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The goal of this paper is to classify symplectic toric stratified
spaces with isolated singularities. This extends a result of Burns,
Guillemin, and Lerman which carries out this classification in the
compact connected case. In making this classification, it is neces-
sary to classify symplectic toric cones. Via a well-known equiva-
lence between symplectic toric cones and contact toric manifolds,
this allows for the classification of contact toric manifolds as well,
extending Lerman’s classification of compact connected contact
toric manifolds.
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1. Introduction

In 1988, Delzant classified compact connected symplectic toric manifolds
by the images of their moment maps [8]. This classification was extended
by Karshon and Lerman to non-compact symplectic toric manifolds [16],
joining a recent trend of classification of toric symplectic (or, better said,
“symplectic-like”) structures. Research in this area has been dominated
by two separate pursuits: examining weakened symplectic structures (see
origami/folded symplectic manifolds [7]/[13] and b-symplectic/log symplec-
tic manifolds [10]/[9]) or weakened versions of manifolds (see symplectic
toric orbifolds [19], toric symplectic stacks [14], or compact symplectic toric
stratified spaces [6]). The goal of this paper, the classification of symplectic
toric stratified spaces with isolated singularities, follows the latter trend.

The importance of stratified spaces in symplectic geometry arises from
the symplectic reduction of Marsden and Weinstein [20]; and Meyer [21]. In
1991, Sjamaar and Lerman [24] showed that, in general, symplectic reduc-
tion results in a stratified space and furthermore that each stratum inherits
a symplectic form from the original manifold. In 2005, Burns, Guillemin, and
Lerman [6] defined symplectic toric stratified spaces with isolated singular-
ities and classified these in the compact connected case using the images of
their moment maps.

The foundations for Delzant’s classification are the convexity and con-
nectedness theorems of Atiyah [2]; and Guillemin and Sternberg [11]. This
is emulated by Burns, Guillemin, and Lerman who use a similar convexity
and connectedness theorem for compact stratified spaces with isolated sin-
gularities. The issue with the non-compact version of either case is that the
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image of the moment map no longer needs to be convex and its fibers need
not be connected.

Karshon and Lerman’s solution to this problem in the case of a sym-
plectic toric manifold (M,ω, µ) is to substitute for the moment map image
the orbital moment map: the unique map µ̄ from the quotient of M to the
Lie algebra dual through which µ factors. This extra information supple-
ments the loss of connected fibers. As the quotient of M by the torus action
needn’t be contractible, multiple isomorphism classes may be associated to
each orbital moment map and these classes are quantified by cohomology
classes of the quotient of M . Our classification will follow this approach.

FixG a torus and let g denote its Lie algebra. A symplectic toric stratified
space with isolated singularities (X,ω, µ : X → g∗) is (roughly) defined as a
symplectic toric manifold with isolated singularities whose deleted neighbor-
hoods are modeled on symplectic toric cones (see Definition 8.1). Here, X is
the full space, ω is a symplectic form on Xreg (the open, dense manifold that
is the top stratum of X), and µ is a continuous function such that µ|Xreg

is
a moment map for the action of G on (Xreg, ω).

By identifying the orbital moment maps of symplectic toric stratified
spaces with isolated singularities as a type of map we call stratified unimod-
ular local embeddings, we show that, in grouping together symplectic toric
stratified spaces using these orbital moment map types, we can make the
following classification.

Theorem 1.1. Let ψ :W → g∗ be a stratified unimodular local embedding.
Then the set of isomorphism classes of symplectic toric stratified spaces with
isolated singularities (X,ω, µ : X → g∗) with G-quotient map π : X →W
and orbital moment map ψ is naturally isomorphic to a subspace C of the
cohomology classes H2(Wreg,ZG × R). Here, ZG denotes the integral lattice
of G (the kernel of exp : g → G) and Wreg denotes the top stratum of W .

In particular:

• If dim(G) ̸= 3, C = H2(Wreg,ZG × R).

• If dim(G) = 3, C is an extension of H2(Wreg,ZG) by H
2(W,R).

Indeed, we will see that, to each principal G-bundle π : P →Wreg we
may associate a collection of classes of symplectic toric stratified spaces
over ψ a collection of classes in H2(Wreg,R) satisfying a certain local prop-
erty determined by c1(P ), the Chern class of P . In turn, this collection of
classes is non-canonical bijection with H2(W,R). This classification extends
the classification of compact connected symplectic toric stratified spaces by
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Burns, Guillemin, and Lerman [6] not only by dropping the compact and
connectedness conditions but also by dropping several technical conditions
(see Remark 11.9).

To obtain this classification, we will find it necessary to completely un-
derstand symplectic toric cones. Recall that a symplectic toric manifold
(M,ω, µ :M → g∗) is a symplectic toric cone if M has a free and proper ac-
tion of R commuting with the action of G and, for λ ∈ R with corresponding
action diffeomorphism ρλ :M →M , we have ρ∗λω = eλω. Additionally, we
impose that the moment map µ for M is the homogeneous moment map
for (M,ω): that which satisfies µ(t · p) = etµ(p) for every t ∈ R and p ∈M
(such a moment map for (M,ω) always exists).

As in the case of symplectic toric stratified spaces, the orbital moment
maps of symplectic toric cones must take a certain form: that of a homo-
geneous unimodular local embedding. Grouping symplectic toric cones by
orbital moment map allows us to make the following classification.

Theorem 1.2. Let ψ :W → g∗ be a homogeneous unimodular local embed-
ding. Then the set of isomorphism classes of symplectic toric cones (M,ω, µ)
with G-quotient π :M →W and orbital moment map ψ is in natural bijec-
tive correspondence with the cohomology classes H2(W,ZG), where ZG is the
integral lattice of G, the kernel of the map exp : g → G.

As symplectic toric cones and contact toric manifolds are intimately
related (indeed, they form equivalent categories), the classification of The-
orem 1.2 extends a classification of Lerman [17] in the case of compact
connected contact toric manifolds.

Corollary 1.3. Let ψ :W → g∗ be a homogeneous unimodular local em-
bedding. Then the set of isomorphism classes of contact toric manifolds
with symplectization (M,ω, µ) having G-quotient π :M →W and orbital
moment map ψ is in natural bijective correspondence with the cohomology
classes H2(W,ZG).

The paper is organized as follows. In Section 2, we give a brief review
of the classification result of Karshon and Lerman [16]. This will serve as a
model of the techniques the rest of this paper will use as well as a repository
for the results from this classification we will be adapting. The remainder of
the paper is split into two main parts: Part I, which deals with the classifica-
tion of symplectic toric cones and Part II, which deals with the classification
of symplectic toric stratified spaces with isolated singularities. Each part be-
gins with its own introduction and organizational description. Finally, there
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is a two part appendix, one part dealing with the basics of symplectic cones
and contact manifolds and the other dealing with stacks.

Notation and conventions. Manifolds are assumed to be finite dimen-
sional, paracompact, and Hausdorff. G will always denote a torus (a com-
pact connected commutative finite dimensional Lie group) and g will always
denote its Lie algebra. ZG will always be used to denote the integral lattice
of g; that is, the lattice ker(exp : g → G). The notation ⟨·, ·⟩ will denote the
canonical pairing g∗ × g → R.

In using manifolds with corners, we will follow Karshon and Lerman
and use the convention of Joyce (see [15]). An n-dimensional manifold with
corners is a paracompact Hausdorff topological spaces with a maximal atlas
of charts to sectors of Rn (open subsets of subsets of Rn of the form [0,∞)k ×
Rn−k). The index of a point x in a manifold with corners is the integer k for
which there exists a chart φ to a sector [0,∞)k × Rn−k with φ(x) = 0 (note:
index is called depth in [15]). The set of all points x in a manifold with corners
X with index k is denoted Sk(X) and each Sk(X) is naturally a manifold
without boundary. Smooth maps of manifolds with corners are defined in
the same manner as smooth maps of manifolds are defined: continuous maps
that locally factor through smooth maps on charts. In particular, this means
that we are expressly not thinking of maps of manifolds with corners as maps
of stratified spaces. Indeed, our definition of smooth maps of manifolds with
corners allows for the image of any stratum of the source manifold with
corners to be contained in the union of multiple strata of the target.

As explained in Appendix A of [16], de Rham cohomology is well-defined
for manifolds with corners, is invariant under smooth homotopy and thus,
in particular, satisfies the Poincaré Lemma. For a manifold with corners W ,
Hk(W,R) will denote the degree k de Rham cohomology. In Part II, it will
be necessary to use the singular cohomology of a stratified space X with
coefficients in R; this will also be denoted by Hk(X,R). Since partitions
of unity exist for manifolds with corners (one may restrict restrict bump
functions for Rn to bump functions on sectors), one may conclude via the
line of argument in Chapter 5, Section 9 of [5] that any manifold with corners
W admits a de Rham isomorphism relating smooth de Rham forms and
singular forms with coefficients in R.

For a manifold with corners W , we denote by W̊ the open dense interior
of W (i.e., the index 0 elements of W ). There always exists a manifold
without corners W̄ into which a manifold with corners W embeds; in this
case, it is said that W̄ contains W as a domain. Given two maps f :M → N
and g :M ′ → N , the symbol M ×N M ′ will denote the fiber product of M
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with M ′ over N . In the case where we wish to emphasize the maps f and g,
we may write M ×f,N,g M

′.
For any topological space X, Open(X) will always denote the category

of open subsets of X with morphisms inclusions of subsets. The symbols Sets
and Groupoids will denote the categories of sets and (small) groupoids. By
presheaf of groupoids, we will mean a strict presheaf of groupoids with do-
main a (full subcategory of) the category of open subsets on some topological
space; in other words, a (1-)functor F : Open(X)op → Groupoids. To avoid
unnecessary generality involving sites and categories fibered in groupoids,
we will take stack to mean such a presheaf of groupoids satisfying the stan-
dard descent conditions (see Definition B.3).

Glossary of presheaves. Here is a comprehensive list of the various pre-
sheaves appearing in this paper with brief descriptions and references to
their definitions:

• STMψ denotes the stack of symplectic toric manifolds over a unimod-
ular local embedding ψ (see Definition 2.5 and Remark 2.7).

• STBψ denotes the stack of symplectic toric bundles over a unimodular
local embedding ψ (see Definition 2.6 and Remark 2.7).

• STCψ denotes the stack of symplectic toric cones over a homogeneous
unimodular local embedding ψ (see Definition 3.13 and Proposition 3.15).

• HSTBψ denotes the stack of homogeneous symplectic toric bundles over
a homogeneous unimodular local embedding ψ (see Definition 4.1; and
Propositions 4.4 and B.8).

• BG denotes the stack of principal G-bundles over a fixed topological
space (see B.7).

• BGR denotes the stack of homogeneous principal G-bundles over W
for W a topological space with a free and proper R action (see Defini-
tion 4.3).

• STSSψ denotes the stack of symplectic toric stratified spaces with iso-
lated singularities over a stratified unimodular local embedding ψ (see
Definition 8.4 and Remark 8.5).

• CSTBψ denotes the stack of conical symplectic toric bundles over a
stratified unimodular local embedding ψ (see Definition 9.1, Remark 9.3,
and Proposition B.9).
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• PartSympψ denotes the presheaf of partitioned symplectic toric spaces
over ψ over a stratified unimodular local embedding ψ; see Defini-
tion 10.1 and Remark 10.3).

Acknowledgments. The author would like to thank Eugene Lerman for
introducing the problem this paper addresses as well as for his constant
support during the writing process. The author would also like to thank the
referee for their careful reading, detailed notes, and suggestions on multiple
drafts of this paper which helped to greatly improved this work from its orig-
inal version. This work was supported in part by a gift to the Mathematics
Department at the University of Illinois from Gene H. Golub.

2. Symplectic toric manifolds

What follows is a review of the recently published classification of non-
compact symplectic toric manifolds by Karshon and Lerman [16]. It is by
no means a complete account; the aim is to give a rough outline of their
classification. This section also serves as a convenient repository of relevant
ideas we will later be citing and adapting. Those familiar with the result of
Karshon and Lerman may safely skip this section.

Fix a torus G with Lie algebra g. Recall that a symplectic toric manifold
(M,ω, µ :M → g∗) is a symplectic manifold (M,ω) with an effective Hamil-
tonian action of G and a moment map µ :M → g∗ satisfying 2 dim(G) =
dim(M). As discussed in the introduction, Karshon and Lerman replace
Delzant polytopes (used to classify compact connected symplectic toric man-
ifolds via moment map images) with orbital moment maps:

Definition 2.1. Given a symplectic toric manifold (M,ω, µ :M → g∗) and
W a manifold with corners, a G-quotient map π :M →W is a smooth map
such that, for any G-invariant map f :M → N , there exists a unique smooth
map f̄ :W → N such that f = f̄ ◦ π.

Given a symplectic toric manifold (M,ω, µ :M → g∗) and a G-quotient
map π :M →W , the unique map µ̄ :W → g∗ for which µ = µ̄ ◦ π is called
the orbital moment map.

It is of course not obvious that such a G-quotient map (i.e., to a manifold
with corners) exists for any symplectic toric manifold. However, one may
show that the canonical choice M/G for a G-quotient of a symplectic toric
manifold (M,ω, µ :M → g∗) is, in fact, a manifold with corners:
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Proposition 2.2. For any symplectic toric manifold (M,ω, µ :M → g∗),
the G-quotient π :M →M/G is a G-quotient in the sense of Definition 2.1.
In particular, M/G is a manifold with corners and the corresponding orbital
moment map µ̄ :M/G→ g∗ is smooth.

So every symplectic toric manifold comes with at least one G-quotient;
however, it will be convenient (and indeed vital to the existence portion of
the classification) to divorce an orbital moment map from the context of
the originating manifold M and to work with unimodular local embeddings
defined an arbitrary manifolds with corners. These are defined as follows:

Definition 2.3. A unimodular cone with vertex ϵ ∈ g∗ is a subset of the
form

C{v1,...,vk},ϵ := {η ∈ g∗ | ⟨η − ϵ, vi⟩ ≥ 0 for all 1 ≤ i ≤ k}

where {v1, . . . , vk} is a basis for an integral lattice of a subtorus of G.
For a manifold with corners W , a smooth map ψ :W → g∗ is a unimod-

ular local embedding if, for each w ∈W , there exists neighborhood U of w
in W and {v1, . . . , vk} the basis to the integral lattice of a subtorus of G so
that ψ|U is an open embedding of U onto a neighborhood of the vertex of
the unimodular cone C{v1,...,vk},ψ(w) with vertex ψ(w).

Proposition 2.4. Given a symplectic toric manifold (M,ω, µ :M → g∗)
and G-quotient π :M →W , the orbital moment map µ̄ :M → g∗ is a uni-
modular local embedding.

Given two symplectic toric manifolds (M,ω, µ) and (M ′, ω′, µ′), if there is
a G-equivariant symplectomorphism φ : (M,ω) → (M ′, ω′) with µ = µ′ ◦ φ,
note that we may choose a common G-quotient spaceW with quotient maps
π :M →W and π′ :M ′ →W satisfying π = π′ ◦ φ. It follows that µ and µ′

descend to the same orbital moment map µ̄ :W → g∗. Thus, to understand
the collection of all symplectic toric manifolds, it makes sense to group
symplectic toric manifolds together by quotient space and orbital moment
map.

Definition 2.5. Let ψ :W → g∗ be a unimodular local embedding. Then
a symplectic toric manifold over ψ is a symplectic toric manifold (M,ω, µ)
together with a G-quotient map π :M →W such that µ = ψ ◦ π. This data
will be expressed as the triple (M,ω, π :M →W ).

The groupoid of symplectic toric manifolds over ψ, denoted STMψ(W ), is
the groupoid with
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• objects: symplectic toric manifolds over ψ; and

• morphisms: G-equivariant symplectomorphisms

f : (M,ω, π :M →W ) → (M ′, ω′, π′ :M ′ →W )

satisfying π′ ◦ f = π.

The strategy for actually classifying these spaces is to relate them to a
simpler class of objects, namely symplectic toric bundles.

Definition 2.6. Let ψ :W → g∗ be a unimodular local embedding. Then
a symplectic toric principal G-bundle over ψ is a pair (π : P →W,ω), for
π : P →W a principal G-bundle and ω a G-invariant symplectic form with
moment map ψ ◦ π.

The groupoid of symplectic toric principal G-bundles over ψ, denoted
STBψ(W ), is the groupoid with

• objects: symplectic toric principal G-bundles over ψ; and

• morphisms: G-equivariant symplectomorphisms

φ : (π : P →W,ω) → (π′ : P ′ →W,ω′)

for which π′ ◦ φ = π.

Remark 2.7. For any open subset U ofW , ψ|U : U → g∗ is also a unimod-
ular local embedding; thus we may define

STMψ(U) := STMψ|U (U) and STBψ(U) := STBψ|U (U)

These collections of groupoids define presheaves of groupoids

STMψ : Open(W )op → Groupoids and STBψ : Open(W )op → Groupoids

In fact, these presheaves of groupoids are stacks over Open(W )op.

To establish the equivalence of the groupoids STBψ(W ) and STMψ(W ),
Karshon and Lerman introduce the functor c : STBψ(W ) → STMψ(W ), con-
structed with the following steps:

1) For every w ∈W , ψ determines a basis
{

v
(w)
1 , . . . , v

(w)
k

}

of the integral

lattice of a subtorus Kw of G. In turn, this basis defines a symplec-
tic representation ρ : Kw → Sp

(

Ck, ωCk

)

for (Vw, ωw) :=
(

Ck, ωCk

)

the
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symplectic vector space with ωCk =
√
−1
2π

∑

dzj ∧ dz̄j and ρ the toric
representation with symplectic weights {v∗1, . . . , v

∗
k}, the dual basis to

{

v
(w)
1 , . . . , v

(w)
k

}

; i.e., we take

(2.1) exp(X) · (z1, . . . , zk) := (e2π
√
−1⟨v∗1 ,X⟩ · z1, . . . , e

2π
√
−1⟨v∗k,X⟩ · zk)

2) For any principal bundle π : P →W , let ∼ be the equivalence relation

p ∼ p′ if and only if there exists k ∈ Kπ(p) with p · k = p′

on P . Then define

cTop(π : P →W,ω) := (P/ ∼, π̄ : P/ ∼→W )

for π̄ the map descending from π. It follows from the G-equivariance of
morphisms of STBψ(W ) that these morphisms descend to continuous
equivariant morphisms between these quotients modulo ∼. It follows
that cTop defines a functor

cTop : STBψ(W ) → TopG(W )

for TopG(W ) the category of topological G-spaces over W : spaces with
G-quotients to W and continuous equivariant morphisms intertwining
quotient maps.

This functor is natural with respect to restriction; that is, for every
open U in W ,

cTop((P, ω)|U ) = cTop(P, ω)|U := (π̄−1(U), π̄)

3) To “symplectize” these topological quotients, Karshon and Lerman use
symplectic cuts, showing for each w ∈W , there is a neighborhood Uw
of w in W (defined using the properties of ψ) so that

cut((P, ω)|Uw) := (P |Uw × Vw)//0Kw

is a symplectic toric manifold over ψ|Uw . This establishes a functor

cut : STBψ(Uw) → STMψ(Uw)

for each w ∈W .
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4) For each w ∈W and (P, ω) ∈ STBψ(W ), there is a natural homeomor-
phism

αPw : cTop ((P, ω)|Uw) → cut ((P, ω)|Uw)

intertwining the G-quotient maps to W of the source and target. For
any w, w′ inW with Uw ∩ Uw′ non-empty, αPw′ ◦

(

αPw
)−1

is a symplecto-
morphism. Therefore, cTop(P, ω) inherits the structure of a symplectic
toric manifold.

5) Finally, for each morphism φ : (P, ω) → (P, ω′) of STBψ(W ) and for
any w ∈W , the diagram

cTop(P, ω)|Uw
αPw

//

cTop(φ)

��

cut((P, ω)|Uw)

cut(φ|Uw )

��

cTop(P
′, ω′)|Uw

αP
′

w

// cut((P ′, ω′)|Uw)

commutes. Thus, cTop(φ) is a symplectomorphism with respect to the
symplectic structure induced by the morphisms αPw .

As it will be important later, we present below an outline of the process
used to “symplectize” the quotient space cTop(P, ω). First, an important
theorem about extending Marsden- Weinstein and Meyer reduction to a
specific scenario involving manifolds with corners is required.

Theorem 2.8 (Theorem 2.23, [16]). Suppose (M,σ) is a symplectic
manifold with corners with a proper Hamiltonian action of a Lie group K
and moment map Φ :M → k∗ (for k the Lie algebra of K). Suppose also that

• for each x ∈ Φ−1(0), the stabilizer Kx of x is trivial;

• Φ admits an extension Φ̃ to a manifold without corners M̃ containing
M as a domain; and

• Φ̃−1(0) = Φ−1(0).

Then Φ−1(0) is a manifold without corners and the symplectic reduction at
0

M//0K := Φ−1(0)/K

is a symplectic manifold via standard Marsden-Weinstein/Meyer symplectic
reduction.
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Remark 2.9. Note that M̃ and Φ̃ in the statement of Theorem 2.8 serve
only to prove that Φ−1(0) is a manifold without corners. Once this has been
accomplished, the usual Marsden-Weinstein and Meyer reduction procedure
is then just applied to Φ−1(0) and M̃ and Φ̃ have no direct impact on the
resulting reduction.

We now construct cut((P, ω)|Uw) for a valid choice of Uw.

Construction 2.10. Fix a symplectic toric bundle (π : P →W,ω) over
unimodular local embedding ψ :W → g∗.

As stated in step (1) above, because ψ is a unimodular local embedding,
there exists a unimodular cone Cw := C{v1,...,vk},ψ(w) with vertex ψ(w) so
that ψ embeds a neighborhood of w in W onto a neighborhood of the vertex
ψ(w) in the cone. Here, {v1, . . . , vk} is the basis for the Lie algebra k of a
subtorus Kw ≤ G which, in turn, defines a symplectic toric Kw representa-

tion ρw : Kw → Sp
(

Ck, ωCk

)

with ωCk =
√
−1
2π

∑

zj ∧ z̄j and with symplectic
weights {v∗1, . . . , v

∗
k} (for {v∗1, . . . , v

∗
k} the dual basis to {v1, . . . , vk}) yielding

the action given in equation (2.1). This representation has moment map

µw : Ck → k∗, (z1, . . . , zk) 7→ −
k
∑

j=1

|zj |
2v∗j .

Let ι : k → g be the embedding of k into g and let ι∗ be the dual to this
embedding. Then, since ψ ◦ π is the moment map for the free action of G
on P , ν := ι∗ ◦ ψ ◦ π : P → k∗ is the moment map for the action of Kw on
P . Define ξ0 := ι∗(ψ(w)). Then for C ′

w := C{v1,...,vk},ξ0 the unimodular cone
with vertex ξ0 in k∗ and ko the annihilator of k in g∗, we can identify Cw with
the product C ′

w × ko. Explicitly, we are splitting Cw into the product of C ′
w,

a cone in k∗ containing no affine subspaces, and the affine space ψ(w) + ko.
This affine space corresponds (at least near w) to the image of the open face
of W containing w.

Thus, there exist contractible neighborhoods U of w in the open face
of W containing w and V of ξ0 in k∗ so that, for V ′ := C ′

w ∩ V, there ex-
ists Uw a neighborhood of w in W which is diffeomorphic to U × V ′. Then
ν|Uw : P |Uw → V ′ is a trivializable U ×G fiber bundle. Therefore, P |Uw is
contained in a manifold P̃ (diffeomorphic to V × U ×G) as a domain and
ν|Uw : P |Uw → V ′ admits a smooth extension to a map ν̃ : P̃ → V.

Define Φ : P |Uw × Ck → k∗ by

Φ(p, z) := ν(p)− ξ0 + µw(z)
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Then Φ is a moment map for the action of Kw on P |Uw × Ck and admits
an extension to the map

Φ̃(p, z) := ν̃(p)− ξ0 + µw(z)

satisfying the conditions of Theorem 2.8. Thus, reduction at the 0 level set
of Φ yields a symplectic manifold (without corners). One may check that
(P |Uw × Ck)//0Kw inherits a G-quotient map π̄ to Uw with respect to which
((P |Uw × Ck)//0Kw, π̄) is a symplectic toric manifold of STMψ(Uw). Define
cut((P, ω)|Uw) := ((P |Uw × Ck)//0Kw, π̄).

For φ : (P, ω)→(P ′, ω′), the morphism φ×idCk : P |Uw×Ck→P ′|Uw×Ck

descends to a symplectomorphism cut(φ) : cut((P, ω)|Uw)→cut((P ′, ω′)|Uw).

Remark 2.11. Given a unimodular local embedding ψ :W → g∗ and a Lie
algebra dual element η ∈ g∗, let ψ′ be the map ψ′(w) := ψ(w) + η. Then ψ′

is also a unimodular local embedding. Let (π : P →W,ω) be a symplectic
toric bundle over ψ; then it is a symplectic toric bundle over ψ′ as well.

For Cw and C ′
w the unimodular cones with vertices ψ(w) and ψ′(w)

respectively onto which ψ and ψ′ are local embeddings near w, note we have
Cw + η = C ′

w and therefore ψ and ψ′ determine the same subtorus Kw ≤ G.
It follows that cTop(P, ω) is the same topological G-space when regarding
(P, ω) as a symplectic toric bundle over ψ or ψ′. Following Construction 2.10,
since the cutting procedures with respect to ψ or ψ′ are performed relative
to the cone vertices ψ(w) and ψ′(w), cTop(P, ω) is furthermore symplectized
the same way with respect to either unimodular local embedding.

Therefore, the symplectic toric manifolds c(P, ω) ∈ STMψ(W ) and
c(P, ω) ∈ STMψ′(W ) are symplectomorphic. Of course, this symplectomor-
phism does not intertwine the respective moment maps.

For the purposes of this paper, it will also be important to sketch the
construction of the homeomorphisms αPw : cTop(P, ω)|Uw → cut((P, ω)|Uw).

Construction 2.12. For each w ∈W and Uw defined as in Construc-
tion 2.10, to define the homeomorphisms αPw : cTop(P, ω)|Uw → cut((P, ω)|Uw),
first let s : µw(C

k) → Ck be the continuous section of µw defined by

s(η) :=
(

√

⟨−η, v1⟩, . . . ,
√

⟨−η, vk⟩
)

Then one can show that the map αPw : cTop(P, ω)|Uw → (P |Uw × Ck)//0Kw

defined by

[p] 7→ [p, s(ι∗(ψ(p))− ν(p))]
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is a well-defined G-equivariant homeomorphism.

Remark 2.13. For w ∈ W̊ (the interior of W), we have that ψ|Uw is an
open embedding into g∗ itself (i.e., rather than just an embedding into a
cone). This means that Kw is trivial and therefore cut((P, ω)|Uw) is just
(P |Uw , ω, π) thought of as a symplectic toric manifold over ψ|Uw .

Remark 2.14. Since the collection of functors c : STBψ(U) → STMψ(U)
for each open U in W commute with restriction, it follows that we have a
map of presheaves of groupoids over Open(W )

c : STBψ → STMψ

In service of classifying the groupoid of symplectic toric bundles over a
given unimodular local embedding ψ :W → g∗, Karshon and Lerman prove
the following lemmas.

Lemma 2.15 (Lemma 3.2, [16]). Let ψ :W → g∗ be a unimodular local
embedding, let π : P →W be a principal G-bundle, and let A ∈ Ω1(P, g)G be
a connection 1-form for P . For convenience, define µ := ψ ◦ π. Then:

• Any closed G-invariant 2-form on P with moment map µ is automat-
ically symplectic; this includes the form d⟨µ,A⟩.

• The map from closed 2-forms on W to closed 2-forms on P

β 7→ d⟨µ,A⟩+ π∗β

is a bijection between the set of closed 2-forms on W and the set of
G-invariant symplectic forms on P with moment map µ.

Lemma 2.16 (Lemma 3.3, [16]). Let ψ :W → g∗ be a unimodular local
embedding and let π : P →W be a principal G-bundle. For any 1-form γ on
W and any G-invariant symplectic form ω on P with moment map µ, there
exists a bundle isomorphism f : P → P with f∗(ω + π∗(dγ)) = ω.

Karshon and Lerman also prove that for every open subset U of W ,
cU : STBψ(U) → STMψ(U) is a fully faithful functor. Observing that for
contractible open subsets V ofW , the groupoid STMψ(V ) is connected (i.e.,
all objects are isomorphic), they also conclude that c must be locally essen-
tially surjective. Implicitly using the fact that STBψ is a stack and STMψ

is a prestack (see Definition B.5), they are able to conclude the following
theorem.
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Theorem 2.17 (Theorem 4.1, [16]). Let ψ :W → g∗ be a unimodular
local embedding. Then

c : STBψ(W ) → STMψ(W )

is an equivalence of categories.

Using the tools of Lemmas 2.15 and 2.16, Karshon and Lerman are able
to show that the elements of STBψ(W ) are classified by the cohomology
classes H2(W,ZG)×H2(W,R) (where ZG := ker(exp : g → G) is the inte-
gral lattice of g). Explicitly, they use two characteristic classes: the first
Chern class and their horizontal class.

Definition 2.18. For ψ :W → g∗ a unimodular local embedding and (π :
P →W,ω) a symplectic toric bundle over ψ, if, for a choice of connec-
tion A on P , ω = d⟨µ,A⟩+ π∗β for β ∈ Ω2(W,R), then the horizontal class
chor([P, ω]) := [β] (for [P, ω] the isomorphism class associated to (P, ω) in
STBψ(W )).

Remark 2.19. As demonstrated by Karshon and Lerman (see Proposi-
tion 5.1 [16]), while one must choose a connection on P to define this horizon-
tal class, the class itself is independent not only of the choice of connection
but also the choice of representative of the isomorphism class [π : P →W,ω]
of STBψ(W ). Furthermore, this choice of class is natural with respect to re-
striction and hence yields a well-defined characteristic class.

Thus, using the equivalence of categories c, they conclude the following
result.

Theorem 2.20 (Theorem 1.3, [16]). Let ψ :W → g∗ be a unimodular
local embedding. Then:

1) The groupoid STMψ(W ) is non-empty; that is, there exists a symplectic
toric manifold (M,ω, µ) with G-quotient π :M →W with respect to
which ψ is the orbital moment map.

2) π0(STMψ(W )), the set of isomorphism classes of STMψ(W ), is in bi-
jective correspondence with the cohomology classes:

H2(W,ZG × R) ∼= H2(W,ZG)×H2(W,R)
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Part I. Classifying symplectic toric cones

As symplectic toric stratified spaces are built from symplectic toric cones,
to understand the former spaces, it is necessary to understand the latter. In
Section 3, we fully describe these cones as well as their orbital moment maps.
Recall that a symplectic toric manifold (M,ω, µ :M → g∗) is a symplectic
toric cone ifM has a free and proper action of R commuting with the action
of G and, with respect to any action diffeomorphism ρλ :M →M for this
R action, we have ρ∗λω = eλω. Additionally, we impose that the moment
map µ for (M,ω) is the homogeneous moment map, i.e., that which satisfies
µ(t · p) = etµ(p) for every t ∈ R and p ∈M (such a moment map for (M,ω)
always exists).

Since any symplectic toric cone (M,ω, µ) is, in particular, a symplectic
toric manifold, it follows, as in [16], that the G-quotient M/G is a manifold
with corners and the orbital moment map µ̄ :M/G→ g∗ is a unimodular
local embedding. As a consequence of µ being homogeneous, we may con-
clude that µ̄ satisfies two additional properties: the quotient M/G inherits
a free and proper R action and, with respect to this action, µ̄ is itself ho-
mogeneous. Given an arbitrary manifold with corners W for which there is
a unimodular local embedding ψ :W → g∗, we call ψ a homogeneous uni-
modular local embedding if it and W satisfy these additional properties (see
Definition 3.3).

As in the case of symplectic toric manifolds, it makes sense to group
together symplectic toric cones by orbital moment map: for any homoge-
neous unimodular local embedding ψ :W → g∗, we define the groupoid of
symplectic toric cones over ψ, denoted STCψ(W ), as the groupoid with ob-
jects symplectic toric cones with a G-quotient map to W for which ψ is the
orbital moment map and with morphisms symplectomorphisms preserving
these quotients that are both G and R-equivariant (see Definition 3.13).
It is important to note that we may not initially be sure this groupoid is
non-empty.

For any homogeneous unimodular local embedding ψ :W → g∗ and for
any R-invariant open subset U of W , ψ|U is a homogeneous unimodular
local embedding as well. It follows that, for OpenR(W ) the full subcategory
of Open(W ) of R-invariant open subsets of W (see Definition 3.14), we may
form a presheaf of groupoids STCψ : OpenR(W )op → Groupoids.

In Section 4, we define homogeneous symplectic toric bundles over ψ
for any homogeneous unimodular local embedding ψ :W → g∗ (see Defini-
tion 4.1). A homogeneous symplectic toric bundle over ψ is (π : P →W,ω),
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a symplectic toric bundle over ψ (see Definition 2.6), with an R action on
P such that (P, ω) is a symplectic toric cone with homogeneous moment
map ψ ◦ π. Taking a map of homogeneous symplectic toric bundles over
ψ to be any isomorphism of principal G-bundles over W that is both a
symplectomorphism and R-equivariant, we may then define the groupoid of
homogeneous symplectic toric bundles over ψ, denoted HSTBψ(W ). As in
the case of symplectic toric cones, homogeneous symplectic toric bundles
also define a presheaf HSTBψ : OpenR(W )op → Groupoids.

We also describe in this section some of the important properties of
homogeneous symplectic toric bundles. Indeed, the overarching goal of this
section is to prove that, at least up to isomorphism class, homogeneous sym-
plectic toric bundles have symplectic form more or less determined by their R
action. Specifically, we will show that, up to isomorphism, homogeneous sym-
plectic toric bundles are identifiable with homogeneous principal G-bundles
overW , principal G-bundles π : P →W with free and proper R-actions with
respect to which π is equivariant (see Definition 4.3). Homogeneous princi-
pal G-bundles overW also form a presheaf BGR : OpenR(W )op → Groupoids.
Of particular note in Section 4 is Proposition 4.7, in which we show that
every homogeneous principal G-bundle over W admits an exact G-invariant
symplectic form ω with respect to which (P, ω) is a homogeneous symplec-
tic toric bundle. Additionally, Proposition 4.11 shows that any two elements
(P, ω) and (P ′, ω′) of HSTBψ(W ) are isomorphic exactly when P and P ′ are
isomorphic elements of BGR(W ).

In Section 5, we define the map of presheaves hc : HSTBψ → STCψ (Def-
inition 5.2). This is just the map of presheaves c of Karshon and Lerman
(see Section 2) which additionally takes the R action of a homogeneous sym-
plectic toric bundle to the R action of a symplectic toric cone. In showing
that the category HSTBψ(W ) is non-empty for any homogeneous unimod-
ular local embedding ψ :W → g∗, this functor allows us to conclude that
the groupoid STCψ(W ) must be non-empty as well. In Theorem 5.6, we
show that hc is an isomorphism of presheaves over OpenR(W ). With this in
mind, we may focus on identifying the isomorphism classes of homogeneous
symplectic toric bundles.

In Section 6, we provide characteristic classes for symplectic toric cones.
This is done via Proposition 6.3, which shows that, for every homoge-
neous unimodular local embedding ψ :W → g∗, the isomorphism classes of
STBψ(W ) are in bijective correspondence with the isomorphism classes of
BGR(W ). This allows us to conclude that homogeneous symplectic toric
bundles are classified by Chern classes of H2(W,ZG), for ZG the integral
lattice ker(exp : g → G) (this is the content of Proposition 6.6). Finally, we
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are able to use the isomorphism of presheaves hc to conclude Theorem 1.2:
the isomorphism classes of STCψ(W ) are in bijective correspondence with
the cohomology classes H2(W,ZG).

We end this part by remarking that this classification of symplectic toric
cones descends to a classification of contact toric manifolds; indeed, there is
a natural isomorphism between contact toric manifolds whose symplectiza-
tion is a symplectic toric cone over ψ :W → g∗ and the cohomology classes
H2(W,ZG). Note that, in the case where it is known that ψ comes from
a symplectic toric cone, this was shown by Lerman in [17]. However, our
classification does establish exactly which maps are orbital maps for the
symplectizations of (not necessarily connected and compact) contact toric
manifolds.

3. Homogeneous unimodular local embeddings

In this section, we discuss homogeneous unimodular local embeddings; we
will eventually show that these maps are exactly the orbital moment maps
of symplectic toric cones. We also define the category of symplectic toric
cones over a choice of homogeneous unimodular local embedding. To begin,
we reintroduce symplectic cones:

Definition 3.1. A symplectic cone is a symplectic manifold (M,ω) with a
free and proper R action such that, for every λ ∈ R with action diffeomor-
phism ρλ :M →M , ρ∗λω = eλω.

For (M,ω) a symplectic cone with an action of G, we call a triple
(M,ω, µ :M → g∗) a symplectic toric cone if

• the actions of G and R on M commute;

• the action of G on (M,ω) is a symplectic toric action with moment
map µ; and

• µ is the homogeneous moment map for (M,ω): for every λ ∈ R and
p ∈M , µ(λ · p) = eλµ(p).

Remark 3.2. For any symplectic toric cone (M,ω), the formula

⟨µ,X⟩ = ω(Ξ, XM )

defines a homogeneous moment map on (M,ω), where Ξ is the vector field
generating the free and proper action of R on M and XM is the vector field
on M associated to X ∈ g.
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Additionally, note that there is only one homogeneous moment map
associated to (M,ω).

Basic known information and properties of symplectic cones and their
relationship with contact manifolds has been relegated to Appendix A.

Let’s define homogeneous unimodular local embeddings:

Definition 3.3. For W a manifold with corners with a free and proper
action of R, a homogeneous unimodular local embedding is a unimodular
local embedding ψ :W → g∗ (see Definition 2.3) so that ψ(t · w) = etψ(w)
for every t ∈ R and w ∈W .

Remark 3.4. Since the action of a Lie group on a manifold with corners is
carried out via diffeomorphisms, it follows that the action of R on W must
preserve the index of any point w ∈W and furthermore, for Sk(W ) the
stratum of index k elements of W (see the notation section for a description
of index), the action of R on W restricts to a smooth action on Sk(W ).

We will show that the orbital moment map of a symplectic toric cone is
a homogeneous unimodular local embedding. To accomplish this, we need
the following technical lemma:

Lemma 3.5. Let H and K be Lie groups and let K be compact. Suppose
X is a Hausdorff topological space on which H and K have continuous com-
muting actions and let π : X → X/K be the quotient. Then the action of H
descends to a continuous action on X/K. Furthermore, this action is proper
if and only if the action of H on X is proper.

Proof. That the action of H descends to an action on X/K follows from the
assumption that the actions of H and K on X commute. Then we have the
following commutative diagram:

(3.1) H ×X
Φ

//

idH×π
��

X ×X

π×π
��

H ×X/K
Φ̄

// X/K ×X/K

where Φ and Φ̄ are the maps Φ(h, x) := (h · x, x) and Φ̄(h, [x]) :=
(h · [x], [x]) = ([h · x], [x]).
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In general, for any commutative diagram of Hausdorff topological spaces

A
f

//

g

��

B

h
��

C
i

// D

such that g and h are both surjective and proper, f is proper if and only
if i is proper (we leave verification of this fact to the reader). Since K is
compact, we have that π is proper and that X/K is Hausdorff (see Theorem
3.1, pp. 38 of [4]). Therefore, we may apply this more general fact about
Hausdorff topological spaces to our above commutative diagram (3.1) and
conclude that Φ (and hence the action of H on X) is proper if and only if
Φ̄ (and hence the action of H on X/K) is proper.

□

Proposition 3.6. Let (M,ω, µ :M → g∗) be a symplectic toric cone. Then
for G-quotient π :M →M/G, the orbital moment map µ̄ :M/G→ g∗ is a
homogeneous unimodular local embedding.

Proof. By Proposition 2.4, M/G is a manifold with corners and µ̄ :M/G→
g∗ is a unimodular local embedding. By Lemma 3.5, the action of R on M
descends to a proper action of R on M/G.

Now, we need to show that the descending action of R on M/G is free.
Given any λ ∈ R, g ∈ G, and p ∈M , notice that, if λ · p = g · p, then

eλµ(p) = µ(λ · p) = µ(g · p) = µ(p)

Since µ(p) ̸= 0 (see Proposition A.10), we must have that λ = 0. Finally, as
µ is homogeneous, µ̄ must be homogeneous as well. □

We will now discuss a number of results demonstrating how the free and
proper R action on a manifold with corners W associated to a homogeneous
unimodular local embedding ψ :W → g∗ give us some additional informa-
tion about ψ. First up, we show that, for any homogeneous unimodular local
embedding ψ, we may choose R-invariant open subsets of W on which ψ is
an embedding:

Lemma 3.7. Let ψ :W → g∗ be a homogeneous unimodular local embed-
ding. Fix a point w ∈W and let C = C{v1,...,vk},ψ(w) be the unimodular cone
with vertex ψ(w) into which ψ is an open embedding near w. Then for k
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the Lie subalgebra of g generated by {v1, . . . , vk}, ψ(w) ∈ ko. Furthermore,
there exists an R-invariant neighborhood Uw of w so that ψ|Uw is an open
embedding into C.

Proof. Note that the unimodular cone C = C{v1,...,vk},ψ(w) with vertex ψ(w),
given by

{η ∈ g∗ | ⟨η − ψ(w), vi⟩ ≥ 0, 1 ≤ i ≤ k}

contains the affine subspace

A = {η ∈ g∗ | ⟨η − ψ(w), vi⟩ = 0, 1 ≤ i ≤ k} = ko + ψ(w)

Note also that, in the manifold with corners C, we have that A = Sk(C);
i.e., A is exactly the stratum of index k elements of C. In particular, we
may conclude that ψ(w) has index k in C and, since ψ near w is an open
embedding into C, it follows that w must also have index k in W .

Now, suppose that U is a neighborhood of w such that ψ|U is an open
embedding into C. Choose t ∈ R\{0} for which t · w is also in U . Then, as
noted in Remark 3.4, the action of R must preserve index and so t · w must
also have index k. It follows that ψ(t · w) = etψ(w) is in A. Therefore, since
A is an affine subspace, A must contain the whole ray eλψ(w) and hence
must contain 0. Thus, A is just the subspace ko. In particular, for all λ ∈ R,
ψ(λ · w) ∈ ko.

Next, for any t ∈ R and η ∈ C, note that

⟨etη − ψ(w), vi⟩ = et⟨η − e−tψ(w), vi⟩ = et⟨η, vi⟩.

It thus follows that etC = C. So for any U on which ψ|U is an open embed-
ding, we therefore have that ψ|t·U = et · (ψ|U ) is an open embedding into
etC = C. Since our choice of t was arbitrary, it follows that ψ|R·U is an
R-equivariant local open embedding into C. Since an injective local open
embedding must be an open embedding, we conclude by showing that we
may choose U small enough so that ψ|R·U is injective.

Choose a norm || · || on g∗ such that S(g∗) contains ψ(w). Since g∗\{0}
is equivariantly diffeomorphic S(g∗)× R and since C is R-invariant, we may
choose an open neighborhood V of ψ(w) in S(g∗) and an open interval
(−ϵ, ϵ) ⊂ R so that the open subset U := C ∩ (V × (−ϵ, ϵ)) of C is completely
contained within the image of ψ|U , for U a neighborhood of w on which ψ|U
is an open embedding to C.

Notice then that V := U ∩ ψ−1(C ∩ V ) is a set containing w which inter-
sects the R-orbits of W at most once and for which Uw := R · V is open. To
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see that the first item is true: for any v ∈ V, note that ||ψ(t · v)|| = et||ψ(v)||;
hence, the action of R displaces ψ(v) from S(g∗) and so t · v can never be in
V (for t nonzero). To see that the second item is true: by the R-equivariance
of ψ, we have that (−ϵ, ϵ) · V = U ∩ ψ−1(C × (−ϵ, ϵ)) which is open. Then
one may use the action of R to write R · V as a union of translations of this
open subset.

Finally, note that, for any two elements t · v and t′ · v′ of Uw for v and v′

in V, ψ(t · v) = ψ(t′ · v′) exactly when et−t
′

ψ(v) = ψ(v′). Again, since ψ(v)
and ψ(v′) are on S(g∗), this is only possible for t = t′ which, since ψ is
injective on V, necessitates that t · v = t′ · v′. Hence, ψ|Uw is injective and
therefore is an R-equivariant embedding into C. □

With this lemma, we may now prove that the R-quotient map associated
to a homogeneous unimodular local embedding is a principal R-bundle in
the category of manifolds with corners.

Proposition 3.8. Let ψ :W → g∗ be a homogeneous unimodular local em-
bedding and let q :W →W/R be an R-quotient map for the action of R on
W . Then q is a principal R-bundle in the category of manifolds with corners.

Remark 3.9. While it’s likely one could prove in general that the quotient
map associated to a smooth proper action of a Lie group K on a manifold
with corners M is a principal K-bundle in the category of manifolds with
corners using an adapted version of the Slice Theorem for manifold with
corners, to the knowledge of the author, such an adapted version of the Slice
Theorem doesn’t exist ([1] gets close with “a Tube Theorem” for compact
group actions, but this relies on a doubling trick requiringM to be compact).
We instead use Lemma 3.7 to prove Proposition 3.8 as opposed to this more
general counterpart.

Proof of Proposition 3.8. First, since W is a Hausdorff and locally compact
space and the action of R is proper, W/R is Hausdorff (see Theorem 1.2.9
of [23]).

Now, fix w ∈W and let Uw be an R-invariant neighborhood of w for
which ψ|Uw is an open embedding into an R-invariant unimodular cone C
with vertex ψ(w) in g∗ (as constructed in Lemma 3.7). Fix a norm || · || on g∗

with sphere S(g∗). As explained under the statement of Theorem 6.4 in [15],
to show that C ∩ S(g∗) is a manifold with corners, it is enough to show that
C and S(g∗) are transverse as manifolds with corners (this is slightly more
involved than the “non-cornered” definition; again, see [15]). Since the radial
action of R on C must preserve each of the constant index strata Sk(C) of C,
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it follows that each face of C is transverse to S(g∗) and therefore that C and
S(g∗) must be transverse as manifolds with corners. Hence, C ∩ S(g∗) and,
more importantly, ψ(Uw) ∩ S(g

∗) ⊂ C ∩ S(g∗) are manifolds with corners.
Therefore, since each R-orbit of g∗\{0} intersects S(g∗) exactly once and

since ψ(Uw) is R-invariant, we have an R-equivariant diffeomorphism

R× (ψ(Uw) ∩ S(g
∗)) ∼= R · (ψ(Uw) ∩ S(g

∗)) = ψ(Uw) ∼= Uw.

From this identification, it follows both thatW/R inherits the structure of a
manifold with corners (i.e., via the homeomorphism Uw/R ∼= ψ(Uw) ∩ S(g

∗))
and that, with respect to this smooth structure, q :W →W/R has smooth
trivializations as a principal R-bundle. □

Remark 3.10. Notice that any principal R-bundle in the category of man-
ifolds with corners is smoothly trivializable. Indeed, one may easily adapt the
proof of Proposition 2.25, [18] in the smooth manifolds case to the case of
manifolds with corners.

We now prove that the radial action of R on g∗ uniquely determines the
R action on the domain of a homogeneous unimodular local embedding.

Lemma 3.11. Let ψ :W → g∗ be a unimodular local embedding. Then
there is at most one R action on W with respect to which ψ is a homo-
geneous unimodular local embedding.

Proof. Assuming that W comes with an R action with respect to which
ψ is a homogeneous unimodular local embedding, dψ must intertwine the
vector field generating the R action on W and the radial vector field on g∗.
Since ψ is a local embedding, this property uniquely determines an R action
on W . □

The following proposition will be useful later for quickly demonstrating
certain constructed symplectic manifolds are in fact symplectic toric cones.

Proposition 3.12. Let (M,ω, µ) be a symplectic toric manifold. Suppose
further that M has a free R action commuting with the action of G such
that

• the orbital moment map µ̄ :M/G→ g∗ is a homogeneous unimodular
local embedding (with respect to the R action descending from M to
M/G); and
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• for each λ ∈ R with action diffeomorphism ρλ :M →M , ρ∗λω = eλω.

Then (M,ω, µ) is a symplectic toric cone.

Proof. Since µ̄ is a homogeneous unimodular local embedding, the action of
R on M/G is, by definition, proper. Therefore, by Lemma 3.5, the R action
on M is proper, so (M,ω, µ) is a symplectic toric cone. □

We now group symplectic toric cones together by orbital moment maps
to define the category of symplectic toric cones over a homogeneous uni-
modular local embedding ψ.

Definition 3.13. Let ψ :W → g∗ be a homogeneous unimodular local em-
bedding. Then a symplectic toric cone over ψ is a symplectic toric cone
(M,ω, µ) together with a G-quotient π :M →W so that µ = ψ ◦ π. This
data is represented by the triple (M,ω, π :M →W ).

Denote by STCψ(W ) the category of symplectic toric cones over ψ, the
groupoid with

• objects: symplectic toric cones over ψ; and

• morphisms: (G× R)-equivariant symplectomorphisms

φ : (M,ω, π :M →W ) → (M ′, ω′, π′ :M ′ →W )

satisfying π′ ◦ φ = π.

Like symplectic toric manifolds over a specific unimodular local embed-
ding, symplectic toric cones over a homogeneous unimodular local embed-
ding form a presheaf. To account for the fact that we only want to consider
R-invariant open subsets, we will use a smaller category as the domain of
this presheaf.

Definition 3.14. LetW be a manifold with corners with a free and proper
R action. Denote by OpenR(W ) the full subcategory of Open(W ) of R-
invariant subsets of W .

Proposition 3.15. Let ψ :W → g∗ be a homogeneous unimodular local
embedding. Then

U 7→ STCψ(U) := STCψ|U (U)

defines a presheaf over OpenR(W ).
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Proof. It is enough to note that, given (M,ω, π :M →W ) any symplectic
toric cone over ψ, the R action on M descends to an R action on W with
respect to which ψ is equivariant. By Lemma 3.11, π must be R-equivariant
since ψ is R-equivariant with respect to both the given action of R on W as
well as the action descending from M . So, for any R-invariant open subset
U of W ,

(M,ω, π :M →W )|U :=
(

π−1(U), ω|π−1(U), π|π−1(U)

)

is a well-defined symplectic toric cone over ψ|U . □

4. Homogeneous symplectic toric bundles

To classify symplectic toric cones, we will use a homogeneous analogue of
the isomorphism of presheaves c : STBψ → STMψ from [16] (see Section 2).
In this section, we define homogeneous symplectic toric bundles (the ho-
mogeneous analogue to symplectic toric bundles) and present some of their
basic properties.

Definition 4.1. Let ψ :W → g∗ be a homogeneous unimodular local em-
bedding. Then a homogeneous symplectic toric bundle over ψ is a symplectic
toric bundle (π : P →W,ω) (see Definition 2.6) together with a free and
proper R action on P so that

• The actions of G and R on P commute;

• (P, ω) is a symplectic cone with respect to the given R action; and

• ψ ◦ π is a homogeneous moment map for the action of G on (P, ω).

Denote by HSTBψ(W ) the groupoid of homogeneous symplectic toric bun-
dles over ψ. This is the groupoid with objects homogeneous symplectic toric
bundles (π : P →W,ω) and morphisms maps of symplectic toric principal
G-bundles (i.e., bundle maps that are also symplectomorphisms) which are
additionally R-equivariant.

Notice that, by requiring that ψ ◦ π is a homogeneous moment map for
the action of G on (P, ω), we’ve effectively defined homogeneous symplectic
toric bundles as symplectic toric bundles with an R-action with respect to
which (P, ω, ψ ◦ π) is a symplectic toric cone. We will find that this condition
is equivalent to a simpler, more useful condition we now provide.
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Lemma 4.2. Let ψ :W → g∗ be a homogeneous unimodular local embed-
ding. Suppose that (π : P →W,ω) is a symplectic toric bundle with a free
and proper R action, commuting with the action of G, with respect to which
(P, ω) is a symplectic cone. Then (π : P →W,ω) is a homogeneous symplec-
tic toric bundle if and only if π is R-equivariant.

Proof. The real content of this lemma is showing that ψ ◦ π is homogeneous
if and only if π is R-equivariant. First, if π is R-equivariant, then for any
p ∈ P ,

ψ(π(t · p)) = ψ(t · (π(p))) = etψ(π(p)),

so ψ ◦ π is homogeneous.
On the other hand, suppose ψ ◦ π is equivariant. By Lemma 3.5, note

that the action of R on P descends to a proper action on R with respect
to which π is R-equivariant. For any w ∈W , p ∈ P satisfying π(p) = w and
for any t ∈ R, the action on W descending from P satisfies

ψ(t · w) = ψ(t · π(p)) = ψ(π(t · p)) = etψ(π(p)) = et(ψ(w))

By Lemma 3.11, there is exactly one action of R onW with respect to which
ψ is R-equivariant; therefore, the action on P descends to the unique action
making ψ :W → g∗ a homogeneous unimodular local embedding and so π
is equivariant with respect to the given actions of R on P and W . □

Principal G-bundles with an action of R as in the statement of Lemma
4.2 will be important throughout the rest of Part I; they form the following
presheaf:

Definition 4.3. Let W be a manifold with corners with a free and proper
R action. Then a homogeneous principal G-bundle over W is a principal G-
bundle π : P →W with a free and proper R action that commutes with the
action of G and with respect to which π is equivariant.

The presheaf of homogeneous principal G-bundles overW is the presheaf
of groupoids BGR : OpenR(W )op → Groupoids so that, for every R-invariant
open subset U of W , the groupoid BGR(U) is that with

• objects: homogeneous principal G-bundles over W ; and

• morphisms: R-equivariant bundle isomorphisms.

As in the case of symplectic toric cones, the collection of groupoids of
homogeneous symplectic toric bundles over a homogeneous unimodular local
embedding ψ :W → g∗ is a presheaf of groupoids over OpenR(W ).
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Proposition 4.4. Let ψ :W → g∗ be a homogeneous unimodular local em-
bedding. Then

U 7→ HSTBψ(U) := HSTBψ|U (U)

with the appropriately chosen restriction morphisms defines a presheaf of
groupoids HSTBψ : OpenR(W )op → Groupoids.

As the justification here is essentially the same as in Proposition 3.15,
we omit the proof.

Remark 4.5. In fact, HSTBψ : OpenR(W )op → Groupoids is a stack; this
will be important later, but as the proof is a slight adaptation of the proof
that principal bundles over a site form a stack, we relegate the proof to the
appendix (Proposition B.8).

As in the case of symplectic toric bundles, we will be able to show that,
for π : P →W any homogeneous principal G-bundle over W , we may use a
connection to build a symplectic form with respect to which it is a homo-
geneous symplectic toric bundle. To show this, we will need the following
technical lemma.

Lemma 4.6. Let π : P → B be a principal G-bundle of manifolds with cor-
ners. Further, suppose P and B admit free and proper actions of R with
respect to which π is R-equivariant and the R-quotient q′ : B → B/R is a
principal R-bundle of manifolds with corners. Let q : P → P/R be an R-
quotient. Finally, suppose that the actions of G and R on P commute.

Then the unique map ϖ : P/R → B/R making the diagram

(4.1) P
q

//

π

��

P/R

ϖ

��

B
q′

// B/R

commute is a principal G-bundle of manifolds with corners and q : P → P/R
is a principal R-bundle of manifolds with corners.

Proof. The existence of ϖ is a consequence of the universal property of a
quotient: as π is R-equivariant and q′ is R-invariant, the composition q ◦ π
must be R-invariant. Since the actions of G and R on P commute, the action
of G on P descends to an action of G on P/R.
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Let U be a contractible subset of B/R and s : U → B be a smooth sec-
tion. This yields a smooth trivialization U × R ∼= V for V an open subset of
B. As V is contractible, there exists another smooth section t : V → P yield-
ing a smooth trivialization G× V ∼= X for X an open subset of P . As π is
R-equivariant, it follows that we have a smooth (G× R)-equivariant diffeo-
morphism G× R× U ∼= X. By the commutativity of diagram (4.1) (and us-
ing the fact these are all quotient maps), we have that X = π−1(q′−1(U)) =
q−1(ϖ−1(U)). In particular, this means that q(X) = ϖ−1(U) and so the dif-
feomorphism G× R× U ∼= X descends to the equivariant homeomorphism
G× U ∼= ϖ−1(U).

Via these homeomorphisms, P/R inherits the structure of a manifold
with corners (we once again use Theorem 1.2.9 of [23] to conclude that,
since the action of R on P is proper, P/R is Hausdorff). With respect to
this smooth structure, ϖ is naturally smooth and ϖ : P/R → B/R is a prin-
cipal G-bundle in the category of manifolds with corners. Additionally, we’ve
demonstrated that q : P → P/R is a principal R-bundle of manifolds with
corners as well. □

Now, we build a symplectic form for any principal G-bundle π : P →W
with an appropriate R action.

Proposition 4.7. Let ψ :W → g∗ be a homogeneous unimodular local em-
bedding and let π : P →W be a homogeneous principal G-bundle over W .
Then there exists a connection 1-form A ∈ Ω1(P, g)G so that (π : P →W,
d⟨ψ ◦ π,A⟩) is a homogeneous symplectic toric bundle.

Proof. First, as shown in [16], any connection 1-form A induces aG-invariant
symplectic form d⟨ψ ◦ π,A⟩ with respect to which ψ ◦ π is a moment map
(see Lemma 2.15). We will construct a particular connection so that the form
d⟨ψ ◦ π,A⟩ satisfies the additional conditions required of a homogeneous
symplectic toric bundle.

Let Q := P/R and B :=W/R with R-quotient maps q : P → Q and q′ :
W → B. By Proposition 3.8, q′ is a principal R-bundle of manifolds with
corners and so, via Lemma 4.6, we have the following commutative diagram

P
q

//

π
��

Q

ϖ
��

W
q′

// B
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where ϖ : Q→ B is a principal G-bundle and q : P → Q is a principal R-
bundle, both in the category of manifolds with corners.

Since Q is a principal G-bundle, it follows that ϖ × idR : Q× R → B ×
R ∼=W is a principalG-bundle overW (with respect to the trivially extended
action of G on Q× R). As q : P → Q is a principal R-bundle and hence
trivializable, there is an isomorphism ϕ : P → Q× R of principal R-bundles
over Q. Since q is G-equivariant, ϕ must be G-equivariant as well.

Let A′ be any connection 1-form on the principal G-bundle ϖ × idR :
Q× R → B × R extended trivially from a connection 1-form on the G-
bundle ϖ : Q→ B. We now finish by showing that, for A := ϕ∗A′ , d⟨ψ ◦
π,A⟩ satisfies the necessary conditions for a symplectic form of a symplectic
cone.

Fix a real number λ and let ρλ : P → P and τλ : Q× R → Q× R be
the diffeomorphisms associated to the action of λ. As ϕ is R-equivariant,
ϕ ◦ ρλ = τλ ◦ ϕ and, by design, we have τ∗λA

′ = A′. Using these facts, we
calculate:

ρ∗λd⟨ψ ◦ π,A⟩ = d⟨ψ ◦ π ◦ ρλ, ρ
∗
λ(ϕ

∗A′)⟩ = d⟨eλ · (ψ ◦ π), ϕ∗(τ∗λA
′)⟩

= d(eλ⟨ψ ◦ π, ϕ∗A′⟩) = eλd⟨ψ ◦ π,A⟩

Therefore, using Proposition 3.12, we may conclude that the action of R on
P is proper and that (π : P →W,d⟨ψ ◦ π,A⟩) is a homogeneous symplectic
toric bundle over ψ. □

We will soon show that two homogeneous symplectic toric bundles are
isomorphic in HSTBψ exactly when there is an R-equivariant bundle isomor-
phism between them. To prove this, we need the following lemma.

Lemma 4.8. Let ψ :W → g∗ be a homogeneous unimodular local embed-
ding and let π : P →W be a homogeneous principal G-bundle over W .
Suppose ω and ω′ are two symplectic forms so that (π : P →W,ω) and
(π : P →W,ω′) are both homogeneous symplectic toric bundles. Then the
form ω − ω′ is basic and, for ω − ω′ = π∗β, β is exact.

Furthermore, there is a primitive γ of β satisfying ρ∗λγ = eλγ for any
λ ∈ R with action diffeomorphism ρλ :W →W .

Proof. Fix a connection 1-form A for which (π : P →W,d⟨ψ ◦ π,A⟩) is a
homogeneous symplectic toric bundle (as constructed in Proposition 4.7).
Then ω − d⟨ψ ◦ π,A⟩ and ω′ − d⟨ψ ◦ π,A⟩ are both basic (see Lemma 2.15);
thus, the difference ω − ω′ is basic as well. Write ω − ω′ = π∗β.
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Fix λ ∈ R. Writing τλ : P → P for the action isomorphism of λ on P , we
have by assumption that τ∗λω = eλω and τ∗λω

′ = eλω′. So τ∗λ(π
∗β) = eλ(π∗β).

As π is R-equivariant, we have that π ◦ τλ = ρλ ◦ π (for ρλ again the
action diffeomorphism for the action of λ on W ). So, we calculate:

π∗(ρ∗λβ) = τ∗λ(π
∗β) = eλ(π∗β) = π∗(eλβ)

Since π is a submersion, it follows that ρ∗λβ = eλβ.
Finally, write Ξ for the vector field on W generating the action of R.

Then β satisfies LΞβ = β meaning, since β is closed, γ := ιΞβ is a primitive
for β. Since LΞγ = ιΞ(dγ) = γ, it follows that ρ∗λγ = eλγ. □

Remark 4.9. Note that the proof of Lemma 4.8 may be reversed to con-
clude that, for γ satisfying ρ∗λγ = eλγ for all λ ∈ R, (π : P →W,ω + π∗dγ)
is a homogeneous symplectic toric bundle over ψ.

We now prove that adding an exact form satisfying the conditions of
Lemma 4.8 does not change our isomorphism class in STBψ(W ).

Lemma 4.10. Let ψ :W → g∗ be a homogeneous unimodular local embed-
ding and let (π : P →W,ω) be a homogeneous symplectic toric bundle. Let
γ be a 1-form on W satisfying ρ∗λγ = eλγ for every real λ with action dif-
feomorphism ρλ. Then there is an isomorphism of homogeneous symplectic
toric bundles

φ : (π : P →W,ω) → (π : P →W,ω + π∗dγ)

Proof. We will repeat the proof of Lemma 3.3 of [16] with the addition of
an R action; for the convenience of the reader, we will sketch the borrowed
details. To build the map f , we can use Moser’s Method on the family of
symplectic forms

ωt = ω + tπ∗dγ, t ∈ [0, 1].

Then there is a unique time-dependent vector field Xt on P satisfying

(4.2) ιXtωt = −π∗γ.

Since Xt is G-invariant and tangent to the compact fibers of π, the time 1
flow φ : P → P of Xt exists and is G-equivariant. Therefore, π ◦ φ = π and,
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as is standard with Moser’s Method (see [22]), φ satisfies

φ∗(ω + π∗dγ) = φ∗(ω1) = ω0 = ω

It remains to be shown that this bundle isomorphism is R-equivariant.
It is enough to show that the vector field Xt is R-invariant. Fix λ ∈ R with
action diffeomorphism ρλ. Since ρ

∗
λ = eλω and ρ∗λ(π

∗γ) = eλ(π∗λ), ωt must
also satisfy ρ∗λωt = eλωt for all t. So

ι(ρλ)∗Xtωt = ρ∗−λ(ιXte
λωt) = eλρ∗−λ(−π

∗γ) = eλe−λ(−π∗γ) = −π∗γ

Thus, since the equality 4.2 uniquely determines Xt, (ρλ)∗Xt = Xt meaning
Xt is R-invariant and therefore φ is R-equivariant. □

From the previous two lemmas, we may easily conclude the following
proposition:

Proposition 4.11. Let ψ :W → g∗ be a homogeneous unimodular local
embedding. Then (π : P →W,ω) and (π′ : P ′ →W,ω′) are isomorphic ho-
mogeneous symplectic toric bundles over ψ if and only if P and P ′ are
isomorphic homogeneous principal G-bundles over W .

Proof. Because an isomorphism in HSTBψ(W ) is in particular an R-
equivariant isomorphism of principal G-bundles, one direction is given by
definition.

Suppose there exists an isomorphism φ : P → P ′ of homogeneous princi-
pal G-bundles overW . By Lemma 4.8, the difference φ∗(ω′)− ω is basic and,
for φ∗(ω′)− ω = π∗β, β has primitive γ satisfying ρ∗λγ = eλγ for ρλ the ac-
tion diffeomorphism associated to each λ ∈ R. By Lemma 4.10, there exists
an R-equivariant bundle isomorphism ϕ : P → P with ϕ∗(ω + d(π∗γ)) = ω.
Therefore, φ ◦ ϕ is an isomorphism of homogeneous symplectic toric bun-
dles. □

5. The morphism of presheaves hc : HSTBψ → STCψ

In this section, we introduce a functor hc : STBψ(W ) → STCψ(W ). We then
show that hc is an equivalence of categories; in fact, thinking of HSTBψ and
STCψ as presheaves over OpenR(W ), hc is an isomorphism of presheaves.
This functor is the homogeneous version of the equivalence of categories
c : STBψ(W ) → STMψ(W ) of [16] (see Section 2).
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We first verify that when the functor c is applied to a homogeneous
symplectic toric bundle, the R action on the bundle descends to an R ac-
tion on the resulting symplectic toric manifold inducing the structure of a
symplectic toric manifold.

Proposition 5.1. Let ψ :W → g∗ be a homogeneous unimodular local em-
bedding and let (π :→W,ω) be a homogeneous symplectic toric bundle over
ψ. Then, regarding (P, ω) as a symplectic toric bundle over ψ, the symplectic
toric manifold c(P, ω) inherits an R action from (P, ω) with respect to which
c(P, ω) is a symplectic toric cone over ψ.

Proof. Fix an element w ∈W . Let Cw := C{v1,...,vk},ψ(w) be the unimodular
cone with vertex ψ(w) onto which ψ is an open embedding near w. Let k

be the Lie subalgebra of g for which {v1, . . . , vk} is a basis and let Kw ≤
G be the corresponding subtorus. As before, let ι : k → g be the inclusion
with dual ι∗ : g∗ → k∗. By Lemma 3.7, ψ(w) ∈ ko so ι∗(ψ(w)) = 0. As in
Construction 2.10, define the cone C ′

w by

C ′
w := {ξ ∈ k∗ | ⟨ξ, vi⟩ ≥ 0, 1 ≤ i ≤ k}.

Again using Lemma 3.7, we may choose an R-invariant neighborhood Uw of
w on which ψ is an open embedding into Cw. It follows that, after making a
choice of section of ι∗ : g∗ → k∗, we may make an R-equivariant identification
Cw ∼= ko × C ′

w. By shrinking Uw as necessary, one may choose a contractible
R-invariant open subset U of ko and a contractible open neighborhood V of 0
in k∗ so that, for V ′ := C ′

w ∩ V the above identification restricts to the identi-
fication Uw ∼= U × V ′. Again, as in Construction 2.10, we may conclude that,
for ν := ι∗ ◦ ψ ◦ π, there exists a manifold without boundary P̃ containing
P |Uw as a domain and an extension of the map ν : P |Uw → V ′ to a smooth
map ν̃ : P̃ → V.

Now, let ρ : Kw → Sp
(

Ck, ωCk

)

be the symplectic representation with

weights {v∗1, . . . , v
∗
k} (for ωCk =

√
−1
2π

∑

dzj ∧ dz̄j and action as in equation
(2.1)). We fix the moment map

µw : Ck → k∗, µw(z1, . . . , zk) := −
k
∑

j=1

|zj |
2v∗j

for this space. Then the Kw action on (P |Uw × Ck, ω ⊕ ωCk) has moment
map Φ(p, z) := ν(p) + µw(z) which has extension Φ̃(p, z) := ν̃(p) + µw(z) to
the domain P̃ × Ck containing P |Uw × Ck.
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The condition (p, z) ∈ Φ̃−1(0) imposes that ν̃(p) = −µw(z), meaning the
image of ν̃ must be contained in C ′

w. It therefore follows that Φ−1(0) =
Φ̃−1(0). Thus, by Theorem 2.8, the reduction (P |Uw × Ck)//0Kw is a sym-
plectic manifold.

As we’ve proceeded using the same method as in Construction 2.10, it
follows we may use the homeomorphisms defined in Construction 2.12 to
symplectize cTop(P, ω). To finish, we need only show that there are compati-
ble smooth R actions on each (P |Uw × Ck)//0Kw with respect to which the
inherited symplectic form on c(P, ω) is homogeneous.

So let R act on P |Uw × Ck via the diagonal action given by the R action
on P restricted to P |Uw and via the “half-radial action” on Ck : the action
t · z := e

1

2
tz. µw : Ck → k∗ is homogeneous with respect to this action of R

on Ck and, as ν : P |Uw → k∗ is also homogeneous, it follows that the action
of R preserves the level set Φ−1(0). Since the actions of Kw and R commute,
the action of R descends to a smooth action on (P |Uw × Ck)//0Kw. After
checking that the transition homeomorphisms (again, as built in Construc-
tion 2.12)

αPw : cTop(P |Uw) → (P |Uw × C
k)//0Kw

are R-equivariant with respect to the action of R on cTop(P, ω) descending
from P and the above described action of R on (P |Uw × Ck)//0Kw, we may
conclude that the induced R action on c(P, ω) is in fact a smooth action.

Finally, we check that the symplectic form η on c(P, ω) satisfies ρ∗λη =
eλη for every action diffeomorphism ρλ associated to λ ∈ R. On the open
dense interior W̊ of W , the functor c is the identity (see Remark 2.13); i.e.,
for an open subset U ⊂ W̊ , (P |U , ω, π : P |U → U) = c(P, ω)|U as symplectic
toric manifolds over ψ|U . Thus,

ρ∗λ(η|U ) = ρ∗λ(ω|U ) = eλω|U = eλη|U

As this identity holds on the open dense subset c(P, ω)|W̊ of c(P, ω), it
follows this holds over all c(P, ω). Therefore, the above action of R on c(P, ω)
renders c(P, ω) a symplectic toric cone (the properness of the R action on
M is ensured by Proposition 3.12). □

Definition 5.2. Let ψ :W → g∗ be a homogeneous unimodular local em-
bedding. Then hc : HSTBψ(W ) → STCψ(W ) is the functor taking a ho-
mogeneous symplectic toric bundle (P, ω) to the symplectic toric mani-
fold c(P, ω) with R action inherited from (P, ω), as outlined in Proposi-
tion 5.1. For a morphism φ : (P, ω) → (P ′, ω′), let hc(φ) := c(φ). Since φ
is (G× R)-equivariant, hc(φ) is (G× R)-equivariant as well. As with c,
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hc : HSTBψ → STCψ is a map of presheaves (naturality of hc follows from
naturality of c).

To begin showing hc is an isomorphism of presheaves, we first show that
hc is fully faithful.

Lemma 5.3. Let ψ :W → g∗ be a homogeneous unimodular local embed-
ding. Then for every R-invariant open subset U of W , the functor hcU :
HSTBψ(U) → STCψ(U) is fully faithful.

Proof. As ψ|U : U → g∗ is also a homogeneous unimodular local embedding
and the groupoid HSTBψ(U) is, by definition, the groupoid HSTBψ|U (U),
we need only worry about the case of U =W as this will generalize to any
R-invariant open subset U ⊂W .

Note we have the following commutative diagram

(5.1) HSTBψ(W )
ιh

//

hc

��

STBψ(W )

c

��

STCψ(W ) ιc
// STMψ(W )

where ιh and ιc are the forgetful functors. ιh and ιc are both faithful (the
maps in the source category for both functors are distinguished only by
R-equivariance). Therefore, since c and ιh are faithful and c ◦ ιh = ιc ◦ hc,
ιc ◦ hc is faithful; so since ιc is faithful, hc is also faithful.

Now we show hc is full. Fix two homogeneous symplectic toric bundles
(P, ω) and (P ′, ω′) in HSTBψ(W ). Let

f : hc(π : P →W,ω) → hc(π′ : P ′ →W,ω′)

be a map of symplectic toric cones. Using diagram (5.1) and the fullness of
c, it follows there is a map of symplectic toric bundles

φ : ιh(P, ω) → ιh(P
′, ω′)

satisfying c(φ) = ιc(f).
Let d : P ′ ×π′,W,π′ P ′ → G be the division map for P ′: the smooth map

with d(p, p′) the unique element of G such that p · d(p, p′) = p′ for any p, p′ ∈
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P ′ with π′(p) = π′(p). For each element t ∈ R, define

φ̃t : P → G, φ̃t(p) := d(φ(t · p), t · φ(p))

Recall that c|W̊ is the identity on the open dense top stratum W̊ ⊂W (see
Remark 2.13). So c(φ|W̊ ) = ιc(f |W̊ ) is R-equivariant. Therefore, we may con-
clude that, for every t ∈ R, φ̃t ≡ e on P |W̊ (for e ∈ G the identity element).
φ̃t is continuous and constant on the open dense subset P |W̊ of P , it follows
that φ̃t ≡ e on all P and so φ is R-equivariant and therefore actually a map
of homogeneous symplectic toric bundles φ ∈ HSTBψ(W ). Using diagram
(5.1) once more, we may conclude that hc(φ) = f . Hence, hc is full. □

We require two more lemmas before we can use Lemma B.11 to prove
that hc : STBψ → STCψ is an isomorphism of presheaves.

Lemma 5.4. Let ψ :W → g∗ be a homogeneous unimodular local embed-
ding. Then any two symplectic toric cones over ψ are locally isomorphic;
explicitly, for (M,ω, π :M →W ) and (M ′, ω′, π′ :M ′ →W ) two symplectic
toric cones over ψ, there is an open cover {Uα}α∈A of W by R-invariant
open subsets and a collection of isomorphisms

{φα : (M,ω, π)|Uα → (M ′, ω′, π′)|Uα ∈ STCψ(Uα)}α∈A.

As the proof involves a number of known results about the relationship
between symplectic toric cones and contact toric manifolds, we relegate the
proof of Lemma 5.4 to Appendix A.

Lemma 5.5. Let ψ :W → g∗ be a homogeneous unimodular local embed-
ding. Then the presheaf STCψ : OpenR(W )op → Groupoids is a prestack (see
Definition B.5).

Proof. To show STCψ is a prestack, we must show that, for every R-invariant
open subset U of W and for any two symplectic toric cones (M,ω, π :M →
U) and (M ′, ω′, π′ M ′ → U) in STCψ(U), the presheaf

Hom((M,ω, π), (M ′, ω′, π′)) : OpenR(U)op → Sets,

V 7→ HomSTCψ((M,ω, π)|V , (M
′, ω′, π′)|V )

is a sheaf of sets. It is routine to check that the additional properties imposed
on the smooth maps of STCψ are local. □

We may put together the results of this section to prove that hc is an
isomorphism of presheaves.
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Theorem 5.6. Let ψ :W → g∗ be a homogeneous unimodular local embed-
ding. Then hc : HSTBψ → STCψ is an isomorphism of presheaves.

Proof. We have from Lemma 5.5 that STCψ is a prestack and from Propo-
sition B.8 that HSTBψ is a stack. To see that HSTBψ(U) is non-empty for
every open R-invariant subset U of W , note that, in Proposition 4.7, we
showed that every homogeneous principal G-bundle comes with a symplec-
tic form with respect to which it is a homogeneous symplectic toric bundle;
in particular, then, the trivial principal G-bundle U ×G→ U comes with a
symplectic form with respect to which it is a homogeneous symplectic toric
bundle over ψ|U .

From Lemma 5.4, we have that, for any open R-invariant subset U of
W , any two elements in the groupoid STCψ(U) are locally isomorphic; in
other words, STCψ is transitive. Finally, from Lemma 5.3, we have that
hcU : HSTBψ(U) → STCψ(U) is fully faithful for each U .

Thus, HSTBψ, STCψ, and hc satisfy all the hypotheses of Lemma B.11
(see also Remark B.12) and so we may conclude that hc is an isomorphism
of presheaves. □

6. Characteristic classes for symplectic toric cones

In this section, we prove that the collection of symplectic toric cones over a
particular homogeneous unimodular local embedding ψ :W → g∗ are natu-
rally isomorphic the classes H2(W,ZG). First, we set some notation.

Notation 6.1. Given two categories C and D and a functor F : C → D,
denote by π0C and π0D the collections of isomorphism classes of C and D,
respectively, and denote by π0F : π0C → π0D the function π0F ([c]) := [F (c)]
for each class [c] ∈ π0C. Note π0F is well-defined as F is a functor.

Remark 6.2. For X a topological space, suppose F : Open(X)op →
Groupoids is a presheaf of groupoids. Then there is a presheaf of sets π0F :
Open(X)op → Sets with π0F(U) := π0(F(U)) for every open subset U of X.

We now show how HSTBψ is related to a relatively simple presheaf of
groupoids to classify.

Proposition 6.3. Let ψ :W → g∗ be a homogeneous unimodular local em-
bedding. Then for R : HSTBψ → BGR the forgetful map of presheaves, π0R :
π0HSTBψ → π0BGR is an isomorphism of presheaves of sets over OpenR(W ).
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Proof. Note that, for any R-invariant subset U of W , since BGR(U) is a
groupoid, it is enough to show that RU : HSTBψ(U) → BGR(U) is essentially
surjective and, for any two homogeneous symplectic toric bundles (π : P →
U, ω) and (π′ : P ′ → U, ω′), R(P, ω) and R(P ′, ω′) are isomorphic only if
(P, ω) and (P ′, ω′) are isomorphic.

The former fact is demonstrated by Proposition 4.7: for any bundle π :
P → U of BGR, there exists a connection A with respect to which (P, d⟨ψ ◦
π,A⟩) is a homogeneous symplectic toric bundle. The latter fact is demon-
strated by Proposition 4.11: any two homogeneous symplectic toric bundles
(P, ω) and (P ′, ω′) are isomorphic in HSTBψ(U) if and only if the underlying
bundles are isomorphic in BGR(U). □

Before we can finish, we need the following well-known theorem.

Theorem 6.4. Let M be a manifold with corners and let BG(M) be the
category of principal G-bundles over M with morphisms isomorphisms of
principal G-bundles. For G our torus and ZG the integral lattice of g (that
is, the kernel of exp : g → G), the function:

c1 : π0BG(M) → H2(M,ZG),

with c1([P ]) the first Chern class of P , is a bijection.

Remark 6.5. By the naturality of characteristic classes, we may extend
the bijection in Theorem 6.4 to an isomorphism of presheaves of sets. As ex-
plained in Remark 6.2, since BG : Open(M)op → Groupoids is a presheaf of
groupoids, we get a presheaf π0BG : Open(M)op → Sets. So, for H2(·,ZG) :
OpenR(W )op → Sets the presheaf of sets U 7→ H2(U,ZG), we have the iso-
morphism of presheaves of sets

c1 : π0BG → H2(·,ZG)

Since we’ve been using the site of R-invariant open subsets of W and
the presheaf BGR of principal G-bundles with free and proper R actions, we
still need to show the isomorphism c1 given above descends to OpenR(W ).

Proposition 6.6. For ψ :W → g∗ a homogeneous unimodular local em-
bedding, the isomorphism of presheaves c1 : π0BG → H2(·,ZG) descends to
an isomorphism of presheaves (c1)R : BGR → H2(·,ZG)|Open

R
(W ).

Proof. Since we are restricting the isomorphism c1, we only need to show
that (c1)R is still surjective. Fix a class [α] ∈ H2(U,ZG). Since the quotient
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map q : U → U/R is a principal R-bundle, it has a global section i : U/R →
U . i and q establish homotopy equivalence between U and U/R.

Let π : P → U/R be a principal G-bundle with c1(P ) = ι∗[α]. Then
q∗P ∼= P × R is an element of BGR(U) (where P × R inherits the trivially
extended action of R). Hence,

c1(q
∗P ) = q∗(c1(P )) = q∗(ι∗([α])) = [α]

□

Now we may classify homogeneous symplectic toric bundles over a ho-
mogeneous unimodular local embedding ψ :W → g∗.

Proposition 6.7. Let ψ :W → g∗ be a homogeneous unimodular local em-
bedding. Then, for H2(·,ZG) : OpenR(W )op → Sets the presheaf of sets U 7→
H2(U,ZG), there is an isomorphism of presheaves:

chern : π0HSTBψ → H2(·,ZG)

Proof. Recall we have isomorphisms of presheaves π0R : π0HSTBψ → π0BGR

of Proposition 6.3 and (c1)R : π0BGR → H2(·,ZG) from Proposition 6.6.
Therefore, the composition chern := (c1)R ◦ π0R is an isomorphism of pre-
sheaves. □

We may now prove our first main classification which we restate for the
convenience of the reader.

Theorem 1.2: Let ψ :W → g∗ be a homogeneous unimodular local embed-
ding. Then the set of isomorphism classes of symplectic toric cones (M,ω, µ)
with G-quotient π :M →W and orbital moment map ψ is in natural bijec-
tive correspondence with the cohomology classes H2(W,ZG), where ZG is
the integral lattice of G, the kernel of the map exp : g → G.

Proof. This natural bijective correspondence arises from the composition
of isomorphisms of presheaves: (π0hc)

−1 : π0STCψ → π0HSTBψ (see Theo-
rem 5.6) and chern : π0HSTBψ → H2(·,ZG) (see Proposition 6.7). □

We have an easy corollary.

Corollary 6.8. Suppose a symplectic toric cone (M,ω) with orbital mo-
ment map µ̄ :M/G→ g∗ satisfiesH2(M/G,Z) = 0. Then (M,ω) is (G× R)-
equivariantly symplectomorphic to every other symplectic toric cone admit-
ting quotient space M/G and orbital moment map µ̄.
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Additionally, note that a classification of symplectic toric manifolds au-
tomatically descends to a classification for contact toric manifolds.

Corollary 1.3. Let ψ :W → g∗ be a homogeneous unimodular local em-
bedding. Then the set of isomorphism classes of contact toric manifolds
with symplectization (M,ω, µ) having G-quotient π :M →W and orbital
moment map ψ is in natural bijective correspondence with the cohomology
classes H2(W,ZG).

Remark 6.9. Strictly speaking, Lerman in [17] proved this result in the
case where ψ is known to be the orbital moment map of the symplectization
of a contact toric manifold. However, our result has established exactly what
form these orbital moment maps take.

Part II. Classifying symplectic toric stratified
spaces with isolated singularities

The goal of this part is to describe and classify symplectic toric stratified
spaces with isolated singularities. To begin, we describe in Section 7 singular
symplectic toric cones: these are symplectic toric cones with an added point
at infinity (see Definition 7.9). These spaces serve as the local model for
symplectic toric stratified spaces with isolated singularities.

In Section 8, We define and describe symplectic toric stratified spaces with
isolated singularities. These are (roughly) stratified spaces with torus actions
locally modeled on singular symplectic toric cones (see Definition 8.1). We
will see that, for such a space (X,ω, µ : X → g∗), the topological quotient
X/G inherits the structure of a cornered stratified space with isolated singu-
larities; essentially, a stratified space for which the strata are allowed to be
manifolds with corners. Furthermore, the moment map µ : X → g∗ descends
to a stratified unimodular local embedding µ̄ : X/G→ g∗ (see Definition 8.2).
This is the continuous extension of a unimodular local embedding to a cor-
nered stratified space which additionally look like homogeneous unimodular
local embeddings near each singularity.

As isomorphic symplectic toric stratified spaces must have isomorphic
orbit spaces and intertwined orbital moment maps, we group the spaces
(X,ω, µ) with fixed G-quotient maps π : X →W and orbital moment map
the stratified unimodular local embedding ψ :W → g∗ together into a
groupoid STSSψ(W ), the groupoid of symplectic toric stratified spaces over
ψ (see Definition 8.4). The morphisms of this groupoid are G-equivariant
strata preserving homeomorphisms restricting to symplectomorphisms on
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the open dense strata which intertwine G-quotient maps. As in the case
of symplectic toric cones, we may form a presheaf of groupoids STSSψ :
Open(W )op → Groupoids.

In Section 9, we define conical symplectic toric G-bundles over ψ. These
are principal G-bundles π : P →Wreg for Wreg the open dense stratum of
W with G-invariant symplectic forms for which ψ ◦ π is a moment map that
satisfy a special “conical” condition (see Definition 9.1). Together with G-
equivariant symplectomorphic bundle isomorphisms, these form a groupoid
CSTBψ(W ), the groupoid of conical symplectic toric G-bundles over ψ. As in
the case of homogeneous symplectic toric bundles, the collection of groupoids
CSTBψ|U (U) forms a presheaf of groupoids CSTBψ : Open(W )op → Groupoids.

In Section 10, we build a map of presheaves c̃ : CSTBψ → STSSψ adapted
from the equivalence of categories c presented by Karshon and Lerman in [16]
(see Section 2). As in the case of c and hc : HSTBψ → STSSψ of Part I, we are
also able to show that c̃ is an isomorphism of presheaves (Theorem 10.11).

In Section 11, we show that the characteristic classes of Karshon and Ler-
man yield characteristic classes for symplectic toric stratified spaces via the
restriction of a symplectic toric stratified space to its dense top stratum. In
Proposition 11.5, we establish that, for any principal bundle π : P →Wreg,
the Chern class of P establishes a collection of boundary conditions near
each singularity that a conical symplectic toric bundle must satisfy. Via the
isomorphism of presheaves c̃, this establishes a natural bijection between the
isomorphism of symplectic toric stratified spaces with isolated singularities
over a particular stratified unimodular local embedding ψ :W → g∗ and a
subspace of H2(Wreg,ZG × R) determined by the topology ofW . In particu-
lar, we note that this subspace is in fact the full space of cohomology classes
H2(Wreg,ZG × R) except potentially when dim(G) = 3. In the case where
dim(G) = 3, we instead may identify the subspace of classes associated to
stratified spaces with an extension of H2(Wreg,ZG) by H

2(W,R).
We finish Section 11 with two illustrative examples. Example 11.10

demonstrates a stratified unimodular local embedding for a compact sym-
plectic toric stratified space with exactly one singularity exhibiting two prop-
erties not allowed by Burns, Guillemin, and Lerman in their classification
of compact connected symplectic toric stratified spaces [6]. Example 11.11
first revisits the example presented by Burns, Guillemin, and Lerman of
the rational octahedron in R3 which corresponds to exactly one compact
symplectic toric stratified space. We then discuss two variations on this ex-
ample demonstrating stratified unimodular local embeddings ψ :W → g∗

where the classes of H2(Wreg,ZG × R) are not in bijective correspondence
with the isomorphism class of symplectic toric stratified space over ψ.
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7. Singular symplectic toric cones

Symplectic toric stratified spaces with isolated singularities are symplectic
toric manifolds except on a discrete set of isolated singularities fixed by the
torus G. These singularities have neighborhoods modeled by neighborhoods
of −∞ of singular symplectic toric cones: stratified spaces with exactly one
singularity that are conical both in the topological sense as well as the
symplectic sense. We will make this precise with a series of definitions.

Definition 7.1. Let L be a manifold (possibly with corners). Then the
open cone on L, denoted c(L), is the topological space (L× [−∞,∞))/(L×
{−∞}). Here, [−∞,∞) is the topological space given by compactifying R at
one end. The vertex of the cone is denoted by ∗ (i.e., the image of {−∞} × L
in c(L) under the quotient).

While this convention for a topological cone is a bit awkward, it fits
the convention for symplectic cones nicely. What follows is a definition for
stratified spaces with isolated singularities.

Definition 7.2. A stratified space with isolated singularities is a Hausdorff
paracompact topological space X with a partition X = Xreg

∐

α∈A{xα} such
that Xreg is a manifold and, for each xα, there exists a neighborhood Uα of
xα inX, a compact manifold Lα (called a link of xα), and an open embedding
φα : Uα → c(Lα) such that

• φα(xα) = ∗ (i.e., φα maps xα to the vertex of c(Lα)); and

• φα restricts to a diffeomorphism between Xreg ∩ Uα and its image in
c(Lα)\{∗} ∼= Lα × R.

Formally, this data will be represented by the pair
(

X,Xreg

∐

α∈A{xα}
)

though informally the partition may be suppressed. Call a choice of link
Lα, neighborhood Uα, and embedding φα : Uα → c(Lα) a local structure da-
tum for xα.

A map of stratified spaces with isolated singularities

f :

(

X,Xreg

∐

α∈A
{xα}

)

→



X ′, X ′
reg

∐

β∈B
{xβ}





is a continuous map f : X → X ′ so that f(Xreg) ⊂ X ′
reg, f |Xreg

is a smooth
map between Xreg and X ′

reg, and for every α ∈ A, f(xα) = x′β for some β ∈
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B. Such a map is an isomorphism of stratified spaces with isolated singularities
if it is a homeomorphism (it follows that f−1 is a map of stratified spaces
since f is bijective and a map of stratified spaces).

To model both symplectic toric stratified spaces and their quotients, we
assume that stratified spaces with isolated singularities may be modeled on
cones of either manifolds or manifolds with corners; we distinguish the latter
with the name cornered stratified spaces.

Definition 7.3. A cornered stratified space with isolated singularities is a
stratified space X with isolated singularities for which the top stratum and
the links of the singularities are manifolds with corners.

Remark 7.4. The open dense stratum of a stratified space X will always
be denoted Xreg. Note that, for any (cornered) stratified space X, an open
subset U ⊂ X also inherits the structure of a (cornered) stratified space. The
open dense part of U with respect to this structure is exactly the intersection
Ureg = Xreg ∩ U .

Note that, for any compact manifold L, its open cone c(L) is a stratified
space with one isolated singularity. If L is a compact manifold with corners,
then c(L) is a cornered stratified space with one isolated singularity. In
particular, from any symplectic cone with a compact link, we can build a
stratified space by adding a point at −∞. To make this precise, we should
determine which open neighborhoods should be neighborhoods of −∞.

Definition 7.5. Given a symplectic cone (M,ω), a neighborhood of −∞ is
any open subset U so that U intersects every R-orbit of M and, for each
λ ∈ R with λ ≤ 0, λ · U ⊂ U .

We now define singular symplectic cones. These are topological cones
(hence, singular) with a symplectic cone structure on the top stratum.

Definition 7.6. A singular symplectic cone (with corners) is a (cornered)
stratified space with one isolated singularity X = Xreg

∐

{x0} with a sym-
plectic form ω ∈ Ω2(Xreg,R) and an action of R restricting to a smooth and
proper action on Xreg and fixing x0 such that

• (Xreg, ω) is a symplectic cone;

• Xreg/R is compact; and
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• every neighborhood U of x0 in X contains a neighborhood of −∞ of
(Xreg, ω).

From any symplectic cone, we can construct a singular symplectic cone.

Proposition 7.7. Any symplectic cone (M,ω) with L =M/R compact ex-
tends to a singular symplectic cone.

Proof. Define the topological space M̃ as follows: as a set, it is simply the
disjoint union M

∐

{∗}, for the point ∗ representing our (soon to be) vertex.
M̃ is then given the topology generated by sets of the form:

1) U , an open subset of M ; or

2) V
∐

{∗}, where V ⊂M is a neighborhood of −∞.

More succinctly, we topologize the set M̃ by specifying that all neighbor-
hoods of −∞ in M are in fact deleted open neighborhoods of the singular
point ∗. By definition, (M̃, ω) is a singular symplectic toric cone. □

We now show that any singular symplectic cone is the topological cone
on its underlying contact toric manifold.

Proposition 7.8. Let (X = Xreg

∐

{x0}, ω) be a singular symplectic cone.
Then, for R-quotient L := Xreg/R, every trivialization φ : Xreg → L× R of
Xreg as a principal R-bundle admits an extension to a homeomorphism φ̃ :
X → c(L).

Proof. First, φ extends to a bijection φ̃ : X → c(L) taking x0 in X to ∗
in c(L). Notice that, since L is compact, any neighborhood U of ∗ in c(L)
contains a neighborhood of the form L× (−∞, ϵ)

∐

{∗}, for some ϵ ∈ R. It
follows that φ̃ takes open neighborhoods of x0 in X to open neighborhoods
of ∗ in c(L). A similar argument shows that φ−1 extends to an open bijection
φ̃−1 and so φ̃ is a homeomorphism. □

Now, we introduce a toric action.

Definition 7.9. A singular symplectic toric cone is a singular symplectic
cone (X = Xreg,

∐

{x0}) with a continuous action of the torus G and a con-
tinuous map µ : X → g∗ such that

• G fixes the point x0 and restricts to a smooth action on Xreg; and
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• The action of G on Xreg makes the symplectic cone (Xreg, ω) a sym-
plectic toric cone for which µ|Xreg

is the homogeneous moment map of
(Xreg, ω) (see Definition 3.1).

We represent this data as the triple (X,ω, µ).
A map of singular symplectic toric cones is a G-equivariant map of strat-

ified spaces that restricts to a map of symplectic toric cones on the open
strata of the source and target.

Remark 7.10. For singular symplectic toric cone (X = Xreg

∐

{x0}, ω, µ :
X → g∗), as µ|Xreg

is homogeneous, it follows from the continuity of µ that
µ(x0) = 0.

Now, we show that the quotient of a singular symplectic toric cone is
a cornered stratified space. This will be a local model for the domain of
the orbital moment maps of symplectic toric stratified spaces with isolated
singularities.

Lemma 7.11. Let (X,ω, µ : X → g∗) be a singular symplectic toric cone.
Then for B = Xreg/R, X/G is a cornered stratified space with link B/G.

Proof. The quotient B comes with a contact structure ξ and the action of
G on Xreg descends to a contact toric action on (B, ξ) (see Appendix A).
By Proposition 7.8, any trivialization ϕ : Xreg → B × R extends to a home-
omorphism φ̃ : X → c(B). Furthermore, by Proposition A.9, we may choose
φ to be a G-equivariant trivialization.

As the actions ofG and R commute and φ̃ isG-equivariant, φ̃ descends to
a homeomorphism φ̃ : X/G→ c(B/G). By Lemma A.17, B/G is a manifold
with corners and therefore φ̃ gives local structure data for the singularity
x0 of X as a cornered stratified space. □

As in the case of symplectic cones, symplectic toric cones admit trivial-
ization independent extensions to singular symplectic toric cones.

Proposition 7.12. Every symplectic toric cone (M,ω, µ :M → g∗) over
compact base L =M/R extends to a singular symplectic toric cone.

Proof. First, Proposition 7.7 tells us how to transform (M,ω) into a singu-
lar symplectic cone (M̃, ω). The toric action descends to a contact toric G
action on L. With respect to this G action, we can pick a G-equivariant trivi-
alization ofM as a principal R-bundle φ :M → L× R (see Proposition A.9)
which extends to a homeomorphism φ̃ : M̃ → c(L).
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As each set of the form L× (−∞, ϵ) is G-invariant, it follows that every
neighborhood of −∞ for M contains a G-invariant neighborhood of −∞.
Thus, the action of G on M extends to a continuous action ρ : G× M̃ → M̃
on M̃ fixing the singular point. Then, since for V any G-invariant neighbor-
hood of −∞ we have that ρ−1(V

∐

{∗}) = G× (V
∐

{∗}), it follows from
the observation above that ρ is continuous.

Finally, note that since µ is smooth and homogeneous, it follows we can
continuously extend µ to µ̃ : M̃ → g∗ by defining µ̃(∗) = 0. □

To finish this section, we prove that any isomorphism of symplectic toric
cones extends to an isomorphism between their extensions as singular sym-
plectic toric cones.

Lemma 7.13. Let (X,ω, µ : X → g∗) and (X ′, ω′, µ′ : X ′ → g∗) be two sin-
gular symplectic toric cones for which there is an isomorphism of symplectic
toric cones

f : (Xreg, ω, µ|Xreg
) → (X ′

reg, ω
′, µ′|X′

reg
)

Then f extends to an isomorphism of singular symplectic toric cones.

Proof. Since f is (G× R)-equivariant, f takes G-invariant neighborhoods
of −∞ in (Xreg, ω) to G-invariant neighborhoods of −∞ in (X ′

reg, ω
′). f−1

satisfies the same property and so we may conclude f and f−1 extend to
isomorphisms of singular symplectic toric cones. □

8. Symplectic toric stratified spaces with isolated

singularities

After all the work of the previous section, we are finally ready to give a
definition of symplectic toric stratified spaces with isolated singularities.

Definition 8.1. A symplectic toric stratified space with isolated singularities
is a stratified space with isolated singularities (X,Xreg

∐

α∈A{xα}) with a
symplectic form ω ∈ Ω2(Xreg), a continuous map µ : X → g∗, and a continu-
ous action of torus G on X fixing each xα and restricting to a smooth, toric
action on (Xreg, ω) with moment map µ|Xreg

: Xreg → g∗. Furthermore, for
each xα, there exists a G-invariant neighborhood U of xα in X, a singular
symplectic toric cone (C, ω, ν : C → g∗), a G-invariant neighborhood V of
the vertex of C, and a G-equivariant homeomorphism φ : U → V such that

• φ(xα) = ∗ (for ∗ the vertex of C);
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• φ restricts to a symplectomorphism between Ureg and Vreg; and

• µ|U = ν ◦ φ+ µ(xα).

These objects are represented as triples (X,ω, µ).

As explained in Proposition 7.12, any symplectic toric cone with homo-
geneous moment map can be extended to a singular symplectic cone; these
serve for now as our only example of a symplectic toric stratified space
with isolated singularities. More exotic examples are given at the end of
Section 11.

As with symplectic toric manifolds in [16], symplectic toric stratified
spaces with a fixed quotient map are grouped together by their orbital mo-
ment map. To make sense of this, it is important to first understand what
form their quotients and orbital moment maps take.

Definition 8.2. Let (W,Wreg

∐

α∈A{wα}) be a cornered stratified space
with isolated singularities. A continuous map ψ :W → g∗ is called a stratified
unimodular local embedding if

• ψ|Wreg
is a unimodular local embedding; and

• for each wα, there exists a local structure datum φα : Uα → c(Lα)
and a homogeneous unimodular local embedding (see Definition 3.3)
ϕα : Lα × R → g∗ such that ψ|(Uα)reg = ϕα ◦ φα + ψ(wα), where ϕα is
homogeneous with respect to the action of R by translation on Lα × R.

We will call the piece of local structure datum φα : Uα → c(Lα) as above
a homogeneous local structure datum. The manifold with corners Lα will be
known as the link of wα.

Proposition 8.3. Suppose that (X,ω, µ : X → g∗) is a symplectic toric
stratified space with isolated singularities. Then X/G is a cornered strati-
fied space with isolated singularities and, for quotient map π : X → X/G,
the unique map µ̄ : X/G→ g∗ satisfying µ̄ ◦ π = µ is a stratified unimodular
local embedding.

Proof. Suppose that X = Xreg

∐

α∈A{xα}. As (Xreg, ω, µ|Xreg
) is a symplec-

tic toric manifold, Xreg/G is a manifold with corners and µ̄|Xreg/G is a uni-
modular local embedding (see Proposition 2.4). Additionally, by definition,
each singular point xα comes with a G-invariant neighborhood Uα and a
G-equivariant embedding φα : Uα → Cα of Uα onto a neighborhood of the
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vertex of a singular symplectic toric cone (Cα, ωα, να : Cα → g∗) so that
µ|Uα = να ◦ φα + µ(xα).

In turn, by Lemma 7.11, the quotient Cα/G of this singular symplectic
toric cone is a cornered stratified space and the associated orbital moment
map ν̄α : Cα/G→ g∗ is a homogeneous unimodular local embedding. φα
descends to a homeomorphism φ̄α : Uα/G→ Cα/G and the condition µ|Uα =
να ◦ φα + µ(xα) descends to the required condition relating φ̄α and ν̄α. □

We can now define our main category of interest.

Definition 8.4. Let ψ :W → g∗ be a stratified unimodular local embed-
ding. A symplectic toric stratified space over ψ is a symplectic toric strat-
ified space (X,ω, µ : X → g∗) with a G-quotient map π : X →W so that
ψ ◦ π = µ.

A map of symplectic toric stratified spaces over ψ between (X,ω, π : X →
W ) and (X ′, ω′, π′ : X ′ →W ) is a G-equivariant isomorphism of stratified
spaces φ : X → X ′ that restricts to a symplectomorphism between (Xreg, ω)
and (X ′

reg, ω
′) and satisfies π′ ◦ φ = π.

The groupoid of symplectic toric stratified spaces over ψ STSSψ(W ) is the
groupoid with objects and morphisms as described above.

Remark 8.5. Note that for any open subset U ⊂W , ψ|U is also a stratified
unimodular local embedding. Therefore, it makes sense to define the presheaf

STSSψ : Open(W )op → Groupoids, U 7→ STSSψ(U) := STSSψ|U (U)

Implicit here is the fact that, for U not containing singularities, the con-
dition that an object of STSSψ(U) must be modeled on certain neighbor-
hoods of singular symplectic toric cones is empty. Hence, here STSSψ(U)
and STMψ|Wreg

(U) (see Definition 2.5) agree.

To finish this section, we describe how symplectic toric stratified spaces
may be pulled back over certain open embeddings of cornered stratified
spaces.

Remark 8.6. Suppose that ψ :W → g∗ and ψ′ :W ′ → g∗ are two stratified
unimodular local embeddings and let φ :W ′ →W be an open embedding
of cornered stratified spaces with ψ ◦ φ = ψ′. Then, for any (X,ω, π : X →
W ) ∈ STSSψ(W ), we may pullback (X,ω, π : X →W ) via φ to the sym-
plectic toric stratified space φ∗(X,ω, π : X →W ) over ψ′ (this is simply the
restriction of (X,ω, π : X →W ) to φ(W ′) with G-quotient map φ−1 ◦ π).
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We can also pullback isomorphisms: any isomorphism

f : (X,ω, π : X →W ) → (X ′, ω′, π′ : X ′ →W )

of STSSψ(W ) induces a unique isomorphism

φ∗f : φ∗(X,ω, π : X →W ) → φ∗(X ′, ω′, π′ : X ′ →W )

of STSSψ′(W ′).

9. Conical symplectic toric bundles

As in [16] and in Part I, we define a new groupoid of principal G-bundles
with special properties. The bundles in this section, conical symplectic toric
bundles, are symplectic toric bundles with an extra condition to satisfy over
deleted open neighborhoods of the singularity of the base cornered stratified
space.

Definition 9.1. Let (W,Wreg

∐

α∈Awα) be a cornered stratified space with
isolated singularities and let ψ :W → g∗ be a stratified unimodular local
embedding. Then a conical symplectic toric principal G-bundle over ψ is a
symplectic toric bundle (π : P →Wreg, ω) over ψ|Wreg

(see Definition 2.6)
satisfying the following local condition: for each singularity wα of W , there
exists

• a homogeneous local trivialization datum φ : U → c(L) of wα with
associated homogeneous unimodular local embedding ϕ : L× R → g∗

(see Definition 8.2);

• a homogeneous symplectic toric bundle (ϖ : Q→ L× R, η) over ϕ (see
Definition 4.1); and

• for V := φ(U), there is a G-equivariant symplectomorphism φ̃ :
(P |Ureg

, ω) → (Q|Vreg
, η) so that the diagram

P |Ureg

φ̃
//

π

��

Q|Vreg

ϖ

��

U φ
// c(L)

commutes.
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The category CSTBψ(W ) of conical symplectic toric bundles over ψ is the
groupoid with objects as described above and morphisms maps of symplectic
toric bundles: bundle isomorphisms which are also symplectomorphisms.

We may more efficiently characterize conical symplectic toric bundles
using pullbacks.

Lemma 9.2. Let ψ :W → g∗ be a stratified unimodular local embedding.
Then a symplectic toric bundle (π : P →Wreg, ω) is a conical symplectic
toric bundle exactly when, for each singularity wα of W , there exists

• an open neighborhood U of wα;

• a homogeneous local trivialization datum φ : U → c(L) with homoge-
neous unimodular local embedding ϕ : L× R → g∗ satisfying ψ|Ureg

=
ϕ ◦ φ+ ψ(wα); and

• a homogeneous symplectic toric bundle (ϖ : Q→ L× R, η) ∈
HSTBϕ(L× R)

so that, thinking of (Q, η) as a symplectic toric bundle over φ+ ψ(wα) (see
Remark 2.11), φ∗(Q, η) and (P, ω)|U are isomorphic in STBψ|Ureg

(Ureg).

Proof. This is easily confirmed using Definition 9.1. □

Remark 9.3. As in the case of STSSψ (see Remark 8.5), we have a presheaf
of groupoids CSTBψ : Open(W )op → Groupoids. Open subsets U of W not
containing singularities renders the extra conditions of Definition 9.1 empty
and here CSTBψ(U) and STBψ|Wreg

(U) (the presheaf of symplectic toric prin-
cipal G-bundles, see Definition 2.6) agree.

In fact, CSTBψ(W ) is a stack over W . As the proof of this is more or
less just a retelling of the proof that the presheaf of principal bundles over
a topological space is a stack, we relegate this proof to the appendix (see
Proposition B.9).

As in the case of symplectic toric stratified spaces (see Remark 8.6),
conical symplectic toric bundles may be pulled back in special cases.

Remark 9.4. Let ψ :W → g∗ and ψ′ :W ′ → g∗ be two stratified unimodu-
lar local embeddings and let φ :W ′ →W be an open embedding of cornered
stratified spaces with ψ′ ◦ φ = ψ. Then, for (π : P →Wreg, ω) ∈ CSTBψ(W ),
note that φ∗P is a conical symplectic toric bundle over ψ′ (with symplectic
form pulled back from P ).
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As the forgetful functor from conical symplectic toric bundles to sym-
plectic toric bundles is important, we give it a symbol and reference here:

Definition 9.5. Given a stratified unimodular local embedding ψ :W →
g∗, let ι : CSTBψ(W ) → STBψ|Wreg

(Wreg) denote the forgetful functor.

Lemma 9.6. For any stratified unimodular local embedding ψ :W → g∗,
ι : CSTBψ(W ) → STBψ|Wreg

(Wreg) is fully faithful.

Proof. Since maps of conical symplectic toric bundles are maps of symplectic
toric bundles without any added conditions, this follows by definition. □

It is not clear that CSTBψ(W ) is non-empty for certain choices of W
or ψ. Unlike the case of symplectic toric bundles, we will soon see that the
existence of a G-invariant symplectic form ω on a given principal G-bundle
π : P →Wreg with respect to which (π : P →Wreg, ω) is a conical symplectic
toric bundle may depend on the topologies of P and W .

10. The morphism of presheaves c̃ : CSTBψ → STSSψ

In this section, we will define the functor c̃ : CSTBψ(W ) → STSSψ(W ) for
any stratified unimodular local embedding ψ :W → g∗. This is done using
the following steps.

Step 1: We first define the functor c̃Top taking conical symplectic toric bun-
dles (π : P →Wreg, ω) in CSTBψ(W ) to pairs c̃Top(π : P →Wreg, ω) =
(P̄ , π̄ : P̄ →W ) of topological G-spaces with quotient maps to W
and maps of conical symplectic toric bundles to maps of topologi-
cal G-spaces overW : G-equivariant homeomorphisms f : (X,ϖ : X →
W ) → (X ′, ϖ′ : X ′ →W ) with ϖ = ϖ′ ◦ f .

Step 2: We then define c̃(π : P →Wreg, ω) as the tuple

(

X = Xreg

∐

α∈A
{xα}, ω, π̄ : X →W

)

where (X, π̄) = c̃Top(P, ω) and where X = Xreg

∐

α∈A{xα} is a parti-
tion of X such that (Xreg, ω, π̄|Xreg

: Xreg →Wreg) is a symplectic toric
manifold over ψ|Wreg

. We may also show that, for any morphism of coni-
cal symplectic toric principal bundles φ, the morphism c̃(φ) := c̃Top(φ)
restricts to a symplectomorphism on the open dense pieces of the



✐

✐

“6-Wolbert” — 2020/10/27 — 16:30 — page 1441 — #51
✐

✐

✐

✐

✐

✐

Symplectic toric stratified spaces 1441

source and target partitioned symplectic toric spaces. This therefore es-
tablishes the functor c̃ : CSTBψ(W ) → PartSympψ(W ) to the category
of partitioned symplectic toric spaces over ψ (see Definition 10.1).

Step 3: We next show c̃ commutes with pullbacks: for any open embedding
φ :W ′ →W and stratified unimodular local embeddings ψ :W → g∗

and ψ′ :W ′ → g∗ for which ψ ◦ φ = ψ′, given any conical symplectic
toric bundle (P, ω), c̃(φ∗(P, ω)) = φ∗(c̃(P, ω)) (see Remarks 8.6, 9.4,
and 10.3). In particular, c̃ commutes with restrictions.

Step 4: We show for a particular model case of ψ and (P, ω) that c̃(P, ω) is a
symplectic toric cone.

Step 5: With a small amount of work, the model case of Step 4 allows us
to show that every c̃(P, ω) is a symplectic toric stratified space over
ψ. Since STSSψ(W ) is a full subcategory of PartSympψ(W ), we may
thereby conclude that c̃ restricts to a functor c̃ : CSTBψ(W ) →
STSSψ(W ).

We now flesh out the details of each step.

Step 1: To start, fix a stratified unimodular local embedding ψ :W → g∗

and fix (π : P →Wreg, ω) a conical symplectic toric bundle over ψ. Suppose
W has partition W =Wreg

∐

α∈A{wα}. First we define c̃Top(P, ω), a topo-
logical G-space with a G-quotient to W .

We construct the cornered stratified space P̃ as follows: as a set, P̃ :=
P
∐

α∈A{pα} for a set {pα}α∈A in bijection with the singularities of W . We

give P̃ the topology generated by

1) open subsets of P ; and

2) sets {pα}
∐

P |Ureg
for U a neighborhood of wα in W .

Note that P̃ inherits a G action extended from the free action of G on P ;
specifically, one where each pα is fixed. This is a continuous extension as
every open neighborhood of a pα by design contains a G-invariant deleted
neighborhood of pα. Furthermore, note that the G-quotient π : P →Wreg

extends to a G-quotient π̃ : P̃ →W with π̃(pα) = wα for every α.
Now, for each w ∈Wreg, let Kw ≤ G be the subtorus determined by the

image of the unimodular local embedding ψ|Wreg
(see Section 2). Let ∼ be

the equivalence relation on P̃ with each singularity pα occupying its own
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equivalence class and defined for elements of P ⊂ P̃ by

p ∼ p′ when there exists k ∈ Kπ(p) such that p · k = p′.

Since ∼ only identifies elements of the same G-orbit, the G action g ·
[p] := [g · p] on P̃ / ∼ is well-defined and continuous. Furthermore, the G-
quotient map π̃ descends to a G-quotient map π̄ : P̃ / ∼→W for this action.
Define c̃Top(P, ω) := (P̃ , π̄ : P̃ →W ).

Now, to define c̃Top on morphisms, let φ : (P, ω) → (P ′, ω′) be a map
of conical symplectic toric bundles. Again, due to how the topology of P̃
was defined, φ extends to a G-equivariant homeomorphism φ̃ intertwining
the two G-quotient maps π̃ and π̃′ for P̃ and P̃ ′, respectively. Therefore,
φ̃ : P̃ → P̃ ′ descends to an isomorphism of topological G-spaces over W :

(10.1) c̃Top(φ) : P̃ / ∼→ P̃ ′/ ∼, c̃Top(φ)([p]) := [φ̃(p)]

such that π̄′ ◦ cTop(φ) = π̄.

Step 2: In this step, we define c̃ first as a functor to the category of parti-
tioned symplectic toric spaces over ψ.

Definition 10.1. For ψ :W → g∗ a stratified unimodular local embed-
ding, a partitioned symplectic toric stratified space over ψ is a triple (X =
Xreg

∐

α∈A{xα}, ω, π : X →W ) with a continuous action of G on X fixing
each xα and restricting to a smooth action on Xreg such that:

• the action of G on X has G-quotient map π : X →W ; and

• (Xreg, ω, π|Xreg
) is a symplectic toric manifold over ψ|Wreg

with respect
to the restricted action of G to Xreg.

A map of partitioned symplectic toric stratified spaces over ψ from (X =
Xreg

∐

α∈A{xα}, ω, π) to (Y = Yreg
∐

β∈B{yβ}, ω
′, ϖ) is a homeomorphism

φ : X → Y withϖ ◦ φ = π restricting to a map of symplectic toric manifolds
over ψ|Wreg

from (Xreg, ω, π|Wreg
) to (Yreg, ω,ϖ|Yreg

).
Denote by PartSympψ(W ) the category of partitioned symplectic toric

spaces over ψ.

Remark 10.2. Notice that symplectic toric stratified spaces over ψ are
partitioned symplectic toric spaces over ψ with an extra conical condition
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near each singularity (again, here the “conical” condition is both a topolog-
ical and a symplectic condition). Indeed, the category STSSψ(W ) of sym-
plectic toric stratified spaces over ψ is a full subcategory of the category
PartSympψ(W ).

Remark 10.3. Notice that, as in the case of symplectic toric stratified
spaces over ψ and conical symplectic toric spaces over ψ, PartSympψ also
defines a presheaf over W , with PartSympψ(U) := PartSympψ|U (U) and

(X,ω, π)|U := (π−1(U), ω|(π−1(U))
reg
, π|π−1(U)) for U any open subset of W .

In thinking of STSSψ(W ) as a full subcategory of PartSympψ(W ), it is not
difficult to confirm that restriction in PartSympψ(W ) matches restriction in
STSSψ(W ) and therefore STSSψ is in fact a full subpresheaf of PartSympψ.

More generally, for ψ′ :W ′ → g∗ and ψ :W → g∗ and φ :W ′ →W an
open embedding of cornered stratified spaces, we may pullback an element
(X,ω, π) of PartSympψ(W ) to an element of PartSympψ′(W ′), replacing the
G-quotient map of the restriction (X,ω, π)|φ(W ′) with the G-quotient to
W ′ given by φ−1|φ(W ′) ◦ π. Similarly, we can pullback any morphism of
PartSympψ(W ) to a morphism of PartSympψ′(W ′). Again, note that the pull-
back operation defined for partitioned symplectic toric spaces matches the
pullback operation for symplectic toric stratified spaces (as defined in Re-
mark 8.6).

Let ψ :W → g∗ be a stratified unimodular local embedding and let (π :
P →Wreg, ω) be a conical symplectic toric bundle. Let P̃ and ∼ be the
extension of P and equivalence relation as described in the previous step.
Note that the subset P ⊂ P̃ descends to the open dense subset P/ ∼⊂ P̃ / ∼.
Furthermore, P/ ∼ is exactly the topological space cTop(ι(P, ω)) (recall ι :
CSTBψ(W ) → STBψ|Wreg

(Wreg) is the forgetful functor; see Remark 8.5 and
Definition 9.5).

So P̃ / ∼ has partition cTop(ι(P, ω))
∐

α∈A{[pα]}. Recall that, by defini-
tion, c(ι(P, ω)) is a symplectic toric manifold over ψ|Wreg

homeomorphic to
the topological space cTop(P, ω).

Write c(ι(P, ω)) = (P/ ∼, ω̄,ϖ : P/ ∼→Wreg). Note that theG-quotient
map ϖ is just the G-quotient map for the topological space cTop(ι(P, ω)) ⊂
P̃ / ∼ and so must match the restriction of π̄ : P̃ / ∼→W .

We now define c̃ as the partitioned symplectic toric space over ψ

(10.2) c̃(π : P →Wreg, ω) := (P̃ / ∼, P/ ∼
∐

α∈A
{[pα]}, ω̄, π̄ : P̃ / ∼→W )
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Now, let φ : (P, ω) → (P ′, ω′) be a map of conical symplectic toric bun-
dles over ψ. Then since our definition for c̃Top(φ) matches cTop(ι(φ)) (again,
see Section 2), it follows that the morphism c̃Top(φ) restricts to an isomor-
phism of symplectic toric manifolds between the open dense pieces of c̃(P, ω)
and c̃(P ′, ω′).

Now, we define c̃.

Definition 10.4. Let ψ :W → g∗ be a stratified unimodular local embed-
ding. Then c̃ : CSTBψ(W ) → PartSympψ(W ) is the functor such that c̃(P, ω)
is the partitioned symplectic toric space over ψ given in equation (10.2) and
c̃(φ) := c̃Top(φ) is the morphism given in equation (10.1).

Hence, since STSSψ(W ) is a full subcategory of PartSympψ(W ), the
remainder of the steps towards defining c̃ involve checking that c̃ is nat-
ural with respect to restriction and that the image of c̃ : CSTBψ(W ) →
PartSympψ(W ) is contained in STSSψ(W ) ⊂ PartSympψ(W ).

Step 3: The content of this step is the following lemma regarding c̃ com-
muting with restrictions and, more generally, with pullbacks (as defined in
Remarks 8.6 and 10.3).

Lemma 10.5. Suppose φ :W ′ →W is an open embedding of cornered
stratified spaces and ψ :W → g∗, ψ′ :W ′ → g∗ are stratified unimodular lo-
cal embeddings with ψ ◦ φ = ψ′. Then for any conical symplectic toric bundle
(π : P →Wreg, ω), c̃(φ

∗(P, ω)) = φ∗c̃(P, ω). In particular, for any open sub-
set of U in W , c̃((P, ω)|U ) = c̃(P, ω)|U .

Proof. Fix open U in W . Notice that (P, ω)|U is a saturated open set with
respect to the quotient map associated to the equivalence relation ∼ defining
c̃Top. Therefore, c̃((P, ω)|U ) is an open subset of c̃(P, ω). Since the G-quotient
map of c̃(P, ω) to W is inherited from that of P , it follows that the open
subset c̃((P, ω)|U ) is exactly the restriction c̃(P, ω)|U .

More generally, since pullbacks of conical symplectic toric bundles and
partitioned symplectic toric spaces by open embeddings φ :W ′ →W are
restrictions followed by alteration of the quotient map, it follows from the
above that c̃(φ∗(P, ω)) = φ∗c̃(P, ω). □

Step 4: We now prove that c̃(P, ω) is a symplectic toric stratified space for
the local conical model of neighborhoods of singular points in W .
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Proposition 10.6. Let B be a a manifold with corners and ψ : c(B) → g∗

be a stratified unimodular local embedding for which ψ|B×R is a homoge-
neous unimodular local embedding with respect to the action of translation
on the second factor (see Definition 3.3). Suppose that (π : P → B × R, ω)
is a homogeneous symplectic toric bundle over ψ|B×R. Then (P, ω) is a con-
ical symplectic toric bundle over ψ and c̃(P, ω) is a singular symplectic toric
cone over ψ.

Proof. First, by definition, any homogeneous symplectic toric bundle over
ψ|B×R is a conical symplectic toric bundle over ψ (indeed, (P, ω) itself sat-
isfies the required local condition for a conical symplectic toric bundle; see
again Definition 9.1).

Let P̃ and π̃ : P̃ →W correspond to the same extension of P and π
as defined in Step 1 in constructing c̃Top. Then (P̃ , ω, ψ ◦ π̃) is exactly the
extension of the symplectic toric cone (P, ω, ψ ◦ π) to a singular symplectic
toric cone as defined in Proposition 7.12.

Since P ⊂ P̃ is a homogeneous symplectic toric bundle over ψ|B×R, we
may apply hc to (P, ω). Recall that hc : STBψ|B×R

(B × R) → STCψ|B×R
(B ×

R) is just the functor c that remembers the action of R on a homogeneous
symplectic toric bundle (see Definition 5.2). So, using hc, c(P, ω) inherits
the structure of a symplectic toric cone over ψ|B×R.

To finish, we must show that cTop is homeomorphic to a singular cone.
let L := P/R and let φ : P → L× R be a G-equivariant trivialization of P
as a principal R-bundle (by Proposition A.9, such a trivialization exists).
Then, by Proposition 7.8, this extends to a homeomorphism φ̃ : P̃ → c(L).
Note that we may apply the construction cTop to each slice L× {τ} → B ×
R and, since the actions of G and R on L× R commute, it follows that
the topological G-spaces cTop(L× {τ}) are equivariantly homeomorphic for
each τ . So, defining L̄ := cTop(L× {0}), it follows that c̃Top(c(L)) ∼= c(L̄) as
topological G-spaces and furthermore that [p, t] corresponds to an element
of L̄× {t} ⊂ c(L̄) for each (p, t) ∈ L× R ⊂ c(L).

Therefore, the map φ :P→L×R then descends to a (G× R)-equivariant
homeomorphism ϕ : P̃ / ∼→ c(L̄). As ϕ restricts to a (G× R)-equivariant
homeomorphism between hc(P, ω) ⊂ P̃ / ∼ and L̄× R, we may conclude that
L̄ is in fact homeomorphic to the manifold hc(P, ω)/R. Therefore, ϕ gives
local trivialization data for [∗] in P̃ and so (P̃ / ∼, P/ ∼

∐

{[∗]}) is a stratified
space with one singularity and it follows by definition that c̃(P, ω) = (P̃ / ∼
, P/ ∼

∐

{[∗]}, hc(ω), π̄ : P̃ / ∼→ c(B)) is a singular symplectic toric cone
over ψ (i.e., a singular symplectic toric cone with moment map ψ ◦ π̄). □
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Step 5: Finally, we now show that c̃ : CSTBψ(W ) → PartSympψ(W )
has image contained in STSSψ(W ) and hence restricts to a functor c̃ :
CSTBψ(W ) → STSSψ(W ).

Proposition 10.7. Let ψ :W → g∗ be a stratified unimodular local embed-
ding and let (π : P →Wreg, ω) be a conical symplectic toric bundle. Then
c̃(P, ω) is a symplectic toric stratified space over ψ and therefore defines a
functor c̃ : CSTBψ(W ) → STSSψ(W ). Furthermore, this yields a well-defined
map of presheaves c̃ : CSTBψ → STSSψ.

Proof. Let P̃ , π̃, ∼, etc. be the same objects as defined in the previous steps.
To show that c̃(P, ω), the partitioned symplectic toric space over ψ defined
in Step 2, is in fact a symplectic toric stratified space over ψ, we must show
that

1) c̃(P, ω) is a stratified space with isolated singularities; and

2) each singularity of c̃(P, ω) has a neighborhood isomorphic to the neigh-
borhood of the singularity in a singular symplectic toric cone.

As neighborhoods of the singularity of any singular symplectic toric cone are
homeomorphic to c(L) for some compact manifold L, point (1) is subsumed
by point (2).

So fix a singularity pα of P̃ lying over wα in W . Then by Lemma 9.2,
there exists an open neighborhood U of wα, a homogeneous local trivializa-
tion datum φ : U → c(L) with homogeneous unimodular local embedding
ϕ : L× R → g∗ satisfying ψ|Ureg

= ϕ ◦ φ+ ψ(wα), a homogeneous symplec-
tic toric bundle (ϖ : Q→ L× R, η) ∈ HSTBϕ(L× R), and a G-equivariant
isomorphism f : (P, ω)|U → φ∗(Q, η) in CSTBψ(U).

Since c̃(φ∗(Q, η)) = φ∗c̃(Q, η) and c̃((P, ω)|U ) = c̃(P, ω)|U (see Lemma
10.5), we have an isomorphism

c̃(f) : c̃(P, ω)|U → φ∗c̃(Q, η)

Thus, we have an isomorphism from c̃(P, ω)|U to φ∗(Q, η), a neighborhood
of the singularity of the singular symplectic toric cone c̃(Q, η). It follows
that c̃(P, ω) is a symplectic toric stratified space over ψ.

Therefore, since STSSψ(W ) is a full subcategory of PartSympψ(W ) (see
Remark 10.2), it follows that c̃ : CSTBψ(W ) → PartSympψ(W ) restricts to a
functor c̃ : CSTBψ(W ) → STSSψ(W ). Furthermore, since c̃ commutes with
restriction (see Lemma 10.5), c̃ is in fact a map of presheaves c̃ : CSTBψ →
STSSψ. □
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Now, we begin to show that c̃ is an isomorphism of presheaves. To start,
we show c̃ is fully faithful.

Lemma 10.8. For any stratified unimodular local embedding ψ :W → g∗,
c̃ : CSTBψ(W ) → STSSψ(W ) is fully faithful.

Proof. Let ι : CSTBψ(W ) → STBψ|Wreg
(Wreg) be the forgetful functor (as de-

fined in Definition 9.5). Let res : STSSψ(W ) → STMψ|Wreg
(Wreg) be the re-

striction functor; i.e., the functor which restricts (X,ω, π : X →W ), a sym-
plectic toric stratified space over ψ, to the open and dense symplectic toric
manifold over ψ|Wreg

contained within.
Since ι and c are both fully faithful (see Lemma 9.6 and Theorem 2.17,

respectively), c ◦ ι is fully faithful as well. Note that the diagram

CSTBψ(W )
ι
//

c̃

��

STBψ|Wreg
(Wreg)

c

��

STSSψ(W )
res

// STMψ|Wreg
(Wreg)

commutes. It follows that res ◦ c̃ is also fully faithful. Notice that res is fully
faithful: any map of symplectic toric manifolds

g : (X1, ω1, π1 : X1 →W )|Wreg
→ (X2, ω2, π2 : X2 →W )|Wreg

on the open and dense top strata of two symplectic toric stratified spaces
over ψ must extend to a map of symplectic toric stratified spaces which, by
virtue of continuity, is uniquely determined. To see this, notice that such
a map defines a map between the symplectic toric cone local models for
(X1, ω1, π1) and (X2, ω2, π2) on deleted neighborhoods of each singularity
which, by Lemma 7.13, must extend to maps of singular symplectic toric
cones. Hence, c̃ must be fully faithful. □

We now show the elements of STSSψ are locally isomorphic to elements
of the image of c̃.

Lemma 10.9. Let ψ :W → g∗ be a stratified unimodular local embedding.
Then for any symplectic toric stratified space (X,ω, π : X →W ) over ψ and
for any point w ∈W , there is an open neighborhood Uw of w and a conical
symplectic toric bundle (ϖ : P → (Uw)reg, η) in CSTBψ(Uw) so that c̃(P, η)
is isomorphic to (X,ω, π)|Uw .
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Proof. First, assume w ∈Wreg. Let Uw be a contractible open neighbor-
hood of w small enough so that Uw ⊂Wreg. Since Uw ⊂Wreg, STSSψ(Uw) =
STM|ψ|Wreg

(Uw). Since Uw is contractible, all elements of STMψ|Wreg
(Uw) are

isomorphic. Finally, since CSTBψ(Uw) = STBψ|Wreg
(Uw), CSTBψ(Uw) is non-

empty and therefore STM|ψ|Wreg
(Uw) contains elements of the image of c̃.

So assume w is a singularity of W . Let Uw be any neighborhood of w for
which there exists a singular symplectic toric cone (C, ω′, ν : C → g∗) with
neighborhood V of the vertex ∗ of C, and a map φ : π−1(Uw) → V satisfying
the conditions described in Definition 8.4.

For orbital moment map ν̄ : C/G→ g∗, ν̄|(C/G)
reg

is a homogeneous uni-
modular local embedding. It follows that, since hc is an isomorphism of
presheaves, there exists a homogeneous symplectic toric bundle (π : P →
(C/G)reg, α) over ν̄ for which hc(P, α) = (C, ω′, π̄ : C → (C/G)reg).

Via Proposition 4.7 and Proposition 4.11, we may assume that α = d⟨ν̄ ◦
π,A⟩ for A an R-invariant connection 1-form on P . As noted in the proof
of Proposition 8.3, φ descends to an isomorphism φ̄ : Uw → C/G satisfying
ψ|Uw = ν̄ ◦ φ̄+ ψ(w). Let (ϖ : Q→ (Uw)reg) pullback of π : P → (C/G)reg
to (Uw)reg via φ̄ at let φ̃ : Q→ P be the corresponding isomorphism covering
φ̄. Let A′ = φ̃∗A. Then

φ̃∗d⟨ν̄ ◦ π,A⟩ = d⟨ν̄ ◦ π ◦ φ̃, A′⟩ = d⟨ν̄ ◦ φ̄ ◦ϖ,A′⟩

= d⟨ψ ◦ϖ,A′⟩ − d⟨ψ(w), A′⟩

d⟨ψ(w), A′⟩ is basic: to see this, it is enough to show that it is G-invariant
and horizontal. It is G-invariant since G is commutative, meaning A′ is G-
invariant. To see it is horizontal, notice that, for any X ∈ g with associated
fundamental vector field XP on P ,

ιXP d⟨ψ(w), A
′⟩ = LXP ⟨ψ(w), A

′⟩ − dιXP ⟨ψ(w), A
′⟩ = 0− d⟨ψ(w), X⟩ = 0

So, since d⟨ψ(w), A′⟩ is basic, there exists a closed 2-form β on (Uw)reg
with π∗β = −d⟨ψ(w), A′⟩. As shown by Karshon and Lerman in [16] (see
Lemma 2.15), d⟨ψ ◦ϖ,A′⟩+ π∗β is a G-invariant symplectic form on Q
with moment map ψ ◦ϖ. Therefore, (Q, ⟨ψ ◦ϖ,A′⟩+ π∗β) is a symplectic
toric bundle and, since (Q, ⟨ψ ◦ϖ,A′⟩+ π∗β) = φ∗(P, d⟨ν̄ ◦ π,A⟩), it follows
that (Q, ⟨ψ ◦ϖ,A′⟩+ π∗β) is a conical symplectic toric bundle over ψ|Uw .

Finally, note that

c̃(Q, ⟨ψ ◦ϖ,A′⟩+ π∗β) = c̃(φ∗(P, d⟨ν̄ ◦ π⟩))

= φ∗c̃(P, d⟨π ◦ ν̄⟩) ∼= (X,ω, π)|Uw
□
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We need one more lemma before we can finish.

Lemma 10.10. Let ψ :W → g∗ be a stratified unimodular local embed-
ding. Then the presheaf of groupoids STSSψ : Open(W )op → Groupoids is a
prestack (see Definition B.5).

Proof. Let U ⊂W be any open subset and let (X,ω, π :W → U) and
(X ′, ω′, π′ : X ′ → U) be two symplectic toric stratified spaces over ψ|U . As
any map f : (X,ω, π) → (X ′, ω′, π′) in STSSψ(U) is, in particular, a home-
omorphism f : X → X ′, f is uniquely determined by its restrictions to any
open cover of U . Since the various properties of maps in STSSψ glue, it
follows that U 7→ Hom(X|U , X

′|U ) is a sheaf of sets. □

We may now prove that c̃ is an isomorphism of presheaves.

Theorem 10.11. For any stratified unimodular local embedding ψ :W →
g∗, the map of presheaves c̃ : CSTBψ → STSSψ is an isomorphism of pre-
sheaves.

Proof. We’ve shown in in Lemma 10.5 that c̃ is a map of presheaves, in
Lemma 10.8 that c̃U : CSTBψ(U) → STSSψ(U) is fully faithful for every U ,
and in Lemma 10.10 that STSSψ is a prestack. In Proposition B.9, we ex-
plain why CSTBψ is a stack. Therefore, with Lemma 10.9, we have that
c̃ : CSTBψ → STSSψ satisfies the hypotheses of Lemma B.11 and is an iso-
morphism of presheaves. □

11. Characteristic classes for symplectic toric stratified

spaces with isolated singularities

Now we describe characteristic classes for CSTBψ(W ) and hence, via our
equivalence of categories c̃ : CSTBψ(W ) → STSSψ(W ), characteristic classes
for STSSψ(W ). Instead of creating new classes for CSTBψ(W ), we will use
the forgetful functor ι : CSTBψ(W ) → STBψ|Wreg

(Wreg) together with the
characteristic classes for symplectic toric bundles established by Karshon
and Lerman for symplectic toric bundles (again, see Section 2). We will then
identify exactly which cohomology classes in H2(Wreg,ZG × R) correspond
to symplectic toric stratified spaces.

To begin, let’s formally define horizontal classes for conical symplectic
toric bundles.

Definition 11.1. Let ψ :W → g∗ be a stratified unimodular local embed-
ding. Then for (π : P →Wreg, ω) a conical symplectic toric bundle over ψ,
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define

c̃hor([P, ω]) := chor([ι(P, ω)]) ∈ H2(Wreg,R)

for chor the horizontal class for symplectic toric bundles (see Definition 2.18)
and ι : CSTBψ(W ) → STBψ|Wreg

(Wreg) the forgetful functor.

We now show that, at the very least, the Chern class and horizontal
class together give a manner to distinguish isomorphism classes of conical
symplectic toric bundles.

Proposition 11.2. The first Chern class c1 and the horizontal class c̃hor
define an injective morphisms of presheaves of sets over Wreg

(c1, c̃hor) : π0CSTBψ → H2(·,ZG × R) ∼= H2(·,ZG)×H2(·,R)

Proof. Since the forgetful functor ι : CSTBψ(W ) → STBψ|Wreg
(Wreg) is fully

faithful (see Lemma 9.6), ι does not identify non-isomorphic elements of
CSTBψ(W ). Therefore, since the characteristic class of Karshon and Ler-
man (c1, chor) : π0STBψ|Wreg

→ H2(·,ZG × R) produces an isomorphism of
presheaves, and since for any conical symplectic toric bundle (P, ω) we have
(c1, c̃hor)([P, ω]) = (c1, chor)([ι(P, ω)]), it follows that (c1, c̃hor) must be injec-
tive. □

In general, we will not be able to say in general that (c1, c̃hor) is surjective.
Indeed, note that a conical symplectic toric bundle must, in particular, be
exact in a deleted neighborhood of each singularity. Since the horizontal
class gives an obstruction to a symplectic toric bundle to be exact, one
might suspect that the image of (c1, c̃hor) are exactly those with c̃hor exact
near each singularity. However, this turns out to be true only for flat bundles.
As we will see below, the curvature of the given bundle and the value of ψ
at each singularity imposes a particular condition on the horizontal classes
associated to ψ.

To demonstrate this boundary condition, we will need the following the-
orem for principal bundles in the category of manifolds with corners; this is
of course well-known for topological principal bundles.

Theorem 11.3. Let π : E → B be a principal G-bundle of manifolds with
corners and, for a manifold with corners X, let f0 : X → B and f1 : X →
B be two smoothly homotopic maps. Then the pullbacks f∗0E and f∗1E are
isomorphic as principal G-bundles in the category of manifolds with corners.
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Proof. First, recall that, in the manifolds without corners case, this theorem
can be proven via the flow of the horizontal lift of d

dt on the pullback bundle
f∗t E → X × [0, 1] after any choice of equivariant connection on f∗t E.

To see that this argument extends to the manifolds with corners case,
notice that via local triviality f∗t E → X × [0, 1] decomposes into principal
bundles of manifolds without corners Sℓ(f∗t E) → Sℓ(X × [0, 1]) (again, here
Sℓ refers to the manifold of points with index or depth ℓ). Since d

dt is tangent
to each Sℓ(X × [0, 1]) (excluding at t = 0, 1), it follows that its horizontal
lift will be tangent to each submanifold of constant index in f∗t E. Hence, we
may reduce to the case without corners. □

Finally, we provide the necessary and sufficient boundary conditions each
horizontal class associated to a conical symplectic toric bundle over a given
stratified unimodular local embedding ψ any horizontal class must satisfy.
This will end up being enough to fully describe the image of (c1, c̃hor) in
H2(Wreg,ZG × R). First, we exhibit the following class of real valued 2-form
associated to any principal bundle π : P →Wreg.

Remark 11.4. Given a principal G-bundle π : P →M over a manifold
(with corners) M , it is well known that one method for calculating the
first Chern class of P is to pick a connection A ∈ Ω1(P, g), find the class
[η] ∈ H2(M, g) with π∗η = dA, and prove that [η] actually came from a
class H2(M,ZG).

On the other hand, given a fixed element ξ ∈ g∗, note that the pairing
⟨ξ, η⟩ yields a 2-form Ω2(M,R). Furthermore, by linearity of the canonical
pairing ⟨·, ·⟩, it follows that this form is closed with class uniquely determined
by the class of η. Therefore, it makes sense to write ⟨ξ, [c1(P )]⟩ ∈ H2(M,R)
with the understanding that this represents the class [⟨ξ, η⟩].

Proposition 11.5. Let ψ :W → g∗ be a homogeneous unimodular local
embedding and (π : P →Wreg, ω) a symplectic toric bundle over ψ|Wreg

. Then
(P, ω) is a conical symplectic toric bundle precisely when for each singularity
wα of W , there exists a deleted open neighborhood Uα of wα such that

(11.1) ⟨ψ(wα), c1(P )|Uα⟩ = −[chor(P, ω)]|Uα

In particular, if P is flat, (P, ω) is a conical symplectic toric bundle precisely
when chor(P, ω) is exact in a deleted open neighborhood of each singularity.

Proof. First, suppose that (P, ω) is a conical symplectic toric bundle. Fix
a singularity wα with homogeneous local trivialization datum φα : Uα →
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c(Lα) and with homogeneous unimodular local embedding να : Lα × R → g∗

satisfying ψ|(Uα)reg = να ◦ φα + ψ(wα). Then, by Lemma 9.2, there exists a
homogeneous symplectic toric bundle ϖ : Q→ Lα × R and an isomorphism
φ̃α : (P, ω)|(Uα)reg → φ∗

α(Q, η) in STBψ|(Uα)reg
((Uα)reg). By the naturality of

chor, we may proceed by showing that φ∗
αQ has the desired property.

By Proposition 4.11, we may assume that η = d⟨να ◦ϖ,A⟩, for A an
appropriately chosen connection on Q, as in Proposition 4.7. Then for φ̃α :
φ∗
αQ→ Q the morphism covering φα, we have

φ̃∗
αd⟨να ◦ϖ,A⟩ = d⟨ψ|(Uα)reg ◦ϖ − ψ(w), φ̃∗

αA⟩

= d⟨ψ|(Uα)reg ◦ϖ, φ̃
∗
αA⟩ − d⟨ψ(w), φ̃∗

αA⟩

Since φ̃∗
αA is a connection on φ∗

αQ, it follows by definition that −d⟨ψ(w),
φ̃∗
αA⟩ is exactly the form that descends to chor(φ

∗
αQ). On the other hand, as

discussed in Remark 11.4, −d⟨ψ(wα), φ
∗
αA⟩ = −⟨ψ(wα), φ

∗
αdA⟩ descends to

the cohomology class −⟨ψ(wα), c1(P )|Uα⟩.
Conversely, suppose that a symplectic toric bundle (π : P →Wreg, ω)

over ψ|Wreg
satisfies the hypothesized local condition (11.1) on deleted open

neighborhoods Uα of each singularity wα of W . By shrinking each neighbor-
hood Uα as necessary, we may assume each Uα is the domain of a homo-
geneous local structure datum φα : Uα → c(Lα) with corresponding homo-
geneous unimodular local embedding να : Lα × R → g∗ satisfying ψ|(Uα)reg =
να ◦ φα + ψ(wα). Furthermore, again by shrinking Uα as necessary, we may
assume φα maps Uα onto Lα × (−∞, ε) for some constant ε.

Fix τ ∈ R with τ < ε and let Σ := φ−1(Lα × {τ}). Define Qα := P |Σ.
Since Uα is isomorphic to Lα × (−∞, ε), it follows that Uα admits a retrac-
tion onto Σ; thus, via Theorem 11.3, we may conclude that there exists an
isomorphism of principal G-bundles φ̃α : P |(Uα)reg → Qα × (−∞, ε) covering
φα.

To finish, note that ϖ : Qα × R → Lα × R satisfies the conditions of
Proposition 4.7; hence, there exists a connection A′ on Qα × R such that
(Qα × R, d⟨να ◦ϖ,A′⟩) is a homogeneous symplectic toric bundle over να.
Let Aα be the pullback of A′ to P |(Uα)reg .

Similar to the calculation from above, notice we have

φ̃∗
αd⟨να ◦ϖ,A′⟩ = d⟨ψ ◦ π − ψ(wα), Aα⟩ = d⟨ψ ◦ π,Aα⟩ − d⟨ψ(wα), Aα⟩

and thus the horizontal class of (P |(Uα)reg , φ̃
∗
αd⟨να ◦ϖ,A′⟩) is −⟨ψ(wα),

[c1(P )]|(Uα)reg⟩. By assumption, this is also the horizontal class of (P, ω)|(Uα)reg
and therefore (P, ω)|(Uα)reg is isomorphic as a symplectic toric bundle to
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φ̃∗
α(Qα × R, d⟨να ◦ϖ,A′⟩). It follows again via Lemma 9.2 that (P, ω) satis-

fies the necessary local condition to be a conical symplectic toric bundle. □

Now, we may prove the main classification of this paper.

Theorem 1.1. Let ψ :W → g∗ be a stratified unimodular local embedding.
Then the set of isomorphism classes of symplectic toric stratified spaces with
isolated singularities (X,ω, µ : X → g∗) with G-quotient map π : X →W
and orbital moment map ψ is naturally isomorphic to a subspace C of the
cohomology classes H2(Wreg,ZG × R). Here, ZG denotes the integral lattice
of G (the kernel of exp : g → G) and Wreg denotes the top stratum of W .

In particular:

• If dim(G) ̸= 3, C = H2(Wreg,ZG × R).

• If dim(G) = 3, C is an extension of H2(Wreg,ZG) by H
2(W,R).

Proof. By Theorem 10.11, c̃ : CSTBψ → STSSψ is an isomorphism of pre-
sheaves from the presheaf of of conical symplectic toric bundles over ψ to
the presheaf of symplectic toric stratified spaces over ψ. This descends to
an isomorphism of presheaves of sets π0c̃ : π0CSTBψ → π0STSSψ. Propo-
sition 11.2 establishes that we have an injective morphism of presheaves
(c1, c̃hor) : π0CSTBψ → H2(·,ZG × R).

Let C denote the image of (c1, c̃hor) in H2(Wreg,ZG × R). By Propo-
sition 11.5, it follows that the classes in C are precisely those satisfying
boundary condition (11.1). Notice this condition is checked on deleted open
neighborhoods of the singularities. Since every such neighborhood Uα near a
singularity wα is (after shrinking as necessary) homotopic to Lα, for Lα the
link of W at wα, it follows that C is highly determined by the cohomology
on the links. From here, we split into cases by dimension.

In the case where dim(G) ̸= 3: since c̃ is essentially surjective, it fol-
lows the links of W must be homeomorphic to (disjoint unions of) such
G-quotients. As proven by Lerman [17], the G-quotients of connected con-
tact toric manifolds of dimension greater than 3 (hence dim(G) > 2) are
either spheres or contractible. Hence, for dim(G) > 3, the links of W are
contractible or are disjoint unions of spheres of dimension at least 3 while
dim(G) < 3, the links of W have dimension at most 1. Therefore, in either
case, the links satisfy H2(Lα,R) = 0 and thus boundary condition (11.1) is
always trivially satisfied.

In the case where dim(G) = 3: denote by p : C → H2(Wreg,ZG) the re-
striction of the projectionH2(Wreg,ZG)×H2(Wreg,R) → H2(Wreg,ZG) and
i : H2(W,R) → H2(Wreg,ZG)×H2(Wreg,ZG) the map [σ] 7→ (ι∗[σ], 0), for
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ι∗ : H2(W,R)→H2(Wreg,R) (i.e., for ι :Wreg→W the inclusion map). Here,
H2(W,R) denotes the singular cohomology of W with values in R and we
are implicitly passing between the de Rham cohomology of H2(Wreg,R) and
its singular cohomology valued in R. We will show that i takes values in C
and that the corresponding sequence

(11.2) 0 // H2(W,R)
i

// C
p

// H2(Wreg,ZG) // 0

is exact.
For each singularity wα ofW , pick a neighborhood Uα of wα inW home-

omorphic to an open neighborhood of the vertex of C(Lα). By shrinking
the Uαs as necessary, we have that each intersection Wreg ∩ Uα is home-
omorphic to Lα × R. Using this fact together with the fact that the Uαs
are contractible, one can show that the Mayer-Vietoris sequence in singular
cohomology associated to the open cover {(

∐

α Uα) ,Wreg} reduces to the
sequence

· · · // H1(
∐

α Lα,R)
// H2(W,R)

// H2(Wreg,R) // H2(
∐

α Lα,R)
// · · ·

Again, via the classification of Lerman [17], we have that the links of W are
disjoint unions of 2-spheres or contractible manifolds with corners. Hence,
the links Lα of W have zero cohomology outside of degree 2 and the above
long exact sequence reduces to the short exact sequence

0 // H2(W,R)
ι∗

// H2(Wreg,R)
r

// H2(
∐

α Lα,R)
// 0

for r : H2(Wreg,R) → H2(
∐

α Lα,R) the restriction of a class over Wreg to a
slice near each singularity homeomorphic to a link. In particular, this shows
us that ι∗ is injective with image precisely those classes which are exact
near each singularity. Therefore, via Proposition 11.5, we have that ι∗ maps
H2(W,R) onto the horizontal classes associated to flat conical symplectic
toric bundles and thus the map i : H2(W,R) → H2(Wreg,R)×H2(Wreg,ZG)
takes values in C. Additionally, since ι∗ is injective, i is injective as well and
since the image of ι∗ yields all horizontal classes of flat bundles, it follows
that (11.2) is exact at C.

Finally, it remains to be shown that p of (11.2) is surjective. It’s enough
to show that every principal G-bundle π : P →Wreg admits a symplectic
form with respect to which (P, ω) is a conical symplectic toric bundle. But
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note that since the retraction r : H2(Wreg,R) → H2(
∐

α Lα,R) is surjective,
any class of forms defined near the singularities ofW extends to a class on all
W . In particular,the local degree 2 classes −⟨ψ(wα), c1(P )|(Uα)reg⟩ from the

boundary conditions (11.1) of Proposition 11.5 extend to a global degree 2
class over allWreg. This global class necessarily corresponds to the horizontal
class of a conical symplectic toric bundle structure on P . □

Remark 11.6. As with any group extension, the sequence (11.2) induces a
principalH2(W,R)-bundle structure on the projection p : C → H2(Wreg,ZG),
where H2(W,R) acts on C by translation.

The following two corollaries are more or less immediate.

Corollary 11.7. Let ψ :W → g∗ be a stratified unimodular local embed-
ding and suppose that dim(G) ̸= 3. Then every symplectic toric manifold
over ψ|Wreg

is isomorphic to the restriction of a symplectic toric stratified
space over ψ.

Corollary 11.8. Let ψ :W → g∗ be a stratified unimodular local embed-
ding and suppose that dim(G) = 3. Then the space of characteristic classes C
for STSSψ(W ) is non-canonically isomorphic to H2(W,R)×H2(Wreg,ZG).

Remark 11.9. It’s worth comparing this to a previous related result by
Burns, Guillemin, and Lerman [6]. They proved that compact connected
symplectic toric stratified spaces are classified by rational polytopes in g∗

that may fail to be simple only at the vertices (an example being the oc-
tahedron, as mentioned in Example 11.11). Our main result generalizes the
result of Burns, Guillemin, and Lerman in a couple of notable ways. First,
the compact and connected conditions are unnecessary for the main result
(at the price of classification via moment map image).

A couple of additional technical conditions included by Burns, Guillemin,
and Lerman have also been removed: first, we do not assume that the links
of our isolated singularities are not spheres. Notice this allows for symplectic
toric stratified spaces that are homeomorphic to topological 4-manifolds and
the “singularity” in fact indicates a singularity in the symplectic structure.
Additionally, we do not assume that the links of our stratified spaces have
convex moment map images. Example 11.10 demonstrates an example that
fails both of these technical conditions.

We conclude this section with some illustrative examples.
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Example 11.10. Suppose that ψ is the embedding of the following region
into R2

•

(0, 0)

(1, 2)

(2, 1)

where the “•” is a singular point of the region as a cornered stratified space.
Then our main result tells us that, since this is a contractible region, there
is exactly one symplectic toric stratified space with orbital moment map ψ
having one singularity.

Furthermore, it is interesting to note that the link of this symplectic
toric stratified space is a three sphere with an overtwisted contact structure.
Hence, this symplectic toric stratified space inherits the topological structure
of a 4-manifold; however, the singularity is indicating that the associated
symplectic structure cannot be extended to this 4-manifold structure.

Example 11.11. Let G = T3 and, for {v1, v2, v3} a basis of the integral
lattice of g∗, let ∆ be the octahedron in g∗ that is the convex hull of
{±v1,±v2,±v3}. Let ι : ∆ → g∗ be the inclusion of ∆ into g∗. Then ι is
a stratified unimodular local embedding, where we think of ∆ as a cornered
stratified space with its vertices as singularities. As ∆ is still convex when
we remove its vertices, we have that H2(∆reg,R) = H2(∆reg,ZG) = 0 and
so there is a unique symplectic toric stratified space over ι.

However, if we look instead at ∆0 := ∆\{0} with embedding j : ∆0 →
g∗, we have thatH2((∆0)reg,ZG)

∼= H2(S2,ZG) ̸= 0. Here, each isomorphism

class of principal G-bundle over ∆0 (which are in bijection with H2(S2,ZG))
corresponds to a unique collection of classes of symplectic toric stratified
space over j which are themselves each in bijective correspondence with the
cohomology classes of H2(S2,R).

We may take things one step further: suppose that we add back the
origin back in to ∆0 as a singular point to get the cornered stratified space
∆′ (with singularities at the origin and at each vertex) and with stratified
unimodular local embedding k : ∆ → g∗ the extension of j above with k(0) =
0 ∈ g∗. In this case, our main theorem tells us that every principal bundle
over ∆0 will descend to exactly one symplectic toric stratified space over
k. In other words, for every principal bundle over ∆0, there is exactly one
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class of symplectic toric stratified space over j : ∆0 → g∗ which extends to
a symplectic toric stratified space over k : ∆′ → g∗.

Example 11.12. As a relatively simple example illustrating why an ex-
tension is necessary to describe the space C of allowable classes for sym-
plectic toric stratified spaces with isolated singularities (i.e., rather than
just the product H2(W,R)×H2(Wreg,ZG)), take G = T3 and fix η and ξ
two distinct elements of g∗. Let W := g∗\{η, ξ}

∐

{η}, i.e., the stratified
space with one singularity at η. Let ψ :W → g∗ be the inclusion. Then for
each principal G-bundle π : P →Wreg, the horizontal classes associated to
P are those satisfying the local condition ⟨η, [c1(P )]⟩ near η, yielding a 1-
dimensional affine space modeled on H2(W,R). In particular, when P is
not flat and when η ̸= 0, this affine space needn’t be an honest subspace of
H2(Wreg,ZG)×H2(Wreg,R).

Appendices

For this paper, we provide two appendices. Appendix A describes the well-
known relationship between symplectic toric cones and contact toric mani-
folds. Appendix B gives a description of stacks (or, more aptly for this paper,
strict sheaves of groupoids).

Appendix A. Symplectic cones and contact manifolds

This appendix gives the definition of and details about symplectic cones
and contact toric manifolds used throughout the paper. Sources for this
information include [17] and [18].

While we found it most convenient to use Definition 3.1 as our definition
for what it meant to be a symplectic cone, an alternative characterization,
sometimes also used as a definition, is often quite useful.

Proposition A.1. Let (M,ω) be a symplectic cone and let Ξ be the vector
field generating the required action of R on M . Then LΞω = ω. Conversely,
if Ξ is a vector field on (M,ω) generating a free and proper action of R

and satisfying LΞω = ω, then (M,ω) is a symplectic cone with respect to the
action generated by Ξ. Ξ is known as the Liouville or expanding vector field
of (M,ω).
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Symplectic cones may be naturally associated with (co-oriented) contact
structures on their base. For completeness, we recall the definition of these
structures.

Definition A.2. Let B be a manifold. Then a contact form is a 1-form α
on B such that ξ = ker(α) is a codimension 1 distribution on B with the
property that (ξ, dα|ξ) is a symplectic vector bundle over B. Say that two
contact forms α and α′ are in the same conformal class of contact forms if
there is a function f ∈ C∞(B) such that efα = α′.

Call a pair (B, ξ) of manifold with codimension 1 distribution ξ a co-
orientable contact manifold if there exists a contact form α with ker(α) =
ξ. Call a co-orientable contact manifold (B, ξ) together with a choice of
conformal class a co-oriented contact manifold.

A map of co-oriented contact manifolds φ : (B, ξ) → (B′, ξ′) is a smooth
map φ : B → B′ so that, for α and α′ representatives of the conformal class
for (B, ξ) and (B′, ξ′) respectively, φ∗α′ and α are in the same conformal
class. A contactomorphism between co-oriented (B, ξ) and (B′, ξ′) is a dif-
feomorphism φ : B → B′ so that φ and φ−1 are both maps of co-oriented
contact manifolds.

Remark A.3. The reasoning behind the name “co-orientable” is the fact
that, for (B, ξ) a co-orientable contact manifold, the line bundle ξo (the
annihilator of ξ in T ∗B) is orientable. Thinking of the 1-form α as a sec-
tion α : B → T ∗B, a contact 1-form for ξ functions as a nowhere 0 section
trivializing ξo. It follows that ξo\0 (i.e., ξo without its 0 section) has two
components.

In the case where (B, ξ) is co-oriented, we label by ξo+ the component
of ξo\0 selected by the conformal class (co-)orienting (B, ξ). This is called
the symplectization of (B, ξ) and the restriction of the canonical symplectic
form on T ∗B is a symplectic form on ξo+.

Furthermore, for any b ∈ B and η ∈ T ∗
b B, the action t · η := etη is free

and proper and restricts to a free and proper action on ξo+ with quotient
map the restriction of the natural projection T ∗B → B to ξo+. With respect
to this R action, ξo+ is a symplectic cone. We can also show that, for any
choice of contact form α thought of as a global section α : B → ξo+, the
induced isomorphism ξo+

∼= B × R induces an R-equivariant symplectomor-
phism ξo+

∼= (B × R, d(etα)).

The relationship between a co-oriented contact manifold and its sym-
plectization can be generalized to any symplectic cone.
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Proposition A.4. Let (π :M → B,ω) be a symplectic cone (for π :M →
B the R-quotient). Then B has a natural co-oriented contact structure ξ with
respect to which ξo+

∼= (M,ω). Furthermore, any map of symplectic cones
f : (π :M → B,ω) → (π′ :M ′ → B′, ω′) descends to a co-orientation pre-
serving contact map f̄ : (B, ξ) → (B′, ξ′).

It is not difficult to show that, if a symplectic cone (M,ω) is in fact a
symplectic toric cone, its quotient inherits the structure of a contact toric
manifold.

Definition A.5. A contact toric manifold is a co-oriented contact manifold
(B, ξ) with an effective contact action by a torus G such that 2 dim(G) =
dim(B) + 1.

Proposition A.6. Let (M,ω, µ) be a symplectic toric cone. Then the co-
oriented contact manifold (B, ξ) with B :=M/R and ξ the contact distribu-
tion descending from (M,ω) is a contact toric manifold.

It is important for the work above to find a G-equivariant trivialization
of a symplectic cone with torus action commuting with the action of R. This
is always possible for the symplectization of contact toric manifolds, where
this task is exactly the same as finding a G-invariant contact form.

Proposition A.7. Let (B, ξ) be a co-oriented contact manifold with an
effective action of torus G. Then there exists a G-invariant contact form α
for (B, ξ).

Remark A.8. One application of finding a G-invariant contact form α
on a contact toric manifold (B, ξ) (as utilized in [17]) is the existence of
a contact moment map: this is the map Ψα := µ ◦ α for µ : ξo+ → g∗ the
homogeneous moment map of the symplectization of (B, ξ) and where we
think of α : B → ξo+ ⊂ T ∗B as a global section of ξo+ → B. Note that Ψα is
called the contact map as it satisfies ⟨Ψα(p), X⟩ = αp(XM (p)) for all p ∈M ,
X ∈ g∗.

G-invariant α in the above proposition is found by averaging any contact
form against G. The proposition below shows how we can generalize this
process.

Proposition A.9. Given a symplectic cone (M,ω) with R-quotient π :
M → B and an effective action by torus G that commutes with the action of
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R, there exists a trivialization of M as a principal R-bundle φ :M → B × R

that is G-equivariant (where the contact action of G on B is trivially ex-
tended to an action on B × R).

This fact is not standard, so here is a proof.

Proof. Fix a global section s : B →M of π (this is always possible, as
principal R-bundles are always trivializable). Recall for any principal K-
bundle π : P → N for Lie group K, there exists a smooth “division map”
d : P ×N P → K, the map uniquely defined by p · d(p, p′) = p′.

Then define the map f : B ×G→ R by:

f(b, g) := d(s(g · b), g · s(b))

This is well-defined as π is G-equivariant. Essentially, f measures the failure
of s to be G-equivariant and will be used to properly adjust s into an equiv-
ariant section. f satisfies the following useful property: for b ∈ B, g, h ∈ G,
one may show that

f(h · b, g) = f(b, gh)− f(b, h)

For dλ a G-invariant measure on G with
∫

G dλ = 1, define f̄ : B → R by:

f̄(b) :=

∫

G
f(b, g)dλ

As f̄ is the result of integrating a smooth family of functions on G parame-
terized by B, it is smooth. We also have that f̄(h · b) = f̄(b)− f̄(b, h).

Finally, let s̄ : B →M be the section of π with s̄(b) := s(b) · (−f̄(b)).
It follows from how we’ve defined s̄ that it is a G-equivariant section of
π :M → B. Therefore, it induces a G-equivariant trivialization of M as a
principal R-bundle. □

Here is another important proposition we use in the paper.

Proposition A.10. Let (M,ω, µ :M → g∗) be a symplectic toric cone with
homogeneous moment map µ :M → g∗. Then 0 is not in the image of µ.

Proof. Let (B, ξ) be the co-oriented contact toric manifold with B =M/R as
described above. As shown in Lemma 2.12 of [17], for ξo+ the symplectization
of (B, ξ), the image of the homogeneous moment map ν : ξo+ → g∗ does not
contain 0. Then, since every symplectic toric cone (M,ω) over (B, ξ) is
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(G× R)-equivariantly symplectomorphic to ξo+, it follows that the choice
of homogeneous moment map µ for (M,ω) also does not contain 0 in its
image. □

Following Lerman’s approach in [17], we define a notion of the symplectic
slice representation for contact toric manifolds.

Definition A.11. Let (B, ξ) be a co-oriented contact toric manifold with
G-invariant contact form α. Let ω := (dα)|ξ. Then for any point x ∈ B, the
α symplectic slice representation at x is the Gx-vector space:

(V, ωV )α :=

(

(Tx(G · x) ∩ ξx)
ω

Tx(G · x) ∩ ξx
, ω|V

)

Note that another choice of G-invariant contact form α′ = efα for (B, ξ)
defines the same vector space V with symplectic form d(efα). Thus, the
symplectic vector space (V, ωV )α depends on a choice of contact form.

Remark A.12. This matches the definition of “symplectic slice represen-
tation” in Definition 3.8 of [17]. We choose to label this with the con-
tact form α defining this symplectic representation to avoid confusion with
the standard symplectic slice representation for a symplectic toric manifold
(M,ω): the vector space W := (Tx(G · x))ω/Tx(G · x) with symplectic form
ωW := (ωx)|W and restricted action of Gx. We will use both in the following
lemma.

Lemma A.13. Suppose (M,ω, µ :M → g∗) is a symplectic toric cone with
G-quotient π :M → B to the co-oriented contact toric manifold (B, ξ). Then
for each p ∈M there is a G-invariant contact form α for (B, ξ) such that
the α symplectic slice representation (V, ωV )α of π(p) in (B, ξ) and the sym-
plectic slice representation (W,ωW ) of p in (M,ω) are isomorphic symplectic
Gπ(p) = Gp representations.

Proof. Fix p ∈M and let b := π(p). Since the actions of R and G on M
commute, we have that Gp = Gb.

Let φ : B × R →M be a G-equivariant trivialization of M as a prin-
cipal R-bundle such that φ(b, 0) = p. Then for Ξ the Liouville vector field
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associated to (M,ω), define α := (φ∗(ιΞω))|B×{0}. We have that

dα = d(φ∗(ιΞω))|B×{0} = (φ∗(dιΞω))|B×{0} = (φ∗ω)|B×{0}.

dφ(b,0) descends to a linear map

φ̄ : (V, ωV )α → (W,ωW ), φ̄([v]) := [dφ(b,0)(v)].

To see φ̄ is well-defined, note that, since φ is equivariant, dφ(b,0) restricts to
an isomorphism between T(b,0)(G · (b, 0)) and Tp(G · p).

Next, note that φ̄ is injective: for any [v], [v′] ∈ (V, ωV )α, [dφ(b,0)(v)] =
[dφ(b,0)(v

′)] if and only if dφ(b,0)(v − v′) = XM (p) for some X ∈ g. This im-
plies that v − v′ = XB(b). By assumption, v, v′ ∈ ξb, hence v − v′ = XB(b) ∈
ξb as well. Thus, [v] = [v′] in (V, ωV )α.

As noted in Remark 3.2, we have for µ :M → g∗ and for all X ∈ g that
⟨µ,X⟩ = ω(Ξ, XM ). Since by Proposition A.10 µ(p) ̸= 0, we therefore have
that there exists Y ∈ g with ωp(Ξ(p), YM (p)) ̸= 0. It follows that YB(b) /∈ ξb
and hence dim(ξb ∩ Tb(G · b)) = dim(G)− dim(Gb)− 1. Therefore

dim(V ) = dim((ξb ∩ Tb(G · b))ωV )− dim(ξb ∩ Tb(G · b))

= dim(ξb)− 2(ξb ∩ Tb(G · b))

= dim(M)− 2− 2(dim(G)− dim(Gb)− 1)

= dim(M)− 2(dim(G)− dim(Gb))

= dim(W ).

Hence, φ̄ is an isomorphism. Since dφ(b,0) is equivariant and symplectic, it
follows that φ̄ is an equivariant symplectic isomorphism. □

We now quote the following lemma of Lerman.

Lemma A.14 (Lemma 3.9, [17]). Let (B, ξ) and (B′, ξ′) be two co-
oriented contact toric manifolds with G-invariant contact forms kerα = ξ
and kerα′ = ξ′. Suppose x ∈ B and x′ ∈ B′ satisfy

• Ψα(x) = λΨα′(x′) for Ψα, Ψ
′
α the contact moment maps for α, α′ and

λ > 0 (see Remark A.8);

• Gx = Gx′ (i.e., the isotropy groups for each point are equal); and

• For (V, ω)α and (V ′, ωV ′)α′ the α and α′ symplectic slice representa-
tions for x and x′, there is an Gx-equivariant linear isomorphism l :
V → V ′ such that l∗ωV ′ = (d(egα)x)|V for some function g ∈ C∞(B).
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Then there are G-invariant open neighborhoods U of x and U ′ of x′ and a G-
equivariant diffeomorphism φ : U → U ′ satisfying φ(x) = x′ and φ∗α′ = fα
for some f ∈ C∞(U).

This allows us to prove the following extension of a standard symplectic
toric result to symplectic toric cones.

Proposition A.15. Let (M,ω, µ :M → g∗) and (M ′, ω′, µ′ :M ′ → g∗) be
two symplectic toric cones. Suppose there are two points p ∈M and p′ ∈M ′

so that:

• Gp = Gp′;

• The symplectic slice representations (V, ωV ) and (V ′, ωV ′) at p and p′

are isomorphic as symplectic Gp = Gp′ vector spaces; and

• µ(p) = µ′(p′).

Then there exist (G× R)-invariant neighborhoods U and U ′ of p and p′

respectively and a (G× R)-equivariant symplectomorphism f : U → U ′ with
f(p) = p′ and µ′ ◦ f = µ|U .

Proof. Let (B, ξ) and (B′, ξ′) be the contact toric bases of (M,ω) and
(M ′, ω′). Denote the R-quotient maps by π :M → B and π′ :M ′ → B′

and define b := π(p) and b′ := π′(p′). Then by Lemma A.13, there exist
G-equivariant trivializations φ : B × R →M and φ′ : B′ × R →M ′ so that
φ(b, 0) = p, φ′(b′, 0) = p′, and, for φ∗ω = d(etα) and φ′∗ω′ = d(etα′), the
symplectic slice representations (V, ωV ) and (V ′, ωV ′) are isomorphic to the
α and α′ symplectic slice representations (W,ωw)α and (W ′, ωW ′)α′ of b and
b′, respectively.

By Lemma A.14 there are G-invariant neighborhoods U and U ′ of b
and b′ and a G-equivariant co-orientation preserving contactomorphism ϕ :
U → U ′ with ϕ(b) = b′ and ϕ∗α′ = egα, for some g ∈ C∞(B). The map ϕ̃ :
U × R → U ′ × R, defined by ϕ̃(b, t) := (ϕ(b), t− g(b)) is (G× R)-equivariant
and satisfies ϕ̃∗(d(etα′)) = d(etα). Hence, f := φ′ ◦ ϕ̃ ◦ φ−1 yields a map of
symplectic toric cones between π−1(U) and π′−1(U ′). Since µ|U and µ′ ◦ f
are both homogeneous moment maps for π−1(U), it follows that µ|U = µ′ ◦ f .

Finally, note that

f(p) = φ′(ϕ̃(φ−1(p))) = φ′(ϕ̃(b, 0)) = φ′(ϕ(b),−g(b)) = φ′(b′,−g(b))
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Thus, f(p) = −g(b) · p′. But then

µ(p) = µ′(f(p)) = µ′(−g(b) · p′) = e−g(b)µ′(p′),

so, since µ(p) = µ′(p′), we must conclude that g(b) = 0 (as the image of µ′

doesn’t contain 0; see Proposition A.10) and therefore f(p) = p′. □

Finally, we may prove Lemma 5.4; for convenience, we recall its state-
ment:

Lemma 5.4. Let ψ :W → g∗ be a homogeneous unimodular local embed-
ding. Then any two symplectic toric cones over ψ are locally isomorphic;
explicitly, for (M,ω, π :M →W ) and (M ′, ω′, π′ :M ′ →W ) two symplec-
tic toric cones over ψ, there is an open cover {Uα}α∈A of W by R-invariant
open subsets and a collection of isomorphisms

{φα : (M,ω, π)|Uα → (M ′, ω′, π′)|Uα ∈ STCψ(Uα)}α∈A.

Proof. We may proceed using the method of Lemma B.4 of [16]. Fix p ∈M
and p′ ∈M ′ with π(p) = π′(p′). Since ψ ◦ π and ψ ◦ π′ are moment maps
for (M,ω) and (M ′, ω′), respectively, we may conclude from the local nor-
mal form for symplectic toric manifolds that both p and p′ have stabilizer
Kπ(p) and symplectic slice representations isomorphic to Ck with symplectic
weights {v∗1, . . . , v

∗
k}, for C{v1,...,vk},ψ(π(p)) the unimodular cone with vertex

ψ(π(p)) uniquely determined by ψ near π(p).
Therefore, by applying Proposition A.15, we have our result. □

Again following Lerman in [17], orbits in contact toric manifolds have a
local normal form (as we are interested only in the structure of the neigh-
borhood as a G-manifold, we suppress the additional information from the
lemma regarding contact structure and moment map). This local normal
form in turn yields a manifolds with corner structure for the quotient of any
contact toric manifold.

Lemma A.16 (Lemma 3.10, [17]). Let (L, ξ) be a contact toric manifold
with G-invariant form α and contact moment map Ψα (see Remark A.8).
Given point p ∈ L, denote the α symplectic slice representation by Gp →
Sp(V, ωV ) and let k := (RΨα(p))

o (the so-called characteristic subalgebra of
the embedding G · p→ (M, ξ)). Then there exists a G-invariant neighborhood
of the orbit of p in L that is G-equivariantly diffeomorphic to a neighborhood
of the 0 section of the vector bundle N = G×Gp ((g/k)

∗ ⊕ V ).
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Lemma A.17. Let (B, ξ) be a contact toric manifold. Then the quotient
B/G is a manifold with corners.

Proof. For each point p ∈ B, the stabilizer Gp is a torus (see Lemma 3.13 of
[17]). Let α be a G-invariant contact form for (B, ξ). From the above lemma,
there exists subspace U ⊂ g∗ so that, for α symplectic slice representation
Gp → Sp(V, ωV ), there is a G-invariant neighborhood of G · p in B that is G-
equivariantly diffeomorphic to a neighborhood of the 0 section of the vector
bundle: N = G×Gp (U × V ) (where U has trivial Gp action).

So to understand what B/G locally looks like, it is enough to understand
N/G:

N/G = ((G× U × V )/Gp)/G = ((G× U × V )/G)/Gp = U × V/Gp

Here, we may reverse the quotients as the actions of G and Gp commute.
Since Gp is a torus, we can decompose V into weight spaces (as in the
appendix of [19]) to see V/Gp is diffeomorphic to a sector (i.e., a manifold
with corners of the form [0,∞)× Rl). Therefore, the above local normal form
for (B, ξ) near p descends to a manifolds with corners chart for [p] ∈ B/G
centered at the origin in U × V/Gp. □

Appendix B. Stacks

In this appendix, we will provide some brief notes on stacks. This will also
contain proofs that our presheaves of groupoids HSTBψ and CSTBψ are
stacks as well as the major technical lemma we require to prove that hc :
HSTBψ → STCψ and c̃ : CSTBψ → STSSψ are isomorphisms of presheaves
of groupoids.

For simplicity’s sake, we will be using a less general definition that would
perhaps be more accurately named a strict sheaf of groupoids. Since the
stacks of this paper are, in fact, (strict!) presheaves of groupoids, we needn’t
worry about more intricate/subtle definitions (i.e., involving lax presheaves
or categories fibered in groupoids). A few good sources for the complete story
on stacks are [25] (which is focused more on stacks in algebraic geometry), [3]
(which is focused on using stacks in differential geometry), and [12] (which
discusses stacks over manifolds and over topological spaces).

Fix a topological space X. For {Uα}α∈A an open cover of X, we write
Uαβ := Uα ∩ Uβ and Uαβγ := Uα ∩ Uβ ∩ Uγ . First, we need some preliminar-
ies.
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Definition B.1. We denote by Open(X) the category of open sets of X:
the objects of Open(X) are open subsets U ⊂ X and the morphisms are
inclusions ι : U → V .

One approach for defining stacks involves so-called descent data: roughly,
the local data we would like to uniquely (up to isomorphism) glue into global
data.

Definition B.2. Let {Uα}α∈A be an open cover ofX and let F : Open(X)op

→ Groupoids be a presheaf of groupoids. Then a descent datum of F defined
with respect to {Uα}α∈A is a pair of tuples

(

{ξα ∈ F(Uα)}α∈A, {φαβ : ξα|Uαβ → ξβ |Uαβ ∈ F(Uαβ)}α,β∈A
)

such that the morphisms {φαβ}α,β∈A (called transition morphisms) satisfy
the cocycle condition: for every non-empty triple intersection Uαβγ , we have
that φβγ |Uαβγ ◦ φαβ |Uαβγ = φαγ |Uαβγ .

A morphism of descent data

{ηα}α∈A : ({ξα ∈ F(Uα)}α∈A, {φαβ}α,β∈A)

→
(

{ξ′α ∈ F(Uα)}α∈A, {φ
′
αβ}α,β∈A

)

is a collection of morphisms {ηα : ξα → ξ′α ∈ F(Uα)}α∈A so that the diagram

(B.1) ξα|Uαβ
ηα|Uαβ

//

φαβ

��

ξ′α|Uαβ

φ′

αβ

��

ξβ |Uαβ ηβ |Uαβ
// ξ′β |Uαβ

commutes for every α and β with Uαβ non-empty.
We denote by DF ({Uα}) the descent category: the category of descent

data of F with respect to {Uα}α∈A with morphisms of descent data.

Here is the formal definition of a stack we will be using.

Definition B.3. Let F :Open(X)op→Groupoids be a presheaf of groupoids
(i.e., a strict functor). For an open cover {Uα}α∈A of X, the restriction func-
tor Φ : F(X) → DF ({Uα}) is that which takes an object ξ ∈ F(X) to the
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descent datum
(

{ξ|Uα} ,
{

id : (ξ|Uα) |Uαβ →
(

ξ|Uβ
)

|Uαβ
}

α,β∈A

)

and a morphism φ : ξ → ξ′ to the morphism of descent data {φ|Uα : ξ|Uα →
ξ′|Uα}α∈A.

F is a stack if, for every open subset U of X and for every open cover
{Uα}α∈A of U , the restriction morphism Φ : FU (X) → DFU ({Uα}) is an
equivalence of categories, where FU is the natural restriction of the presheaf
of groupoids F to the full subcategory Open(U) ⊂ Open(X).

Remark B.4. For W a manifold with a proper R action, we may just
as easily define a stack over the category OpenR(W ), as defined in Defini-
tion 3.14. Indeed, a presheaf of groupoids over this category is again just a
functor F : OpenR(W )op → Groupoids and we may replace the open covers
of Open(W ) as in Definition B.3 with open covers of elements of OpenR(W )
by R-invariant subsets.

A half step from presheaves to stacks is the prestack. For F :Open(X)op→
Groupoids a presheaf and U any open subset of X, note that, for V ⊂ U
an open subset of U , the restriction morphism from U to V is a map of
groupoids. Thus, for any two objects ξ and ξ′ in F(U), we have a map of
sets

HomF(U)(ξ, ξ
′) → HomF(V )(ξ|V , ξ

′|V )

This collection of restrictions defines a presheaf of sets Hom(ξ, ξ′) :
Open(U)op → Sets.

Definition B.5. A presheaf of groupoids F : Open(X)op → Groupoids is a
prestack if for every open subset U ⊂ X and for anyξ, ξ′ ∈ F(U), Hom(ξ, ξ′)
is a sheaf of sets.

Remark B.6. It is a routine exercise to show that a presheaf of groupoids
F : Open(X)op → Groupoids is a prestack if and only if for every open subset
U ⊂ X and for any open cover {Uα}α∈A of U the restriction functor Φ :
F(U) → DFU ({Uα}) is fully faithful.

Since the presheaves of this paper all consist of spaces with extra struc-
ture (bundles/manifolds/stratified spaces with symplectic forms/group ac-
tions), all the presheaves of groupoids we consider in this paper are prestacks.

One of the standard first examples of a stack is the presheaf of principal
G-bundles for G any Lie group.
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Example B.7. Let BG : Open(X)op → Groupoids be the presheaf of prin-
cipal G-bundles over X: for each open U , BG(U) is defined as the groupoid
of principal G-bundles over U with isomorphisms of principal G-bundles
covering the identity on U .

The proof that BG is a stack comes in two parts. Let U be an open
subset of X with open cover {Uα}α∈A and let Φ : BG(U) → DBG ({Uα}α∈A)
be the restriction functor. Let π : P → U and π′ : P ′ → U be two principal
G-bundles. Then Hom(P, P ′) is a sheaf of sets. Thus, Φ is fully faithful (see
Remark B.6).

To show Φ is essentially surjective, let

(

{πα : Pα → Uα}α∈A, {φαβ : (Pα) |Uαβ → (Pβ) |Uαβ}α,β∈A
)

be a piece of decent data. Then we may use the standard construction

P :=

(

∐

α∈A
Pα

)/

∼, p ∼ q if p ∈ Pα|Uαβ , q ∈ Pβ |Uαβ , and φαβ(p) = q

to build a principal bundle P that restricts to the given descent datum.

Proposition B.8. Let ψ :W → g∗ be a homogeneous unimodular local em-
bedding. Then HSTBψ : OpenR(W )op → Groupoids is a stack.

Proof. Recall HSTBψ is a presheaf of groupoids over the R-invariant subsets
ofW with an R-invariant open subset U ⊂W corresponding to the groupoid
HSTBψ|U (U). Fix an open cover of U by R-invariant subsets {Uα}α∈A and
again denote by Φ : HSTBψ(U) → D(HSTBψ)|U ({Uα}) the restriction functor.

That Φ is fully faithful follows from the fact that maps between any two
homogeneous symplectic toric bundles (π : P → U, ω) and (π′ : P ′ → U, ω′)
in HSTBψ(U) are (G× R)-equivariant symplectomorphisms; hence, coherent
maps collections of maps on any open R-invariant cover of U will uniquely
glue.

To see that Φ is essentially surjective, let

(B.2)
(

{(πα : Pα → Uα, ωα}α∈A, {φαβ : (Pα, ωα)|Uαβ → (Pβ , ωβ)|Uαβ}α,β∈A
)

be a descent datum. Let π : P → U be the bundle built from this data as
in Example B.7. Since the transition maps φαβ are R-equivariant, it follows
that the actions of R on each Pα patch together to give a free action on P .

To see that this action of R on P is proper, note that, since the action of
R on P commutes with the action of G on P , this R action descends to an
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R action on W . By Lemma 3.11, this R action matches the free and proper
action on W with respect to which ψ is equivariant. Therefore, by Lemma
3.5, the action of R on P must have been proper.

As the transition maps φαβ must also be symplectomorphisms, the sym-
plectic forms from each piece must patch together. Finally, since the condi-
tion ρ∗λω = eλω for ρλ : P → P the action diffeomorphism for real λ is local,
it follows that, since each ωα satisfies this property, the global symplectic
form ω they patch to must satisfy this property as well. So any descent
datum patches together to an element (π : P → U, ω) with Φ(π : P → U, ω)
isomorphic to descent datum (B.2).

Thus, HSTBψ is a stack. □

Proposition B.9. Let ψ :W → g∗ be a stratified unimodular local embed-
ding. Then CSTBψ : Open(W )op → Groupoids is a stack.

Proof. Fix an open subset U inW with open cover {Uα}α∈A. We must show
Φ : CSTBψ(U) → D(CSTBψ)|U ({Uα}) is an equivalence of categories.

As we saw in the case of homogeneous symplectic toric bundles, we
can see that Φ is fully faithful simply by noticing that the maps of conical
symplectic toric bundles are bundle maps that preserve local data.

To see that Φ is essentially surjective, one only needs to check that,
since each piece of a descent datum must satisfy the local conditions re-
quired of elements of CSTBψ, then the bundle resulting from applying the
gluing construction for bundles as seen in Example B.7 together with the
glued symplectic form as seen in Proposition B.8 must also satisfy this local
condition. The details are left to the reader. □

We will also be interested in a special class of presheaves of groupoids
known as transitive presheaves.

Definition B.10. A presheaf of groupoids F : Open(X)op → Groupoids is
called transitive if for every open subset U ⊂ X, any two objects ξ and ξ′ in
F(U) are locally isomorphic; that is, there exists a cover {Uα}α∈A such that
the restrictions ξ|Uα and ξ′|Uα are isomorphic in F(Uα) for each α.

The payoff for working with stacks in our case will be the following
technical lemma. This is a generalized version of the proof presented in
[16] that, for ψ :W → g∗ a unimodular local embedding, the functor cU :
STBψ(U) → STMψ(U) is essentially surjective on each open subset U ⊂W .
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Lemma B.11. Let X be a topological space. Suppose F : Open(X)op →
Groupoids is a stack, G : Open(X)op → Groupoids is a prestack, and Ψ : F →
G is a map of presheaves of groupoids. If for each open set U ⊂ X

1) ΨU : F(U) → G(U) is fully faithful; and

2) for each x ∈ U and each ξ ∈ G(U), there is an open subset V ⊂ U and
an element η ∈ F(V ) such that Ψ(η) is isomorphic to ξ|V ,

then Ψ is an isomorphism of presheaves. In particular, G is a stack.

Remark B.12. Note that this lemma may also be applied to the map
of presheaves hc : HSTBψ → STCψ over OpenR(W ), assuming we use open
R-invariant subsets and covers by open R-invariant subsets of W .

Additionally, note that if G is a transitive prestack and F(U) is non-
empty for each U ̸= ∅, then any map of presheaves automatically satisfies
condition (2) of the above lemma. However, we require the slightly more
nuanced condition (2) of Lemma B.11 to apply to the case of c̃ : CSTBψ →
STSSψ, where STSSψ in general need not be a transitive prestack.

Proof of Lemma B.11. Fix an open subset U of X. To show Ψ is an iso-
morphism of presheaves, it is enough to show that ΨU : F(U) → G(U) is an
equivalence of groupoids for each U . By hypothesis, we have already that
ΨU : F(U) → G(U) is fully faithful, so it remains to show that it is essen-
tially surjective.

Fix an element ξ ∈ G(U). Then by hypothesis there is an open cover
{Uα}α∈A of U , elements {ηα ∈ F(Uα)}α∈A, and a family of isomorphisms
{φα : Ψ(ηα) → ξ|Uα}α∈A. Since ΨUαβ is full for every Uαβ and Ψ(ηα)|Uαβ =
Ψ(ηα|Uαβ), there exist morphisms ϕαβ : ηα|Uαβ → ηβ |Uαβ such that Ψ(ϕαβ) =
φ−1
β ◦ φα.
As ΨUαβγ is faithful, it follows that ϕβγ |Uαβγ ◦ ϕαβ |Uαβγ = ϕαγ |Uαβγ for

any α, β, γ with Uαβγ ̸= ∅. Thus, the family of isomorphisms {ϕαβ}α,β∈A
satisfies the cocycle condition and {{ηα}α∈A, {ϕαβ}α,β∈A} is a descent datum
for FU with respect to the cover {Uα}α∈A. As F is a stack, there is an
η ∈ F(U) and an isomorphism of descent data

{ρα}α∈A : Φ(η) → {{ηα}α∈A, {ϕαβ}α,β∈A}.

For each α, let fα : Ψ(η)|Uα → η|Uα be the composition fα := φα ◦
Ψ(ρα)|Uα . Notice that the diagram in G(Uαβ)
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Ψ(η)|Uαβ
Ψ(ρα)|Uαβ

// Ψ(ηα)|Uαβ

Ψ(ϕαβ)

��

φα|Uαβ
// ξ|Uαβ

Ψ(η)|Uαβ Ψ(ρβ)|Uαβ
// Ψ(ηβ)|Uαβ φβ |Uαβ

// ξ|Uαβ

commutes; the left square is exactly the image under Ψ of the diagram (B.1)
corresponding to the isomorphism of descent data {ρα}α∈A while the right
hand side commutes by definition of ϕαβ . Therefore, since G is a prestack,
Hom(Ψ(η), ξ) is a sheaf and thus the {fα}α∈A glue to an isomorphism f :
Ψ(η) → ξ. Hence, ΨU : F → G is essentially surjective. □
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