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With a triangulation of a planar polygon with n sides, one can
associate an integrable system on the Grassmannian of 2-planes in
an n-space. In this paper, we show that the potential functions of
Lagrangian torus fibers of the integrable systems associated with
different triangulations glue together by cluster transformations.
We also prove that the cluster transformations coincide with the
wall-crossing formula in Lagrangian intersection Floer theory.
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1. Introduction

Quantum cohomologies of Grassmannians give quantum deformations of the
classical Schubert calculus. It is a fascinating subject, which is related to
many branch of mathematics such as moduli of vector bundles on a Riemann
surface [Wit95], total positivity [Rie01], and eigenvalue problems [TW03] to
name a few.

Mirror symmetry is a powerful tool to study quantum cohomologies of
symplectic manifolds. The mirror of a Fano manifold is a Landau–Ginzburg
model, i.e., a pair (X̌,W ) of an analytic space X̌ and an analytic func-
tion W : X̌ → A1 called the Landau–Ginzburg potential. Landau–Ginzburg
mirrors of flag varieties are introduced in [Rie08], where X̌ are the comple-
ments of anti-canonical divisors in the flag manifolds associated with the
Langlands dual groups, and W are regular functions. In the type A cases,
the restrictions of W to certain open subvarieties give mirrors introduced
earlier in [EHX97, BCFKvS00]. For the Grassmannian Gr(k, n) = Gr(k,Cn)
of k-dimensional subspaces in Cn, Marsh and Rietsch [MR] give a description
of the Landau–Ginzburg mirror

(1.1) W : X̌ = Gr(n− k, (Cn)∗) \D −→ A1

in terms of Plücker coordinates on the dual Grassmannian Gr(n− k, (Cn)∗)
of Gr(k,Cn).

With a Lagrangian submanifold of a symplectic manifold, one can as-
sociate the potential function, which is a Floer-theoretic quantity obtained
as the generating function of numbers of pseudo-holomorphic disks bounded
by Lagrangian submanifolds [FOOO09]. In the case of toric manifolds, the
potential functions of Lagrangian orbits of the torus action can be identified
with the Landau–Ginzburg potentials of the mirrors.

In contrast to the toric cases where the toric moment maps give canonical
Lagrangian torus fibrations, there are a priori no preferred Lagrangian torus
fibrations on flag manifolds. In the case of the Grassmannian Gr(2, n) of 2-
planes, with any triangulation Γ of a convex polygon with n sides, one can
associate a completely integrable system

(1.2) ΨΓ : Gr(2, n) −→ R2n−4

whose image ∆Γ = ΨΓ(Gr(2, n)) is a convex polytope. Note that the num-
ber of ways to triangulate a convex n-gon is given by the Catalan number
Cn−2 =

1
n−1

(
2n−4
n−2

)
. The potential function of Lagrangian torus fibers of the
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integrable system ΨΓ is computed in [NU14, Theorem 1.6]. It is written as a
Laurent polynomialWΓ, which gives a regular function on a torus (Gm)2n−4.

If two triangulations Γ and Γ′ are related by a Whitehead move (see
Figure 3.2), the corresponding potential functions WΓ and WΓ′ are related
by a subtraction-free birational change of variables of the form

WΓ′(. . . , y′, y1, y2, y3, y4, . . .) =WΓ(. . . , y, y1, y2, y3, y4, . . .)(1.3)

where

y′ =
1

y
· y1y2y3y4
y1y3 + y2y4

.(1.4)

Moreover, the tropicalization of this coordinate change gives a piecewise-
linear transformation on R2n−4 which maps ∆Γ into ∆Γ′ .

In what follows we identify the dual Grassmannian Gr(n− 2, (Cn)∗) with
Gr(2, n) in a canonical way, and write the Plücker coordinates as pij (1 ≤
i < j ≤ n). The first main result in this paper is the following:

Theorem 1.1. For any triangulation Γ, there is an open embedding

ιΓ : (Gm)2n−4 →֒ X̌(1.5)

such that the restriction of the Landau–Ginzburg potential coincides with the
potential function; ι∗ΓW =WΓ. The change of variables (1.4) can be identi-
fied with the Plücker relation

pikpjl = pijpkl + pilpjk(1.6)

by a suitable choice of a coordinate on (Gm)2n−4.

In other words, the potential functions for different triangulations glue
together to form an open dense subset of Marsh–Rietsch’s mirror. The
Plücker relation (1.6) is a prototypical example of a cluster transformation
in the theory of cluster algebras [FZ02].

Remark 1.2. Rietsch and Williams [RW] also study the relation between
piecewise-linear transformations for “moment polytopes” ∆Γ and cluster
transformations (1.6) from a slightly different view point, where ∆Γ are
regarded as Newton–Okounkov bodies.

For a pair Γ and Γ′ of triangulations related by a Whitehead move, one
can construct a one-parameter family Ψt (0 ≤ t ≤ 1) of completely integrable
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systems on Gr(2, n) such that Ψ0 = ΨΓ and Ψ1 = ΨΓ′ (up to coordinate
changes on the base spaces). For t ̸= 0, 1, the integrable system Ψt has sin-
gular fibers over a codimension two subset in the interior of the base space
Bt = Ψt(Gr(2, n)). The presence of singular fibers leads to a codimension
one wall in Bt which divides Bt into two chambers. The SYZ mirror in the
sense of [AAK16, Definition 1.2] of Gr(2, n) with respect to this Lagrangian
torus fibration is given by gluing (open subsets of) Landau–Ginzburg mod-

els
(
(Gm)2n−4 ,WΓ

)
and

(
(Gm)2n−4 ,WΓ′

)
(and then completing). Each of

these Landau–Ginzburg models comes from the moduli space of objects of
the Fukaya category supported by Lagrangian torus fibers above each cham-
ber, and the gluing is given by a wall-crossing formula obtained by counting
pseudo-holomorphic disks of Maslov index zero. The second main result in
this paper is the following:

Theorem 1.3. For 0 < t < 1, the wall-crossing formula in the construction
of the SYZ mirror of Gr(2, n) with respect to the Lagrangian torus fibration
Ψt is given by the coordinate change (1.4).

Theorem 1.3 is proved by reduction to the case of Gr(2, 4) by a degen-
eration argument, which is then handled directly along the lines of [Aur07,
Aur09].

It is suggested in [Aur07, Aur09] that the mirror of a Fano manifold is ob-
tained by first taking a special Lagrangian torus fibration on the complement
of an anti-canonical divisor, and then equipping its Strominger–Yau–Zaslow
mirror with the potential function of the fiber. The integrable system Ψt

does not restrict to a Lagrangian torus fibration on the complement of an
anti-canonical divisor, and it is an interesting problem to find a Lagrangian
torus fibration on the complement of an anti-canonical divisor, which allows
one to fit Rietsch’s mirror into this framework. Another interesting question
is whether there are other mirrors associated with other Lagrangian torus
fibrations on the complement of other anti-canonical divisors.

This paper is organized as follows. After fixing notation for triangula-
tions of convex polygons in Section 2, we give in Section 3 the construction
of completely integrable systems on Gr(2, n). In Section 4 we recall toric
degenerations of Gr(2, n) associated with triangulations of a convex n-gon,
which enables us to compute potential functions of Lagrangian torus fibers
of ΨΓ. In Section 5 we show that the potential functions for different tri-
angulations are related by the coordinate change (1.4). Section 6 is a quick
review of cluster algebras. Theorem 1.1 is proved in Section 7. In Section
8 we recall the wall-crossing formula given by Auroux in [Aur07, Aur09],
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which is enough for our purpose since the integrable system Ψt has only one
wall. In Section 9 we prove Theorem 1.3 in the case of Gr(2, 4). The proof
for general Gr(2, n) is given in Section 10.

Acknowledgment : We thank Yankı Lekili for collaboration at an early
stage of this work; it is originally conceived as a joint project with him.
We thank River Chiang for organizing a workshop in Tainan in July 2014,
where this project has been initiated. We also thank the anonymous referee
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a number of improvements. Y. N. is supported by Grant-in-Aid for Scien-
tific Research (15K04847). K. U. is supported by Grant-in-Aid for Scientific
Research (24740043, 15KT0105, 16K13743, 16H03930).

2. Triangulations

Fix an integer n greater than 2, and let P be a convex planar polygon with
n sides called the reference polygon. We order the vertices of P in such a
way that respects the natural cyclic order on the boundary of P , and define
the side vectors ei ∈ R2 for i = 1, . . . , n as the difference between the i-th
vertex and the (i+ 1)-st vertex. Setting I(i, j) = {i, i+ 1, i+ 2, . . . , j − 1},
we can write the diagonal connecting the i-th vertex and the j-th vertex as

dij =
∑

k∈I(i,j)
ek.(2.1)

Take a subdivision Γ of P given by a set of diagonals which are pairwise
non-crossing in the interior of P . Note that the non-crossing condition for
diagonals dij , dkl is equivalent to

(2.2) I(i, j) ⊂ I(k, l) or I(k, l) ⊂ I(i, j) or I(i, j) ∩ I(k, l) = ∅.

We consider the dual graph of the subdivision Γ, which is a tree with n
leaves. Let ϵ(i, j) denote an edge in the graph intersecting a diagonal dij
or a side ei = di,i+1 of P connecting the i-th and j-th vertices, where we
assume ϵ(n, n+ 1) = ϵ(1, n). In what follows we regard Γ as the set of edges
in the dual graph by abuse of notation, and let

Int Γ = {ϵ(i, j) ∈ Γ | |i− j| ≥ 2},(2.3)

∂Γ = {ϵ(i, i+ 1) | i = 1, . . . , n}(2.4)
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Figure 2.1: A triangulation of a convex polygon and its dual graph.

be the sets of interior edges and leaves of Γ, respectively. We also consider
a “pruned” tree obtained from Γ by removing the n-th leaf ϵ(1, n), and let

(2.5) PrnΓ = Γ \ {ϵ(1, n)}

be the set of its edges. If Γ is a triangulation of P , which is given by n− 3
diagonals, then we have

#Γ = 2n− 3,(2.6)

#∂Γ = n = dimTU(n),(2.7)

#PrnΓ = 2n− 4 = dimCGr(2, n),(2.8)

# Int Γ = n− 3 = dimCGr(2, n)//TU(n),(2.9)

where TU(n) ⊂ U(n) is a maximal torus consisting of diagonal matrices.

3. Integrable systems on Gr(2, n)

Fix a constant λ > 0, and identify the Grassmannian Gr(2, n) of 2-planes in
Cn with the adjoint orbit

(3.1) Oλ = {x ∈
√
−1u(n) | eigenvalues of x are λ, λ, 0, . . . , 0}

of a diagonal matrix diag(λ, λ, 0, . . . , 0) in the space
√
−1u(n) of Hermitian

matrices. For each 1 ≤ i < j ≤ n+ 1, we consider the adjoint action on Oλ

of the subgroup

(3.2) G(i, j) =



1i−1

U(j − i)
1n−j+1


 ∼= U(j − i)
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of U(n). Its moment map is given by

(3.3) µG(i,j) : Oλ →
√
−1u(j − i), x = (xkl) 7→ µG(i,j)(x) = (xkl)k,l∈I(i,j),

where we identify the dual space of the Lie algebra LieG(i, j) ∼= u(j − i) of
G(i, j) with

√
−1u(j − i) by an invariant inner product. Since

(3.4) rankµG(i,j)(x) ≤ rankx ≤ 2, x ∈ Oλ

for each (i, j) with |i− j| ≥ 2, each Hermitian matrix µG(i,j)(x) has at most

two nonzero eigenvalues λ
(i,j)
1 (x) ≥ λ(i,j)2 (x) ≥ 0. For each 1 ≤ i < j ≤ n, we

define a function ψij on Oλ by

(3.5) ψij(x) =

{
λ
(i,j)
1 (x), if |i− j| ≥ 2,

µG(i,i+1)(x) = xii, j = i+ 1.

Note that the the moment map µTU(n)
: Oλ → Rn of the action of the maxi-

mal torus TU(n) =
∏n

i=1G(i, i+ 1) is given by

(3.6) µTU(n)
= (ψ12, ψ23, ψ34, . . . , ψn,n+1),

and hence {ψi,i+1}1≤i≤n satisfies one relation

(3.7) ψ12(x) + ψ23(x) + · · ·+ ψn−1,n(x) + ψn,n+1(x) = trx = 2λ.

In general, for any n× n Hermitian matrix x = (xij), the mini-max principle
implies that the eigenvalues λ1 ≥ · · · ≥ λn of x and those µ1 ≥ · · · ≥ µn−1

of the submatrix (xij)1≤i,j≤n−1 satisfy

(3.8) λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn.

In our situation, each x ∈ Oλ has eigenvalues λ, λ, 0, . . . , 0, and hence the

largest eigenvalue ψ1n(x) = λ
(1,n)
1 (x) of µG(1,n)(x) = (xij)1≤i,j≤n−1 is con-

stant:

(3.9) ψ1n = λ.

For a triangulation Γ of the reference n-gon P , the non-crossing condi-
tion (2.2) implies that G(i, j) ⊂ G(k, l) or G(k, l) ⊂ G(i, j) or the actions
of G(i, j) and G(k, l) on Oλ commute for each pair ϵ(i, j), ϵ(k, l) ∈ Int Γ of
interior edges. By applying the construction of completely integrable systems
in [GS83], we obtain the following:
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Theorem 3.1 ([NU14, Section 4]). For a triangulation Γ of the reference
polygon, the map

(3.10) ΨΓ = (ψij)ϵ(i,j)∈PrnΓ : Oλ → RPrnΓ = R2n−4

is a completely integrable on Gr(2, n) ∼= Oλ with respect to the Kostant-
Kirillov form. The natural coordinate (uij)ϵ(i,j)∈PrnΓ on RPrnΓ gives an ac-
tion coordinate, and the image ∆Γ = ΨΓ(Oλ) is a convex polytope.

Remark 3.2. One can apply this construction for general partial flag man-
ifolds of type A to obtain several completely integrable systems.

Remark 3.3. In [NU14], we defined ψij = λ
(i,j)
2 for |i− j| ≥ 2 instead of

λ
(i,j)
1 . Since

(3.11) λ
(i,j)
1 + λ

(i,j)
2 = trµG(i,j) =

j−1∑

k=i

ψk,k+1,

the completely integrable system ΨΓ in (3.10) and that in [NU14] are related
by a linear transformation on the base space, and hence fibers of these
integrable systems are the same.

To describe the polytope ∆Γ explicitly, we recall bending Hamiltonians
on polygon spaces introduced by Kapovich and Millson [KM96] and Klyachko
[Kly94]. For an n-tuple r = (r1, . . . , rn) ∈ (R>0)n of positive numbers, the
polygon spaceMr is defined to be a moduli space of n-gons in R3 with fixed
side lengths r1, . . . , rn:

(3.12) Mr
∼=
{
ξ = (ξ1, . . . , ξn) ∈

n∏

i=1

S2(ri)

∣∣∣∣
n∑

i=1

ξi = 0

}/
SO(3),

where S2(r) ⊂ R3 is a 2-sphere of radius r centered at the origin. For each
1 ≤ i < j ≤ n, let φij :Mr → R be the function which measures the length
of the diagonal or the side of each polygon ξ connecting the i-th and j-th
vertices:

(3.13) φij(ξ) = |ξi + ξi+1 + · · ·+ ξj−1|.

Note that φi,i+1 = ri are constant functions. The function φij for |i− j| ≥ 2
is called a bending Hamiltonian, since its Hamiltonian flow bends polygons
ξ ∈Mr along the diagonal connecting the i-th and j-th vertices.
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Theorem 3.4 (Kapovich and Millson [KM96], Klyachko [Kly94]).
For each triangulation Γ of P , the map

(3.14) ΦΓ = (φij)ϵ(i,j)∈Int Γ :Mr → Rn−3

is a completely integrable system on Mr. The image ΦΓ(Mr) is a convex
polytope defined by triangle inequalities

(3.15) |φij − φjk| ≤ φik ≤ φij + φjk

for each triangle with vertices 1 ≤ i < j < k ≤ n in the triangulation Γ.

The Grassmannian Gr(2, n) is obtained as a symplectic reduction of
the space Matn×2(C) ∼= (C2)n of n× 2 matrices by the right U(2)-action,
and hence the Gelfand-MacPherson correspondence [GM82] gives an iso-
morphism between the polygon space and a symplectic reduction of Gr(2, n)
by the TU(n)-action. For a later use, we describe the isomorphism explicitly.
Since the moment map of of the right U(2)-action on Matn×2(C) is given by
(3.16)

µU(2) : Matn×2(C)→
√
−1u(2),



z1 w1
...

...
zn wn


 7→ 1

2

n∑

i=1

(
|zi|2 ziwi

ziwi |wi|2
)
,

the level set µ−1
U(2)(λ12) of µU(2) consists of (zi, wi)i ∈ Matn×2(C) satisfying

(3.17)

n∑

i=1

|zi|2 =
n∑

i=1

|wi|2 = 2λ,

n∑

i=1

ziwi = 0,

and hence

(3.18) Z = (zi, wi)i 7−→
1

2
ZZ∗ =

1

2
(zizj + wiwj)i,j

gives an isomorphism µ−1
U(2)(λ12)/U(2)→ Oλ

∼= Gr(2, n). The moment map

µTU(n)
: Matn×2(C)→ Rn of the left TU(n)-action on Matn×2(C) is given by

(3.19)



z1 w1
...

...
zn wn


 7−→

( |z1|2 + |w1|2
2

, . . . ,
|zn|2 + |wn|2

2

)
,
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and thus the projection

(3.20) µ−1
TU(n)

(2r) ∼=
n∏

i=1

S3(2
√
ri) −→ TU(n)\µ−1

TU(n)
(2r) ∼=

n∏

i=1

S2(ri)

is written as

(3.21)



z1 w1
...

...
zn wn


 7−→ (ν(z1, w1), . . . , ν(zn, wn))

by using the Hopf fibration

(3.22) ν : S3(2
√
r)→ S2(r), (z, w) 7→

(
zw

2
,
|z|2 − |w|2

4

)
,

where we regard S3(2
√
r) ⊂ C2 and S2(r) ⊂ C× R. Since the condition

(3.17) implies
∑

i ν(zi, wi) = 0, the map (3.21) induces an isomorphism

TU(n)\\2r Gr(2, n) ∼= TU(n)\
(
µ−1
U(2)(λ12) ∩ µ

−1
TU(n)

(2r)
)
/U(2)(3.23)

∼=
(

n∏

i=1

S2(ri)

)//

0

SU(2) =Mr.(3.24)

Let φij also denote the pull-back to Gr(2, n) of the bending Hamiltonian.

Proposition 3.5 ([NU14, Proposition 4.6]). Two completely integrable
systems (ψij)ϵ(i,j)∈PrnΓ and (φij)ϵ(i,j)∈PrnΓ are related by

(3.25) φij = ψij −
1

2

j−1∑

k=i

ψk,k+1,

and thus ΨΓ induces ΦΓ on each polygon space Mr under the symplectic
reduction.

Note that φi,i+1 = (1/2)ψi,i+1 is not an action coordinate, since its
Hamiltonian flow has period π( ̸= 2π). We give a proof of this proposition
for readers’ convenience.
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Proof. We first note that the function ψi,i+1 associated to the leaf ϵ(i, i+ 1)
is given by

(3.26) ψi,i+1([zk, wk]) =
|zi|2 + |wi|2

2
, [zk, wk]k ∈ Gr(2, n),

which coincides with 2φi,i+1([zk, wk]). Recall that, for |i− j| ≥ 2,

(3.27) ψij([zk, wk]) = λ
(i,j)
1 ([zk, wk]) ≥ λ(i,j)2 ([zk, wk]) ≥ 0

are the first and second eigenvalues of

(3.28)
1

2




zi wi
...

...
zj−1 wj−1



(
zi . . . zj−1

wi . . . wj−1

)
.

Then the 2× 2 Hermitian matrix

(3.29)
1

2

(
zi . . . zj−1

wi . . . wj−1

)



zi wi
...

...
zj−1 wj−1


 =

1

2

j−1∑

k=i

(
|zk|2 zkwk

zkwk |wk|2
)

=
1

4

j−1∑

k=i

(
|zk|2 − |wk|2 2zkwk

2zkwk |wk|2 − |zk|2
)
+

j−1∑

k=i

|zk|2 + |wk|2
4

(
1 0
0 1

)

has eigenvalues λ
(i,j)
1 ≥ λ(i,j)2 . Since

(3.30)
1

4

j−1∑

k=i

(
|zk|2 − |wk|2 2zkwk

2zkwk |wk|2 − |zk|2
)
∈
√
−1su(2)

has eigenvalues ±∥∑j−1
k=i ν(zk, wk)∥ = ±φij([zk, wk]), we have

λ
(i,j)
1 = φij +

j−1∑

k=i

|zk|2 + |wk|2
4

,(3.31)

λ
(i,j)
2 = −φij +

j−1∑

k=i

|zk|2 + |wk|2
4

,(3.32)

which prove the proposition. □
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We introduce another coordinate (u(i, j))ϵ(i,j)∈PrnΓ on R2n−4 correspond-
ing to (φij)ϵ(i,j)∈PrnΓ defined by

(3.33) u(i, j) = uij −
1

2

j−1∑

k=i

uk,k+1.

Corollary 3.6. The moment polytope ∆Γ = ΨΓ(Oλ) is defined by triangle
inequalities

(3.34) |u(i, j)− u(j, k)| ≤ u(i, k) ≤ u(i, j) + u(j, k)

for each triangle with vertices 1 ≤ i < j < k ≤ n in the triangulation Γ.

In terms of the action coordinate (uij)ϵ(i,j)∈PrnΓ, the inequalities (3.34)
are written as

uik ≥ uij − ujk +
k−1∑

l=j

ul,l+1,(3.35)

uik ≥ ujk − uij +
j−1∑

l=i

ul,l+1,(3.36)

uik ≤ uij + ujk.(3.37)

Figure 3.1: The caterpillar.

Example 3.7 (Hausmann and Knutson [HK97]). For the triangula-
tion Γcat given by

Int Γcat := {ϵ(1, 3), ϵ(1, 4), . . . , ϵ(1, n− 2)}(3.38)

shown in Figure 3.1 called the caterpillar, the integrable system ΨGC :=
ΨΓcat

gives theGelfand-Cetlin system introduced by Guillemin and Sternberg
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[GS83], and the triangle inequalities (3.34) give the Gelfand-Cetlin pattern

λ
∑n−1

i=1 ψi,i+1 − λ
≥ ≥ ≥
ψ1,n−1

∑n−2
i=1 ψi,i+1 − ψ1,n−1

≥ ≥ ≥
ψ1,n−2

∑n−3
i=1 ψi,i+1 − ψ1,n−2

≥ ≥ ≥
· · · · · · 0
≥ ≥ ≥ ≥
ψ13

∑2
i=1 ψi,i+1 − ψ13

≥ ≥
ψ12

.(3.39)

Suppose that we have two triangulations Γ, Γ′ of P which are related by
a Whitehead move in a quadrilateral P0 with vertices 1 ≤ a < b < c < d ≤ n
(see Figure 3.2, where P0 is unshaded). Let Γ′′ be the subdivision of P

Figure 3.2: A whitehead move.

given by common diagonals in Γ and Γ′ (see Figure 3.3); its dual graph
is obtained from that of Γ (resp. Γ′) by contracting the edge ϵ(a, c) ∈ Γ
(resp. ϵ(b, d) ∈ Γ′). Note that the action coordinates on ∆Γ ⊂ RPrnΓ and
∆Γ′ ⊂ RPrnΓ′

are written as

(3.40) u = ((uij)ϵ(i,j)∈PrnΓ′′ , uac), u′ = ((uij)ϵ(i,j)∈PrnΓ′′ , ubd),

respectively.
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Figure 3.3: A subdivision of P given by common diagonals in two triangu-
lations in Figure 3.2.

Proposition 3.8. Let Γ,Γ′ be two triangulations of P as above. Then the
piecewise linear transform u 7→ u′ defined by

ubd = −uac + uab + ubc + ucd + uad(3.41)

−min

(
uab + ucd, uad + ubc −

c−1∑

i=b

ui,i+1

)

gives a bijection between ∆Γ and ∆Γ′.

Remark 3.9. The piecewise linear transformation (3.41) is different from
the one given in [NU14, Proposition 3.5].

Proof. For each fixed (φab, φbc, φcd, φad)=(r1, r2, r3, r4)∈(R>0)4, the ranges
of the bending Hamiltonians φac and φbd are given by

max{|r1 − r2|, |r3 − r4|} ≤ u(a, c) ≤ min{r1 + r2, r3 + r4},(3.42)

max{|r1 − r4|, |r2 − r3|} ≤ u(b, d) ≤ min{r1 + r4, r2 + r3},(3.43)

respectively. Since

−max{|r1 − r2|, |r3 − r4|}(3.44)

= min{min{r1 − r2, r3 − r4},min{r2 − r1, r4 − r3}}(3.45)

= min{min{r1 + r4, r2 + r3} − r2 − r4,(3.46)

min{r1 + r4, r2 + r3} − r1 − r3}
= min{r1 + r4, r2 + r3}+min{−r2 − r4,−r1 − r3}(3.47)

= min{r1 + r4, r2 + r3}+min{r1 + r3, r2 + r4}(3.48)

− (r1 + r2 + r3 + r4),
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the lengths of the ranges are the same;

(3.49) min{r1 + r2, r3 + r4} −max{|r1 − r2|, |r3 − r4|}
= min{r1 + r4, r2 + r3} −max{|r1 − r4|, |r2 − r3|}.

Thus the map u(a, c) 7→ u(b, d) defined by

u(b, d) = −u(a, c) + min{r1 + r2, r3 + r4}+max{|r1 − r4|, |r2 − r3|}
= −u(a, c) + r1 + r2 + r3 + r4 −min{r1 + r3, r2 + r4}(3.50)

gives a bijection between the ranges of φac and φbd. One can easily check
that this map is written as (3.41) under the coordinate change (3.33). □

4. Degenerations of Grassmannians

Speyer and Sturmfels [SS04] have shown that toric degenerations of the
Grassmannian Gr(2, n) are parametrized by the tropical Grassmannian, and
its top dimensional cells are in one-to-one correspondence with the set of
trivalent trees Γ with n-leaves. For each Γ, the corresponding toric degen-
eration fΓ : XΓ → Cn−3 of Gr(2, n) can be constructed as follows. Let p =
[pij ]1≤i<j≤n be a homogeneous coordinate on P(

∧2
Cn) so that Gr(2, n) ⊂

P(
∧2

Cn) is given by the Plücker relations

(4.1) Fijkl(p) = pijpkl − pikpjl + pilpjk = 0

for 1 ≤ i < j < k < l ≤ n.1 For each 1 ≤ i, j ≤ n, let γ(i, j) denote the path
in the tree Γ connecting the i-th and j-th leaves ϵ(i, i+ 1), ϵ(j, j + 1). We
introduce n− 3 deformation parameters t = (tkl)ϵ(k,l)∈Int Γ ∈ CInt Γ. Define a
weight w(i, j) = (wkl(i, j))ϵ(k,l)∈Int Γ ∈ QInt Γ of a Plücker coordinate pij by

(4.2) wkl(i, j) =

{
1/2 if γ(i, j) contains the edge ϵ(k, l),

0 otherwise,

and consider an action of (C×)Int Γ on
∧2

Cn given by

(4.3) t · p = (tw(i,j)pij) =


∏

ϵ(k,l)

t
wkl(i,j)
kl pij


 =


 ∏

ϵ(k,l)⊂γ(i,j)

t
1/2
kl pij


 .

1Note that the indices of the the Plücker coordinates are labels of leaves of Γ (or
equivalently, sides of the reference polygon P ), while the indices of the Hamiltonians
ψij (and hence, those of coordinates on the SYZ mirror) are labels of vertices of P .
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Figure 4.1: A path γ(i, j) connecting the i-th and j-th leaves.

For a polynomial

(4.4) F (p) =
∑

I=(i1,j1,...,im,jm)

cIpi1j1 . . . pimjm

in Plücker coordinates, let

(4.5) wkl(F ) = max{wkl(i1, j1) + · · ·+ wkl(im, jm) | cI ̸= 0}

be the maximum of weights of monomials in F (p) with respect to tkl, and
define FΓ(p, t) ∈ C[p, t] by

(4.6) FΓ(p, t) = tw(F )F (t−w(i,j)pij),

where

(4.7) tw(F ) =
∏

ϵ(k,l)∈Int Γ
t
wkl(F )
kl .

Then the degenerating family fΓ : XΓ → Cn−3 associated with Γ is given by

(4.8) XΓ = {(p, t) ∈ P(
∧2

Cn)× Cn−3 | FΓ
ijkl(p, t) = 0, i < j < k < l},

whose central fiber XΓ = f−1
Γ (0, . . . , 0) is a toric variety with moment poly-

tope ∆Γ (see [NU14, Example 5.2] for the case n = 5). [NU14, Theorem 1.2]
combined with [HK15, Theorem 5.4] gives the following.

Theorem 4.1. The completely integrable system ΨΓ on Gr(2, n) can be
deformed into a toric moment map µTΓ

on XΓ with moment polytope ∆Γ.
There exists a map ϕ : Gr(2, n)→ XΓ which sends each Lagrangian torus
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fiber LΓ(u) = Ψ−1
Γ (u) diffeomorphically to the fiber µ−1

TΓ
(u) of µTΓ

over the
same point u ∈ Int∆Γ.

The map ϕ : Gr(2, n)→ XΓ is given by the gradient-Hamiltonian flow
for fΓ introduced by Ruan [Rua01]. Harada and Kaveh [HK15, Theorem 5.4]
show that the gradient-Hamiltonian flow extends to singular loci of XΓ.

Let (X,ω) be a symplectic manifold, and fix a compatible almost com-
plex structure J . For a Lagrangian submanifold L in X and a relative ho-
motopy class β ∈ π2(X,L), letM1(X,L;β) denote the the moduli space of
stable J-holomorphic maps of degree β from a bordered Riemann surface
of genus zero with one marked point and with Lagrangian boundary condi-
tion. Fix t ∈ (C×)n−3 ⊂ Cn−3 sufficiently close to the origin, and let Jt be
the complex structure on the fiber Xt = f−1

Γ (t) of the family (4.8). By us-
ing a symplectomorphism Gr(2, n)→ Xt given by the gradient-Hamiltonian
flow, we regard Jt as a complex structure on Gr(2, n). The fact that the toric
variety XΓ is Fano and admits a small resolution [NU14, Section 8] enable
us to apply the argument in [NNU10, Section 9] to obtain the following:

Theorem 4.2 ([NNU10, Proposition 9.16]). For each u ∈ Int∆Γ and
β ∈ π2(Gr(2, n), LΓ(u)) of Maslov index two, there exists a diffeomorphism

(4.9) M1(Gr(2, n), LΓ(u);β)
∼→M1(XΓ, µ

−1
TΓ

(u);β)

such that

(4.10)

H∗(M1(Gr(2, n), LΓ(u);β))
ev∗−−−−→ H∗(LΓ(u))y

yϕ−1
∗

H∗(M1(XΓ, µ
−1
TΓ

(u);β))
ev∗−−−−→ H∗(µ

−1
TΓ

(u))

commutes, where ev : M1(X,L;β)→ L is the evaluation map at bound-
ary marked points, and β in the right hand side of (4.9) is regarded as
a homotopy class in XΓ via the isomorphism ϕ∗ : π2(Gr(2, n), LΓ(u))→
π2(XΓ, µ

−1
TΓ

(u)).

Suppose that we have two triangulations Γ and Γ′ related by a White-
head move as in Figure 3.2. Then the subdivision Γ′′ defined by common
diagonals in Γ and Γ′ gives a subfamily

(4.11) fΓ′′ : XΓ′′ −→ Cn−4 = CInt Γ′′
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of fΓ : XΓ → CInt Γ (resp. fΓ′ : XΓ′ → CInt Γ′

) defined by tac = 1 (resp. tbd =
1), on which ΨΓ = (ψij)ϵ(i,j)∈PrnΓ (resp. ΨΓ′ = (ψij)ϵ(i,j)∈PrnΓ′) can be de-
formed into a completely integrable system Ψ0

Γ = (ψ0
ij)ϵ(i,j)∈PrnΓ (resp. ΨΓ′ =

(ψ0
ij)ϵ(i,j)∈PrnΓ′) on the central fiber X0 = f−1

Γ′′ (0, . . . , 0). We write fibers of

Ψ0
Γ as L0

Γ(u) = (Ψ0
Γ)

−1(u).

Corollary 4.3. For each u ∈ Int∆Γ and β ∈ π2(Gr(2, n), LΓ(u)) of Maslov
index two, there exists a diffeomorphism

(4.12) M1(Gr(2, n), LΓ(u);β)
∼→M1(X0, L

0
Γ(u);β)

which commutes with evaluation maps on the homology groups. The same is
true for Γ′.

We observe defining equations for X0 are:

(4.13) FΓ′′

ijkl(p,0) = FΓ
ijkl(p, (0, . . . , 0, tac = 1)) = 0.

If the paths γ(i, k) and γ(j, l) intersect transversally in the interior of the
quadrilateral P0 as in Figure 4.2, then all monomials in Fijkl have the same
weight, and thus the Plücker relation is unchanged:

(4.14) FΓ′′

ijkl(p,0) = Fijkl(p) = pijpkl − pikpjl + pilpjk.

In the case where γ(i, k) and γ(j, l) share at least one interior edge, the
Plücker relation is deformed into a binomial

(4.15) FΓ′′

ijkl(p,0) = −pikpjl + pilpjk,

where we assume that γ(i, j) and γ(k, l) do not share any edge in Γ′′ (see
Figure 4.3).

We give a description of X0 following an idea in [HMM11]. By cutting
the reference polygon P along the diagonals in Γ′′, we obtain a subdivision
of P into one quadrilateral P0 and n− 4 triangles P1, . . . , Pn−4, and the cor-
responding forest (i.e., a set of trees) Γ0,Γ1, . . . ,Γn−4. For each subpolygon

Pα, we associate a cone G̃r(Pα) ⊂
∧2

CΓα over the Grassmannian

(4.16) Gr(Pα) := Gr(2,CΓα) ∼=
{
Gr(2, 4) α = 0,

P2 α = 1, . . . , n− 4,

on which the Plücker coordinates (pPα

ϵ,ϵ′)ϵ,ϵ′∈Γα
are indexed by pairs of (bound-

ary) edges of Γα. We consider an action of a torus (C×)⨿αΓα ∼= (C×)3n−8 on
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Figure 4.2: γ(i, k) and γ(j, l)
intersect transversally.

Figure 4.3: γ(i, k) and γ(j, l)
share an interior edge in Γ′′.

Figure 4.4: A subdivision of P and the corresponding forest.

∏n−4
α=0 G̃r(Pα) defined by

(4.17) τ · (pPα

ϵ,ϵ′)ϵ,ϵ′ = (τϵτϵ′p
Pα

ϵ,ϵ′)ϵ,ϵ′

for τ = (τϵ)ϵ∈⨿αΓα
∈ (C×)⨿αΓα . We regard (C×)∂Γ

′′

=
∏n

i=1C
×
ϵi as a sub-

group of (C×)⨿αΓα by identifying leaves ϵi = ϵ(i, i+ 1) of Γ′′ with corre-
sponding edges in the forest ⨿αΓα, and define C×

∂P
∼= C× to be the diagonal

subgroup of (C×)∂Γ
′′

(⊂ (C×)⨿αΓα). For an interior edge ϵ = ϵ(i, j) ∈ Int Γ′′,
let ϵ+, ϵ− be two copies of ϵ in ⨿αΓα, and define

(4.18) C×
ϵ+,ϵ− = {(τ, τ−1) ∈ C×

ϵ+ × C×
ϵ− | τ ∈ C×} ∼= C×

to be the anti-diagonal subgroup of C×
ϵ+ × C×

ϵ−(⊂ (C×)⨿αΓα). Then the torus
action (4.17) induces an action of the (n− 3)-dimensional subtorus of
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(C×)⨿αΓα

(4.19) C×
∂P ×

∏

ϵ∈Int Γ′′

C×
ϵ+,ϵ−

∼= C× × (C×)n−4

on
∏

α G̃r(Pα). We define

(4.20) TC

Γ′′ = (C×)⨿αΓα

/
∏

ϵ∈Int Γ′′

C×
ϵ+,ϵ−

∼= (C×)Γ
′′ ∼= (C×)2n−4.

Proposition 4.4. The central fiber X0 of the family (4.11) is given by the
GIT quotient

(4.21) X0
∼=

n−4∏

α=0

G̃r(Pα)

//(
C×
∂P ×

∏

ϵ∈Int Γ′′

C×
ϵ+,ϵ−

)
,

and the inclusion X0 →֒ P(
∧2

Cn) is given by

(4.22) pij =
∏

ϵ,ϵ′⊂γ(i,j)

pPα

ϵ,ϵ′ ,

where the product in the right hand side is taken over a sequence of edges
of ⨿αΓα contained in the path γ(i, j). Furthermore, the induced action of
TC

Γ′′/C
×
∂P
∼= (C×)2n−5 on X0 is the complexification of the Hamiltonian torus

action of (ψ0
ij)ϵ(i,j)∈PrnΓ′′.

See [NU14, Section 5, 6] for more detail. Note that the (C×)∂Γ
′′

-action
on X0 coincides with the complexification of the TU(n)-action. Define a sub-

group TC

Γ′′\Γ0

∼= (C×)2n−8 of TC

Γ′′

∼= (C×)Γ
′′

by

TC

Γ′′\Γ0
= {(τϵ)ϵ∈Γ′′ | τϵ = 1 for ϵ = ϵ(a, b), ϵ(b, c), ϵ(c, d), ϵ(a, d)}(4.23)

∼= (C×)Γ
′′\{ϵ(a,b),ϵ(b,c),ϵ(c,d),ϵ(a,d)},(4.24)

and set

(4.25) TC

Γ0
= TC

Γ′′/TC

Γ′′\Γ0

∼= (C×)4.

We consider an anti-canonical divisor of X0 given by

(4.26) D0 =

n⋃

i=1

{pi,i+1 = 0}.
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For each α = 0, . . . , n− 4, we define

(4.27) G̃r
◦
(Pα) = {[pPα

ϵ,ϵ′ ] ∈ G̃r(Pα) | pPα

ϵ,ϵ′ ̸= 0 for adjacent leaves ϵ, ϵ′}

so that its projection image Gr◦(Pα) in Gr(Pα) is a complement of an anti-

canonical divisor in Gr(Pα). Since G̃r
◦
(Pα) ∼= (C×)3 for α = 1, . . . , n− 4, the

torus (C×)⨿
n−4
α=0Γα acts freely on

∏n−4
α=0 G̃r

◦
(Pα).

Proposition 4.5. The complement X0 \D0 is isomorphic to the geometric
quotient

(4.28) X0 \D0
∼=

n−4∏

α=0

G̃r
◦
(Pα)

/(
C×
∂P ×

∏

ϵ∈Int Γ′′

C×
ϵ+,ϵ−

)

of
∏

α G̃r
◦
(Pα).

Proof. First note that the image in X0 ⊂ P(
∧2

Cn) of the right hand side
of (4.28) is the complement of a subvariety in X0 defined by pij = 0 for
any i < j such that γ(i, j) contains no path ϵ(a, b) ∪ ϵ(c, d), ϵ(a, d) ∪ ϵ(b, c)
in Γ0 connecting opposite sides of P0. Since each path γ(i, i+ 1) connecting
adjacent leaves contains neither ϵ(a, b) ∪ ϵ(c, d) nor ϵ(a, d) ∪ ϵ(b, c), we have
pi,i+1 =

∏
pPα

ϵ,ϵ′ ̸= 0 for i = 1, . . . , n, which means that the complement X0 \
D0 contains the right hand side of (4.28). To show the converse, we renumber
P1, . . . , Pn−4 if necessary in such a away that, for each α = 1, . . . , n− 4, the
α-th triangle Pα shares two sides with the polygon P \ (P1 ∪ · · · ∪ Pα−1) with
n− (α− 1) sides. Suppose that Γ1 contains the i-th and (i+ 1)-st leaves of
Γ′′. Then the paths γ(i− 1, i) and γ(i+ 1, i+ 2) share at least one interior

Figure 4.5: Paths connecting adjacent leaves.

edge (see Figure 4.5), which implies from (4.15) that the defining equation
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FΓ′′

i−1,i,i+1,i+2(p,0) = 0 is a binomial

(4.29) pi−1,ipi+1,i+2 = pi−1,i+1pi,i+2,

and consequently we obtain pi−1,i+1, pi,i+2 ̸= 0. In other words, we have
pjk ̸= 0 for each pair (j, k) such that the path γ(j, k) induces one in Γ′′ \ Γ1

connecting adjacent leaves in the polygon P \ P1 with n− 1 sides. By re-
peating this process inductively, we obtain (4.28). □

The TC

Γ′′-action on the quotient X0 \D0 is free, and the projection∏n−4
α=0 G̃r

◦
(Pα)→ G̃r

◦
(P0) induces the quotient

(4.30) X0 \D0 −→ (X0 \D0)/T
C

Γ′′
∼= Gr◦(P0)/T

C

Γ0

∼= C×,

which extends to the GIT quotient

(4.31) Xss
0 −→ X0//T

C

Γ′′
∼= Gr(P0)//T

C

Γ0

∼= P1.

Note that the functions ψ0
ac, ψ

0
bd descend to bending Hamiltonians φac, φbd

(up to additive constants) on a 1-dimensional polygon space Gr(P0)//T
C

Γ0

∼=
Gr(P0)//rTΓ0

parameterizing spatial quadrilaterals. It follows from Proposi-
tion 4.5 that the GIT quotient of X0 by the action of the subtorus TC

Γ′′\Γ0

induces a torus bundle

(4.32) X0 \D0 −→ (X0 \D0)/T
C

Γ′′\Γ0

∼= Gr◦(P0)

over Gr◦(P0). The inclusion G̃r
◦
(P0) →֒

∏
α G̃r

◦
(Pα) defined by pPα

ϵ,ϵ′ = 1 for
all α ̸= 0 and ϵ, ϵ′ induces a section Gr◦(P0)→ X0 \D0 of the torus bundle
(4.32), and thus we obtain the following.

Corollary 4.6. The complement X0 \D0 of the anti-canonical divisor D0

is isomorphic to Gr◦(P0)× TC

Γ′′\Γ0

∼= Gr◦(2, 4)× (C×)2(n−4).

Remark 4.7. From the argument in [NNU10, Section 5], the central fiber
X0 admits a small resolution π : X̃0 → X0 such that X̃0 is a tower of pro-
jective planes over Gr(P0). The map π is isomorphism on X0 \D0, and the
torus bundle structure (4.32) is given by restricting the tower structure to
the open subset X0 \D0 ⊂ X̃0.
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5. Potential functions

Let (X,ω) be a symplectic manifold, and fix a compatible almost complex
structure J . For a (relatively) spin Lagrangian submanifold L the cohomol-
ogy group H∗(L; Λ0) has a structure of a filtered A∞-algebra [FOOO09]

(5.1) mk : H
∗(L; Λ0)

⊗k −→ H∗(L; Λ0), k = 0, 1, 2, . . .

over the Novikov ring

Λ0 =

{ ∞∑

i=0

aiT
λi

∣∣∣∣∣ ai ∈ C, λi ∈ R≥0, lim
i→∞

λi =∞
}

(5.2)

defined by ‘counting’ J-holomorphic disks (D2, ∂D2)→ (X,L). A solution
to the Maurer-Cartan equation

∞∑

k=0

mk(b, . . . , b) ≡ 0 mod PD([L])(5.3)

is called a weak bounding cochain, where PD([L]) is the Poincaré dual of
the fundamental class [L]. The potential function is a map P :M(L)→ Λ0

from the spaceM(L) of weak bounding cochains defined by

(5.4)

∞∑

k=0

mk(b, . . . , b) = P(b) · PD([L]).

For b ∈ H1(L;
√
−1R) ⊂ H∗(L; Λ0) satisfying the Maurer-Cartan equation,

the potential function is naively given by

P(b) =
∑

β∈π2(X,L),
µL(β)=2

nβ(L)zβ(b),(5.5)

zβ(b) = holb(∂β)T
∫
β
ω,(5.6)

where µL is the Maslov index, holb(∂β) is the holonomy of b regarded as a flat
U(1)-connection on L along the boundary ∂β, and nβ(L) is the “number”
of pseudo-holomorphic disks in the class β bounded by L defined by

(5.7) ev∗[M1(X,L;β)] = n(β)[L].

Cho and Oh [CO06] and Fukaya, Oh, Ohta and Ono [FOOO10] com-
puted the potential functions for Lagrangian torus orbits in toric manifolds.
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Combining this with Theorem 4.2, one can compute the potential function
of Lagrangian torus fibers L(u) = LΓ(u) of the completely integrable system
ΨΓ on Gr(2, n). Let

ℓi(u) = ⟨vi,u⟩ − τi ≥ 0(5.8)

be the defining inequalities of ∆Γ given in (3.35), (3.36), (3.37);

∆Γ = {u ∈ R2n−4 | ℓi(u) ≥ 0, i = 1, . . . ,m}.(5.9)

Recall that a holomorphic disk in the toric variety XΓ of Maslov index
two bounded by a Lagrangian torus orbit intersect transversally a unique
toric divisor at one point. Let βi ∈ π2(Gr(2, n), L(u)) denote the class of a
pseudo-holomorphic disk which is deformed into that in XΓ intersecting a
toric divisor corresponding to the codimension one face {ℓi(u) = 0} of ∆Γ.

Theorem 5.1 ([NU14, Theorem 8.1]). For any u ∈ Int∆Γ, one has an
inclusion H1(L(u); Λ0) ⊂M(L(u)), and the potential function of L(u) is
given by

PΓ(L(u),x) =

m∑

i=1

zβj
(u,x),(5.10)

zβi
(u,x) = e⟨vi,x⟩T ℓi(u)(5.11)

for x = (xij)ϵ(i,j)∈PrnΓ ∈ H1(L(u); Λ0) ∼= Λ2n−4
0 .

By setting yij = T uijexij for ϵ(i, j) ∈ PrnΓ and q = T λ, we have a Lau-
rent polynomial

(5.12) WΓ : (Gm)2n−4 −→ A1

in y = (yij)ϵ(i,j)∈PrnΓ defined by

PΓ(L(u),x) =WΓ(y, q).(5.13)

For 1 ≤ i < j ≤ n, define a new variable y(i, j) corresponding to u(i, j) by

(5.14) y(i, j) =





y
1/2
i,i+1, j = i+ 1 < n+ 1,

q/(
∏n−1

k=1 yk,k+1)
1/2, (i, j) = (1, n),

yij/(
∏j−1

k=i yk,k+1)
1/2, |i− j| ≥ 2.
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Then WΓ is given by

(5.15) WΓ =
∑(

y(i, j)y(j, k)

y(i, k)
+
y(i, j)y(i, k)

y(j, k)
+
y(i, k)y(j, k)

y(i, j)

)
,

where the sum is taken over all triangles in the triangulation.

Example 5.2. Recall that the polytope ∆Γcat
corresponding to the cater-

pillar Γcat is given by (3.39). Then the potential function is given by

(5.16) WΓcat
=
y1,3
y1,2

+
y1,4
y1,3

+ · · ·+ y1,n−1

y1,n−2
+

q

y1,n−1

+
y1,2y1,3∏2
k=1 yk,k+1

+
y1,3y1,4∏3
k=1 yk,k+1

+ · · ·+ y1,n−2y1,n−1∏n−2
k=1 yk,k+1

+
qy1,n−1∏n−1
k=1 yk,k+1

+
y1,2y2,3
y1,3

+
y1,3y3,4
y1,4

+ · · ·+ y1,n−2yn−2,n−1

y1,n−1
+
y1,n−1yn−1,n

q
.

Proposition 5.3. Let Γ and Γ′ be two triangulation related by a Whitehead
move in a quadrilateral with vertices a, b, c, d (1 ≤ a < b < c < d ≤ n). Then
the corresponding potential functions WΓ, WΓ′ are related by the geometric
lift

(5.17) yacybd =
yabybcycdyad

yabycd + yadybc/
∏c−1

i=b yi,i+1

of the piecewise linear transformation (3.41) in the sense of [BZ01].

Proof. Setting y1 = y(a, b), y2 = y(b, c), y3 = y(c, d), y4 = y(a, d) and y =
y(a, c), y′ = y(b, d), the potential functions corresponding to Γ and Γ′ can
be written as

WΓ =
y1y

y2
+
y2y

y1
+
y1y2
y

+
y3y

y4
+
y4y

y3
+
y3y4
y

+ F (y)(5.18)

=
(y1y3 + y2y4)(y1y4 + y2y3)

y1y2y3y4
· y + y1y2 + y3y4

y
+ F (y),(5.19)

WΓ′ =
(y1y3 + y2y4)(y1y2 + y3y4)

y1y2y3y4
· y′ + y1y4 + y2y3

y′
+ F (y),(5.20)

for a Laurent polynomial F (y) independent of y, y′. (3.50) implies that the
coordinate change (5.17) is given by

(5.21) y′ =
1

y
· y1y2y3y4
y1y3 + y2y4

,

which transforms Wγ into WΓ′ . □
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Figure 6.1: A quiver.

6. Cluster algebras

The homogeneous coordinate ring C[Gr(2, n)] is generated by {pij}1≤i<j≤n

with Plücker relations (1.6).2 It is a prototypical example of a cluster alge-
bra defined by a quiver, also known as a skew-symmetric cluster algebra of
geometric type. The notion of cluster algebras is introduced in [FZ02]. The
cluster algebra structure on the homogeneous coordinate ring of Gr(2, n)
is established in [FZ03], which is generalized to Gr(k, n) in [Sco06]. It is
also the cluster algebra associated with a disk with n marked points on
the boundary, which is a special case of a cluster algebra associated with a
bordered surface with marked points [FG06, GSV05, FST08].

A quiver Q = (Q0, Q1, s, t) consists of a set Q0 of vertices, a set Q1 of
arrows, and two maps s, t : Q1 → Q0 sending an arrow to its source and
target respectively.

A disk with n marked points is homeomorphic to the reference polygon
P with n sides. With each triangulation Γ of the reference polygon P , we
associate a quiver QΓ as shown in Figure 6.1. The arrows in QΓ are oriented
in such a way that each cycle contained in a triangle of the triangulation is
oriented clockwise. Boxed vertices on the boundary corresponding to edges of
P are frozen, and circled vertices in the interior corresponding to diagonals
in Γ are mutable. For a mutable vertex v in the quiver QΓ, the mutated
quiver µv(QΓ) is constructed in three steps:

2The Grassmannian Gr(2, n) = Gr(2,Cn) in this section is canonically identified
with its dual Grassmannian Gr(n− 2, (Cn)∗), which appears in the B-model side.
Hence the indices of the Plücker coordinates are labels of vertices of P .
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1) For each path u→ v → w of length two passing through v, add a new
arrow u→ w.

2) Reverse all arrows with source or target v.

3) Annihilate pairs of arrows a, b with s(a) = t(b) and t(a) = s(b), in such
a way that no oriented 2-cycle (i.e., a path of length two with the same
source and the target) remains.

One can easily see that Whitehead moves of triangulations correspond to
mutations of associated quivers.

We name mutable vertices as v1, . . . , vn−3, and frozen vertices as vn−2,
. . . , v2n−3. With each vertex vi, we associate a variable xi, which is called
a cluster variable if i = 1, . . . , n− 3 and a frozen (or coefficient) variable
if i = n− 2, . . . , 2n− 3. The sequence x = (x1, . . . , xn−3) is called a cluster.
The pair (x, QΓ) of a cluster and a quiver is called a labeled seed. Under the
mutation µv of the quiver QΓ at the vertex v, the labeled seed is transformed
as (x, QΓ) 7→ (x′, µv(QΓ)), where x′w = xw for v ̸= w and

x′vxv =
∏

s(a)=v

xt(a) +
∏

t(a)=v

xs(a).(6.1)

The cluster algebra is the Z[xn−2, . . . , x2n−3]-subalgebra of the ambient field
Q(x1, . . . , x2n−3) generated by cluster variables in all the seeds obtained from
the initial seed (x, QΓ) by any sequence of mutations. One can easily see
that the cluster transformation (6.1) for the Whitehead move interchanging
the diagonals dik and djl gives exactly the Plücker relation (1.6). It follows
that the cluster algebra in this case is the homogeneous coordinate ring of
Gr(2, n).

7. Landau–Ginzburg mirrors

The mirror of Gr(2, n) is identified with the Landau–Ginzburg model

(
X̌, W =

n∑

i=1

pi,i+2

pi,i+1
qδi,n−1 : X̌ → A1

)
(7.1)

by Marsh and Rietsch [MR], where δi,n−1 is the Kronecker delta, and X̌ :=
Gr(2, n) \D is the complement of an anti-canonical divisor

D = {p12 = 0} ∪ {p23 = 0} ∪ · · · ∪ {pn−1,n = 0} ∪ {p1,n = 0}.(7.2)
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Here (pij)1≤i<j≤n is the Plücker coordinate on Gr(2, n) and q = T λ is an
element of the quotient field Λ of the Novikov ring Λ0. The arrowW in (7.1)
is a morphism of algebraic varieties over Λ. The Landau–Gizburg model (7.1)
is a special case of [Rie08], where Landau–Ginzburg mirrors of general flag
varieties are introduced.

An open subspace of this Landau–Ginzburg model is given earlier in
[EHX97, BCFKvS98, BCFKvS00]: Consider a quiver Q = (Q0, Q1, s, t) of
the form

(7.3)

q
p1,n
p12

↖ ↙ ↖
pn−1,n

p1,n−1

p1,n−1

p12

↖ ↙ ↖
pn−2,n−1

p1,n−2

p1,n−2

p12

↖ ↙ ↖
· · · · · · 1

↖ ↙ ↖ ↙
p34
p13

p13
p12

↖ ↙
p23
p12

,

where vertices are Laurent monomials in the Plücker coordinate. It is shown
in [MR, Proposition 5.9] that the restriction of the Landau–Ginzburg poten-
tial (7.1) to the torus in Gr(2, n) defined by pi,i+1 ̸= 0 for i = 1, . . . , n− 1
and p1,i ̸= 0 for i = 1, . . . , n− 1 is given by

W =
∑

a∈Q1

t(a)

s(a)
.(7.4)

For each triangulation Γ of the reference polygon, define an open em-
bedding ιΓ : UΓ := (Gm)PrnΓ →֒ X̌ by

(7.5) yij =





q
p1n
pin

, i = 2, 3, . . . , n− 1 and j = n,

pj,j+1

pij
, otherwise.
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Remark 7.1. Applying (7.5) formally to the case (i, j) = (1, n), we obtain
y1n = q, which is consistent with the fact that ψ1n = λ is constant.

Theorem 7.2. 1) For each triangulation Γ of the reference polygon, the
potential function WΓ is the restriction of the Marsh-Rietsch superpo-
tential (7.1);

(7.6) WΓ = ι∗ΓW.

2) Let Γ and Γ′ be two triangulation related by a Whitehead move in a
quadrilateral with vertices a, b, c, d (1 ≤ a < b < c < d ≤ n). Then the
transformation (5.17) is equivalent to the Plücker relation

(7.7) pacpbd = pabpcd + padpbc.

under the coordinate change (7.5).

Proof. In the case of caterpillar Γcat, it is straightforward to see from (5.16)
(or (3.39)) and (7.3) that the Landau–Ginzburg potential (7.4) is identified
with the potential function (5.10) under the coordinate change (7.5). One
can also easily check that the coordinate change (5.17), which can be written
as

(7.8)
1

yacybd
=

1

yabycd
∏c−1

i=b yi,i+1

+
1

yadybc
,

is equivalent to the Plücker relation (7.7). This implies that UΓ and UΓ′

are glued together in X̌ ⊂ Gr(2, n). Since any triangulation is related to the
caterpillar by a sequence of Whitehead moves, Proposition 5.3 prove the
first statement for any Γ. □

Remark 7.3. The union
⋃

Γ UΓ does not cover the whole X̌ in general. In
the case of Gr(2, 4), the complement of the open subset

⋃
Γ UΓ is given by

(7.9) X̌ \
⋃

Γ

UΓ = {[pij ] ∈ X̌ | p13 = p24 = 0} ∼= (Gm)2.

In this case, the superpotential W has two critical points with zero criti-
cal value, which are contained in this complement. We expect that singular
Lagrangian fibers of the Lagrangian torus fibration interpolating ΨΓ for dif-
ferent Γ correspond to points in this complement under homological mirror
symmetry just as in [CPU16, Section 8]. See also [NU16, CKO, CK].
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8. Wall-crossing formula

Let Φ: X → B be a Lagrangian torus fibration on a symplectic manifold
(X,ω) possibly with singular fibers.

Definition 8.1. A Lagrangian fiber L(u) = Φ−1(u) is said to be potentially
obstructed if it bounds a pseudo-holomorphic disk of Maslov index zero. The
set of u ∈ B with potentially obstructed fiber L(u) is called a wall.

We assume that any wall has codimension one, and any Lagrangian fiber
L(u) satisfies the following conditions([Aur07, Assumptions 3.2, 3.8]):

• there are no non-constant holomorphic sphere v : P1→X with c1(TX) ·
[v] ≤ 0;

• holomorphic disks of Maslov index two in (X,L(u)) are regular;

• all simple (non multiply covered) non-constant holomorphic disks in
(X,L(u)) of Maslov index zero are regular, and the associated eval-
uation maps at boundary marked points are transverse to each other
and to the evaluation maps at boundary marked points of holomorphic
disks of Maslov index 2.

Let U0, U1 ⊂ B be two chambers separated by a wall on which each fiber
bounds a unique non-constant pseudo-holomorphic disk of Maslov index
zero. Let α ∈ π2(X,L(u)) be the class of such a disk.

Proposition 8.2 (Auroux [Aur07, Proposition 3.9]). For u0 ∈ U0 and
u1 ∈ U1, the functions zβ given in (5.6) defined for L(u0) and L(u1) are
related by

(8.1) zβ 7−→ zβh(zα)
[∂α]·[∂β]

for a function h(zα) = 1 +O(zα).

This wall-crossing formula also follows from the isomorphism of filtered
A∞-algebras associated with the change of almost complex structures given
in [FOOO09].

Now we recall an example of the wall-crossing formula given by Auroux
in [Aur07, Section 5] and [Aur09, Section 3.1].
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Example 8.3. Consider the C×-action on

(8.2) Y = {(x1, x2, x3) ∈ C3 | x1x2 = 1 + x3} ∼= C2 = Cx1
× Cx2

defined by

(8.3) τ · (x1, x2, x3) = (τx1, τ
−1x2, x3), τ ∈ C×.

Then the projection f : Y → C, (x1, x2, x3) 7→ x3 gives the GIT quotient
with respect to the C×-action. Equip Y with an S1(⊂ C×)-invariant sym-
plectic form, and let µS1 : Y → R be the moment map of the S1-action.
Define a Lagrangian torus fibration on Y by

(8.4) Φ: Y → R≥0 × R, x = (x1, x2, x3) 7→ (|x3| , µS1(x)) ,

and write its fibers as

(8.5) TR,r = Φ−1(R, r) = {x ∈ Y | |x3| = R, µS1(x) = r, }.

This fibration has a unique singular fiber T1,0 over (1, 0), which is a two-
torus with one circle pinched. For r ̸= 0, each fiber T1,r over the line R = 1
intersects a coordinate axis of Y viewed as Cx1

× Cx2
at a circle, and thus

it bounds a holomorphic disk of Maslov index zero, which has the form
D2 × {0} or {0} ×D2 in Cx1

× Cx2
∼= Y . Hence the wall of Φ is given by

R = 1. Let α ∈ π2(Y, T1,r) denote the class of disks of the form D2 × {0}.
Lagrangian fibers over the chambers R > 1 and R < 1 are said to be of Clif-
ford type and of Chekanov type, respectively. A Clifford type fiber Tr,R can
be deformed into a torus of the form S1(r1)× S1(r2) ⊂ Cx1

× Cx2
, which

bounds holomorphic disks of Maslov index two of the forms D2(r1)× {pt}
and {pt} ×D2(r2). Let β1, β2 ∈ π2(Y, Tr,R) be the classes of these holomor-
phic disks. On the other hand, a Chekanov type torus Tr,R bounds a family
of holomorphic disks of Maslov index two, which are sections of f : Y → C

over the disk D2(R) enclosed by the image f(Tr,R) = {x3 ∈ C | |x3| = R} of
Tr,R. Let β3 denote its homotopy class. Then the wall-crossing formula is
given by

(8.6) zβ3
=

{
zβ2

(1 + zα) (r > 0),

zβ1
(1 + z−1

α ) (r < 0).

Since zα = zβ1
/zβ2

, the transformations (8.6) on r > 0 and r < 0 are identi-
cal.



✐

✐

“6-Ueda” — 2020/5/14 — 15:38 — page 590 — #32
✐

✐

✐

✐

✐

✐

590 Y. Nohara and K. Ueda

Let us go back to the case of the Grassmannian Gr(2, n). Suppose we
have two triangulation Γ,Γ′ of the reference polygon related by a Whitehead
move in a quadrilateral with vertices 1 ≤ a < b < c < d ≤ n, and let Γ′′ be
the subdivision given by common diagonals in Γ and Γ′. Note that ΨΓ and
ΨΓ′ are written as

(8.7) ΨΓ = ((ψij)ϵ(i,j)∈PrnΓ′′ , ψac), ΨΓ′ = ((ψij)ϵ(i,j)∈PrnΓ′′ , ψbd).

Since φac = ψac − 1
2

∑c−1
i=a ψi,i+1 and φbd = ψbd − 1

2

∑d−1
i=b ψi,i+1 Poisson com-

mute with all other ψij , ϵ(i, j) ∈ PrnΓ′′, the function

(8.8) ψt = (1− t)(φac)
2 − t(φbd)

2

also Poisson commutates with the functions ψij for any t ∈ [0, 1]:

(8.9) {ψt, ψij} = 0.

Hence we obtain the following.

Proposition 8.4. Let Γ, Γ′ be two triangulations of P as above. Then

(8.10) Ψt =
(
(ψij)ϵ(i,j)∈PrnΓ′′ , ψt

)
, t ∈ [0, 1]

is a one-parameter family of completely integrable systems on Gr(2, n) con-
necting ΨΓ and ΨΓ′.

Theorem 8.5. Let Γ and Γ′ be two triangulations as above. For t ∈ (0, 1),
the wall-crossing formula (8.1) for Ψt is equivalent to the coordinate change
(5.17) (and hence, to the Plücker relation (7.7)).

We prove this theorem in the next two sections.

9. Wall-crossing formula on Gr(2, 4)

In this section we prove Theorem 8.5 in the case of Gr(2, 4).
Let Γ,Γ′ be the two triangulations of a quadrilateral P given by diagonals

d13, d24, respectively. Then the corresponding potential functions

WΓ =
y13
y12

+
y13
y23

+
y12y23
y13

+
qy13

y12y23y34
+
y13y34
q

+
q

y13
,(9.1)

WΓ′ =
y24
y23

+
y24
y23

+
y23y34
y24

+
qy24

y12y23y34
+
y12y24
q

+
q

y24
(9.2)
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are related by the coordinate change (5.17), which is given by

(9.3)
1

y13y24
=

1

qy23

(
1 +

q

y12y34

)

in this case.
Recall that the image of the moment map µTU(4)

: Gr(2, 4) ∼= Oλ → R4

is an octahedron in {r = (r1, . . . , r4) ∈ R4 |∑4
i=1 ri = λ} ∼= R3 defined by

(9.4) 0 ≤ ri ≤
∑

j ̸=i

rj , i = 1, . . . , 4,

shown in Figure 9.1, and critical values of µTU(4)
inside the octahedron

µTU(4)
(Oλ) form three walls H1 ∪H2 ∪H3, where

H1 = {r | r1 + r2 = r3 + r4},(9.5)

H2 = {r | r1 + r3 = r2 + r4},(9.6)

H3 = {r | r1 + r4 = r2 + r3}(9.7)

(see [HK97, Proposition 4.3] or (9.19) below). For each interior point r in

Figure 9.1: The moment polytope of µTU(4)
and the hyperplanes H1 (red),

H2 (green), and H3 (blue).

µTU(4)
(Oλ), the completely integrable system

(9.8) Ψt = (ψ12, ψ23, ψ34, (1− t)(φ13)
2 − t(φ24)

2)

induces the function

(9.9) φt = (1− t)(φ13)
2 − t(φ24)

2 :Mr = µ−1
TU(4)

(r)/TU(4) −→ R
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on the polygon space. Let Bt = Ψt(Gr(2, 4)) and It,r = φt(Mr) denote the
ranges of Ψt and φt, respectively. Since (ψ12, ψ23, ψ34) gives the moment
map of the TU(4)-action on Oλ, we have a natural projection

(9.10) Bt −→ µTU(4)
(Oλ) ⊂ R3, (u1, u2, u3, u4) 7−→ (u1, u2, u3).

Lemma 9.1. For each t ∈ (0, 1) and r ∈ IntµTU(n)
(Oλ), the map φt :Mr →

It,r is an S1-bundle over the interior Int It,r, and the fibers over boundary
points of It,r are single points.

Proof. We first note that the S1-fibration φ13 : Mr → I0,r (resp. φ24) is
not homeomorphic to the toric moment map on P1 exactly when minφ13 =
0 (resp. minφ24 = 0), or equivalently, r1 = r2 and r3 = r4 (resp. r1 = r4
and r2 = r3); in this case, the fiber φ−1

13 (0) consists of “broken lines” ξ =
(ξ1, . . . , ξ4) satisfying ξ1 + ξ2 = ξ3 + ξ4 = 0, and it is diffeomorphic to a line
segment. We consider the map

(9.11) φ = ((φ13)
2, (φ24)

2) :Mr −→ R2,

and let (v1, v2) be the standard coordinate on R2. Then the boundary of the
image φ(Mr) contains a line segment in a coordinate axis if minφ13 = 0 or
minφ24 = 0 (see Figure 9.4 and Figure 9.6).

Claim 9.2. For any r and t ∈ (0, 1), the intersection

(9.12) φ(Mr) ∩ {(v1, v2) ∈ R2 | (1− t)v1 − tv2 = c}

is a line segment for c ∈ Int It,r, and is a single point in ∂φ(Mr) when
c ∈ ∂It,r.

Assuming Claim 9.2, Lemma 9.1 follows from the fact that φ :Mr →
φ(Mr) is a double cover which branches along the boundary ∂φ(Mr). □

Proof of Claim 9.2. Fix v1 > 0 and consider a quadrilateral ξ ∈Mr with
φ13(ξ) =

√
v1. Then the angles θ1 (resp. θ4) between the side ξ1 (resp. −ξ4)

and the diagonal ξ1 + ξ2 connecting the first and the third vertices are given
by

(9.13) cos θ1 =
v1 + r21 − r22

2r1
√
v1

, cos θ4 =
v1 + r24 − r23

2r4
√
v1

(see Figure 9.7). Since φ24 restricted to the level set φ−1
13 (
√
v1) takes its

maximum and minimum when ξ is contained in a plane, the range of
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Figure 9.2: φ(Mr) for generic r Figure 9.3: φ(Mr) for r ∈ H1

Figure 9.4: φ(Mr) in the case
of r ∈ H2 ∩H3

Figure 9.5: φ(Mr) in the case
of r ∈ H1 ∩H3

Figure 9.6: φ(Mr) in the case of r ∈ H1 ∩H2 ∩H3

Figure 9.7: A diagonal ξ1 + ξ2 in a quadrilateral ξ ∈Mr.

(φ24)
2|φ−1

13 (
√
v1)

is

(9.14) r21 + r24 − 2r1r4(cos θ1 cos θ4 + sin θ1 sin θ4)

≤ v2 ≤ r21 + r24 − 2r1r4(cos θ1 cos θ4 − sin θ1 sin θ4).
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Equality in (9.14) holds if and only if

cos θ1 cos θ4 ± sin θ1 sin θ4 =
r21 + r24 − v2

2r1r4
,(9.15)

which, combined with (9.13), gives

± sin θ1 sin θ4 =
r21 + r24 − v2

2r1r4
− v1 + r21 − r22

2r1
√
v1

· v1 + r24 − r23
2r4
√
v1

.(9.16)

By taking the square of the both sides of (9.16) and using

sin2 θ1 sin
2 θ4 =

(
1− cos2 θ1

) (
1− cos2 θ4

)
,(9.17)

we see that

F (v1, v2) := v21v2 + v1v
2
2 − (r21 + r22 + r23 + r24)v1v2(9.18)

+ (r21 − r24)(r22 − r23)v1 + (r21 − r22)(r24 − r23)v2
+ (r21 − r22 + r23 − r24)(r21r23 − r22r24)

gives the defining equation for the boundary of the image φ(Mr) ⊂ R2. The
discriminant of F (v1, v2) is given by

r21r
2
2r

2
3r

2
4(r1 + r2 + r3 + r4)

2(−r1 + r2 + r3 + r4)
2(9.19)

× (r1 − r2 + r3 + r4)
2(r1 + r2 − r3 + r4)

2

× (r1 + r2 + r3 − r4)2(r1 + r2 − r3 − r4)2

× (r1 − r2 + r3 − r4)2(r1 − r2 − r3 + r4)
2,

which means that the discriminant locus is ∂(µTU(4)
(Oλ)) ∪H1 ∪H2 ∪H3.

When r does not lie on the discriminant locus, then ∂(φ(Mr)) is the
positive real part of a smooth plane cubic curve. A smooth real plane cubic
curve has either

• one non-compact connected component, or

• one non-compact connected component and one compact connected
component.

Only the latter can happen in our case, and the boundary ∂(φ(Mr)) of
φ(Mr) is the compact connected component of the cubic curve. When r

lies on exactly one wall, say H1, then the resulting cubic curve has one
node, and φ(Mr) is the closure of the compact connected component of the
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complement of the nodal cubic curve (see Figure 9.3). In either case, φ(Mr)
is strictly convex.

Next we consider the case where r lies on exactly two walls. If r lies in
H2 and H3, one has r1 = r2 ̸= r3 = r4, so that

F (v1, v2) = v1
(
(r21 − r23)2 + v1v2 − 2(r21 + r23)v2 + v22

)
(9.20)

and φ(Mr) is bounded by a hyperbola and the v2-axis. Similarly, if r lies
in H1 ∩H2, the image φ(Mr) is bounded by a hyperbola and the v1-axis.
When r lies in H1 ∩H3, one has r1 = r3 ̸= r2 = r4, and thus

(9.21) F (v1, v2) = (v1 + v2 − 2(r21 + r22))(v1v2 − (r21 − r22)2),

which means that φ(Mr) is bounded by a hyperbola and a line as in Fig-
ure 9.5.

When r lies on all the three walls H1, H2 and H3, then one has r1 =
r2 = r3 = r4, so that

F (v1, v2) = v1v2(v1 + v2 − 4r21),(9.22)

and φ(Mr) is a triangle.
In all these cases, the line {(v1, v2) | (1−t)v1−tv2=c} intersects φ(Mr)

in a line segment or a single boundary point. □

For a fixed interior point r in µTU(4)
(Oλ), we identify the symplectic re-

ductionMr = µ−1
TU(4)

(2r)/TU(4) with the GIT quotient Gr(2, 4)//TC

U(4). Re-

call that Gr(2, 4)//TC

U(4) is embedded into P2 by

(9.23) Gr(2, 4)//TC

U(4) →֒ P2, [pij ] 7→ [p12p34 : p13p24 : p14p23],

and its image is given by

(9.24) {[ζ1 : ζ2 : ζ3] ∈ P2 | ζ2 = ζ1 + ζ3} ∼= P1.

Let D′ be a divisor in Gr(2, 4) defined by

(9.25) D′ = {p12 = 0} ∪ {p23 = 0} ∪ {p34 = 0},

which is contained in an anti-canonical divisor

(9.26) D = {p12 = 0} ∪ {p23 = 0} ∪ {p34 = 0} ∪ {p14 = 0}.
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Recall that the defining equation for Y ⊂ C3 given in (8.2) is

(9.27) x1x2 = 1 + x3.

Then Gr(2, 4) \D′ is identified with Y × (C×)2 by

(9.28) [p12 : p13 : p14 : p23 : p24 : p34] = [1 : x1 : s
−1
1 s2x3 : s1 : s2x2 : s2],

or equivalently,

(9.29) (x1, x2, x3, s1, s2) =

(
p13
p12

,
p24
p34

,
p14p23
p12p34

,
p23
p12

,
p34
p12

)
.

We equip Y × (C×)2 with the symplectic structure induced from that on
Gr(2, 4). The TU(4)-action

(9.30) τ · [pij ]1≤i<j≤4 = [τiτjpij ], τ = diag(τ1, . . . , τ4) ∈ TU(4)

on Gr(2, 4) induces a TU(4)-action on Y × (C×)2 given by

(9.31) τ · (x1, x2, x3, s1, s2) =
(
τ3
τ2
x1,

τ2
τ3
x2, x3,

τ3
τ1
s1,

τ3τ4
τ1τ2

s2

)
.

Then the projection Y × (C×)2 → Cx3
to the x3-plane is identified with the

restriction to Gr(2, 4) \D′ of the GIT quotient of Gr(2, 4) by the TU(4)-
action:

(9.32)

Y × (C×)2 →֒ Gr(2, 4)ss

↓ ↓
C →֒ Gr(2, 4)//TC

U(4)

,

where the inclusion C →֒ Gr(2, 4)//TC

U(4) is given by x3 = ζ3/ζ1.

Lemma 9.3. For each r, the bending Hamiltonians φ13 : Mr → R and
φ24 :Mr → R take their maximums at the points ζ1 = 0 and ζ3 = 0 respec-
tively under the inclusion (9.23).

Proof. Assume r1 + r2 ≤ r3 + r4 so that maxφ13 = r1 + r2. Take a point
[zi, wi]i ∈ Gr(2, 4) = Mat4×2(C)//λU(2) such that φ13 attains its maximum
at ξ = (ν(zi, wi))i=1,...,4 ∈Mr, where ν is the Hopf fibration given in (3.22).
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Since the side vectors ξ1 = ν(z1, w1) and ξ2 = ν(z2, w2) of ξ have the same
direction, (z1, w1) and (z2, w2) are proportional, which implies that

(9.33) p12 = det

(
z1 w1

z2 w2

)
= 0.

Hence we obtain ζ1 = p12p34 = 0. In the case where r1 + r2 ≥ r3 + r4, we
have p34 = 0 at [zi, wi]i ∈ Gr(2, 4) such that maxφ13 is attained at ξ =
(ν(zi, wi))i ∈Mr, which leads to the same conclusion. The proof for φ24

is similar. □

Remark 9.4. The points ζ1 = 0 and ζ3 = 0 corresponds to x3 =∞ and
x3 = 0 respectively. The point ζ2 = p13p24 = 0 corresponding to x3 = −1 is
given by quadrangles satisfying ξ1 ∥ ξ3 or ξ2 ∥ ξ4, i.e., trapezoids. If r is
general, then there is only one trapezoid, which must be planar and thus
lies on the boundary of Figure 9.2.

Proposition 9.5. For t ∈ (0, 1), the discriminant locus of the completely
integrable system Ψt inside IntBt is

{
(u1, u2, u3, u4)

∣∣∣∣
r = (u1

2 ,
u2

2 ,
u3

2 , λ− 1
2(u1 + u2 + u3)) ∈ H2

u4 = (1− t)(r1 − r2)2 − t(r1 − r4)2
}

(9.34)

= {(2r1, 2r2, 2r3, (1− t)(r1 − r2)2 − t(r1 − r4)2) | r = (ri) ∈ H2}.(9.35)

Proof. Let

(9.36) Lt(u) = {x | (ψ12(x), ψ23(x), ψ34(x), ψt(x)) = (u1, u2, u3, u4)}

be a Lagrangian fiber of Ψt over an interior point u = (u1, u2, u3, u4) ∈
IntBt. Since the moment map of the TU(4)-action on Oλ is given by

(9.37) µTU(4)
= (ψ12, ψ23, ψ34, 2λ− (ψ12 + ψ23 + ψ34)),

the fiber Lt(u) lies in the level set µ−1
TU(4)

(2r) for

(9.38) r = (u1/2, u2/2, u3/2, λ− (u1 + u2 + u3)/2),

and it is mapped to a level set of φt under the symplectic reduction

(9.39) π : µ−1
TU(4)

(2r)→Mr.
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Recall that the stabilizer at x ∈ Gr(2, 4) of the action of the maximal torus
TSU(4) = TU(4) ∩ SU(4) of SU(4) is nontrivial exactly when

(9.40) x ∈ {p12 = p34 = 0} ∪ {p13 = p24 = 0} ∪ {p14 = p23 = 0}.

In this case, the corresponding point ξ = π(x) ∈Mr, regarded as a “quadri-
lateral” in R3, is contained in a straight line. If x lies in {p12 = p34 = 0} (resp.
{p14 = p23 = 0}), one has r ∈ H1 (resp. r ∈ H3), and

φ ◦ π(x) = ((r1 + r2)
2, (r1 − r4)2) = (max

Mr

(φ13)
2,min

Mr

(φ24)
2)(9.41)

(resp. φ ◦ π(x) = ((r1 − r2)2, (r1 + r4)
2) = (min

Mr

(φ13)
2,max

Mr

(φ24)
2) )(9.42)

is the “lower-right” (resp. “upper-left”) node of ∂(φ(Mr)). Hence the fiber
Lt(u) over u = (u1, u2, u3, u4) = (2r1, 2r2, 2r3, c) for c ∈ Int It,r is singular if
and only if the line {(v1, v2) | (1− t)v1 − tv2 = c} passes through the “lower-
left” node

(9.43) ((r1 − r2)2, (r1 − r4)2) = (min
Mr

(φ13)
2,min

Mr

(φ24)
2)

of ∂(φ(Mr)) as in Figure 9.8, which means that r ∈ H2 and

(9.44) c = (1− t)(r1 − r2)2 − t(r1 − r4)2.

□

Figure 9.8: The image in ∂(φ(Mr)) of a singular fiber Lt(u).

Fix t ∈ (0, 1) and let u = (u1, u2, u3, u4) be a point in IntBt which is not
on the discriminant of Ψt, so that Lt(u) := Ψ−1

t (u) is a Lagrangian torus
fiber. First we assume

(9.45) φ13(u)/φ24(u)≫ 1,

so that π(Lt(u)) is a small simple closed curve enclosing the point ζmax ∈
Mr
∼= P1 at which maxφt is attained. One can deform π(Lt(u)) into a
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level set of φ13 without crossing x3 = 0,−1 by a Hamiltonian flow which
sends ζmax to x3 =∞. We may assume that the Hamiltonian is supported
in a small neighborhood of the domain bounded by π(Lt(u)). Note that
if r lies in the wall H1, then one has ζmax = [0 : 1 : 1], which corresponds
to x3 =∞. Hence we may assume in this case that the support of the
Hamiltonian does not contain the point x3 =∞. We pull-back the Hamilto-
nian, and multiply a cut-off function supported near the level set µ−1

TU(4)
(r).

Since it Poisson-commutes with the Hamiltonians of the TU(4)-action near

µ−1
TU(4)

(r), the induced Hamiltonian flow on Gr(2, 4) sends Lt(u) to a La-

grangian torus fiber LΓ(u
′) of the integrable system ΨΓ over some point

u′ = (u12, u23, u34, u13) ∈ Int∆Γ. We simultaneously deform the locus

⋃

r

π−1({φt = max
Mr

φt})

to

(9.46) {φ13 = maxφ13} = {p12p34 = 0} ⊂ D,

so the Lagrangian torus fiber does not cross this locus during the Hamil-
tonian isotopy from Lt(u) to LΓ(u

′). Note that Ψt does not have a global
action–angle coordinate because of the existence of the discriminant in IntBt,
and u′ is a local action–angle coordinate in the region (9.45).

One can further deform π(LΓ(u
′)) to a circle {x3 ∈ C | |x3| = R} by

a Hamiltonian flow without crossing x3 = 0,−1,∞. The pull-back of the
Hamiltonian gives a Hamiltonian flow Gr(2, 4) which sends LΓ(u

′) to a La-
grangian torus of the form Tr,R × T ′ for a Clifford type Lagrangian torus
Tr,R ⊂ Y defined in (8.5) and a two-torus T ′ ⊂ (C×)2.

Note that LΓ(u
′) (and hence Tr,R × T ′) can be deformed into a toric

fiber in the toric variety XΓ. The anti-canonical divisor D can be deformed
into the toric divisor in XΓ, and thus the Maslov index of a holomorphic
disk in (Gr(2, 4), LΓ(u

′)) (and hence that in (Gr(2, 4), Tr,R × T ′)) is twice
the intersection number with D (if the Lagrangian torus does not intersect
D). Then, by considering the projection Y × (C×)2 → C, no Lagrangian
torus bounds holomorphic disks of non-positive Maslov index through the
Lagrangian isotopy from Lt(u) to Tr,R × T ′, where we consider a compatible
almost complex structure which induces the standard complex structure on
C under the symplectic reduction. We also note that each holomorphic disk
in Gr(2, 4) \D′ of Maslov index two bounded by Lt(u) intersects the divisor
{p14 = 0} ⊂ D at one point, and hence it descends to a disk in Y of the
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same Maslov index. For β ∈ π2(Y, Tr,R), let β̃ ∈ π2(Gr(2, 4), Lt(u)) denote
its lift induced from an inclusion Y ∼= Y × {pt} ⊂ Y × (C×)2.

Lemma 9.6. The boundaries ∂β̃1, ∂β̃2 ∈ π1(Lt(u)) of the lifts of β1, β2 ∈
π2(Y, Tr,R) defined in Example 8.3 are represented by Hamiltonian S1-orbits
of ψ13 − ψ23 and ψ13 − ψ12 − ψ23 − ψ34, respectively. The symplectic areas
of β̃1, β̃2 are given by

ω(β̃1) = u12 − (u12 + u23 − u13) = u13 − u23,(9.47)

ω(β̃2) = u13 − (u12 + u23 + u34) + λ.(9.48)

Proof. Theorem 4.2 allows us to consider holomorphic disks in the central
fiber XΓ of the toric degeneration

(9.49)
XΓ = {(p, t) ∈ P(

∧2
C4)× C | p13p24 = tp12p34 + p14p23}

↓
C

associated with Γ, instead of those in Gr(2, 4). We recall a construction of the
family Ψt

Γ = (ψt
ij)ϵ(i,j)∈PrnΓ of completely integrable systems connecting ΨΓ

and the toric moment map. Extend the actions of TU(4) and G(1, 3) ⊂ U(4)

on Gr(2, 4) to those on P(
∧2

C4) in an obvious way, and let

µ̃TU(4)
(p) = (ψ̃12(p), ψ̃23(p), ψ̃34(p), ψ̃14(p))(9.50)

=
λ

2
∑ |pij |2


∑

j ̸=1

|p1j |2,
∑

j ̸=2

|p2j |2,
∑

j ̸=3

|p3j |2,
∑

j ̸=4

|p4j |2

 ,(9.51)

µ̃G(1,3)(p) =
λ

2
∑ |pij |2

( ∑
j ̸=1 |p1j |2 p23p13 + p24p14

p13p23 + p14p24
∑

j ̸=2 |p2j |2
)

(9.52)

denote the moment maps of these actions. Then we obtain an extension
ψ̃13 : P(

∧2
C4)→ R of ψ13, which associates to p the maximum eigenvalues

of µ̃G(1,3)(p). The family of integrable systems Ψt
Γ is given by the restrictions

ψt
ij = ψ̃ij |Xt

, ϵ(i, j) ∈ PrnΓ to each fiber Xt = f−1
Γ (t). Note that Poisson

commutativity of Ψt
Γ follows from the fact that the actions of TU(4) and

G(1, 3) ⊂ U(4) on P(
∧2

C2) preserve each fiber Xt.
Using the defining equation

(9.53) p13p24 = p14p23
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of the central fiber XΓ, we have

ψ0
13 =

λ

2
∑ |pij |2

(|p12|2 + |p13|2 + |p14|2 + |p23|2 + |p24|2)(9.54)

=
λ

2

(
1− |p34|2∑ |pij |2

)
,(9.55)

which implies that Hamiltonian S1-action of ψ0
13 is given by

(9.56) e
√
−1θ · p = [p12 : p13 : p14 : p23 : p24 : e

−
√
−1θp34].

We consider a deformation family

(9.57) YΓ = {(x1, x2, x3, t) ∈ C3 × C | x1x2 = t+ x3} → Ct

of Y induced from the toric degeneration (9.49), whose central fiber is given
by

(9.58) YΓ = {(x1, x2, x3) ∈ C3 | x1x2 = x3}.

The complement XΓ \D′
Γ of the divisor

(9.59) D′
Γ = {p12 = 0} ∪ {p23 = 0} ∪ {p34 = 0}

on XΓ is identified with YΓ × (C×)2, on which the Hamiltonian S1-action of
ψ0
13 is given by

(9.60) e
√
−1θ(x1, x2, x3, s1, s2) = (x1, e

√
−1θx2, e

√
−1θx3, s1, e

−
√
−1θs2).

Since the lifts β̃1, β̃2, regarded as relative homotopy classes in YΓ × (C×)2,
are represented by holomorphic disks of the form (x2, s1, s2) = const. and
(x1, s1, s2) = const., respectively, it follows from (9.31) and (9.60) that ∂β̃1,
∂β̃2 are represented by the following Hamiltonian S1-orbits

(e
√
−1θx1, x2, e

√
−1θx3, s1, s2)←→ ψ0

13 − ψ0
23,(9.61)

(x1, e
√
−1θx2, e

√
−1θx3, s1, s2)←→ ψ0

13 + ψ0
14

= ψ0
13 − ψ0

12 − ψ0
23 − ψ0

34 + const.,(9.62)

respectively. Here we recall the formula [CO06, Theorem 8.1] for symplectic
area of holomorphic disks Maslov index 2 in a toric manifold. Suppose that a
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holomorphic disk w : (D2, ∂D2)→ (XΓ, L0(u)) of Maslov index 2 intersects
a toric divisor Dv corresponding to the facet

(9.63) {u ∈ ∆Γ | ℓ(u) = ⟨v,u⟩ − τ = 0}

of the moment polytope. Then

(9.64) [w(∂D2)] = v ∈ H1(L0(u);Z) ∼= Z2,

and the symplectic ares of w is given by

(9.65)

∫

D2

w∗ω = ℓ(u).

Comparing (9.61) and (9.62) with the defining inequalities

(9.66)

λ u12 + u23 + u34 − λ 0
≥ ≥ ≥ ≥

u13 u12 + u23 − u13
≥ ≥

u12

of the moment polytope ∆Γ, it follows that β̃1 and β̃2 intersect toric divisors
corresponding to the facets of ∆Γ defined by

ℓ1(u) = u12 − (u12 + u23 − u13) = u13 − u23,(9.67)

ℓ2(u) = u13 − (u12 + u23 + u34 − λ),(9.68)

respectively. By topological reason, the results ω(β̃i) = ℓi(u) proved in
(XΓ, L0(u)) is true also in (Xt, Lt(u)) for t > 0. □

Note that the defining functions (9.67) and (9.68) for ∆Γ correspond to
the following triangle inequalities

u(2, 3)− u(1, 2) ≤ u(1, 3),(9.69)

u(3, 4)− u(1, 4) ≤ u(1, 3)(9.70)

in the coordinates defined in (3.33), respectively.
Next we assume that u ∈ IntBt satisfies φ13(u)/φ24(u)≪ 1. Then the

image π(Lt(u)) ⊂Mr can be deformed into a level set of φ24, which is a
simple closed curve enclosing the point ζ3 = 0, and thus Lt(u) is deformed
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into a fiber ΨΓ′(u′′) of the other completely integrable system ΨΓ for some
u′′ = (u12, u23, u34, u24). Since the point ζ3 = 0 corresponds to the origin
in the x3-plane, the fiber LΓ′(u′′) can be deformed into Tr,R × T ′ for a
Chekanov type Lagrangian torus Tr,R ⊂ Y and a two-torus T ′ in (C×)2.

Lemma 9.7. The boundary ∂β̃3 ∈ π1(Lt(u)) of the lift of the class β3 ∈
π2(Y, Tr,R) defined in Example 8.3 is represented by a Hamiltonian S1-orbit
of ψ24, and the symplectic area of β̃3 is given by

(9.71) ω(β̃3) = λ− u24.

Proof. We consider the central fiber XΓ′ of the toric degeneration

(9.72) XΓ′ = {(p, t) ∈ P(
∧2

C4)× C | p13p24 = p12p34 + tp14p23}

associated with Γ′, and let Ψ0
Γ′ = (φ0

ij)ϵ(i,j)∈PrnΓ′ denote the toric moment
map on XΓ′ throughout this proof. Since XΓ′ is defined by

(9.73) p13p24 = p12p34,

one has

ψ0
24 =

λ

2
∑ |pij |2

(|p12|2 + |p13|2 + |p23|2 + |p24|2 + |p34|2)(9.74)

=
λ

2

(
1− |p14|2∑ |pij |2

)
,(9.75)

which implies that its Hamiltonian S1-action is

(9.76) e
√
−1θ · p = [p12 : p13 : e

−
√
−1θp14 : p23 : p24 : p34].

Consider the family

(9.77) YΓ′ = {(x1, x2, x3, t) ∈ C3 × C | x1x2 = 1 + tx3}

of affine varieties induced from (9.72), whose central fiber is given by

(9.78) YΓ′ = {(x1, x2, x3) ∈ C3 | x1x2 = 1}.

For a divisor D′
Γ′ on XΓ′ defined by the same equation as (9.59), the com-

plement XΓ′ \D′
Γ′ is identified with YΓ′ × (C×)2, on which the Hamiltonian
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S1-action of ψ0
24 is given by

(9.79) e
√
−1θ(x1, x2, x3, s1, s2) = (x1, x2, e

−
√
−1θx3, s1, s2).

From this and (9.31), the boundary ∂β̃3, regarded as a class in the central
fiber, is represented by a S1-orbit of ψ24. Since the moment polytope ∆Γ′ is
defined by

(9.80)

λ u12 + u23 + u34 − λ 0
≥ ≥ ≥ ≥

u24 u23 + u34 − u24
≥ ≥

u23

,

the holomorphic disk in β̃3 intersects the toric divisor corresponding to the
facet of ∆Γ′ defined by

(9.81) ℓ3(u) = λ− u24,

which corresponds to the triangle inequality

(9.82) u(2, 4) ≤ u(1, 2) + u(1, 4).

Lemma 9.7 follows the area formula (9.65) and invariance of symplectic areas
under the deformation. □

Finally we take a point u ∈ Bt on the wall, and consider the lift α̃ of the
class α ∈ π2(Y, Tr,R) of Maslov index zero. Since α = β1 − β2, we have the
following:

Lemma 9.8. The boundary ∂α̃ ∈ π1(Lt(u)) of the lift of α is represented
by a Hamiltonian S1-orbit of ψ12 + ψ34, and the symplectic area of α̃ is given
by

(9.83) ω(α̃) = u12 + u34 − λ.

One can see this also from the fact that the class α̃ is represented by
a disk of the form (x2, s1, s2) = const., and thus (9.31) implies that the
boundary of the disk is a Hamiltonian S1-orbit of ψ12 + ψ34.
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From Lemmas 9.6, 9.7, 9.8, the functions zβ(b) = Tω(β)holb(∂β) for β =
β̃1, β̃2, β̃3, α̃ are given by

zβ̃1
=
y13
y23

,(9.84)

zβ̃2
=

qy13
y12y23y34

,(9.85)

zβ̃3
=

q

y24
,(9.86)

zα̃ =
y12y34
q

,(9.87)

where q = T λ for the Novikov parameter T , and therefore the coordinate
change (9.3) gives

zβ̃3
= zβ̃1

+ zβ̃2
= zβ̃2

(1 + zα̃),(9.88)

which coincides with the wall crossing formula (8.6).

Remark 9.9. The Lagrangian torus fibers LΓ(u0) and LΓ′(u′
0) above the

centers

u0 = (u12, u23, u34, u13) =

(
λ

2
,
λ

2
,
λ

2
,
3λ

4

)
∈ ∆Γ,(9.89)

u′
0 = (u12, u23, u34, u24) =

(
λ

2
,
λ

2
,
λ

2
,
3λ

4

)
∈ ∆Γ′(9.90)

are monotone by [CK, Theorem B]. The fiber LΓ(u0) (resp. LΓ′(u′
0)) is con-

tained in the complement Gr(2, 4) \D of the anti-canonical divisor D given
by (9.26), and the image under the projection π : Gr(2, 4) \D → Cx3

is a
simple closed curve enclosing x3 = 0,−1 (resp. x3 = 0). Note that LΓ(u0)
and LΓ′(u′

0) lie on the level set µ−1
TU(4)

(λ/2, . . . , λ/2), and the intersection

π(LΓ(u0)) ∩ π(LΓ′(u′
0)), viewed as a subset in the polygon space, consists

of two points corresponding to spatial quadrilaterals such that the configura-
tion of vertices define a regular tetrahedron. The fiber L = LΓ(λ/2, . . . , λ/2)
of ΨΓ on the boundary point

(9.91) (u12, u23, u34, u13) = (λ/2, λ/2, λ/2, λ/2) ∈ ∂∆Γ

is a Lagrangian U(2) ∼= S1 × S3 (see [NU16, Proposition 2.7]). It is easy
to see that φ13 = 0 on L and the image φ(L) is a line segment connecting
x3 = 0 and x3 = −1 (see Figure 9.9). Therefore the Lagrangian torus LΓ′(u′

0)
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together with the inverse image in L of the line segment connecting x3 =
−1 and the intersection point φ(LΓ′(u′

0)) ∩ φ(L) give a higher dimensional
mutation configuration discussed in [PT17, Section 5]. Similarly, the fiber
L′ of ΨΓ′ on the boundary point

(9.92) (u12, u23, u34, u24) = (λ/2, λ/2, λ/2, λ/2) ∈ ∂∆Γ′

is a Lagrangian U(2), whose image in the x3-plane is φ(L′) = (−∞,−1].
Thus the pair of LΓ(u0) and the inverse image of the line segment connect-
ing x3 = −1 and φ(LΓ(u0)) ∩ φ(L′) gives a mutation configuration. The

Figure 9.9: Images of Lagrangian fibers in the x3-plane.

Lagrangian tori LΓ(u0) and LΓ′(u′
0) are related by (the multiplication with

a 2-torus of) a Lagrangian surgery studied in [Yau17], and the wall-crossing
formula between them is obtained from [PT17, Theorem 5.7].

10. Wall-crossing formula on general Gr(2, n)

In this section we complete the proof of Theorem 8.5.
We consider the family fΓ′′ : XΓ′′ → Cn−4 associated with the subdivision

Γ′′ given by common diagonals in Γ and Γ′, and let

(10.1) Ψ0
Γ = ((ψ0

ij)ϵ(i,j)∈PrnΓ′′ , ψ0
ac), Ψ0

Γ′ = ((ψ0
ij)ϵ(i,j)∈PrnΓ′′ , ψ0

bd)

be the completely integrable systems on the central fiber X0 = f−1
Γ′′ (0) ob-

tained by deforming ΨΓ and ΨΓ′ , respectively. Then Ψt is deformed into the
completely integrable system

(10.2) Ψ0
t = ((ψ0

ij)ϵ(i,j)∈PrnΓ′′ , (1− t)(φ0
ac)

2 − t(φ0
bd)

2)

on X0, where we set φ0
ij = ψ0

ij − 1
2

∑j−1
k=i ψ

0
k,k+1, and thus Corollary 4.3 im-

plies that we may work on X0. For an open dense subset Y ◦ of Y defined
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by

(10.3) Y ◦ = {(x1, x2, x3) ∈ Y | x3 ̸= 0} ∼= C2 \ {x1x2 = 1},

the isomorphisms given in Corollary 4.6 and (9.28) yields

(10.4) X0 \D0
∼= Y ◦ × (C×)2 × TC

Γ′′\Γ0

∼= Y ◦ × (C×)2n−6

such that the restriction to X0 \D0 of the GIT quotient Xss
0 → X0//T

C

Γ′′

∼=
P1 is identified with the projection

(10.5) f : Y ◦ × (C×)2n−6 → Y ◦ → Cx3

to the x3-plane. Since TC

Γ′′ is the complexification of a torus TΓ′′ generated
by Hamiltonian flows of (ψ0

ij)ϵ(i,j)∈Γ′′ , each Lagrangian torus fiber L0
t (u) of

Ψ0
t is mapped by f to a level set of φt in a complex 1-dimensional polygon

space X0//T
C

Γ′′

∼= Gr(2, 4)//TC

U(4), which implies that L0
t (u) can be deformed

into a Lagrangian torus of the form Tr,R × T ′ for some (r,R) ∈ R× R>0 and
a (2n− 6)-torus T ′ in (C×)2n−6. We first assume that Tr,R is of Clifford type.
From the argument in the previous section, the lifts β̃1, β̃2 ∈ π2(X0, L

0
t (u))

of classes β1, β2 in Y have symplectic areas

ℓ1(u) = uac + uab − ubc −
b−1∑

i=a

ui,i+1,(10.6)

ℓ2(u) = uac + uad − ucd −
c−1∑

i=a

ui,i+1,(10.7)

which correspond to the triangle inequalities

u(b, c)− u(a, b) ≤ u(a, c),(10.8)

u(c, d)− u(a, d) ≤ u(a, c),(10.9)

respectively. On the other hand, in the case where Tr,R is of Chekanov type,
the symplectic area of β̃3 is by

(10.10) ℓ3(u) = −ubd + uad + ucd −
b−1∑

i=a

ui,i+1,

which corresponds to

(10.11) u(b, d) ≤ u(c, d) + u(a, d).
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Hence the functions zβ̃i
are given by

zβ̃1
=

yabyac

ybc
∏b−1

i=a yi,i+1

,(10.12)

zβ̃2
=

yadyac

ycd
∏c−1

i=a yi,i+1

,(10.13)

zβ̃3
=

yabyad

ybd
∏b−1

i=a yi,i+1

.(10.14)

Since zα̃ corresponding to α = β1 − β2 is given by

(10.15) zα̃ =
zβ̃1

zβ̃2

=
yabycd

∏c−1
i=b yi,i+1

yadybc
,

the coordinate change (5.17) is equivalent to the wall-crossing formula (9.88),
which complete the proof.
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[BCFKvS00] Victor V. Batyrev, Ionuţ Ciocan-Fontanine, Bumsig Kim, and
Duco van Straten, Mirror symmetry and toric degenerations
of partial flag manifolds, Acta Math. 184 (2000), no. 1, 1–39.



✐

✐

“6-Ueda” — 2020/5/14 — 15:38 — page 609 — #51
✐

✐

✐

✐

✐

✐

Grassmannians of planes and cluster transformations 609

[BZ01] Arkady Berenstein and Andrei Zelevinsky, Tensor product
multiplicities, canonical bases and totally positive varieties, In-
vent. Math. 143 (2001), no. 1, 77–128.

[CK] Yunhyung Cho and Yoosik Kim,Monotone Lagrangians in flag
varieties, arXiv:1801.07554.

[CKO] Yunhyung Cho, Yoosik Kim, and Yong-Geun Oh, Lagrangian
fibers of Gelfand-Cetlin systems, arXiv:1704.07213.

[CO06] Cheol-Hyun Cho and Yong-Geun Oh, Floer cohomology and
disc instantons of Lagrangian torus fibers in Fano toric man-
ifolds, Asian J. Math. 10 (2006), no. 4, 773–814.

[CPU16] Kwokwai Chan, Daniel Pomerleano, and Kazushi Ueda, La-
grangian torus fibrations and homological mirror symmetry for
the conifold, Comm. Math. Phys. 341 (2016), no. 1, 135–178.

[EHX97] Tohru Eguchi, Kentaro Hori, and Chuan-Sheng Xiong, Gravi-
tational quantum cohomology, Internat. J. Modern Phys. A 12
(1997), no. 9, 1743–1782.

[FG06] Vladimir Fock and Alexander Goncharov, Moduli spaces of lo-
cal systems and higher Teichmüller theory, Publ. Math. Inst.
Hautes Études Sci. (2006), no. 103, 1–211.

[FOOO09] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono,
Lagrangian intersection Floer theory: anomaly and obstruc-
tion, AMS/IP Studies in Advanced Mathematics, Vol. 46,
American Mathematical Society, Providence, RI, (2009).

[FOOO10] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono,
Lagrangian Floer theory on compact toric manifolds. I, Duke
Math. J. 151 (2010), no. 1, 23–174.

[FST08] Sergey Fomin, Michael Shapiro, and Dylan Thurston, Cluster
algebras and triangulated surfaces. I. Cluster complexes, Acta
Math. 201 (2008), no. 1, 83–146.

[FZ02] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I.
Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529
(electronic).

[FZ03] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. II. Fi-
nite type classification, Invent. Math. 154 (2003), no. 1, 63–
121.



✐

✐

“6-Ueda” — 2020/5/14 — 15:38 — page 610 — #52
✐

✐

✐

✐

✐

✐

610 Y. Nohara and K. Ueda

[GM82] I. M. Gel′fand and R. D. MacPherson, Geometry in Grassman-
nians and a generalization of the dilogarithm, Adv. in Math.
44 (1982), no. 3, 279–312.

[GS83] V. Guillemin and S. Sternberg, The Gel′fand-Cetlin system
and quantization of the complex flag manifolds, J. Funct. Anal.
52 (1983), no. 1, 106–128.

[GSV05] Michael Gekhtman, Michael Shapiro, and Alek Vainshtein,
Cluster algebras and Weil-Petersson forms, Duke Math. J. 127
(2005), no. 2, 291–311.

[HK97] Jean-Claude Hausmann and Allen Knutson, Polygon spaces
and Grassmannians, Enseign. Math. (2) 43 (1997), no. 1-2,
173–198.

[HK15] Megumi Harada and Kiumars Kaveh, Integrable systems, toric
degenerations and Okounkov bodies, Invent. Math. 202 (2015),
no. 3, 927–985.

[HMM11] Benjamin Howard, Christopher Manon, and John Millson, The
toric geometry of triangulated polygons in Euclidean space,
Canad. J. Math. 63 (2011), no. 4, 878–937.

[Kly94] Alexander A. Klyachko, Spatial polygons and stable configu-
rations of points in the projective line, Algebraic geometry
and its applications (Yaroslavl′, 1992), Aspects Math., E25,
Vieweg, Braunschweig, (1994), pp. 67–84.

[KM96] Michael Kapovich and John J. Millson, The symplectic geom-
etry of polygons in Euclidean space, J. Differential Geom. 44
(1996), no. 3, 479–513.

[MR] Robert Marsh and Konstanze Rietsch, The B-model con-
nection and mirror symmetry for Grassmannians, arXiv:

1307.1085.

[NNU10] Takeo Nishinou, Yuichi Nohara, and Kazushi Ueda, Toric de-
generations of Gelfand-Cetlin systems and potential functions,
Adv. Math. 224 (2010), no. 2, 648–706.

[NU14] Yuichi Nohara and Kazushi Ueda, Toric degenerations of inte-
grable systems on Grassmannians and polygon spaces, Nagoya
Math. J. 214 (2014), 125–168.



✐

✐

“6-Ueda” — 2020/5/14 — 15:38 — page 611 — #53
✐

✐

✐

✐

✐

✐

Grassmannians of planes and cluster transformations 611

[NU16] Yuichi Nohara and Kazushi Ueda, Floer cohomologies of non-
torus fibers of the Gelfand-Cetlin system, J. Symplectic Geom.
14 (2016), no. 4, 1251–1293.

[PT17] James Pascaleff and Dmitry Tonkonog, The wall-crossing
formula and lagrangian mutations, preprint (2017), arXiv:

1711.03209.

[Rie01] Konstanze Rietsch, Quantum cohomology rings of Grassman-
nians and total positivity, Duke Math. J. 110 (2001), no. 3,
523–553.

[Rie08] Konstanze Rietsch, A mirror symmetric construction of
qH∗

T (G/P )(q), Adv. Math. 217 (2008), no. 6, 2401–2442.

[Rua01] Wei-Dong Ruan, Lagrangian torus fibration of quintic hyper-
surfaces. I. Fermat quintic case, Winter School on Mirror Sym-
metry, Vector Bundles and Lagrangian Submanifolds (Cam-
bridge, MA, 1999), AMS/IP Stud. Adv. Math., Vol. 23, Amer.
Math. Soc., Providence, RI, (2001), pp. 297–332.

[RW] Konstanze Rietsch and Lauren Williams, Cluster duality and
mirror symmetry for Grassmannians, arXiv:1507.07817.

[Sco06] Joshua S. Scott, Grassmannians and cluster algebras, Proc.
London Math. Soc. (3) 92 (2006), no. 2, 345–380.

[SS04] David Speyer and Bernd Sturmfels, The tropical Grassman-
nian, Adv. Geom. 4 (2004), no. 3, 389–411.

[TW03] C. Teleman and C. Woodward, Parabolic bundles, products of
conjugacy classes and Gromov-Witten invariants, Ann. Inst.
Fourier (Grenoble) 53 (2003), no. 3, 713–748.

[Wit95] Edward Witten, The Verlinde algebra and the cohomology of
the Grassmannian, in: Geometry, Topology, & Physics, Conf.
Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cam-
bridge, MA, (1995), pp. 357–422.

[Yau17] Mei-Lin Yau, Surgery and isotopy of Lagrangian surfaces, Pro-
ceedings of the Sixth International Congress of Chinese Math-
ematicians. Vol. II, Adv. Lect. Math. (ALM), Vol. 37, Int.
Press, Somerville, MA, 2017, pp. 143–162.



✐

✐

“6-Ueda” — 2020/5/14 — 15:38 — page 612 — #54
✐

✐

✐

✐

✐

✐

612 Y. Nohara and K. Ueda

Department of Mathematics, School of Science and Technology

Meiji University, 1-1-1 Higashi-Mita, Tama-ku

Kawasaki-shi, Kanagawa 214-8571 , Japan

E-mail address: nohara@meiji.ac.jp

Graduate School of Mathematical Sciences

The University of Tokyo, 3-8-1 Komaba, Meguro-ku

Tokyo, 153-8914, Japan

E-mail address: kazushi@ms.u-tokyo.ac.jp

Received February 14, 2018

Accepted February 4, 2019


	Introduction
	Triangulations
	Integrable systems on Gr(2,n)
	Degenerations of Grassmannians
	Potential functions
	Cluster algebras
	Landau–Ginzburg mirrors
	Wall-crossing formula
	Wall-crossing formula on Gr(2,4)
	Wall-crossing formula on general Gr(2,n)
	References

