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Scalar curvature as moment map in
generalized Kahler geometry

RyusHI GoTO

It is known that the scalar curvature arises as the moment map
in K&hler geometry. In pursuit of the analogy, we develop the mo-
ment map framework in generalized Kéhler geometry of symplectic
type. Then we establish the definition of the scalar curvature on a
generalized Kéhler manifold of symplectic type from the moment
map view point. We also obtain the generalized Ricci form which
is a representative of the first Chern class of the anticanonical
line bundle. We show that infinitesimal deformations of general-
ized Kéhler structures with constant generalized scalar curvature
are finite dimensional on a compact manifold. Explicit descriptions
of the generalized Ricci form and the generalized scalar curvature
are given on a generalized Kéhler manifold of type (0,0). Poisson
structures constructed from a Kahler action of 7™ on a Kahler-
Einstein manifold give rise to intriguing deformations of gener-
alized Kahler-Einstein structures. In particular, the anticanonical
divisor of three lines on CP? in a general position yields nontrivial
examples of generalized Kéhler-Einstein structures
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1. Introduction

Let (X,w) be a compact symplectic manifold with a symplectic structure w.
An almost complex structure J is compatible with w if a pair (J,w) gives an
almost Kihler structure on M. We denote by C, the set of almost complex
structures which are compatible with w. Then C,, is an infinite dimensional
Kahler manifold on which Hamiltonian diffeomorphisms of (M,w) act Co
preserving the Kahler structure. Each J € C,, gives a Riemannian metric
g(J) and we denote by s(.J) the scalar curvature of g(.J) which is regarded
as a function on C,. Then the following theorem was established in Kéahler
geometry by Fujiki and Donaldson.

Theorem 1.1. [Ful, [Do] The scalar curvature is the moment map on C,,
for the action of Hamiltonian diffeomorphisms.

The moment map framework in Kéhler geometry suggests that the existence
of constant scalar curvature Kéhler metrics is inevitably linked with the cer-
tain stability in algebraic geometry which leads to well-known Donaldson-
Tian-Yau conjecture in Kahler geometry.

Generalized Kahler geometry is a successful generalization of ordinary
Kahler geometry which is equivalent to bihermitian geometry satisfying the
certain torsion conditions.

Many interesting examples of generalized Kahler manifolds were already

constructed by holomorphic Poisson structures [Goll, [Go2], [Go3|, [Go4],
[Gul], [Hill, [Hi2], [Lini].
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Main theme of this paper is to pursue an analogue of moment map frame-
work in generalized Kéhler geometry and to establish the notion of the scalar
curvature on a generalized Kéhler manifold. In this paper we assume that
a generalized Kahler structure consists of commuting two generalized com-
plex structures (J, Jy), where J is an arbitrary almost generalized complex
structure and 7, is induced from a d-closed nondegenerate, pure spinor 1 of
symplectic type*lﬂWe construct an invariant function from J and 1 which
is referred to the generalized scalar curvature GR. Then it turn out that
a moment map in generalized Kéhler geometry is given by the generalized
scalar curvature GR. From the view point of moment map, the notion of
generalized Ricci curvature is introduced and the definition of generalized
Kéhler-Einstein structure is provided.

In order to obtain moment map framework, one may try to follow the
same way as in Kéahler geometry by using the Levi-civita connection and
the curvature. However, we need to pave a way without the use of the Levi-
civita connection and the curvature in this paper because the notion of
Levi-civita connection and the curvature in generalized Kahler geometry
are very different from the ones in Kéahler geometry and are not suitable
for our purpose. Nondegenerate, pure spinors play a central role rather than
generalized complex structures in this paper. A nondegenerate, pure spinor
is a differential form on a manifold M which induces an almost generalized
complex structure J by ker ¢ = E7 and ker ¢ = E 7. Conversely, the canon-
ical line bundle K7 of an almost generalized complex structure J gives a
nondegenerate, pure spinor unique up to multiplication by nonzero complex
functions. Let {¢,} be trivializations of K 7, where ¢, is a nondegenerate,
pure spinor which induces an almost generalized complex structure 7. Then
the exterior derivative of the differential form ¢, is given by

d¢a:na'¢a+Na'¢a

whgre Mo is a real section T @ Ty, and N, is also a real section of N E 7 ®
A3E 7. A real function p, is defined by

<¢ou ¢>5:pa<¢a ¢>57

*IThus % is given by ¢ = ebJ”/jl‘”, where w is a real symplectic form. A pair
(J,Ty) is called a generalized Kdhler structure of symplectic type. We can obtain
further generalization of moment map framework for any d-closed nondegenerate,
pure spinor .
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where (, )s denotes the inner metric of Spin representation which is a 2n-
form on M. Then J acts on 14 by Jno € Ty @ Ty, By Spin representation,
J ne acts on the differential form ¢ by J 1, - ¥. Taking the exterior derivative
d, we have a differential form d(Jn, - ¢) which is locally defined. We also
obtain a differential form d(J7dlog pq - ¢). Then it turns out that —2d(Jn, -
Y) + d(Jdlog pq - 1) does not depend on the choice of trivializations of K 7
which defines a differential form on M (see Proposition . Since ¢ =
ePtV=1w it follows that d(—271a + Jdlog ps) - ¥ is given by

(1.1) d(—2Tne + Jdlog po) - = (P — V-1Q) - ¥,

where P, () are real d-closed 2-forms. Thus we define a generalized Ricci form
and a generalized scalar curvature GR by

GRic:= —P generalized Ricci form ,

PAw! )
GR :=n————— generalized scalar curvature
w

where w is a symplectic form and GR is a real function (see Definition5.3).
An almost generalized complex structure J is compatible with + if a pair
(J,Jyp) is an almost generalized Kahler structure. We denote by Ay (M)
the set of almost generalized complex structures which are compatible with
1. Then it turns out that Ay (M) admits a Kéhler structure on which the
generalized Hamiltonian group acts preserving its Kéhler structure. The Lie
algebra of generalized Hamiltonian group is given by real smooth functions.
Then our main theorem is the following:

THEOREM There exists a moment map p : .,Zw(M) — C§°(M)* for the
generalized Hamiltonian action which is given by the generalized scalar cur-
vature GR,

W), 1) = (VD) /M H(GR2) (W, B)s

In Section 2, we shall give a brief review of almost generalized complex struc-
tures focusing on nondegenerate, pure spinors and in Section 3, we define
an almost generalized Kéhler structure. In Section 4, we recall the stability
theorem of generalized Kahler structures which is crucial to construct non-
trivial examples of generalized Kéhler manifolds. In Section 5, we define a
generalized Ricci form GRic and we show that GRic is a representative of
the first Chern class of the anticanonical line bundle K ;. The generalized
scalar curvature is obtained from the generalized Ricci form. The generalized
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scalar curvature is an invariant function under the action of the extension of
volume-preserving diffeomorphisms by d-closed b fields. In Section 6, we for-
mulate the moment map framework of generalized Kahler geometry. After
preliminary results are shown in Section 7, our main theorem is proved in
Section 8. In Section 9, we show that infinitesimal deformations of general-
ized Kéahler structures with constant generalized scalar curvature are given
by an elliptic complex. In particular, the infinitesimal deformations are finite
dimensional on a compact manifold. In Section 10, we give simple expres-
sions of the generalized Ricci form and the generalized scalar curvature of a
generalized Kéhler structure of type (0, O)Tﬂ A generalized Kéhler structure
(Jg, Jy) of type (0,0) is, by definition, induced from a pair

(¢ = €B+¢jlw1,w _ ex/jlwz)

of d-closed, nondegenerate, pure spinors of symplectic types, where B is a
real 2-form and w; and w9 are symplectic forms respectively. Then the 2-form
GRic and the function GR are given by
n
GRic = —dBw; " <d log “}L>
Wa
n
(GR)wh = whi™ AdBw[! <dlog Z;) ,
2

where B : Tyy — Ty and w; ' : T, — Ty (i = 1,2). Then it turns out that
the generalized Kéhler structures coming from hyperKéahler structures have
vanishing GRic form. In Section 11, we define a generalized Kéahler-Einstein
structure. In Section 12, we provide nontrivial examples of generalized
Kahler-Einstein structures which arise as Poisson deformations from Kahler-
Einstein manifolds on which 1™ acts preserving its Kahler structure. In par-
ticular, the anticanonical divisor of three lines in a general position on CP?

gives a nontrivial example of a generalized Kahler-Einstein structure.
Boulanger obtained remarkable results on the moment map in the cases
of toric generalized Kéahler manifolds from the view point of toric Kéhler
manifolds [Bou|. A generalized Kéhler structure is equivalent to a biher-
mitian structure with the certain torsion condition. From the viewpoint of
bihermitian geometry, generalized Kéhler Ricci flow was introduced [StI].
Apostolov and Streets discuss Calabi-Yau problem in generalized Kéahler ge-
ometry [AS]. It is interesting to find out an expression of our moment map

TA generalized Kihler structure of type (0,0) corresponds to a degenerate biher-
mitian structure, i.e, [Jy, J_], # 0 for all x € M.
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in terms of bihermitian geometry. There is a remarkable link between gener-
alized geometry and noncommutative algebraic geometry. It is quite natural
to ask whether the existence of generalized Kéahler structure with constant
generalized scalar curvature is related with a stability on a noncommutative
algebraic manifold.

Acknowledgement. The author would like to thank Prof. N. J. Hitchin
for his interests and remarkable comments on his results. The author also
thanks Shinnosuke Okawa for valuable discussions on the relation between
generalized geometry and noncommutative algebraic geometry. The author
would like to thank Marco Gualtieri and Vesti Apostolov for valuable com-
ments.

2. Generalized complex structures

Let M be a differentiable manifold of real dimension 2n. The bilinear form
(, )rer- on the direct sum T @ Ty, over a differentiable manifold M of
dim= 2n is defined by

(v + & utnrer. = 5 (€@) +n(w)), o € Th & € Ty

Let SO(Tw @ Ty;) be the fibre bundle over M with fibre SO(2n,2n) which
is a subbundle of End(Th @ T;;) preserving the bilinear form (, )s An al-
most generalized complex structure J is a section of SO(Ty @ T},) satis-
fying J2 = —id. Then as in the case of almost complex structures, an al-
most generalized complex structure J yields the eigenspace decomposition
: (Ty @ T3)C = E7 ® Ez, where Ez is —/—1-eigenspaces and E 7 is the
complex conjugate of F 7. The Courant bracket of Ths @ T}, is defined by

1
[u+ & v+ N]cou = [u,v] + Lyn — L€ — i(diun — diy§),

where u,v € TM and &,m is T*M. If E7 is involutive with respect to the
Courant bracket, then 7 is a generalized complex structure, that is,
[e1, e2]cou € T'(E7) for any two elements e; =u+&, ea =v+n € T'(Ey).
Let CL(Ta @ T;) be the Clifford algebra bundle which is a fibre bun-
dle with fibre the Clifford algebra CL(2n,2n) with respect to (, )rgr- on
M. Then a vector v acts on the space of differential forms EBI%QO AP T*M
by the interior product i, and a 1-form acts on EBI%’:‘D AP T*M by the exte-
rior product OA, respectively. Then the space of differential forms gives a
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representation of the Clifford algebra CL(Ts @ T';) which is the spin rep-
resentation of CL(Ts @ T;). Thus the spin representation of the Clifford
algebra arises as the space of differential forms

AT} = @p AP Ty = A3, @ A°YT,
The inner product (, )s of the spin representation is given by

<aa /8>S = (a /\O-B)[Qn]v

where (a A 0f)[,) is the component of degree 2n of a Ao € @, AP T*M
and ¢ denotes the Clifford involution which is given by
3 +B deg=0,1 mod4
g =
-8 degf8=2,3 mod4
We define ker ® := {e € (Tyy @ T3;)%|e-® =01} for a differential form
® € Aever/odd T If ker @ is maximal isotropic, i.e., dimc ker @ = 2n, then
® is called a pure spinor of even/odd type.
A pure spinor ® is nondegenerate if ker ® Nker ® = {0}, i.e., (T &

T]’(/[)(C = ker ® @ ker . Then a nondegenerate, pure spinor ® € A*T}, gives
an almost generalized complex structure Jp which satisfies

—v/—1le, e€kerd
Joe = —
+v—1le, ecker®

Conversely, an almost generalized complex structure J locally arises as Jp
for a nondegenerate, pure spinor ® which is unique up to multiplication by
non-zero functions. Thus an almost generalized complex structure yields the
canonical line bundle K7 := C(®) which is a complex line bundle locally
generated by a nondegenerate, pure spinor ® satisfying J = Jp. An gen-
eralized complex structure Jg is integrable if and only if d® =7 - ® for a
section n € Ty @ Ty;. The type number of J = Jo is defined as the mini-
mal degree of the differential form ®. Note that type number Type J is a
function on a manifold which is not a constant in general.

Example 2.1. Let J be a complex structure on a manifold M and J* the
complex structure on the dual bundle 7% M which is given by J*¢(v) = £(Jv)
forve TM and £ € T*M. Then a generalized complex structure J; is given
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J 0
jJ:(O _J*>7

Then the canonical line bundle is the ordinary one which is generated by
complex forms of type (n,0). Thus we have Type J; = n.

by the following matrix

Example 2.2. Let w be a symplectic structure on M and @ the isomor-
phism from T'M to T* M given by &(v) := i,w. We denote by @~! the inverse
map from T*M to TM. Then a generalized complex structure [Jy, is given
by the following

0 -t
J¢—<w 0 ), Type Jy =0
Then the canonical line bundle is given by the differential form ¢ = eV=lw,
Thus Type Jy = 0.

Example 2.3 (b-field action). A d-closed 2-form b acts on a generalized
complex structure by the adjoint action of Spin group e which provides a
generalized complex structure Ad.»J = eloJoe b,

Example 2.4 (Poisson deformations). Let /3 be a holomorphic Poisson
structure on a complex manifold. Then the adjoint action of Spin group e
gives deformations of new generalized complex structures by Jg; := Adgre;J;.
Then Type Jst, =n — 2 rank of 3, at x € M, which is called the Jumping
phenomena of type number.

Let (M, J) be a generalized complex manifold and E 7 the > eigenspace
of eigenvalue v/—1. Then we have the Lie algebroid complex A*E 7:

— 0 — 0 — 0 —
0—)/\OEJ—j>A1Ej—j>A2Ej—j>A3Ej—>~--

The Lie algebroid complex is the deformation complex of generalized com-
plex structures. In fact, e € A2E 7 gives deformed isotropic subbundle E. :=
{e+[e,e]|e € Es}. Then E. yields deformations of generalized complex
structures if and only if € satisfies Generalized Mauer-Cartan equation

— 1
7€ + 5[575]Sch =0,

where [g, €]sch denotes the Schouten bracket. The Kuranishi space of gener-
alized complex structures is constructed.
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Then the second cohomology group H2(A®*E ) of the Lie algebraic com-
plex gives the infinitesimal deformations of generalized complex structures
and the third one H3(A®*E ) is the obstruction space to deformations of
generalized complex structures.

Let {e;}!"; be a local basis of E; for an almost generalized complex
structure J, where (e;,€;)7er« = 6; 5. The the almost generalized complex
structure J is written as an element of Clifford algebra,

j:\/;ilzei'ei,

where J acts on Ty @ T, by the adjoint action [7, |. Thus we have [T, ;] =
—+v/—1e; and [J,€;] = v/—1e;. An almost generalized complex structure J
acts on differential forms by the Spin representation which gives the decom-
position:

(21) A® T]T/[ —y"n D U—n+1 D--- U

3. Almost generalized Kahler structures

Definition 3.1. An almost generalized Kdhler structure is a pair (J1, J2)
consisting of two commuting almost generalized complex structures Ji, J2
such that G := —J10Js=—J20J1 gives a positive definite symmetric
form G := (G’ , ) on Th ® T, We call G a generalized metric. A gener-
alized Kdhler structure is an almost generalized Kéhler structure (71, J2)

such that both J; and J5 are generalized complex structures.

J; gives the decomposition (T @ T5,)¢ = E7 @ E 4, for i = 1,2. Since
J1 and Jo are commutative, we have the simultaneous eigenspace decom-
position

(Tu @ Ti) = (Ez,NEz)®(E5NEg)® (Ex,NEg)® (Eg NEg,).

Since G? = +id, The generalized metric G also gives the eigenspace decom-
position: Ty © Ty, = C @ C_, where C'+ denote the eigenspaces of G' of
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eigenvalues 1. We denote by E}El the intersection Ez, N CE. Then it fol-
lows

Ez NEz =E}, E;NnEg=Ey

EfNEgs,=E;, EsNEgz =Eyg
Example 3.2. Let X = (M, J,w) be a Kéhler manifold. Then the pair
(T, Jyp) is a generalized Kéhler where ¢ = exp(v/—1w).

4. The stability theorem of generalized Kahler manifolds
It is known that the stability theorem of ordinary Kéhler manifolds holds

Theorem 4.1 (Kodaira-Spencer). Let X = (M, J) be a compact Kihler
manifold and X¢ small deformations of X = Xo as complex manifolds. Then
X; tnherits a Kdahler structure.

The following stability theorem of generalized Ké&hler structures shows
that there are many intriguing examples of generalized Kahler manifolds of
symplectic type.

Theorem 4.2. [Go2] Let X = (M, J,w) be a compact Kihler manifold and
(T, Ty) the induced generalized Kihler structure, where 1) = eV—lw, If there
are analytic deformations {J;} of Jo = J; as generalized complex structures,
then there are deformations of d-closed nondegenerate, pure spinors {1}
such that pairs (Ji, Jy,) are generalized Kdhler structures, where 1y = 1

5. Generalized Ricci curvature and generalized
scalar curvature

We use the same notation as before. Let J be an almost complex structure
on M with trivializations {¢,} of the canonical line bundle K 7. Then recall
that n, is given by

(5‘1) d¢a:na'¢a+Na'¢av
where 7, gTM ® Ty, and N, € /\SEJ &) /\3EJ are real sections, i.e., 7, =

Nos Na = Nq. Because of the reality condition, 7, and N, are uniquely de-
termined. Let (7, 1) be an almost generalized Kéahler structure of symplectic
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type. Then recall that a real function p, on U, is given by

(5.2) (Pa $a>s = pa<¢@>s

Proposition 5.1. A differential form d(—2Jns + Jdlog ps) - ¢ does not
depend on the choice of trivializations {¢a} of K 7.

Proof. Let e"~# be the transition function on the intersection U, N Ug. Then
we have ¢, = €"*#¢pg. Since dpg = (g + Ng) - ¢3, we have

dpo = (™" ¢p) = dra,p - "7 dp + €7 (s + Np)op
= dﬁa,ﬁ “ o+ (776 + NB) “Ga

Thus we have

(na + Noz) : d)a = (7]6 + d"ia,ﬂ + Nﬁ) : Qba-

Since No, N € N3E 7 @ N3E 7 and 1,4, mp, dka,g € Tv ® Ty, we have N, =
Ng and 14 - o = (Mg + dka,p) - ¢ Since 14,1 are real, it follows that we
have

(5.3) Na =13 + gjlianﬁ + 0gFa
We also have

Ka,gtRa,p

(5.4) Pa = ppe

Since d((dkapg) ) =0, it follows from dkq g = O7kap + O7kas that we
have

(5.5) d(07ka,p) ¥ +d(Dykap) ¥ =0
Since d((dRa,p) - ) = 0, we also have

(5.6) d(07Fa,8) ¥ + d(0sFap) - ¥ =0
Applying , and , we have

d(=2Jna + Jdlog pa) - — d(=2Tnp + Jdlog pg) -
= —2dJ(07kap + 07Fag) ¥+ dTd(kas + Rap) - ¥
= —2V—1d(07kap — O7Fap) - ¥
+V-1d(05ka,p — O7kap + OgFap — OFap) - ¥
= —2vV/—1d0 7 (Kap + Fap) - + 2V =1d0 7 (Ka,p + Fap) - ¢ =0
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Thus we have the result*Z O

Hence d(—2Jna + Jdlog pa) - yields a globally defined differential form
on M. Since 1 = e"*V=1% it follows that d(—2717a + Jdlog ps) - ¥ is given
by

(5.7) d(—2T e + Jdlog pa) - = (P — V-1Q) - ¥,

where P, () are real d-closed 2-forms. In fact, —2Jn, + Jdlog p, is writ-
ten as v+ 0 € Ty @ Ty, for a vector v and a 1-form 6 and then —27n, +
Jdlog pa -1 is given by (i,b — v/—Tiyw 4+ ) A¢p. Thus P and Q are given
by P = diyb+ df and Q = di,w.

Remark 5.2. Since N, = N, we have a globally defined section N €
AN3E7 @ A3E 7 which is the Nijenhuis type tensor, that is, J is integrable if
and only if N = 0.

Definition 5.3. [Generalized Ricci form and generalized scalar curvature]
We define a generalized Ricci form GRic to be a d-closed 2-form P in
and we define a generalized scalar curvature GR to be a real function on M
which is given by the following,

GRic:= —P generalized Ricci form ,

nP Awr !

GR := —————— : generalized scalar curvature
w

where w is a symplectic form.

A diffeomorphism F of M acts on (J,%) to give an almost generalized
Kahler structure (J’,¢"). We denote by GR’ generalized scalar curvature of
(J',4"). Then we have

Proposition 5.4.
GR' = F*(GR),

that is , GR is equivalent under the action of diffeomorphisms. Further GR
is invariant under the action of d-closed b— fields.

Proof. A diffeomorphism F' of M induces the bundle map Fly of Th @ T},
by Fy(v+0)=F1(v) + F*0 for v € Ty and 0 € T Then we see that

*2In this proof, note that we do not use the integrability of 7.
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Fu(w+6) - F*(a) =F*((v+0)-a) for a differential form «. Let b be a
real d-closed 2-form. Then e’ is regarded as an element of Spin group of
the Clifford algebra of Tys @ Ty, which acts on differential forms by the
wedge produce of e’. Then we have the adjoint action Ad.» on Ty @ Ty by
Adg (v +0) := eP(v+0)e™® = v —i,b+ 0. Then we see that

(') = (FgoJ o F', F*).

Then it follows that ¢, = F*¢, is the nondegenerate pure spinor which
induces J'. We define 7/, by d¢., = 7., - ¢.,. Thus we have

d‘bix = F*d¢a = F*(na : ¢o¢) = F#(na) : ¢ix
Thus we see that 1), = F%(1,). The function pl, is given by
—/ —
<¢Iou ¢o{>5 = p/a<d/7 1/} >S

Thus we have p/, = F*p,. Then we see

(5.8) (T'ne) ¥ = FgoJ o Fy' (Fe(na)) - F*o
(59) = F#(jna) © F*¢
(5.10) = F*(Ina - 1)

We also have

(5.11)  J'(dlogpl,) ¥ = Fy 0. J o ' (F*(dlog pa) F*¥))
(5.12) = Fy(J(dlog pa)) - F*
(5.13) = F*(J(dlog pa) - )

Thus we obtain

(5.14)  d(=2J"n), + T'dlogpl,) - ¥ = F* (d(—2Jna + Jdlog pa) -

S

Since GR is given by the real part of the following:

GR = ReY "L (¥ d(=2Tn0 + Jdlog pa) - ¥)s

2 (W, ¥)s
From (5.14), we have GR’= F*(GR).
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We denote by (7, 1) the pair given by the action of e® on (J,%). Then
Jp is induced from €’ - ¢, and ¢y, = €® - ). Thus we have n? = Ad.(n,) and
p2 = po. Then we see that

d(=2Tn%, + Jodlog pby) - by, = €” (d(=2T o + Tdlog pa) - )

Since ( , )4 is invariant under the action of €’, we see that GR is invariant
under the action of e’. O

We denote by [GRic] the cohomology class of a real d-closed 2-form GRic.
Then we have

Proposition 5.5. The cohomology class [GRic] is given by the 1-st Chern
class,

[GRic] = 4#01(K}1) e H*(M)

Proof. We calculate the spectral sequence from de Rham to Ceck cohomol-
ogy to determine a representative of Ceck cohomology group given by d-
closed form GRic. d(—2Jnq + Jdlog py) - 9 is d-exact on U,. On U, N Ug,

it follows from (5.3 and (5.4)) that we have

(=2T M0 + Jdlog pa) - ¢ — (=2 ng + Jdlog pg) - ¥
= (=2J (Ma — np) + Td(Ka,p + Fa,p)) - ¢
= —2J(076Ka,8 + OFRap) + T(0gkap + 0768 + 07Fas + O0gkag) - ¥
= —V—1d(ka,p — Fap) - ¥
= 2dk}" - 0,

where /-zg?ﬁ denotes the imaginary part of k, g. Thus we have a Ceck repre-
sentative,

Q(Hgfg + /ﬁlﬁ“fy + /ﬁlﬁl) X0
Thus the representative of the class [P] is given by 2(&5’15 + /ilﬁn}y + filyma)
The 1-st Chern class ¢; (K 7) has a Ceck representative

1 _ 1. I I
Ca,By = 27‘(‘\/—71(1%&’5 Tt Ry T “%a) = %(/‘Garflﬂ + ’{61?/ + Hvr,lzv)
Thus we have [P] = 4m¢1 (K 7). Since GRic = —P, we obtain the result. [

Example 5.6. A GK structure (77,1 = e¥~1%) is induced from the gen-
uine Kéhler structure. Then GRic and GR are the ordinary Ricci curvature
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and scalar curvature, respectively. In fact, we have ¢, to be a holomorphic n
form ¢ = dz1 A -+ Adz, and ¢ = eV=1v and (Q4,Qa)s = palth,¥)s. Thus
dJdlog po, = —21/—100log det g; 7 is the ordinary Ricci form.

Remark 5.7. We can generalize our construction of GR to the cases where
1 is an arbitrary d-closed, nondegenerate, pure spinor. In fact, d(—27n, +

Jdlog pa) - ¥ is still a representative of the first Chern class of K 7 together
with the class [¢)] and

GR(C — \/jl <1/}a 7d(_2j7706 +:7d10g pa) : $>s

2 (¥, ¥)s

is an equivalent complex function under the action of diffeomorphisms which
is invariant under the action of d-closed b-fields. In this general case, we
define GR to be the real part of GR®. Then we have

(V=1)"(GR)(®, ¥)s =Re(v/=1)"" (¢, d(—Tna + %Jdlogpa) ),

where Re stands for the real part. The real part is also written as

VORI D= e (v, 0 (~Tna+ 37080, ) - T)

S

S
where ¢, = 1(v/=1)7"L.

Example 5.8 (generalized Calabi-Yau metrical structure). If a gen-
eralized Kéahler structure is induced from a pair (¢,) which consists of
d-closed, nondegenerate, pure spinors such that (¢, ¢)s = (1, %)g, then it is
called a generalized Calabi-Yau metrical structure. Since p, = 1 and 1, = 0,
it follows that we have GR® = 0.

6. Generalized scalar curvature as moment map

Let GCO(M) be the set of generalized complex structures on a differentiable
compact manifold M of dimension 2n, that is,

GC(M) :={J : generalized complex structure on M }.
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We denote by GK (M) the set of generalized Kéhler structures on M, that
is,
GK (M) :={(Jo, J1) : generalized Kéhler structure on M }.

We also define GC (M) as the set of almost generalized complex structures
on M,
GC (M) :={J : almost generalized complex structure on M }.
We denote by GK (M) the set of almost generalized Kéahler structures,
GK (M) :={(Jo, J1) : almost generalized K&hler structure on M }.
Let ¢ be a d-closed, non-degenerate, pure spinor which induces 7. The

spinor inner product of ¢ is given by (1, ¥)s = (¢ A 01)[2n)- In particular,

. V=T
if ¢ := et 1“’, then we have the volume form

(,9)s = @w"-

n!

An almost generalized complex structure J is ¢¥-compatible if and only if
the pair (J,Jy) is an almost generalized Kéhler structure. Let Ay (M) be
the set of y-compatible generalized complex structure, that is

Ayp(M) ={T €GC : (J,Ty) € GK }.

We also define ,Z(w(M ) to be the set of i-compatible almost generalized
complex structures,

Ap(M):={T €GC : (J,T4) € GK }.

For each point x € M, we define .,Zw(M )z to be the set of ¥,-compatible
almost generalized complex structures , that is,

.,Zw(M)m = { T2 [(Jz, Tp.z) : almost generalized Kéhler structure at z }.

Then we see that .,4~l¢(M )z is given by the Riemannian Symmetric space of
type ATII

U(n,n)/U(n) x U(n)

"In Kahler geometry, the set of almost complex structures compatible with a
symplectic structure w is given by the Riemannian symmetric space Sp(2n)/U(n)
which is biholomorphic to the Siegel upper half plane { h € GL,(C)|1,, — h*h >
0, ht = h}.
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which is biholomorphic to the complex bounded domain { h € M,,(C)|1,, —
h*h >0}, where M, (C) denotes the set of complex matrices of n x n. Let
Py, be the fibre bundle over M with fibre Ay, (M), that is,

Py= | Ay(M), — M,
Then .Zw(M ) is given by sections I'(M, P;) which contains Ay (M ). We can

introduce a Sobolev norm on Ay(M) such that Ay (M) becomes a Banach
manifold in the usual way. The tangent bundle of Ay (M) at J is given by

Ty Ay(M) ={J €so(Tu @ Tiy) : TT+TT =0, T Ty = Ty T },
where so(Ty @ 1) denotes the set of sections of Lie algebra bundle of
SO(Tn @ Tyy). Then it follows that there exists an almost complex structure
J i, on Ay (M)which is given by

Ji, () =37, (T eTsAuM))

We also have a Riemannian metric g A, and a 2-form w i, on .Zzp (M) by

(6.1) (jl ) :

tr(J1.72) (¥, ¥)s

M

tr(T ), P) s

M

(6.2) (J1, J2)

for jl, jg S Tjj¢(M).

Proposition 6.1. JAw is integrable almost complex structure on .le(M)

and wy is a Kdihler form on ./Zw(M)

Proof. Let Jy be an almost generalized complex structure on a real vector
space V of dimension 2n. We denote by X,, the Riemannian symmetric space
U(n,n)/U(n) x U(n) which is identified with the set of almost generalized
complex structures compatible with Jy,. We already see that Ay (M) is the
set of global sections of the fibre bundle P, over a manifold M with fibre X,
which is biholomorphic to the bounded domain {h € M,(C)|1, —h*h >
0}. If Ay(M) is not empty, we have a global section Jy. Then the fibre
bundle is identified with the space of maps from M to the complex bounded
domain { h € M, (C) |1, — h*h > 0} which is open set in the complex vector
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space M, (C). Since the almost complex structure .J 4, 18 induced from the
one of the complex bounded domain, wee see that .J A, is integrable. X,
admits a Riemannian metric g5, and a 2-form wy,, which are given by

gxn(jlaj2) = tl“(jle)
wxn(jlan) = —tr(Jj1j2)7

where J1, 72 € T7X,. The complex bounded domain {h € GL,(C)|1, —
h*h > 0} admits a Kéhler structure which is given by

4+/—100log det(1,, — h*h).

Then under the identification X,, = {h € M,(C)[1, —h*h >0} by using
Jv, we have w = 4y/—1001og det(1,, — h*h). Then the space of maps Ay (M)

inherits a Riemannian metric and a Kéahler structure which are given by

: r> / (%) (0, B

» A
Ay, T (v/—1)n—

Hence wz is closed. Thus (.,Zw (M), J R Aw) is a Kéhler manifold. O

aa/ log det(1,, — h*h) (6, Ths

Let DYT(M ) be an extension of diffeomorphisms of M by 2-forms which is
defined as

Diff(M) := {€’F : F € Diff(M), b: 2-form }.
Note that the product of [/)If/f(M ) is given by

(e Fy) (" Fy) = e TR o By,

where F1, Fy € Diff(M) and by, by are real 2-forms. The action of ]i?f(M)
on GC(M) b

ebF# oJ o F;lefb,
where F' € Diff(M) acts on J by FgoJ o F;;l and and e? is regarded as
an element of SO(Ty @ T};) and Fy denotes the bundle map of Th @ T7;
which is the lift of F. We define Diff(M),, to be a subgroup consists of

~——

elements of Diff(M) which preserves v,
Diff, (M) = { "F € Diff(M) : " F*¢p = ¢ }.

Then from (6.1]), we have the following,
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Proposition 6.2. The symplectic structure Wz, is invariant under the ac-

—~——

tion of Y-preserving group Diffy,(M).

We assume that type number of 7 is 0, i.e., ¢ is given by ¢ = eb+mw,
where b is a real 2-form and w denotes a symplectic form. We denote by
Ham,, (M) the Hamiltonian diffeomorphisms of (M, w).

Definition 6.3. By using the 2-form b, we define generalized Hamiltonian
diffeomorphisms Ham® (M) by

Ham? (M) := { e’ Fe™®| F € Ham,, (M) }.

Since e?Fe~b) = ), we see that Ham® (M) is a subgroup of ]/)Efw(M)
Thus Ham? (M) acts on Ay (M) preserving the symplectic structure w i,
The Lie algebra of Ham? (M) is also given by C§°(M), where C§°(M) =

{fec>M)| [, f{¥, ¥)s =0}. A Hamiltonian vector field v is given by
iyw = df for f € C§°(M). Then e :=v —iyb = Jy(df) € Try & T}y is called
a generalized Hamiltonian element. Note that we have e -1 = /—1df - 1.
We denote by GR7 the generalized scalar curvature of (7, Jy) for J €
.,Zw(M ), where GR7 is a real function on M. The following is our main

theorem:

Theorem 6.4. There exists a moment map p : .Zw(M) — CG°(M)* for the
generalized Hamiltonian action which is given by the generalized scalar cur-
vature GR,

W), 1) = (VD [ (GRG0, D).
where f € C§°(M) and (u(J), f) denotes the coupling between (J) and f.

Our proof of Theorem [6.4] will be given in Section 8.
7. Preliminary results for proof of the main theorem

In order to show our main theorem, we shall rewrite the symplectic form
Wi, by using the Clifford algebra and the pure spinors ¢, and ). Such
descriptions in terms of the Clifford algebra and pure spinors are suitable
to obtain our main theorem by using Stokes’ theorem. Let J be an almost
generalized complex structure which is compatible with ¥. We denote by
{¢a} trivializations of the canonical line bundle K 7, where each ¢, is a
nondegenerate, pure spinor on U, which induces the generalized complex
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structure J. Arbitrary small deformations of almost generalized complex
structures of J are given by the adjoint action,

o Joe M)
where h(t) = h?9(t) + h%2(t) denotes a real section depending smoothly on

a parameter ¢ which satisfies h?9(t) € A2E 7 and hO2(t) = h20(t) € A’E ;.
Then the infinitesimal deformation 7 is given by

jh = —e O J o eih(t)‘tzo = [ha j]’

where h and J are regarded as elements of the Clifford algebra CL(Ty &
Ty;) and [h, J]| denotes the commutator of h and J which is identified
with the bracket of Lie algebra so(Tas @ T5;). The real element h € A2E 7 &
NE; CCL(Ty T +7) acts on nondegenerate pure spinors ¢, on U, by
qb'a = h- ¢y Let J1 and Jo are two almost generalized complex structures
which are locally induced from {¢q 1} and {¢q2} respectively. Two real
elements h; and ho give rise to infinitesimal deformations jhl of J1 and \7h2
of Ja, respectively. We also denote by ¢a,hi an element h; - ¢q 4 for i =1,2.
Then the symplectic form w i, 8 in is given by

ij(jhn jhz) = /Mtl“jjhljm(% @>sa

-1
/=1
where h1, ho are real elements of A2E 7 ® A2E 7. We shall begin to write the
symplectic form w 5 i in terms of pure spinors.

Lemma 7.1.

tr jjhljh2 <¢7 $>s - _\/271{pa1<¢.)a,h17 ga7h2>s - p;1<¢‘5a,h27 ga,}h)s}

Proof. The formula is shown by a local calculation. Let {eZ ", be a local
basis of E such that (€;,€;)rer = 0; ;. Then the basis of {el} of E 7 is re-
garded as the dual basis of 7. A real element h € A2E 7 © A?E 7 is written
as h =3, hijeiNej —I—hueZ A€ and Jj, = [h, J] is given by

jh:hj—jh:\/—1Zhi’j€iAej—Ei’jaA?j

i?j
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Thus we have
trT Tny Thy = 4v/—1 Z (h15ha,ji — h1,ijha,ji) »
,J
where ‘—Zh acts on Ty @& Ty, by the adjoint [jh, |. By using the formula
(6 : ¢O¢7 ¢a>$ = _<¢Oc7 €- ¢a>87 we have
(€ € Pa, €k €1 Ou)s = (€1 €k CCj - Py, Po)s-

Applying ey - € +€; - e, = —2(ex, €i)rer+, we have

(€ € Pas €k € Da)s = —4(0kj01 — Oki61j) (Day Pa)s-

Thus we obtain

(Pashis Pany)s = Z hiijho k(€ € - o, €k el Po)s

i7j7k7l

=—-38 Zﬁl,ijh27ji<¢a7 Ba)s

0]

We also have

(Dahas ga,h1>s = =8> h1ijhoi(Par ba)s

i,
Applylng <¢(Za aOz)S = Pa <¢7 @)s, we have

V-1

trjjh1jh2<¢7 @)S - _T

{1051(%,}“, ga,h2>s _p;1<¢3a,h27 ga7hl>s}
]

Proposition 7.2. The symplectic form wg, s given by

C;lu.)Aw(jhl, jh2) :/ p;l<¢a,h17 (Zgoz,h2>5_/ p;1<¢a,h27 éa,h1>8
M M

}Uhe‘re 0711 ; W and pe, 1s the function as in and gz'Sa’hi =h-¢a
ori=1,2.

Proof. [Proposition [7.2] The result directly follows from Lemma . O
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Remark 7.3. Since p5 " (Ga.n,» Pas)s = p/gl@gjhl , q.Sﬂ’hQ)S for o, and 3, the

2n-form p; (da s Pany)s gives a globally defined 2n-form on M.

Note that w4 is also written as

(7.1) e w0 A(Tons To) = / B o Aoz - B!

M

- / b o Ao (B - Ba)ps)
M

Lemma 7.4. We have the following identity with respect to o and d for a
differential form w

+oda (degw = even)
dow =
—odw (degw = odd)

Proof. ow is given by

+w, (degw = 0,1 (mod4)
ow =
—w, (degw = 2,3 (mod4)

Then the result follows. O

Lemma 7.5. Forei,ex € T @ T}, and differential forms wi,wo € A*TY;,
we have

(e1-wi, e2-wa)s+ (€2 -wi, €1 wa)s = 2(€1, €2)rar (W1,wW2)s
Proof. For e € Ty @ Ty, and wi,wo € A*Ty;, we have
(e w1, wa)s + (w1, e-wa)s =0.
Then we have

(e1-wi, €2-wa)s + (€2 -wi, €1 -wa)s

(7.2) = —(e2- €1 w1, wa)s — (e1-e2 wi, wa)s
7.3) = —((e2-e1+e1-e2) wi, wa)s
74) = 2<€1762>T€BT* <W1,UJ2>S
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Lemma 7.6. Let 0 = %0 + %1 pe a 1-form, where 910 ¢ E7 and 0% €
Eg. For h=h*"+h%2 € A\2E7 © A2E 7, we have the following:

[[hv \.7]7 9] : E = 2\/j1 ([hQ’O, 0071} _ [hU,Q, 91,0]) . @

Proof. Let w be a differential form satisfying Jw = v —1kw for —n < k < n.
Then we have

[h, J|lw=hJw — Jhw
= V=1k(h*° + h%?)w — V=1(k — 2)h*%w — vV=1(k + 2)h*?w
=2vV—1(h*° — h"?)w

Since [h?9,0%0] = 0, we have

(1,71, 60] - = 2/=1[(h** — h°?), 0] - ¢
=2v—-1 ([hQ’O, 90,1} _ [h0,2,9170]> % .

Remark 7.7. If an infinitesimal deformation [k, J] preserves v, then it fol-
lows [h, J] - 1 = 0. We shall consider an infinitesimal deformation [h, J] pre-
serving 1. Since J -1 = 0 and [h, J] - ¢ = 0, then it follows that [[h, ], 0] -
Y= [h7 j]@ 1.

Lemma 7.8. For real elements e,0 € Tpy ® Ty, and h = h20 4+ p02 ¢
NE7 @ N’E 7, we have

(75) 2<€'¢a, 9h$a>sp;172<0h¢av e'$a>8p;1
=V=1e- 1, [[h,JT), 00 ¥)s +V=1({[h, T),0] -0, € 1)

Proof. Since h?? - ¢, = 0 and [R>?,6%°] = 0 and %! - ¢, = 0, the left hand
side of (|7.5)) is given by

(L.H.S) = 2(e- ¢, 0-h*°-d,)spat —2(0 -1 - ¢, € 0y)spa’
=2(e- ¢, 071170 Go)spat = 2000 RO o, e Dy )spn!
= _2<€ : ¢047 [h27079] '$a>$p;1 + 2<[h0’2,0] ’ ¢Ot7 € '$a>$p;1

By applying Lemma and [h?0,0] - ¢, = 0, we have

(L.H.S) = —4(e, [h%°, 0])ror-(Par Ba)spn’
+4{e, [h%2, ) rore (Das ba)sp
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It follows from (¢n, ¢,)s = palth, ¥)s and Lemma that we have

(LHS) = =2(e- v, [W*",6]- ¥)s = 2([n*°,6] - ¥, e- ),

+2([n%2, 0] -9, e )5 +2(e -1, [AV2,0] - )

From [h%0, J] = 2¢/—1h%*0, [h02 J] = —2v/—1h%2 | we have

(LHS) = v=1(e- v, [1*°,T).0] - §)s + V=L([1*", T],0] - ¢, - ),
+V=U{{[h%, 1,009, e )5+ V=Tle- 9, [B72,7),60]- ),
Z\m@% [[h7j]79] E)s"‘\/jq[hij ]1/% 6¢>s

Thus we have the result. O

Lemma 7.9. Let N = N30 4+ NO3 be q real section of N3E7 @& N3E 7, where
N30 € A3E 7 and N3 = N30 ¢ ASE ;. Then we have

<6-¢a, N'h'$a>s:<N'h'¢aa e'$a>s:0

Proof. Let Uj be the eigenspace of an eigenvalue /—1k with respect to the
action of 7. Then e- ¢, € U7 n+1 Since h92 - ¢, = 0, we have

N-h-g, = (N30.p20 { N30 p02 4 NO3 20 4 NO3 502y g
— N3O 205 L N0 205

«

Then we have N30.p20.¢, € U2, Since UZT' = {0}, N3 .p20. ¢, =
0 € UZ*!. Thus we have (e-¢o, N -h-d,)s = o Then it follows (N - -

Par € Pa)s = 0. ]
Lemma 7.10. Let N be as in before. Then we have
N-y=0

Proof. Let {e;} be a local basis of E7. Since dpg = 1o - ¢ + N - ¢4, then
we have

(N ¢as €€ €k do)s = (dpa, €i-€j-ep-Py)s
_<ei c€j5 d(z)On €L ‘504)8
= ([ei, €j]cou * Pas €k - Pu)s
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Thus the component N ]k = N(ej, ej,€ex) is given by
3,0
Ni,j,lc = <[ei7 ej]couy ek>T®T*‘

Each €e; is decomposed into €; = E+ +€;, where e € E . From e; -y =

0 and e} -4 =0, it suffices to show that N(e;,e j,e;g)eJr e;r ez =0
and N(e;, € caep e ej e, - = 0. Since J, is integrable, it follows from
[é;r, j]cou € Ly. From ek € Ly, we have

N(éj’éj’éz) = ([E;r7 é;r]COU7 é];r>T@T* =0

Thus N (e} +e;§) ¥ = 0. We also have N(e; ,e;, e, ) = 0. Hence N - ¢p =
0. [l

Lemma 7.11. If [h,J] -1 =0, then we have
(e, [[hJT], N] J)S = ([[h T, N]-¢, e-¢)s =

Proof. Since [h,J]-1 =0, it follows from Lemma that we have
[[h, J], N]-1 = 0. Thus we have the result. O

Lemma 7.12. If [h,J]-v¢ =0, then we have
<€'N'¢OM h'ao)szo

Proof. Since  h = 29+ h%2 c N°E; @ A2E7s  and N = N30 4+ NO3 ¢
NE 7 @ NE 7, we have

<6.N'¢Oc7 h'$a>5:—<N'¢a, e'h'$a>$
(N0 Gy €120,

1,0, 20 — 20 . 51,0

Since e -e”, we have

(e N-¢ay h-do)s=—(N"-0q, B*"- "0 6,)s
_ <h2,0 . N0,3 . (bon 61,0 . ¢a>s
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We denote by [p*0, N03]%! ¢ E; the component of [h??, N%3]. Then ap-
plying Lemma we obtain

(W20 N 6o, €0 Go)e = ([W?0 - N®%1 - 6o, €10-3,).

2([p*°, N2 €M) rer(ba, da)s
(

(B0, NOFOL €)oo (0, Bspa
= (P20, N0y, €4 oo
— ("0, [n*0, NOFOL- ) p,

From Lemma and h -1 =0, we have [h, N] -1 = 0. Thus we have
[h*0, N93]%L. 4 =0 and [p*0, N%3]%1 .4 =0. Hence we obtain (e- N -
¢0£7 h¢a>S:0 |:|

8. Proof of main theorem

This section is devoted to show our main theorem: Theorem [6.4] In order to
show the main theorem, it suffices to show that

%W(Jt), Pli=o = wg, (L Th);

where f is a generalized Hamiltonian and e is a generalized Hamiltonian el-
ement satisfying e - ¥ = v/—1df - ¢ and J; denotes deformations of 7 which
satisfies J;, = [h, J]. A generalized Hamiltonian f gives a generalized Hamil-
tonian element e € Ty ® Ty, by e = Jydf.

Let {(¢a,Uq)} be trivializations of the canonical line bundle K 7, where
{U4} is a finite open cover of a compact manifold M of dimension 2n. We
denote by {xa} a partition of unity such that the support of x, is contained
in U,,. From Proposition it is suffices to show the following:

d - —
cgl%<lu’(<]t)’f>|t=0 - /M<Le¢aa h - ¢a>sp;1 - /M<h : ¢0m Le¢a>sp;1'

By using the partition of unity, f is given by f =" fa, where fo = xaf
and a generalized Hamiltonian element e € Ty @ T, is also written as e =
Y o Cas Where e = Typdfa.

Lemma 8.1. If U, NUg # 0, we have

(Leta, h '$a>8pc_vl = <Le¢/3, h - $5>SPE1
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Proof. Since ¢, = e"*#¢g, the Lie derivative L.¢, :=de - ¢q +e-doq is
given by

Lega =€ Loy + (e - de +de"? - ¢) - g
=e" " Lepg — 2(e, de %) or g

Since h € /\QEJ ® A’E 7, we have (e, de™#) o (¢g, h-dy)s =0. Since
@, = e Pz and po = e s+Fas s we have the result. O

Thus there is a 2n-from Fj(e) such that Fi(e)|y, = (LeGa, h-dy)spa’-
Since e = ), €q, it follows that Fi(e) = Y Fi(eq). Since the support e, is
contained in U,, we have

Fl(ea) = <Lea¢aa h - $a>sp¢;l-

Applying Stokes’ theorem and Lemma we have

/ (deo - dar path-Bas = / (o bar d(pz'h - Ba))s
M

M

Thus we have

/M Fi(ea) = /M<Lea¢a, b Ba)spa
:/M<dea-¢a, W Bu)spa’

= <€a P, dh - ¢a spa / €a - ¢aa 1) “h '$a>s
M

M

ea doa, h- d)a>s,0(;1

E\

+/ (€a - (Ma + Na) - o, h'ao)sp;
M
We define Fy_1, F}_5 and Fi_3 by

Fl—l = <6a : (ZJOH dh - 50)8/);1

F1—2 = (ea . (z)on (dpgl) ~h- $a>5
F1—3 = <€oc : (7706 + NOé) : ¢O¢7 h ‘&x)SP&l
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We denote by Fh(e,) the 2n-form (h - ¢o, Le. ¢, )spat. Applying Stokes’
theorem again, we have

/M Fy(eq) = /M I Ga Ao (Le,Bo)ps

- / <h : ¢0ﬁ deq, '$a>sp6_¥1 +/ <h : ¢aa (ST d$a>8p¢;1
M M
= [ (h b caBaderit + [ (@) b o B
M M
+/ (h-¢ar €a (Na+ N) '$a>810<;1
M
We also define F5_1, F5_o and Fs_3 by

Fy1 = (dh- ¢, €q '504)8/);1
Fy o= <(d,0;1) “h-da, €a '$a>8
Fy 3= <h'¢aa €a - (77a+N)'$a>sp;1

Fi(eq) — Fa(eq) is divided into the following three parts

Fi—-F = ¢a, dh - §o)spe — (dh - Ga; €a - Do)spa’
Fy 9 —F 9= < ar (dp') B do)s — ((dpy") -+ Bas €a b)s
Fi 3—-F 3= (eq- (77a + N ) bar - bo)spa’

—(h - Pa, ea'(na‘FNa)'aa)sp(;l

Deformations of almost generalized complex structures {7;} are given by the
action of one parameter family e in Spin group which are induced from
nondegenerate, pure spinors e - ¢, and we have

(8.1) de™ - o = (Na(t) + No(t)) - My,

where 1,(t) € Tar @ T; and Ny (t) € A3(Tar @ T) are real sections satisfy-
ing 17,(0) = 1o and N, (0) = N,. Taking the derivative of both sides of (8.1)
with respect to t, we have

dh - ¢o = (g + Na) - o + (N + Nu) - h - ¢as

where 7, = tna( )|t=0 and N, = dtN (t)|t=0. Since the real section To 18
decomposed into 7,10 + 7,%!, where 1, € E; and 7,%! € E; and N is
also decomposed in to Zpﬂ —3 NP4, where NP4 € APE; @ AYE 7. Note that

N is not contained in A*E 7@ /\3E 7 in general.
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Then we have 7, - ¢a = 70" - po and T oo = —nv/—1¢o. We also have

Tlia G = TN - ¢a = (—n + 1)v/—11j, - ¢o. Then we have
(T 0] - ba = TNa * pa — TaT - Ga
= (—n + 1)\/_717704 . Qsa + n\/jlﬁa : Qba - \/jl’rfa : Qba

Then we have

(8.2) dh'gba:(ﬁa+Na)’¢a+(na+N)'h'¢a
:_\/jl[jan.a]'¢a+N'¢a+(na+N)'h'¢a

We also have

1

N ¢o = —V=1[T,(N*' + N?)] - ¢ — 5\/?1[5, (N30 + NO3)] - ¢,

Since (€q - das N - o)s = (€q - by (N21 4+ NV2). ¢, ), we have
(83) <€a'¢aa N'$a>s = *V*1<ea'¢a7 [ij] '$a>5
Substituting (8.2)) into F}_; and using (8.3]), we obtain

(€a - G, dh - $a>sP;1 = (€a * Do \/jl[j7 (Mo + N)] '$a>$p;1
+{ea Pas (Na+N)-h '$a>8pa_l

Thus the term F_1 is divided into two terms Fy_1_1 and Fj_1_o,
Frao=FN_11+F 19
where it follows from Lemma [7.9] that we have

Fio1-1 = {ea bar V=1[T, tia + N]- 0o)spa’
Fioi-2={ea ba, Na-h-Bo)spa’

The term F5_q is also divided into two terms
Fo 1 =F 1 1+F 19
where

Fy 1= <—\/—71[\7, No + N] “Pa, €a '50)5/);1
Fo_ 1o = <77a ~h- ¢o¢a [ ao)sp;l
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By using Lemma and (Pa, @y )s = palth,)s, we obtain

Fioio1—Foioy=vV-1ea ba, [T, 1o+ N1 u)spa’
+ V=T 1o + N] - Ga, €a Pa)sPa’
= 2\/?1<6a7 [ja Na + N]>T@T* <¢o¢a $a>s/7;1
= 2V =1(ea, [T, o+ N)ror- (b, )
= (ea -, V=1[T 1o+ N]-1})s
+ (V1T o+ N -, ea - 0)s

It follows from Lemma and J -1 = 0 that we have N(¢) -1 = 0. Thus
we have N -y = 0. It follows

Fioiog—Fq1 = {eq -, V=1[T,7al - 0)s + (V=1[T,7al - ¥, €a-)s

From Lemma [7.12] the term F)_3 is given by

Fi_3= <ea : (77a +N) P, h '$a>sp(;1 = <€a “Na * Pas h'$a>sp<;1
= —(Na - €a " Pa, h- ¢a>spgl = (€a " Pas Mo I ¢a>spc_yl =Fi_1-2

The term Fy_3 is also given by

F2—3 = <h : %7 S (7704 + N) ‘$a>sp;1 = _<h ' ¢om Na * Eq '$a>sp;1
= <770c -h- %, S %)g@l =Fr 19

Hence we obtain

F17172 + FI—S - F2—1—2 - szz = 2<€a : ¢a, Na - h - $a>810(;1
—2(Nah da; €a- ¢a>8p(;1

Applying Lemma [7.8 and substituting = n,, we obtain

F17172 + F173 - F27172 - F273 = \/j]-<ea : w: [[h) j]’ﬁa] E>S
+ \/j1<[[h7 j]7770c] ’ ¢, €a - @>s
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We also have

Fi_g—Fog={eaba, dpy' h-B)s — (dpy' ~h+ da, €a - ba)s

dpe _

- <€Oc : d)on - p h- ¢a>8pa
dpq, _
_< pp h - ¢Cxa €a - ¢o¢> pal

Applying Lemma and substituting 6 = % , We obtain

Fio—Fp 2——ﬁ<€a v, [[ I dpa} '?/)>S

2 Pa
L] 5

Hence Fj(eq) — Fa(eq) is given by the following,

Fi(ea) — Fa(ea) = (Le,bar h-bo)spa’ — (h-bay Le.Ba)spa’
= v —1{eq - ¥, [ Mol - )s + V=1T, Ta] - ¥, €q-1)s
+V—=1ea ¢, [[h,T),na) - ¥)s
+ﬁ<[[h ]n] b, eaP)s

e ] 3)

Pa

{jpat] o)

Since e, is a generalized Hamiltonian element satisfying e, - ¥ = v/—1df, -
1, we have

Fi(ea) = Falea) = —(dfa -, [Tl - s + ([T 10l - ¥, dfa-1)s
- <dfa ’ wa [[h7 j]:na] E)S + <Hh7 j]ana : 1/17 dfoe @>s

L % <dfa 1), [[hﬂ]v Cif;a] '¢>s
] o)

The actlon of Spm group preserves the form ( , )s. Since deformations
Jy = ) o0 J o e ™M) is given by the action of Spin group e"®, thus p, does
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not depend on t. Recall J = [h, J]. Then Fi(es) — Fz(eq) is given by the
following derivative at t = 0,

Fi(ea) = Falea) =~ (dfa - 1 ma(0)] - D)
im, 1 ()] -0, dfa-T)s

dpa | —

1d
—2dt<[% ] an7)

Since we consider ¢ deformationi preserving v, we have J; - ¥ = 0. Thus we
have [Jt, Na(t)] - ¥ = Tina(t) - ¥. The support of f, is contained in U,. Ap-
plying Stokes’ theorem, we obtain

| At~ [ B =5 [ <faw, d(—mna<t>+;$dlogpa) -w>

d 1 _
+ @t /s <d («77&7704(75) - 2«7t10gpa> -1, fa¢>8

Since d(Jna + %j dlog pa) - 1 is a globally defined d-closed 2n-form, we have

J 0 -5ia= 5 - i
= Z % /M <foﬂ/}a <_du7t77a(t) + %duﬂdlog Pa> @Z)>

+y° % /M <<d~.7tna(t) - %dj;: log pa> P, faw>

:Zt <f¢, (—djma(t) + %djtdlog Pa) -¢>

d 1 D
+ = s <(d.7t77a(t) - 5d% logpa> -, f¢>s

toa (ed ) =5 [ (o (=) + gadiog ) -0

d _
+ & /M <d <L7t"7a(t) - %% 10gpa> : Q;Z)v f¢>s

S
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Thus it follows from (5.15]) that the moment map p is given by

W@ =en [ (10 a(-Tna+ gTar080) - 7)

+cn /M <d (jna - %Jlog pa> -1, fzb>

_ (/) /Mf<GRJ><w, D).

S

Hence we obtain the result.

9. Deformations of generalized Kahler structures with
constant generalized scalar curvature

Definition 9.1. If the generalized scalar curvature GR of a generalized
Kéhler structure (J,Jy) is constant, then (J,Jy) is called a generalized
Kahler structure with constant generalized scalar curvature, that is,

GR = )\ (constant),

a(Kg) U w™
[w”]

where A = n

Theorem 9.2. Infinitesimal deformations of generalized Kdhler structures
with constant generalized scalar curvature are given by the cohomology group

kerd7 N (EZnE,)/Tmd 8, N (EZnE ;)
of the following elliptic complex :

8959, —y —— 0 —_ — — —__ 90
0— CX(M) “H EGnE,; -5 (NWEGAE,) & (Eon NP EL) =L -

Since the cohomology group is finite dimensional for a compact manifold M,
Infinitesimal deformations are also finite dimensional.

Proof. Let Ay (M) be the set of generalized complex structures which are
compatible with 1) and Ham,, (M) the generalized Hamiltonian group which
acts on Ay (M). The orbit of Hamy, (M) on Ay (M) is denoted by Opam (M).
Let J € Ay(M) be a generalized complex structure such that (7, Jy,) ad-
mits constant generalized scalar curvature. The formal tangent space of
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Ay(M) at J is given by € € E} /\E} satisfying 07e = 0, since deforma-
tions of J preserves 1. Since generalized Kéahler structures with constant
generalized scalar curvature are given by the inverse image u~1(0) of the
moment map g for the action of Ham,, (M), infinitesimal deformations are
the orthogonal complement of the direct sum of (T7Opam & TT70mam),
where T7Opqm denotes the tangent space of the orbit Opgpm at J. The
T705qm consists of LeJ for Hamiltonian element e = eV el e Ty @
Ty, where 10 € E7 and %! € E 7. Thus T7Opam, is given by {97¢%! | e :
Hamiltonian element}. Since a Hamiltonian element e is given by e = Jdf
for a hamiltonian f, we have

D7 = 07(Tpdf )™
= V10 +97)(@5 ~ 05)f
= —2/=19,0,f

Since J acts on 24/ —1 5}5}]‘ € A2E 7 by the multiplication of 2,/—1. Thus
we have the complexification,

T7O8am ® TT7Oan = { —2/—=1 0,0 ,F | F € C&(M) }

Hence infinitesimal deformations of generalized Kéahler structures with con-
stant generalized scalar curvature are given by the cohomology group

ker 7 N (E;/\E}) / Imgyg} N (E}/\E})

The ellipticity of the complex follows from checking its symbol complex.
Hence we obtain the result. 0

Example 9.3. Let S be a K3 surface and (J. J,\Z/,) a generalized Kéahler
structure induced from a Ricci flat Kéhler structure. We have the generalized
Hodge decomposition H*(S) = @HP1,



Scalar curvature as moment map 181

H0’2
-1,1 1,1
H H
-2,0 0,0 2,0
H H H
—-1,—-1 1,—1
H H
H0,72

Then infinitesimal deformations of generalized Kéhler structures with van-
ishing generalized scalar curvature are given by H%%(S), where dim H%° =
20. In the cases of ordinary K3 surfaces, deformations of complex structures
with vanishing Ricci tensor preserving a symplectic structure is 19 dimen-
sional. Hence there is one more dimensional deformations which deform to
generalized Kéhler structures of type (0,0) which is discussed next section.

10. Generalized Kihler structures of type (0, 0)

Definition 10.1. A generalized Kéhler structure of type (0,0) is a gener-
alized Kéahler structure (Jg, Jy) which is induced from a pair

(¢ = eB‘f’\/jlWl,w _ ex/jlwz)

which consists of d-closed, nondegenerate, pure spinors of symplectic types,
where B is a real d-closed 2-form and both w; and we are real symplectic
forms, respectively.

Proposition 10.2. A pair (¢ = eBHV=Twn 4y — eﬁw) gives a generalized
Kabhler structure if and only if (¢,1) satisfies the followings :

(1) wE := B+ v/~1(w1 F wa) defines complex structures I+ such that w
are d-closed holomorphic symplectic forms with respect to I+ respectively.
(2) wa is tame w.r.t both L.

Proof. Let Ey be the eigenspace with eigenvalue —y/—1 with respect to Jy
and Ey4 the complex conjugate of E,. We denote by Ey, the eigenspace with
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eigenvalue —/—1 with respect to J,; and Ey is the complex conjugate of
E,. Then we have

Ey={v—iy(B+V—1w)|veTy}, Ey={u—V-Tiws|ueTy}
Ey={v—iy(B=—vV=1w)|veTy}, FEy={u+tvV—Tlizws|uecTs}

The condition JyJy = JypJe is equivalent to the followings :
dim¢ By N Ey = dimc Eg N Ew =n.
Thus u — /—1liyws € E4 N Ey if and only if
U — v/ —liyws = u — iy (B 4+ v—1wy).

Hence u — /—1liyws € Ey N Ey if and only if i,(B + V—1(w; —ws)) = 0.
Thus ker(B + v—1(w1 — w2)) := {u € T} |iu(B + vV—1(w1 —w2) =0} isn
dimensional if and only if dim Eg4 N Ey, = n. If u € Ey, then it follows from
E4sN E4 = {0} that we have u # u. Thus we see that

ker(B + vV —1(w1 — w2)) Nker(B + v/—1(w; — ws)) = {0}.

Hence wg := B+ v/—1(w; — w2) defines a complex structure I} such that

wg is a holomorphic symplectic form with respect to I, . We also see that

ker(B + v—1(w1 + w2)) —{UETj\gj|zu(B+\/7(w1 +wsy)) =0} is 2n di-

mensional if and only if dim Ey N Ey = n. Thus wg := B +v/—1(w + w2)

defines a complex structure I_ such that wg is a holomorphic symplectic

form with respect to /_. Hence the condition [y, Jy] = 0 is equivalent to the

condition (1). The eigenspace with eigenvalue £1 with respect to G' := JyJy

are denoted by C4, respectively. Then we have Cﬂ(,; =(EsNEy) @ (EgN
Ey) and CC = (EsNEy) @ (Eg N Ey). For u € kerwd = Tg’l,we have

G(u — vV —liyws, ©+ vV —ligws, ) = (u — vV —liyws, @+ v —ligws, )
= —2vV—1ws(u,n)

— 1
For u € kerws = TR’ , we also have

G(u + vV —1tWwo, U — v —17;5(,«}2) = —<U + vV —=1iywo, U — v —1Z'gOJ2>
= —2v—1wy(u, )

Thus G = J3Jy glves a generalized metric if and only if —v/—1lwa(u,u) > 0
forall u #£ 0 € T 1A symplectic structure is tame with respect to I+ if and
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only if we(z, I+x) > 0 for every real tangent x # 0 € T)y. Since —y/—lwo(z —
V-1Liz, x4+ /—1liz) = 2ws(x, [+ x), Hence G := J,Jy gives a general-
ized metric if and only if we is tame with respect to .. Hence we obtain
the result. O

Remark 10.3. On a 4 dimensional manifold, the condition (1) is equivalent
to the followings

BANwi=BAwy=w; Awy =0, B/\Bzwl/\w1+wQ/\w27éO.

In the case of a generalized Kéhler structure of type (0,0), the GRic and
GR are explicitly written.

Proposition 10.4. For a generalized Kdhler structure of type (0,0), GRic
and GR are given by

GRic = —dBuwy" (dlog “’}1)
Wa

(GR)W} = nw? =Y A dBw;! (d log ﬁ) :
2

where B : Ty — T3, and w;':Ti — Ty (i =1,2) and the composition
Bwl_l is an endomorphism of Ty, and then Bwl_l(dlog 5—;) is a 1-form and
then the exterior derivative of Bwfl(dlog %) s a 2-form which is the GRic
form.

Wa

Proof. Substituting p, = “I and 1o = 0 into 1’ we have the result. [

Example 10.5 (HyperKéahler str.). Let (g,1,J, K) be a hyperKéhler
structure with three Kéhler forms (wy,wy,wr). We define B and two sym-
plectic forms wq,wsy by

1 1
B=wj, w = §(WI+WK), wy = 5(001 — WK).

Then (¢ = eB“E“’l, P = eﬁ‘“z) is a generalized Kahler structure which
satisfies GRic= 0.
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11. Generalized Kahler-Einstein structures

Definition 11.1. A generalized Kahler structure (Jg,v¢ = etV=Iwy g a
generalized Kéhler-Einstein if we have the following:

GRic = \w
for constants \.

In the case of generalized Kéahler structure of type (0, 0), the generalized
Kéhler-Einstein condition implies that w} = w4, where the Einstein constant
is zero.

12. Generalized Kahler-Einstein structures constructed
from holomorphic Poisson deformations

Let (M, J,w) be a Kahler manifold with an ordinary complex structure J and
a Kahler structure w. We assume that the m-dimensional torus 7" acts on M
preserving the Ké&hler structure (J,w) on M and there exists a moment map
pr M — (t™)* for the action of T', where we assume m > 2. Let {{;}1" be
a basis of the Lie algebra ¢ of the Torus 7" and {V;}!"; the corresponding
real vector fields which are generated by {&;}1". Each V; is decomposed into
Vil’O + V;O’l, where Vil’o € T}’O and V})’l € Tg’l. Since {V;}*, are commuting
vector fields, we have a real Poisson structure g by

Be =Y AijViAVj,
0]
where ); ; are constants. Holomorphic vector fields {Vil’o}iz1 also gives a
holomorphic Poisson structure = Z)\ivjVil’O A le,o' Let (Jj,Jy) be the
generalized Kahler structure coming from the ordinary Kahler structure
(J,w), where ¢ = eV=1%, Let {¢4} be trivializations of K, that is, each
¢q is a holomorphic n-form with respect to J. Then the action of e’ on
each ¢, coincides with the action of e® on ¢, that is,

BBR‘¢a:€B’¢o¢'

Thus the action of ef® on J; gives Poisson deformations of ;. Then the
action of e”* gives deformations of almost generalized Kihler structures

(Tpt, Tp,) = (P21 Tye Pt P2t 7,07 PRt
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where Jy, are almost generalized complex structures induced from ; =
Brt . P
e .

Theorem 12.1. Let pr; be the function which is the coupling (ur,&;) of
the moment map pr and & € t™. Then vy is given by

Yy =exp| — Z Aijj dpuri Ndprj+ vV —1lw
,J
Thus dipy = 0 and (Jpt, Typ,) are deformations of generalized Kihler struc-

tures.

Proof. The exponential e’ is given by
o =T =TI+ Mg Vinv))
() i,J
Since w(V;, V;) = 0 and iy,w = dpr;, we have

ViNVi - = —dur; Ndur; A eVl

Since iy, dur; = 0, we have

P =T+ X ViA V) - =TJ(0 = Nijdpr A dpr) -
1,3 1,3
— H e Niadurindur; "

.3

=exp| — Z Aijdprs Ndpr; +vV—1w

,J

Thus v is d-closed and Jy, are generalized complex structures. Thus we
have the result. O

Proposition 12.2. Let (X, J,w) be a Kahler-Finstein manifold which ad-
mits an action of real torus T™ (m > 2) preserving the Kdhler structure
(J,w). We assume that there exists a moment map for the action of T™.
We denote by {&}" a basis of the Lie algebra t™ which yields vector fields
{Vi}i,. We assume that fg := ZZ] i jVi NV is a nontrivial real Poisson
structure for some constants X\; j. Then there exist nontrivial deformations
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of generalized Kdhler-Einstein manifolds (Jpt, ¢), where {Jpt} are Poisson
deformations of Jj, where B is the holomorphic Poisson structure given by

1,0 1,0
B= YAV A,
i7j
and V; = VIO + VO gnd Vil’o € T}’O, and VOt € Tg’l.
Proof. It suffices to show Proposition in the case of fgr = V4 A V5 which
is a real Poisson structure given by the wedge of V; and Va. Let {¢,} be triv-
ializations of the canonical line bundle K; which are given by the ordinary
holomorphic n-forms. The action of T™ preserves the complex structure J

and the canonical line bundle. Thus the action of V; and V5 are the repre-
sentations of weights n; and ne, respectively, that is,

Ly, ¢ = \/jlnlﬁba Ly, ¢pa = \/j1n2¢a
From [V}, V5] = 0 and d¢, = 0, it follows that we have

d(ﬁR : ¢a) - d(‘/l A\ ‘/2) ' ¢a - LV1V2 : ¢a - Vld‘/2 : ¢a
:‘/2'LV1¢01_‘/1'LV2¢04
=V—1nVa: ¢pa — V—1n2Vi - ¢qa

Since V; - g = V; - V4 - Vo = 0, we have
dePpo =(vV =11V — V=1naV1) - e,
Since (Vi — vV—1J3V1) - €% ¢y = (Vo — /—1T3Va) - €* ¢y = 0, we have
deP2po = (—n1T3Va + 12 T5V1) - €.
Since J3V; = e? Jye7PV; = J;Vi = JV;, we also have
deP g = (—n1JVa + no V1) - €.

Since (—n1JVa + noJV) is a real section, it follows that 7, = (—n1JVe +
noJVh) *3|] Let pr be the moment map for the action of T™. Then pur; is

“31f Br = Zi,j Ai;jVi AVj, then n, = Zi,j Ai7j(_njt]‘/; + TLZJ‘/J)
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denoted by (ur,&;). Since w(Vy, V2) =0, iy,w = du;, we have

(12.1) eﬁR-zp—eﬁR- VI = VI LY AT eV

eVl — dpr N dpr, JweY ¥

= exp (—dpr1 Adpro + vV —1w)

Since g, := e’® - ¢ is d-closed, then 7, is integrable. Hence (J3,, Jy) is a
generalized Kéhler structure. Since 7, € Ty, it follows that eﬁf@noﬁ_ﬁ]R = 7.
Thus we have

djﬁnwa . ¢5R — deﬁRjJe—ﬁRnaeBR -
= de™ Jnatp = deP® (n Vo — naVi)e Prey
= d(ng — TLQVl)eﬁR . ’Lb

Since V; - duj = 0 for 7,5 = 1,2, we have dVieP® . 1) = dVj1p. Thus we have

(12.2) dTBeNa - Y, = d(n1Vo — naVi) -1
= V—=1d(nyiy,w — noiy,w) - 1 = 0.

We calculate the term dJg,d log pq, - @rgR. Since V; preserves the function
Pas We have Ly, p, = 0. Thus we have

B Pa p. _ dPa [vl AT, dpa} _ dpa
Pa Pa P

(e}

Thus we have

- dpe o —
djﬁRdlog Pa * wﬁR = deﬁRjJe_ﬁRLeﬁR . 1/)

(e}

d (0% - o —
— deﬁRjJL ) = de BRJJ pp ﬁmw

Pa

dpe | —
=47y ¢5R+d[5ﬂ£7 ij}%

d& da da A
=ar () o a1 (o 50m) =1 (5 1 5))

dpa d . dpa \ . —
=dei Vg + vV d<<v2 ; >lew<V1,J”>zv2w>-%

Pa

dpa



188 Ryushi Goto

Thus we have
(12.3)
— 2d T Na ~E5R + dJg,d1og pa ‘EBR

dpa — dpa \ . dpa \ . _
- deL g +V—1d (<V2, Jppa> iyw — <V1, Jp“> zv2w> .

As in Definition —2d T8, Na 'JB]R + dJs.dlog pa 'Eﬁm is written as
—2dTp,Na - Vg, + dTp,d10g pa - g, = (P —V—=1Q) - g,

where P = GRic and () are real 2-forms.
Since v/ —1d ((Y/Q,Jdp&ﬂvlw - <V1,Jdpﬂ>iv2w) is a pure imaginary 2-
form and dJ pa is a real 2-form, we obtain

Pa
GRic = —dJdlog po

Since (X, J,w) is a Kéhler-Einstein manifold, we also have
—dJlog po = Aw.

Since g, = exp (—dur1 A pr2 + v —1w), we have GRic= Aw. O

Let X = (M, J) be a compact complex surface with effective anticanonical
divisor. Let 8 be a nontrivial section of K ~!. Then S is a holomorphic Pois-
son structure. We denote by J3 Poisson deformations of generalized complex
structures. Then from the stability theorem of generalized K&hler structures,
there is a generalized Kéahler structure (Jg, j¢), where 9 = eBHV-1lw ig o
d-closed, nondegenerate, pure spinor. We denote by D = {8 = 0} the divisor
given by zero of 5. Then we have

Proposition 12.3. Let 8 be a Poisson structure on X = CP? which is an
anticanonical divisor D given by three lines in general position. Then there
exists a generalized Kdhler-Finstein structure (jg, j¢) such that

GRic = 3w,
where ¢ = eb+tV—1w,

Proof. In our case, Poisson structure § is given by an action of 2-dimensional
torus preserving the Kihler structure of CP2. Then the result follows from

Proposition [12:2] O
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Proposition 12.4. Let (M, J,w) be a toric Kdhler-FEinstein manifold of di-
mension m. Then there exist deformations of nontrivial generalized Kdhler-
Finstein structures from the ordinary Kdahler-Einstein structure, where
m > 2.

Proof. Since (M, J,w) is a toric K&hler-Einstein manifold, there exists an
action of T"" preserving the Kéhler structure. Then the result follows from
Proposition [12:2] O

References

[AGG] V. Apostolov, P. Gauduchon, and G. Grantcharov, Bihermitian
structures on complex surfaces, Proc. London Math. Soc. 79 (1999),
414-429; Erratum in Proc. London Math. Soc. 92 (2006), 200-202.

[AS] V. Apostolov and J. Streets, The nondegenerate generalized Kdihler
Calabi-Yau problem, arXiv:1703.08650.

[Bou] L. Boulanger, Toric generalized Kdihler structures, J. Symplectic
Geom. 17 (2019), no. 4, 973-1019.

[Do] S. K. Donaldson, Remarks on gauge theory, complex geometry and 4-
manifold topology, in: Fields Medallists’ Lectures, pp. 384-403, World
Sci. Ser. 20th Century Math. 5, World Sci. Publ., River Edge, NJ,
(1997).

[Fer] M. Garcia-Fernandez, Torsion-free generalized connections and het-
erotic supergravity, Comm. Math. Phys. 332 (2014), no. 1, 89-115.

[Fu] A. Fujiki, Moduli space of polarized algebraic manifolds and Kdhler
metrics [translation of Sugaku 42 (1990), no. 3, 231-243], Sugaku
Expositions. Sugaku Expositions 5 (1992), no. 2, 173-191.

[Gol] R. Goto, Poisson structures and generalized Kdhler structures, J.
Math. Soc. Japan 61 (2009), no. 1, 107-132.

[Go2] R. Goto, Deformations of generalized complex and generalized Kdihler
structures, J. Differential Geom. 84 (2010), no. 3, 525-560.

[Go3] R. Goto, Unobstructed K-deformations of Generalized Complex
Structures and Bihermitian Structures, Adv. Math. 231 (2012),
1041-1067.



190 Ryushi Goto

[Go4] R. Goto, Unobstructed deformations of generalized complex struc-
tures induced by C* logarithmic symplectic structures and logarith-
mic Poisson structures, Geometry and Topology of Manifolds 10th
China-Japan Conference 2014, pp. 159-183.

[Gul] M. Gualtieri, Branes on Poisson varieties, in: The Many Facets of
Geometry, pp. 368-394, Oxford Univ. Press, Oxford, (2010).

[Hil] N. J. Hitchin, Instantons, Poisson structures and generalized Kihler
geometry, Comm. Math. Phys. 265 (2006), 131-164.

[Hi2] N. J. Hitchin, Bihermitian metrics on Del Pezzo surfaces, J. Sym-
plectic Geom. 5 (2007), 1-7.

[Linl] Y. Lin and S. Tolman, Symmetries in generalized Kdhler geometry,
Commun. Math. Phys. 268 (2006), 199-122.

[TOU] T. Abdelgadir, S. Okawa, and K. Ueda, Compact moduli of noncom-
mutative projective planes, arXiv:1411.7770.

[St1] J. Streets, Generalized Kdhler-Ricci flow and the classification of
nondegenerate generalized Kdhler surfaces, Adv. Math. 316 (2017),
187-215.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE
OsAKA UNIVERSITY TOYONAKA, OSAKA 560-0043, JAPAN
E-mail address: goto@math.sci.osaka-u.ac.jp

RECEIVED MARCH 22, 2018
AcCCEPTED NOVEMBER 21, 2018



	Introduction
	Generalized complex structures
	Almost generalized Kähler structures
	The stability theorem of generalized Kähler manifolds
	Generalized Ricci curvature and generalized scalar curvature
	Generalized scalar curvature as moment map
	Preliminary results for proof of the main theorem
	Proof of main theorem
	Deformations of generalized Kähler structures with constant generalized scalar curvature 
	Generalized Kähler structures of type (0,0)
	Generalized Kähler-Einstein structures
	Generalized Kähler-Einstein structures constructed from holomorphic Poisson deformations
	References

