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On a pre-quantized symplectic manifold, we show that the sym-
plectic Futaki invariant, which is an obstruction to the existence
of constant Hermitian scalar curvature almost-Kähler metrics, is
actually an asymptotic invariant. This allows us to deduce a lower
bound for the L2-norm of the Hermitian scalar curvature as ob-
tained by S. Donaldson [15] in the Kähler case.
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1. Introduction

Let (M,ω) be a symplectic manifold of (real) dimension 2n. An almost-
complex structure J is ω-compatible if the tensor g(·, ·) = ω(·, J ·) defines a
Riemannian metric. The metric g is called then an almost-Kähler metric.
When J is integrable, g is a Kähler metric. Given an almost-Kähler metric
g, one can define the canonical Hermitian connection (see [24, Section 2],
[32])

∇XY = Dg
XY − 1

2
J(Dg

XJ)Y,

where Dg is the Levi-Civita connection of g and X,Y any vector fields
on M. The curvature of the induced Hermitian connection on the anti-
canonical bundle Λn(T 1,0

J M) is of the form
√
−1ρ∇. The closed (real) 2-form

ρ∇ is called the Hermitian Ricci form and it is a de Rham representative
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of 2πc1(M,ω) the first Chern class of the tangent bundle TM . The Hermi-
tian scalar curvature s∇ of the almost-Kähler structure (ω, J) is then the
normalized trace of ρ∇, i.e.

s∇ωn = 2nρ∇ ∧ ωn−1.

When the metric is Kähler, s∇ coincides with the (usual) Riemannian scalar
curvature.

We fix now a 2n-dimensional compact (connected) symplectic mani-
fold (M,ω). We denote by AKω the (infinite dimensional) Fréchet space
of all ω-compatible almost-complex structures and Cω the subspace of ω-
compatible complex structures. It turns out that the natural action of the
Hamiltonian symplectomorphism group Ham(M,ω) on AKω is Hamilto-
nian [16, 21] with moment map µ : AKω −→ (Lie(Ham(M,ω)))∗ given by
µ(J)(f) =

∫
M s∇f ωn

n! , where s∇ is the Hermitian scalar curvature of (ω, J).
The induced metrics by the critical points of the functional (defined on AKω)

∥µ∥2 : J 7−→
∫

M
(s∇)2

ωn

n!

are called extremal almost-Kähler metrics [4, 30]. These metrics appear then
as a natural extension of Calabi’s extremal Kähler metrics [8, 9] to the sym-
plectic setting. The symplectic gradient of the Hermitian scalar curvature of
an extremal almost-Kähler metric turns out to be an infinitesimal isometry
of the metric. In particular, constant Hermitian scalar curvature almost-
Kähler (cHscaK in short) metrics are extremal.

Furthermore, one can define a (geometric) symplectic Futaki invariant
(in the Kähler case, see [22]). Explicitly, we fix a compact group G in the
Hamiltonian symplectomorphism group Ham(M,ω). Let gω be the space of
smooth functions (with zero integral) which are Hamiltonians with respect
to ω of elements of g = Lie(G). Denote by AKG

ω (resp. CG
ω ) the space of

all G-invariant ω-compatible almost-complex structures (resp G-invariant
ω-compatible complex structures). Then, we define the map

FG
ω : g −→ R

FG
ω (X) =

∫

M
s∇h

ωn

n!
,

where h ∈ gω is the Hamiltonian induced byX and s∇ is the Hermitian scalar
curvature induced by any J ∈ AKG

ω . It turns out that FG
ω is independent of

the choice of J ∈ AKG
ω [23, Proposition 9.7.1] [30, Lemma 3.4]. The map FG

ω
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is called the symplectic Futaki invariant relative to AKG
ω . It readily follows

that if AKG
ω contains a cHscaK metric, then FG

ω ≡ 0.
In the Kähler setting, the Donaldson–Futaki invariant defined in [18]

gives (non-trivial) lower bounds on the Calabi functional [8, 9] as proved
by S. Donaldson in [15, Theorem 1]. The existence of constant scalar curva-
ture Kähler (cscK in short) metrics is then related to an algebro-geometric
stability condition, called K-stability, introduced by G. Tian [44] for Fano
manifolds (see also [14]). The Donaldson–Futaki invariant [15, 18] is an al-
gebraic invariant which can be defined for singular manifolds and coincide
with the geometric Futaki invariant [22] when the central fiber of the degen-
eration is smooth. Furthermore, the Donaldson-Futaki invariant has been
also defined recently for Sasakian manifolds in [11].

In this paper, we point out that the Donaldson–Futaki invariant may
be extended to the symplectic case. Our motivation is that, in the toric
case, the existence of an extremal Kähler metric is conjecturally equivalent
to the existence of non-integrable extremal almost-Kähler metrics [18] (see
also [2, Conjecture 2]). Moreover, the examples of toric manifolds studied
in [18] which are not K-stable do not admit even a cHscaK metric. A related
question and also part of the motivation of this work is the almost-Kähler
Calabi-Yau equation on 4-manifolds which has a unique solution if a conjec-
ture of S. Donaldson [20] holds (see also [31, Question 6.9] and [45]).

More explicitly, let us consider (M,ω) a compact symplectic manifold
pre-quantized by a Hermitian line bundle (L, h). We fix a compact group
G in Ham(M,ω). We consider a G-invariant ω-compatible almost-complex
structure J. For an integer k, we define the renormalized Bochner–Laplacian
operator ∆k acting on the smooth sections of Lk. For a sufficiently large
k > 0, the space Hk of the eigensections of ∆k, with eigenvalues in some
interval depending only on L, is finite dimensional. An orthonormal basis
of Hk gives a ‘nearly’ symplectic and ‘nearly’ holomorphic embedding Φk :
M −→ PH∗

k [36, 37], where the space PH∗
k can be identified with a Nk + 1

complex projective space. Moreover, the line bundles Lk and Φ∗
k (O(1)) over

M are canonically isomorphic. The Hermitian metrics hk on Lk and hΦ
∗

k(O(1))

(induced by the Hermitian metric on O(1)) on Φ∗
k (O(1)) are then related

by

hΦ
∗

k(O(1)) =
hk

Bk
,

where Bk is the generalized Bergman function defined in (3) (see [37, Theo-
rem 8.3.11]).
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Furthermore, the dimension of the spaceHk has an asymptotic expansion
of the following type (as consequence of Theorem 2.2),

dimHk = a0k
n + a1k

n−1 +O(kn−2),

= kn
∫

M

ωn

n!
+

kn−1

4π

∫

M
s∇

ωn

n!
+O(kn−2).

where s∇ is the Hermitian scalar curvature of (ω, J). Observe that the inte-
gral

∫
M s∇ ωn

n! = 4π
(n−1)!

∫
M c1(M,ω) ∧ [ω]n−1 is independent of the choice of

J.
We choose a S1-action Γ on (M,ω) generated by a Hamiltonian vector

field in Lie(G). The S1-action on M can be lifted to Lk and induces a linear
action Ak on the smooth sections of Lk. Furthermore, this linear action
fixes the space Hk since the S1-action Γ preserves the almost-Kähler metric
induced by J. The trace of this linear action admits an asymptotic expansion
(as a consequence of Theorem 2.5)

Tr(Ak) = b0k
n+1 + b1k

n +O(kn−1),

= −kn+1

∫

M
h
ωn

n!
− kn

4π

∫

M
hs∇

ωn

n!
+O(kn−1),

where the function h is a Hamiltonian of the S1-action with respect to ω. We
remark that the integral

∫
M hs∇ ωn

n! is independent of the choice of J ∈ AKG
ω

the space of all G-invariant ω-compatible almost-complex structures [30,
Lemma 3.1].

Definition 1.1. The symplectic Donaldson–Futaki invariant FG(Γ) of the
S1-action Γ on (M,L) generated by a Hamiltonian vector field in Lie(G) is
defined by

FG(Γ) =
a1
a0

b0 − b1.

Let χΓ : C∗ →֒ GL(Nk + 1) be a one-parameter subgroup, such that
χΓ(S

1) ⊂ U(Nk + 1) corresponds to the linear action induced by the S1-
action Γ on Hk, i.e. χΓ(t) = tAk , for t ∈ S1. Now, we consider the degen-
eration induced by the family χΓ(t) ◦ Φk(M) in PH∗

k. We do the following
assumptions:
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Assumption (A1). The limit

M0 = lim
t→0

χΓ(t) ◦ Φk(M)

exists as a compact connected symplectic stratified space in the sense of
Sjamaar-Lerman [42, Section 1].

Assumption (A2). In PH∗
k, the current of integration over Φk(M) is equal

to the current of integration over S0, connected open dense stratum in M0.

Remark 1.2. If there is only one stratum thenM0 is smooth. The existence
of an open dense stratum is an essential result of [42], and this stratum S0 is a
manifold of full measure. If we were considering the stronger notion of Kähler
stratified space for M0, S0 would be a complex manifold and its closure a
complex-analytic subvariety of the Kähler space M0. In the Kähler case, a
normality assumption was historically introduced in [14, Section 1] to ensure
the convergence of the integrals. In the Fano case, for the anticanonical
polarization, it turns out the Yau-Tian-Donaldson conjecture is valid if one
considers actually only normal limit central fibers.

By definition, M0 is preserved under the action of χΓ. Then, our main
result is that the L2-norm of the zero mean value of the Hermitian scalar
curvature of any G-invariant almost-Kähler structure whose symplectic form
is ω is bounded below by the symplectic Donaldson–Futaki invariant.

Theorem 1. Let AKG
ω be the space of all G-invariant ω-compatible almost-

complex structures. Assume that for all k large and for any S1-subgroup
Γ ⊂ G, the limit M0 exists in the above sense, i.e (A1) and (A2) hold. Then,

inf
J∈AKG

ω

∥s∇ − S∇∥L2 ⩾ sup
Γ⊂G

(
−4π

FG(Γ)

∥χΓ∥

)
,

where we denoted s∇ the Hermitian scalar curvature of (ω, J) with normal-

ized average S∇ =
∫
M

s∇ωn

∫
M

ωn and ∥χΓ∥ is the leading term of the asymptotic

expansion of the norm of the trace-free part Ak of Ak i.e.

(1) Tr(A2
k) = ∥χΓ∥2kn+2 +O(kn+1).

The L2-norm ∥ · ∥L2 is with respect to the volume form ωn

n! .

The asymptotic expansion of Tr(A2
k) is computed in Lemma 3.4 while

the expression of ∥χΓ∥ is given by Corollary 4. Our proof of (1) is direct
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and differs in part from [15, Theorem 2] (see also the reference [43]). In the
toric almost-Kähler case, a lower bound of the norm of the Hermitian scalar
curvature is given by C. LeBrun in [28, Theorem A] and [29, Proposition 2].

Theorem 1 indicates that one can possibly define a notion of stability
for the existence of almost-Kähler metrics with constant Hermitian scalar
curvature and study the uniqueness of such metrics as done by S. Donaldson
in [17] in the complex projective case. In order to do so, we suggest the
following definition for a symplectic test configuration based on [43, Section
6.3] and [18].

Definition 1.3. A symplectic test configuration of exponent k, for an
almost-Kähler manifold (M,ω, J) pre-quantized by a Hermitian complex
line bundle (L, h), is given by:

(i) An embedding Φk : M −→ PH∗
k using the vector space Hk built using

the sections of Lk. We can then identify PH∗
k with CP

Nk .

(ii) A one-parameter subgroup χΓ : C∗ →֒ GL(Nk + 1).

(iii) The existence of a limit at t = 0 of χΓ(t) ◦ Φk(M) as a compact con-
nected symplectic stratified space M0 ⊂ PH∗

k with connected open
dense stratum S0.

(iv) The existence for all t ̸= 0 of a surjective continuous map

φt : χΓ(t) ◦ Φk(M) → M0

such that there exists an open connected dense submanifold Ut ⊂
χΓ(t) ◦ Φk(M) for which the restriction φt |Ut

is a symplectomorphism
on S0.

Remark 1.4. Note that both conditions (A1) and (A2) are satisfied under
this definition. In the complex projective case (J is integrable), a test config-
uration implies the existence of the map φt satisfying (iv), as proved by M.
Harada and K. Kaveh in [26, Theorem A, Remark (i)], while an algebraic va-
riety can always be seen as a topologically stratified space. In particular, this
definition encompasses the case of (complex normal) symplectic varieties in
the sense of Beauville for which there exists a canonical stratification, see
[27, Theorem 2.3].

Let us discuss some applications of Theorem 1. A direct corollary is the
following result.



✐

✐

“5-Lejmi” — 2020/5/11 — 22:01 — page 543 — #7
✐

✐

✐

✐

✐

✐

L2-norm of the Hermitian scalar curvature 543

Corollary 2. Under the assumptions of Theorem 1, if an almost-Kähler
structure (ω, J) has a constant Hermitian scalar curvature, for any J ∈
AKG

ω , then FG(Γ) ⩾ 0 for any S1-subgroup Γ ⊂ G.

A consequence of Corollary 2 is that if for a S1-action Γ ⊂ G on a Kähler
manifold (M,ω, J), FG(Γ) < 0, then there is no cscK metrics in the Kähler
class [ω] on the complex manifold (M,J) since the symplectic Donaldson–
Futaki invariant coincides with the Donaldson–Futaki invariant. Further-
more, we want to stress the fact that there is no cHscaK metric in AKG

ω . In
other words, a destabilizing test configuration in the Kähler setting would
imply non existence even of cHscaK metrics. We observe that the Kähler
metrics in the Kähler class [ω] can be seen as a subspace of AKG

ω via Moser’s
Lemma (see for example [40, Section 3.2]). If we consider the K-unstable toric
examples studied in [18, Section 7.2] for which the destabilizing test configu-
rations satisfy our assumptions, we recover this way the fact that they don’t
carry cHscaK structures. We have extra examples of such phenomena for
projective bundles.

Corollary 3. Consider E a holomorphic vector bundle over a complex
curve of genus g ≥ 2 of rank rk(E). Let P(E) be the complex manifold un-
derlying the total space of the projectivization of E.

• If rk(E) = 2, then the ruled surface P(E) admits a cHscaK metric if
and only if E is polystable.

• If rk(E) > 2, then the ruled manifold P(E) admits a cHscaK metric ω
with CS1

ω ̸= ∅ if and only if E is polystable.

We briefly present the organization of the paper. In Section 2, we intro-
duce the necessary material recalling the key results of W. Lu– X. Ma– G.
Marinescu. In Section 3, we prove Theorem 1 and Corollary 3.
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2. Generalized Bergman kernel

In order to generalize the lower bounds on the Calabi functional as done
by S. Donaldson [15] to the symplectic case, we use the eigensections of
the renormalized Laplacian operator [6, 25], defined on smooth sections of
a Hermitian line bundle over a compact symplectic manifold, as natural
substitutes for the holomorphic sections. Note that we are not working with
another natural operator, the spinc Dirac operator for which other results
about Bergman kernel exist, see [12].

More precisely, let (M,ω) be a compact symplectic manifold of dimension
2n. Suppose that (M,ω) is pre-quantized by a Hermitian complex line bundle
(L, h) which means that the curvature R∇L

of some Hermitian connection
∇L of L satisfies √

−1

2π
R∇L

= ω.

This means that the de Rham class [ω] is integral.
Fix an almost-complex structure J compatible with ω and denote by

g(·, ·) = ω(·, J ·) the induced almost-Kähler metric. This defines a Laplacian
operator ∆Lk

on Lk acting on smooth sections of Lk, for k > 0. Explicitly,

∆Lk

= −
2n∑

i=1

(
∇Lk

ei

)2
−∇Lk

(Dg
ei
ei)
,

where Dg is the Levi-Civita connection with respect to g and {ei} is a local
g-orthonormal basis of TM . The Hermitian metric hk and connection ∇Lk

on Lk are induced by h and ∇L. The renormalized Laplacian is given then
by

∆k = ∆Lk − 2πnk.

From [38, Corollary 1.2], there exists two constants C1, C2 > 0 inde-
pendent of k such that the spectrum of ∆k is contained in (−C1, C1) ∪
(k C2,+∞) (see also [6, 25]). Let Hk ⊂ C∞(M,Lk) be the span of the eigen-
sections of ∆k with eigenvalues in (−C1, C1). The space Hk is then finite
dimensional and for large k (see [6, 25, 38])

dimHk =

∫

M
ek[ω] Td(T 1,0

J M),

where Td(T 1,0
J M) is the Todd class of the (complex) vector bundle T 1,0

J M.
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Remark 2.1. When g is Kähler and L is a holomorphic Hermitian line
bundle, the operator ∆k coincides with the ∂-Laplacian, by the Bochner–
Kodaira formula (e.g [5, Proposition 3.71]). Then, for large k, the space Hk

is exactly the space of holomorphic sections of Lk.

On sections of Lk, we define the inner product

(2) ⟨s1, s2⟩L2 =

∫

M
(s1, s2)hk

(kω)n

n!
.

Let {s0, · · · , sNk
} be an orthonormal basis of Hk. At x ∈ M , the gener-

alized Bergman function is defined as the restriction to the diagonal of the
Bergman kernel, i.e by the formula

(3) Bk(x) =

Nk∑

i=0

|si(x)|2hk .

X. Ma– G. Marinescu proved the following asymptotic expansion.

Theorem 2.2 ([36, Theorem 0.2] [37, Theorem 8.3.4]). We have the
following expansion when k → ∞,

(4) Bk = 1 +
s∇

4π
k−1 +O(k−2),

valid in C l for any l ≥ 0. Here, s∇ denotes the Hermitian scalar curvature
of (ω, J).

Let PH∗
k be the projective space associated to the dual of Hk. Moreover,

once we fix a basis of Hk, we have an identification PH∗
k
∼= CP

Nk . We have
then the following

Theorem 2.3 ([36, Theorem 3.6],[37, Theorem 8.3.11]). For large k,
the Kodaira maps Φk : M −→ PH∗

k, given by

Φk(x) = {s ∈ Hk | s(x) = 0}

are well-defined.

Observe that there is a well-defined Fubini-Study form ωFS on PH∗
k with

a compatible metric gFS . We have then
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Theorem 2.4 ([36, Theorem 3.6],[37, Theorem 8.3.11]). For large
k, we have in C∞-norm

1

k
Φ∗
k(ωFS)− ω = O(k−1),

1

k
Φ∗
k(gFS)− g = O(k−1).

Moreover, the maps Φk are embeddings and ‘nearly holomorphic’ i.e.

1

k
∥∂̄Φk∥ = O(k−1),

1

k
∥∂Φk∥ ⩾ C, for some C > 0.

Very recently, W. Lu– X. Ma– G. Marinescu improved the speed rate
of the approximation of the symplectic form. This improvement is actually
crucial to obtain the main result of the paper.

Theorem 2.5 ([34, Theorem 0.1]). For large k, we have in C∞-norm

1

k
Φ∗
k(ωFS)− ω = O(k−2).

3. Lower bounds on the L
2-norm of the Hermitian scalar

curvature

Let (M,ω) be a compact symplectic manifold pre-quantized by a Hermi-
tian complex line bundle (L, h). We fix an ω-compatible almost-complex
structure J.

Given an embedding Φk : M −→ PH∗
k, for a sufficiently large k > 0 as

in Theorem 2.4, we define a matrix M(Φk) with entries

M(Φk)ij =

∫

M
Φ∗
k

(
ZiZ

j

|Z|2

)
(Φ∗

kωFS)
n

n!
,

where Zj are homogeneous coordinates on PH∗
k. LetM(Φk) denote the trace-

free part of M(Φk).

Lemma 3.1. Consider (M,ω, J) a compact almost-Kähler manifold pre-
quantized by a Hermitian complex line bundle (L, h). Then, there is a se-
quence of embeddings Φk : M −→ PH∗

k such that

∥M(Φk)∥ ⩽
kn/2−1

4π
∥s∇ − S∇∥L2 +O(kn/2−2).
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Here ∥M(Φk)∥ =
(
Tr (M(Φk))

2
)1/2

, s∇ is the Hermitian scalar curvature

of (ω, J) and S∇ =
∫
M

s∇ωn

∫
M

ωn is the normalized average of s∇.

Proof. This is done as in the Kähler case. For the reader’s convenience, we
reproduce here the proof. We use the sequence of embeddings Φk defined
by the orthonormal bases {s0, · · · , sNk

} of Hk. Using Theorem 2.5, we have
that

M(Φk)ij =

∫

M
Φ∗
k

(
ZiZ

j

|Z|2

)
(Φ∗

kωFS)
n

n!
,

=

∫

M

(si, sj)hk

Bk

(kω)n
(
1 +O(k−2)

)

n!
.

We can assume that M is diagonal. Then, using Theorem 2.2, we obtain

M(Φk)ii = kn
∫

M

|si|2hk

Bk

ωn
(
1 +O(k−2)

)

n!
,(5)

= kn
∫

M
|si|2hk

(
1− s∇

4π
k−1

)
ωn

n!
+O(kn−2),

= 1− k−1

4π

∫

M
|si|2hk s∇

(kω)n

n!
+O(kn−2).

From Theorem 2.2, the dimension of Hk is given by

Nk + 1 = kn
∫

M

ωn

n!
+

kn−1

4π

∫

M
s∇

ωn

n!
+O(kn−2).(6)

It follows that

Nk∑

i=0

M(Φk)ii = Nk + 1− k−1

4π

∫

M
Bk s∇

(kω)n

n!
+O(kn−2),

= Nk + 1− k−1

4π

∫

M
s∇

(kω)n

n!
+O(kn−2),

Hence
Tr(M(Φk))

Nk + 1
= 1− k−1

4π
S∇ +O(k−2).

Combined with (5), the trace free part M(Φk) of M(Φk) is

M(Φk)ii = −k−1

4π

∫

M
|si|2hk(s∇ − S∇)

(kω)n

n!
+O(k−2).
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By the Cauchy–Schwarz inequality, we have

|M(Φk)ii|2 ⩽
k−2

16π2

∫

M
|si|2hk

(kω)n

n!

∫

M
|si|2hk(s∇ − S∇)2

(kω)n

n!
+O(k−3),

=
k−2

16π2

∫

M
|si|2hk(s∇ − S∇)2

(kω)n

n!
+O(k−3).

Taking the sum, we obtain that

∥M(Φk)∥2 ⩽
k−2

16π2

∫

M
Bk(s

∇ − S∇)2
(kω)n

n!
+O(kn−3),

=
kn−2

16π2

∫

M
(s∇ − S∇)2

ωn

n!
+O(kn−3).

The Lemma follows. □

Our aim now is to find a lower bound for ∥M(Φk)∥. First, we fix a
compact group G in Ham(M,ω). We consider a G-invariant ω-compatible
almost-complex structure J. We choose a S1-action Γ on (M,ω) generated
by a Hamiltonian vector field in Lie(G). The S1-action can be lifted to an
action on Lk (preserving hk and ∇Lk

) (for any k ⩾ 1). This induces a linear
action of S1 on smooth sections of Lk. Furthermore, since the S1-action
preserves the induced metric by J , the induced action maps Hk to itself. We
denote by −

√
−1Ak the infinitesimal generator of the linearized S1-action

Γ on Hk with Ak having integral entries.
For large k > 0, let Φk : M −→ PH∗

k be an embedding of M using an
orthonormal bases {s0, · · · , sNk

} of Hk. Let χΓ : C∗ →֒ GL(Nk + 1) be a
one-parameter subgroup, such that χΓ(S

1) ⊂ U(Nk + 1) satisfying χΓ(t) =
tAk (normalized so that χΓ(1) is the identity map). By definition, χΓ(S

1)
preserves both the Fubini-Study form ωFS and gFS on PH∗

k. A Hamiltonian
function (with respect to ωFS) for the corresponding S1-action is given by

hAk
=

−∑i,j (Ak)ij Z
iZ

j

|Z|2 .

so that

(7) Φ∗
k(hAk

) =
−∑i,j (Ak)ij (si, sj)hk

Bk
.

Now, let Φt
k = χΓ(t) ◦ Φk and define the function

f(t) = −Tr(AkM(Φt
k)) = −Tr

(
AkM(Φt

k)
)
,
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where Ak is the trace-free part of Ak. Then

f(t) =

∫

M
Φt∗
k (hAk

)
(Φt∗

k ωFS)
n

n!
+

Tr(Ak)

Nk + 1

∫

M

(Φt∗
k ωFS)

n

n!
.

A calculation shows that for real numbers t > 0 we have f ′(t) ⩾ 0.

Lemma 3.2. With the above definition, one has ∀t > 0,

f ′(t) ⩾ 0.

Proof. We consider the one-parameter group of diffeomorphisms generated
by the vector field −grad hAk

so we are approaching 0 along the positive real
axis in C∗. Then, we have the following derivative at s = 0

d

ds

∣∣∣∣
s=0

∫

M
Φs∗
k (hAk

)
(Φs∗

k ωFS)
n

n!
(8)

= −
∫

Φk(M)
|grad hAk

|2 ω
n
FS

n!

+

∫

Φk(M)
hAk

L−grad hAk
ωFS ∧ ωn−1

FS

(n− 1)!
.

The second term in the r.h.s of (8) can be written as
∫

Φk(M)
hAk

L−grad hAk
ωFS ∧ ωn−1

FS(9)

= −
∫

M
d (Φ∗

khAk
) ∧ Φ∗

k(d
c
hAk

) ∧ Φ∗
k

(
ωn−1
FS

)
,

= −
∫

Φk(M)
(dhAk

)M ∧ dchAk
∧ ωn−1

FS ,

=
1

n

∫

Φk(M)
|dhAk

|2M ωn
FS ,

where |dhAk
|2M = |grad hAk

|2M is the norm of the tangential part to Φk(M).
We deduce

d

ds

∣∣∣∣
s=0

∫

M
Φs∗
k (hAk

)
(Φs∗

k ωFS)
n

n!
= −

∫

Φk(M)
|grad hAk

|2N
ωn
FS

n!
,

where |grad hAk
|2N is the norm of the normal component. On the other hand

d

ds

∣∣∣∣
s=0

∫

M

(Φs∗
k ωFS)

n

n!
= 0
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Increasing t corresponds to flowing along grad hAk
. We deduce that

f ′(t) ⩾ 0 for real numbers t > 0. □

Now it follows, since limt→0 f(t) exists (cf. (11)), that

−Tr(Ak M(Φk)) = f(1) ⩾ lim
t→0

f(t),

and so by the Cauchy–Schwarz inequality

(10) ∥Ak∥ ∥M(Φk)∥ ⩾ lim
t→0

f(t).

In particular if limt→0 f(t) > 0, then we get a positive lower bound on
∥M(Φk)∥.

Under our assumption (A2), we can actually consider

(11) lim
t→0

f(t) =

∫

S0

hAk

ωn
FS

n!
+

Tr(Ak)

Nk + 1

∫

S0

ωn
FS

n!
.

It follows from Theorem 2.5 that one can choose a Hamiltonian h with
respect to ω such that

(12)
1

k
Φ∗
k (hAk

)− h = O(k−2).

Then

∫

M
hBk

ωn

n!
=

1

k

∫

M
Φ∗
k(hAk

)Bk
ωn

n!
+O(k−2),

= − 1

kn+1

∑

i,j

(Ak)ij

∫

M
(si, sj)hk

(kω)n

n!
+O(k−2),

= − 1

kn+1
Tr(Ak) +O(k−2).

It follows from Theorem 2.2 that

Tr(Ak) = b0k
n+1 + b1k

n +O(kn−1),(13)

= −kn+1

∫

M
h
ωn

n!
− kn

4π

∫

M
hs∇

ωn

n!
+O(kn−1).
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Using (A2), Equation (12) and Theorem 2.5, we get

∫

S0

hAk

ωn
FS

n!
=

∫

Φk(M)
hAk

ωn
FS

n!
,(14)

=

∫

M
(k h+O(k−1))

(
kn

ωn

n!
+O(kn−2)

)
,

= −b0k
n+1 +O(kn−1).

Then, from (10), (11), (6), (13) and (14), we deduce

∥Ak∥ ∥M(Φk)∥ ⩾ −b0k
n+1 +

b0k
n+1 + b1k

n +O(kn−1)

a0kn + a1kn−1 +O(kn−2)
a0k

n +O(kn−1),

= −b0k
n+1

+
(
b0k

n+1 + b1k
n +O(kn−1)

)(
1− a1

a0
k−1 +O(k−2)

)

+O(kn−1),

= kn
(
b1 −

a1
a0

b0

)
+O(kn−1).

It follows then from Lemma 3.1 that

∥Ak∥
(
kn/2−1

4π
∥s∇ − S∇∥L2 +O(kn/2−2)

)
(15)

⩾ kn
(
b1 −

a1
a0

b0

)
+O(kn−1).

Now, we need to compute the asymptotic expansion for ∥Ak∥2 = Tr(A2
k).

Let us denote ν = ωn/n! and consider Pν,k the smooth kernel of the L2-
orthogonal projection from C∞(M,Lk) to Hk. Set

Kk(x, y) = |Pν,k(x, y)|2hk⊗(hk)∗ ,

where x, y ∈ M . We can write

Kk(x, y) = kn
∑

i,j=1

(si(x), sj(x))hk(sj(y), si(y))hk ,

for {si} an L2-orthonormal basis with respect to the inner product (2). We
consider the integral operator associated to Kk which is defined for any
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f ∈ C∞(M) as

QKk
(f)(x) =

∫

M
Kk(x, y)f(y)

ωn
y

n!
.

The Q-operator has been studied by S. Donaldson [19], K. Liu– X. Ma [33]
and X. Ma– G. Marinescu [39] in the context of Kähler compact manifolds.
They provided an asymptotic result for this operator. We quote a gener-
alization of this result obtained by W. Lu– X. Ma– G. Marinescu to the
context of pre-quantized symplectic compact manifolds.

Theorem 3.3 ([35, Theorem 1.1]). For any integer m ≥ 0, there exists
a constant c > 0 such that for any f ∈ C∞(M),

∥∥∥QKk
(f)− f

∥∥∥
Cm

≤ c

k
∥f∥Cm+2 .(16)

Moreover, (16) is uniform in the sense that there is an integer s0 such that
if the hermitian metric h on L varies in a bounded set in Cs0 topology then
the constant c is independent of h.

Lemma 3.4. With notations as above,

Tr(A2
k) = kn+2

∫

M
h
2 ω

n

n!
+O(kn+1),

where h is a hamiltonian defined by ω.

Proof. Let us write

(17) Ãij = kn
∫

M
(si,Φ

∗
k(hAk

)sj)hk

ωn

n!
,

where Φ∗
k(hAk

) is given by (7) and {si} is a fixed L2-orthonormal basis of
eigensections with respect to the inner product (2). Now, set

Q(Ak)ij = kn
∫

M

(
si,
∑

p,q

(Ak)pq(sp, sq)hksj

)

hk

ωn

n!
,

= kn
∫

M

∑

p,q

(Ak)pq(sp, sq)hk(si, sj)hk

ωn

n!
.

With the map ι : Met(Hk) → C∞(M) given by

ι(Aij) =
∑

i,j

Aij(si, sj)hk ,
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one can write ι ◦Q(Ak) = QKk
◦ ι(Ak). The map ι is linear and invertible

on its image. From Theorem 3.3, we have

(18) Q(Ak) = Ak(Id+O(k−1)).

The Bergman function has a uniform asymptotic expansion as stated in
Theorem 2.2. From the higher order term of this expansion, we can deduce
using (17), (7) and (18) that

Ãij = −Q(Ak)(Id+O(k−1)) = −Ak(Id+O(k−1)).

Consequently,

Tr(A2
k) = Tr(Ã2)(1 +O(k−1)).

Now, let us compute Tr(Ã2). By a direct computation, we have

Tr(Ã2)

= k2n
∫

M×M

∑

i,j

(si(x),Φ
∗
k(hAk

)(x)sj(x)) (sj(y),Φ
∗
k(hAk

)(y)si(y))ω
n
xω

n
y ,

= kn
∫

M
Tr(QKk

(Φ∗
k(hAk

))Φ∗
k(hAk

))ωn,

= kn+2

∫

M
Tr

(
QKk

(
1

k
Φ∗
k(hAk

)

)
1

k
Φ∗
k(hAk

)

)
ωn.

We have Q( 1kΦ
∗
k(hAk

)) = 1
kΦ

∗
k(hAk

)(1 +O( 1k )) from Theorem 3.3 and also
1
kΦ

∗
k(hAk

) = h(1 +O( 1k )) from (12). Combining all previous results, we ob-
tain the asymptotic of Tr(A2

k). □

Let us write Tr(A2
k) as

Tr(A2
k) = ∥χΓ∥2kn+2 +O(kn+1).

Then, the expression of ∥χΓ∥ is given by the following result.

Corollary 4. With notations as above

∥χΓ∥2 =
∫

M
(h− ĥ)2

ωn

n!
,

with ĥ the normalized average of h.
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Proof of Theorem 1. The proof is now obtained by combining Lemma 3.4
and (15) and letting k → ∞. □

Proof of Corollary 3. We know from Narasimhan and Seshadri that if E
is polystable then P(E) admits a cscK metric (in any Kähler class) and
thus a cHscaK metric, see [2, Theorem 1] for details. Now, assume that
we have a symplectic form such that CS1

ω ̸= ∅ i.e there is an S1-invariant
integrable compatible almost-complex structure J . If E = E1 ⊕ · · · ⊕ Es is
not polystable and F is a destabilizing subbundle of one component of E, say
E1, one can consider the test configuration associated to the deformation to
the normal cone of P(F ⊕ E2 · · · ⊕ Es) whose central fibre is P(F ⊕ E1/F ⊕
E2 ⊕ · · · ⊕ Es) and in particular is smooth. This test configuration admits a
C∗ action that covers the usual action on the base C and whose restriction
to F ⊕ E1/F ⊕ E2 ⊕ · · · ⊕ Es scales the fibers of F with weight 1 and acts
trivially on the other components. Seeing (P(E), ω, J) as a Kähler manifold,
the computations of [41, Section 5] (see also [13]) show that the Futaki
invariant of this test configuration is negative. Actually, the Futaki invariant
is a positive multiple of the difference of the slopes µ(E1)− µ(F ) < 0. Then,
we apply Corollary 2 to deduce the non existence of cHscaK structure in
AKS1

ω . In the case of rk(E) = 2, any symplectic rational ruled surface admits
a compatible integrable complex structure, see [1, Section 3] and references
therein. Note that for the general case, it is unclear whether we can drop
the assumption on Cω as there exist projective manifolds with symplectic
forms ω such that Cω = ∅, see for instance [10]. □
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(2007).

[38] X. Ma and G. Marinescu, The Spinc Dirac operator on high tensor
powers of a line bundle, Math. Z. 240 (2002), no. 3, 651–664.

[39] X. Ma and G. Marinescu, Berezin-Toeplitz quantization on Kähler man-
ifolds, J. Reine Angew. Math. 662 (2012), 1–56.

[40] D. McDuff and D. Salamon, Introduction to Symplectic Topology,
second edition, Oxford Mathematical Monographs, Oxford University
Press (1998).

[41] J. Ross and R. Thomas, An obstruction to the existence of constant
scalar curvature Kähler metrics, J. Differential Geom. 72 (2006), no. 3,
429–466.

[42] R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction,
Ann. of Math. (2) 134 (1991), no. 2, 375–422.
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