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Quantization of Hamiltonian coactions

via twist

Pierre Bieliavsky, Chiara Esposito, and Ryszard Nest

In this paper we introduce a notion of quantum Hamiltonian
(co)action of Hopf algebras endowed with Drinfel’d twist struc-
ture (resp., 2-cocycles). First, we define a classical Hamiltonian
action in the setting of Poisson Lie groups compatible with the
2-cocycle structure and we discuss a concrete example. This allows
us to construct, out of the classical momentum map, a quantum
momentum map in the setting of Hopf coactions and to quantize
it by using Drinfel’d approach.

Introduction

Deformation quantization has been introduced by Bayen, Flato, Fronsdal,
Lichnerowicz and Sternheimer in [3] and since then many developments oc-
curred. A (formal) star product on a Poisson manifold M is defined as a
formal associative deformation of the algebra of smooth functions C∞(M)
on M . Existence and classification of star products on Poisson manifolds
has been proved via formality theory in [17]. In the same spirit, Drinfel’d
introduced the notion of quantum groups as deformations of Hopf algebras,
whose semiclassical limit are the so-called Poisson Lie groups which are Lie
groups with multiplicative Poisson structures (see e.g. the textbooks [8, 23]
for a detailed discussion).

In this paper we focus on particular classes of star products which are
induced by a (formal) Drinfel’d twist by means of universal deformation
formulas (UDF) as discussed e.g. in [9, 10]. Roughly speaking, a Drinfel’d
twist of an enveloping algebra U(g) is an element F ∈ U(g)⊗ U(g) compat-
ible with the Hopf algebra structure on U(g). Given a Hopf algebra action
of U(g) on an associative algebra one can deform the U(g)-module algebra
and the deformed product turns out to be a star product. It is important to
stress that the U(g)-module algebra is automatically endowed with a Pois-
son bracket defined as the semiclassical limit of such star product. In recent
works the UDF has been further studied, e.g. [5, 7, 11, 13, 15]. Also, a twist
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defines a 2-cocycle on the Hopf algebra F(G) of regular functions on G and
it can be seen that the star products induced via UDF coincide with star
products induced by the 2-cocycle on F(G)-comodule algebras. Finally, a
non-formal version of Drinfel’d twist and its corresponding UDF has been
discussed in [6].

Given a Lie algebra action φ : g → Γ∞(TM) on a smooth manifoldM , we
can always obtain a Hopf algebra action U(g)× C∞(M) → C∞(M). Thus,
Drinfel’d approach can be interpreted by saying that symmetries encoded
by Lie algebra actions induce quantization. Also, this approach provides
a notion of quantized action. In this paper we prove that this approach
is compatible with Hamiltonian actions. In other words, given a classical
Hamiltonian action our goal is to quantize it by using Drinfel’d approach
and get a notion of quantum momentum map. The problem of quantizing the
momentum map has been the main topic of many works, e.g. [14] and [22]. In
general, the interest for the quantization of the momentum map is motivated
by the fact that conserved quantities described via the momentum map
lead to phase space reduction which constructs from the high-dimensional
original phase space one of a smaller dimension. Thus, it is highly desirable
to find an analogue in the quantum setting. A study of the compatibility
of the notion of quantum action provided by Drinfeld and the notion of
Hamiltonian action was so far absent. In this paper we prove that the two
notions are actually compatible and we construct a quantum momentum
map via twist.

The content of this work is as follows.
In Section 1 we discuss the well-known notions of Drinfel’d twist and its

corresponding 2-cocycle and the construction of the universal deformation
formula. Twist and 2-cocycle induce a quantum group structure which is
briefly recalled.

Section 2 contains a definition of Hamiltonian actions in the setting
of Poisson Lie groups which generalizes the one contained in [19, 21]. More
precisely, we need to introduce a notion of classical Hamiltonian action which
is compatible with twist, which is necessary in order to quantize Hamiltonian
actions by using Drinfel’d approach.

It is known that the semiclassical limit of a twist gives rise to an element
r ∈ g ∧ g, called r-matrix, satisfying the condition Jr, rK = 0 (for a detailed
treatment of the relation between r-matrices and twist see [13]). It can be
proved that r-matrices always induces a Lie bialgebra structure on g. Thus,
the corresponding Lie group G automatically becomes a Poisson Lie group,
since the Poisson tensor obtained by integrating the Lie bialgebra structure
on g is multiplicative. The concept of momentum map for Poisson Lie groups
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acting on Poisson manifolds has been first introduced by Lu in [19, 21], in
the case in which the Poisson structures of G, its dual G∗ and M are fixed.
In contrast to the ordinary momentum map it takes values in G∗ and the
equivariance is defined in relation to the so-called dressing action of G on
G∗. Here we introduce a slight generalization and then focus on the case in
which, in the same spirit as Drinfel’d, the Poisson structure on G∗ is induced
by r via the dressing action and on M via the action φ.

In Section 3 we construct a momentum map in the setting of Hopf
algebra actions and coactions and study its quantization. More precisely,
given a classical Hamiltonian action φ : g → Γ∞(TM) with momentum map
J : M → G∗ we construct a corresponding Hopf algebra action and we prove
that J∗ defines a momentum map for this action. This allows us to define the
notion of Hamiltonian Hopf algebra action. Motivated by the significance of
coactions in the theory of quantum groups in the C∗-algebraic framework, we
give a dual version of the above result and prove that given φ the correspond-
ing Hopf algebra coaction δΦ : C∞(M) → C∞(M)⊗ F(G) is also Hamilto-
nian. Finally, using the UDF we obtain the quantized algebras C∞

ℏ
(M) and

we prove that the quantum group coaction δΦ : C∞

ℏ
(M) → C∞

ℏ
(M)⊗ Fℏ(G)

is again Hamiltonian.

1. Preliminaries

Let g be a (finite-dimensional) Lie algebra and consider the algebra U(g)[[ℏ]]
of formal power series with coefficients in the universal enveloping algebra
U(g). It can be endowed with a (topologically free) Hopf algebra structure,
denoted by (U(g)[[ℏ]],∆, ϵ, S). Let us recall the definition of a Drinfel’d twist
and its semiclassical limit, see [9, 10].

Definition 1.1 (Twist). An element F ∈ (U(g)⊗ U(g))[[ℏ]] is said to be
a twist on U(g)[[ℏ]] if the following three conditions are satisfied:

i) F = 1⊗ 1 +
∑

∞

k=1 ℏ
kFk.

ii) (F ⊗ 1)(∆⊗ 1)(F) = (1⊗ F)(1⊗ ∆)(F).

iii) (ϵ⊗ 1)F = (1⊗ ϵ)F = 1.

We sometimes use the notation F = Fα ⊗ Fα. The semiclassical limit of
a twist gives rise to a well-known structure on the Lie algebra g called r-
matrix, as proved in [10] or [16, Thm. 1.14]. In fact, we have the following
claim.
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Proposition 1.2. Given a twist F on U(g)[[ℏ]], the antisymmetric part of
its first order is a classical r-matrix r ∈ g ∧ g.

Given a twist we can obtain a deformed Hopf algebra structure on
U(g)[[ℏ]].

Proposition 1.3. Let F be a twist on U(g)[[ℏ]]. Then the algebra U(g)[[ℏ]]
endowed with coproduct given by

(1.1) ∆F := F∆F
−1,

undeformed counit and antipode SF := uFS(X)u−1
F

, where uF := FαS(Fα)
is again a Hopf algebra denoted by UF(g).

As a consequence, the twist automatically defines a Lie bialgebra struc-
ture. Given a twist on the universal enveloping algebra, we can always define
a star product on any U(g)-module algebra. In particular, let us consider the
algebra C∞(M) of smooth functions on a manifold M with pointwise mul-
tiplication mM and a Hopf algebra action

(1.2) Φ: U(g)× C
∞(M) −→ C

∞(M) : (X, f) 7→ Φ(X, f)

This action can be immediately extended to formal power series, allowing
the following result.

Lemma 1.4 (Universal deformation formula). The product defined by

f ⋆F g = mM (Φ(F−1, (f ⊗ g)))(1.3)

for f, g ∈ C∞(M)[[ℏ]] is an associative star product quantizing the Poisson
structure induced by the semiclassical limit r of F via the action.

We denote the deformed algebra by C∞

F
(M). Moreover, it is important

to remark that the deformed algebra C∞

F
(M) is now a left UF(g)-module

algebra
We can give a dual version of the above discussion by using the notions

of 2-cocycles and coactions. A more detailed discussion about 2-cocycles
and their duality with twist can be found in [2]. Consider the Hopf algebra
F(G) of regular functions on G, where G is the Lie group corresponding to
the finite-dimensional Lie algebra g. It is known that F(G) and U(g) are
dually paired Hopf algebras algebras with pairing denoted by ⟨ · , · ⟩. Thus,
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given a twist F there corresponds an element γ : (F(G)⊗ F(G))[[ℏ]] → K on
F(G)[[ℏ]] defined by

(1.4) γ(f ⊗ g) := ⟨Fα, f⟩⟨Fα, g⟩,

for all f, g ∈ F(G). Roughly, from the second condition mentioned in Defi-
nition 1.1 it is easy to see that γ satisfies the 2-cocycle condition

(1.5) γ(f(1) ⊗ g(1))γ(f(2)g(2) ⊗ h) = γ(g(1) ⊗ h(1))γ(f ⊗ g(2)h(2)),

for any f, g, h ∈ F(G). Here we used the Sweedler notation. Thus, dualiz-
ing the deformed Hopf algebra UF(g) obtained in Proposition 1.3 we im-
mediately obtain a twisted Hopf algebra denoted by C∞

γ (G) with a new
associative product mγ

G defined by

(1.6) ⟨∆F(X), f ⊗ g⟩ = ⟨X,mγ
G(f ⊗ g)⟩

As it will be used in the following we resume this structure in the following
defining.

Definition 1.5 (Quantum group). The quantum group corresponding to
G is defined to be the Hopf algebra C∞

γ (G) given by (F(G)[[ℏ]],mγ
G,∆, ϵ, S)

where the deformed product is given by (1.6) and coproduct and counit are
undeformed.

The deformed Hopf algebras C∞

γ (G) and UF(g) are again dually paired
via the same pairing. Finally, if C∞(M) is a left U(g)-module algebra via
(1.2), it is automatically a right-F(G)-comodule algebra (the coaction δ :
C∞(M) → C∞(M)⊗ F(G) can be easily obtained by dualizing Φ, see [23,
Prop. 1.6.11]). In the same spirit of Lemma 1.4, the algebra structure of
C∞(M) can be equivalently deformed by considering a 2-cocycle on F(G)
and pushing its deformation on C∞(M) via the coaction δ.

2. Hamiltonian actions

In this section we introduce the notion of Hamiltonian action in the setting
of Poisson Lie groups. This notion has been first defined in [19, 21] in the
case of a Poisson Lie group acting on a Poisson manifold with both Poisson
structures fixed. In our work we are mainly interested in the case in which
the Poisson structure on the manifold is the one induced by the action. This
requires a slight generalization of the notion of Hamiltonian action.
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2.1. Dressing generators

In the same spirit of [19, 21], the notion of Hamiltonian action relies on
the definition of momentum map, which provides us of a comparison tool
between the dressing orbits and the orbit of the considered action. For this
reason, we first focus on the dressing action and in particular on the possible
descriptions of the corresponding fundamental vector fields.

Let us consider a Lie bialgebra g with dual and double denoted by g∗ and
d, respectively. The Lie groups G and G∗ associated to g and g∗, respectively,
turn into Poisson Lie groups. Furthermore, the Lie group D corresponding
to the double Lie algebra d is called double of the Poisson Lie group G.

Consider g ∈ G, u ∈ G∗ and let ug ∈ D be their product. Since d = g⊕
g∗, elements in D close to the unit can be decomposed in a unique way as a
product of an element in G and an element in G∗. Then, there exist elements
ug ∈ G and ug ∈ G∗ such that

(2.1) ug = ugug.

Hence, the action of g ∈ G on u ∈ G∗ is given by

(2.2) (u, g) 7→ (ug)∗G

where (ug)∗G denotes the G∗-factor of ug ∈ D. This defines a left action
of G on G∗, called dressing action. This action plays an important role in
the context of Poisson actions since its orbits coincides with the symplectic
leaves of G∗ and its linearization is the coadjoint action. Let us denote by ℓX
the corresponding fundamental vector field for X ∈ g. In the following we
introduce the notion of dressing generators, which are one-forms that give
us the fundamental vector fields ℓX if contracted with the Poisson bitensor.
As it will be seen in the next sections these forms are in general not globally
defined, so we use the notation Ω1

loc(G
∗) to denote local forms on G∗.

Definition 2.1 (Dressing generator). The map α : g → Ω1
loc(G

∗) : X 7→
αX is said to be dressing generator with respect to the Poisson structure π
on G∗ if the fundamental vector field ℓX of the dressing action can be written
as

(2.3) ℓX = π♯(αX)
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and satisfies

α[X,Y ] = [αX , αY ]πℓ
,(2.4)

dαX = α ∧ α ◦ δ(X).(2.5)

Here δ denotes the Lie bialgebra structure on g.

Remark 2.2. The first example of dressing generators with respect to the
standard dual Poisson structure π∗ is given by the left-invariant one-forms
corresponding to the element X, as proved in [18, Appendix 2, page 66]. As
already mentioned, the dressing generators with respect to a generic Poisson
structure on G∗ are in general not globally defined (a concrete example is
computed in the next section). However, the contraction with the Poisson
tensor still gives rise to a smooth vector field.

Here we are interested to the case in which g is endowed with an r-
matrix and we consider the Poisson structure πℓ induced by the infinitesimal
dressing action ℓ : g → Γ∞(TG∗) via

(2.6) πℓ = rijℓXi
∧ ℓXj

.

This is a natural candidate since the contraction of πℓ with one-forms satis-
fying (2.4)–(2.5) gives rise automatically to an infinitesimal Poisson action,
as proved in the following Lemma.

Lemma 2.3. Given a map α : g → Ω1
loc(G

∗) satisfying (2.4)–(2.5) then we
have:

i) The map g ∋ X 7→ π♯
ℓ(αX) ∈ Γ∞(TG∗) is a Lie algebra morphism

ii) The map g ∋ X 7→ π♯
ℓ(αX) ∈ Γ∞(TG∗) is an (infinitesimal) Poisson

action.

Proof. Let us compute:

π♯
ℓ(α[X,Y ])

(2.4)
= π♯

ℓ([αX , αY ]πℓ
)

(∗)
= [π♯

ℓ(αX), π♯
ℓ(αY )].
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In (∗) we used the fact that π♯
ℓ is a Lie algebra morphism with respect to

the Lie bracket of one-forms [a, b]πℓ
= Lπ♯

ℓ(a)
b− Lπ♯

ℓ(b)
a− dπℓ(a, b). Further-

more, we have:

∧2π♯
ℓ(α ∧ α ◦ δ(X))

(2.5)
= ∧2π♯

ℓ(dαX)

(∗)
= dπℓ

π♯
ℓ(αX).

In (∗) we used dπ(∧
pπ♯)(ξ)) = (∧p+1π♯)(dξ). □

Example 2.4 (Dressing generators on ax+ b). Let us denote by s the
Lie algebra with basis H, E and commutation relation

(2.7) [H,E] = 2E,

also known as ax+ b. The corresponding group is denoted by S and we
consider the dressing action S × S∗ → S. Then we have that the dressing
generators with respect to πℓ are given by the local forms

(2.8) αH =
1

y
dx and αE =

1

2y
dy.

The complete discussion of this example can be found in the Appendix A.

2.2. Hamiltonian actions

Using the notion of dressing generator we give a new definition of Hamilto-
nian action in this context.

Definition 2.5 (Momentum map). Let Φ : G×M → M be an action of
(G, πG) on (M,π) and αX the dressing generator with respect to a Poisson
structure πG∗ on G∗.

i) A momentum map for Φ is a map J : M → G∗ such that

(2.9) φ(X) = π♯(J∗(αX)),
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where φ(X) is the fundamental vector field of Φ. In other words, J is
defined by the commutativity of the following diagram:

(2.10)

g Γ∞(TM)

Γ∞(T ∗G∗) Γ∞(T ∗M)

α

φ

J∗

π♯
M

ii) A map J : M → G∗ is said to be ℓ-equivariant if it intertwines the
fundamental vector field φ(X) and the dressing action ℓX for any X.

Lemma 2.6. The momentum map J defined above is ℓ-equivariant if and
only if is Poisson.

Proof. Let us consider generic Poisson structures π on M and πG∗ on G∗.
Thus, J is a Poisson map if and only if

J∗(π
♯(J∗(α))) = π♯

G∗
(α).

Let α be the dressing generator corresponding to πG∗ . Thus π♯
G∗

(αX) =
ℓX and π♯(J∗(αX)) = φ(X) and the equation above coincides with the ℓ-
equivariance. □

Now the notion of Hamiltonian follows naturally:

Definition 2.7 (Hamiltonian action). An action Φ of (G, πG) on (M,πM )
is said to be Hamiltonian if it is Poisson and is generated by a ℓ-equivariant
momentum map J : M → G∗.

Since in the following we mainly use the infinitesimal action φ, we say
that it is Hamiltonian whenever the corresponding Φ is Hamiltonian.

Remark 2.8. i) If we choose the standard dual Poisson structure on
G∗, the dressing generators are the left-invariant one-forms and the
above definition boils down to the definition of momentum map and
Hamiltonian action given by Lu in [19, 21].

ii) Let g be a triangular Lie algebra with r-matrix r, acting on a mani-
fold M by φ : g → Γ∞(TM). We denote by πr the Poisson structure
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induced by r via

(2.11) πr = rijφ(Xi) ∧ φ(Xj).

In this case the action φ and its global corresponding are automatically
Poisson. (The proof is the same as the one given in Lemma 2.3).

Example 2.9 (Dressing action). The easiest example is given by the
dressing action. Here the momentum map is just the identity.

Example 2.10 (Coadjoint action). Let us consider the Poisson structure
πr induced by the coadjoint action. Notice that πr does not coincide with
the linear one. As proved in [1, Section 3.3] one can define a map j : g∗ → d

by j(ξ) = ξ − r(ξ, · ). Thus, the modified exponential is given by

Exp : g∗ → G∗ : Exp(ξ) := prG∗(exp(j(ξ))).

In contrast to the usual exponential map it intertwines the coadjoint ac-
tion with the dressing action, hence it takes symplectic leaves to symplectic
leaves. In other words, we have

ℓX = Exp
∗
φ(X).

If G is compact with the Lu-Weinstein Poisson structure [20], Exp is a global
diffeomorphism (see [1, Remarks 3.5]). An easy computation shows that Exp
is a momentum map for the coadjoint action.

Remark 2.11. From the above example we can construct other Hamil-
tonian actions. Given a standard momentum map µ : M → g∗ which is
ad∗-equivariant we can always construct a momentum map J : M → G∗ by
composing µ and Exp. For instance, observing that r♯ : g∗ → g intertwines
adjoint and coadjoint actions we can conclude that the adjoint action is
Hamiltonian with momentum map given by the composition of r♯ with Exp.

Remark 2.12. The reduction can been obtained with various techniques
(see e.g. [12]). We here remark that the preimage C = J−1({0}) of a ℓ-
invariant momentum map is a coisotropic submanifold and IC the corre-
sponding vanishing ideal. Thus the reduced algebra can be easily obtained
by the quotient BC/IC where BC = {f ∈ C∞(M)|{f, IC} ⊆ IC}.
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3. Hamiltonian Hopf algebra (co)actions

In this section we aim to give a definition of Hamiltonian (co)action in the
setting of Hopf algebra (co)actions and a possible quantization procedure. In
the same spirit of Definition 2.7, given an Hopf algebra action Φ, a momen-
tum map has to be an intertwiner between dressing action and Φ. In order
to introduce this notion we first prove that given a classical Hamiltonian
action we can always associate a Hopf algebra action and construct, out of
the classical momentum map, the desired intertwiner.

First, we observe that any Lie algebra action gives rise to a Hopf algebra
action.

Lemma 3.1. Consider the infinitesimal action φ : g → Γ∞(TM). This is
equivalent to a Hopf algebra action Φ : U(g)× C∞(M) → C∞(M) by setting

(3.1) Φ(X, f) := LφX
f,

where L denotes the Lie derivative. Equivalently, it defines a Hopf algebra
coaction δΦ : C∞(M) → C∞(M)⊗ C∞(G)

Proof. The Lie algebra elements act as derivations of C∞(M), thus Φ defines
a Lie algebra action φ : g → Γ∞(TM). Since the elements of g generate
U(g), the action Φ is given by differential operators with order determined
by the natural filtration of the universal enveloping algebra. Conversely,
every Lie algebra action φ of g on M determines via the fundamental vector
fields φX ∈ Γ∞(TM) a representation of g on C∞(M) by derivations which
therefore extends to a Hopf algebra action Φ as above. The action Φ and
the coaction δΦ are always equivalent. □

In particular, given the infinitesimal dressing action ℓ : g → Γ∞(TG∗) we
obtain the Hopf algebra action Λ: U(g)× C∞(G∗) → C∞(G∗) by setting:

(3.2) Λ(X, f) := LℓXf.

We denote by δΛ the corresponding Hopf algebra coaction. As a next step we
lift the notion of dressing generator to the setting of Hopf algebra actions.
We observe that, given the Lie algebra representation α : g → Ω1

loc(G
∗), we

can define another Hopf algebra action by using the Lie derivative in the di-
rection of a one-form Lα which has been defined by Bhaskara and Viswanath
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[4]. In particular, for f ∈ C∞(G∗)

(3.3) Lαf = Lπ♯(α)f.

More precisely, we have:

Lemma 3.2. Given a dressing generator α : g → Ω1
loc(G

∗), the correspond-
ing map given by U(g)× C∞(G∗) → C∞(G∗) : (X, f) 7→ LαX

f is a Hopf al-
gebra action. Furthemore we have

(3.4) Λ(X, f) = LαX
f,

where Λ(X, f) is given by (3.2).

Proof. First, as in Lemma 3.1 the map U(g)× C∞(G∗) → C∞(G∗) : (X, f)
7→ LαX

immediately satisfies the condition to be a Hopf algebra action. Also,
from the definition of dressing generator we have ℓX = π♯

ℓ(αX). Thus

Λ(X, f) = LℓXf

= Lπ♯
ℓ(αX)f

= LαX
f.

□

Now, let us consider a Hamiltonian action φ : g → Γ∞(TM) with momen-
tum map J : M → G∗. Notice that its pullback of functions J∗ : C∞(G∗) →
C∞(M) is an algebra morphism. With an abuse of notation, we also refer
to J∗ as the pullback of forms. Since the latter is always defined, we can
extend J to a map J∗ acting on Lα by

(3.5) J∗
Lα := LJ∗α ◦ J∗.

Theorem 3.3. Let φ : g → Γ∞(TM) be an Hamiltonian action with mo-
mentum map J : M → G∗ and consider the corresponding Hopf algebra ac-
tion Φ : U(g)× C∞(M) → C∞(M) given by Φ(X) = Lφ(X). Then we have:

i) The pullback J∗ : C∞(G∗) → C∞(M) of J intertwines Φ and the Hopf
algebra action Λ corresponding to the dressing action via (3.2).

ii) The pullback J∗ : C∞(G∗) → C∞(M) of J intertwines the correspond-
ing Hopf algebra coaction δΦ and the Hopf algebra coaction δΛ corre-
sponding to the dressing action.
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Proof. The two claims above can be rephrased by saying that J∗ defines a
U(g)-module algebra morphism and F(G)-comodule algebra morphism.

i) We already observed that J∗ : C∞(G∗) → C∞(M) is an algebra mor-
phism. Thus, we only need to prove that it is a module morphism, i.e.
the commutativity of the following diagram:

(3.6)

U(g)× C∞(G∗) C∞(G∗)

U(g)× C∞(M) C∞(M)

id×J∗

Λ

Φ

J∗

In other words, we need to prove

(3.7) Φ(X, J∗f) = J∗(Λ(X, f)).

Using (3.5) we can easily compute:

J∗(Λ(X, f)) = J∗(LαX
f)

= LJ∗αX
J∗f

= Lπ♯(J∗(αX))J
∗f

= Lφ(X)J
∗f

= Φ(X, J∗f).

Here we used the fact that, from Definition 2.7, we have φ(X) =
π♯(J∗(αX)).

ii) Given the Hopf algebra action Φ we can always find the correspond-
ing Hopf algebra coaction δΦ, as discussed in Section 1. Thus we can
immediately state the dual version of the above claim. In fact, dualiz-
ing the commutative diagram (3.6) we immediately get the following
commutative diagram

(3.8)

C∞(G∗) C∞(G∗)⊗ C∞(G)

C∞(M) C∞(M)⊗ C∞(G)

J∗

δΛ

δΦ

J∗ ⊗ id
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which gives the comodule morphism condition δΦ ◦ J∗ = (J∗ ⊗ id) ◦ δΛ.
Since J∗ is an algebra morphism the claim is proved. □

Finally, the above discussion motivates the following definition. Let C∞(M)
be a U(g)-module algebra where the module structure is given by a generic
Hopf algebra action Φ : U(g)× C∞(M) → C∞(M). Equivalently, C∞(M)
is endowed with a F(G)-comodule algebra structure. Furthermore, given
the dressing action ℓ we showed that C∞(G∗) automatically turns into a
U(g)-module algebra where the Hopf algebra action Λ is given by (3.2) (and
equivalently into a F(G)-comodule algebra).

Definition 3.4 (Hamiltonian (co)action). i) A Hopf algebra action
Φ : U(g)× C∞(M) → C∞(M) is said to be Hamiltonian if there exist a
U(g)-module algebra morphism, called momentummap, J : C∞(G∗) →
C∞(M). In other words, Φ is Hamiltonian if it allows a map J satis-
fying the following condition:

(3.9) Φ(X,Jf) = J(Λ(X, f)).

ii) A Hopf algebra coaction δΦ : C∞(M) → C∞(M)⊗ F(G) is said to be
Hamiltonian if there exist F(G)-module algebra morphism J, called
momentum map, which intertwines it with the Hopf algebra coaction
δΛ corresponding to the dressing action.

3.1. Quantum Hamiltonian coactions via 2-cocycles

In this section we prove that, using Drinfeld approach, we obtain a quanti-
zation of the Hamiltonian coactions as in Definition 3.4. Since actions and
coactions are completely equivalent we here prefer to focus only on the coac-
tion case.

Let us consider a twist F on U(g) with corresponding 2-cocycle γ on
F(G). As seen in Definition 1.5, the 2-cocycle γ induces a deformed product
⋆γ and we denote by Fℏ(G) the corresponding quantum group. Further-
more, we obtain a deformed product on the comodule algebras C∞(M) and
C∞(G∗). More precisely, the action φ : g → Γ∞(TM) induces a star prod-
uct ⋆φ on M whose semiclassical limit is the Poisson structure πr induced
by r via φ. Similarly, the dressing action ℓ : g → Γ∞(TG∗) induces a star
product ⋆ℓ on G∗. Let us denote by C∞

ℏ
(G∗) the deformed algebra given by

the pair (C∞(G∗)[[ℏ]], ⋆ℓ) and by C∞

ℏ
(M) the pair (C∞(M)[[ℏ]], ⋆φ). No-

tice that C∞

ℏ
(G∗) and C∞

ℏ
(M) are now Fℏ(G)-comodule algebras. In other
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words, the coactions

(3.10)
δΦ : C

∞

ℏ (M) → C
∞

ℏ (M)⊗ Fℏ(G)

and δΛ : C
∞

ℏ (G∗) → C
∞

ℏ (G∗)⊗ Fℏ(G)

are morphisms of algebras. Thus we can state our main result.

Theorem 3.5. Let φ : g → Γ∞(TM) be an Hamiltonian action with mo-
mentum map J : M → G∗. Then the corresponding quantum group coac-
tion δΦ : C∞

ℏ
(M) → C∞

ℏ
(M)⊗ Fℏ(G) is Hamiltonian in the sense of Defi-

nition 3.4.

Proof. Since in the Drinfeld approach the coactions do not change but they
only intertwine different algebraic structures, the classical momentum map
is still a comodule morphism as in Theorem 3.3. More explicitly, the diagram

(3.11)

C∞

ℏ
(G∗) C∞

ℏ
(G∗)⊗ C∞

ℏ
(G)

C∞

ℏ
(M) C∞

ℏ
(M)⊗ C∞

ℏ
(G)

J∗

δΛ

δΦ

J∗ ⊗ id

commutes. Thus, we only need to prove that J∗ : C∞

ℏ
(G∗) → C∞

ℏ
(M) is a

morphism of algebras. This can be immediately checked by using the UDF
(1.3) and Theorem 3.3. We can extend the action (3.2) by

(3.12) Λ(F, f ⊗ g) = Λ(Fα, f)⊗ Λ(Fα, g).

As a consequence, we have:

J∗(f ⋆ℓ g) = J∗(m(Λ(F, f ⊗ g)))

= J∗(m(Λ(Fα, f),Λ(F
α, g)))

= (J∗Λ(Fα, f))(J
∗Λ(Fα, g))

(3.7)
= Φ(Fα, J

∗f)Φ(Fα, J∗g)

= m(Φ(F−1, J∗f ⊗ J∗g))

= J∗f ⋆φ J∗g. □
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Appendix A. Dressing generators on ax + b

In this appendix we discuss a concrete example of dressing generators. Let
s be the Lie algebra with basis H, E and commutation relation

(A.1) [H,E] = 2E,

also known as the Lie algebra ax+ b. Consider the triangular r-matrix r =
H ∧ E. This induces the Lie bialgebra structure on g∗:

δ(H) = [r,H ⊗ 1 + 1⊗H]

= H ⊗ [E,H]− [E,H]⊗H

= −2H ∧ E,

δ(E) = [r, E ⊗ 1 + 1⊗ E]

= 0.

As a consequence, the dual basis H∗, E∗ satisfies the following commutation
relation:

(A.2) [H∗, E∗] = −2H∗.

Note that the element r corresponds to the Poisson structure associated to
the bilinear symplectic structure ω on s defined by ω(H,E) := 1. Within
this set up the Lie algebra structure (A.2) on s∗ is simply obtained by
transporting the Lie bracket on s to s∗ under the linear musical isomorphism
♭ : s → s∗ : X 7→ ♭X := ιXω i.e.

(A.3) [ ♭X, ♭Y ]s∗ := ♭[X,Y ].

In our case we have:

(A.4) ♭H = E∗ ♭E = −H∗

The double g := D(s) is given by the vector space s⊕ s∗ equipped with the
following Lie brackets (using the notation induced by musical isomorphism)

[H,E] = 2E, [ ♭H, ♭E] = 2 ♭E, [ ♭H,H] = 2( ♭H −H),

[H, ♭E] = 2E, [E, ♭E] = 0, [E, ♭H] = −2 ♭E.
(A.5)
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We observe that the the first derivative g′ := [g, g] is spanned by E, ♭E and
F := ♭H −H and admits the table:

[E,F ] = 2E − 2 ♭E =: Z, [E,Z] = [F,Z] = 0.

Thus, g′ is isomorphic to the Heisenberg algebra h1 := V ⊕ RZ associated
to the symplectic plane (V,Ω) spanned by E and F and structured by

[v + zZ, v′ + z′Z] = Ω(v, v′)Z with v, v′ ∈ V and Ω(E,F ) := 1.

In this setting, the double D(s) can be viewed as the semidirect product of
the Lie algebra h1 with the abelian Lie algebra RH:

D(s) ≃ R⋉ρ h1

whose Lie algebra homomorphism

ρ : RH → Der(h1)

is defined in the basis E,F, Z by

ρ(H) :=



2 0 0
0 −2 0
0 0 0


.

Lemma A.1. Let s = ax+ b. Then we have:

i) The connected simply connected Lie group G := D(s), with Lie algebra
given by the vector space g := D(s) := s⊕ s∗ with Lie algebra structure
given by (A.5), is diffeomorphic to the product manifold:

(A.6) G = R× V × R.

ii) Within this model, the group law is given by

(A.7) (a, v, z) · (a′, v′, z′) =

(
a+ a′, v + e2aBv′, z + z′ +

1

2
Ω(v, e2aBv′)

)

where

(A.8) B :=
1

2
ρ(H)

∣∣
V
=

(
1 0
0 −1

)
in basis {E,F}.
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iii) Realizing the Lie algebra g as

(A.9) g = RH ⊕ V ⊕ RZ = {(a0, v0, z0)},

the exponential mapping is given by

exp(a0, v0, z0) =

(
a0,

1

2a0
(e2a0B − I)Bv0,(A.10)

z0 +
1

4a0
Ω(Bv0, v0) +

1

8a20
Ω(v0, e

2a0Bv0)

)
.

Proof. The connected simply connected Lie group H1 corresponding to h1
can be modelled on V × RZ with group law given by

(A.11) (v, z) · (v′, z′) = (v + v′, z + z′ +
1

2
Ω(v, v′)).

Within this setting, we observe that the symplectic group Sp(V,Ω) (which
in our two-dimensional case just coincides with the group SL2(R)) acts by
centre-fixing group-automorphisms on H1 under:

(A.12) R : Sp(V,Ω)×H1 → H1 : (a, (v, z)) 7→ Ra(v, z) := (a(v), z).

Every sub-group A of Sp(V,Ω) therefore determines the semi-direct product
group

(A.13) G := A⋉R H1

modelled on the Cartesian product G = A×H1 with group law defined by
(a,a′ ∈ A):

(a, v, z) · (a′, v′, z′) := (a · a′, (v, z) ·Ra(v
′, z′))(A.14)

=

(
a · a′, v + a(v′), z + z′ +

1

2
Ω(v,a(v′))

)
.

In the case

(A.15) A :=

{
exp(2aB) =

(
e2a 0
0 e−2a

)}

a∈R

the semi-direct product is therefore the Lie group

(A.16) G = R×H1
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with group law given by (A.7). One then readily verifies that the given ex-
pression in (A.10) satisfies the condition exp t(a0, v0, z0) · exp s(a0, v0, z0) =
exp(t+ s)(a0, v0, z0) for all s, t ∈ R. The fact that B2 = I then implies
d
dt

∣∣
t=0

exp t(a0, v0, z0) = (a0, v0, z0). The computation of the Lie algebra of
G is then performed using the expression of the above exponential map-
ping (A.10). It identifies with the one of g. □

We now pass to realize s and s∗ in the double G. For this we start from
expressing the generators at the Lie algebra level:

(A.17) H∗ = −(
1

2
Z + E) and E∗ = H + F.

The coordinates on s∗ are given by (ν, κ)∗ := exp νE∗ expκH∗ where

expκH∗ = expκ(−E −
1

2
Z) = (0,−κE,−

κ

2
)(A.18)

and exp νE∗ =

(
ν,

1

2
(e−2ν − 1)F, 0

)
.

Using the group law (A.7) we get

(A.19) (ν, κ)∗ =

(
ν,−κe2νE,

1

2
(e−2ν − 1)F,−

κ

4
(1 + e2ν)

)
.

Similarly, we have

(A.20) (a, n) := exp(aH) exp(nE) =
(
a, e2anE, 0

)
.

Lemma A.2. Let us consider the dressing action S × S∗ → S. Then we
have

i) The dressing generators with respect to the standard dual Poisson struc-
ture π∗ are given by the left-invariant forms

(A.21) αH = −
1

y + 1
dx and αE =

1

2(y + 1)
dy

ii) The dressing generators with respect to πℓ are given by the local forms

(A.22) αH =
1

y
dx and αE =

1

2y
dy

Proof. The first step consists in computing the fundamental vector field of
the dressing action by using the realization obtained above of s and s∗ in
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terms of the double. More explicitely, using the coordinates (A.19)–(A.20)
and the group law (A.7) we have that

(a, n)(ν, κ)∗ =

(
a+ ν, e2a(n− κe2ν)E,(A.23)

e−2a

2
(e−2ν − 1)F,−

1

4
(κ+ e2νκ− ne−2ν + n)

)
.

Similarly, we have

(ν, κ)∗(a, n) =

(
ν + a, e2ν(e2an− κ)E ,

1

2
(e−2ν − 1)F,(A.24)

−
1

4

(
κ(1 + e2ν) + (1− e2ν)e2an

))
.

The dressing action S⋆ × S → S⋆ therefore amounts to solve the equation
(a, n)(ν, κ)∗ = (ν, κ)∗(a, n) for (ν, κ)∗ as a function of a, n, κ, ν. From an easy
computation it follows that the solution is given by

(A.25)

{
κ = κ− nη(ν)

η(ν) = e−2aη(ν)

where η is the diffeomorphism defined by η : R →]− 1,∞[ : x 7→ η(x) :=
e−2x − 1. Considering the coordinate system S⋆ →֒ R

2 : ξ := (ν, κ)∗ 7→ (x, y)
:= (κ, η(ν)), the local right dressing action then reads:

(A.26) (x, y) · (a, n) := (x− ny, e−2ay).

Indeed, the multiplication map

(A.27) S⋆ × S → G : (ξ, x) 7→ ξ · s

is an open embedding. Hence locally one may set:

(A.28) s · ξ = ξs · sξ with sξ ∈ S and ξs ∈ S⋆.

One then notes that for all s1, s2 ∈ S and ξ ∈ S⋆:

(A.29) ξs1s2(s1s2)
ξ = s1s2ξ = s1ξ

s2xξ2 = (ξs2)s1sξ
s2

1 sξ2

which implies

(A.30) ξs1s2 = (ξs2)s1 .
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Hence the map S⋆ × S → S⋆ : (ξ, s) 7→ ξs which given elements s ∈ S and
ξ ∈ S⋆ expresses the S⋆-component (local) of the product s · ξ in terms of
the decomposition (A.27) is a right action of S on S⋆. The latter globalizes
under the usual matrix left-action of the affine group on the plane as

S × R
2 → R

2 : (s = (a, n), v = (x, y))(A.31)

7→ s.v := v.s−1 :=

(
e2a 0
ne2a 1

)(
x
y

)
.

Now we express the group multiplication in S⋆ within the above coordinate
system:

(x, y).(x′, y′) := Φ
(
Φ−1(x, y).Φ−1(x′, y′)

)
(A.32)

=
(
(y′ + 1)x+ x′, (y′ + 1)y + y′

)
.

The unit consists in the vector origin (0, 0) and the inverse (which is only
local at the level of the entire ambient space R

2) is given by (x, y)−1 =
1

y+1(−x,−y). It is useful to rewrite the dressing action using musical nota-
tion; in this case we consider the coordinate system

(A.33) S⋆ →֒ R
2 : ξ := (ν, κ)∗ 7→ (x, y) := (κ, η(ν)),

where η(x) = 1− e−2x and the local right dressing action ξ.(a, n) := (κ, ν)
then reads:

(A.34) (x, y) · (a, n) = (x+ ny, e−2ay).

This implies that the dressing action is infinitesimally generated by the
following fields:

♭Ĥ(x,y) :=
d

dt

∣∣
t=0

(x, y)(t, 0) = −2y∂y(A.35)

and ♭Ê(x,y) :=
d

dt

∣∣
t=0

(x, y)(0, t) = y∂x.

The next step consists in computing explicitely the dressing generators. Note
that there are 3 Poisson structures involved here on the image U of S⋆ →֒ R

2,
the dual Poisson Lie group structure

(A.36) π∗ = 2y(y + 1)∂x ∧ ∂y,
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the Poisson structure πℓ induced by the action

(A.37) πℓ = 2y2∂x ∧ ∂y

and the linear one πs
⋆ . It is easy to see that

(A.38) π∗ = πℓ + πs
⋆ .

Finally, imposing the condition (2.3) we obtain that the dressing generators
with respect to to π∗ and πℓ we get the expressions (A.21) and (A.22),
resp. □
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Faculté des Sciences, Ecole de Mathématique (MATH)
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