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Positive loops of loose Legendrian

embeddings and applications

Guogang Liu

In this paper, we prove that there exist contractible positive loops
of Legendrian embeddings based at any loose Legendrian subman-
ifold. As an application, we define a partial order on C̃ont0(M, ξ),
called strong orderability, and prove that overtwisted contact man-
ifolds are not strongly orderable.

Introduction

In this paper, we focus on the study of positive contact and Legendrian
isotopies in a co-oriented contact manifold (M, ξ).

A contact manifold (M2n+1, ξ) is a 2n+ 1 dimensional smooth mani-
fold M with a non-integrable hyperplane field ξ which is called a contact
structure. When ξ is co-oriented, it is given by the kernel of a contact 1-
form α. For example, in R4 with the usual coordinates (x1, x1, y1, y2), the
sphere S3 carries a contact form αstd = (y1dx1 − x1dy1 + y2dx2 − x2dy2)|S3 .
We denote ξstd the contact structure defined by αstd. It induces a contact
structure on the quotient RP 3 which is also denoted by ξstd.

One class of submanifolds of (M2n+1, ξ) with an interesting behavior is
that of Legendrian submanifolds. A n-dimensional submanifold L ⊂M2n+1

is called a Legendrian submanifold if α|L = 0. A contactomorphism of (M, ξ)
is a diffeomorphism which preserves ξ and a contact isotopy (φt)t∈[0,1] is a
path of contactomorphisms with φ0 = id. We say a contact isotopy (φt)t∈[0,1]
is positive if α(∂tϕt) > 0. That is to say, the infinitesimal generator of the
isotopy is positively transverse to ξ everywhere. An isotopy (φt)t∈[0,1] based
at a Legendrian submanifold L is said to be a Legendrian isotopy if φt(L) is a
Legendrian submanifold for all t. Similarly, we say φt is positive if α(∂tφt) >
0. This notion of positivity does only depend on the image Lt = φt(L) of the
isotopy. For us, a Legendrian isotopy will be such a family of unparametrized
Legendrian submanifolds.

With the concept of positive contact isotopy, Eliashberg and Polterovich
defined a partial order on the universal cover C̃ont0(M, ξ) of the identity
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component of the contactomorphisms group of (M, ξ). A class of contact
isotopy [(ψt)t∈[0,1]] is greater than another class [(φt)t∈[0,1]] if there exists a
positive contact isotopy from φ1 to ψ1 which is homotopic to the concate-
nation of the opposite of (φt)t∈[0,1] and (ψt)t∈[0,1].

Proposition 0.1. [EP99] If (M, ξ) is a contact manifold, the following
conditions are equivalent:

(i). (M, ξ) is non-orderable;

(ii). There exists a contractible positive loop of contactomorphisms for
(M, ξ).

This order is closely related to squeezing properties in contact geometry
[EP99] as well as to the existence of bi-invariant metrics on C̃ont0(M, ξ) or
on the space of Legendrian submanifolds [CS12].

From the beginning of the 80’s, it is known that the world of contact
structures splits in two classes with opposite behaviors. Following Eliash-
berg, we say that a contact structure ξ on M3 is overtwisted if there ex-
ists an overtwisted disk DOT ⊂M , i.e. an embedded disk which is tan-
gent to ξ along its boundary. The overtwisted contact structures are flexible
and classified by an adequate h-principle [Eli89]. We denote αOT a con-
tact form for an overtwisted contact structure ξ defined on a neighborhood
of an overtwisted disk. More recently, the work of Niederkrüger [Nie06] and
Borman-Eliashberg-Murphy [BEM15] have described a similar dichotomy in
the higher dimensional case. Following a suggestion of Niederkrüger, we say a
contact structure ξ is overtwisted if (M2n+1, α) containsD3 ×D2n−2(r) with
α|D3×D2n−2(r) = αOT − (ydx− xdy) for some constant r > 0 large enough
depending on the dimension of M [CMP15]. As in dimension three, Bor-
man, Eliashberg and Murphy [BEM15] have shown that overtwisted contact
structures are purely topological objects and are flexible.

On the contrary, we say ξ is a tight contact structure if it is not over-
twisted. For example, the contact manifolds (S3, ξstd) and (RP 3, ξstd) are
tight according to the fundamental result of Bennequin [Ben83]. Similar
results hold in higher dimension, where holomorphic methods give that a
Liouville fillable contact structure is tight, see [Nie06].

The orderability property is not shared by all contact manifolds (see the
work of Albers, Frauenfelder, Fuchs and Merry [AF12, AM13, AFM15] for
more examples ).

Theorem 0.2. (i). (S3, ξstd) is non-orderable while (RP 3, ξstd) is order-
able [EKP06];



✐

✐

“9-Liu” — 2020/7/27 — 1:48 — page 869 — #3
✐

✐

✐

✐

✐

✐

Positive loops of loose Legendrian embeddings 869

(ii). There are some overtwisted contact manifolds which are non-orderable
[CPS14].

It is interesting to see that tight contact manifolds can be orderable or
not despite their rigid nature. At the same time we guess overtwisted contact
manifolds are non-orderable.

Question 0.3. Are all overtwisted contact manifolds non-orderable?

In order to answer the above question, we transfer the study of positive
contact isotopies to that of positive Legendrian isotopies by the trick of
contact product. Indeed, a positive contact isotopy of (M, ξ) can be lifted to
a negative Legendrian isotopy of the diagonal ∆M×M × {0} in the contact
product (M ×M × R, α1 − esα2). Here α1 and α2 denote the pull-backs of
α by the first and second projection fromM ×M × R toM . The advantage
is that the study of positive Legendrian isotopies should be easier than that
of contact isotopies.

In that context, there is a natural question regarding positive Legendrian
isotopies:

Question 0.4. Let (M, ξ) be a contact manifold and let L0 and L1 be
Legendrian submanifolds in (M, ξ) which are Legendrian isotopic. Does there
exist a positive Legendrian isotopy connecting them?

Example 0.5. Let (S2, g) be the 2-sphere with the round metric g, and let
ST ∗S2 be the space of contact elements on S2. Denoting S, N the poles, then
the geodesic flow of g induces a positive Legendrian isotopy Lt connecting
the Legendrian fibers ST ∗

NS2 and ST ∗
SS

2.

Generally, the answer to Question 0.4 is negative.

Theorem 0.6. Let Mn, n > 1 be a manifold with open universal cover.
Then

(i). the fibers of ST ∗M are not in a positive loop of Legendrian embeddings
[CFP10, CN10];

(ii). the zero-section of (T ∗M × R, dz − ydx) is not in a positive loop of
Legendrian embeddings [CFP10].
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We let F be the front projection

(J1(M,R) = T ∗M × R, dz − ydx) →M × R : (x, y, z) 7→ (x, z).

For a Legendrian submanifold L ⊂ (T ∗M × R, dz − ydx), the subset LF :=
F (L) ⊂M × R is the front of L. We usually identify LF with L, since the y
coordinates are given by the slopes of the front. In the case where L and M
are of dimension 1, we can replace a smooth segment of LF by a zigzag with
two cusps. The zig-zag either has a z-shape, as in Figure 1, or an s-shape
(the symmetric of Figure 1 by the vertical axis). The Legendrian submani-
fold obtained by this operation is denoted by S(L) and is called a stabiliza-
tion of L. When we want to make it clearer, we will discrimiante between
the z-shape/positive stabilization denoted S+(L) and the s-shape/negative
stabilization S−(L).

We have:

Proposition 0.7. [CFP10] Let L be the zero-section of T ∗S1 × R and S(L)
a stabilization of L. Then there exists a loop of positive Legendrian embed-
dings based at S(L).

For a contact manifold (M, ξ) of dimension strictly higher than three,
Murphy [Mur12] introduced the class of loose Legendrian submanifolds. This
is a higher dimensional generalization of the stabilized S(L) in dimension
three. Loose Legendrian submanifolds satisfy a h-principle discovered by
Murphy which make them flexible. The main result of this article extends
this flexible behavior.

Theorem 0.8. Let (M, ξ) be a contact manifold of dimension ≥ 5 and
L ⊂ (M, ξ) be a Legendrian submanifold. If L is loose then there exists a
contractible positive loop of Legendrian embeddings based at L.

Without the looseness assumption, F. Laudenbach has proven that there
always exist positive loops of Legendrian immersions [Lau07].

As an application of Theorem 0.8, we obtain a holomorphic curve free
proof of the existence of tight (i.e. non overtwisted in the Borman-Eliashberg-
Murphy sense [BEM15]) contact structures in every dimensions. The “hard
part” of the argument uses Theorem 0.6 whose proof relies on the existence
of a generating function for a specific class of Legendrians (in that case the
Legendrian fibers of the Legendrian fibration in (Rn × Sn−1, ξstd)).

Corollary 0.9. [MNPS13] The contact manifold (Rn × Sn−1, ξstd) is tight.
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This corollary is proved in Subsection 3.1.
In the last section, we define a new partial order on certain groups

C̃ont0(M, ξ), called strong orderability, based on the transfer of an isotopy
of contactomorphisms to a Legendrian isotopy of their graphs in the contact
product. We then drop the graph condition to stick to Legendrian isotopies
and get a (possibly) different notion than that of Eliashberg-Polterovich’s
[EP99].

Proposition 0.10. Let (M, ξ) be a contact manifold. Then (M, ξ) is
strongly orderable if and only if there does not exist a contractible positive
loop of Legendrian embeddings based at the diagonal of the contact product
of (M, ξ).

As an example we prove that the contact manifold (S1, dθ) is strongly
orderable.

In that context, we explain the following result which was first suggested
by Klaus Niederkrüger and also observed by Casals and Presas.

Proposition 0.11. Let (M2n+1, α) be a compact overtwisted contact man-
ifold. Then the contact product (M ×M × R, α1 − esα2) is also overtwisted
and the diagonal ∆ ⊂ (M ×M × R, α1 − esα2) is loose.

Therefore, according to Proposition 0.11, we have the following result:

Theorem 0.12. Overtwisted contact manifolds are not strongly orderable.

Organisation of the paper: In section 1, we recall some basic defini-
tions including Murphy’s loose Legendrian embeddings. In section 2, we give
the proof of Theorem 0.8. Finally, we prove all the other results mentioned
above in the last section.
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1. Basic definitions in Contact Geometry

Let L : Y →֒ (J1(Y ), α) be a smooth Legendrian embedding. We denote its
front map by LF : Y → Y × R.

Given a Legendrian submanifold L′, there is a neighborhood U(L′) of L′

contactomorphic to a neighborhood of the zero section in J1(L′, α), accord-
ing to the Weinstein neighborhood theorem. If L is a Legendrian submani-
fold close to L′ then we can talk about the front LF of L in this Weinstein
neighborhood.

If ϕt : Y → Y × R is a homotopy of fronts (with ϕt(Y ) transverse to the
R-factor), we denote ϕ̃t its Legendrian lift and write vφt

and v
φ̃t

for the
corresponding time dependent generating vector fields.

1.1. Positive Legendrian isotopies

Definition 1.1. [CFP10, CN10](Positive Legendrian isotopy) Let
(M, ξ = kerα) be a contact manifold, L ⊂M a Legendrian submanifold,
φ : L× [0, 1] →M a Legendrian isotopy and let Xt =

dϕ
dt where t ∈ [0, 1].

We say φ is positive if Xt is transverse to ξ positively, i.e.

α(Xt) > 0.

Moreover, φ is said to be a positive loop if in addition φ0(L) = φ1(L).

Figure 1: A positive stabilized front.

The following remark is the starting point of our study.
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Remark 1.2. [CFP10] Let L : S1 ↪→ (J1(S1), ξstd) be a Legendrian embed-
ding whose front has positive slopes everywhere. Then there exists a positive
Legendrian loop based at L.

Proof. Regard S1 as R/Z with coordinate x. Denote Z = LF (S
1). On Z,

the slopes ∂z/∂x > 0 are positive (see Figure 1). Consider the vector field
Xt := −∂x on J1(S1) and its flow ϕt.

Because α(Xt) > 0 on ϕt(Z) for every t ∈ [0, 1], then ϕt is a positive
Legendrian isotopy. Since ϕ1 = Id, then we have a positive loop. �

Remark 1.3. If the front of L has negative slopes everywhere, we can
choose v = ∂x so that its flow is a positive loop.

1.2. Loose Legendrian embeddings

In this section, we recall Murphy’s notion of loose Legendrian embeddings,
wrinkled Legendrian embeddings and the idea for resolving wrinkles [Mur12].
For simplicity, we give the following equivalent definition of a loose Legen-
drian.

Definition 1.4. Let L : Y n ↪→ (J1(Y n), ξstd) be a Legendrian embedding.
Let Λ be a one-dimensional zigzag and N be a closed n− 1 dimensional
manifold. We say L is loose if its front contains Λ×N . In particular, it is
obtained from a Legendrian L′ by replacing a neighborhood of N ⊂ L′ by N
times a zigzag. We denote L = SN

± (L′), where ± stands for the z- or s-shape
of the zig-zag.

Figure 2: A loose embedding of S2.
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Definition 1.5. [EM11] and [Mur12, Definition 4.1](Wrinkled embed-
dings) See Figure 3. Let W : Rn → Rn+1 be a smooth, proper map, which
is a topological embedding. Suppose W is a smooth embedding away from a
finite collection of spheres {Sn−1

j }. Suppose, in some coordinates near these
spheres, that W can be parametrized by

W (u, v) = (v, u3 − 3u(1− |v|2),
1

5
u5 −

2

3
u3(1− |v|2) + u(1− |v|2)2,

where our domain coordinates lies in a small neighborhood of the sphere
{|v|2 + u2 = 1} ⊂ Rn. Then W is called a wrinkled embedding, and the
spheres Sn−1

j are called the wrinkles.

Figure 3: Wrinkled embedding.

Definition 1.6. [Mur12, Definition 5.1](Wrinkled Legendrians) Let Y n

be a closed and connected manifold and (M2n+1, ξ) be a contact manifold.
A wrinkled Legendrian is a smooth map L : Y → M , which is a topological
embedding, satisfying the following properties: The image of dL is contained
in ξ everywhere and dL is full rank outside a subset of codimension 2. This
singular set is required to be diffeomorphic to a disjoint union of (n− 2)-
spheres {Sn−2

j }, whose images are called Legendrian wrinkles. We assume

the image of each Sn−2
j is contained in a Darboux chart Uj , so that the

front projection of L(Y ) ∩ Uj is a wrinkled embedding, smooth outside of a
compact set.
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Figure 4: A wrinkled sphere.

Definition 1.7. (Adding a wrinkle along a disk) Let L be a Legendrian
of dimension n and D ⊂ L an embedded (n− 1)-disk together with a collar
neighborhood D × [−1, 1] ⊂ L, D = D × {0}. We consider the Legendrian
L′ obtained by replacing D × [−1, 1] by the image of W in Definition 1.6.
In particular, we get a wrinkled Legendrian with singular (n− 2)-sphere
∂D × {0}. We say L′ is obtained form L by adding a wrinkle along D.
Viewed in the front projection, the front of L′ is obtained from the front of
L by replacing parametrically every smooth interval x× [−1, 1] for every x
in the interior ofD by a zig-zag shaped interval. When x approaches y ∈ ∂D,
the zig-zag degenerates to an unfurled swallowtail singularity at y × {0}.

Definition 1.8. [Mur12, Definition 6.1](Twist marking) Let L : Y →
(M, ξ) be a wrinkled Legendrian embedding, and {Sn−2

j } be the set of sin-
gular spheres corresponding to the equator spheres {u = 0} of the spheres
Sn−1
j in the previous definition 1.6. Let N ⊂ Y be a submanifold with

∂N = ∪jS
n−2
j and whose interior is disjoint from ∪jS

n−1
j . Denote Φ := L|N .

Then (Φ, N) is called a twist marking.

Remark 1.9. We will put the C∞-topology on the space of wrinkled Leg-
endrian embeddings. Thus we can talk about a smooth family of wrinkled
embeddings (Lt,Φt, Nt).

Given a Legendrian L, we denote Lw a wrinkled Legendrian obtained by
adding some wrinkles to L along an embedded collection of codimension 1
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disks. Given a twist marking N on Lw and η > 0, we denote by W−1
η,N (Lw),

or W−1
η (Lw) when N is understood, the operation of resolving the wrin-

kles along N with an η-small operation (see [Mur12, Proposition 6.3]). To
measure proximity, we can first perform an immersed resolution W−1

0 (Lw),
where along N we incorporate a completely flat zig-zag, covering a segment
times N . Then W−1

η (Lw) is η-C∞-close to W−1
0 (Lw).

This operation can be done parametrically, as summarized in the follow-
ing theorem of [Mur12].

Theorem 1.10. [Mur12, Proposition 6.3] Let Lw
t be a smooth family of

wrinkled Legendrian embeddings, let (Φt, Nt) be the twist markings. Then
there is a smooth family of Legendrian embeddings Lt, such that Lt is iden-
tical to Lw

t outside of any small neighborhood of Nt for all t. Also, the res-
olution Lt can be taken to be as close as we want from Lw

t .

Figure 5: Resolve a wrinkle.

In the front picture of L, the operation of adding a wrinkle along D and
resolving it along a twist marking N amounts to replace a neighborhood
N ′ × [−1, 1] of N ′ = N ∪D in L with N ′ × {zig-zag}.

Theorem 1.11. [Mur12, essentially Proposition 2.6] Let Ln be a loose Leg-
endrian and N ⊂ L be a closed codimension 1 submanifold of Euler charac-
teristic 0. If we stabilize L positively and negatively along N , we obtain a
Legendrian SN

− (SN
+ (L)) which is Legendrian isotopic to L.

Sketch of proof. First of all, the stabilized Legendrian SN
− (SN

+ (L)) is loose.
By Murphy’s h-principle, we have to show that SN

− (SN
+ (L)) is formally Leg-

endrian isotopic to L. This is a consequence of the fact that SN
− (SN

+ (L)) is
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obtained from a Murphy N -stabilization of L by an isotopy, which doesn’t
change the formal Legendrian isotopy class when χ(N) = 0 (Proposition 2.6
in [Mur12]). □

In our case, we note that the stabilization operation passing from L to
SN
+ (L) might change the formal isotopy class of the Legendrian L, even if
N has Euler characteristic zero. However, we can go back to the original
formal class by stabilizing again to SN

− (SN
+ (L)). This fact will be used later

in the proof of our main theorem to correct formal classes.

2. Contractible positive Legendrian loops

In this section we prove our main theorem 0.8 in a geometric way.

Proof. We start with a loose Legendrian L and work in a compact region of
its standard neighborhood J1(L).

A. Construction of a positive loop

We first describe an elementary operation that will be applied repeatedly.
Recall LF is the front projection of L. Since L is the zero-section in J1(L),
one can canonically identify LF with L.

We consider a n-disk Dn
0 ⊂ LF , written as Dn−2

0 ×D2(3) together with
coordinates (u, ρ, θ), where (ρ ≤ 3, θ) are polar coordinates on D2. We let Lw

be the wrinkled Legendrian obtained by adding one wrinkled disk Dw
0 along

the (n− 1)-disk D0 = {1 ≤ ρ ≤ 2, θ = 0} to LF , so that Dw
0 ⊂ {1 ≤ ρ ≤ 2}

(see Figure 6 for a picture in the front projection). We moreover slightly
modify Lw along D0 × S1 = {1 ≤ ρ ≤ 2}, where S1 corresponds to the θ-
direction, by spreading the slope of the wrinkle in the θ-direction so that:

• every circle Lw ∩ {ρ = ρ0 ∈ (1, 2), u = u0}, contained in the {(u0, ρ0,
θ, z)} cylinder, has a positive slope, i.e. is positively transverse to ∂θ
as in Figure 1, where ∂θ is interchanged with ∂x;

• Lw is equal to LF away from {1 ≤ ρ ≤ 2}.

The situation is pictured in Figure 6. We take a twist marking N ⊂ Dn
0

for Dw
0 so that if N ′ is the closed submanifold N ∪D0 ⊂ LF then the Euler

characteristic χ(N ′) of N ′ is zero. Note that the twist marking N can be
chosen in {1/2 ≤ ρ ≤ 5/2}.

For example, if the Legendrian LF is 2-dimensional, a portion of the front
of the wrinkled Lw is realistically represented in Figure 6. The twist marking
N will then be an arc joining the two critical points and the resolution will
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Figure 6: Rotation of the wrinkle.

give a circle of zig-zags (see Figure 7). When we cut the front over the
red circle (see Figure 8) we get a circle with four cusps and whose slope is
positively transverse to the (horizontal) ∂θ-direction: this comes from the
fact that the s-shape zig-zag to the right, coming from the resolution of the
wrinkle, is taken small in front of the z-shape zig-zag and in a region where
the slope is already positive (positivity given by spreading the positivity of
the z-shape all around the θ-circle).

Step 1. We rotate the wrinkle positively in the θ-direction.
Given some constant K0 > 0, we rotate positively the wrinkle in the

θ-direction with (large) speed K0 ∈ N: We take a z-invariant path of diffeo-
morphisms φ0

t in the front such that φ0
t (u, ρ, θ, z) = (u, ρ, θ − 2K0πt, z) and

φ0
t globally preserves Lw \ {1 ≤ ρ ≤ 2}. By construction Lw

t,K0
= φ0

t (L
w) is

a loop of wrinkled fronts, even if φ0
t is only a path. Its lift L̃w

t,K0

is a non-
negative loop of wrinkled Legendrians based in Lw. Non-negativity comes
from the fact that the infinitesimal generator of the isotopy φ0

t is either tan-
gent (outside {1 ≤ ρ ≤ 2}) or positively transverse (inside {1 ≤ ρ ≤ 2}) to
the front of Lw

t,K0
.

Step 2. We resolve the wrinkle. We now parametrically resolve the
wrinkle φ0

t (D
w
0 ) ⊂ Lw

t,K0
along the marking φ0

t (N) ⊂ Lw
t,K0

to get a loop

W−1
η0

(Lw
t,K0

) of Legendrian fronts (notice that φ0
1(N) = N). Doing so, we

might introduce some negative displacement near φ0
t (N), but, taking the

size of the resolution η0 small enough in front of K0 and the slope of the
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N ′ × {zig-zag}

Figure 7: Resolution of the wrinkle along the twist marking.

Figure 8: A section of the front over the red middle circle of radius ρ0 of
Figure 7, in the (ρ0, θ, z){(θ,z)}∈R/2πZ×R cylinder.

circles {ρ = ρ0 ∈ [5/4, 7/4], u = u0}, we can make sure that the isotopy is
still positive in the region {5/4 ≤ ρ ≤ 7/4}.

Here, we notice that the loop of fronts W−1
η0

(Lw
t,K0

) is obtained from LF

by replacing a neighborhood of ϕ0t (N
′) by the product of N ′ with a z-shape.

In particular, the loop of fronts W−1
η0

(Lw
t,K0

) admits a parametrization by a
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loop of homeomorphisms (which are diffeomorphisms except at the cusps of
the fronts) ψ0

t,K0
: L→W−1

η0
(Lw

t,K0
) which is constant away from Dn

0 . When

we lift the loop of fronts W−1
η0

(Lw
t,K0

) to a loop of Legendrians L0
t,K0

in

J1(L), we can lift the loop of parametrizations ψ0
t,K0

to a loop of smooth

parametrizations Ψ0
t,K0

, which is constant away from Dn
0 . The loop L0

t,K0
is

positive along Ψ0
t,K0

({5/4 ≤ ρ ≤ 7/4}).

Step 3. We adjust the formal class. In steps 1 and 2, we have con-
structed a loop for a stabilization SN ′

+ (L) of L, which might not be formally
Legendrian isotopic to L. Following Proposition 1.11, we correct this by sta-
bilizing again parametrically along a parallel copy of ψ0

t,K0
(N ′) to obtain a

loop of Legendrians based at SN ′

− (SN ′

+ (L)). This second stabilization can be
made small at will (in the sense that the s-shape is squashed) so that the
positivity property of step 2 is still unchanged and we still have a loop of
parametrizations, that we persist to write Ψ0

t,K0
.

This preparatory work being done, the proof starts from a covering of
L by open sets Ai ⊂ Dn

i , i = 0, . . . , k, of the form S1 ×Dn−1 = {5/4 ≤ ρ ≤
7/4} ⊂ Dn

i as before.
We then construct our loop by induction: by step 1,2,3, we construct

a loop of Legendrians L0
t,K0

= Ψ0
t,K0

(L) which is positive along Ψ0
t,K0

(A0),
by rotating a wrinkle with speed K0. We now take a loop of standard We-
instein neighborhoods N(L0

t,K0
) of L0

t,K0
parametrized by t ∈ S1, in which

L0
t,K0

is the zero section diffeomorphic to L. This is given by a family of

embeddings J1(L) → J1(L) sending the zero section to L0
t,K0

= Ψ0
t,K0

(L).

These embeddings can be chosen to extend Ψ0
t,K0

, so we still denote them

Ψ0
t,K0

: J1(L) → N(L0
t,K0

).

We then apply steps 1,2,3 to A1, D
n
1 in J1(L), which is thought of as

the source of Ψ0
t,K0

, by rotating a wrinkle with (relative) speed K1 and
resolving it with size η1. This means we are performing this step in the
moving neighborhood Ψ0

t,K0
(J1(L)) of L0

t,K0
. We get a loop of Legendrians

L1
t,K1

= Ψ1
t,K1

(L) in the moving neighborhood J1(L). Viewed in the original

jet-space, we are considering the loop Ψ0
t,K0

(L1
t,K1

) = Ψ0
t,K0

(Ψ1
t,K1

(L)).
We see that if we take K1 large enough, in particular with respect

to η0 and K0, then the loop Ψ0
t,K0

(Ψ1
t,K1

(L)) becomes positive along

Ψ0
t,K0

(Ψ1
t,K1

(A1)) — where it was before possibly negative. We also have
to take η1 small enough so that the isotopy remains positive along
Ψ0

t,K0
(Ψ1

t,K1
(A0)) after resolving the wrinkle with size η1.

Precise computations are described by the following composition of
speeds:
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Since

vΨ̃0

t,K0
◦Ψ̃1

t,K1

(x) = vΨ̃0

t,K0

(Ψ̃1
t,K1

(x)) +DΨ̃0
t,K0

(vΨ̃1

t,K1

(x)),

we have

α(vΨ̃0

t,K0
◦Ψ̃1

t,K1

(x)) = α(vΨ̃0

t,K0

(Ψ̃1
t,K1

(x))) + (Ψ̃0
t,K0

)∗α(vΨ̃1

t,K1

(x)).

Now, we have that α(vΨ̃0

t,K0

) > −k0 independent of K1. Moreover, since

the isotopy of Legendrians is compactly supported, there exists some c0 > 0
independent of K1 such that Ψ̃0∗

t,K0
α = fα, where f > c0 > 0 in a neighbor-

hood of the original L which contains all the deformations.
We can thus see that in the neighborhood of Ψ0

t,K0
(Ψ1

t,K1
(A1)) where the

slope of the front is larger than some c1 > 0, α(vΨ̃1

t,K1
◦Ψ̃0

t,K0

) > −k0 + c0c1K1.

Thus, for K1 large enough Ψ̃0
t,K0

◦ Ψ̃1
t,K1

is positive in the neighborhood of

Ψ0
t,K0

(Ψ1
t,K1

(A1)). Near A0 where the loop was already positive, we do not
alter positivity if the size η1 of the resolution is small enough.

Once this is understood, it is clear that we can repeat the process until
we get a loop which is positive everywhere. At each step the rotation speed
has to be higher and higher with respect to previous operations.

To conclude, we observe that we have been producing a loop based at
a loose Legendrian which is formally isotopic to L, and thus by Murphy’s
Theorem 1.2 in [Mur12] Legendrian isotopic to L.

B. Contractibility

We show that the positive loop that we have been constructing is con-
tractible amongst Legendrian loops.

The construction was inductive on the set of annuli (Ai) and thus it is
enough to check that the first loop W−1

η0
(Lw

t,K0
) is homotopic to a constant

loop.
We first treat the case when the dimension of the Legendrian L is greater

of equal to 3. Define ϕ0s,t such that ϕ0s,t(u, ρ, θ, z) = (u, ρ− s, θ − 2K0πt, z).
We can see that ϕ0s,t(L

w) is a homotopy from ϕ0t,K0
(Lw) to ϕ01,t(L

w) which
is a loop of rotation of a wrinkled disk Dw around some point, says x0. Up
to homotopy, the wrinkled disk ϕ01,t(D

w) is completely determined by its
normal vector in L at x0, and thus by a map S1 → Sn−1. Since n ≥ 3, this
map is homotopic to a point and thus we can deform our loop of wrinkled
Legendrians to a constant loop. Moreover, this homotopy can be extended
to a homotopy of twist markings from the original loop of twists markings to
a constant loop. Resolving parametrically the markings, we get a homotopy
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from W−1
η0

(Lw
t,K0

) to a constant loop. The extra stabilization of step 3 to fix
the formal isotopy class enters the same scheme and can be also homotoped
to a constant operation. This concludes the proof.

The case when the dimension of L is 2 follows the same scheme, except
that we homotope the loop of resolved wrinkles Ψ0

t,K0
(U), where U is a circle

times a z-shape segment, to a constant annuli around the circle {ρ = 1}. □

3. Applications

In this chapter, we give some applications of our main theorem. First, we
reprove tightness of (Sn−1 × Rn, ξstd). Second, we define a partial order on

the universal cover C̃ont0(M, ξ) of the identity component of the group of
contactomorphisms of a contact manifold (M, ξ) and prove that overtwisted
contact structures are not orderable.

3.1. Tightness of (Sn−1
× Rn, ξstd)

In this section we prove Corollary 0.9. A similar proof for S1 × R2 was given
in [CFP10].

Proof. Assume (Sn−1 × Rn, ξstd) is overtwisted, andDOT ⊂ (Sn−1 × Rn, ξstd)
is an overtwisted disk. Denote π : Sn−1 × Rn → Rn the projection. There ex-
ists some point x ∈ Rn such that the fiber π−1(x) ∩DOT = ∅. According to
[CMP15], the fiber π−1(x) is loose. Thus, there exists a positive loop based
at it by Theorem 0.8. That contradicts Theorem 0.6. Therefore, the manifold
(Sn−1 × Rn, ξstd) is tight. □

3.2. Positive loops and orderings

Definition 3.1. Given a contact manifold (M,α), the manifold (ΓM , α̃) =
(M ×M × R, α1 − esα2) is called a contact product. Here αi = π∗i α where
πi project ΓM to the i-th factor. The Legendrian submanifold of (ΓM , α̃)
∆ = {(x, x, 0)} is called the diagonal.

The contact product ΓM is a special case of a contact fibration. We recall
the definition from [Pre07].

Definition 3.2. Let (E, ξ = kerα) be a contact manifold, and E −→ B
be a fibration with fiber F . Then (E, ξ = kerα) −→ B is called a contact
fibration if (F, α|F ) is a contact manifold. Let (E, ξ = kerα) −→ B be a
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contact fibration we say that the horizontal distribution H = (TF ∩ ξ)⊥dα

is the contact connection associated to the fibration.

Remark 3.3. The horizontal distribution depends on the contact form α.

The connection defined above has the following properties:

Proposition 3.4. [Pre07] For a path γ : [0, 1] → B, the monodromy mγ :
F (γ(0)) → F (γ(1)) induced by γ is a contactomorphism.

Corollary 3.5. Let ϕ ∈ Diff0(B). Then it lifts to a contactomorphism ϕ̃.

Note that ΓM is a contact fibration with F = (M,α) and B =M × R.
We now explain the following result which was first suggested by Klaus

Niederkrüger and also observed by Casals and Presas.

Proposition 3.6. Let (M2n+1, α) be a compact overtwisted contact mani-
fold and let (ΓM , α̃) be the associated contact product. Then (ΓM , α̃) is also
overtwisted and the diagonal ∆ ⊂ ΓM is loose.

Proof. We apply the overtwisted criterion from [CMP15]. If λ = ydx− xdy,
it is enough to construct a higher dimensional overtwisted ballD = (B2n+1

OT ×
D2n+2(r), αOT − λ) ⊂ (ΓM , α̃) for some r large enough, such thatD does not
intersect ∆.

Let S2n+1 = {(x, y) | x2 + y2 = 1} with its standard contact form αstd,
and let φ0 : S

2n+1 × R → R2n+2, (x, y, s) 7→ (esx, esy). Note that φ∗
0λ = αstd.

We take a Darboux ball B ⊂ (M,α) and we regard it as a subset of
(S2n+1, αstd). Then we can construct a contact embedding φ : (M ×B ×
R, α̃) →֒ (M × R2n+2, α1 − λ) by the following series of contact embeddings

(M ×B × R, α̃)
i
→֒ (M × S2n+1 × R, α1 − esαstd)

id×ϕ0

−→ (M × R2n+2, α1 − λ).

Let B2n+1
OT ⊂M be a overtwisted ball, then D0 = (B2n+1

OT × D2n+2(r), α1 −
λ) is the overtwisted ball in (M × R2n+2, α1 − λ). We can move D0 away
from φ(∆) by Corollary 3.5. More precisely, we take the vector field V =
2r∂x + 2r∂y on R2n+2, then lift it to a contact vector field V ′ = V + 2r(y −
x)Rα on M × R2n+2 where Rα is the Reeb vector field of (M,α). Let ϕt be
the contact isotopy of V ′. Denote C = {rx | x ∈ B, r > 0} the cone defined
by B. Then D1 = ϕ1(D0) ⊂M × (C \ {0}) = φ(M ×B) does not intersect
φ(∆). Therefore D = φ−1(D1) is one of the overtwisted balls we want. □
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Corollary 3.7. Let (M,α) be a compact overtwisted contact manifold and
(ΓM , α̃) the contact product. Then there exists a positive loop of Legendrian
embeddings based at ∆.

Let Leg(M,ΓM ) be the set of Legendrian embeddings M →֒ (ΓM , α̃).
Given ϕ ∈ Cont0(M, ξ = kerα) with ϕ∗α = eg(x)α, it induces a contacto-
morphism

ϕ̄(x, y, s) := (x, ϕ(x), s− g(y))

on (ΓM , α̃). We denote gr(ϕ) = ϕ̄|∆ which is in Leg(M,ΓM ). In fact, given a
positive contact isotopy ϕt, we can see that gr(ϕt) is a negative Legendrian
isotopy. Therefore, we would like to transfer the study of positive contact
isotopies to that of negative Legendrian isotopies.

Definition 3.8. Let f = [ft] and g = [gt] be two elements in C̃ont0(M, ξ).
We say f ⪰ g if there exists a non-positive path Lt ∈ Leg(M,ΓM ) from

gr(g1) to gr(f1) and gr(gt)∗Lt is homotopic to gr(ft). The space C̃ont0(M, ξ)
and (M, ξ) are said to be strongly orderable if ⪰ defines a partial order1

on it. Otherwise, they are said to be non strongly orderable.

Remark 3.9. Let C be the set generated by all the homotopy classes
of non-positive paths in Leg(M,ΓM ). Then f ⪰ g equals to gr(g−1f) ∈ C.
Given [Lt] ∈ C and ϕ ∈ Cont0(M, ξ), then we have [ϕ̄Lt] ∈ C. Therefore,

the order ⪰ is left invariant, that is to say, given f and g in C̃ont0(M, ξ), if

f ⪰ g, then hf ⪰ hg for all h ∈ C̃ont0(M, ξ). Because if Lt is a non-positive
path from g1 to f1, then h̄1Lt is a non-positive path from h1g1 to h1f1.

Proposition 3.10. Let (M, ξ) be a contact manifold. Then (M, ξ) is strongly
orderable if and only if there does not exist a contractible negative loop of
Legendrian embeddings based at ∆.

Proof. Let f = [ft], g = [gt] and h = [ht] be elements in C̃ont0(M, ξ). The
relation ⪰ is reflective, since we have f ⪰ f by the definition of ⪰. If there
are two non-positive paths L1

t from gr(g1) to gr(f1) and L
2
t from gr(h1) to

gr(g1), then L
2
t ∗ L

1
t is a non-positive path from gr(h1) to gr(f1). Thus, the

relation is transitive. Now we check the antisymmetry of ⪰. According to
[CN13, Propostion 4.5], the existence of contractible non-positive non-trivial
loop of Legendrian embeddings is equivalent to the existence of contractible
negative loop of Legendrian embeddings. Thus, for any f ̸= 1, on one hand,

1in the sense of a partial order on sets



✐

✐

“9-Liu” — 2020/7/27 — 1:48 — page 885 — #19
✐

✐

✐

✐

✐

✐

Positive loops of loose Legendrian embeddings 885

if there does not exist any negative loop based at ∆, we can not find a non-
negative path L1

t and a non-positive path L1
t in the homotopy class of gr(ft)

at the same times. Otherwise, L1
t ∗ L

2
t would be a contractible non-negative

loop. On the other hand, if there exists a non-positive loop ft based at ∆,
then f1/2 ⪰ 1 and 1 ⪰ f1/2. That means (M, ξ) is not strongly orderable. □

Our definition is stronger than that of [EP99], since we do not require
the path of Legendrian embeddings ϕ̃t to be graphical for all t.

Corollary 3.11. Let (M, ξ) be a contact manifold. If (M, ξ) is strongly
orderable, then it is orderable.

A contact manifold which is not strongly orderable is said to be weakly
non-orderable. Immediately, according to Proposition 3.6 and Corollary 3.7,
we deduce theorem 0.12 saying that overtwisted contact manifolds are weakly
non-orderable.

We have the following example of strong orderability.

Theorem 3.12. (S1, ξstd) is strongly orderable.

Proof. Denote dθ the standard contact form for S1. We have a contactomor-
phism φ : (ΓS1 , dθ1 − esdθ2) → (S1 × T ∗S1, dz − ydx), (θ1, θ2, s) 7→ (z = θ1 −
θ2, x = θ2, y = es − 1) such that φ(∆) is the zero-section. Assume there ex-
ists a contractible positive loop based at the zero-section of (S1 × T ∗S1, dz −
ydx), then it lifts to a positive loop based at the zero-section of (R1 ×
T ∗S1, dz − ydx). However, such loops do not exist according to [CFP10]
(notice this is not a trivial result). Thus (S1, ξstd) is strongly orderable. □

Question 3.13. Is (RP 3, ξstd) strongly orderable?
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2 Chemin de la Houssiniere, 44322 Nantes, France

E-mail address: guogangliu2016@gmail.com

Received March 1, 2017

Accepted May 4, 2019



✐

✐

“9-Liu” — 2020/7/27 — 1:48 — page 888 — #22
✐

✐

✐

✐

✐

✐


	Introduction
	Basic definitions in Contact Geometry
	Contractible positive Legendrian loops
	Applications
	References

