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We introduce a method of geometric quantization for compact b-
symplectic manifolds in terms of the index of an Atiyah-Patodi-
Singer (APS) boundary value problem. We show further that b-
symplectic manifolds have canonical Spin-c structures in the usual
sense, and that the APS index above coincides with the index
of the Spin-c Dirac operator. We show that if the manifold is
endowed with a Hamiltonian action of a compact connected Lie
group with non-zero modular weights, then this method satisfies
the Guillemin-Sternberg “quantization commutes with reduction”
property. In particular our quantization coincides with the formal
quantization defined by Guillemin, Miranda and Weitsman, pro-
viding a positive answer to a question posed in their paper.
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1. Introduction

A b-symplectic (or log symplectic) manifold (M,ω) is a manifold M equipped
with a ‘symplectic form’ ω allowed to have a pole along a hypersurface

1
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Z ⊂ M . The study of such manifolds was initiated by Nest and Tsygan [20],
who presented a deformation quantization scheme for such manifolds. A
comprehensive study of b-symplectic manifolds was conducted in [6, 8, 9, 12].

In [11] Guillemin, Miranda and Weitsman defined the formal geometric
quantization of a b-symplectic manifold endowed with a Hamiltonian action
of a torus T . Specifically, they associated to such a manifold a virtual repre-
sentation of T , which satisfies the “quantization commutes with reduction”
property, see [22] for the notion of formal quantization. One of the most
surprising results of [11] is that the formal quantization space is finite di-
mensional. The authors of [11] posed a problem of finding a T -equivariant
Fredholm operator, whose index space is isomorphic to their formal quan-
tization. The purpose of this paper is to introduce approaches to geometric
quantization of b-symplectic manifolds using Fredholm operators.

Let (M,ω) be a b-symplectic manifold (no group action is required) and
let Z ⊂ M be the exceptional hypersurface along which ω is singular. Let
L → M be a prequantum line bundle overM , cf. Definition 2.9. We construct
a compact manifold with boundary Mϵ by cutting near the hypersurface Z,
whose boundary is diffeomorphic to two copies of Z. Let DAPS denote the
Dolbeault-Dirac operator D acting on sections of L|Mϵ

and endowed with
the Atiyah-Patodi-Singer boundary conditions. Then DAPS is Fredholm and
the Fredholm index index(DAPS) is independent of the cutting (as long as
the cutting is close enough to Z). We define this index to be the geometric
quantization of (M,Z, ω):

(1) Q(M,Z, ω) := index(DAPS) ∈ Z.

We can remove the singularity by gluing the manifold Mϵ into a closed
manifold M̃ (diffeomorphic to M) since it has two isomorphic boundaries.
Though the almost complex structure cannot be glued (nor the symplectic
form), we nevertheless show that there exists a smooth Spinc-structure on

the manifold M̃ , which is canonical up to isomorphism. Moreover we prove
that Q(M,Z, ω) equals the Fredholm index of the Spinc-Dirac operator D̃

on M̃ , that is

(2) Q(M,Z, ω) = index(D̃) ∈ Z.

To provide a simple analogy with volumes of b-symplectic manifolds: we
think of (1) (or rather its limit as ϵ → 0+) as an analogue of the b-symplectic
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volume defined by a limit:

(3) lim
ϵ→0+

∫

Mϵ

ωn

n!
.

On the other hand [ωn/n!] is a top-degree class in the b-de Rham cohomology
of M . There is a map (of Mazzeo-Melrose) to the ordinary top-degree de
Rham cohomology of M , and pairing with [M ] gives a number that coincides
with (3). We think of the index of D̃ in (2) as an analogue of this second
description of the b-symplectic volume.

Suppose now that a compact Lie group G acts on (M,Z, ω) in a Hamilto-
nian fashion. Then the operators DAPS, D̃ are G-equivariant, the definition
(1) has a refined meaning as a virtual representation of G, and (2) still holds,
now as an equality in the representation ring R(G). We conjecture that (1)
satisfies “quantization commutes with reduction” provided that the reduced
space is still a b-symplectic manifold (orbifold):

Conjecture 1.1. [Q(M,Z, ω)]G = Q(Mred, Zred, ωred) ∈ Z.

In Section 4.4 we show that the above conjecture is true if the modular
weights of the action are non-zero (see Definition 4.1). For the special case
G = T a torus, this is the situation considered by Guillemin, Miranda and
Weitsman [11], and hence Q(M,Z, ω) is isomorphic to the formal quantiza-
tion defined in loc.cit., providing a positive answer to a question posed in
their paper. We will discuss more general cases (possibly non-zero modular
weights) elsewhere.

Here is a brief outline of the contents of the sections. In Section 2
we review basic properties of b-symplectic manifolds, and in particular de-
scribe a normal form for the b-symplectic form and complex structure on
bTM near the hypersurface. In Section 3 we discuss Dirac operators, spin-c
structures, and boundary conditions on b-symplectic manifolds, establish-
ing basic properties of DAPS, D̃ mentioned above. In particular we show
index(DAPS) = index(D̃) and provide some equivalent Atiyah-Singer formu-
las. In Section 4 we discuss the equivariant situation involving a compact
Lie group action with non-zero modular weights, and we show that in this
case the [Q,R] = 0 theorem for (1) follows from work of Ma and Zhang [16].
In the Appendix, we give a conceptual construction of the spin-c structure
mentioned above, that illuminates some of its properties; for example, we see
that the construction extends to the case with normal crossing singularities.
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2. b-symplectic manifolds

In this section we recall some basic properties of b-symplectic manifolds. See
for example [8] for details.

2.1. b-symplectic forms, defining functions

Let Mn be a closed oriented manifold and let ι : Z →֒ M be a smooth com-
pact hypersurface. The b tangent bundle bTM is the vector bundle over M
whose smooths sections consists of vector fields on M that are tangent to Z.
This description determines a bracket on the sections as well as a smooth
anchor map

a : bTM → TM

given by evaluation, making bTM into a Lie algebroid. The anchor a is a
bundle isomorphism over M\Z, whereas a(bTM |Z) = TZ.

The b cotangent bundle bT ∗M = (bTM)∗. Smooth sections of bT ∗M can
be thought of as 1-forms allowed to have a logarithmic singularity on Z:
if f is a smooth function vanishing to order 1 on Z = f−1(0), then df/f
may be thought of as a smooth section of bT ∗M ; for example a section
v ∈ C∞(M, bTM) is a vector field on M tangent to Z, hence df(v) vanishes
to at least order 1 on Z, and f−1df(v)|M\Z extends to a smooth function on

M . There is a ‘b de Rham complex’ (Ω•
b(M) = C∞(M,∧•bT ∗M), d) (in fact

a special case of the general definition of the de Rham complex of a Lie al-
gebroid). A result of Mazzeo-Melrose (see [19], or [8, Theorem 27]) describes
the corresponding b-de Rham cohomology groups in terms of ordinary de
Rham cohomology groups:

(4) Hp
b,dR(M) ≃ Hp

dR(M)⊕Hp−1
dR (Z).

Many other notions of ordinary differential geometry have ‘b’ analogues, cf.
[19].

Definition 2.1. A b symplectic form is a closed b 2-form ω ∈ Ω2
b(M) such

that the map of vector bundles bTM → bT ∗M (induced by contraction) is
an isomorphism.
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A b symplectic form is equivalently the ‘inverse’ of an ordinary smooth
Poisson structure ω−1 ∈ Γ(∧2TM) whose top exterior power vanishes
transversally along Z.

Remark 2.2. In particular Definition 2.1 says that (bTM,ω) is a symplec-
tic vector bundle. It therefore admits compatible complex structures J ∈
End(bTM) such that J2 = −1, ω(Jw, Jv) = ω(w, v) and ω(w, Jv) =: g(w, v)
defines a positive definite inner product on bTM . (And moreover any two
such J ’s are homotopic.)

The one-dimensional kernel ker(a|Z) ⊂ bTM |Z is a line subbundle with
a canonical trivialization e ∈ C∞(Z, ker(a|Z)) locally taking the form

(5) e = yY |Z

(restriction in the sense of locally defined sections of bTM) in terms of any
(locally defined) function y vanishing to order 1 on Z and (locally defined)
vector field Y satisfying Y y = 1 (cf. [8, Section 3]). The cotangent bundle
T ∗Z to Z is canonically identified with the annihilator of ker(a|Z) = R · e
in bT ∗M |Z . If an ordinary smooth differential form is viewed as a section of
∧bT ∗M , then its restriction to Z (in the sense of sections of vector bundles)
coincides with its pullback to Z (in the sense of differential forms); this is
just because sections of bTM are by definition vectors fields on M which are
tangent to Z.

Definition 2.3. A global defining function for Z is a smooth real-valued
function x : M → R which vanishes to order 1 on Z = x−1(0).

A b symplectic manifold admits a global defining function: indeed one
may take x = ω−n/τ where τ is any volume form (recall we assume M
oriented). Hence the orientation on M determines an equivalence class of
global defining functions, up to multiplication by smooth positive functions.
This also implies that for an (oriented) b symplectic manifold (M,Z, ω)
the hypersurface Z is necessarily separating, i.e. M\Z = Mx>0 ⊔Mx<0 is
disconnected, and Z and its normal bundle are oriented.

2.2. Normal forms for ω, J near Z

Let (M,Z, ω) be a b-symplectic manifold. Let

ι : Z →֒ M
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denote the inclusion map. The orientation determines an equivalence class
of global defining functions for Z. Choose a global defining function x in
this class, which we may further normalize such that |x| = 1 outside a small
collar neighborhood

C ≃ Z × (−1, 1),

where x|C is the projection Z × (−1, 1) → (−1, 1). Hence dx|M\C = 0. Let
π : C → Z be the projection. The function x determines a closed b 1-form
dx/x ∈ Ω1

b(M) satisfying ⟨dx/x, e⟩ = 1 inducing splittings:

(6) bT ∗M |Z = R
dx

x
⊕ T ∗Z, bTM |Z = Re⊕ TZ.

Let µ be any b-differential p-form. Then µ can be written as

µ =
dx

x
∧ α+ β,

for some smooth forms α ∈ Ωp−1(C), β ∈ Ωp(M) (we allow that α might
only be defined on C since dx = 0 outside of C).

The restriction of µ to Z (as a section of ∧bT ∗M) is given by (see Sec-
tion 2.1):

(7) µ|Z =
dx

x
∧ ι∗α+ ι∗β.

It is useful to note in passing that the differential form

αZ := ι∗α ∈ Ωp−1(Z)

does not depend on any choices, since it may be expressed as the contraction

(8) αZ = ι(e)(µ|Z)

and the section e of (5) does not depend on any choices. On the other hand
ι∗β = µ|Z − (dx/x) ∧ αZ depends on the choice of defining function x.

Lemma 2.4 (cf. Proofs of [8], Proposition 10, Theorem 27). In the
decomposition (7), one can choose α = π∗αZ , where αZ is the intrinsically
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defined (p− 1)-form αZ in (8). Hence there is a decomposition

µ =
dx

x
∧ π∗αZ + β, αZ ∈ Ωp−1(Z), β ∈ Ωp(M).

If µ is closed then αZ , β are closed, and

[µ] ∈ Hp
b,dR(M) 7→ ([αZ ], [β]) ∈ Hp−1

dR (Z)⊕Hp
dR(M)

realizes the isomorphism (4).

For the b-symplectic form

(9) ω =
dx

x
∧ π∗αZ + β

we can say slightly more:

Lemma 2.5. One can choose C, x, π such that, in the expression (9) for
the b-symplectic form, the closed 2-form β has the following property: on a
(possibly smaller) collar neighborhood C ′ of Z, β|C′ = (π∗ι∗β)|C′.

Proof. Suppose ω is decomposed as in (9), and let βZ = ι∗β. Consider the
following b 2-form, defined on C:

ω0 =
dx

x
∧ π∗αZ + π∗βZ .

It is closed, as αZ , βZ are both closed. Using (7), one has ω0|Z = ω|Z as
sections of ∧2(bT ∗M |Z), hence ω0 is nondegenerate along Z, and hence on
an open collar neighborhood of Z. Replacing C by this smaller collar neigh-
borhood, we may as well assume ω0 is b-symplectic on C.

Since ω0|Z = ω|Z ∈ Γ(∧2(bT ∗M |Z)), we may apply the b-Moser theo-
rem [11, Theorem 34] of Guillemin-Miranda-Pires on (C,Z) and to the b-
symplectic forms ω|C , ω0. This provides tubular neighborhoods C0, C1 of
Z in C and a diffeomorphism φ : C1 → C0 such that ω|C1

= (φ∗ω0)|C1
and

φ|Z = idZ . In fact φ is the result of integrating a time-dependent vector field
vt that vanishes on Z. If we multiply vt by a suitable bump function sup-
ported in a small neighborhood of Z, we obtain a diffeomorphism which still
satisfies ω|C′

1
= (φ∗ω0)|C′

1
for possibly smaller tubular neighborhoods C ′

0, C
′
1

of Z, and is the identity outside a small neighborhood of Z, so admits an
extension by the identity to M , which we also denote by φ. So φ now denotes
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a global diffeomorphism (M,Z) → (M,Z) having the property that

ω|C′

1
= (φ∗ω0)|C′

1
.

Let x̃ = φ∗x, π̃ = π ◦ φ|C̃ where C̃ = φ−1(C). Then x̃ is a new defining

function for Z and π̃ : C̃ → Z is a new collar neighborhood. Moreover, on C̃

φ∗π∗αZ = π̃∗αZ

and likewise for π∗βZ . Hence on C ′
1 ⊂ C̃,

ω|C′

1
= (φ∗ω0)|C′

1
=

dx̃

x̃
∧ π̃∗αZ + π̃∗βZ . □

In the rest of this subsection, we will assume C, π, x are chosen as in
Lemma 2.5, thus

(10) ω =
dx

x
∧ π∗αZ + β

and β equals π∗ι∗β on a small collar neighborhood C ′ of Z.
With a decomposition as in (10) fixed, let e′ be the vector field on Z

determined by the equations

ι(e′)αZ = 1, ι(e′)ι∗β = 0.

Via the splitting (6), e′ is identified with a section of bTM |Z , {e, e′} is linearly
independent, hence

E = span{e, e′} ⊂ bTM |Z
is a trivial real rank 2 vector subbundle over Z. Let

ωE = ω|E =
dx

x
∧ αZ .

Then (E,ωE) is a symplectic vector bundle. Define a complex structure JE
on E by

(11) JEe = e′, JEe
′ = −e.

We obtain a compatible metric gE(·, ·) = ωE(·, JE ·) on E, such that {e, e′}
is a global orthonormal frame, hence in terms of the dual frame dx/x, αZ |E ,

gE =
dx2

x2
+ α2

Z ∈ Sym2(E∗).
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There is a direct sum decomposition

(12) bTM |Z = E ⊕ F, F = ker(αZ).

In fact F = TF is the tangent distribution for the foliation F of Z into
symplectic leaves for the Poisson structure ω−1, and

ωF := (ι∗β)|F

is the family of symplectic forms on the leaves [11, Proposition 10]. In partic-
ular, (F, ωF ) is a symplectic vector bundle. Let JF be a compatible complex
structure on F , that is ωF (JFw, JF v) = ωF (w, v) and

gF (w, v) := ωF (w, JF v)

is a positive definite metric on F .
By construction, the direct sum decomposition (12) identifies ω|Z with

ωE ⊕ ωF . Thus

J = JE ⊕ JF , g = gE ⊕ gF

defines a compatible complex structure and induced metric on the symplectic
vector bundle (E ⊕ F = bTM |Z , ω|Z), and moreover

(13) g =
dx2

x2
+ α2

Z + gF .

Using the product structure on C ′ ⊂ C ≃ Z × (−1, 1), we identify the pull
backs π∗E, π∗F with complementary subbundles of bTC ′. Using the fact
that β|C′ = (π∗ι∗β)|C′ (Lemma 2.5), ω|C′ is identified with π∗ωE ⊕ π∗ωF .
Hence π∗J gives a compatible complex structure for the symplectic vector
bundle (bTC ′, ω|C′), with induced metric π∗g taking the form (13) on C ′.

One can obtain globally defined compatible g, J which take the product
form described above near Z: let gC , JC now denote the metric and complex
structure on bTC constructed above, let ρ be a bump function equal to 1
near Z with support in C, and let gM\Z be an arbitrary metric on M\Z.
If g1 := ρgC + (1− ρ)gM\Z , one obtains an invertible anti-symmetric A ∈
End(bTM) such that g(·, ·) = ω(·, A·). Then J := A/|A| equals JC near Z
and g(·, ·) := ω(·, J ·) has the desired properties. We summarize the results
of this section with a lemma:

Lemma 2.6 (Normal forms for ω, J , g near Z). Let (M,Z, ω) be
a compact oriented b-symplectic manifold. Then there is a global defining
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function x and collar neighborhood π : C ≃ Z × (−1, 1) → Z with |x| = 1
outside C, such that

ω =
dx

x
∧ π∗αZ + β,

where αZ ∈ Ω1(Z), β ∈ Ω2(M) are closed and β|C′ = (π∗ι∗β)|C′ on a (pos-
sibly smaller) collar neighborhood C ′ of Z. There exists a direct sum decom-
position

bTM |C′ = bTC ′ ≃ π∗E ⊕ π∗F

where F = ker(αZ), E = span{e, e′} are subbundles of bTM |Z , e′ being
uniquely determined by αZ(e

′) = 1, ι∗β(e′) = 0 and e the canonical section
in (5). There exists a compatible complex structure J on the symplectic vec-
tor bundle (bTM,ω) such that the metric g(·, ·) = ω(·, J ·) takes a product
form near Z:

g|C′ =
dx2

x2
+ π∗α2

Z + π∗gF

where gF is a compatible metric on the symplectic vector subbundle

(F, ι∗β|F ) ⊂ (bTM |Z , ω|Z).

2.3. Prequantization

A symplectic manifold is prequantizable if the de Rham cohomology class
of its symplectic form lies in the image of the map H2(M,Z) → H2

dR(M).
A prequantization is then a choice of integral lift. For a b-symplectic man-
ifold (M,Z, ω) a slightly more sophisticated definition of prequantization
(or integrality) was suggested in [11, Section 2 and Section 5]. Recall from
Lemma 2.4 that there are canonical de Rham cohomology classes ([αZ ], [β]) ∈
H1

dR(Z)⊕H2
dR(M) associated to (M,Z, ω).

Definition 2.7 ([11]). (M,Z, ω) is prequantizable if ([αZ ], [β]) ∈ H1
dR(Z)⊕

H2
dR(M) lies in the image of the map fromH1(Z,Z)⊕H2(M,Z). A prequan-

tization is a choice of integral lift.

Remark 2.8. The integrality of [αZ ] will not play any role for us below.

Definition 2.9. Given an integral lift [β̂] of [β], one can find a complex line
bundle L → M (unique up to isomorphism) whose first Chern class is [β̂].
We call L a prequantum line bundle for (M,Z, ω). Choosing a decomposition
ω = (dx/x) ∧ π∗αZ + β as in Lemma 2.4, one can find a Hermitian metric
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and Hermitian connection ∇L,0 such that β = i
2π (∇L,0)2. The corresponding

log prequantum connection ∇L is the connection on L|M\Z given by

(14) ∇L = ∇L,0 − 2πi log(|x|)π∗αZ .

In this case, we have that

(15) ω|M\Z =
i

2π
(∇L)2.

Remark 2.10. As a small caution, the 1-form log(|x|)π∗αZ on M\Z is not
a b 1-form, and (14) is not a b connection in the sense of [19].

3. Dirac operators on b-symplectic manifolds

3.1. The Dolbeault-Dirac operator

Let L → M be a prequantum line bundle for (M,Z, ω) as in Definition 2.9.
Fix a compatible complex structure J on the symplectic vector bundle
(bTM,ω), and let g be the metric on bTM induced by (ω, J). We use g
to identify bTM ≃ bT ∗M . As usual let bT (1,0)M , bT (0,1)M be the +i, −i
eigenbundles of J in bTM ⊗ C, and similarly for bT ∗,(1,0)M , bT ∗,(0,1)M . De-
fine

(16) S+,b :=
⊕

k even

∧k
(
bT ∗,(0,1)M

)
⊗ L, S−,b :=

⊕

k odd

∧k
(
bT ∗,(0,1)M

)
⊗ L,

then Sb := S+,b ⊕ S−,b is a Z2-graded complex Hermitian vector bundle over
M (the Hermitian structure is induced from ω, g). There is a standard
Clifford action (cf. [14] or the Appendix for background) of Cl(bTM) =
Cl(bTM, g) on S given by

c(v) s :=
√
2
(
v0,1 ∧ s− ι(v1,0)s

)
, v ∈ bTM, s ∈ S.

Using the symplectic orientation (equivalently, the orientation compatible
with the complex structure) on bTM , we define the chirality element at a
point m ∈ M in terms of an oriented orthonormal frame v1, . . . , vn for bTmM
by

(17) Γm = in/2v1 · · · vn ∈ Cl(bTmM).
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It is independent of the choice of oriented frame, hence determines a globally
defined section Γ of Cl(bTM) satisfying Γ2 = 1. The +1 (resp. −1) eigen-
bundle of Γ is Sb,+ (resp. Sb,−). In this sense one says that the Z2-grading
on Sb is compatible with the symplectic orientation on (bTM,ω).

Via the anchor, the restriction of g to M\Z becomes a complete Rie-
mannian metric in the usual sense. Let

L2(M\Z, Sb) = L2(M\Z, S+,b)⊕ L2(M\Z, S−,b)

be the Z2-graded Hilbert space of square-integrable sections of Sb|M\Z (with
respect to the Riemannian volume determined by g and using the Hermitian
metric on Sb).

Let ∇J be the connection on ∧•
(
bT ∗,(0,1)(M\Z)

)
obtained by projecting

the Levi-Civita connection. Together with the prequantum connection ∇L,
we obtain a connection on S|M\Z given by

∇ = ∇J ⊗ 1 + 1⊗∇L,

satisfying

[∇v, c(w)] = c(∇LC
v w), v, w ∈ T (M\Z),

where ∇LC is the Levi-Civita connection on T (M\Z). The associated Dirac
operator is given by the composition

Db : C∞
c (M\Z, Sb)

∇−−→ C∞
c (M\Z, T ∗(M\Z)⊗ Sb)(18)

c◦g♯

−−−→ C∞
c (M\Z, Sb).

Then Db is an odd essentially self-adjoint first-order elliptic differential op-
erator on the complete manifold M\Z, cf. [5, Th. 1.17]. We denote by Db,±

the components of Db mapping C∞
c (M\Z, Sb,±) → C∞

c (M\Z, Sb,∓).

Definition 3.1. If Z = ∅, then M is compact and D = Db is Fredholm
in the sense that ker(D±) are finite dimensional. We define the geometric
quantization of (M,ω) to be

Q(M,ω) := index(D) = dimker(D+)− dimker(D−) ∈ Z.

Compare e.g. [17]. By the Atiyah-Singer index theorem, we have the formula:

Q(M,ω) =

∫

M
Td(M)Ch(L) =

∫

M
Td(M)eω.
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When Z ̸= ∅, Db is not Fredholm in general. In order to generalize Defi-
nition 3.1 to b-symplectic manifolds, we will introduce boundary conditions
in the next subsection.

3.2. APS boundary conditions and the definition of Q(M,Z, ω)

Let C ≃ Z × (−1, 1) be a collar neighborhood of Z as in Section 2.2. Recall
from Lemma 2.5 that we may assume the metric takes a product form on
a possibly smaller collar C ′ ⊂ C, and without loss of generality we assume
C ′ ≃ Z × (−1

2 ,
1
2). Let 0 < ϵ < 1

2 . Cutting M along Z±ϵ := Z × {±ϵ}, we
obtain a compact manifold with boundary:

Mϵ := M\
(
Z × (−ϵ, ϵ)

)
= M≥ϵ ⊔M≤−ϵ, ∂M≥ϵ = Zϵ, M≤−ϵ = Z−ϵ,

where the notation is self-explanatory.

Figure 1: The cutting surgery.

We will describe a Fredholm boundary value problem onMϵ, whose index
will generalize Definition 3.1. First it is necessary to modify the grading on
Sb|Mϵ

, so that it becomes compatible with the global orientation on M .
Indeed recall that the grading on Sb|M\Z is compatible with the orientation
on M\Z induced by the symplectic form ω. This differs from the global
orientation on M by the locally constant function sign(x) on M\Z.

Definition 3.2. Let S = Sb|Mϵ
but introduce a new Z2-grading, by revers-

ing the grading on M≤−ϵ:

S± ↾ M≥ϵ := Sb,±, S± ↾ M≤−ϵ := Sb,∓.
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14 M. Braverman, Y. Loizides, and Y. Song

Let D = Db viewed as an odd operator for the new grading, so that

D± = (Db,± ↾ M≥ϵ) ⊔ (Db,∓ ↾ M≤−ϵ).

We will write e for the section of bTM |C such that a(e) = x∂x; this is
consistent with earlier notation because e restricts to the canonical section
(5) along Z. On C ′ ∩Mϵ the operator D takes the form

(19) D+|C′ = c(e)(x∂x +Ax).

Here Ax is the smooth family of essentially self-adjoint first-order elliptic
operators on the compact manifold Z given by

(20) Ax = c(e)−1
(
DZ − 2πi log(|x|)c(e′)

)

where DZ is a Dirac operator on Z not depending on x (defined using
the connection ∇L,0 on L|Z , and having symbol σ(DZ)(ξ) = c(g♯(ξ)), ξ ∈
T ∗Z) and recall e′ is the section metrically dual to αZ (see Lemma 2.5).
(The expression (19) may look more familiar in terms of the coordinate
t = log(|x|).)

We next explain the type of Atiyah-Patodi-Singer [1] (APS) boundary
condition that we will use. Aside from the original paper [1], a concise guide
to elliptic boundary value problems requiring relatively modest background
knowledge is [3] (the monograph [2] containing the corresponding technical
details).

The operators A±ϵ are essentially self-adjoint first-order elliptic oper-
ators on Z±ϵ. Since the latter are compact manifolds, A±ϵ have discrete
spectrum. Let

C∞(M≥ϵ, S
+)Aϵ<0 ⊂ C∞(M≥ϵ, S

+)

be the subspace of sections whose restriction to the boundary lies in the
closure of the direct sum of the eigenspaces of Aϵ with eigenvalue λ < 0.
One similarly defines C∞(M≥ϵ, S

+)Aϵ≤0, as well as similar subspaces for
M≤−ϵ using the operator A−ϵ in place of Aϵ. We also set

C∞(Mϵ, S
+)<0 = C∞(M≥ϵ, S

+)Aϵ<0 ⊕ C∞(M≤−ϵ, S
+)A−ϵ<0 ⊂ C∞(Mϵ, S

+).

Suppose first for simplicity that Aϵ does not have 0 in its spectrum. In
fact by (20) this happens if and only if 2πi log(|ϵ|) is not in the spectrum
of the fixed (ϵ-independent) operator c(e′)−1DZ , and since the latter has
discrete spectrum, this is guaranteed to occur for generic ϵ. In this case we
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Geometric quantization of b-symplectic manifolds 15

make the following definition. The Hilbert space L2(Mϵ, S
±) is defined just

like L2(M\Z, S±), using the restrictions of the metrics to Mϵ ⊂ M\Z.

Definition 3.3. Suppose 0 /∈ spec(Aϵ). We define the unbounded Hilbert
space operator D+

APS,ϵ to be the closure of the operator with domain

C∞(Mϵ, S
+)<0 given by D+

APS,ϵs = D+s for all s ∈ C∞(Mϵ, S
+)<0. This is

an example of Atiyah-Patodi-Singer boundary conditions [1].

More generally if Aϵ is not necessarily invertible, then we prefer a slightly
more complicated choice (having better continuity properties):

Definition 3.4. For any ϵ, we define the unbounded Hilbert space operator
D+

APS,ϵ to be the closure of the operator with initial domain

D∞
APS = C∞(M≥ϵ, S

+)Aϵ≤0 ⊕ C∞(M≤−ϵ, S
+)A−ϵ<0

given by D+
APS,ϵs = D+s for all s ∈ D∞

APS . In other words, we use the APS
boundary condition on M≤−ϵ and the ‘dual’ APS boundary condition on
M≥ϵ. (‘Dual’ refers to the fact that the closure of the operator with domain
C∞(M≥ϵ, S

+)Aϵ≤0 ends up being the adjoint of the operator with domain
C∞(M≥ϵ, S

−)Aϵ<0.) We refer to these as ‘APS-like’ boundary conditions,
for short; they coincide with APS boundary conditions for generic ϵ.

It is known that the domain dom(D+
APS,ϵ) of the closure is the subspace

of the Sobolev space H1(Mϵ, S
+) satisfying the boundary conditions (re-

striction to the boundary being replaced by the trace map H1(Mϵ, S
+) →

H1/2(∂Mϵ, S
+) in Definition 3.4), and moreover that

D+
APS,ϵ : dom(D+

APS,ϵ) → L2(Mϵ, S
−)

is a Fredholm operator, cf. [3].
Our generalization of Definition 3.1 is as follows.

Definition 3.5. We define the geometric quantization of the compact b-
symplectic manifold (M,Z, ω) to be the index

Q(M,Z, ω) := index(D+
APS,ϵ) ∈ Z,

where D+
APS,ϵ is the operator on Mϵ with APS-like boundary conditions

in Definition 3.4. We will justify that Q(M,Z, ω) is independent of ϵ in
Theorem 3.10 below. In particular one could equivalently define Q(M,Z, ω)
in terms of a limit of APS-like indices, as ϵ → 0+.
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16 M. Braverman, Y. Loizides, and Y. Song

3.3. The spin-c structure on a b-symplectic manifold

The anchor map a : bTM → TM is a bundle isomorphism over M\Z. In
particular the manifold with boundary Mϵ has a metric and compatible al-
most complex structure induced from those on the symplectic vector bundle
(bTM,ω). The boundary ∂Mϵ = Zϵ ⊔ Z−ϵ, and one might ask if it is possible
to glue the two boundary components Z±ϵ together and obtain a metric and
almost complex structure on the manifold (diffeomorphic to M)

M̃ : = Mϵ

/
(m, ϵ) ∼ (m,−ϵ), m ∈ Z.

Figure 2: The gluing surgery.

By Lemma 2.5, the metric g takes a product form near Z, hence can
be glued into a metric on M̃ . However for the almost complex structure
(equivalently for the symplectic form), this naive idea does not seem to
work, as one can convince oneself by considering the local normal form in
Section 2.2. We will show that nevertheless it is possible to glue together the
corresponding spin-c structures to obtain a spin-c structure on the manifold
M̃ in the ordinary sense. A more systematic construction illuminating some
of the properties of the spin-c structure and avoiding use of local normal
forms is given in the appendix.

Denote by S±ϵ the restriction of the spinor bundle S to the boundary
component Z±ϵ:

S−ϵ = ∧bT ∗,(0,1)M ⊗ L
∣∣
Z−ϵ

, Sϵ = ∧bT ∗,(0,1)M ⊗ L
∣∣
Zϵ
.

As we have arranged that the metric and complex structure on the vector
bundle bTM take a product form on C ′ ≃ Z × (−1

2 ,
1
2), we may identify Sϵ
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Geometric quantization of b-symplectic manifolds 17

with S−ϵ as ungraded Cl(bTM |Z)-modules; we will write

ρ : Sϵ → S−ϵ

for the corresponding morphism of Clifford modules. Since S = Sb|M\Z but
with the Z2 grading reversed over M<0, the map ρ has odd parity. In
particular if z ∈ Cl(bTM |Z) is of odd degree in the Clifford algebra, then
c(z) ◦ ρ = ρ ◦ c(z) maps S+

ϵ to S+
−ϵ.

Definition 3.6. We define a smooth grading-preserving bundle map

τ : Sϵ → S−ϵ, τ(s) = c(Γe)ρ(s)

where Γ is the chirality element (17). Since c(Γe) commutes with c(e′), DN

and anti-commutes with c(e)−1 = −c(e), the induced map on smooth sec-
tions (also denoted τ) satisfies

(21) τ ◦Aϵ = −A−ϵ ◦ τ.

Definition 3.7. Define a Z2 graded complex vector bundle S̃ on M̃ by
gluing Sϵ to S−ϵ using τ :

S̃ := S|Mϵ

/
(s, ϵ) ∼ (τ(s),−ϵ), s ∈ Sϵ.

A continuous section of S̃ is by definition a pair (s1, s2) of sections over M≥ϵ,
M≤−ϵ respectively, such that τ(s1|Zϵ

) = s2|Z−ϵ
. (For a smooth construction,

one easily modifies this by gluing on a small collar.)

Since the anchor map a : bTM → TM is an isomorphism over Mϵ, we
obtain a Cl(TMϵ)-module structure on S|Mϵ

given by

(22) c̃ := c ◦ a−1.

Lemma 3.8. τ intertwines the Cl(TMϵ)-module structure (22) along Zϵ,

Z−ϵ, which therefore descends to a Cl(TM̃)-module structure on S̃. Equiva-
lently, τ defines a trivialization of the line bundle HomCl(TM |Z)(Sϵ, S−ϵ).
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18 M. Braverman, Y. Loizides, and Y. Song

Proof. For s ∈ Sϵ, and v ∈ TZ one has

c̃(v)τ(s) = c(v)c(Γe)ρ(s) = c(Γe)ρ(c(v)s) = τ(c̃(v)s)

since v, Γe commute and a−1(v) = v for v ∈ TZ. The remaining generator
∂x requires care, since

(
a|Zϵ

)−1(∂x) =
1
ϵ e,

(
a|Z−ϵ

)−1(∂x) = −1
ϵ e

differ by a sign. Thus for s ∈ Sϵ

c̃(∂x)τ(s) = −1
ϵ c(e)c(Γe)ρ(s) = c(Γe)ρ(1ϵ c(e)s) = τ(c̃(∂x)),

where for the second equality we used the fact that e, Γe anti-commute. □

Definition 3.9. The Cl(TM̃)-spinor module S̃ will be referred to as the
spin-c structure associated to the b-symplectic manifold (M,Z, ω). Up to
homotopy, it does not depend on ϵ. The determinant line bundle (or anti-
canonical line bundle) of S̃ is the complex line bundle

L̃ = Hom
Cl(TM̃)

(S̃∗, S̃).

Theorem 3.10. Q(M,Z, ω) equals the index of any spin-c Dirac operator
for S̃. In particular Q(M,Z, ω) is independent of ϵ.

Proof. Recall Q(M,Z, ω) = index(D+
APS,ϵ) was defined as the index of (the

closure of) the operator with domain

D∞
APS = C∞(M≥ϵ, S

+)Aϵ≤0 ⊕ C∞(M≤−ϵ, S
+)A−ϵ<0,

given by D+
APS,ϵs = D+s, and that near x = ±ϵ,

(23) D|C′ = c(e)(x∂x +Ax)

where Ax is the smooth family of first-order elliptic operators on the compact
manifold Z given by

(24) Ax = c(e)−1
(
DZ − 2πi log(|x|)c(e′)

)
.

Wemay perform a homotopy of the operatorD to replace the family {Ax|0 ̸=
x ∈ (−1

2 ,
1
2)} of operators on Z with the constant family of operators Ãx =
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Geometric quantization of b-symplectic manifolds 19

Ã, 0 ̸= x ∈ (−1
2 ,

1
2) where

Ã = c(e)−1DZ .

This results in a new Dirac operator D̃ on M\Z such that

(25) D̃|C′ = c(e)(x∂x + Ã) = c(e)x∂x +DZ .

In doing this we keep the boundary condition fixed (i.e. it is still specified in
terms of spectral subspaces for the operators A±ϵ); in other words, the do-
mains of the operators in the homotopy do not vary. The resulting operator
D̃+

APS,ϵ has the same index.

We claim that the new Dirac operator D̃ can be glued smoothly to a spin-
c Dirac operator on M̃ acting on S̃. To see this we describe a smooth version
of the gluing construction in Definition 3.7. In terms of the logarithmic
coordinate x that we are using, a suitable gluing diffeomorphism on the
base may be given by the identity map on Z and the diffeomorphism (note
2ϵ2 < ϵ < 1

2 since 0 < ϵ < 1
2):

f : (2ϵ2, 12) → (−1
2 ,−2ϵ2), f(x) = −ϵ2x−1.

Then f(ϵ) = −ϵ so f may be used to glue together M≥2ϵ2 , M≤−2ϵ2 along the
collars

C1 = Z × (2ϵ2, 12) ⊂ M≥2ϵ2 , C2 = Z × (−1
2 ,−2ϵ2) ⊂ M≤−2ϵ2 ,

giving a smooth manifold M̃ . Let

q : M2ϵ2 → M̃

be the smooth gluing map, which identifies pairs of points in a collar neigh-
borhood of the boundary of M2ϵ2 according to the map f × idZ defined
above.

Combining f with the gluing map τ on the spinor bundle, we obtain a
smooth version τsm of τ that may be used in a smooth construction of S̃.
Under f the operator x∂x goes to −x∂x. Together with (25) and the fact that
τ anti-commutes with c(e) and commutes with DZ (see (21)), we deduce

τsm ◦ D̃ = D̃ ◦ τsm

which verifies that the operator D̃ descends to a Dirac operator on M̃ for S̃.
We now invoke a special case of the Splitting Theorem [2, Theorem 8.17]

(or see [3, Theorem 4.5]) for elliptic boundary value problems, which we
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briefly recall now. Given a first-order essentially self-adjoint elliptic operator
D acting on sections of E on a closed manifold M̃ , we may cut M̃ along
a hypersurface N to obtain a manifold M̃ ′ with boundary N1 ⊔N2, and
operator D′. If B1 ⊂ H1/2(N,E) is an elliptic boundary condition with L2-
orthogonal complement B2 ⊂ H1/2(N,E) then

index(D) = index(D′
B1⊔B2

)

where D′
B1⊔B2

denotes the operator with domain specified by the boundary

condition B1 ⊔B2 along N1 ⊔N2 = ∂M̃ ′. For the case at hand we set E =
S̃+, N = q(Zϵ) = q(Z−ϵ), D = D̃+. We may identify M̃ ′ with Mϵ, and N1 =
Zϵ, N2 = Z−ϵ. We take the boundary condition B1 to be

(26) B1 = H1/2(N, S̃+)Aϵ≤0 = H1/2(Zϵ, S
+)Aϵ≤0

This corresponds to the ‘dual’ APS boundary condition along N1 = Zϵ, used
in the Definition 3.4 of D+

APS,ϵ. Its L
2-orthogonal complement is

B2 = H1/2(N, S̃+)Aϵ>0.

To compare with the boundary conditions used in Definition 3.4, B2 must
be identified with a subspace of H1/2(Z−ϵ, S

+). By construction of S̃, the
identification H1/2(N, S̃+) ≃ H1/2(Z−ϵ, S

+) is given by the gluing map τ .
By equation (21), Aϵ ◦ τ = −τ ◦A−ϵ, hence B2 identifies with

B2 = H1/2(Z−ϵ, S
+)A−ϵ<0,

and this corresponds to the APS boundary condition along Z−ϵ used in the
Definition 3.4 ofD+

APS,ϵ. This verifies that D̃
+,D+

APS,ϵ satisfy the hypotheses
of the Splitting Theorem, and thus

index(D̃+) = index(D+
APS,ϵ).

Finally, since M̃ is closed, the index of D̃ is invariant under homotopy, and
does not depend on ϵ. □

Theorem 3.11. For any b-symplectic manifold (M,ω,Z), we have that

Q(M,Z, ω) =

∫

M
Â(TM)Ch(L̃)1/2(27)

=

∫

M
Td(bTM)Ch(L) = lim

ϵ→0+

∫

Mϵ

Td(bTM)eω.
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Proof. The first expression is the Atiyah-Singer formula for index(D̃+). One
has Â(TM) = Â(bTM) (see Remark A.3), and ∧bT ∗,(0,1)M , S̃ have isomor-
phic determinant line bundles (see Theorem A.9), so the second expres-
sion follows from the first via the usual calculation relating the Hirzebruch-
Riemann-Roch and spin-c versions of the Atiyah-Singer integrand. The third
expression follows from the second, together with the following general ob-
servation: if Ω is a top degree b-differential form and

Ω =
dx

x
∧ π∗Ω′

Z +Ω′′

is a decomposition as in Lemma 2.4, then

lim
ϵ→0+

∫

Mϵ

Ω =

∫

M
Ω′′ + lim

ϵ→0+

∫

|x|≥ϵ

dx

x

∫

Z
Ω′
Z =

∫

M
Ω′′ + 0 ·

∫

Z
Ω′
Z =

∫

M
Ω′′.

□

4. The equivariant case: quantization commutes

with reduction

In this section we consider a Hamiltonian action of a compact connected Lie
group G on (M,Z, ω). We define the geometric quantization QG(M,Z, ω) to
be the equivariant index of the APS-like boundary value problem for D+

APS.
Under the assumption that the action of G has non-zero modular weights,
we show that QG(M,Z, ω) satisfies the Guillemin-Sternberg “quantization
commutes with reduction” property. In particular our quantization coincides
with the formal geometric quantization defined in [11], and thus provides a
positive answer to a question posed in loc. cit.

4.1. Hamiltonian group actions on a b-symplectic manifolds

Suppose that a compact connected Lie group G acts on M preserving (Z, ω).
Let g denote the Lie algebra of G and let g∗ be its dual. For X ∈ g we denote
by

(28) XM (m) =
d

dt

∣∣∣∣
t=0

exp(−tX) ·m

the vector field on M generated by the infinitesimal action of X on M , and
likewise XZ for the restriction of XM to Z. More generally if X is a smooth
map to g, then the same expression (28) but with X evaluated at m defines
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a vector field on M still denoted by XM . Let Z = ⊔k
j=1Zj where the Zj ’s

are connected components of Z. Since G is assumed connected, each Zj is
preserved by G.

Let x be a G-invariant global defining function for Z as in Lemma 2.5,
with |x| = 1 outside a G-invariant collar neighborhood C ≃ Z × (−1, 1)x,
and let π : C → Z be the G-equivariant projection map to Z. Recall that
the b symplectic form admits a decomposition

(29) ω =
dx

x
∧ π∗αZ + β,

where αZ is a closed 1-form on Z that is independent of any choices, hence
is automatically G-invariant (hence so is β).

Definition 4.1. Let c : Z → g
∗ be the smooth function defined by

⟨c,X⟩ = ι(XZ)αZ , X ∈ g.

Since αZ is G-invariant and closed, the Cartan formula implies that c is
locally constant. Then, G-invariance of αZ implies that c takes values in
z
∗ ⊂ g

∗ where z ⊂ g is the center. We call c the modular weight function, or
just the modular weight for short.

Definition 4.2. We say that the action of G on a b-symplectic mani-
fold (M,Z, ω) is Hamiltonian if there exists a G-equivariant moment map
µ : M\Z → g

∗ such that

a) d⟨µ,X⟩ = −ι(XM )ω,

b) the function µ := µ− log(|x|)π∗c extends smoothly to M .

Note that by assumption, outside the collar C, |x| = 1 ⇒ log(|x|) = 0, hence
log(|x|)π∗c can be viewed as a z

∗-valued function on M . Comparing with
(29), we see d⟨µ,X⟩ = −ι(XM )β, i.e. µ is an ordinary moment map for the
presymplectic form β.

4.2. [Q,R] = 0 conjecture for b-symplectic manifolds

Let (M,Z, ω, µ) be a b-symplectic manifold with a Hamiltonian G-action,
where G is assumed to be compact and connected. Suppose M is prequanti-
zable, and let L be a prequantum line bundle. Lift the infinitesimal g action
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on M to L via the Kostant formula:

LX = ∇L,0
XM

+ 2πi⟨µ,X⟩, X ∈ g.

If we use the definitions ∇L
XM

= ∇L,0
XM

− 2πi log(|x|)π∗αZ(XZ), αZ(XZ) =
⟨c,X⟩ and µ = µ− log(|x|)π∗c, we see that over M\Z this is equivalent to

LX = ∇L
XM

+ 2πi⟨µ,X⟩, X ∈ g.

We furthermore assume that the g-action integrates to a G-action. Proceed-
ing as in Section 3.2, the operator D+

APS,ϵ is G-equivariant and Fredholm,
hence has a G-equivariant index lying in the character ring R(G), and as in
Definition 3.1, we define

(30) QG(M,Z, ω) = indexG(D
+
APS,ϵ) ∈ R(G).

The constructions in Section 3.3 now lead to a G-equivariant spinor
bundle S̃ → M̃ , and Theorem 3.10 goes through:

QG(M,Z, ω) = indexG(D̃)

where D̃ is anyG-equivariant spin-c Dirac operator for S̃. As before it follows
in particular that (30) is independent of ϵ, and one could equivalently define
QG(M,Z, ω) in terms of a limit as ϵ → 0+.

Conjecture 4.3. If 0 is a regular value of the moment map and if the
reduced space

Mred = µ−1(0)/G, Zred = (µ−1(0) ∩ Z)/G

is a b-symplectic manifold (orbifold), then

[QG(M,Z, ω)]G = Q(Mred, Zred, ωred) ∈ Z.

Remark 4.4. For the case Z = ∅, this is the “quantization commutes with
reduction” conjecture of Guillemin-Sternberg [10], first proved by Mein-
renken [17]. In case 0 is not a regular value, one should modify the definition
of the quantization of the reduced space using a shift desingularization for
example, as in [18].
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4.3. The Kirwan vector field

Fix an AdG-invariant inner product ⟨·, ·⟩g on g. Composing c : Z → z
∗ with

the isomorphism z
∗ → z induced by the inner product, we obtain a locally

constant map

ζ : Z → z.

Since z is the center of g, this map is trivially G-equivariant. The induced
vector field ζZ on Z satisfies

(31) αZ(ζZ) = ⟨c, ζ⟩ = |ζ|2
g
.

Similarly we define

ν : M\Z → g, ν : M → g

to be the compositions of µ, µ with the isomorphism g
∗ → g. The induced

vector fields are all G-invariant and satisfy

(32) νM\Z = νM\Z + log(|x|)(π∗ζ)C\Z .

The vector field νM\Z is the Kirwan vector field (cf. [13]) of the Hamiltonian
G-space (M\Z, ω, µ).

4.4. Proof of [Q,R] = 0 for case of non-zero modular weights

In this section we prove quantization commutes with reduction in the fol-
lowing special case.

Assumption: The modular weight function c is nowhere zero. (In fact by
[9, Theorem 16], it already suffices to assume c does not vanish on a single
component of Z.)

Three immediate consequences of the assumption are:

a) All reduced spaces are symplectic (if non-singular).

b) The moment map µ : M\Z → g
∗ is proper.

c) The vanishing set of the Kirwan vector field νM\Z is a compact subset
of M\Z.

The third statement follows from (32), because under our assumption, ζZ is
a non-vanishing vector field on Z, and the log(|x|)(π∗ζ)C\Z term dominates
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as x → 0 (the vector field νM\Z is bounded, since it extends smoothly to the
vector field νM on the compact manifoldM). These three consequences allow
us to take advantage of results of Ma-Zhang [16] on geometric quantization
for proper moment maps on non-compact symplectic manifolds. We will
state the special case of their result that suffices for our purposes shortly.

Lemma 4.5. We may choose x, π, C to be G-equivariant and satisfy the
conditions in Lemma 2.5, and such that the resulting form β = ω − (dx/x) ∧
π∗αZ in (29) satisfies the additional condition ι(ζZ)(ι

∗β) = 0, where recall
ι : Z →֒ M . Hence ζZ = |ζ|2

g
e′ in the notation of Lemma 2.5.

Proof. Since ζ is central, x exp(−⟨µ, ζ⟩) is a G-invariant global defining func-
tion for Z in the same equivalence class of global defining functions as x.
By re-scaling or using a bump function, we may find a G-invariant global
defining function x′ that equals x exp(−⟨µ, ζ⟩) on a small neighborhood, say
C ′′, of Z, and equals x outside of C. Then on C ′′ we have:

ω =
dx

x
∧ π∗αZ + β =

dx′

x′
∧ π∗αZ + β′, β′ = −d⟨µ, ζ⟩ ∧ π∗αZ + β.

Notice that

ι(ζZ)(ι
∗β′) = ι∗d⟨µ, ζ⟩+ ι(ζZ)(ι

∗β) = 0,

by the moment map property for µ. This shows it is possible to modify the
global defining function on a small neighborhood of Z in order to obtain a
β′ satisfying the additional property in the statement of the lemma. So we
may assume from the beginning that x is chosen such that β = ω − (dx/x) ∧
π∗αZ has this property.

The construction in the proof of Lemma 2.5 does not modify the pullback
of β to Z, since the diffeomorphism φ fixes Z. Hence after carrying out the
modification of x, C, π as in the proof, the new form β̃ = ω − (dx̃/x̃) ∧ π̃∗αZ

will still have the desired property.
The vector field e′ on Z was defined as the unique vector field satisfying

αZ(e
′) = 1, ι∗β(e′) = 0, so ζZ = |ζ|2

g
e′ follows from (31). □

Using the lemma, the operators Ay, y = ±ϵ defining the APS-like bound-
ary condition (see (20)) can be written as

Ay = c(e)−1By,

where By is the operator

(33) By = DZ − ik log(|y|)c(ζZ),
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and k = 2π|ζ|−2
g

is an (unimportant) locally constant positive normalization
factor.

Definition 4.6. Define a 2-parameter family 0 ̸= y ∈ (−1
2 ,

1
2), T ∈ R of

operators on Zy by

Ay,T = c(e)−1By,T ,

By,T = By − iTc(νZy
) = DZ − i(k + T ) log(|y|)c(ζZ)− iTc(νZy

).

Let AG
y,T , B

G
y,T denote the restrictions to the subspace of G-invariant spinors.

Let D+
APS,ϵ,T be the Hilbert space operator defined as in Definition 3.4,

but using APS boundary conditions with the operators A±ϵ,T in place of
A±ϵ (this is legitimate, because Ay,T is essentially self-adjoint and has the
same symbol as Ay, hence can also serve as an adapted boundary operator,
cf. [3, Section 2.2]).

The following is a special case of results of Ma-Zhang on geometric quan-
tization for proper moment maps on non-compact symplectic manifolds.

Theorem 4.7 ([16]). Fix ϵ > 0 such that Mϵ contains the vanishing locus
of the Kirwan vector field νM\Z in its interior. There is a constant T0 such
that for T > T0,

indexG(D
+
APS,ϵ,T )

G = Q(Mred, ωred).

(If 0 is a regular value, (Mred, ωred) is a symplectic orbifold. Otherwise the
right-hand-side should be defined by a shift desingularization, as in [18].)

Remark 4.8. It is in fact only necessary that Mϵ contain the component
µ−1(0) of the vanishing locus of νM\Z , but we have chosen to state the result
in this way because a slight variant holds for the multiplicity of any irre-
ducible representation λ ∈ Λ+ of G in indexG(D

+
APS,ϵ,T ), with Mred replaced

with the reduced space at λ, and the constant T0 = T0(λ) depending on λ.

Remark 4.9. In their paper [16], Ma and Zhang in addition deform the
differential operator on Mϵ by a 0th-order term iTc(νMϵ

). Because Mϵ is
a compact subset of M\Z, this is a continuous deformation by a family
of bounded operators and does not affect the index. (On the other hand
deforming the boundary conditions usually does change the index.)

Remark 4.10. Theorem 4.7 is rather more sophisticated than necessary,
because our manifold M\Z has relatively simple geometry at infinity. But it
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allows us to give a rather quick proof, and sets our geometric quantization
for b-symplectic manifolds into a broader context. Another treatment of a
version of Ma-Zhang’s argument can be found in [15].

Lemma 4.11. There is a constant ϵ0 > 0 such that for 0 < |y| < ϵ0, the
operator BG

y,T is invertible for all T ≥ 0.

Proof. The square B2
y,T is given by a formula of the form

D2
Z + T 2|νZy

|2 + log(|y|)
(
Tℓy + (k + T )2 log(|y|)|ζZ |2

)

where ℓy is a first-order differential operator containing the cross-terms. An
observation of Tian and Zhang [21, Theorem 1.6, Remark 1.9], is that the
restriction ℓGy to the G-invariant spinors is a 0th order operator (a bundle
endomorphism), and in our case it is also bounded uniformly in y (it ex-
tends smoothly to y = 0 for example, the explicit log(|y|)’s in the expression
above being the only singularities). Note also that ζZ is non-vanishing, by
our assumption that the modular weights are non-zero. Moreover k + T > 0
as k > 0 and T ≥ 0. It follows that when log(|y|) is sufficiently negative (i.e.
for |y| sufficiently small), the second term (k + T )2 log(|y|)|ζZ |2 in the brack-
ets dominates, and the operator (B2

y,T )
G is strictly positive, hence BG

y,T is
invertible. □

Corollary 4.12. For 0 < ϵ < ϵ0, index(D
+
APS,ϵ,T )

G = index(D+
APS,ϵ)

G for
all T ≥ 0.

Proof. It is known that for a suitable smooth 1-parameter family AT := Aϵ,T

specifying APS-like boundary conditions, the index only varies at values of
T such that 0 ∈ Spec(AT ), cf. [2, Section 8.2], [16, Proposition 1.1], [15,
Corollary 5.3] for related arguments. The result is thus a consequence of
Lemma 4.11. □

Corollary 4.12 and Theorem 4.7 now imply Conjecture 4.3, in the special
case of non-zero modular weights:

Corollary 4.13. QG(M,Z, ω)G = Q(Mred, ωred).

In particular this proves that QG(M,Z, ω) coincides with the formal
geometric quantization defined in [11].
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Appendix A. ‘Coordinate-free’ description of the

spin-c structure

In this appendix we give a conceptual construction of the spin-c structure on
an (oriented) b-symplectic manifold which illuminates some of its properties.
We begin with some brief informal motivation.

Our discussion is based on the following simple observation. If M is
a manifold with boundary ∂M = Z, then it is well-known that bTM and
TM are non-canonically isomorphic. To obtain an isomorphism, let C ≃
Z × [0, 1] be a collar neighborhood of the boundary ∂M = Z × {0}, and let
π (resp. x) denote the projection to Z (resp. [0, 1]). Let e = x∂x viewed
as a section of bTM |C (it restricts to the canonical section (5) along Z).
Then bTM |C ≃ π∗TZ ⊕ R · e and TM |C ≃ π∗TZ ⊕ R · ∂x, so one obtains
an isomorphism bTM |C ≃ TM |C sending e to ∂x. This isomorphism can
be extended to M using the isomorphism provided by the anchor map
a : bTM |M\C → TM |M\C , because the latter also maps e|Z×{1} = 1 · ∂x to
∂x. (The resulting map is only continuous, but one easily obtains a smooth
version using a partition of unity.)

If Z lies in the interior of M this no longer works: in this case the
collar C ≃ Z × [−1, 1]x, and to be able to extend continuously using the
anchor map at x = −1, e|Z×{−1} would have to go to −∂x, and the differing

signs causes a problem. Instead of an isomorphism, TM , bTM are related
(topologically) by a clutching construction involving a reflection. Let x be
a global defining function for Z and let M≥0 = x−1[0,∞) (resp. M≤0 =
x−1(−∞, 0]). Then M is obtained by gluing M≥0 to M≤0 along Z = x−1(0).
And, up to homotopy, bTM is obtained by gluing TM≥0 to TM≤0 using
the map which sends (m, v) ∈ TM≥0|Z to (m, rv) ∈ TM≤0|Z , where r is
fibrewise orthogonal reflection in the subbundle TZ ⊂ TM |Z (with respect
to any metric on TM |Z). A simple example is M = S1, Z = {pt}, when
bTM is the non-orientable R line bundle over S1.

Below we will give a more systematic discussion using principal bundles;
the discussion above is recovered by passing to associated bundles. Through-
out Z ⊂ M is a hypersurface, M is connected, and for convenience we equip
TM , bTM with positive definite metrics.

A.1. Surgery of principal bundles

LetG be a Lie group, and P → M a principalG-bundle. Let Ad(P ) = P ×Ad

G be the adjoint bundle. Gauge transformations of P are automorphisms
of P covering the identity on M , and are in one-one correspondence with
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global sections of the Lie group bundle Ad(P ); we write G (P ) for the space
of global sections of Ad(P ).

Let q : M ′ → M be the manifold with boundary obtained by cutting
M along Z. The boundary of M ′ comes equipped with a smooth involution
j : ∂M ′ → ∂M ′. If the normal bundle to Z is orientable, then ∂M ′ = Z1 ⊔ Z2

consists of two disjoint copies of Z, and j swaps the two copies. Note that
points in the pullback bundle q∗P are labelled by pairs (m′, p) wherem′ ∈ M ′

and p ∈ Pq(m′).

Definition A.1. Let g ∈ G (P |Z) be an involution. We define a new prin-
cipal G-bundle P g over M by

P g = q∗P/ ∼

where the equivalence relation identifies points (m′, p) ∼ (j(m′), g(p)) for
m′ ∈ ∂M ′ (this is an equivalence relation because j, g are involutions). We
will refer to this clutching construction as surgery of P along Z using g ∈
G (P |Z). One easily obtains a smooth version of this construction by choosing
a tubular neighborhood π : U → Z and an isomorphism P |U ≃ π∗(P |Z), and
then one uses the pullback gauge transformation gU = π∗g to define the
equivalence relation used for clutching along a collar neighborhood.

The construction is functorial: if Pi ⟲ Gi are principal bundles over M ,
ρ : G1 → G2 is a group homomorphism intertwining a map f : P1 → P2, and
g ∈ G (P1|Z) then there is an induced ρ(g) ∈ G (P2|Z) and a map fg : P g

1 →
P

ρ(g)
2 .

Example A.2. Let PO(TM), PO(
bTM) denote the orthonormal frame

bundles of TM , bTM respectively. Note that Ad(PO(TM)) = O(TM) is
the bundle of orthogonal groups of the tangent bundle, and similarly for
Ad(PO(

bTM)). Then PO(
bTM) ≃ PO(TM)r where r = g ∈ G (PO(TM |Z))

is fibrewise orthogonal reflection in the subbundle TZ ⊂ TM |Z .

Remark A.3. Structures on P , if invariant under g ∈ G (P |Z), can be glued
together to give structures on P g. For smoothness one should thicken Z to a
tubular neighborhood π : U → Z as in Definition A.1, with an isomorphism
P |U ≃ π∗(P |Z), and require invariance under the pullback gauge transfor-
mation gU = π∗g. For example, a connection on P , if gU -invariant, induces
a connection on P g. One can always find gU -invariant connections on U
by averaging over the two element subgroup {1, gU} of G (P |U ), and using
bump functions to extend to M . A corollary is that one can arrange that
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characteristic forms obtained from the Chern-Weil construction for P , P g

are the same.

A.2. Graded principal bundles

Our use of the expression ‘graded group’ does not seem to be very common,
but appears for example in [4].

Definition A.4. A graded Lie group (G, ∂) is a Lie group G together with a
smooth homomorphism ∂ : G → Z2 = {1,−1}. A graded principal G bundle
(P, ∂) is a principal G-bundle together with a smooth map ∂ : P → Z2 such
that ∂(pa) = ∂p · ∂a for all a ∈ G, p ∈ P . The opposite grading on P is the
map −∂.

Example A.5. Let V be a Euclidean vector bundle. Orientations of V are
in one-one correspondence with gradings of the frame bundle PO(V ). The
opposite grading corresponds to the opposite orientation. In particular bTM
with its symplectic orientation determines a grading b∂O on PO(

bTM).

If (P, ∂) is graded and m ∈ M then a gauge transformation g ∈ G (Pm),
viewed as an AdG-equivariant map Pm → G, necessarily has constant degree
∂g ∈ Z2 because Z2 is abelian and ∂ : G → Z2 is a group homomorphism.
Thus if g ∈ G (P |Z) then ∂g must be constant over each connected compo-
nent of Z. If ∂g = 1 then P g is naturally graded again, the grading being
obtained by following the construction in Definition A.1 and using g to patch
together the pullback grading on q∗P . With a global defining function, one
can also obtain a grading in the case ∂g = −1:

Definition A.6. Let (P, ∂) be a graded principal G-bundle over M . Let
Z ⊂ M be a hypersurface admitting a global defining function x. Recall
from Definition A.1 that q : M ′ → M denotes the quotient map from the
manifold with boundary M ′. Let M ′ = M1 ⊔M2 where M1 (resp. M2) is
the union of the components of M ′ where x ◦ q ≥ 0 (resp. ≤ 0). Let Zi =
∂Mi. Let g ∈ G (P |Z) with ∂g = −1. Then we define a grading ∂g,[x] on P g

by following the construction of P g but using the opposite grading over
M2; after reversing the grading over M2, g ∈ G (P |Z) can be viewed as a
grading-preserving morphism q∗P |Z1

→ q∗P |Z2
of graded principal bundles,

and so the gradings patch together to a grading of P g. The construction
depends only on the equivalence class [x] of the global defining function x,
modulo multiplication by globally defined smooth positive functions; since
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M is connected there are exactly two equivalence classes [x] and [−x], and
∂g,[−x] = −∂g,[x].

Example A.7. Continuing Examples A.5, A.2, if Z admits a global
defining function x then applying Definition A.6 to the graded bundle

(PO(
bTM), b∂O) and gauge transformation r, one obtains a grading b∂

r,[x]
O =:

∂O on PO(
bTM)r ≃ PO(TM). Of course we already saw that in the b-

symplectic case, the choice of an orientation on M determines an equiv-
alence class of global defining functions and conversely; the construction of
∂O reaffirms this.

A.3. Spin-c structures

A sample reference for this subsection is Lawson-Michelsohn [14]. Let
(V, ⟨−,−⟩) be an n-dimensional Euclidean vector space over R. Our conven-
tion for the real Clifford algebra Cl(V ) ≃ Cl(Rn) is v1v2 + v2v1 = −2⟨v1, v2⟩.
For convenience throughout we take n ≥ 2 to be even.

Recall that Pin(V ) ≃ Pin(n) is the set of products a = v1 · · · vk ∈
Cl(V ) where each vi ∈ V ; such elements are units in Cl(V ) with a−1 =
(−1)kvk · · · v1, hence Pin(V ) is a group, and in fact a graded group if we de-
fine ∂a=(−1)k. The subgroup of even elements Spin(V ) = ∂−1(1)≃Spin(n).
The complexification Cl(V ) = Cl(V )⊗ C is an algebra over C. Define
Pinc(V ) ≃ Pinc(n) as the set of products zv1 · · · vk∈Cl(V ) where z∈U(1)⊂
C and vi ∈ V . The grading extends to Pinc(V ) in the obvious fashion, and
Spinc(V ) = ∂−1(1) ≃ Spinc(n) is the subgroup of even elements. There is a
well-defined map

det : Pinc(V ) → U(1), zv1 · · · vk 7→ z2.

If w ∈ V has length 1, then the map

a ∈ Cl(V ) 7→ Adw(a) = waw−1 = −waw ∈ Cl(V )

preserves V and restricts to an orthogonal transformation, namely reflection
in the hyperplane perpendicular to w composed with inversion v 7→ −v. The
map w 7→ Adw extends to a group homomorphism

Ad: Pinc(V ) → O(V ),
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which restricts to 2 : 1 coverings Pin(V ) → O(V ) and Spin(V ) → SO(V ).
Choosing an orientation on V , the chirality element is the product

Γ = in/2e1 · · · en ∈ Spinc(V )

where e1, . . . , en is any oriented orthonormal basis of V . It has the property
Γ2 = 1, and AdΓ implements the grading ∂. In particular if v ∈ V then
AdΓ(v) = −v, hence if 0 ̸= w ∈ V , then AdΓw is reflection in the hyperplane
perpendicular to w.

The above discussion extends to Euclidean vector bundles V . For exam-
ple, Pinc(V ) denotes the bundle of groups Pinc(Vm), m ∈ M . The following
definition is slightly unconventional but equivalent to the more usual ones.

Definition A.8. A spin-c structure on a rank n Euclidean vector bundle
V is a grading ∂O on the orthonormal frame bundle PO(V ) together with
a graded principal Pinc(n)-bundle (P, ∂) and a map of graded principal
bundles f : (P, ∂) → (PO(V ), ∂O) such that f(pg) = f(p) ·Adg for all g ∈
Pinc(n), p ∈ P . The determinant line bundle (or anti-canonical line bundle)
of the spin-c structure is the associated bundle P ×det C.

Note also that Ad(P ) = P ×Ad Pinc(n) ≃ Pinc(V ) identifies with the
bundle of Pinc groups of the fibres, and the map Pinc(V ) → O(V ) induced
by f is simply the map Ad discussed earlier.

We can now give a concise construction of a canonical (up to isomor-
phism) spin-c structure on an (oriented) b-symplectic manifold.

Theorem A.9. The tangent bundle TM of an oriented b-symplectic mani-
fold has a canonical spin-c structure. The determinant line bundle is isomor-
phic to the determinant line bundle of the spin-c structure on bTM coming
from a compatible almost complex structure.

Proof. The orientations on TM , bTM determine an equivalence class of
global defining functions [x]. Let r ∈ Γ(O(bTM |Z)) = G (PO(

bTM |Z)) be or-
thogonal reflection in the subbundle TZ ⊂ bTM |Z . Recall from Example A.7
that applying the construction of Definition A.6 to (PO(

bTM), b∂O) yields a

graded bundle (PO(
bTM)r, b∂

r,[x]
O ) ≃ (PO(TM), ∂O) where ∂O is the grading

coming from the orientation on TM .
The symplectic vector bundle bTM has a canonical spin-c structure

(bP, b∂) → (PO(
bTM), b∂O) coming from a compatible almost complex struc-

ture. Recall the canonical non-vanishing section e ∈ C∞(Z, bTM |Z) (see
equation (5)). We may assume the metric on bTM is such that |e| = 1. The
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orthogonal reflection r has a canonical lift Γe ∈ Γ(Pinc(
bTM |Z)) = G (bP |Z)

(i.e. AdΓe = r), where the symplectic (or complex) orientation on bTM is
used to define the chirality element Γ for Cl(bTM). Note also that (Γe)2 =
−Γ2e2 = 1 is an involution. Applying the construction of Definition A.6 to
g = Γe and the class [x], we obtain a principal Pinc(n)-bundle with grading
(P, ∂) := (bP g, b∂g,[x]). By functoriality of surgery, there is a map of graded
bundles

(P, ∂) → (PO(
bTM)r, b∂

r,[x]
O ) ≃ (PO(TM), ∂O).

Hence we obtain a spin-c structure for TM .
Since det(Γe) = in (= ±1), the induced surgery on the associated line

bundle bP ×det C is the constant automorphism given by multiplication by
in along Z, but this does not change the topological type of a complex line
bundle (it is homotopic to the constant map 1 in U(1)). □

Remark A.10. The second Stieffel-Whitney classes w2(
bTM) = w2(TM)

inH2(M,Z2) (and this holds more generally, withM not required to be even-
dimensional or oriented). One can see this, for example, by constructing a
Cěch cocycle, using the fact that w2(V ) is the obstruction to lifting transition
funtions tij : Uij → O(n) for V to Pin(n). Consequently, if TM , bTM are
both oriented, then TM admits a Spin(-c) structure if and only if bTM
admits a Spin(-c) structure.

Remark A.11. One feature of the above construction is that it can be
applied recursively in the more general situation where Z is allowed to have
normal crossing singularities. In this case Z = ∪Zj is a union of smooth
closed connected hypersurfaces, and the Zi are allowed to intersect, but at
any intersection point m, the tangent spaces TmZi look like a subset of the
coordinate hyperplanes in Rn (see [7] for details). Assume bTM is equipped
with a metric such that the canonical sections ej of

bTM |Zj
are orthonormal

at the intersection points. Up to homotopy, the frame bundle PO can be ob-
tained from bPO by successive surgeries along Z1, Z2, . . .. Assuming each Zj

admits a global defining function, then one obtains a grading (or orientation,
see Example A.5) on each of the intermediate stages bP r1

O , (bP r1
O )r2 , . . . , PO

using Definition A.6. If bP is the spin-c structure coming from the complex
structure on bTM , then bP g1 , (bP g1)g2 , . . . are spin-c structures for bP r1

O ,
(bP r1

O )r2 , . . . , where gj = Γjej and Γj is the chirality element defined using
the orientation at the (j − 1)st stage (note that, for example, e2 canonically
determines an element of G (bP g1 |Z2

) because AdΓ1e1(e2) = e2 is fixed by the
gauge transformation along Z1 ∩ Z2). We will discuss this further elsewhere.
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Up to equivalence, the algebra Cl(n) has a unique irreducible represen-
tation ∆ ≃ C2n/2

,

δ : Cl(n)
∼−→ End(∆).

Moreover δ maps Pinc(n) into a subgroup of the unitary group U(∆). The
element δ(Γ) squares to 1 so determines a grading on ∆. The spinor module
associated to a spin-c structure (P, ∂) for V is the associated bundle

S = P ×δ ∆.

S inherits a Z2-grading from those on P and ∆. S also automatically in-
herits a Hermitian structure and Cl(V ) = P ×Ad Cl(n)-module structure
c : Cl(V )

∼−→ End(S) from the inner product and Cl(n)-module structure
on ∆. Applying this construction to the spin-c structure in Theorem A.9
recovers the spinor module described in Section 3.3 (up to isomorphism).
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