
✐

✐

“3-Gao” — 2020/9/11 — 1:16 — page 1027 — #1
✐

✐

✐

✐

✐

✐

journal of

symplectic geometry

Volume 18, Number 4, 1027–1070, 2020

Simple sheaves for knot conormals

Honghao Gao

We classify simple sheaves microsupported along the conormal
bundle of a knot. We also establish a correspondence between sim-
ple sheaves up to local systems and augmentations, explaining the
underlying reason why knot contact homology representations de-
tect augmentations.
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1. Introduction

Given a knot in Euclidean three space or the three dimensional sphere, its
conormal bundle is a conic Lagrangian subspace in the cotangent bundle
of the ambient space, which is canonically a symplectic manifold. Using
microlocal sheaf theory, one can study the subcategory of sheaves in the
ambient space whose singular support is contained in the conormal bundle
of the knot. Following a result of Guillermou-Kashiwara-Schapira [GKS], the
dg derived category of such sheaves is a homogeneous Hamiltonian isotopy
invariant of the knot conormal, and hence an isotopy invariant of the knot
— a knot invariant in short. Our first result studies a variant version, the
category of simple abelian sheaves.

Theorem 1.1 (Theorem 3.7). For X = R3 or S3, we classify the objects
in ModsΛK

(X), the simple abelian sheaves microsupported along the conormal
bundle ΛK of the knot K ⊂ X.
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The microlocal sheaf theory we use in this paper mostly follows from
the founding work of Kashiwara-Schapira [KS]. The term “microlocal” refers
to studying properties in the cotangent bundle, where the symplectic and
contact geometry come in. The singular support, a key concept in microlocal
sheaf theory, respects the dilation action along the fibre. In our setting, it is
the knot conormal. The cotangent bundle removing the zero section can be
dehomogenized to a contact manifold, and consequently the knot conormal
becomes a Legendrian. The microlocal sheaf category is an invariant for the
Legendrian knot conormal.

The knot contact homology is another invariant of the Legendrian knot
conormal, which uses the theory of the J-holomorphic curves. Transform-
ing the cosphere bundle into the one-jet space of sphere and identify the
Legendrian knot conormal as a submanifold in the jet space, one can define
a differential graded algebra which is as well a Legendrian isotopy invari-
ant. The combinatorial version was first formulated by Ng [Ng1, Ng2, Ng3].
The Floer theoretical version was introduced by Ekholm-Etnyre-Sullivan
[EES1, EES2, EES3]. These two versions are proven to be equivalent later
by the four authors [EENS1, EENS2].

Augmentations, which originated from linearizing the dga to obtain the
linearized contact homology, turn out to be more computable invariants of
the knot. An augmentation of a dga is a morphism to a trivial dga. The
definition is algebraic in general and we apply it to the Legendrian dga.
When the Legendrian emerges from the conormal bundle of the knot, it
is expected that some contact topological properties can be captured by
the topology of the base ambient manifold. It was first formulated by Ng
[Ng3], and later proven by Cornwell [Co1, Co2], that the KCH representation
— a type of the representation of the knot group — detects a subset of
augmentations.

We hope to use the sheaf theory to unwrap the somewhat mysteriously
defined KCH representation and explain the reason why these representa-
tions detect augmentations. To each simple sheaf, we are able to define an
associated augmentation (see Theorem 4.4). Further we show

Theorem 1.2 (Theorem 4.17). The map from KCH representations to
augmentations studied by Ng and Cornwell factors through the following
diagram.

{KCH Representations} →֒ {Simple abelian sheaves}↠ {Augmentations}.
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Moreover, there is a bijection between simple sheaves up to local systems and
augmentations. The correspondence is summarized in the following table:

simple sheaves up to local systems augmentations ϵ

irreducible KCH representations ϵ([e]) ̸= 0
irreducible unipotent KCH representations ϵ([e]) = 0 but ϵ([γ]) ̸= 0 for some γ ∈ πK

rank 1 local systems on the knot ϵ([γ]) = 0 for all γ ∈ πK

Here πK is the fundamental group of the knot complement, and e ∈ πK is
the identity.

For a concise presentation, we introduce the notion of the unipotent KCH
representation (in Section 2.3) and study its connection to augmentations
(in Section 4.3).

The correspondence makes better sense if we restrict our attention to
simple sheaves up to local systems. With this consideration, we are able to
describe microlocally simple sheaves in the (dg) derived category of sheaves
(see Proposition 3.14), which is the category studied by Guillermou-
Kashiwara-Schapira.

It becomes evident from the table that KCH representations consist of a
subset of simple sheaves and therefore detect some augmentations. Another
geometric interpretation can be found in the work of Aganagic-Ekholm-Ng-
Vafa [AENV] or the work of Cieliebak-Ekholm-Latschev-Ng [CELN]. Briefly
speaking, some of the J-holomorphic curves can be stretched close to the
zero section of the ambient three dimensional sphere, whose boundary data
are recorded by the knot group.

We continue with explanations on the overall theory.
It is no coincidence that simple sheaves are connected to augmentations.

Augmentation have a functorial nature. Though defined algebraically, aug-
mentations sometimes have geometric counterparts being exact Lagrangian
fillings, with heuristics from the symplectic field theory [El, EGH]. It is
proven that an exact Lagrangian cobordism between two Legendrian knots
induces a morphism of the associated dgas [EHK], which further induces a
map between the sets of augmentations, via pullback.

Even better, the set of augmentations admits the structure of an A∞-
category, which is in some sense a perturbed dg category with higher mor-
phisms. We have to remind the reader that there can be more than one of
such categorical structures [NRSSZ, BC]. In a Fukaya-categorial point of
view, augmentations arising from exact Lagrangian fillings can be regarded
as objects in the infinitesimal Fukaya category, and their hom spaces inherit
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the A∞-structure from the Fukaya category, which depend on a choice of
the perturbation data [NRSSZ].

The Nadler-Zaslow correspondence models the Lagrangian branes in the
Fukaya category by microlocal sheaves [Na, NZ]. In the case of Legendrian
knots in the Euclidean threefold with the standard contact structure, it was
first conjectured in [STZ], and later proven in [NRSSZ], that the counter-
parts of the augmentations are microlocally simple sheaves. Heuristically,
augmentations are rank one representations of the Legendrian dga, which
correspond to simple sheaves in the sheaf world. Yet in higher dimensions,
such statements have not been established.

Hopefully we have explained why the sheaf theory is a tool to study
knots. In fact, it is a powerful tool. It is proven by Shende [Sh], using
sheaf theory, and Ekholm-Ng-Shende [ENS], using Floer homology, that knot
conormals give complete knot invariants. In this paper, we restrict our at-
tention to simple sheaves and their connections to other knot invariants —
augmentations and KCH representations. As a consequence of the theorem,
we exhibit at the level of objects the correspondence between augmentations
and sheaves.

There is a subtlety on the geometric set up. The ambient space where
the Nadler-Zaslow interpretation works is different from the ambient space
we consider in this paper, especially Theorem 1.1. The underlining geomet-
ric transform admits a sheaf quantization [Ga2]. More explanations on the
relations among these works can be found in [Ga1].

We also mention the work of Rutherford and Sullivan [RS1, RS2, RS3]
which localizes the dga of a general Legendrian surface. This work potentially
establishes the foundation for studying the correspondence for an arbitrary
Legendrian surface. However, we take a different approach in this paper.

The organization of the paper is as follows.
Section 2 introduces topological concepts facilitating the presentation of

the classification theorem. In Section 2.1–2.2, we review the knot group and
the KCH representation in literature. In Section 2.3, we define the unipotent
KCH representation.

Section 3 focuses on microlocal sheaves. After a quick introduction in
Sections 3.1–3.2, we classify the simple abelian sheaves microsupported along
the knot conormal in Section 3.3. In Sections 3.4–3.5, we study the moduli
set of sheaves up to local systems, in both the abelian and derived settings.

Section 4 establishes the correspondence between simple sheaves and
augmentations. In Section 4.1, we review the definition of the augmenta-
tion, and then define a map which sends a simple sheaf to an augmentation.
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In Section 4.2, we show that the map from KCH representations to aug-
mentations is compatible with our earlier definition, when the sheaf emerges
from a KCH representation. In Section 4.3, we study thoroughly the in-
terplay between the unipotent KCH representations and augmentations. In
Section 4.4, we establish the sheaf-augmentation correspondence, which is
the second main theorem of the paper. The final Section 4.5 is an application
on augmentation polynomials.

Notation 1.3. Throughout the paper, we fix the following notations.

• Let X = S3 or R3.

• Let K ⊂ X be an oriented knot. We do not discuss links.

• Let i : K → X be the closed embedding of the knot. Let j : X \K →
X be the open embedding of the knot complement.

• Let n(K) be a small tubular neighborhood of K. Its boundary ∂n(K)
is a torus.

• Fix a ground field k. It is the field over which the representations, the
sheaves, and the augmentations are defined, (but not the dga).

Acknowledgements. We would like to thank Eric Zaslow for initiating the
problem and advising. We thank Stéphane Guillermou, as well as the ref-
eree, for important comments. We also thank Xin Jin, Lenhard Ng, Dmitry
Tamarkin for helpful discussions. The paper is based on and extends the
results in the author’s PhD dissertation at Northwestern University. This
work is partially supported by the ANR projection ANR-15-CE40-0007 “MI-
CROLOCAL”.

2. Knot group and its representations

2.1. Knot group

The knot group πK := π1(X \K) is the fundamental group of the knot com-
plement. The group is the same for both X = S3 and X = R3. The knot
group is a knot invariant. A meridian is the boundary of an oriented disk
which intersects transversely with the knotK at a single point. A knot group
πK has the following properties:

1) πK is finitely generated and finitely presented;

2) πK can be generated by the meridians of K;
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3) any two meridians are conjugate to each other in πK .

The abelianization of πK , or H1(X \K), is isomorphic to Z. A generator is
represented by the class of any meridian.

A Seifert surface S ⊂ X of an oriented knot K is an oriented surface
whose boundary is K. Every knot K admits a Seifert surface. A Seifert
surface is not unique, but its relative homology class in H2(X,K) is unique.
Following the long exact sequence of the relative pair (X,K), we have an
exact sequence

0→ H2(X,K)
∂
−→ H1(K)→ 0.

Clearly H1(K) ∼= Z. The relative class of a Seifert surface is given by the
preimage of [K] under the boundary map ∂.

The tubular neighborhood n(K) has a torus boundary. A longitude ℓ
is the intersection of ∂n(K) with a Seifert surface S. It inherits a natural
orientation from K. Since [S] is unique, the homology class of [ℓ] in H1(T )
is unique, and in this sense, the longitude is also unique.

The fundamental group π1(T ) is abelian and isomorphic to Z× Z. The
closed embedding of T into X \K induces a map π1(T )→ πK . The torus
singles out a preferred meridian. The longitude commutes with the preferred
meridians in πK . The longitude is contractible only when K is the unknot.
Also note that every representation of πK induces a representation of π1(T )
by composition.

2.2. KCH representation

We first review the definition of the KCH representation [Ng3, Co1, Co2].
The name “KCH” is an abbreviation of the “knot contact homology”. We
postpone to explain the relation between these representations and the knot
contact homology after we have introduced augmentations.

Definition 2.1. Suppose V is a vector space. Let m ∈ πK be a fixed merid-
ian. A representation ρ : πK → GL(V ) is a KCH representation if ρ(m) is
diagonalizable, and acts on V as identity on a codimension 1 subspace. In
particular, the codimension constraint requires ρ(m) ̸= idV , namely ρ(m) is
not the identity on the complement of that codimension 1 subspace.

A KCH representation is irreducible if it is irreducible as a representa-
tion.
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Remark 2.2. Because all meridians are conjugate to each other in πK ,
for any meridian m, the ρ(m)-action on V has an invariant subspace of
codimension 1.

Since the preferred meridianm and the longitude ℓ commute, their action
matrices can be simultaneously diagonalized up to Jordan blocks. Therefore,
there is a basis of V under which we have,

ρ(m) =

(
µ0

In−1

)
, ρ(ℓ) =

(
λ0

∗n−1

)
.

where µ0 ̸= 1, n = dimV , and ∗n−1 is a square matrix of size n− 1. An
eigenvector of the eigenvalue µ0 in ρ(m) is also an eigenvector of ρ(ℓ), cor-
responding to the eigenvalue λ0. We do not impose any constraints on λ0,
but it is non-zero by construction.

Next we show that a KCH representation is always an extension between
an irreducible KCH representation and a trivial representation.

Let {mi}i∈I be a finite set of meridian generators of πK . Let (ρ, V ) be a
KCH representation, and suppose vi is a distinguished eigenvector of ρ(mi),
i.e. ρ(mi) vi = µ0 vi. Define the meridian subspace V0 ⊂ V by

(2.1) V0 := Spank{vI}.

The meridian subspace has the following properties:

1) Spank{vI} is πK invariant, i.e. Spank{vI} = Spank[πK ]{vI}, ([Co2,
Lemma 3.10]);

2) Spank[πK ]{vI} = Spank[πK ]{vi} for any i ∈ I, (if mj = g−1mig, then
vi = ρ(g)vj).

It shows that V0 is a sub-representation by (1), and is irreducible by (2).

Lemma 2.3. Suppose ρ : πK → GL(V ) is a KCH representation, then the
quotient representation ρ̄ : πK → GL(V/V0) is trivial.

Proof. To prove the quotient representation is trivial, it suffices to show
that each generator acts on the quotient vector space as identity. Because
the generators are conjugate to each other in the knot group, it suffices to
prove for one generator. Let’s consider ρ(m1). We can find a basis of V
including v1 such that ρ(m1) acting on all other basis vectors as identity.
Since v1 ∈ V0, we have ρ̄(m1) = idV/V0

. The proof is complete. □
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Suppose Y is a manifold, and π1(Y ) is its fundamental group. It is well
known the equivalence between the category of π1(Y ) representations and
the category of local systems on Y :

(2.2) Rep(π1(Y )) ∼= loc(Y ).

We say a local system E ∈ loc(X \K) is a KCH local system if it comes
from a KCH representation through the correspondence (2.2).

2.3. Unipotent KCH representation

The KCH representation requires not only that the action of the chosen
meridian has an invariant subspace of codimension one, but also that the
matrix of the action is diagonalizable. If we remove the diagonalizable con-
dition, some more representations will be included. We study these repre-
sentations in this section.

We first understand the action of the meridian. Given a fixed dimension
n, let In be the identity matrix, and let Eij be the square matrix which is 1
at entry (i, j), and 0 at all the other entries.

Lemma 2.4. Let V be a vector space with dimension n ≥ 1 and A ∈ GL(V ).
Suppose there is a subspace W ⊂ V of codimension 1 such that A|W = idW .
Then after choosing some basis, either (1) A = In + cE11, for some c ̸=
0,−1; or (2) n ≥ 2 and A = In + E12.

Proof. It is obvious when n = 1. When n ≥ 2, there exists a basis {v1, . . . , vn}
such that

A =




c1 c2 . . . cn
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 .

Since A is invertible, c1 ̸= 0. If c1 ̸= 1, we can choose other basis elements
v′i = vi+(1−c1)

−1civ1 for i = 2, . . . , n, so that A = diag{c1, 1, . . . , 1} = In+
(c1 − 1)E11. If c1 = 1, we can change the basis so that there is at most one
non-zero number among c1, . . . , cn. Without loss of generality, we assume
that c2 ̸= 0. Then A = In + E12 under the new basis v′1 = c2v1, v

′
2 = v2, and

v′i = c2vi − civ2 for i = 3, . . . , n. □

Following the lemma, there are two possibilities if we only require the
meridian action is trivial on a codimension one subspace. One of the cases
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is the KCH representation. We define the other case to be the unipotent
KCH representation, which is termed so because the meridian matrix can
be normalized to a unipotent matrix.

Definition 2.5. Suppose V is a vector space of dimension n ≥ 2, and m ∈
πK is a fixed meridian. A representation ρ : πK → GL(V ) is a unipotent
KCH representation if ρ(m) is similar to In + E12 by conjugation.

We say a local system Eu ∈ loc(X \K) is a unipotent KCH local system
if it comes from a unipotent KCH representation through the correspon-
dence (2.2).

Let {mi}i∈I be the set of meridians generating the knot group. Let (ρ, V )
be a n dimensional unipotent KCH representation. For each meridian mi,
we define a subspace

Vi = im (idV − ρ(mi)) ⊂ V,

which is always 1 dimensional by definition. Define

V0 = Spank{VI}.

Lemma 2.6. V0 is an irreducible sub-representation of V .

Proof. To show that V0 is closed under the knot group action, it suffices to
prove for meridian generators. For any mi and any v0 ∈ V0,

ρ(mi)(v0) = −(idV − ρ(mi))(v0) + idV (v0) ⊂ Vi + V0 = V0.

Therefore V0 is closed under the action of any mi, and further the entire knot
group, proving that V0 is a sub-representation. The irreducibility follows
from the fact that Spank[πK ]{VI} = Spank[πK ]{vi} for any i ∈ I and any non-
zero vi ∈ Vi, similar to the case of KCH representations. □

Lemma 2.7. The quotient representation V/V0 is trivial.

Proof. The proof is similar to that of Lemma 2.3. □

In the remaining of the subsection, we study some properties of the
unipotent KCH representation. If V0 has dimension 1, then the unipotent
KCH representation is an extension of trivial representations. If V0 has di-
mension greater or equal to 2, we show by an example that there exist
irreducible unipotent KCH representations.
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Proposition 2.8. Let ρ : πK → GL(V ) be a unipotent KCH representa-
tion. If V0 ⊂ V has dimension 1, then V is an extension of trivial represen-
tations.

Proof. We always have the short exact sequence of representations (or k[πK ]-
modules)

0→ V0 → V → V/V0 → 0.

Since V0 has dimension 1, Vi = V0 for all i. For each i ∈ I, the restriction
of ρ(mi) to Vi is identity. Therefore V0 is a trivial representation. It follows
from Lemma 2.7 that V/V0 is also trivial. □

Example 2.9. The Wirtinger presentation of the knot group of the trefoil
is

πK = ⟨m1,m2,m3⟩/(m3m2 = m2m1 = m1m3).

More specifically, we consider a planar diagram of the trefoil knot with three
strands and three crossings. Each strand gives rise to a meridian generator.
Each crossing imposes a relation among the generators. There is a redundant
relation.

We define a unipotent KCH representation ρ : πK → GL(2, k) by

ρ(m1) =

(
1 1
0 1

)
, ρ(m2) =

(
1 0
−1 1

)
, ρ(m3) =

(
2 1
−1 0

)
.

It is straightforward to verify that the relations in the knot group are sat-
isfied. We will argue that ρ is irreducible. Observe that (1, 0)t spans the in-
variant subspace of ρ(m1) and (0, 1)t spans the invariant subspace of ρ(m2).
Since they are transverse, there is no proper invariant subspace of the πK-
action, proving the irreducibility.

3. Sheaves

Suppose Y is a smooth manifold. Let Mod(Y ) be the abelian category of
sheaves of k-modules on Y , and Sh(Y ) the bounded dg derived category.
The abelian category Mod(Y ) is equivalent to the subcategory of Sh(Y )
consisting of objects concentrated in degree zero.

Let Loc(Y ) ⊂ Sh(Y ) be the subcategory of locally constant sheaves.
Then loc(Y ) = Loc(Y ) ∩Mod(Y ) is the category of local systems in the
usual sense, namely π1(Y ) representations.
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3.1. Singular support

To each sheaf F ∈ Sh(Y ), one can associate a closed conic subset SS(F) ⊂
T ∗Y , called the singular support or the micro-support [KS, Definition 5.1.1].
Typical examples include: (1) a sheaf is locally constant if and only if its
micro-support is contained in the zero section, (2) the constant sheaf sup-
ported on a closed submanifold Z has its micro-support being T ∗

ZY .
Let 0Y be the zero section of T ∗Y and Ṫ ∗Y = T ∗Y \ 0Y . Suppose Λ ⊂

Ṫ ∗Y is a connected conic closed Lagrangian. By a theorem of Guillermou-
Kashiwara-Schapira [GKS], the subcategory

ShΛ(Y ) = {F ∈ Sh(Y ) |SS(F) ∩ Ṫ ∗Y ⊂ Λ},

is invariant under a homogeneous Hamiltonian isotopy. Let ModΛ(Y ) =
ShΛ(Y ) ∩Mod(Y ).

The singular support has functorial behaviors. Using the property of the
singular support in [KS], we give a characterization of the sheaves micro-
supported along the conormal bundle of a closed submanifold. It serves as
a substitute definition of the singular support in our geometric setting.

Let Y be a manifold, i : Z → Y a closed embedding and j : Y \ Z → Y
the open embedding. Note that i∗ and j! are exact functors. If S ⊂ T ∗Y is
a subset, we write Ṡ := S ∩ Ṫ ∗Y .

Lemma 3.1. If F ∈ Sh(Y ), then ˙SS(F) ⊂ Ṫ ∗
ZY if and only if j−1F ∈

Loc(Y \ Z) and i−1F ∈ Loc(Z). If F ∈Mod(Y ), then ˙SS(F) ⊂ Ṫ ∗
ZY if and

only if j−1F ∈ loc(Y \ Z) and i−1F ∈ loc(Z).

Proof. The second assertion follows from the first assertion by considering
sheaves concentrated at degree 0. We prove the first assertion in two direc-
tions.

(1) Suppose ˙SS(F) ⊂ Ṫ ∗
ZY . We apply [KS, Proposition 5.4.5]. Since j

is an open embedding, we have SS(j−1F) = SS(F) ∩ T ∗(Y \ Z) ⊂ 0Y \Z .
Hence j−1F ∈ Loc(Y \ Z).

Similarly apply [KS, Proposition 5.4.5] to i, SS(i−1F) = id(i
−1
π SS(F))

where T ∗Z
id←− T ∗Y |Z

iπ−→ T ∗Y . Because of the short exact sequence of bun-

dle morphisms 0→ T ∗
ZY → T ∗Y |Z

id−→ T ∗Z → 0, we deduce that T ∗
ZY is in

the kernel of id. Also observe that i−1
π is a restriction. Hence SS(i−1F) ⊂ 0Z ,

which gives i−1F ∈ Loc(Z).
(2) Apply the triangle inequality of singular support to j!j

−1F → F →

i∗i
−1F

+1
−−→, we have SS(F) ⊂ SS(j!j

−1F) ∪ SS(i∗i
−1F). Because i∗i

−1F
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is a locally constant sheaf on the submanifold Z, its singular support is
contained in the conormal bundle T ∗

ZY .
It suffices to show that ˙SS(j!j

−1F) ⊂ Ṫ ∗
ZY . Since the singular support

is locally defined, we can assume Y = Rn with coordinates (y1, . . . , yn),
and Z = {y1 = · · · = yk = 0}. Then U ∼= (Rk \ {0})× Rn−k. Let p : (Rk \
{0})× Rn−k → (Rk \ {0}) be the projection. Because j−1F is locally con-
stant, the restriction to each fiber of p is also locally constant. By [KS,
Proposition 5.4.5], there is H ∈ Loc(Rk \ {0}) such that j−1F = p−1H. Let
j̃ : Rk \ {0} → Rk be the open embedding and let p̃ : Rk × Rn−k → Rk be
the projection, we have

j!j
−1F = j!p

−1H = p̃−1j̃!H.

Observe that ˙SS(j̃!H) ⊂ Ṫ ∗
0R

k, then ˙SS(j!j
−1F) = ˙SS(p̃−1j̃!H) ⊂ Ṫ ∗

ZY . We
complete the proof. □

We learn from the previous lemma that a sheaf microsupported along
T ∗
ZY is determined by a local system on Z and a local system on Y \ Z. The

reversed direction is characterized by the study of Ext1Y (i∗G, j!H), whereH ∈
Loc(Y \ Z) and G ∈ Loc(Z). In particular, if both H and G are concentrated
at degree 0, an extension class is presented by a short exact sequence of
sheaves:

0→ j!H → F → i∗G → 0.(3.1)

The extension classes classify the possible gluings between the local systems.
In fact, they only depend on G, and H restricted to a neighborhood of Z.
More precisely, we have

Lemma 3.2. Ext1Y (i∗G, j!H) = R0HomZ(G, i
−1Rj∗H).

Proof. Apply RHomY (i∗G,−) to the distinguished triangle

j!H → Rj∗H → Rj∗H|Z
+1
−−→ .

Because j−1 ◦ i∗ = 0, the middle term is

RHomY (i∗G, Rj∗H) = RHomZ(j
−1i∗G,H) = 0.
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The triangle implies RHomY (i∗G, j!H) = RHomY (i∗G, Rj∗H|Z [−1]). Con-
tinuing the calculation, we have

RHomY (i∗G, j!H)

= RHomY (i∗G, Rj∗H|Z [−1]), [Explained]

= RHomY (i∗G, Rj∗H|Z)[−1], [Degree shift]

= RHomY (i∗G, i∗i
−1Rj∗H)[−1], [Definition of the restriction]

= RHomZ(i
−1i∗G, i

−1Rj∗H)[−1], [Adjunction]

= RHomZ(G, i
−1Rj∗H)[−1]. [i−1i∗ = id]

Taking the cohomology at degree 1 completes the proof. □

3.2. Simple sheaves

Recall that X = S3 or R3, and K ⊂ X is an oriented knot.
We denote the conormal bundle removing the zero section by ΛK =

N∗
KX ∩ Ṫ ∗X.
Instead of the general definition of a simple sheaf in [KS, Definition

7.5.4], we introduce a version in the context of knot conormals, beginning
with a lemma.

Lemma 3.3. Let ℓ be the longitude and m the preferred meridian of K. A
sheaf F ∈ModΛK

(X) is equivalent to the following data:

1) a representation ρ : πK → GL(V ), and

2) a representation ρ′ : ZK → GL(W ), where the subscript represents the
generator, and

3) a linear transform T : W → V , such that (a) ρ(ℓ) ◦ T = T ◦ ρ′(K) and
(b) m acts on the image of T as identity.

Proof. (1) Suppose F ∈ModΛK
(X). By Lemma 3.1, we have j−1F ∈ loc(X \

K) and i−1F ∈ loc(K). The local systems give rise to the representations
ρ : πK → GL(V ) and ρ′ : ZK → GL(W ) (2.2). By construction, V , W are
the stalks of F on X \K and K. Because K is a closed submanifold, the
sheaf data give a restriction map T : W → V .

The restriction map has to be compatible with the πK-action on V and
the ZK-action on W . Since the restriction map is local, we only need on V
the action of the subgroup Zm × Zℓ ⊂ πK . The compatibility is expressed as
the conditions (3a) and (3b) for T .
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(2) Conversely, assuming the list of data, we construct a sheaf in
ModΛK

(F). The two representations determine H ∈ loc(X \K) and G ∈
loc(K). The desired sheaf is determined by a class in Ext1X(i∗G, j!H), or
R0HomK(G, i−1Rj∗H) by Lemma 3.2, where H and G are considered as
complexes concentrated at degree 0. Because G is concentrated at degree 0,
classes in R0Hom are just closed maps. The sheaf i−1Rj∗H is described by
the complex

0 −→ V
1−ρ(m)
−−−−−→ V −→ 0,

together with an action ρ(ℓ) on V , which commutes with the differential of
the complex. Now T (with condition (3a)) determines a degree 0 map f :

0 W 0 0

0 V V 0
1− ρ(m)

0T

Recall that a morphism f : A• → B• in the dg derived category has the dif-
ferential df = fdA − (−1)deg (f)dBf . In our case, that is df = −(1− ρ(m)) ◦
T . It is zero because the condition (3b) that ρ(m) acts on the image of T
as identity. Therefore f is closed and we obtain the desired morphism, and
further the desired sheaf. □

Definition 3.4. Suppose T : W → V is the linear transform determined
by a sheaf F ∈ModΛK

(X) as in Lemma 3.3. We say F is simple if cone(T )
has rank 1. In other words, either

1) T is injective with a rank 1 cokernel, or

2) T is surjective with a rank 1 kernel.

Let ModsΛK
(X) ⊂ModΛK

(X) be the (no longer abelian) subcategory of sim-
ple sheaves.

3.3. Classification

Recall that ModsΛK
(X) ⊂ModΛK

(X) is the subcategory of simple abelian
sheaves microsupported along the knot conormal. In this section, we classify
objects in ModsΛK

(X).
We first show how to construct a simple sheaf from a KCH local system.

Lemma 3.5. If E ∈ loc(X \K), then j∗E ∈ModΛK
(X). If in addition E is

a KCH local system, then j∗E ∈ModsΛK
(X).
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Proof. (1) We apply Lemma 3.1 to verify the first assertion. First j−1j∗E =
E ∈ loc(X \K). To verify i−1j∗E ∈ loc(K), because the singular support is
locally defined, we assume X = R3 and K = {x1 = x2 = 0}. Then X \K =
(R2 \ {0})× R. Let p : (R2 \ {0})× R→ (R2 \ {0}) be the projection. There
is G ∈Mod(R2 \ {0}) such that E = p−1G. Let j̃ : R2 \ {0} → R2 be the open
embedding, then SS(j∗G) ⊂ T ∗

0R
2. Let p̃ : R2 × R→ R2 be the projection,

then SS(p̃−1j∗G) ⊂ T ∗
KX. Since p is a topological submersion of fiber dimen-

sion 1, we have p! = p−1[1], and further j∗p
−1G = j∗p

!G[−1] = p̃!j̃∗G[−1] =
p̃−1j̃∗G. Therefore, SS(i−1j∗E) = SS(i−1j∗p

−1G) = SS(i−1p̃−1j̃∗G) ⊂ 0K .
Therefore we have the desired i−1j∗E ∈ loc(K).

(2) Now suppose E is a KCH local system. Because the simpleness is a
local property, we adopt the local chart as above and use the same notation.
Given the induced G ∈ loc(R2 \ {0}),

(j̃∗G)0 = lim
−→
0∈U

Γ(U, j̃∗G) = lim
−→
0∈U

Γ(j̃−1(U),G) = lim
−→
0∈U

Γ(U \ {0},G).

If U is an open ball containing 0, then U \ {0} is not simply connected
and its fundamental group is generated by a meridian. Let (ρ, V ) be the
representation determined by Lemma 3.3. Sections over U \ {0} correspond
to the vectors in V that are invariant under the action of the meridian.
Passing to the direct limit, the stalk (or W as in Lemma 3.3) consists of
such vectors as well.

In this case, the linear transform T : W → V is the natural inclusion.
The previous arguments yield that T is injective with a rank 1 cokernel.
Hence the sheaf j∗E is simple. □

Definition 3.6. Define S to be the set of isomorphism classes of objects
in ModsΛK

(X). The isomorphism is given by the sheaf isomorphism.

Theorem 3.7. A sheaf F ∈ S is isomorphic to exactly one of the following:

1) LX ⊕ j!kX\K ;

2) j∗E, for a KCH local system E ∈ loc(X \K);

3) j∗Eu, for a unipotent KCH local system Eu ∈ loc(X \K);

4) LX ⊕ i∗Gα, for a rank 1 local system Gα ∈ loc(K), where α ̸= 0 is the
monodromy;

5) LX ⊕F
′, where F ′ admits the non-splitting short exact sequence

0→ i∗kK → F
′ → kX → 0.
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Here LX denotes a local system on X.

Proof. Suppose F ∈ModsΛK
(X). Let ρ : πK → GL(V ), ρ′ : ZK → GL(W )

and T : W → V be the data defined in Lemma 3.3. Since F is simple,
cone(T ) has rank 1. We study each of the cases in Definition 3.4.

(A) Suppose 0→W
T
−→ V and T has a rank 1 cokernel. By Lemma 3.3

(3b), the meridian m acts as identity on the image of T . Therefore the
codimension of the subspace of V on which m acts as the identity is either
0 or 1.

(A1) If the codimension is 0, then the meridianm acts trivially on V . Be-
cause any two meridians are conjugate, any meridian acts trivially. Because
the knot group is generated by the meridians, the entire group acts trivially
on V . In particular, the action of the longitude is trivial. By Lemma 3.3
(3a), the action on W is also trivial. Choose a splitting V = imT ⊕ V0. The
sub-representation of imT together with W determines a constant sheaf
L ∈ loc(X). The subreprensentation V0 determines kX\K ∈ loc(X \K), giv-
ing F ′ = j!kX\K .

(A2) If the codimension is 1, then E := j−1F is either a KCH local
system or a unipotent KCH local system by Lemma 2.4. Because j−1 is left
adjoint to j∗, we have a natural morphism

F → j∗j
−1F = j∗E .

We prove the morphism is an isomorphism by checking the stalk at each
point. If x ∈ X \K, we have (j∗j

−1F)x = (j−1F)x = Fx because j is an
open embedding. If x ∈ K, and suppose m is a meridian which bounds a
disk intersecting K transversely at x, then Fx = W by Lemma 3.3, and

(j∗j
−1F)x = lim

−→
x∈U

Γ(U, j∗j
−1F)(3.2)

= lim
−→
x∈U

Γ(j−1(U), j−1F)

= lim
−→
x∈U

Γ(U ∩ (X \K),F) = V ⟨m⟩,

where V ⟨m⟩ is the subspace of V on which m acts as identity.
Being a KCH or unipotent KCH representation implies that V ⟨m⟩ ⊂ V

has codimension 1. We identify W as a subspace of V through the map T .
BothW and V ⟨m⟩ are codimensional 1 subspaces of V on whichm acts as the
identity. Therefore V ⟨m⟩ = W . We have checked that the stalk of F → j∗E
at each point is an isomorphism. Hence F = j∗E .
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If E is a KCH representation, we get case (2) of the theorem.
If E is a unipotent KCH representation, we get case (3) of the theorem.

(B) Suppose W
T
−→ V → 0 and T has a rank 1 kernel. Since V = imT , it

is invariant under the m-action, and further invariant under the πK-action.
Suppose {w0, w1, . . . , wn} is a basis of W such that w0 spans kerT (which
is unique up to scalar multiplication). Note that W ′ := Spank{w1, . . . , wn}
satisfies T (W ′) = V . Let A = ρ′(K), which is an invertible matrix acting
on W . We study the eigenspaces of A. Since kerT is a sub-representation,
Aw0 = c0w0 for some c0 ∈ k∗. We also have T ◦A(wi) = ρ(ℓ) ◦ (T (wi)) =
T (wi), first by the property of T and second because the πK-action is trivial.
Because w0 spans kerT and T identifiesW ′ with V , we haveAwi = wi + ciw0

for i = 1, . . . , n. Now

A =




c0 c1 . . . cn
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


 .

(B1) If c0 ̸=1, we can choose other basis elements w′
i=wi+(1−c0)

−1ciw0

for i = 1, . . . , n, such that A = diag{c0, 1, . . . , 1}. Then F ∼= LX ⊕ i∗Gα. The
local system LX is determined by W ′, V and T . The rank 1 local system
Gα ∈ loc(K) with α ̸= 1 is determined by kerT .

(B2) If c0 = 1, and all the other ci = 0, then F ∼= LX ⊕ i∗G1, where G1 =
kK is the constant sheaf on the knot. Together with (B1), we obtain case
(4) of the theorem.

(B3) If c0 = 1, and some of the other ci ̸= 0. By Lemma 2.4, there is a
basis such that A = In+1 + E12. We also compute that Ext1X(kX , i∗kK) = k.
Then F = LX ⊕F

′, where LX ∈ loc(X) is a rank n− 1 local system, and
F ′ admits the short exact sequence 0→ i∗kK → F

′ → kX → 0. This is the
last case in the assertion.

We complete the proof. □

3.4. Moduli

We defined S to be the set of isomorphism classes of objects in ModsΛK
(X),

namely the simple abelian sheaves microsupported along the knot conor-
mal. In this section we define a quotient set of “simple sheaves up to local
systems”.
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Definition 3.8. LetM be the quotient set of S, by the equivalence relation
generated by the following relations.

If for some local system LX ∈ loc(X) and two sheaves F1,F2∈ModsΛK
(X),

there is a short exact sequence of F1,F2, and L, namely (ER1) 0→ LX →
F1 → F2 → 0; or (ER2) 0→ F1 → LX → F2 → 0; or (ER3) 0→ F1 → F2 →
LX → 0, then F1 and F2 are equivalent, denoted by F1 ∼ F2. We also force
it to be a symmetric relation, i.e. if F1 ∼ F2, then F2 ∼ F1 as well.

Remark 3.9. Two elements F ,F ′ ∈ S are isomorphic inM, if there exists
a sequence of elements F1, . . . ,Fn ∈ S such that

F = F1 ∼ F2 ∼ · · · ∼ Fn = F ′.

Remark 3.10. The equivalence relations definingM make better sense in
the derived category, where short exact sequences are replaced by distin-
guished triangles. Especially, (ER2) becomes

LX → F2 → F1[1]
+1
−−→,

which looks more similar to the other two equivalence relations. For now,
the ad hoc definition works for our purpose of classifying simple sheaves up
to local systems in the abelian category.

Proposition 3.11. An isomorphism class in M is represented by exactly
one of the following:

1) j∗E, for an irreducible KCH local system E ∈ loc(X \K); or

2) j∗Eu, for an irreducible unipotent KCH local system Eu ∈ loc(X \K);
or

3) i∗Gα, for a rank 1 local system Gα ∈ loc(K).1

Proof. Objects in ModsΛK
(X) are explicitly written down in Theorem 3.7.

(ER1) allows us to set LX = 0 whenever there is a direct summand F = F ′ ⊕
LX because of the natural short exact sequence 0→ F ′ → F → LX → 0.

For the first case of Theorem 3.7, observe that j!kX\K and i∗kK are in the
same class, because of (ER2) and the short exact sequence 0→ j!kX\K →
kX → i∗kK → 0. In the last case when 0→ kK → F → kX → 0, we have F

1In a private conversation, Lenhard Ng explained that he used to construct some
“dimension-0 degenerate” KCH representations, but the definition was not written
down. It probably corresponds to this case.
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equivalent to i∗kK by definition. Therefore cases (1), (4), and (5) of Theo-
rem 3.7 all correspond to case (3) here.

Next we focus on case (2) and (3) of Theorem 3.7, when the sheaf comes
from a KCH or a unipotent KCH local system. Suppose E is a KCH lo-
cal system corresponding to the KCH representation (ρ, V ). The meridian
subspace, defined in (2.1), gives rise to a sub-representation (ρ, V0) which is
irreducible and also KCH. Let E0 be the associated KCH local system. Since
E0 ⊂ E is a subsheaf, there is a short exact sequence of sheaves

0→ j∗E0 → j∗E → j∗E/j∗E0 → 0.

We will argue that j∗E/j∗E0 is a local system on X, then by (ER3) any
KCH representation is equivalent to an irreducible one. First apply the exact
functor j−1, we have j−1(j∗E/j∗E0) = E/E0, which is a trivial local system
on X \K by Lemma 2.3. Second for any point x ∈ K, we restrict to a
contractible open neighborhood U containing x. Since F 7→ F|U is also an
exact functor, we have the short exact sequence

(3.3) 0→ j∗E0|U → j∗E|U → (j∗E/j∗E0)|U → 0.

Locally, we can assume U = R3, K = {x1 = x2 = 0}. There is a unique
meridian m up to homotopy. Taking the stalk at x (which is also an ex-
act functor) of (3.3), there is

0→ (j∗E0|U )x → (j∗E|U )x → ((j∗E/j∗E0)|U )x → 0.

Unwrapping the definition (in the way of (3.2)), we see (j∗E0|U )x=Γ(U, E0)=

V
⟨m⟩
0 , and (j∗E|U )x = Γ(U, E) = V ⟨m⟩. The superscript refers to the invariant

subspace under the action of m. Hence ((j∗E/j∗E0)|U )x = V ⟨m⟩/V
⟨m⟩
0 . By

construction, it is isomorphic to V/V0, which is the stalk of E/E0 at any point
on X \K. Therefore any KCH local system is equivalent to an irreducible
KCH local system in M. The proof for the unipotent KCH representation
is similar (where Lemma 2.3 is replaced by Lemma 2.7).

Now we have reduced to the three cases in the assertion. It remains to
show that any two cases are not equivalent. Our basic strategy is to assume
that there exists one of the short exact sequence in the equivalence relations,
and then to derive a contradiction by restricting to K or to X \K.

We first consider j∗E for an irreducible KCH representation. There can-
not be (ER1) or (ER3), because we can restrict to X \K and the resulting
short exact sequence yields that E has a proper subsheaf, which contradicts
to that E is irreducible. Assume we have (ER2), i.e. a short exact sequence
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0→ F1 → LX → F2 → 0. If F1 = j∗E , by restricting to K, we first see that
F2 cannot be the push forward of a KCH or a unipotent KCH local sys-
tem by dimension reasons. The only possibility left is that F2 = i∗Gα for a
local system Gα ∈ loc(K). Restricting to the knot complement X \K, we
see that E is isomorphic to LX |U . However X is simply connected, yielding
LX = k⊕n

X , and therefore LX |U is a trivial local system, which cannot be
isomorphic to E . A similar argument holds for F2 = j∗E . We conclude that
j∗E for an irreducible KCH local system is not equivalent to any other cases
in the assertion.

The argument for an irreducible unipotent KCH local system is similar.
Finally we consider i∗Gα. Any two distinct α ̸= α′ give non-isomorphic

sheaves. It is straightforward to check they are not equivalent in the moduli
set. It is neither equivalent to the push forward of an irreducible KCH nor
an irreducible unipotent KCH local system by the previous argument.

We complete the proof. □

3.5. Derived sheaves

The notion of the simpleness is generally defined for an object in the derived
category ShΛK

(X). Let ShsΛK
(X) ⊂ ShΛK

(X) be the subcategory of simple
sheaves. We are able to describe the objects in this category up to finite
extensions with locally constant sheaves. In fact, the moduli set of “simple
(derived) sheaves up to locally constant sheaves”, which we term as M̂, up
to degree shifts is isomorphic toM.

We quickly explain the simpleness in our geometric setting. Similar to
Lemma 3.3, a sheaf F ∈ ShΛK

(X) determines the following data:

1) a chain complex of k[πK ]-module V •; and

2) a chain complex of k[ZK ]-module W •; and

3) a chain map T • : W • → V • with compatibility conditions.

The sheaf is simple if cone(T •) ∼= k[d] for some integer d.

Remark 3.12. In the abelian case, a sheaf is equivalent to the list of data,
while in the derived case, the sheaf contains more information. For example,
the sheaf restricted to the knot complement is a locally constant sheaf, which
depends on the simplicial set structure rather than just the knot group. See
[Tr] or [Lu, Appendix A].
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Recall Loc(X) ⊂ ShΛK
(X) is the subcategory of locally constant

sheaves. Consider the set of isomorphism classes of objects in the quotient
ShΛK

(X)/Loc(X). Specifically, we write F1 ∼ F2 and F2 ∼ F1 for two ob-
jects F1,F2 ∈ ShΛK

(X), if there exists a locally constant sheaf LX ∈ Loc(X)
and a distinguished triangle,

F1 → F2 → LX
+1
−−→ .

Then two objects F ,F ′ ∈ ShΛK
(X) are isomorphic in ShΛK

(X)/Loc(X) if
there are intermediate objects F1, . . . ,Fn ∈ ShΛK

(X) such that

F = F1 ∼ F2 ∼ · · · ∼ Fn = F ′.

Since the simpleness passes to the quotient, we define M̂ to be the set
of isomorphism classes of simple objects in ShΛK

(X)/Loc(X).

Lemma 3.13. Suppose F ∈ ShΛK
(X) satisfies that H iF ∈ loc(X) for all

i ̸= d, then F ∼= HdF [−d] in ShΛK
(X)/Loc(X).

Proof. By hypothesis, d is the degree where we may not have a local system.
Let τ be the truncation functor. Consider the distinguished triangle

τ<dF → F → τ≥dF
+1
−−→ .

By construction, H i(τ<dF) = H i(F) when i < d and H i(τ<dF) = 0 when
i≥d. In either case, we have H i(τ<dF)∈ loc(X). Therefore τ<dF ∈Loc(X),
and F ∼= τ≥dF in ShΛK

(X)/Loc(X).

Similarly, applying τ≤d → id→ τ>d
+1
−−→ to τ≥dF , we show τ≤d τ≥dF ∼=

τ≥dF in the quotient. Since τ≤d τ≥dF = HdF [−d], the assertion follows. □

Proposition 3.14. An isomorphism class in M̂ is represented by exactly
one of the following:

1) j∗E [−d], for an irreducible KCH local system E ∈ loc(X \K), d ∈ Z;
or

2) j∗Eu[−d], for an irreducible unipotent KCH local system Eu ∈ loc(X \
K), d ∈ Z; or

3) i∗Gα[−d], for a rank 1 local system Gα ∈ loc(K), d ∈ Z.

Proof. From the earlier part of this subsection, a sheaf F ∈ ShsΛK
(X) de-

termines a chain map T • : V • →W •. Taking cohomology, we get H iT • :
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H iV • → H iW •. Since cone(T •) has rank 1, there is precisely one degree
such that cone(H iT •) is not zero with rank 1.

Because taking the stalk is an exact functor, it commutes with the kernel
and the cokernel, and hence commutes with the homology functor. Therefore
H iF is equivalent to the data of a k[πK ]-module H iV •, a k[ZK ]-module
H iW •, and a linear transform H iT • : H iV • → H iW • with compatibility
conditions. What we get in the last paragraph can be rephrased as H iF is a
simple sheaf concentrated at one degree, and zero otherwise. By Lemma 3.13,
F ∼= HdF [−d] in ShΛK

(X)/Loc(X).
Since HdF ∈ModsΛ(X) is a simple sheaf concentrated at degree zero, we

can apply Proposition 3.11 and obtain the list in the assertion. It remains to
show that any two representatives are not equivalent. A morphism between
F1,F2 ∈ ShΛ(X)/Loc(X) is represented by a roof F1 ← F → F2. Suppose
that we have a distinguished triangle

F → F2 → LX
+1
−−→,

where (1) F ∈ ShΛK
(X), (2) F2 ∈ ShsΛK

(X) is a representative in the asser-

tation, and (3) LX ∈ Loc(X). Suppose HdF2 ̸= 0. Taking cohomology, we
get a long exact sequence in Mod(X):

0→ Ld−1 → HdF
u
−→ HdF2

v
−→ Ld → Hd+1F → 0,

where Ld−1,Ld ∈ loc(X) are local systems on X. Because HdF2 is irre-
ducible, we have either ker v is equal to either 0 or HdF2. Similarly imu is
equal to either 0 or HdF2.

If HdF is simple and Hd+1F ∈ loc(X), we claim that v = 0. Suppose
otherwise, v must be injective since ker v is equal to either 0 or HdF2. In
particular, there is a short exact sequence,

0→ HdF2
v
−→ Ld → Hd+1F → 0.

Note that Ld and Hd+1F are local systems on X. The short exact sequence
cannot hold, because any representative in the assertion does not fit into
a two-term resolution by local systems on X. We can see a contradiction
that the dimension will not match after we take the stalk at a point either
on the knot or on the knot complement. Following the claim that v = 0, we
have a short exact sequence 0→ Ld−1 → HdF

u
−→ HdF2 → 0, and then the

argument reduces to the abelian case in Proposition 3.11.
If Hd+1F is simple and HdF ∈ loc(X), then v ̸= 0 (because otherwise

Ld ∼= Hd+1F , a contradiction) and u = 0 (because ker v = imu). We have
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a short exact sequence 0→ HdF2
v
−→ Ld → Hd+1F → 0, again studied in

Proposition 3.11.
In either case, we have verified that if F → F2 is an isomorphism in the

quotient category, then the two sheaves must have the same representative.
The same arguments hold for F → F1. Hence no pair of the sheaves in the
list are equivalent. We complete the proof. □

Corollary 3.15. Let Z acts on M̂ by degree shift, then M̂/Z ∼=M.

Proof. It follows from Proposition 3.11 and Proposition 3.14. □

Since the action is free, we can rewrite the relation as:

M̂ =M× Z.

4. Augmentations

We introduce augmentations in this section. In the standard context, aug-
mentations are defined based on the Legendrian contact dga, whose coeffi-
cient ring contains the full second relative homology class. However in the
specialized version that we will discuss, it suffices to just introduce the no-
tion of the (framed) cord algebra. The definition was first introduced in
[Ng3]. We adopt the convention in a later update [Ng4].

4.1. Augmentations

The framing of an oriented knot is a choice of generators of H1(∂n(K)).
Suppose λ, µ are the classes of the longitude ℓ and a preferred meridian m,
we can identify Z[H1(∂n(K))] with Z[λ±1, µ±1].

The framed cord algebra PK of K is the tensor algebra over Z[λ±1, µ±1]
freely generated by the elements in πK , modulo the relations:

1) [e] = 1− µ;

2) [γm] = [mγ] = µ[γ] and [γℓ] = [ℓγ] = λ[γ], for γ ∈ πK ;

3) [γ1γ2]− [γ1mγ2]− [γ1][γ2] = 0, for γ1, γ2 ∈ πK ,

where e ∈ πK is the identity element, and [γ] is a generator of PK for any
γ ∈ πK .
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Definition 4.1. An augmentation is a unit-preserving algebra homomor-
phism

ϵ : PK → k.

Equivalently, one can define an augmentation by assigning to each gen-
erator in PK an element in k, preserving the relations above. Explicitly, it
means:

1) (Normalization) ϵ([e]) = 1− ϵ(µ);

2) (Meridian) ϵ([mγ]) = ϵ([γm]) = ϵ(µ[γ]);

3) (Longitude) ϵ([ℓγ]) = ϵ([γℓ]) = ϵ(λ[γ]);

4) (Skein relations) ϵ([γ1γ2])− ϵ([γ1mγ2]) = ϵ([γ1])ϵ([γ2]);

for any γ, γ1, γ2 ∈ πK .

Remark 4.2. Some of the relations in Definition 4.1 are redundant.

1) The meridian relations are always satisfied, as long as the normaliza-
tion and skein relations are satisfied. Taking γ1 = e, γ2 = γ in the skein
relation, we have

ϵ([γ])− ϵ([mγ]) = ϵ([e])ϵ([γ]) = (1− ϵ(µ))ϵ([γ]),

with the first equality by the skein relation and the second equality
by the normalization. Organizing the terms we get ϵ([mγ]) = ϵ(µ[γ]).
Similarly we have ϵ([γm]) = ϵ([γ]µ) = ϵ(µ[γ]).

2) The longitude relations are reduced in some cases.
If ϵ(µ) ̸= 1 (or ϵ([e]) ̸= 0 by normalization), then ϵ([ℓγ]) = ϵ([γℓ]) is

automatically satisfied. Set γ1 = ℓ, γ2 = γ in the skein relation:

ϵ([ℓγ])− ϵ([ℓmγ]) = ϵ([ℓ])ϵ([γ]).

Because ℓ and m commute, ϵ([ℓmγ]) = ϵ([mℓγ]), which further equals
ϵ(µ[ℓγ]) by the meridian relation. Organizing the terms, we have

(4.1) (1− ϵ(µ))ϵ([ℓγ]) = ϵ([ℓ])ϵ([γ]).

Similarly we compute (1− ϵ(µ))ϵ([γℓ]) = ϵ([γ])ϵ([ℓ]). Since 1− ϵ(µ) ̸=
0, we have ϵ([ℓγ]) = (1− ϵ(µ))−1ϵ([ℓ])ϵ([γ]) = ϵ([γℓ]). The assertion is
verified.
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Furthermore, if ϵ(µ) ̸= 1 and ϵ([ℓ]) = ϵ(λ)ϵ([e]), then we claim that

ϵ([ℓγ]) = ϵ(λ[γ]) for all γ ̸= e

as well. By the normalization and this hypothesis, (4.1) implies
ϵ([e])ϵ([ℓγ]) = ϵ([ℓ])ϵ([γ]) = ϵ(λ)ϵ([e])ϵ([γ]). Cancelling ϵ([e]) (which is
nonzero by assumption), we verify the desired assertion.

We will define a map which sends a simple sheaf concentrated at degree
zero to an augmentation.

Recall that S is the set of isomorphism classes of simple abelian sheaves.
Also recall that a sheaf F ∈ModΛK

(X) determines two representations:

1) a representation ρ : πK → GL(V ), and

2) a representation ρ′ : ZK → GL(W ).

Definition 4.3. Given a sheaf F ∈ModΛK
(X), we define ϵF : PK → k by

ϵF (λ) = tr(ρ(ℓ))− tr(ρ′(K));

ϵF (µ) = tr(ρ(m))− dimV + 1;

ϵF ([γ]) = tr (ρ(γ)− ρ(mγ)) ,

where tr stands for the trace of an operator.

Theorem 4.4. If F ∈ S, then ϵF is an augmentation.

Proof. We will go through Definition 4.1. To verify the normalization, we
compute

ϵF ([e]) = tr(ρ(e)− ρ(m)) = tr(idV − ρ(m)) = dimV − tr(ρ(m)),

and

ϵF (1− µ) = 1− ϵF (µ) = 1− (tr(ρ(m))− dimV + 1) = dimV − tr(ρ(m)).

The two sides equal.
By Remark 4.2 (1), the meridian relations always hold if we can show

that the skein relations are satisfied.
To see the longitude and skein relations, we apply Theorem 3.7 and verify

them case by case. It is straightforward to check that a direct summand with
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LX does not change the augmentation. In other words, if F1 = F2 ⊕ LX ,
then ϵF1

= ϵF2
. We assume LX = 0 in all the cases of Theorem 3.7.

In either case (1) or (5) of Theorem 3.7, namely F ∼= j!kX\K or F admits
the short exact sequence 0→ kK → F → kX → 0, (ρ, V ) is a constant rank
1 representation. We have ϵF ([γ]) = 1− 1 = 0 for any γ ∈ πK . The longitude
relation and the skein relations are satisfied.

In case (4) of Theorem 3.7, F = i∗Gα for a rank 1 local system Gα on K.
By construction we have V = 0. Therefore ϵF ([γ]) = 0, and the longitude
and skein relations follow.

Finally in case (2) and (3) of Theorem 3.7. We have F = j∗E for a KCH
or unipotent local system. By Lemma 2.4, there is a basis of V such that
M := idV − ρ(m) equals to

• cE11 for some c ̸= 0,−1, if E is a KCH local system; or

• E12, if E is a unipotent KCH local system.

We check the skein relations. Let A = ρ(γ1) and B = ρ(γ2), then

ϵF ([γ1γ2])− ϵF ([γ1mγ2]) = tr(ρ(γ1γ2)− ρ(mγ1γ2))

− tr(ρ(γ1mγ2)− ρ(mγ1mγ2)),

= tr
(
(idV − ρ(m))ρ(γ1)(idV − ρ(m))ρ(γ2)

)

= tr(MAMB).

and

ϵF ([γ1])ϵF ([γ2]) = tr
(
(idV − ρ(m))ρ(γ1)

)
tr
(
(idV − ρ(m))ρ(γ2)

)

= tr(MA)tr(MB).

If E is a KCH local system, both equal to c2A11B11. If E is a unipotent KCH
local system, both equal to A21B21. The skein relations are verified.

To see the longitude relation. If M = cE11 with c ̸= 0,−1, then ϵF (µ) ̸=
1. By Remark 4.2 (2), it suffices to check ϵF ([ℓ]) = ϵF (λ)ϵF ([e]). By defini-
tion,

ϵF ([ℓ]) = tr(ρ(ℓ)− ρ(mℓ)) = tr(ρ(ℓ)(idV − ρ(m))),

and

ϵF (λ)ϵF ([e]) = (tr(ρ(ℓ))− tr(ρ′(K)))tr(idV − ρ(m)).

By Remark 2.2, and that F = j∗E , we have

ρ(m) =

(
µ0

In−1

)
, ρ(ℓ) =

(
λ0

∗n−1

)
, ρ′(K) =

(
∗n−1

)
.
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Both hand sides equal to λ0(1− µ0).
If M = E12, then we use the fact that ℓ and m commute to obtain

ρ(m) =



1 1

1
In−2


 , ρ(ℓ) =



a b

a
∗n−2


 , ρ′(K) =

(
a
∗n−2

)
.

Note that if {v1, . . . , vn} is the basis for V , then W ⊂ V has the basis
{v1, v̂2, v3, . . . , vn}. Let M := idV − ρ(m), C := ρ(γ) for a choice γ ∈ πK .
Then

ϵF ([γℓ]) = tr(ρ(γℓ)− ρ(mγℓ)) = tr(MCρ(ℓ)) = −aC21,

and

ϵF ([ℓγ]) = tr(ρ(ℓγ)− ρ(mℓγ))

= tr(ρ(ℓγ)− ρ(ℓmγ)) [Since ℓ and m commute]

= tr(ρ(ℓ)MC) = −aC21,

and

ϵF (λ)ϵF ([γ]) =
(
tr(ρ(ℓ))− tr(ρ′(K))

)
tr(MC) = −aC21.

We have verified all the relations in all cases. The proof is complete. □

Remark 4.5. Stéphane Guillermou suggested the following improvement
of the proof, on how to verify the skein relations. The simpleness, by Defi-
nition 3.4, yields for the first case,

0→W
T
−→ V

u
−→ k → 0.

Note that idV −ρ(m)∈Hom(V, V ) is an endomorphism. Recall from Lemma
3.3 (3b) that m acts on W as identity, hence (idV − ρ(m)) ◦ T = 0. It fur-
ther implies that idV − ρ(m) ∈ Hom(V, V ) factors through k. Namely, there
is some morphism a ∈ Hom(k, V ), such that idV − ρ(m) = p ◦ a. Therefore
M := idV − ρ(m) has rank 1, which leads to tr(MAMB) = tr(MA)tr(MB).

For the second case when

0→ k →W → V → 0,

we have idV − ρ(m) = 0 by Lemma 3.3 (3b). Then ϵF ([γ]) = 0. The skein
relations follow.
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Let Aug be the set of augmentations. By sending F to ϵF , we have
defined a map

S → Aug.

The map descends to the moduli set M, in the sense that we fix a rep-
resentative in each isomorphism class, for example the representatives in
Proposition 3.11. For other representatives in the same isomorphism class,
sometimes there is a sign ambiguity, which we discuss in the following re-
mark.

Remark 4.6. Given a local system LX ∈ loc(X), one can check that the
associated map ϵLX

is zero for all elements in πK . For any γ ∈ πK , if F1 ∼ F2

by (ER1) and (ER3), then ϵF1
([γ]) = ϵF2

([γ]), and if they are related by
(ER2), then ϵF1

([γ]) = −ϵF2
([γ]). For µ and λ, ϵ(µ) is determined by ϵ([e])

according to the normalization, ϵ(λ) remains the same under (ER1) and
(ER3), and negates under (ER2). In fact, the only chance we need to apply
(ER2) is the following short exact sequence, or its variation by adding a
local system LX ,

0→ j!kX\K → kX → i∗kK → 0.

For the two simples sheaves here, ϵ([γ]) = 0 for all γ ∈ πK .

The sign can be better understood and taken care of if we work with
simple sheaves in the derived cateogry. Suppose V • is a chain complex and
T • : V • → V • is a chain map. For each n, there is a linear endomorphism
HnT • : HnV • → HnV • of the n-th homology vector space. We define

tr•(T •) =
∑

n∈Z

(−1)n tr(HnT •).

In some contexts, tr• is referred to as the supertrace. Recall from Section 3.5
that an object F ∈ ShΛK

(X) gives the following data: (1) a chain complex of
k[πK ]-module V • (the πK-action given by ρ), (2) a chain complex of k[ZK ]-
module W • (the ZK-action given by ρ′), and (3) a chain map T • : W • → V •.
The simpleness of F requires cone(T •) ∼= k[d] for some integer d. We define
ϵF to be:

ϵF (λ) = (−1)d(tr•(ρ(ℓ))− tr•(ρ′(K)));

ϵF (µ) = (−1)d tr•(ρ(m)− idV •) + 1;

ϵF ([γ]) = (−1)d tr• (ρ(γ)− ρ(mγ)) .
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It is straightforward to check that shifting the degree of a sheaf does not
change the associated map, namely ϵF = ϵF [1]. This makes sense. The framed
cord algebra models the degree zero homology of the dga of the knot conor-
mal. The definition of the dga depends on a choice of the Maslov potential,
whose sheaf counterpart is the homological degree. Since the knot conor-
mal is connected, different choices of Maslov potentials give identical dgas
and augmentations, and so should different choices of homological degrees
of sheaves.

Proposition 4.7. If F ∈ M̂, then ϵF is an augmentation.

Proof. Suppose there is a distinguished triangle,

F1 → F2 → LX
+1
−−→,

then ϵF1
= ϵF2

. Hence it suffices to check for the representatives in each iso-
morphism classes. Because shifting the degree does not change the associated
map, by Proposition 3.14, it reduces to the simple sheaves concentrated at
degree zero. By Theorem 4.4, we see that ϵF is a well-defined augmenta-
tion. □

Corollary 4.8. There is a well-defined map

M→Aug,

by sending F 7→ ϵF .

Proof. It follows from Proposition 4.7, Corollary 3.15, and the fact that
shifting the degree of a simple sheaf does not change the associated aug-
mentation. □

Remark 4.9. Responding to the sign ambiguity in the previous Remark
4.6, the short exact sequence 0→ F1 → LX → F2 → 0 in (ER2) can be
rewritten as a distinguished triangle

LX → F2 → F1[1]
+1
−−→ .

Therefore we have ϵF2
= ϵF1[1] = ϵF1

. The sign ambiguity does not exist any
more.
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4.2. KCH representations and augmentations

Recall from Section 2.2 that a KCH representation is a representation of the
knot group ρ : πK → GL(V ) such that the meridian action is diagonalizable
and equals to identity on a subspace of exact codimension 1. Suppose m is a
meridian and ℓ is the longitude. An eigenvector of the eigenvalue µ0 in ρ(m)
is also an eigenvector of ρ(ℓ), corresponding to the eigenvalue λ0.

Ng defined an augmentation ϵ from the KCH representation by assign-
ments to the generators of the framed cord algebra

ϵρ(µ) = µ0, ϵρ(λ) = λ0, ϵρ([γ]) = (1− µ0)ρ(γ)11,

where ρ(γ)11 is the (1, 1)-entry of the matrix ρ(γ) [Ng3]. This construction
gives a map

(4.2) {KCH representation (ρ, V )} → {Augmentation ϵ | ϵ(µ) ̸= 1}.

Cornwell proves that this map (4.2) is surjective. Moreover, every such aug-
mentation lifts to an irreducible KCH representation, unique up to isomor-
phism [Co2].

By Theorem 3.7, the KCH representations can be naturally identified as
a subset of simple abelian sheaves microsupported along the knot conormal.
In the last section, we defined a map from these sheaves to the augmenta-
tions. The following proposition shows that (4.2) factors through these two
maps.

Proposition 4.10. Let (ρ, V ) be a KCH representation and E the associ-
ated KCH local system. Let F = j∗E be a simple sheaf. Then ϵρ = ϵF .

Proof. The sheaf determines a representation ρ′ : ZK →W (Lemma 3.3).
By construction, W is identified as a subspace of V . By Remark 2.2, we can
choose a basis of V such that

ρ(m) =

(
µ0

In−1

)
, ρ(ℓ) =

(
λ0

∗n−1

)
, ρ′(K) =

(
∗n−1

)
.

Here, if {v1, v2, . . . , vn} is the basis for V , then {v̂1, v2, . . . , vn} is the basis
for W . Also note that ∗n−1 in both ρ(ℓ) and ρ′(K) refers to the same square
matrix. It is straightforward to compute:

• ϵF (µ) = tr(ρ(m))− dimV + 1 = µ0 = ϵρ(µ); and

• ϵF (λ) = tr(ρ(ℓ))− tr(ρ′(K)) = λ0 = ϵρ(λ); and
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• ϵF ([γ]) = tr (ρ(γ)− ρ(mγ)) = tr((1− µ0)E11ρ(γ))
= (1− µ0)ρ(γ)11 = ϵρ([γ]). □

4.3. Unipotent KCH representations and augmentations

In this section, we present a correspondence between unipotent KCH rep-
resentations and augmentations — every augmentation with ϵ([e]) = 0 but
ϵ([γ]) ̸= 0 for some γ ∈ πK can be lifted to an irreducible unipotent KCH
representation, unique up to isomorphism.

Suppose {mi}i∈I is a finite set of meridian generators of πK . Suppose
I = {1, . . . , N} has size N . Unless K is the unknot there is N ≥ 3. Let
m = m1 be the preferred meridian, whose homology class is µ. Since any
meridian mt is conjugate to m, we choose gt ∈ πK to be elements such that
mt = g−1

t mgt.
Suppose ϵ : PK → k is an augmentation. We consider a square matrix R

defined by ϵ, where entries are given by

Rij = ϵ([gig
−1
j ]).

Sometimes the matrix R determines ϵ, and sometimes one needs to specified
ϵ(λ) in addition. The idea is that one can express a knot group element
as a word of meridian generators, each of which is a conjugation of the
preferred meridian m. Applying the skein relations iteratively, one obtains
an expression without m, but only products of gig

−1
j . It becomes clear when

ϵ(λ) needs to be specified after we prove the main Theorem 4.17.
Let Rj be the column vectors of R. We will construct a knot gorup

representation over the following vector space

V := Spank{Rj}j∈I .

We adopt a convention using a floating index α exhausting I to represent
some column vectors of size N . For any γ ∈ πK , define

ϵ([gαγ]) :=
(
ϵ([g1γ]) , ϵ([g2γ]) , . . . , ϵ([gNγ])

)
.

Proposition 4.11. The following map defines a representation ρ : πK →
GL(V ):

(4.3) ρ(γ)Rj := ϵ([gαγg
−1
j ]), for any γ ∈ πK .
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Remark 4.12. This to be justified representation is a simplification and
an extension of the construction in [Co2]. Cornwell’s original construction
introduced a localized algebra and a “universal augmentation”, which work
well but limited to the case when ϵ([e]) ̸= 0. Our goal is to build the cor-
respondence between augmentations and simple sheaves, in all three cases
classified in Proposition 3.14. The new construction will adapt to all cases.

Proof. There are several things we need to justify. For any γ ∈ πK , ρ(γ)
is closed and well-defined. The actions of based loops respect the group
structure, namely the identity and the group product.

(1) Closedness. One needs to check that ρ(γ)Rj ∈ V for any γ ∈ πK and
any Ri. It suffices to check for meridian generators. For any Rj and any
meridian generator mt,

(4.4) ρ(mt)Rj = Rj − ϵ([gtg
−1
j ])Rt, ρ(m−1

t )Rj = Rj + ϵ([m−1gtg
−1
j ])Rt,

because

ρ(mt)Rj = ϵ([gαmtg
−1
j ]) [Definition (4.3)]

= ϵ([gαg
−1
t mgtg

−1
j ]) [mt = g−1

t mgt]

= ϵ([gαg
−1
t gtg

−1
j ])− ϵ([gαg

−1
t ])ϵ([gtg

−1
j ]) [Skein relation]

= Rj − ϵ([gtg
−1
j ])Rt,

and similarly

ρ(m−1
t )Rj = ϵ([gαg

−1
t m−1gtg

−1
j ])

= ϵ([gαg
−1
t mm−1gtg

−1
j ]) + ϵ([gαg

−1
t ])ϵ([m−1gtg

−1
j ])

= Rj + ϵ([m−1gtg
−1
j ])Rt.

(2) Identity. It is straightforward to see that ρ([e])Rj = ϵ([gαeg
−1
j ]) =

ϵ([gαg
−1
j ]) = Rj .

(3) Group product. We need ρ(γ1)ρ(γ2) = ρ(γ1γ2), and we prove it by
an induction on the word length of γ2. To see the initial step, let γ2 = mt.
For any γ1 ∈ πK and any Rj , there are

ρ(γ1)ρ(mt)Rj = ρ(γ1)
(
Rj − ϵ([gtg

−1
j ])Rt

)
[Equation (4.4)]

= ϵ([gαγ1g
−1
j ])− ϵ([gtg

−1
j ])ϵ([gαγ1g

−1
t ]), [Definition (4.3)]
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and

ρ(γ1mt)Rj = ϵ([gαγ1mtg
−1
j ])

= ϵ([gαγ1g
−1
t mgtg

−1
j ])

= ϵ([gαγ1g
−1
t gtg

−1
j ])− ϵ([gαγ1g

−1
t ])ϵ([gtg

−1
j ]).

Therefore ρ(γ1)ρ(mt) = ρ(γmt). Similarly there is ρ(γ1)ρ(m
−1
t ) = ρ(γ1m

−1
t )

because

ρ(γ1)ρ(m
−1
t )Rj = ϵ([gαγ1g

−1
j ]) + ϵ([gαγ1g

−1
t ])ϵ([m−1gtg

−1
j ]) = ρ(γ1m

−1
t )Rj .

To see the induction step, suppose γ2 = γ′2m
±1
t such that γ′2 satisfied the

induction hypothesis that ρ(γ1)ρ(γ
′
2) = ρ(γ1γ

′
2) for any γ1 ∈ πK , then

ρ(γ1)ρ(γ
′
2m

±1
t ) = ρ(γ1)ρ(γ

′
2)ρ(m

±1
t ) = ρ(γ1γ

′
2)ρ(m

±1
t ) = ρ(γ1γ

′
2m

±1
t ).

Therefore ρ(γ1)ρ(γ2) = ρ(γ1γ2).
(4) Well-definedness. We want to show that for any γ ∈ πK , if there is a

subset I ′ ⊂ I such that
∑

i∈I′ aiRi = 0, then
∑

i∈I′ aiρ(γ)Ri = 0. It suffices
to proof for γ = m±1

t , then the argument continues by induction on the word
length of γ. Let γ = mt, by (4.4), we have

∑

i∈I′

aiρ(γ)Ri =
∑

i∈I′

aiRi −
∑

i∈I′

aiϵ([gtg
−1
i ])Rt.

The first summand is zero by hypothesis. In the second summand,∑
i∈I′ aiϵ([gtg

−1
i ]) is the t-th entry of

∑
i∈I′ aiRi = 0, and therefore also

equals to zero. The argument for γ = m−1
t is similar.

We complete the proof. □

Cornwell proved if ϵ([e]) = 0 (or ϵ(µ) = 1), then (4.3) is an irreducible
KCH representation [Co2, Corollary 3.7]. We show that if ϵ([e]) = 0 but
ϵ([γ]) ̸= 0 for some γ ∈ π, then (4.3) defines an irreducible unipotent KCH
representation. The next lemma unwraps the condition for the augmenta-
tion.

Lemma 4.13. The following conditions are equivalent for an augmentation
ϵ : PK → k,

1) ϵ([γ]) = 0 for all γ ∈ πK ;

2) ϵ([g−1
i ]) = 0 for all i ∈ I;



✐

✐

“3-Gao” — 2020/9/11 — 1:16 — page 1060 — #34
✐

✐

✐

✐

✐

✐

1060 Honghao Gao

3) ϵ([gi]) = 0 for all i ∈ I.

Proof. By construction g1 = g−1
1 = e, hence ϵ([e]) = 0 in either (2) or (3).

Obviously (1) ⇒ (2) and (1) ⇒ (3).

(2)⇒ (1). We prove by induction on the word length in terms of meridian
generators.

Initial step. Suppose mt is a meridian generator, then

ϵ([mt]) = ϵ([g−1
t mgt])

= ϵ([g−1
t gt])− ϵ([g−1

t ])ϵ([gt]) [Skein relation]

= ϵ([e])− ϵ([g−1
t ])ϵ([gt]) = 0,

and

ϵ([m−1
t ]) = ϵ([g−1

t m−1gt])

= ϵ([g−1
t mm−1gt]) + ϵ([g−1

t ])ϵ([m−1gt]) [Skein relation]

= ϵ([e]) + ϵ([g−1
t ])ϵ([m−1gt]) = 0.

Induction step. Suppose ϵ([γ]) = 0, we show that ϵ([mtγ]) = ϵ([m−1
t γ]) =

0 for any meridian generator mt.

ϵ([mtγ]) = ϵ([g−1
t mgtγ]) = ϵ([g−1

t gtγ])− ϵ([g−1
t ])ϵ([gtγ])

= ϵ([γ])− ϵ([g−1
t ])ϵ([gtγ]) = 0,

and similarly,

ϵ([m−1
t γ]) = ϵ([g−1

t m−1gtγ]) = ϵ([g−1
t mm−1gtγ]) + ϵ([g−1

t ])ϵ([m−1gtγ])

= ϵ([γ]) + ϵ([g−1
t ])ϵ([m−1gtγ]) = 0.

We complete the induction, proving that (2) ⇒ (1).

The proof of (3) ⇒(1) is similar, except performing the induction on
γmt or γm

−1
t . □

Proposition 4.14. If ϵ([e]) = 0 but ϵ([γ]) ̸= 0 for some γ ∈ πK , then (4.3)
defines an irreducible unipotent KCH representation.

Proof. (1) We first prove that under the hypothesis, the matrix Rij =
ϵ([gig

−1
j ]) has rank at least 2. Then the representation (ρ, V ) defined in

(4.3) has dimension at least 2.
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Since ϵ([e]) = 0, the diagonal entries of R are 0.
Recall that m1 = m, which implies g1 = e. Therefore Ri1 = ϵ([gig

−1
1 ]) =

ϵ([gi]) and R1j = ϵ([g1g
−1
j ]) = ϵ([g−1

j ]). By Lemma 4.13, neither the first col-
umn Ri1 nor the first row R1j is zero, otherwise ϵ([γ]) = 0 for all γ ∈ πK ,
contradicting the hypothesis.

Since the first row is not zero, there is a non-zero entry, say R1s ̸= 0.
Then the column vector Rs is non-zero, and linearly independent from R1

because R11 = 0 but R1s ̸= 0. There are two linearly independent non-zero
vectors R1 and Rs. Hence the rank is at least 2.

Finally we compute ρ(m). By (4.4), there is ρ(m)Rj = Rj − ϵ([g−1
j ])R1.

In particular, ρ(m)R1 = R1 because ϵ([g−1
1 ]) = ϵ([e]) = 0. By Lemma 2.4

(which has a dimension constraint), ρ(m) = idV + E12 under some basis. It
is a unipotent KCH representation by definition.

(2) By Lemma 2.6 and Lemma 2.7, every unipotent KCH representa-
tion (ρ̃, Ṽ ) contains a unique irreducible unipotent KCH sub-representation,
characterized by Spank{ṼI} where Ṽi := im (idṼ − ρ̃(mi)) for each i ∈ I.
Equation (4.4) yields ρ(mi)Rj = Rj − ϵ([gig

−1
j ])Ri. In other words, if we

fix i ∈ I, then for any other j ∈ I, there is

(idV − ρ(mi))Rj = ϵ([gig
−1
j ])Ri.

Therefore Vi :=im (idV − ρ(mi))=Spank{Ri}. By definition V =Spank{VI},
which is thusly irreducible. □

Next we show that the lifted unipotent KCH representation in turn
induces the augmentation begun with.

Proposition 4.15. Suppose Eu is a unipotent KCH representation defined
by an augmentation ϵ as in (4.3). Let F = j∗Eu be the associated simple
sheaf. Then ϵF = ϵ.

Proof. Because both ϵF and ϵ are homomorphisms from PK to k, it suffices
to check for the generators of PK , namely µ, λ and [γ] for γ ∈ πK .

In fact, only ϵF ([γ]) = ϵ([γ]) is necessary. The augmented values of µ
and λ automatically agree by the following argument. Since Eu is a unipotent
KCH representation, there is ϵF (µ) = 1 = ϵ(µ). By the hypothesis on ϵ, there
exists γ ∈ πK such that ϵ([γ]) ̸= 0. In Definition 4.1, the longitude relation
yields ϵ([ℓγ]) = ϵ(λ)ϵ([γ]), which further implies ϵ(λ) = ϵ([γ])−1ϵ([ℓγ]). The
same holds for ϵF . Therefore, if we have verified that ϵF ([γ]) = ϵ([γ]) for all
γ ∈ πK , then ϵF (λ) = ϵF ([γ])

−1ϵF ([ℓγ]) = ϵ([γ])−1ϵ([ℓγ]) = ϵ(λ).
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We prove ϵF ([γ]) = ϵ([γ]) by induction on the word length of meridian
generators. To prepare the proof, suppose I ′ := {j1, . . . , jk} ⊂ {2, . . . , N} ⊂
I is a subset of indices, such that {R1, Rj1 , . . . , Rjk} is a basis of V . Since
ρ(m)Rj = Rj − ϵ([g−1

i ])R1 by (4.4), under the chosen basis there is

ρ(m) =




1 −ϵ([g−1
j1

]) . . . −ϵ([g−1
jk

])

1
. . .

1


 .

Then for any γ ∈ πK , there is

(4.5) ϵF ([γ]) = tr
(
(idV − ρ(m))ρ(γ)

)
=

k∑

∗=1

ϵ([g−1
j∗

])ρ(γ)∗1,

where ρ(γ)∗1 is the (∗+ 1, 1) entry of the matrix ρ(γ) under the chosen basis
(Note this unusual convention records entries in the first column starting
from the second row).

Initial step. We need to check for γ=m±1
t for any meridian generator mt.

Consider γ = mt in the following cases. If mt = m, it is straightforward
to compute ϵF ([m]) = 0. Meanwhile by the meridian relation in Defini-
tion 4.1, ϵ([m]) = ϵ([me]) = ϵ(µ[e]) = 0, which equals to ϵF ([m]). Next we
assume t ∈ I ′ = {j1, . . . , jk}, then by (4.4) there is

(4.6) ρ(mt)R1 = R1 − ϵ([gtg
−1
1 ])Rt = R1 − ϵ([gt])Rt.

We have ρ(γ)∗1 = −ϵ([gt]) when j∗ = t, and ρ(γ)∗1 = 0 when j∗ ∈ I ′ \ {t}.
By equation (4.5) we have

ϵF ([mt]) = −ϵ([g
−1
t ])ϵ([gt]) = −ϵ([e]) + ϵ([g−1

t mgt]) = ϵ([mt]).

Finally if t /∈ I ′, assume a linear combination Rt = cR1 +
∑k

∗=1 c∗Rj∗ . In

particular, it implies ϵ([g−1
t ]) =

∑k
∗=1 c∗ϵ([g

−1
j∗

]) by considering the first en-
try. Applying equation (4.6) and using the linear combination, we get

(4.7) ρ(mt)R1 = R1 − ϵ([gt])Rt = (1− c)R1 −

k∑

∗=1

c∗ϵ([gt])Rj∗ .
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Then there is

ϵF ([mt]) = −

k∑

∗=1

ϵ([g−1
j∗

])c∗ϵ([gt])

= −ϵ([gt])ϵ

(
k∑

∗=1

c∗[g
−1
j∗

]

)
= −ϵ([gt])ϵ([g

−1
t ]) = ϵ([mt]).

Here the first equality is due to equations (4.5) and (4.7), the second equality
is because ϵ is linear with respect to the scalar multiplication, the third equal-
ity is because of ϵ([g−1

t ]) =
∑k

∗=1 c∗ϵ([g
−1
j∗

]) derived from the linear combi-
nation.

We have proven for γ = mt for any meridian generatormt, and will argue
for γ = m−1

t . Observe that for any augmentation ϵ0 with ϵ0(µ) = 1, there is
ϵ0([mγ]) = ϵ0([γ]) = ϵ0([m

−1γ]) for any γ ∈ πK (by the meridian relation in
Definition 4.1). Consequently by the skein relations, there are

ϵ0([mt]) = ϵ0([g
−1
t mgt]) = ϵ0([e]) + ϵ0([g

−1
t ])ϵ0([gt]) = ϵ0([g

−1
t ])ϵ0([gt]),

and

ϵ0([m
−1
t ]) = ϵ0([g

−1
t m−1gt])

= ϵ0([e])− ϵ0([g
−1
t ])ϵ0([m

−1gt]) = −ϵ0([g
−1
t ])ϵ0([gt]).

Therefore ϵ0([mt]) = −ϵ0([m
−1
t ]). Further we have

ϵF ([m
−1
t ]) = −ϵF ([mt]) = −ϵ([mt]) = ϵ([m−1

t ]),

completing the initial step.
Induction step. Suppose ϵF ([γ]) = ϵ([γ]), we show that ϵF ([mtγ]) =

ϵ([mtγ]) for any generating meridian mt. Compute

ρ(mtγ)R1 = ϵ([gαg
−1
t mgtγ])

= ϵ([gαγ])− ϵ([gαg
−1
t ])ϵ([gtγ])

= ρ(γ)R1 − ϵ([gtγ])Rt.

Reorganizing the terms, we have

(4.8) (ρ(mtγ)− ρ(γ))R1 = −ϵ([gtγ])Rt.
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We continue the argument depending on whether t ∈ I ′, as in the initial
step. If so, by equations (4.5) and (4.8), there is

ϵF ([mtγ])− ϵF ([γ]) = −ϵ([g
−1
t ])ϵ([gtγ])

= ϵ([g−1
t mgtγ])− ϵ([γ]) = ϵ([mtγ])− ϵ([γ]).

Because ϵF ([γ]) = ϵ([γ]) by the induction hypothesis, there is ϵF ([mtγ]) =
ϵ([mtγ]). If t /∈ I ′, we can again write down the linear combination, and then
a similar argument proceeds.

Under the same induction hypothesis, it can be proven similarly that
ϵF ([m

−1
t γ]) = ϵ([m−1

t γ]), except that the recursive formula (4.8) appears
slightly different:

(ρ([m−1
t γ])− ρ(γ))R1 = ϵ([m−1gtγ])Rt.

We complete the induction argument, as well as the proof. □

Finally we present a uniqueness result.

Proposition 4.16. The irreducible unipotent KCH representation that in-
duces a given augmentation ϵ with ϵ([e]) = 0 but ϵ([γ]) ̸= 0 for some γ ∈ πK ,
is unique up to isomorphism.

Proof. Suppose (ρ̃, Ṽ ) is an irreducible unipotent KCH representation which
induces the augmentation ϵ. Let (ρ, V ) be the unipotent KCH representation
lifted from ϵ as in (4.3). By Proposition 4.14, it is also irreducible. It suffices
to prove that (ρ̃, Ṽ ) and (ρ, V ) are isomorphic.

By Lemma 2.6, Ṽ = Spank{ṼI}, where Ṽi := im (idṼ − ρ̃(mi)) for each
i ∈ I. A similar statement holds for (ρ, V ), and in addition there is Vi =
Spank{Ri} (see the proof of Proposition 4.14, part (2)). Let ṽ1 ∈ Ṽ1 be a
non-zero vector. We will construct a representation morphism ϕ : (ρ̃, Ṽ )→
(ρ, V ).

Define ϕ(ṽ1) = R1, we will check that it extends to a representation
morphism. For any t ∈ I, there is mt = g−1

t mgt. We define ṽt := ρ̃(g−1
t )ṽ1,

and it spans Ṽt because

Ṽt = im (idṼ − ρ̃(mt)) = im (ρ̃(g−1
t )(idṼ − ρ̃(m))ρ̃(gt))

= Spank{ρ̃(g
−1
t )ṽ1} = Spank{ṽt}.

Using definition (4.3), we can compute that

Rt = ϵ([gαg
−1
t ]) = ϵ([gαg

−1
t g−1

1 ]) = ρ(g−1
t )R1.
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Comparing these calculations, if we set ϕ(ṽt) = Rt for all t ∈ I, then ϕ re-
spects the group actions on the two vector spaces spanned by {ṽi}i∈I and
{Ri}i∈I . Since {ṽi}i∈I (resp. {Ri}i∈I) is a spanning set of Ṽ (resp. V ), ϕ
extends to a representation morphism from Ṽ to V .

Because both (ρ̃, Ṽ ) and (ρ, V ) are irreducible representations, and be-
cause ϕ is not zero, there is a representation isomorphism (ρ̃, Ṽ ) ∼= (ρ, V ).
We prove the uniqueness. □

4.4. The sheaf-augmentation correspondence

Now we are ready to present the relation between sheaves and augmenta-
tions. It also becomes evident how the KCH representations come into the
picture.

Recall that S is the set of isomorphism classes of objects in ModsΛK
(X),

andM is the moduli set of simple sheaves up to local systems (Section 3.4).
Also recall that Aug is the set of augmentations.

Let Kch be the set of isomorphism classes of KCH representations, where
the isomorphism is the representation isomoprhism. Let Kchirr ⊂ Kch be the
subset of irreducible KCH representations.

Theorem 4.17. (1) The map from KCH representations to augmentations
(4.2) factors through the following diagram

Kch →֒ S ↠ Aug.

(2) It further induces the following diagram

Kchirr →֒ M
∼
−→ Aug.

Moreover, the isomorphismM∼= Aug is summarized in the following table.

M Aug

E irreducible KCH, F = j∗E ϵ([e]) ̸= 0
Eu irreducible unipotent KCH, F = j∗Eu ϵ([e]) = 0 but ϵ([γ]) ̸= 0 for some γ ∈ πK
Gα rank 1 on the knot, F = i∗Gα[−1] ϵ([γ]) = 0 for all γ ∈ πK

Proof. (1) The first map follows from the classification Theorem 3.7, as well
as the injectivity. The second map follows from Theorem 4.4. The composi-
tion giving (4.2) is a consequence of Proposition 4.10.
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It remains to show that the second map is surjective. There are three
possibilities:

• If an augmentation ϵ satisfies ϵ([e]) ̸= 0 (or equivalently ϵ(µ) ̸= 1), then
it arises from a KCH representations by [Co2, Theorem 1.2]. Suppose
E is the corresponding local system, set F = j∗E .

• If ϵ([e]) = 0 but ϵ([γ]) ̸= 0 for some γ ∈ πK , then it lifts to a unipo-
tent KCH representation by Proposition 4.14 and Proposition 4.15.
Suppose Eu is the corresponding local system, set F = j∗Eu.

• If ϵ([γ]) = 0 for all γ ∈ πK . In this case ϵ(µ) = ϵ([e]) + 1 = 1. Therefore
the augmentation only depends on ϵ(λ), where λ is the class of the
longitude. Then set F = i∗Gα[−1], where Gα is a rank 1 local system
whose monodromy is α = ϵ(λ).

Comparing with the classification Theorem 3.7, we prove the surjectivity.
(2) Classes in M are listed in Proposition 3.11. The uniqueness of the

lifted KCH representation is proven in [Co2, Theorem 1.2]. The uniqueness
of the lifted unipotent KCH representation is proven in Proposition 4.16.
The uniqueness in the third case comes from the bijection between ϵ(λ)
and α. □

Remark 4.18. Even though shifting the homological degree of a simple
sheaf does not change the associated augmentation, we still make a degree
shift in the third case so that cone(T •) in all three cases are consistent.

4.5. Augmentation polynomial

In this section we take k = C. The augmentation polynomial is also a knot
invariant. We first introduce the augmentation variety [Ng4]:

VK = {(ϵ(λ), ϵ(µ)) ∈ (C∗)2 | ϵ is an augmentation}.

When the maximal-dimension part of the Zariski closure of VK is a codi-
mension 1 subvariety of (C∗)2, this variety is the vanishing set of a reduced
polynomial (no repeated factor) AugK(λ±1, µ±1), the augmentation polyno-
mial of K. We can choose AugK(λ, µ) ∈ Z[λ, µ] with coprime coefficients,
which is then well-defined up to an overall sign.

Recall from (3.1) that F ∈ModsΛK
(X) can be represented by a short

exact sequence:

(4.9) 0→ j!H → F → i∗G → 0,
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where H∈ loc(X \K) and G∈ loc(K), determining a class in Ext1X(i∗G, j!H).
LetM0 ⊂M be the subset consisting representatives that induce trivial

extension classes in Ext1X(i∗G, j!H).

Proposition 4.19. If F ∈M0, then the induced augmentation ϵF deter-
mines a point in {(1− λ)(1− µ) = 0} ⊂ (C∗)2. Moreover, the map fromM0

to {(1− λ)(1− µ) = 0} ⊂ (C∗)2 is bijective.

Proof. An augmentation ϵ which determines a point in {(1− λ)(1− µ) =
0} ⊂ (C∗)2 satisfies either ϵ(λ) = 1 or ϵ(µ) = 1.

The extension (4.9) being trivial means F ∼= j!H⊕ i∗G. Hence the linear
transform T : W → V defined in Lemma 3.3 is a zero map. The simpleness
further requires either V = C,W = 0 or W = C, V = 0.

If V = C,W = 0, then ρ : πK → GL(V ) is a one dimensional representa-
tion. Since an irreducible KCH representation has to be at least dimension
2. Therefore by Proposition 3.11, F = j∗E = j!E , where E is a rank 1 KCH
local system. The underlining representation is abelian, and hence factors
through H1(X \K) = Z. Therefore ϵF (µ) = µ0, ϵF (λ) = 1 and ϵF ([γ]) =

(1− µ0)µ
lk(K,γ)
0 for γ ∈ πK , where lk is the linking number. This case gives

{µ ̸= 1, λ = 1} ⊂ (C∗)2.
If W = C, V = 0, then F = i∗Gα for a rank 1 local system Gα supported

on the knot, according to Proposition 3.11. In this case ϵF (µ) = 1, ϵF (λ) =
−α, and ϵF ([γ]) = 0 for all γ ∈ πK . This case gives {µ = 1} ⊂ (C∗)2.

Overall, the map fromM0 to {(1− λ)(1− µ) = 0} ⊂ (C∗)2 is bijective.
□

We reprove the following result in [Ng3].

Corollary 4.20. For any knot K, (1− λ)(1− µ) |AugK(λ, µ).

Remark 4.21. We interpret the augmentations in (1− λ)(1− µ) as sheaves
coming from trivial extensions. From the sheaf perspective, the extension
class Ext1X(i∗G, j!H) depends only on G, and H restricted to a neighborhood
of the knot. Since the neighborhood of any knot is the same as that of the
unknot, the augmentation polynomial should be divisible by (1− λ)(1− µ),
the augmentation polynomial of the unknot.
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