i · ψ =

0 and e+
i · ψ = 0, it suffices to show that N(e+

i , e
+
j , e

+
k )e+

i · e
+
j · e

+
k · ψ = 0

and N(e−i , e
−
j , e

−
k )e−i · e

−
j · e

−
k · ψ = 0. Since Jψ is integrable, it follows from

[e+
i , e

+
j ]cou ∈ Lψ. From e+

k ∈ Lψ, we have

N(e+
i , e

+
j , e

+
k ) = 〈[e+

i , e
+
j ]cou, e

+
k 〉T⊕T∗ = 0

Thus N(e+
i , e

+
j , e

+
k ) · ψ = 0. We also have N(e−i , e

−
j , e

−
k ) = 0. Hence N · ψ =

0. �

Lemma 7.11. If [h,J ] · ψ = 0, then we have

〈e · ψ, [[h,J ], N ] · ψ〉s = 〈[[h,J ], N ] · ψ, e · ψ〉s = 0

Proof. Since [h,J ] · ψ = 0, it follows from Lemma 7.10 that we have
[[h,J ], N ] · ψ = 0. Thus we have the result. �

Lemma 7.12. If [h,J ] · ψ = 0, then we have

〈e ·N · φα, h · φα〉s = 0

Proof. Since h = h2,0 + h0,2 ∈ ∧2EJ ⊕ ∧2EJ and N = N3,0 +N0,3 ∈
∧3EJ ⊕ ∧3EJ , we have

〈e ·N · φα, h · φα〉s = −〈N · φα, e · h · φα〉s
= −〈N0,3 · φα, e1,0 · h2,0 · φα〉s

Since e1,0 · h2,0 = h2,0 · e1,0, we have

〈e ·N · φα, h · φα〉s = −〈N0,3 · φα, h2,0 · e1,0 · φα〉s
= 〈h2,0 ·N0,3 · φα, e1,0 · φα〉s
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We denote by [h2,0, N0,3]0,1 ∈ EJ the component of [h2,0, N0,3]. Then ap-
plying Lemma 7.5, we obtain

〈h2,0 ·N0,3 · φα, e1,0 · φα〉s = 〈[h2,0 ·N0,3]0,1 · φα, e1,0 · φα〉s
= 2〈[h2,0, N0,3]0,1, e1,0〉T⊕T∗〈φα, φα〉s
= 2〈[h2,0, N0,3]0,1, e1,0〉T⊕T∗〈ψ, ψ〉sρα
= 〈[h2,0, N0,3]0,1 · ψ, e1,0 · ψ〉sρα
− 〈e1,0ψ, [h2,0, N0,3]0,1 · ψ〉sρα

From Lemma 7.10 and h · ψ = 0, we have [h,N ] · ψ = 0. Thus we have
[h2,0, N0,3]0,1 · ψ = 0 and [h2,0, N0,3]0,1 · ψ = 0. Hence we obtain 〈e ·N ·
φα, h · φα〉s = 0. �

8. Proof of main theorem

This section is devoted to show our main theorem: Theorem 6.4. In order to
show the main theorem, it suffices to show that

d

dt
〈µ(Jt), f〉|t=0 = ωÃψ(LeJ , J̇h),

where f is a generalized Hamiltonian and e is a generalized Hamiltonian el-
ement satisfying e · ψ =

√
−1df · ψ and Jt denotes deformations of J which

satisfies J̇h = [h,J ]. A generalized Hamiltonian f gives a generalized Hamil-
tonian element e ∈ TM ⊕ T ∗M by e = Jψdf .

Let {(φα, Uα)} be trivializations of the canonical line bundle KJ , where
{Uα} is a finite open cover of a compact manifold M of dimension 2n. We
denote by {χα} a partition of unity such that the support of χα is contained
in Uα. From Proposition 7.2, it is suffices to show the following:

c−1
n

d

dt
〈µ(Jt), f〉|t=0 =

∫
M
〈Leφα, h · φα〉sρ−1

a −
∫
M
〈h · φα, Leφα〉sρ−1

α .

By using the partition of unity, f is given by f =
∑

α fα, where fα = χαf
and a generalized Hamiltonian element e ∈ TM ⊕ T ∗M is also written as e =∑

α eα, where eα = Jψdfα.

Lemma 8.1. If Uα ∩ Uβ 6= ∅, we have

〈Leφα, h · φα〉sρ−1
α = 〈Leφβ, h · φβ〉sρ−1

β
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Proof. Since φα = eκα,βφβ, the Lie derivative Leφα := de · φa + e · dφα is
given by

Leφα =eκα,βLeφβ + (e · deκα,β + deκα,β · e) · φβ
=eκα,βLeφβ − 2〈e, deκα,β〉T⊕T∗φβ

Since h ∈ ∧2EJ ⊕ ∧2EJ , we have 〈e, deκα,β〉T⊕T∗〈φβ, h · φα〉s = 0. Since
φα = eκα,βφβ and ρα = eκα,β+κα,βρβ, we have the result. �

Thus there is a 2n-from F1(e) such that F1(e)|Uα = 〈Leφα, h · φα〉sρ−1
α .

Since e =
∑

α eα, it follows that F1(e) =
∑

α F1(eα). Since the support eα is
contained in Uα, we have

F1(eα) = 〈Leαφα, h · φα〉sρ−1
α .

Applying Stokes’ theorem and Lemma 7.4, we have∫
M
〈deα · φα, ρ−1

α h · φα〉s =

∫
M
〈eα · φα, , d(ρ−1

α h · φα)〉s

Thus we have∫
M
F1(eα) =

∫
M
〈Leαφα, h · φα〉sρ−1

α

=

∫
M
〈deα · φα, h · φα〉sρ−1

α +

∫
M
〈eα · dφα, h · φα〉sρ−1

α

=

∫
M
〈eα · φα, dh · φα〉sρ−1

α +

∫
M
〈eα · φα, (dρ−1

α ) · h · φα〉s

+

∫
M
〈eα · (ηα +Nα) · φα, h · φα〉sρ−1

α

We define F1−1, F1−2 and F1−3 by

F1−1 = 〈eα · φα, dh · φα〉sρ−1
α

F1−2 = 〈eα · φα, (dρ−1
α ) · h · φα〉s

F1−3 = 〈eα · (ηα +Nα) · φα, h · φα〉sρ−1
α
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We denote by F2(eα) the 2n-form 〈h · φα, Leαφα〉sρ−1
α . Applying Stokes’

theorem again, we have∫
M
F2(eα) =

∫
M
h · φα ∧ σ(Leαφα)ρ−1

α

=

∫
M
〈h · φα, deα · φα〉sρ−1

α +

∫
M
〈h · φα, eα · dφα〉sρ−1

α

=

∫
M
〈dh · φα, eα · φα〉sρ−1

α +

∫
M
〈(dρ−1

α ) · h · φα, eα · φα〉s

+

∫
M
〈h · φα, eα · (ηα +N) · φα〉sρ−1

α

We also define F2−1, F2−2 and F2−3 by

F2−1 = 〈dh · φα, eα · φα〉sρ−1
α

F2−2 = 〈(dρ−1
α ) · h · φα, eα · φα〉s

F2−3 = 〈h · φα, eα · (ηα +N) · φα〉sρ−1
α

F1(eα)− F2(eα) is divided into the following three parts

F1−1 − F2−1 = 〈eα · φα, dh · φα〉sρ−1
α − 〈dh · φα, eα · φα〉sρ−1

α

F1−2 − F2−2 = 〈eα · φα, (dρ−1
α ) · h · φα〉s − 〈(dρ−1

α ) · h · φα, eα · φα〉s
F1−3 − F2−3 = 〈eα · (ηα +Nα) · φα, h · φα〉sρ−1

α

− 〈h · φα, eα · (ηα +Nα) · φα〉sρ−1
α

Deformations of almost generalized complex structures {Jt} are given by the
action of one parameter family eht in Spin group which are induced from
nondegenerate, pure spinors eht · φα and we have

(8.1) deht · φα = (ηα(t) +Nα(t)) · ehtφα,

where ηα(t) ∈ TM ⊕ T ∗M and Nα(t) ∈ ∧3(TM ⊕ T ∗M ) are real sections satisfy-
ing ηα(0) = ηα and Nα(0) = Nα. Taking the derivative of both sides of (8.1)
with respect to t, we have

dh · φα = (η̇α + Ṅα) · φα + (ηα +Nα) · h · φα,

where η̇α = d
dtηα(t)|t=0 and Ṅα = d

dtNα(t)|t=0. Since the real section η̇α is

decomposed into η̇α
1,0 + η̇α

0,1, where η̇α
1,0 ∈ EJ and η̇α

0,1 ∈ EJ and Ṅ is
also decomposed in to

∑
p+q=3 Ṅ

p,q, where Ṅp,q ∈ ∧pEJ ⊕ ∧qEJ . Note that

Ṅ is not contained in ∧3EJ ⊕ ∧3EJ in general.
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Then we have η̇α · φα = η̇α
0,1 · φα and J φα = −n

√
−1φα. We also have

J η̇α · φα = J η̇α0,1 · φα = (−n+ 1)
√
−1η̇α · φα. Then we have

[J , η̇α] · φα = J η̇α · φα − η̇αJ · φα
= (−n+ 1)

√
−1η̇α · φα + n

√
−1η̇α · φα =

√
−1η̇α · φα

Then we have

dh · φα = (η̇α + Ṅα) · φα + (ηα +N) · h · φα(8.2)

= −
√
−1[J , η̇α] · φα + Ṅ · φα + (ηα +N) · h · φα

We also have

Ṅ · φα = −
√
−1[J , (Ṅ2,1 + Ṅ1,2)] · φα −

1

3

√
−1[J , (Ṅ3,0 + Ṅ0,3)] · φα.

Since 〈eα · φα, Ṅ · φα〉s = 〈eα · φα, (Ṅ2,1 + Ṅ1,2) · φα〉s, we have

(8.3) 〈eα · φα, Ṅ · φα〉s = −
√
−1〈eα · φα, [J , Ṅ ] · φα〉s

Substituting (8.2) into F1−1 and using (8.3), we obtain

〈eα · φα, dh · φα〉sρ−1
α = 〈eα · φα,

√
−1[J , (η̇α + Ṅ)] · φα〉sρ−1

α

+ 〈eα · φα, (ηα +N) · h · φα〉sρ−1
α

Thus the term F1−1 is divided into two terms F1−1−1 and F1−1−2,

F1−1 = F1−1−1 + F1−1−2

where it follows from Lemma 7.9 that we have

F1−1−1 = 〈eα · φα,
√
−1[J , η̇α + Ṅ ] · φα〉sρ−1

α

F1−1−2 = 〈eα · φα, ηα · h · φα〉sρ−1
α

The term F2−1 is also divided into two terms

F2−1 = F2−1−1 + F2−1−2

where

F2−1−1 = 〈−
√
−1[J , η̇α + Ṅ ] · φα, eα · φα〉sρ−1

α

F2−1−2 = 〈ηα · h · φα, eα · φα〉sρ−1
α
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By using Lemma 7.5 and 〈φα, φα〉s = ρα〈ψ,ψ〉s, we obtain

F1−1−1 − F2−1−1 =
√
−1〈eα · φα,

[
J , η̇α + Ṅ ] · φα〉sρ−1

α

+
√
−1〈[J , η̇α + Ṅ ] · φα, eα · φα〉sρ−1

α

= 2
√
−1〈eα, [J , η̇α + Ṅ ]〉T⊕T∗〈φα, φα〉sρ−1

α

= 2
√
−1〈eα, [J , η̇α + Ṅ ]〉T⊕T∗〈ψ, ψ〉s

= 〈eα · ψ,
√
−1[J , η̇α + Ṅ ] · ψ〉s

+ 〈
√
−1[J , η̇α + Ṅ ] · ψ, eα · ψ〉s

It follows from Lemma 7.10 and J · ψ = 0 that we have N(t) · ψ = 0. Thus
we have Ṅ · ψ = 0. It follows

F1−1−1 − F2−1−1 = 〈eα · ψ,
√
−1[J , η̇α] · ψ〉s + 〈

√
−1[J , η̇α] · ψ, eα · ψ〉s

From Lemma 7.12, the term F1−3 is given by

F1−3 = 〈eα · (ηα +N) · φα, h · φα〉sρ−1
α = 〈eα · ηα · φα, h · φα〉sρ−1

α

= −〈ηα · eα · φα, h · φα〉sρ−1
α = 〈eα · φα, ηα · h · φα〉sρ−1

α = F1−1−2

The term F2−3 is also given by

F2−3 = 〈h · φα, eα · (ηα +N) · φα〉sρ−1
α = −〈h · φα, ηα · eα · φα〉sρ−1

α

= 〈ηα · h · φα, eα · φα〉sρ−1
α = F2−1−2

Hence we obtain

F1−1−2 + F1−3 − F2−1−2 − F2−3 = 2〈eα · φα, ηα · h · φα〉sρ−1
α

− 2〈ηα · h · φα, eα · φα〉sρ−1
α

Applying Lemma 7.8 and substituting θ = ηα, we obtain

F1−1−2 + F1−3 − F2−1−2 − F2−3 =
√
−1〈eα · ψ, [[h,J ], ηα] · ψ〉s

+
√
−1〈[[h,J ], ηα] · ψ, eα · ψ〉s
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We also have

F1−2 − F2−2 = 〈eα · φα, dρ−1
α · h · φα〉s − 〈dρ−1

α · h · φα, eα · φα〉s

= 〈eα · φα, −
dρα
ρα
· h · φα〉sρ−1

α

−
〈
−dρα
ρα
· h · φα, eα · φα

〉
s

ρ−1
α

Applying Lemma 7.8 and substituting θ = dρα
ρα

, we obtain

F1−2 − F2−2 = −
√
−1

2

〈
eα · ψ,

[
[h,J ],

dρα
ρα

]
· ψ
〉
s

−
√
−1

2

〈[
[h,J ],

dρα
ρα

]
· ψ, eα · ψ

〉
s

Hence F1(eα)− F2(eα) is given by the following,

F1(eα)− F2(eα) = 〈Leαφα, h · φα〉sρ−1
α − 〈h · φα, Leαφα〉sρ−1

α

=
√
−1〈eα · ψ, [J , η̇α] · ψ〉s +

√
−1〈[J , η̇α] · ψ, eα · ψ〉s

+
√
−1〈eα · ψ, [[h,J ], ηα] · ψ〉s

+
√
−1〈[[h,J ], ηα] · ψ, eα · ψ〉s

−
√
−1

2

〈
eα · ψ,

[
[h,J ],

dρα
ρα

]
· ψ
〉
s

−
√
−1

2

〈[
[h,J ],

dρα
ρα

]
· ψ, eα · ψ

〉
s

Since eα is a generalized Hamiltonian element satisfying eα · ψ =
√
−1dfα ·

ψ, we have

F1(eα)− F2(eα) = −〈dfα · ψ, [J , η̇α] · ψ〉s + 〈[J , η̇α] · ψ, dfα · ψ〉s
− 〈dfα · ψ, [[h,J ], ηα] · ψ〉s + 〈[[h,J ], ηα · ψ, dfα · ψ〉s

+
1

2

〈
dfα · ψ,

[
[h,J ],

dρα
ρα

]
· ψ
〉
s

− 1

2

〈[
[h,J ],

dρα
ρα

]
· ψ, dfα · ψ

〉
s

The action of Spin group preserves the form 〈 , 〉s. Since deformations
Jt := eh(t) ◦ J ◦ e−h(t) is given by the action of Spin group eh(t), thus ρα does
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not depend on t. Recall J̇ = [h,J ]. Then F1(eα)− F2(eα) is given by the
following derivative at t = 0,

F1(eα)− F2(eα) = − d

dt
〈dfα · ψ, [Jt, ηα(t)] · ψ〉s

+
d

dt
〈[Jt, ηα(t)] · ψ, dfα · ψ〉s

+
1

2

d

dt

〈
dfα · ψ,

[
Jt,

dρα
ρα

]
· ψ
〉
s

− 1

2

d

dt

〈[
Jt,

dρα
ρα

]
· ψ, dfα · ψ

〉
s

Since we consider deformations preserving ψ, we have Jt · ψ = 0. Thus we
have [Jt, ηα(t)] · ψ = Jtηα(t) · ψ. The support of fα is contained in Uα. Ap-
plying Stokes’ theorem, we obtain∫
M
F1(eα)−

∫
M
F2(eα) =

d

dt

∫
M

〈
fαψ, d

(
−Jtηα(t) +

1

2
Jtd log ρα

)
· ψ
〉

+
d

dt

∫
M

〈
d

(
Jtηα(t)− 1

2
Jt log ρα

)
· ψ, fαψ

〉
s

Since d(J ηα + 1
2J d log ρα) · ψ is a globally defined d-closed 2n-form, we have∫

M
F1(e)− F2(e) =

∑
α

∫
M
F1(eα)−

∑
α

∫
M
F2(eα)

=
∑
α

d

dt

∫
M

〈
fαψ,

(
−dJtηα(t) +

1

2
dJtd log ρα

)
· ψ
〉

+
∑
α

d

dt

∫
M

〈(
dJtηα(t)− 1

2
dJt log ρα

)
· ψ, fαψ

〉
s

=
d

dt

∫
M

〈
fψ,

(
−dJtηα(t) +

1

2
dJtd log ρα

)
· ψ
〉

+
d

dt

∫
M

〈(
dJtηα(t)− 1

2
dJt log ρα

)
· ψ, fψ

〉
s

Hence we obtain

c−1
n ωÃψ(LeJ , J̇h) =

d

dt

∫
M

〈
fψ, d

(
−Jtηα(t) +

1

2
Jtd log ρα

)
· ψ
〉
s

+
d

dt

∫
M

〈
d

(
Jtηα(t)− 1

2
Jt log ρα

)
· ψ, fψ

〉
s
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Thus it follows from (5.15) that the moment map µ is given by

〈µ(J ), f〉 = cn

∫
M

〈
fψ, d

(
−J ηα +

1

2
J d log ρα

)
· ψ
〉
s

+ cn

∫
M

〈
d

(
J ηα −

1

2
J log ρα

)
· ψ, fψ

〉
s

= (
√
−1)−n

∫
M
f(GRJ )〈ψ, ψ〉s

Hence we obtain the result.

9. Deformations of generalized Kähler structures with
constant generalized scalar curvature

Definition 9.1. If the generalized scalar curvature GR of a generalized
Kähler structure (J ,Jψ) is constant, then (J ,Jψ) is called a generalized
Kähler structure with constant generalized scalar curvature, that is,

GR = λ (constant),

where λ = n
c1(KJ ) ∪ [ω]n−1

[ωn]

Theorem 9.2. Infinitesimal deformations of generalized Kähler structures
with constant generalized scalar curvature are given by the cohomology group

ker ∂J ∩ (E
+
J ∧E

−
J )/Im∂

+
J ∂
−
J ∩ (E

+
J ∧E

−
J )

of the following elliptic complex :

0→ C∞C (M)
∂
+

J ∂
−
J−→ E

+
J ∧E

−
J

∂J−→ (∧2E
+
J ∧E

−
J )⊕ (E

+
J ∧ ∧2 E

−
J )

∂J−→ · · ·

Since the cohomology group is finite dimensional for a compact manifold M ,
Infinitesimal deformations are also finite dimensional.

Proof. Let Aψ(M) be the set of generalized complex structures which are
compatible with ψ and Hamψ(M) the generalized Hamiltonian group which
acts on Aψ(M). The orbit of Hamψ(M) on Aψ(M) is denoted by OHam(M).
Let J ∈ Aψ(M) be a generalized complex structure such that (J ,Jψ) ad-
mits constant generalized scalar curvature. The formal tangent space of
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Aψ(M) at J is given by ε ∈ E+
J ∧ E

−
J satisfying ∂J ε = 0, since deforma-

tions of J preserves ψ. Since generalized Kähler structures with constant
generalized scalar curvature are given by the inverse image µ−1(0) of the
moment map µ for the action of Hamψ(M), infinitesimal deformations are
the orthogonal complement of the direct sum of (TJOHam ⊕ J TJOHam),
where TJOHam denotes the tangent space of the orbit OHam at J . The
TJOHam consists of LeJ for Hamiltonian element e = e1,0 + e0,1 ∈ TM ⊕
T ∗M , where e1,0 ∈ EJ and e0,1 ∈ EJ . Thus TJOHam is given by {∂J e0,1 | e :
Hamiltonian element}. Since a Hamiltonian element e is given by e = Jψdf
for a hamiltonian f , we have

∂J e
0,1 = ∂J (Jψdf)0,1

=
√
−1(∂

+
J + ∂

−
J )(∂

+
J − ∂

−
J )f

= −2
√
−1 ∂

+
J ∂
−
J f

Since J acts on 2
√
−1 ∂

+
J ∂
−
J f ∈ ∧2EJ by the multiplication of 2

√
−1. Thus

we have the complexification,

TJOHam ⊕ J TJOHan = {−2
√
−1 ∂

+
J ∂
−
JF |F ∈ C∞C (M) }

Hence infinitesimal deformations of generalized Kähler structures with con-
stant generalized scalar curvature are given by the cohomology group

ker ∂J ∩ (E
+
J ∧E

−
J )/Im∂

+
J ∂
−
J ∩ (E

+
J ∧E

−
J )

The ellipticity of the complex follows from checking its symbol complex.
Hence we obtain the result. �

Example 9.3. Let S be a K3 surface and (JJ ,Jψ) a generalized Kähler
structure induced from a Ricci flat Kähler structure. We have the generalized
Hodge decomposition H•(S) = ⊕Hp,q,
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H0,2

H−1,1 H1,1

H−2,0 H0,0 H2,0

H−1,−1 H1,−1

H0,−2

Then infinitesimal deformations of generalized Kähler structures with van-
ishing generalized scalar curvature are given by H0,0(S), where dimH0,0 =
20. In the cases of ordinary K3 surfaces, deformations of complex structures
with vanishing Ricci tensor preserving a symplectic structure is 19 dimen-
sional. Hence there is one more dimensional deformations which deform to
generalized Kähler structures of type (0, 0) which is discussed next section.

10. Generalized Kähler structures of type (0, 0)

Definition 10.1. A generalized Kähler structure of type (0, 0) is a gener-
alized Kähler structure (Jφ,Jψ) which is induced from a pair

(φ = eB+
√
−1ω1 , ψ = e

√
−1ω2)

which consists of d-closed, nondegenerate, pure spinors of symplectic types,
where B is a real d-closed 2-form and both ω1 and ω2 are real symplectic
forms, respectively.

Proposition 10.2. A pair (φ = eB+
√
−1ω1 , ψ = e

√
−1ω2) gives a generalized

Kähler structure if and only if (φ, ψ) satisfies the followings :
(1) ω±C := B +

√
−1(ω1 ∓ ω2) defines complex structures I± such that ω±C

are d-closed holomorphic symplectic forms with respect to I± respectively.
(2) ω2 is tame w.r.t both I±.

Proof. Let Eφ be the eigenspace with eigenvalue −
√
−1 with respect to Jφ

and Eφ the complex conjugate of Eφ. We denote by Eψ the eigenspace with
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eigenvalue −
√
−1 with respect to Jψ and Eψ is the complex conjugate of

Eψ. Then we have

Eφ = { v − iv(B +
√
−1ω1) | v ∈ TC

M }, Eψ = {u−
√
−1iuω2 |u ∈ TC

M }
Eφ = { v − iv(B −

√
−1ω1) | v ∈ TC

M }, Eψ = {u+
√
−1iuω2 |u ∈ TC

M}

The condition JφJψ = JψJφ is equivalent to the followings :

dimCEφ ∩ Eψ = dimCEφ ∩ Eψ = n.

Thus u−
√
−1iuω2 ∈ Eφ ∩ Eψ if and only if

u−
√
−1iuω2 = u− iu(B +

√
−1ω1).

Hence u−
√
−1iuω2 ∈ Eφ ∩ Eψ if and only if iu(B +

√
−1(ω1 − ω2)) = 0.

Thus ker(B +
√
−1(ω1 − ω2)) := {u ∈ TC

M | iu(B +
√
−1(ω1 − ω2) = 0 } is n

dimensional if and only if dimEφ ∩ Eψ = n. If u ∈ Eφ, then it follows from
Eφ ∩ Eφ = {0} that we have u 6= u. Thus we see that

ker(B +
√
−1(ω1 − ω2)) ∩ ker(B +

√
−1(ω1 − ω2)) = {0}.

Hence ω+
C := B +

√
−1(ω1 − ω2) defines a complex structure I+ such that

ω+
C is a holomorphic symplectic form with respect to I+. We also see that

ker(B +
√
−1(ω1 + ω2)) := {u ∈ TC

M | iu(B +
√
−1(ω1 + ω2)) = 0 } is 2n di-

mensional if and only if dimEφ ∩ Eψ = n. Thus ω−C := B +
√
−1(ω1 + ω2)

defines a complex structure I− such that ω−C is a holomorphic symplectic
form with respect to I−. Hence the condition [Jφ,Jψ] = 0 is equivalent to the
condition (1). The eigenspace with eigenvalue ±1 with respect to G := JφJψ
are denoted by C±, respectively. Then we have CC

+ = (Eφ ∩ Eψ)⊕ (Eφ ∩
Eψ) and CC

− = (Eφ ∩ Eψ)⊕ (Eφ ∩ Eψ). For u ∈ kerω+
C = T 0,1

I+
,we have

G(u−
√
−1iuω2, u+

√
−1iuω2, ) = 〈u−

√
−1iuω2, u+

√
−1iuω2, 〉

= −2
√
−1ω2(u, u)

For u ∈ kerω−C = T 0,1
I−

, we also have

G(u+
√
−1iuω2, u−

√
−1iuω2) = −〈u+

√
−1iuω2, u−

√
−1iuω2〉

= −2
√
−1ω2(u, u)

Thus G = JφJψ gives a generalized metric if and only if −
√
−1ω2(u, u) > 0

for all u 6= 0 ∈ T 0,1
I±

. A symplectic structure is tame with respect to I± if and
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only if ω2(x, I±x) > 0 for every real tangent x 6= 0 ∈ TM . Since −
√
−1ω2(x−√

−1I±x, x+
√
−1I±x) = 2ω2(x, I±x), Hence G := JφJψ gives a general-

ized metric if and only if ω2 is tame with respect to I±. Hence we obtain
the result. �

Remark 10.3. On a 4 dimensional manifold, the condition (1) is equivalent
to the followings

B ∧ ω1 = B ∧ ω2 = ω1 ∧ ω2 = 0, B ∧B = ω1 ∧ ω1 + ω2 ∧ ω2 6= 0.

In the case of a generalized Kähler structure of type (0, 0), the GRic and
GR are explicitly written.

Proposition 10.4. For a generalized Kähler structure of type (0, 0), GRic
and GR are given by

GRic = −dBω−1
1

(
d log

ωn1
ωn2

)
(GR)ωn2 = nωn−1

2 ∧ dBω−1
1

(
d log

ωn1
ωn2

)
,

where B : TM → T ∗M and ω−1
i : T ∗M → TM (i = 1, 2) and the composition

Bω−1
1 is an endomorphism of T ∗M and then Bω−1

1 (d log ωn1
ωn2

) is a 1-form and

then the exterior derivative of Bω−1
1 (d log ωn1

ωn2
) is a 2-form which is the GRic

form.

Proof. Substituting ρα = ωn1
ωn2

and ηα = 0 into (5.7), we have the result. �

Example 10.5 (HyperKähler str.). Let (g, I, J,K) be a hyperKähler
structure with three Kähler forms (ωI , ωJ , ωK). We define B and two sym-
plectic forms ω1, ω2 by

B = ωJ , ω1 =
1

2
(ωI + ωK), ω2 =

1

2
(ωI − ωK).

Then (φ = eB+
√
−1ω1 , ψ = e

√
−1ω2) is a generalized Kähler structure which

satisfies GRic= 0.
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11. Generalized Kähler-Einstein structures

Definition 11.1. A generalized Kähler structure (Jβ, ψ = eb+
√
−1ω) is a

generalized Kähler-Einstein if we have the following:

GRic = λω

for constants λ.

In the case of generalized Kähler structure of type (0, 0), the generalized
Kähler-Einstein condition implies that ωn1 = ωn2 , where the Einstein constant
is zero.

12. Generalized Kähler-Einstein structures constructed
from holomorphic Poisson deformations

Let (M,J, ω) be a Kähler manifold with an ordinary complex structure J and
a Kähler structure ω. We assume that the m-dimensional torus T acts on M
preserving the Kähler structure (J, ω) on M and there exists a moment map
µT : M → (tm)∗ for the action of T , where we assume m ≥ 2. Let {ξi}mi=1 be
a basis of the Lie algebra tm of the Torus T and {Vi}mi=1 the corresponding
real vector fields which are generated by {ξi}mi=1. Each Vi is decomposed into
V 1,0
i + V 0,1

i , where V 1,0
i ∈ T 1,0

J and V 0,1
J ∈ T 0,1

J . Since {Vi}mi=1 are commuting
vector fields, we have a real Poisson structure βR by

βR =
∑
i,j

λi,jVi ∧ Vj ,

where λi,j are constants. Holomorphic vector fields {V 1,0
i }mi=1 also gives a

holomorphic Poisson structure β =
∑
λi,jV

1,0
i ∧ V 1,0

j . Let (JJ , Jψ) be the
generalized Kähler structure coming from the ordinary Kähler structure
(J, ω), where ψ = e

√
−1ω. Let {φα} be trivializations of KJJ , that is, each

φα is a holomorphic n-form with respect to J . Then the action of eβR on
each φα coincides with the action of eβ on φα, that is,

eβR · φa = eβ · φα.

Thus the action of eβR on JJ gives Poisson deformations of Jβt. Then the
action of eβR gives deformations of almost generalized Kähler structures

(Jβt,Jψt) := (eβRtJJe−βRt, eβRtJψe−βRt),
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where Jψt are almost generalized complex structures induced from ψt =
eβRt · ψ.

Theorem 12.1. Let µT,i be the function which is the coupling 〈µT , ξi〉 of
the moment map µT and ξi ∈ tm. Then ψt is given by

ψt = exp

−∑
i,j

λi,j dµT,i ∧ dµT,j +
√
−1ω


Thus dψt = 0 and (Jβt,Jψt) are deformations of generalized Kähler struc-
tures.

Proof. The exponential eβR is given by

eβR =
∏
i,j

eλi,jVi∧Vj =
∏
i,j

(1 + λi,jVi ∧ Vj).

Since ω(Vi, Vj) = 0 and iViω = dµT,i, we have

Vi ∧ Vj · ψ = −dµT,i ∧ dµT,j ∧ e
√
−1ω

Since iVidµT,j = 0, we have

eβR · ψ =
∏
i,j

(1 + λi,jVi ∧ Vj) · ψ =
∏
i,j

(1− λi,jdµT,i ∧ dµT,j) · ψ

=
∏
i,j

e−λi,jdµT,i∧dµT,j · ψ

= exp

−∑
i,j

λi,jdµT,i ∧ dµT,j +
√
−1ω

.
Thus ψt is d-closed and Jψt are generalized complex structures. Thus we
have the result. �

Proposition 12.2. Let (X, J, ω) be a Kähler-Einstein manifold which ad-
mits an action of real torus Tm (m ≥ 2) preserving the Kähler structure
(J, ω). We assume that there exists a moment map for the action of Tm.
We denote by {ξi}mi=1 a basis of the Lie algebra tm which yields vector fields
{Vi}mi=1. We assume that βR :=

∑
i,j λi,jVi ∧ Vj is a nontrivial real Poisson

structure for some constants λi,j. Then there exist nontrivial deformations
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of generalized Kähler-Einstein manifolds (Jβt, ψt), where {Jβt} are Poisson
deformations of JJ , where β is the holomorphic Poisson structure given by

β =
∑
i,j

λi,jV
1,0
i ∧ V 1,0

j

and Vi = V 1,0 + V 0,1 and V 1,0
i ∈ T 1,0

J , and V 0,1 ∈ T 0,1
J .

Proof. It suffices to show Proposition 12.2 in the case of βR = V1 ∧ V2 which
is a real Poisson structure given by the wedge of V1 and V2. Let {φa} be triv-
ializations of the canonical line bundle KJ which are given by the ordinary
holomorphic n-forms. The action of Tm preserves the complex structure J
and the canonical line bundle. Thus the action of V1 and V2 are the repre-
sentations of weights n1 and n2, respectively, that is,

LV1
φα =

√
−1n1φa LV2

φα =
√
−1n2φα

From [V1, V2] = 0 and dφα = 0, it follows that we have

d(βR · φα) = d(V1 ∧ V2) · φα = LV1
V2 · φα − V1dV2 · φα

= V2 · LV1
φα − V1 · LV2

φα

=
√
−1n1V2 · φα −

√
−1n2V1 · φα

Since Vi · βR = Vi · V1 · V2 = 0, we have

deβRφα =(
√
−1n1V2 −

√
−1n2V1) · eβRφα

Since (V1 −
√
−1JβV1) · eβRφα = (V2 −

√
−1JβV2) · eβRφα = 0, we have

deβRφα = (−n1JβV2 + n2JβV1) · eβRφα.

Since JβVi = eβJJe−βVi = JJVi = JVi, we also have

deβRφα = (−n1JV2 + n2JV1) · eβRφα.

Since (−n1JV2 + n2JV1) is a real section, it follows that ηα = (−n1JV2 +
n2JV1) ∗3 Let µT be the moment map for the action of Tm. Then µT,i is

∗3If βR =
∑
i,j λi,jVi ∧ Vj , then ηα =

∑
i,j λi,j(−njJVi + niJVj)
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denoted by 〈µT , ξi〉. Since ω(V1, V2) = 0, iViω = dµi, we have

eβR · ψ = eβR · e
√
−1ω = e

√
−1ω + V1 ∧ V2 · e

√
−1ω(12.1)

= e
√
−1ω − dµT,1 ∧ dµT,2we

√
−1ω

= exp (−dµT,1 ∧ dµT,2 +
√
−1ω)

Since ψβR := eβR · ψ is d-closed, then Jψ is integrable. Hence (JβR , Jψ) is a
generalized Kähler structure. Since ηα ∈ TM , it follows that eβRηαe

−βR = ηa.
Thus we have

dJβRηα · ψβR = deβRJJe−βRηαeβR · ψ
= deβRJηαψ = deβR(n1V2 − n2V1)e−βReβRψ

= d(n1V2 − n2V1)eβR · ψ

Since Vi · dµj = 0 for i, j = 1, 2, we have dVie
βR · ψ = dViψ. Thus we have

dJβRηα · ψβR = d(n1V2 − n2V1) · ψ(12.2)

=
√
−1d(n1iV2

ω − n2iV1
ω) · ψ = 0.

We calculate the term dJβRd log ρα · ψβR . Since Vi preserves the function
ρα, we have LViρα = 0. Thus we have

e−βR
dρα
ρα

eβR =
dρα
ρα
−
[
V1 ∧ V2,

dρα
ρα

]
=
dρα
ρα

.

Thus we have

dJβRd log ρα · ψβR = deβRJJe−βR
dρα
ρα

eβR · ψ

= deβRJJ
dρα
ρα
· ψ = deβRJJ

dρα
ρα

e−βRψβR

= dJJ
dρα
ρα
· ψβR + d

[
βR, JJ

dρα
ρα

]
· ψβR

= dJ

(
dρα
ρα

)
∧ ψβR + d

(
V1

〈
V2, J

dρα
ρα

〉
− V2

〈
V1, J

dρα
ρα

〉)
· ψβR

= dJ
dρα
ρα
· ψβR +

√
−1d

(〈
V2, J

dρα
ρα

〉
iV1
ω −

〈
V1, J

dρα
ρα

〉
iV2
ω

)
· ψβR
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Thus we have

− 2dJβRηα · ψβR + dJβRd log ρα · ψβR

(12.3)

= dJ
dρα
ρα
· ψβR +

√
−1d

(〈
V2, J

dρα
ρα

〉
iV1
ω −

〈
V1, J

dρα
ρα

〉
iV2
ω

)
· ψβR

As in Definition 5.3, −2dJβRηα · ψβR + dJβRd log ρα · ψβR is written as

−2dJβRηα · ψβR + dJβRd log ρα · ψβR = (P −
√
−1Q) · ψβR ,

where P = GRic and Q are real 2-forms.

Since
√
−1d

(
〈V2, J

dρα
ρα
〉iV1

ω − 〈V1, J
dρα
ρα
〉iV2

ω
)

is a pure imaginary 2-

form and dJ
dρα
ρα

is a real 2-form, we obtain

GRic = −dJd log ρα

Since (X, J, ω) is a Kähler-Einstein manifold, we also have

−dJ log ρα = λω.

Since ψβR = exp (−dµT,1 ∧ µT,2 +
√
−1ω), we have GRic= λω. �

Let X = (M,J) be a compact complex surface with effective anticanonical
divisor. Let β be a nontrivial section of K−1. Then β is a holomorphic Pois-
son structure. We denote by Jβ Poisson deformations of generalized complex
structures. Then from the stability theorem of generalized Kähler structures,
there is a generalized Kähler structure (Jβ,Jψ), where ψ = eB+

√
−1ω is a

d-closed, nondegenerate, pure spinor. We denote by D = {β = 0} the divisor
given by zero of β. Then we have

Proposition 12.3. Let β be a Poisson structure on X = CP 2 which is an
anticanonical divisor D given by three lines in general position. Then there
exists a generalized Kähler-Einstein structure (Jβ,Jψ) such that

GRic = 3ω,

where ψ = eb+
√
−1ω.

Proof. In our case, Poisson structure β is given by an action of 2-dimensional
torus preserving the Kähler structure of CP 2. Then the result follows from
Proposition 12.2. �



i
i

“4-Goto” — 2020/3/20 — 10:29 — page 189 — #43 i
i

i
i

i
i

Scalar curvature as moment map 189

Proposition 12.4. Let (M,J, ω) be a toric Kähler-Einstein manifold of di-
mension m. Then there exist deformations of nontrivial generalized Kähler-
Einstein structures from the ordinary Kähler-Einstein structure, where
m ≥ 2.

Proof. Since (M,J, ω) is a toric Kähler-Einstein manifold, there exists an
action of Tm preserving the Kähler structure. Then the result follows from
Proposition 12.2 �
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