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lary, we obtain fiber products of tame sc-Fredholm sections. We
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the Piunikhin-Salamon-Schwarz maps for general closed symplec-
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1. Introduction

Polyfold theory, developed by Hofer-Wysocki-Zehnder [10] [11] [12] [13] [14]
[15] [16], is an analog of classical nonlinear Fredholm theory designed to re-
alize compact moduli spaces, e.g. Gromov-Witten moduli spaces and Floer
trajectory spaces, as zero sets of sc-Fredholm sections of polyfold bundles.
See the polyfold survey [2] for an overview and a discussion of applications.
The abstract polyfold machinery provides perturbations such that the per-
turbed sc-Fredholm section is transverse to zero, and hence the perturbed
solution space has smooth structure by a polyfold implicit function theorem.
Crucially, the perturbations can be chosen so that the perturbed solution
space remains compact. This process, beginning with the description of the
compact moduli space as the zero set of a sc-Fredholm section and ending
with the smooth compact perturbed solution space, is colloquially referred
to as “polyfold regularization” of a moduli space.

Often in symplectic topology we wish to constrain moduli spaces of pseu-
doholomorphic curves to consist of those curves satisfying intersection con-
ditions with submanifolds. For example, Gromov-Witten invariants can be
defined as counts of curves whose marked points evaluate to submanifolds.
Any fiber product of moduli spaces over evaluation maps is another example
of such a constraint. The evaluation maps are usually not transverse on the
moduli space, however they extend to the ambient polyfold and here they
are submersive. Using this transversality, we construct in this paper the con-
strained polyfold and the constrained sc-Fredholm section. This provides an
abstract tool to regularize constrained moduli spaces, whenever the original
moduli space is given as the zero set of a sc-Fredholm section.

We state our theorems and outline the structure of the paper in Sec-
tion 1.1. Then in Section 1.2 we explain applications to Gromov-Witten in-
variants (Section 1.2.1), constructing the Piunikhin-Salamon-Schwarz maps
(Section 1.2.2) to prove the weak Arnold conjecture for general closed sym-
plectic manifolds (see [3] for details), and avoiding sphere bubbles in per-
turbed moduli spaces of expected dimension 0 and 1 (Section 1.2.3).
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1.1. Results and outline

The main goal of this paper is to prove the M -polyfold and ep-groupoid
(with boundary and corners) versions of the following classical Facts 1.1, 1.2
from non-linear Fredholm theory over Banach manifolds.

Fact 1.1. (Restrictions of Fredholm sections to sub-Banach mani-
folds) Consider a Banach manifold B, a smooth Banach bundle p : E → B,
and a Fredholm section s : B → E with Fredholm index indx(s) for x ∈
B. If B̃ ⊂ B is a codimension-n sub-Banach manifold, then the restric-
tion p̃ : Ẽ := p−1(B̃)→ B̃ is a smooth Banach bundle and the restricted sec-
tion s̃ := s|B̃ : B̃ → Ẽ is a Fredholm section with Fredholm index satisfying

indx(s̃) = indx(s)− n for x ∈ s̃−1(0) ⊂ B̃.

Proof. Let x ∈ B̃ and consider an open neighborhood U ⊂ B of x and local
trivialization U × F → U of p. Then Ũ := U ∩ B̃ is an open neighborhood of
x in B̃ and Ũ × F → Ũ is a local trivialization of p̃. Smooth compatibility
of local trivializations of p̃ constructed in this way follows from smooth
compatibility of the local trivializations of p. Hence p̃ is a smooth Banach
bundle. Suppose s(x) = 0. The differential of the section s at x projected to
the fiber is a bounded linear map Dxs : TxU → F satisfying dimker(Dxs)−
dim coker(Dxs) = indx(s) by definition of Fredholm index. Since ι : TxŨ →
TxU is a linear codimension-n embedding and Dxs̃ = Dxs ◦ ι : TxŨ → F , an
exercise in linear algebra shows that indx(s̃) = indx(s)− n. □

Fact 1.2 below follows from Fact 1.1 together with the codimension-n
Banach manifold charts provided by the normal form of a C1 local submer-
sion to Rn, for which we provide a proof (in the context of boundary and
corners) in Lemma 2.1 for later use.

Fact 1.2. (Transverse preimages are sub-Banach manifolds) Con-
sider a Banach manifold B, a finite dimensional smooth manifold Y together
with a codimension-n submanifold N ⊂ Y , and a smooth map f : B → Y .
Assume that f is transverse to N .

Then, B̃ := f−1(N) is a codimension-n sub-Banach manifold of B. In
particular, if s : B → E is a Fredholm section of a smooth Banach bundle
p : E → B, then the restriction p̃ : Ẽ := p−1(B̃)→ B̃ is a smooth Banach
bundle and the restricted section s̃ := s|B̃ : B̃ → Ẽ is a Fredholm section

with Fredholm index satisfying indx(s̃) = indx(s)− n for x ∈ s̃−1(0) ⊂ B̃.
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TheM -polyfold versions (with boundary and corners) of the above facts
are our main theorems, Theorem 5.8 and Theorem 5.10, proved in Section 5.
The generalizations of these theorems to the ep-groupoid case, which are re-
quired in applications to handle nontrivial isotropy groups, are Corollary 6.7
and Corollary 6.8, proved in Section 6. In Section 7, we obtain fiber products
of tame sc-Fredholm sections as Corollary 7.3. See the end of this section
for a further description of the ep-groupoid situation and how to use it to
perform these constructions on polyfolds.

The sections preceding Sections 5–7 are concerned with the local M -
polyfold constructions required to prove the theorems. These are the tech-
nical heart of the paper. In Section 2, the main result (Lemma 2.3) is a
normal form of a local sc-smooth submersion from a sc-Banach space to Rn,
obtained by a change of coordinates in the domain. This can be viewed as
an implicit function theorem in sc-calculus in the case of a finite dimensional
target. Note that implicit function theorems of this type do not hold in gen-
eral in sc-calculus; see [4]. In Section 3, we introduce sliced sc-retracts, sliced
bundle retracts, and sliced sc-Fredholm germs, and establish their proper-
ties. Most importantly, these objects induce codimension-n sub-objects that
are the local models for the constrained polyfolds and sc-Fredholm sections
constructed in this paper; see Lemmas 3.3, 3.5, 3.10. We also introduce tame
sc-Fredholm germs, which are a special class of sc-Fredholm germ in which
the change of coordinates to basic germ form is linear. It is necessary for our
constructions that all sc-Fredholm sections are locally modeled on tame sc-
Fredholm germs, which holds in applications; see Section 5.1 for a discussion
of examples. In Section 4, we prove the technical Lemma 4.2, which states
that the sliced objects introduced in Section 3 are obtained from tame sc-
retracts, tame bundle retracts, and tame sc-Fredholm germs, via the change
of coordinates in the domain obtained from a submersion to Rn described
in Section 2.

We proceed to describe the global objects used in our constructions,
introduce notation, and then state our main theorems.

Throughout, we denote M -polyfolds B, strong M -polyfold bundles ρ :
E → B, and sc-Fredholm sections σ : B → E . The central objects developed
in this paper are tame sc-Fredholm sections σ : B → E (Definition 5.4) and
slices B̃ ⊂ B (Definition 5.7) of sc-Fredholm sections. They are locally mod-
eled on tame sc-Fredholm germs (Definition 3.7) and sliced sc-Fredholm
germs (Definition 3.8), respectively. A slice is a new notion of a finite codi-
mension M -polyfold B̃ embedded in B that is compatible with σ. These no-
tions are related by our main Theorems 5.8, 5.10. Roughly, the theorems are
as follows, with precise statements given below. Given a tame sc-Fredholm
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section σ : B → E and a sc-smooth map f : B → Y to a finite dimensional
manifold Y that is σ-compatibly transverse (Definition 5.9) to a submani-
fold N ⊂ Y , then f−1(N) is a slice of σ. Moreover, given a slice B̃ ⊂ B of
a sc-Fredholm section σ : B → E , the restriction σ|B̃ is tame sc-Fredholm.
In Section 5.1, we explain why the Cauchy-Riemann section ∂J : B → E is
tame sc-Fredholm and why evaluation maps ev : B → Y at marked points
are ∂J -compatibly transverse to every submanifold N ⊂ Y .

Before we state the theorems, we briefly recall some more polyfold no-
tation. See Section 5 for more detail. Given an M -polyfold B, there is a
filtration B = B0 ⊃ B1 ⊃ · · · induced by the sc-structures in local charts.
Each filtration level Bm has its own topology which is not the subspace
topology, but the inclusions are continuous and dense. The smooth points
of B are the subset B∞ := ∩m≥0Bm, which is also dense in B. For x ∈ B, the
degeneracy index dB(x) is the number of distinct local boundary faces of B
intersecting at x.

The following result is the M -polyfold analog of Fact 1.1. See Corol-
lary 6.7 for the generalization to ep-groupoids.

Theorem 5.8. (Restrictions of sc-Fredholm sections to slices)

(I) Consider a tameM -polyfold B and a slice B̃ ⊂ B (Definition 5.7). Then,
B̃ is a tame M -polyfold with atlas induced by the sliced charts with re-
spect to B̃ ⊂ B. For x ∈ B̃1, the codimension codimx(B̃ ⊂ B) is well-defined
and locally constant in B̃, i.e. it equals codimx′(B̃ ⊂ B) for every x′ in an
open neighborhood of x in B̃. For x ∈ B̃∞, the degeneracy index satisfies
dB̃(x) = dB(x).

(II) Consider, in addition, a tame strong bundle ρ : E → B. If B̃ ⊂ B is a
slice of ρ, then the restriction ρ̃ := ρ|Ẽ : Ẽ := ρ−1(B̃)→ B̃ is a tame strong
bundle with atlas induced by the sliced bundle charts for ρ with respect to
B̃ ⊂ B.

(III) Consider, in addition, a sc-Fredholm section σ : B → E. If B̃ ⊂ B is
a slice of σ, then the restriction σ̃ = σ|B̃ : B̃ → Ẽ is a tame sc-Fredholm
section (Definition 5.4) of ρ̃ with tame sc-Fredholm charts induced by the
sliced sc-Fredholm charts for σ with respect to B̃ ⊂ B. For x ∈ B̃∞, the
index satisfies indx(σ̃) = indx(σ)− codimx(B̃ ⊂ B). If σ−1(0) is compact
and B̃∞ ⊂ B∞ is closed, then σ̃−1(0) is compact.



✐

✐

“1-Filippenko” — 2021/5/27 — 18:47 — page 246 — #6
✐

✐

✐

✐

✐

✐

246 Benjamin Filippenko

Remark 1.3. There are three notions of a slice B̃ ⊂ B (Definition 5.7)
appearing in Theorem 5.8: (I) a slice B̃ ⊂ B of a tame M -polyfold, (II) a
slice B̃ ⊂ B of a tame strong bundle ρ : E → B, and (III) a slice B̃ ⊂ B of
a sc-Fredholm section σ : B → E . Each successive notion requires further
compatibility of the subset B̃ ⊂ B with the additional structure. This is
in contrast to the Banach manifold situation in Fact 1.1 where bundles
and Fredholm sections automatically restrict to any finite codimension sub-
Banach manifold B̃ ⊂ B.

The required compatibilities are roughly as follows. (I) There are charts
on B to Rn-sliced sc-retracts O (Definition 3.2) that locally identify B̃ ⊂ B
with the induced tame sc-retract Õ ⊂ O from Lemma 3.3. (II) There are
bundle charts on ρ to Rn-sliced bundle retracts K (Definition 3.4) covering
Rn-sliced sc-retracts O. In this case, ρ−1(B̃) is locally identified with the
induced tame bundle retract K̃ ⊂ K from Lemma 3.5, and the restriction
ρ−1(B̃)→ B̃ is locally identified with the induced tame local bundle model
K̃ → Õ. (III) There are sc-Fredholm charts for σ at every x ∈ B̃∞ to Rn-
sliced sc-Fredholm germsO → K (Definition 3.8). In this case, the restriction
σ|B̃ : B̃ → Ẽ is locally identified with the induced tame sc-Fredholm germ

Õ → K̃ from Lemma 3.10.
The reason for the further requirements in the M -polyfold setting is the

non-trivial sc-retractions and sc-Fredholm fillings: compatibility of B̃ with
the sc-retractions on B does not imply compatibility of B̃ with the bundle
retractions on E or with the local fillings of σ.

We now state our main theorem, which is the M -polyfold analog of the
classical Fact 1.2. See Corollary 6.8 for the generalization to ep-groupoids.
See the following Remark 1.4 for a discussion of the technicalities in the
statement. Given an M -polyfold B, there is an m-shifted M -polyfold Bm

for each m ≥ 1 which is obtained by forgetting about the filtration levels
B0, . . . ,Bm−1 of B discussed above.

Theorem 5.10. (Transverse preimages are slices of sc-Fredholm
sections)

(I) Consider a tame M -polyfold B, a smooth manifold Y together with a
codimension-n submanifold N ⊂ Y , and a sc-smooth map

f : B → Y.

Assume that f is transverse to N (Definition 5.9).
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Then, there exists an open neighborhood

B̃ ⊂ f−1(N) ∩ B1

of f−1(N) ∩ B∞ such that B̃ is a slice of B1 with codimx(B̃ ⊂ B
1) = n for

every x ∈ B̃1 = B̃ ∩ B2. In particular, B̃ is a tame M -polyfold with degen-
eracy index satisfying dB̃(x) = dB(x) for all x ∈ B̃∞.

(II) Consider, in addition, a tame strong bundle ρ : E → B. Then, there
exists a possibly smaller neighborhood B̃ in (I) that is a slice of the bundle
ρ|E1 : E1 → B1. In particular, the restriction

ρ̃ := ρ|Ẽ : Ẽ := (ρ|E1)−1(B̃)→ B̃

is a tame strong bundle.

(III) Consider, in addition, a tame sc-Fredholm section σ : B → E (Defi-
nition 5.4) of ρ. Assume that f is σ-compatibly transverse to N (Defini-
tion 5.9). Then, there exists a possibly smaller neighborhood B̃ in (II) that
is a slice of the tame sc-Fredholm section σ|B1 : B1 → E1. In particular, the
restriction

σ̃ := σ|B̃ : B̃ → Ẽ

is a tame sc-Fredholm section of ρ̃ with index satisfying

indx(σ̃) = indx(σ)− n

for all x ∈ B̃∞. If N is closed as a subset of Y and σ−1(0) is compact, then
σ̃−1(0) is compact.

Remark 1.4.

(i) The notion of σ-compatibly transverse (Definition 5.9) requires com-
patibility between the tangent map Dxf at x ∈ f−1(N) ∩ B∞ with the
change of coordinates on the base of the local sc-Fredholm filling of
σ at x that brings the filling into basic germ form. See Section 5.1
for an explanation why evaluation maps f = ev at marked points are
compatible with the Cauchy-Riemann section σ = ∂J in applications.

(ii) The reason Theorem 5.10 holds only in some neighborhood B̃ of the
smooth points of the preimage f−1(N) ∩ B∞ is as follows. The tame
sc-retracts modeling B̃ are built from the subspace of the tangent space
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TxB at x ∈ f−1(N) that is mapped by the tangent map Dxf : TxB →
Tf(x)Y onto Tf(x)N , and this tangent space TxB has the structure of a
sc-Banach space only at smooth points x ∈ B∞. So we can only hope to
construct a sc-retract modeling a neighborhood of x in f−1(N) around
smooth points x.

(iii) The neighborhood B̃ is open only in the 1-level of the preimage
f−1(N) ∩ B1 because, in the proof of the local submersion normal form
in sc-calculus (Lemma 2.3), we must 1-shift the sc-Banach space to
obtain C1 regularity in order to use the classical C1 local submersion
normal form (Lemma 2.1).

Remark 1.5. All manifolds Y and submanifolds N ⊂ Y in this paper are
smooth, finite dimensional, and without boundary:

∂N = ∅ and ∂Y = ∅.

This suffices for our initial intended applications to evaluation maps with
target a closed symplectic manifold Y .

It is possible to generalize our theorems to the case where both N and
Y are smooth finite dimensional orbifolds with boundary and corners. This
generalization will be useful in applications. For example, polyfolds B con-
structed for regularization of moduli spaces of pseudoholomorphic curves in
symplectic topology come with an everywhere submersive sc-smooth forget-
ful map B → Y to the Deligne-Mumford space Y consisting of all domains
of curves in B. The Deligne-Mumford space Y usually has an orbifold struc-
ture with non-trivial isotropy, and when the domains have boundary, Y has
boundary and corners.

In Section 6, we address the finite isotropy groups arising in applications
to pseudoholomorphic curves by extending our theorems from M -polyfolds
to ep-groupoids. An ep-groupoid is the “orbifold version” of an M -polyfold.
The theory of sc-Fredholm sections over ep-groupoids is the generalization
of sc-Fredholm sections over M -polyfolds that incorporates finite isotropy;
see [16] for a detailed treatment. We review the necessary facts in Section 6.

All of the ep-groupoid results in Section 6 follow from our M -polyfold
results plus additional bookkeeping. In fact, this is a general polyfold phi-
losophy: the M -polyfold situation is where all of the analytic data (e.g. the
sc-structures on base and bundle and the sc-Fredholm properties) is stored.
So, if an application of polyfold theory works assuming that everything in
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sight is an M -polyfold, we expect that there is a suitable upgrade to ep-
groupoids obtained by keeping track of the isotropy using the ep-groupoid
machinery in [16]. This is the case in this paper.

This polyfold philosophy goes further. When performing any polyfold
construction, one thinks through the details first assuming that everything
is a finite dimensional smooth manifold with boundary and corners. In par-
ticular, sc-Fredholm sections in the finite dimensional setting are the same
as ordinary smooth sections. We expect that any construction that is moti-
vated by regularization of some moduli space of pseudoholomorphic curves,
and that works assuming everything is finite dimensional, will go through
for M -polyfolds and ep-groupoids.

To perform these constructions on polyfolds, it suffices to take repre-
sentative ep-groupoids and then perform the constructions to obtain a rep-
resentative ep-groupoid of a new polyfold. A polyfold [16, Def. 16.3] is a
topological space Z together with an equivalence class of polyfold struc-
tures [16, Def. 16.1]. A polyfold structure for Z is an ep-groupoid together
with a homeomorphism of its orbit space with Z. Polyfold structures are
equivalent [16, Def. 16.2] if they are related by a generalized isomorphism
[16, Def. 10.8] compatible with the homeomorphisms with Z. In particular,
every ep-groupoid defines a canonical polyfold structure on its orbit space.

1.2. Applications

We discuss applications of our polyfold results to pseudoholomorphic curves
in symplectic manifolds.

First, we describe an expected alternative interpretation of Gromov-
Witten invariants, defined using polyfold theory in [15] as integrals of dif-
ferential forms over a perturbed moduli space, as counts of points in a 0-
dimensional constrained moduli space, where the constraints are evaluation
maps at marked points that are required to evaluate to submanifolds. Then
we describe the construction of the Hamiltonian Piunikhin-Salamon-Schwarz
maps for general closed symplectic manifolds, which is carried out in detail in
[3] using our theorems to construct the fiber product of Morse moduli spaces
and Symplectic Field Theory polyfolds [5][6][7][8][9], providing a proof of the
weak Arnold conjecture. Last, we describe a method for perturbing expected
dimension 0 and 1 moduli spaces so that the perturbed moduli space does
not contain any curves with a sphere bubble.

The applicable polyfold results in this paper are the ep-groupoid gener-
alizations of the theorems presented above, because in applications there will
be nontrivial isotropy groups. The ep-groupoid results are in Sections 6,7.
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Throughout, let (Y, ω) be a closed symplectic manifold of dimension 2n.

1.2.1. Gromov-Witten invariants. The Gromov-Witten invariants are
defined in [15] for general closed symplectic manifolds as integrals of differ-
ential forms over the solution set of a perturbed sc-Fredholm section. The
results in this paper provide an expected alternative interpretation as counts
of 0-dimensional perturbed moduli spaces of curves satisfying intersection
conditions with submanifolds. These definitions can be shown to agree by
results in [21].

For a given homology class A ∈ H2(Y ) and integers g,m ≥ 0 satisfying
2g +m ≥ 3, the Gromov-Witten invariant with respect to the fundamental
class [Mg,m] of the Deligne-Mumford spaceMg,m of closed genus g curves
with m marked points is a multilinear map

ΨA,g,m : H∗(Y ;R)⊗m → R.

This map is defined for α1, . . . , αm ∈ H
∗(Y ;R) with degrees satisfying |α1|+

· · ·+ |αm| = 2c1(A) + (2n− 6)(1− g) + 2m as follows, and for other choices
of αi it is defined to be 0. For an ω-compatible almost complex structure J
on Y , a sc-Fredholm section

∂J : XA,g,m → E

of a polyfold bundle E → XA,g,m with Fredholm index

ind(∂J) = 2c1(A) + (2n− 6)(1− g) + 2m

is constructed in [15] such that the solution set

∂
−1
J (0) =Mg,m(Y,A, J)

is the Gromov compactified moduli space of J-holomorphic curves in Y of
genus g with m marked points that represent the class A. Then the abstract
perturbation theory in [16] provides a sc+-multisection Λ of the bundle so
that the perturbed solution space S(∂J , Λ) is a smooth compact oriented
weighted branched orbifold of dimension

dimS(∂J , Λ) = ind(∂J)

over which we can integrate differential forms using the integration theory
from [13]. For |α1|+ · · ·+ |αm| = ind(∂J), the Gromov-Witten invariant is
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defined by

ΨA,g,m(α1 ⊗ · · · ⊗ αm) :=

∫

S(∂J ,Λ)
ev∗1(α1) ∧ · · · ∧ ev

∗
m(αm),

where

evk : XA,g,m → Y

is evaluation at the k-th marked point.
We now explain how to use the results in this paper to construct the

Gromov-Witten invariant as a count of points in a 0-dimensional moduli
space of curves evaluating to submanifolds of Y . For k = 1, . . . ,m let Lk ⊂ Y
be an oriented submanifold such that

[Lk] = PD(αk) ∈ H∗(Y ;R),

where PD denotes the Poincaré dual. Then the codimension of Lk in Y
is equal to the degree |αk|, and so L1 × · · · × Lm is a codimension-ind(∂J)
submanifold of Y m. The total evaluation map

ev1 × · · · × evm : XA,g,m → Y m

u 7→ (ev1(u), . . . , evm(u))

records the positions of all the marked points. Consider the subspace

XL1,...,Lm

A,g,m := (ev1 × · · · × evm)−1(L1 × · · · × Lm)

of XA,g,m, which consists of those curves whose k-th marked point evaluates
to Lk for every k = 1, . . . ,m. Then

M
L1,...,Lm

g,m (Y,A, J) = ∂
−1
J (0) ∩XL1,...,Lm

A,g,m

is the compactified moduli space of J-holomorphic curves u in the moduli
spaceMg,m(Y,A, J) satisfying the point constraints evk(u) ∈ Lk for all k =
1, . . . ,m.

To perturb this constrained moduli space M
L1,...,Lm

g,m (Y,A, J) so that it
is cut out transversely, we first apply Corollary 6.8 to obtain a description

ofM
L1,...,Lm

g,m (Y,A, J) as the zero set of a sc-Fredholm section of a polyfold
bundle, as follows. The hypotheses of Corollary 6.8 are satisfied because the
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total evaluation map

ev1 × · · · × evm : XA,g,m → Y m

is submersive, and moreover it is ∂J -compatibly transverse to the subman-
ifold L1 × · · · × Lm ⊂ Y

m as explained in Section 5.1. Hence, applying the
corollary, there exists an open neighborhood X̃ ⊂ XL1,...,Lm

A,g,m of the con-

strained moduli space M
L1,...,Lm

g,m (Y,A, J) such that the restricted section

∂J |X̃ : X̃ → E|X̃ is sc-Fredholm and has Fredholm index 0. Moreover, the
solution space

∂J |
−1
X̃

(0) =M
L1,...,Lm

g,m (Y,A, J)

is the constrained moduli space. The perturbation theory in [16] then pro-
vides a sc+-multisection Λ̃ of the restricted bundle E|X̃ → X̃ so that the per-

turbed solution space S(∂J |
−1
X̃

(0), Λ̃) is a smooth compact oriented weighted
branched orbifold of dimension 0.

Notice that, even after perturbation by Λ̃, all curves

u ∈ S(∂J |
−1
X̃

(0), Λ̃)

are guaranteed to satisfy the constraints

evk(u) ∈ Lk

for k = 1, . . . ,m since S(∂J |
−1
X̃

(0), Λ̃) is contained in XL1,...,Lm

A,g,m .

Morally, the weighted count #S(∂J |
−1
X̃

(0), Λ̃) is the Gromov-Witten in-
variant. To prove the equality

#S(∂J |
−1
X̃

(0), Λ̃) = ΨA,g,m(α1 ⊗ · · · ⊗ αm),

one needs perturbations satisfying Λ̃ = Λ|X̃ . It is possible to construct such
perturbations by the result [21, Thm. 1.7, 4.5], which provides a more general
construction of transverse perturbations that are compatible with respect to
pullbacks satisfying suitable properties.

1.2.2. The Piunikhin-Salamon-Schwarz morphism. Let

H : S1 × Y → R

be a nondegenerate Hamiltonian and (f, g) a Morse-Smale pair with Morse
function

f : Y → R
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and Riemannian metric g. The original application that motivates this
project is the construction of the Piunikhin-Salamon-Schwarz (PSS) mor-
phism

PSS : HMorse
∗ (Y ; f, g)→ HFloer

∗ (Y ;H),

where HMorse
∗ (Y ; f, g) is the Morse homology of (f, g) and HFloer

∗ (Y ;H) is
the Floer homology of H. This was originally done under the assumption
that (Y, ω) is semi-positive in [20], where it is proved that this map is an
isomorphism, proving the weak Arnold conjecture; see also [19] for a proof. In
[3], we carry out a version of this construction, joint with Katrin Wehrheim,
for general closed symplectic manifolds, proving the Arnold conjecture in
full generality. In this section, we describe the general method of [3] and
how it uses the results of this paper.

The moduli spaces from which the PSS morphism is constructed are as
follows. Consider a critical point p of f , a contractible 1-periodic orbit γ
of the Hamiltonian vector field associated to H, and a singular homology
class A ∈ H2(Y ). LetM(p, Y ) denote the compactified moduli space of half-
infinite gradient flow lines τ : (−∞, 0]→ Y that limit to p on their infinite
end and evaluate to ev(τ) := τ(0) in the unstable manifold of p. The com-
pactification includes broken flow lines that start at p, break at finitely many
other critical points, and end in a half-infinite flow line originating from the
final critical point at which breaking occurs and evaluating to its unstable
manifold. Then M(p, Y ) can be given the structure of a smooth compact
manifold with boundary and corners (see for example [23]) equipped with a
smooth evaluation map

evp :M(p, Y )→ Y.

Fix smooth capping discs on each periodic orbit ofH and an ω-compatible
almost complex structure J on Y . Then letM(γ,A) denote the moduli space
appearing in Symplectic Field Theory [1] consisting of smooth maps C→ X
satisfying the Cauchy-Riemann equation ∂J near 0 and the Floer equation
near∞ (with a fixed interpolation in between given by a cutoff function that
turns off the Hamiltonian term in Floer’s equation near 0), and such that
the map glued to the capping disc on γ represents the homology class A.
The compactified moduli space M(γ,A) also includes configurations with
broken Floer trajectories and sphere bubble trees. There is an evaluation
map

evγ :M(γ,A)→ Y



�

�

“1-Filippenko” — 2021/5/27 — 18:47 — page 254 — #14
�

�

�

�

�

�

254 Benjamin Filippenko

p
p′

γ′γ′ γ
evp(τ) = evγ(u)

Figure 1: An element (τ, u) in the moduli space M(p, γ, A). The red lines
represent τ ∈ M(p, Y ) consisting of a Morse trajectory from p to p′ and a
half-infinite Morse trajectory starting at p′ and evaluating to evp(τ) in the
unstable manifold of p′. The green near evγ(u) represents the neighborhood
of 0 ∈ C on which the map C → Y satisfies the J-holomorphic curve equa-
tion. As the map limits to the Hamiltonian orbit γ′, the J-curve equation
interpolates in the blue region to Floer’s equation represented in magenta.
A Floer trajectory from γ′ to γ has broken off. The green circles represent
bubbled off J-holomorphic spheres. The evaluations evp(τ) = evγ(u) agree
since M(p, γ, A) is a fiber product.

given by evaluating at 0 ∈ C. The PSS moduli spaces are then the fiber
products

M(p, γ, A) := M(p, Y ) ×evp evγ
M(γ,A).

See Figure 1 for a diagram of an element of M(p, γ, A).
If all choices can be made so that M(p, γ, A) is smooth (and of the

expected dimension), then the coefficient of PSS(p) on the generator (γ,A)
is defined to be the count #M(p, γ, A) if the expected dimension is 0, and
the coefficient is 0 otherwise. Now, for general Y , the compact moduli space
M(γ,A) will not be cut out transversely for any J , and hence has no reason
to be smooth. Moreover, even if M(γ,A) is cut out transversely, there is no
reason to expect that the fiber product with M(p, Y ) is transverse.

In [3], these transversality issues are overcome using the results in this
paper as follows. The Symplectic Field Theory polyfolds in [5][6][7][8][9]
include polyfold bundles

E(γ,A) → X(γ,A)

and sc-Fredholm sections

σ(γ,A) : X(γ,A) → E(γ,A)
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with solution set the SFT moduli space

σ(γ,A)−1(0) =M(γ,A).

Here X(γ,A) is the polyfold of broken and nodal maps of the same form
as those in M(γ,A) but not necessarily satisfying any equation, and the
section σ(γ,A) is the equation that maps inM(γ,A) are required to satisfy.
Moreover there is a sc-smooth evaluation map

evγ : X(γ,A)→ Y

which evaluates at 0 ∈ C. This evaluation map is a submersion on the am-
bient space X(γ,A), and it restricts to the evaluation map on the moduli
space evγ :M(γ,A)→ Y .

Applying the fiber product result Corollary 7.3 to the zero section of the
rank-0 bundle over the Morse moduli space M(p, Y ) and the sc-Fredholm
section σ(γ,A), we obtain an open neighborhood X(p, γ, A) of the zero set
of the fiber product section

M(p, Y ) ×evp evγ
X(γ,A)→ E(γ,A)

(τ, u) 7→ σ(γ,A)(u)

such that the restricted section

σ(p, γ, A) : X(p, γ, A)→ E(p, γ, A) := E(γ,A)|X(p,γ,A)

is sc-Fredholm with index

ind(σ(p, γ, A)) = dimM(p, Y ) + ind(σ(γ,A))− 2n.

Its zero set is compact and equal to the PSS moduli space

σ(p, γ, A)−1(0) =M(p, γ, A).

The perturbation theory in [16] then provides a sc+-multisection Λ of the
polyfold bundle E(p, γ, A)→ X(p, γ, A) so that the perturbed solution space
S(σ(p, γ, A), Λ) is a smooth compact weighted branched orbifold; see Fig-
ure 2 for a diagram of an element in S(σ(p, γ, A), Λ). The weighted count of
points in this perturbed moduli space provides the definition of the PSS map.
That is, the coefficient of PSS(p) on (γ,A) is given by ⟨PSS(p), (γ,A)⟩ :=
#S(σ(p, γ, A), Λ).
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p
p′

γ′γ′ γ
evp(τ) = evγ(u)

Figure 2: An element (τ, u) in the perturbed moduli space S(σ(p, γ, A), Λ) ⊂
M(p, Y ) ×evp evγ

X(γ,A). The red lines represent the broken Morse trajec-

tory τ ∈ M(p, Y ) with finite end evaluating to evp(τ). The region from
evγ(u) to γ′ is a map C → Y limiting to the Hamiltonian orbit γ′ at ∞.
The region in between γ′ and γ represents a cylinder limiting to these orbits
on its two ends, and the circles represent attached sphere bubbles. Together
the white regions represent the element u ∈ X(γ,A). They are colored white,
in contrast to Figure 1, to indicate that they do not necessarily satisfy any
equation due to the perturbation Λ. The evaluations evp(τ) = evγ(u) still
agree since S(σ(p, γ, A), Λ) is contained in the fiber product.

1.2.3. Avoiding sphere bubbles in expected dimension 0 and 1.
A common mantra in symplectic topology is that “sphere bubbling is a
codimension-2 phenomenon” and hence sphere bubbles do not appear in
regularized moduli spaces of dimension 0 and 1. The notions of a sliced
sc-retract (Definition 3.2) and a sliced sc-Fredholm germ (Definition 3.8)
introduced in this paper provide a method for making this precise in the
context of polyfold theory.

For simplicity, we consider the case of a curve with 1 interior node, for
example a curve with a single sphere bubble. This curve naturally sits in-
side a R2-sliced sc-retract (O,R2 × C,R2 × E) which locally models a neigh-
borhood of the curve in an ambient polyfold. The R2-sliced sc-retraction
r : U → U with image the sc-retract r(U) = O is (roughly) the splicing [16,
Def. 2.18] obtained from pregluing at the node. In particular, O is home-
omorphic to the image of the pregluing map, so conceptually we identify
them. Since pregluing with gluing parameter 0 ∈ R2 preserves the node,
the induced tame sc-retract defined in Lemma 3.3 by Õ = O ∩ ({0} × C)
consists of the curves in O that have 1 interior node. This formalizes the
notion that a curve with 1 interior node sits inside a codimension-2 stratum
consisting of nearby nodal curves.

Moreover, the Cauchy-Riemann section ∂J : O → K of the local bundle
modelK → O is a R2-sliced sc-Fredholm germ, and hence by Lemma 3.10 its
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restriction to Õ is sc-Fredholm with index satisfying ind(∂J |Õ) = ind(∂J)−
2. If the original section has index satisfying ind(∂J) ≤ 1, i.e. the expected
dimension of the moduli space is ≤ 1, then its restriction to the nodal curves
in Õ satisfies ind(∂J |Õ) < 0. So, after perturbing the restricted section, the
transversely cut out zero set must be empty as a smooth object with negative
dimension. Extending this perturbation over all of O, the perturbed zero set
will not intersect Õ, meaning that the perturbed zero set will not contain
any nodal curves.

This perturbation extension result will be part of a future work, which to
be applied must include an inductive procedure that perturbs and extends
starting with the highest codimension strata corresponding to solutions with
the most nodes. Indeed, a curve with k ≥ 1 nodes sits inside the intersection
of k distinct codimension-2 strata, and this intersection is a codimension-2k
stratum. One must perform the local perturbations and extensions coher-
ently with respect to the intersections of these nodal strata.

Acknowledgments. I am deeply grateful to my PhD advisor, Katrin
Wehrheim, for warmly inviting me into this area of research, leading me
to fruitful areas to explore, keeping my vision clear as I navigate, and teach-
ing me how to write. I’d like to thank Helmut Hofer and Zhengyi Zhou for
useful comments, conversations, and feedback that resulted in improvements
to this paper. Sophia Skowronski’s partnership was integral to my ability to
perform this research, and she will always be in my heart.

2. Sc-calculus: the normal form of a local sc-smooth

submersion to R
n

The purpose of this section is to establish the normal form of a sc-smooth
local submersion f : [0,∞)s × E→ Rn, where E is a sc-Banach space; see
Lemma 2.3. This is a sc-calculus analog of the classical local submersion
normal form (Lemma 2.1) in the case where E is an ordinary Banach space
E. In the Banach case, the normal form follows from the inverse function
theorem for C1 maps between open subsets of quadrants [0,∞)s × E. The
inverse function theorem does not hold in sc-calculus [4], however, using
relationships between classical differentiability and sc-differentiability, we
leverage the classical normal form to prove the normal form in sc-calculus.
The key ingredient is that the target of these submersions is finite dimen-
sional Rn, on which all sc-structures are trivial (i.e. all levels are isomorphic
to the infinity level).
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For completeness, we now provide a proof of the normal form in the
classical Banach case. We view a quadrant [0,∞)s × E as a Banach space
with boundary and corners. It suffices to consider neighborhoods in [0,∞)s ×
E of a point x that sits in the maximally degenerate corner x ∈ {0} × E.

Lemma 2.1. (Normal form of a C1 local submersion to Rn) Con-
sider a Banach space E, an open subset U ⊂ [0,∞)s × E for some s ∈ Z≥0,
and a C1 map f : U → Rn. Suppose that, for some point x ∈ U ∩ ({0}s ×
E), the tangent map dx(f |{0}s×E) : E → Rn of the restriction to the corner
f |U∩({0}s×E) is surjective.

Then, for any complement L of K := ker(dxf)|{0}s×E in E, there exist

open neighborhoods x ∈ Û ⊂ U and U ′ ⊂ Rn × [0,∞)s ×K such that, writ-
ing v ∈ [0,∞)s and e ∈ E, the map

g : Û → U ′

(v, e) 7→ (f(v, e), v, pr(e))

is a C1-diffeomorphism, where pr : E=K⊕L→ K is the projection along L.

Proof. Denote the restriction of f to the corner by

f := f |U∩({0}s×E) : U ∩ ({0}s × E)→ R
n.

Then dxf : E → Rn is surjective by hypothesis. Let L be any complement
of K = ker dxf in E. In particular, note that this means the restriction

(1) dxf |L : L→ R
n

is an isomorphism. Writing v ∈ [0,∞)s and e ∈ E, define the map

g : U → R
n × [0,∞)s ×K

(v, e) 7→ (f(v, e), v, pr(e)),

where pr : E = K ⊕ L→ K is the projection along L. Note that g is C1

since f is C1 and pr is C∞.
We claim that the tangent map

dxg : Rs × E → R
n × R

s ×K

(v, e) 7→ (dxf(v, e), v, pr(e))
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is an isomorphism. To verify injectivity, suppose

(0, 0, 0) = (dxf(v, e), v, pr(e)).

Then e ∈ ker(pr) = L, and moreover 0 = dxf(0, e) = dxf(e) means e ∈ K,
hence e = 0. To verify surjectivity, let (p, v, k) ∈ Rn × Rs ×K. Since the map
(1) is an isomorphism, there exists l ∈ L such that dxf(l) = p− dxf(v, k).
It follows that

dxf(v, k + l) = dxf(v, k) + dxf(l) = p

and hence dxg(v, k + l) = (dxf(v, k + l), v, pr(k + l)) = (p, v, k). So dxg is an
isomorphism, as claimed.

Since g is a C1 map whose tangent map dxg at x is an isomorphism,
the inverse function theorem1 for C1 maps between quadrants of Banach
spaces applies: There exists an open neighborhood Û ⊂ U of x and an open
set U ′ ⊂ Rn × [0,∞)s ×K such that the restriction g|

Û
: Û → U ′ is a C1-

diffeomorphism, as claimed. □

We briefly review basics about sc-calculus on sc-Banach spaces from [16,
Sec. 1.1] to prepare for Lemma 2.3. A sc-Banach space [16, Def. 1.1] is a
sequence of Banach spaces and continuous linear injections

E :=
(

E0 ←֓ E1 ←֓ · · ·
)

such that the map Em+1 →֒ Em is a compact operator for every m ≥ 0 and
the intersection

E∞ := ∩m≥0Em

is dense in every Em. We call E∞ the smooth points of E. By a subset S of
a sc-Banach space E we mean a subset S0 of E0, which then induces subsets

Sm := S ∩ Em ⊂ Em for all m ≥ 0,

S∞ := S ∩ E∞ ⊂ E∞.

In particular, if U is open in E0 then Um ⊂ Em is open for all m ≥ 0, so we
say that U is open in the sc-Banach space E.

1See, for example, [18, Thm. 2.2.4].
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A sc-subspace F ⊂ E [16, Def. 1.4] is a closed subspace F ⊂ E0 such that
the induced subsets

Fm := F ∩ Em

define a sc-Banach space

F = (F0 ←֓ F1 ←֓ · · · ).

Given sc-subspaces F,F′ ⊂ E such that, for every m ≥ 0, the Banach space
Em splits as a direct sum Em = Fm ⊕ F

′
m, we say that there is a sc-splitting

E = F⊕ F′ and that F,F′ are sc-complements in E. Given a sc-subspace
F ⊂ E, the quotient space E/F has the structure of a sc-Banach space with
m-level Em/Fm; see [16, Prop. 1.2]. The following fact is established in the
proof of [16, Prop. 1.4]. We reproduce the proof here for completeness.

Lemma 2.2. Consider a sc-Banach space E and a sc-subspace F ⊂ E

such that the quotient E/F is finite dimensional. Then, there exists a sc-
complement F⊕ L = E and moreover L ⊂ E∞.

Proof. Consider the sc-continuous quotient map p : E→ E/F. Since E∞ ⊂
E0 is a dense linear subspace and p : E0 → E0/F0 is surjective, it follows that
p(E∞) is a dense linear subspace of the finite dimensional space E0/F0, and
so we have p(E∞) = E0/F0. Hence, choosing any basis of E0/F0, there are
preimages of the basis elements in E∞, and these preimages span a subspace
L ⊂ E∞. We claim that L is sc-complementary to F in E. Indeed, for every
m ≥ 0 the subspace Em ⊂ E0 is dense and so pm : Em → E0/F0 is surjective.
Moreover, we have Fm = ker(pm) and the restriction pm : L→ E0/F0 is an
isomorphism, so Fm ⊕ L = Em holds. □

For every l ≥ 0 there is a l-shifted sc-Banach space defined by

E
l := (El ←֓ El+1 ←֓ · · · ),

that is,

(El)m = Em+l for all m ≥ 0.

Conceptually, we are forgetting about finitely many levels. Note that l-
shifting does not change the ∞-level. Analogously, for any subset S ⊂ E,
we define Sl ⊂ El by (Sl)m := Sm+l. In particular, if U ⊂ E is open, then
U l ⊂ El is open for all l ≥ 0.

A Cartesian product E× F of sc-Banach spaces has a natural sc-structure
with m-level given by (E× F)m := Em × Fm equipped with any standard



✐

✐

“1-Filippenko” — 2021/5/27 — 18:47 — page 261 — #21
✐

✐

✐

✐

✐

✐

Polyfold regularization of constrained moduli spaces 261

Banach norm on a Cartesian product. In this paper, we use the convention
that all norms on Cartesian products are the sum norm ∥(·, ·)∥Em×Fm

=
∥ · ∥Em

+ ∥ · ∥Fm
, which is equivalent to all standard choices.

The finite dimensional space E = Rn has a canonical sc-structure given
by Em = Rn equipped with the standard Euclidean norm for every m ≥ 0,
and where every inclusion Em+1 → Em is the identity map.

The tangent space [16, Def. 1.8] of a sc-Banach space E is the sc-Banach
space

TE := E
1 × E,

with sc-structure given by (TE)m = Em+1 × Em for m ≥ 0. Given an open
subset U ⊂ [0,∞)s × E for some s ≥ 0, its tangent space is

TU := U1 × (Rs × E).

Consider sc-Banach spaces E,F, and open subsets U ⊂ [0,∞)s × E and
V ⊂ [0,∞)s

′

× F. Then a map

f : U → V

is called sc0 or sc-continuous [16, Def. 1.7] if, for allm ≥ 0, we have f(Um) ⊂
Vm and the map f : Um → Vm is continuous. A sc0 map f : U → V is called
sc1 with tangent map [16, Def. 1.9]

(2) Tf : TU → TV

defined by

Tf : U1 × (Rs × E)→ V 1 × (Rs′ × F)

(x, ξ) 7→ (f(x), Dxf(ξ))

if, for every x ∈ U1, there exists a bounded linear operator

Dxf : Rs × E0 → R
s′ × F0

such that, for ξ ∈ E1 satisfying x+ ξ ∈ U1,

lim
|ξ|1→0

|f(x+ ξ)− f(x)−Dxf(ξ)|0
|ξ|1

= 0,

holds, and moreover such that Tf is sc0. Iterating the definition of sc1 yields
the notions of sck for k ≥ 0 and sc-smooth (denoted sc∞); see the discussion
after [16, Def. 1.9].



✐

✐

“1-Filippenko” — 2021/5/27 — 18:47 — page 262 — #22
✐

✐

✐

✐

✐

✐

262 Benjamin Filippenko

An important note is that, for a sc1 map f : U → V and x ∈ U1, the
bounded linear operator Dxf : Rs × E0 → Rs′ × F0 is not necessarily sc-
continuous when considered as a map between sc-Banach spaces Dxf : Rs ×
E→ Rs′ × F; that is, continuity on levels higher than 0 can fail. However,
if x ∈ U∞ is a smooth point, then by [16, Prop. 1.5] the map Dxf is indeed
a sc-operator [16, Def. 1.2], i.e. a sc-continuous linear map. For this reason,
we consider only smooth points x in the following lemma so that the kernel
of Dxf is a sc-Banach space as the kernel of a sc-operator.

Lemma 2.3. (Normal form of a sc-smooth local submersion to Rn)
Consider a sc-Banach space E, an open subset U ⊂ [0,∞)s × E for some
s ≥ 0, and a sc-smooth map f : U → Rn. Suppose that, for some smooth
point x ∈ U∞ ∩ ({0} × E), the tangent map (Dxf)|{0}×E : E→ Rn of the re-
striction to the corner f |U∩({0}×E) is surjective.

Then, for any sc-complement2 L of K := ker(Dxf)|{0}×E in E, there ex-

ist open neighborhoods x ∈ Û ⊂ U1 and U ′ ⊂ Rn × [0,∞)s ×K1 such that,
writing v ∈ [0,∞)s and e ∈ E1, the map

g : Û → U ′

(v, e) 7→ (f(v, e), v, pr(e))

is a sc-diffeomorphism, where pr : E = K⊕ L→ K is the projection along L.
Moreover, for all m≥0, the map g|

Ûm
: Ûm→U ′

m is a Cm+1-diffeomorphism.
In particular, the following statements hold:

• The composition f ◦ g−1 : U ′ → Rn is projection onto the Rn-coordinate.

• g preserves the [0,∞)s-coordinate.

Proof. We claim that the Banach space E1 (the 1-level of the sc-Banach
space E), the open subset U1 ⊂ [0,∞)s × E1, and the C1-map

f1 := f |U1
: U1 → R

n

satisfy the hypotheses of Lemma 2.1 (the local submersion normal form in
the classical Banach case) at the given point x. First of all, the map f1 is
indeed C1 by [16, Prop. 1.7]. By [16, Prop. 1.5], we have dxf1 = (Dxf)|Rs×E1

.

2A sc-complement L of K exists by Lemma 2.2, since the surjection (Dxf)|{0}×E :
E→ R

n induces an isomorphism E/K ∼= R
n.
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We now deduce the surjectivity of the tangent map

(3) (dxf1)|{0}×E1
= (Dxf)|{0}×E1

: E1 → R
n.

By hypothesis, the map (Dxf)|{0}×E0
is surjective. Then since E1 ⊂ E0 is

dense, it follows that (Dxf)|{0}×E0
(E1) is a dense linear subspace of Rn and

hence is equal to Rn, proving the claimed surjectivity of the map (3).
Let L ⊂ E∞ be any sc-complement of K = ker(Dxf)|{0}×E in E, which

exists by Lemma 2.2 since the surjection (Dxf)|{0}×E : E→ Rn induces an
isomorphism E/K ∼= Rn. In particular, on the 1-level, we have K1 ⊕ L = E1.
Notice that K1 is the kernel of the map (3).

We have shown that the map f1 satisfies the hypotheses of the classical
local submersion normal form (Lemma 2.1), yielding an open neighbhorhood
Û ⊂ U1 of x and an open subset U ′ ⊂ Rn × [0,∞)s ×K1 such that, writing
v ∈ [0,∞)s and e ∈ E1, the map

g : Û → U ′

(v, e) 7→ (f1(v, e), v, pr(e))

is a C1-diffeomorphism, where pr : E1 = K1 ⊕ L→ K1 is the projection
along L.

We may view Û and U ′ as open neighborhoods in the sc-calculus sense,
i.e.

Û ⊂ [0,∞)s × E
1 and U ′ ⊂ R

n × [0,∞)s ×K
1.

We claim that g is a sc-diffeomorphism. First of all, it is sc-smooth since f1
is sc-smooth by hypothesis and since the projection

pr : E1 = K
1 ⊕ L→ K

1

is sc-smooth.
To show that g−1 is sc-smooth, we show that it satisfies the conditions

of [16, Prop. 1.8]. Let m, l ≥ 0. We must show that g−1 induces a map
g−1|U ′

m+l
: U ′

m+l → Ûm that is C l+1.

It suffices to show that, for all m ≥ 0, g−1 restricts to a Cm+1-map

g−1|U ′
m
: U ′

m → Ûm, because then given m, l ≥ 0 the composition U ′
m+l

g−1

−−→

Ûm+l →֒ Ûm is Cm+l+1 since the inclusion Ûm+l →֒ Ûm is continuous and
linear hence C∞. So, to complete the proof of the lemma, it suffices to show
that

g : Ûm → U ′
m

is a Cm+1-diffeomorphism for all m ≥ 0.
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By [16, Prop. 1.7], the restriction

f |
Ûm

: Ûm = Û ∩ (Rs × Em+1)→ R
n

is Cm+1. It follows that the restriction

g|
Ûm

: Ûm → U ′
m

is Cm+1.
To see that g|

Ûm
: Ûm → U ′

m is a bijection, note first that injectivity
holds since it is a restriction of the bijection g. To see surjectivity, note first
that, since g is surjective onto all of U ′, it suffices to show that g(v, e) ∈
U ′
m =⇒ (v, e) ∈ Ûm. Note that U ′

m ⊂ Rn × [0,∞)s ×Km+1. So, from the
definition of g, we have the implication

g(v, e) ∈ U ′
m =⇒ pr(e) ∈ Km+1 ⊂ Em+1.

Since e− pr(e) ∈ L ⊂ E∞, we conclude that e ∈ Em+1. Hence indeed (v, e) ∈
Ûm = Û ∩ (Rs × Em+1) holds, proving surjectivity of g|

Ûm
onto U ′

m. The
same reasoning shows that the classical tangent map

d(g|
Ûm

) : Ûm × (Rs × Em+1)→ U ′
m × (Rn × R

s ×Km+1)

is bijective.
The inverse

(g−1)|U ′
m
= (g|

Ûm
)−1 : U ′

m → Ûm

is Cm+1 because it is the inverse of a Cm+1 map with invertible derivative.
We have shown that g|

Ûm
: Ûm → U ′

m is a Cm+1-diffeomorphism, completing
the proof of the lemma. □

We briefly review general partial quadrants, which up to a linear change
of coordinates are the same as the standard quadrants (5), i.e. of the form
[0,∞)s × E for some sc-Banach space E. This level of generality makes con-
structions more convenient and is equivalent to working with standard par-
tial quadrants only.

A partial quadrant [16, Def. 1.6] in a sc-Banach space E is a closed convex
subset C ⊂ E such that there exists another sc-Banach space E′ and a linear
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sc-isomorphism

(4) Ψ : E→ R
s × E

′ satisfying Ψ(C) = [0,∞)s × E
′ for some s ≥ 0.

That is, all partial quadrants come from applying a linear change of coordi-
nates to a partial quadrant in the standard form:

(5) C = [0,∞)s × E
′ ⊂ R

s × E
′ = E.

The degeneracy index [16, Def. 1.10] dC : C → N0 is defined for x ∈ C by

dC(x) := #{i ∈ {1, . . . , s} | the i-th coordinate of Ψ(x) is 0},

which is independent of the choice of Ψ by [16, Lem. 1.1]. Conceptually,
the degeneracy index of a point in a partial quadrant is the local notion of
boundary and corner index in an M -polyfold.

Later, we need the following properties of the degeneracy index. Let C
be a partial quadrant of a sc-Banach space E and n ≥ 0. Then Rn × C is a
partial quadrant of Rn × E and

(6) dRn×C(p, x) = dC(x) for all (p, x) ∈ R
n × C.

Let Ci be a partial quadrant of Ei for i = 1, 2. Then C1 × C2 is a partial
quadrant of E1 × E2 and

(7) dC1×C2
(x1, x2) = dC1

(x1) + dC2
(x2) for all (x1, x2) ∈ C1 × C2.

We recall from [16, Def. 2.16] the following linear sc-subspace Ex ⊂ E

associated to a point x in a partial quadrant C ⊂ E. First assume that C
is in the standard form (5) and write x = (x1, . . . , xs, ex) ∈ C. Then, the
sc-subspace

(8) Ex := {(v1, . . . , vs, e) ∈ R
s × E

′ | vi = 0 if xi = 0} ⊂ E

conceptually is the tangent space of the intersection of all of the faces of
C that contain x. For a general partial quadrant C ⊂ E and x ∈ C, the
subspace Ex ⊂ E is given by

(9) Ex := Ψ−1((Rs × E
′)Ψ(x)),

where Ψ is any linear isomorphism of the form (4).
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3. Slices: the local picture

3.1. Sliced sc-retracts

In this section, we introduce the new notion of Rn-sliced sc-retracts (Defini-
tion 3.2), which we use later as the local models in our definition of a slice
B̃ ⊂ B (Definition 5.7) of a tameM -polyfold B (Definition 5.1). We prove in
Lemma 3.3 that a Rn-sliced sc-retract O induces a tame sc-retract Õ ⊂ O
which has codimension-n tangent spaces TxÕ ⊂ TxO at every x ∈ Õ1. The
global definition of a slice B̃ ⊂ B is then a subspace such that around every
point x ∈ B̃ there is an M -polyfold chart to a Rnx-sliced sc-retract O that
locally identifies B̃ with the induced tame sc-retract Õ.

We first recall the local structure of tame M -polyfolds: tame sc-retracts
(Definition 3.1). Consider a relatively open subset U of a partial quadrant
C in a sc-Banach space E. A sc-smooth map

r : U → U

satisfying

r ◦ r = r

is called a sc-smooth retraction (or sc-retraction) [16, Def. 2.1] on U , and the
image O := r(U) of such a map is called a sc-smooth retract (or sc-retract).
The triple (O, C,E) is also called a sc-retract [16, Def. 2.2].

We note that the notion of a smooth retract makes sense in the classical
Banach space setting, i.e. given an ordinary Banach space E, we can define
a smooth retract O to be any image O = r(U) of a smooth map r : U → U
that satisfies r ◦ r = r, where U ⊂ [0,∞)s × E is open. However, modeling
spaces on these smooth retracts reproduces the definition of a Banach mani-
fold because, by [16, Prop. 2.1], a smooth retract O is a C∞-sub-Banach
manifold of E. The sc-retracts can have much more complicated structure,
including locally varying dimension. This is a key difference between classi-
cal differentiability and sc-differentiability which allowsM -polyfolds to have
local dimension jumps and other non-manifold-like structure. Polyfolds aris-
ing in applications have these local dimension jumps near broken and nodal
curves.

A map φ : O → O′ between sc-retracts (O, C,E) and (O′, C ′,E′) is called
sc-smooth [16, Def. 2.4] if the composition φ ◦ r : U → O′ ⊂ E′ is sc-smooth
as a map U → E′, where U ⊂ C is open and r : U → U is any sc-retraction
onto r(U) = O. This definition is independent of the choice of open set U
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and sc-retraction r by [16, Prop. 2.3]. The chain rule holds for sc-smooth
maps between sc-retracts; see [16, Thm. 2.1].

The tangent space [16, Def. 2.3] of a sc-retract (O, C,E) is the image

(10) TO := Tr(TU),

where r : U → U is any sc-retraction on some open subset U ⊂ C with image
r(U) = O and Tr : TU → TU is the tangent map (see (2)) of r. The tangent
space TO is well-defined, i.e. independent of U and r, by [16, Prop. 2.2]. The
tangent space at x ∈ O1 is defined to be

(11) TxO := Dxr(TxU).

For a smooth point x ∈ O∞, the tangent space TxO is a sc-Banach space;
see [16, Def. 2.10]. The reduced tangent space [16, Def. 2.15] is the subspace
of TxO defined by

(12) TR
x O := TxO ∩ Ex,

where Ex ⊂ E is the subspace from (9). Conceptually, TR
x O consists of those

tangent vectors that point in directions that preserve the degeneracy index,
i.e. they lie along the intersection of all of the local faces that contain x.
Note that in [16, Def. 2.15] the reduced tangent space is only defined at
smooth points x ∈ O∞. This is because TR

x O can be proven to be invariant
under sc-diffeomorphisms φ : O → O′, i.e. Dxφ(T

R
x O) = TR

ϕ(x)O
′ holds, only

for smooth points x; see [16, Prop. 2.8]. This invariance proves that the
reduced tangent space at a smooth point in anM -polyfold is well-defined, i.e.
independent of the chart. The invariance is proven using the characterization
[16, Lem. 2.4] of the reduced tangent space TR

x O at smooth points x ∈ O∞

as the closure of the space of derivatives of sc-smooth paths γ : (−ϵ, ϵ)→ O
satisfying γ(0) = x. This only works for smooth points x ∈ O∞ since the
image of any sc-continuous map (−ϵ, ϵ)→ O is contained in O∞ because
(−ϵ, ϵ) ⊂ R has the trivial sc-structure where all levels are equal.

As in [16], we must require sc-retractions to be well-behaved with respect
to the boundary faces of the partial quadrant C in the following way in order
for the full polyfold machinery to work as required in applications.

Definition 3.1. [16, Def. 2.17] Consider an open subset U of a partial
quadrant C of a sc-Banach space E. A sc-retraction r : U → U is called a
tame sc-retraction if it satisfies the following conditions:

(1) dC(r(x)) = dC(x) for all x ∈ U .
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(2) At every smooth point x ∈ O∞ = O ∩ E∞, there exists a sc-subspace
A ⊂ E such that E = TxO ⊕A and A ⊂ Ex (see (9) for Ex).

If so, then the sc-retract O = r(U) is called a tame sc-retract (and so
is the triple (O, C,E)).

We introduce the following new notions of Rn-sliced sc-retractions and
Rn-sliced sc-retracts.

Definition 3.2. Consider a partial quadrant C of a sc-Banach space E and
an open subset U ⊂ Rn × C for some n ≥ 0. A tame sc-retraction r : U → U
is called a Rn-sliced sc-retraction if it satisfies

(13) πRn ◦ r = πRn on U,

i.e. r preserves the Rn-coordinate.
If so, then the tame sc-retract O = r(U) and the triple

(O,Rn × C,Rn × E)

is called a Rn-sliced sc-retract.

In the following lemma, we show that for any Rn-sliced sc-retract O
in Rn × C, the set Õ := O ∩ ({0} × C) is a tame sc-retract. Later, we use
the inclusion Õ ⊂ O to define the local models for a slice B̃ ⊂ B (Defini-
tion 5.7), which is our new notion of an M -polyfold B̃ embedded with finite
codimension in an ambient M -polyfold B.

Lemma 3.3. Consider a partial quadrant C of a sc-Banach space E and a
Rn-sliced sc-retract (O,Rn × C,Rn × E).

Then, for any open subset U ⊂ Rn × C and Rn-sliced sc-retraction r :
U → U such that r(U) = O, the set Ũ := U ∩ ({0} × C) is open in C and
the restriction

r̃ := r|Ũ : Ũ → Ũ

is a tame sc-retraction onto Õ := r̃(Ũ). We call r̃ the tame sc-retraction
induced by r.
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Moreover,

(14) Õ = O ∩ ({0} × C)

holds, so in particular Õ does not depend3 on the choices of U and r. We
may view Õ as a subset of C, and we call (Õ, C,E) the tame sc-retract
induced by the Rn-sliced sc-retract (O,Rn × C,Rn × E).

At every x ∈ Õ1, the inclusion Õ ⊂ O induces an inclusion of tangent
spaces TxÕ ⊂ TxO satisfying

TxÕ = TxO ∩ ({0} × E),(15)

TR
x Õ = TR

x O ∩ ({0} × E),(16)

and

(17) TxO/TxÕ ∼= R
n.

We say that Õ is codimension-n in O.
If x ∈ Õ∞ is a smooth point, then the inclusion TxÕ →֒ TxO induces a

linear isomorphism

(18) TxÕ/T
R
x Õ
∼= TxO/T

R
x O.

Proof. The defining property (13) of the Rn-sliced sc-retraction r implies
r(Ũ) ⊂ Ũ , so indeed the map r̃ := r|Ũ : Ũ → Ũ takes values in Ũ . Moreover,
r̃ inherits sc-smoothness and the retraction property r̃ ◦ r̃ = r̃ from the cor-
responding properties of r. So r̃ is a sc-retraction onto the sc-retract Õ. We
prove the other statements in the lemma before showing that r̃ is tame.

We now verify that (14) holds. The forwards inclusion is immediate
from the definitions of the sets involved. To prove the reverse inclusion, let
x ∈ O ∩ ({0} × C). Then since O ⊂ U we have x ∈ Ũ and so r̃(x) ∈ Õ. We
claim that x = r̃(x), proving (14). Indeed, since x ∈ O and r is a retraction
with image O, it follows that x = r(x) = r̃(x).

3The independence of Õ on the choice of U and r frees us from keeping track of
these choices when performing future constructions. That is, later, we are free to
assume that Õ is induced by any such U and r.
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We now verify (15) and (17). Let x ∈ Õ1. By definition of tangent space
(11) of a sc-retract, we have

TxO = Dxr(R
n × E) ⊂ R

n × E.

Since r preserves the Rn-coordinate by the sliced retraction property (13),
the same is true for Dxr, from which it follows that

Dxr(R
n × E) ∩ ({0} × E) = Dxr({0} × E).

Hence we have

(19) TxO ∩ ({0} × E) = Dxr̃({0} × E) = TxÕ,

proving (15). Moreover, the projection π : TxO → Rn to the first factor of
Rn × E is a surjection. Since ker(π) = TxO ∩ ({0} × E), we conclude that π
induces an isomorphism TxO/TxÕ ∼= Rn, proving (17).

To verify (16), first note that by (8),(9), we have

(20) (Rn × E)x ∩ ({0} × E) = ({0} × E)x,

and hence we have

TR
x Õ = TxÕ ∩ ({0} × E)x

(20)
= TxÕ ∩ (Rn × E)x ∩ ({0} × E)

(19)
= TxO ∩ (Rn × E)x ∩ ({0} × E)

= TR
x O ∩ ({0} × E),

as required.
To verify (18), it suffices to consider the case

x = 0

and

C = [0,∞)s × E
′ ⊂ R

s × E
′ = E

is in standard form (5), since x is assumed to be a smooth point. By (8),
we have (Rn × Rs × E′)x = Rn × {0}s × E′. Since r preserves the degeneracy
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index by Definition 3.1, we claim it follows that

(21) Dxr(R
n × {0}s × E

′) ⊂ R
n × {0}s × E

′.

Indeed, to prove (21), consider first a smooth point ξ ∈ Rn × {0}s × E′
∞.

There exists a sc-smooth path α : (−ϵ, ϵ)→ U ∩ (Rn × {0}s × E′) satisfying
α(0) = x and α′(0) = ξ, for example take α(t) = x+ tξ. Since r preserves
degeneracy index we have r ◦ α(t) ∈ Rn × {0}s × E′ for all t, and hence we
have Dxr(ξ) = Dx(r ◦ α)(0) ∈ Rn × {0}s × E′. This proves (21) for smooth
points ξ. For an arbitrary point ξ ∈ Rn × {0}s × E′, the result follows by
considering a sequence {ξk}k≥0 of smooth points that converges to ξ, which
exists by density of the inclusion E′

∞ ⊂ E
′
0, and applying continuity of Dxr.

We now finish verifying (18). Since Dxr preserves the Rn-coordinate,
the projection π : TxO → Rn is surjective, and its kernel is TxÕ by (15).
By definition (12) we have TR

x O = Dxr(R
n × Rs × E′) ∩ (Rn × {0}s × E′),

and so it follows from (21) that π restricts to a surjection TR
x O → Rn. The

kernel of this surjection is TR
x Õ by (16). So we have a short exact sequence of

sc-Banach spaces 0→ TR
x Õ → TR

x O
π
−→ Rn → 0 that includes into the short

exact sequence 0→ TxÕ → TxO
π
−→ Rn. This implies (18).

To prove the lemma, it remains to show that r̃ is tame. The Rn-sliced
sc-retraction r is tame by definition. Hence, for all x ∈ Ũ , we compute, using
(6) and Definition 3.1(1),

d{0}×C(r̃(x)) = dRn×C(r̃(x)) = dRn×C(r(x)) = dRn×C(x) = d{0}×C(x),

verifying that Definition 3.1(1) holds for r̃.
To verify that r̃ satisfies Definition 3.1(2), let x ∈ Õ∞. Then x ∈ O∞,

and so by the corresponding property of r and by [16, Prop. 2.9], the sc-
subspace A := (idRn×E −Dxr)(R

n × E) of Rn × E satisfies

(22) R
n × E = TxO ⊕A

and A ⊂ (Rn × E)x. By the sliced retraction property (13) of r and the def-
inition of A, we conclude that A ⊂ {0} × E holds. Then we have A ⊂ (Rn ×
E)x ∩ ({0} × E) = ({0} × E)x by (20). We claim that {0} × E = TxÕ ⊕A
holds, completing the proof that r̃ is tame. Indeed, it follows from (15),
(22), and A ⊂ {0} × E that we have

{0} × E = (TxO ∩ ({0} × E))⊕A = TxÕ ⊕A.

□
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3.2. Sliced bundle retracts

In this section, we introduce the new notion of Rn-sliced bundle retracts
(Definition 3.4). In Lemma 3.5, we prove that a Rn-sliced bundle retract
K covering a Rn-sliced sc-retract O induces a tame bundle retract K̃ ⊂ K
covering the induced tame sc-retract Õ ⊂ O from Lemma 3.3. The global
definition of a slice B̃ ⊂ B of a bundle ρ : E → B (Definition 5.7) is then a
subspace such that around every point x ∈ B̃ there is a bundle chart for ρ to
a Rnx-sliced bundle retract K that locally identifies ρ−1(B̃) with the induced
tame bundle retract K̃.

We first recall the local structure of tame strong bundles: tame bundle
retracts. Consider a relatively open subset U of a partial quadrant C of a
sc-Banach space E, and another sc-Banach space F. Then the trivial bundle

(23) U ✁ F→ U

has total space U ✁ F = U × F as a set, and the map is projection onto U .
The triangle ✁ signifies the extra structure of a double filtration on the set
U × F. That is, for 0 ≤ k ≤ m+ 1, we have

(U ✁ F)m,k := Um ⊕ Fk.

Then, for i = 0, 1, we define the sc-structure (U ✁ F)[i] by

(24) ((U ✁ F)[i])m := Um ⊕ Fm+i, m ≥ 0.

The purpose of defining these two filtrations is that they correspond to the
two notions of smoothness of a section of a bundle that are important for
polyfold theory. Precisely, a section s : U → U ✁ F is called sc-smooth if it is
sc-smooth as a map to (U ✁ F)[0]. If, moreover, we have s(U) ⊂ (U ✁ F)[1]
and the map s : U → (U ✁ F)[1] is sc-smooth, then s is called a sc+-section.
See [16, Def. 2.24] for a detailed discussion. We remark that sc+-sections are
the sc-analogue of compact perturbations from classical Fredholm theory; in
particular, the sc-Fredholm property is stable under sc+-perturbation [16,
Thm. 3.2].

A strong bundle map [16, Def. 2.22]

Φ : U ✁ F→ U ′
✁ F

′

is a map which preserves the double filtration and is of the form

Φ(x, ξ) = (φ(x), Γ (x, ξ)),
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where the map Γ : U ✁ F→ F′ is linear in ξ. In addition, for i = 0, 1, we
require that the maps Φ : (U ✁ F)[i]→ (U ′

✁ F′)[i] are sc-smooth. A strong
bundle isomorphism is an invertible strong bundle map whose inverse is also
a strong bundle map.

To extend (23) to a notion of a local bundle model over a sc-retract, we
employ the following notion of a retraction in the fibers. A strong bundle
retraction is a strong bundle map R : U ✁ F→ U ✁ F satisfying R ◦R = R.
As a consequence, the map R has the form

(25) R(x, ξ) = (r(x), Γ (x, ξ)),

where r : U → U is a sc-smooth retraction and Γ (x, ·) : F→ F is a linear
projection for every x ∈ U . If r is tame, then R is called a tame strong
bundle retraction. The image K := R(U ✁ F) of R is called a strong bundle
retract [16, Def. 2.23], as is the triple (K,C ✁ F,E✁ F). We say that K
covers the sc-retract O = r(U). If R is tame, then K is called a tame strong
bundle retract. The projection U ✁ F→ U induces a mappingK → O, which
we call a strong local bundle model.

We now introduce the new notion of a Rn-sliced bundle retract.

Definition 3.4. Consider a partial quadrant C of a sc-Banach space E, an
open subset U ⊂ Rn × C for some n ≥ 0, and another sc-Banach space F.

A tame bundle retraction R : U ✁ F→ U ✁ F is called a Rn-sliced bun-
dle retraction if the tame sc-retraction r : U → U covered by R (see (25))
is a Rn-sliced sc-retraction (Definition 3.2).

If so, then the tame bundle retract K = R(U ✁ F) (and the triple
(K,Rn × C ✁ F,Rn × E✁ F)) is called a Rn-sliced bundle retract and
the tame local bundle model K → O := r(U) is called a Rn-sliced local
bundle model.

In the following lemma, we show that for any Rn-sliced bundle retract
K in Rn × C ✁ F, the set K̃ := K ∩ ({0} × C ✁ F) is a tame bundle retract.
Later, we use the inclusion K̃ ⊂ K to define the local models for the restric-
tion of a bundle to a slice (Definition 5.7).

Lemma 3.5. Consider a partial quadrant C of a sc-Banach space E, an-
other sc-Banach space F, and a Rn-sliced bundle retract

(K,Rn × C ✁ F,Rn × E✁ F)
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covering a Rn-sliced sc-retract (O,Rn × C,Rn × E). Let π : K → O denote
the local bundle model given by restriction of the projection along the fiber
Rn × C ✁ F→ Rn × C.

Then, for any open subset U ⊂ Rn × C and Rn-sliced bundle retraction
R : U ✁ F→ U ✁ F covering a Rn-sliced sc-retraction r : U → U such that
r(U) = O and R(U ✁ F) = K, the set Ũ := U ∩ ({0} × C) is open in C and
the restriction

R̃ := R|Ũ✁F
: Ũ ✁ F→ Ũ ✁ F

is a tame bundle retraction onto K̃ := R̃(Ũ ✁ F) covering the induced tame
sc-retraction r̃ : Ũ → Ũ onto the induced tame sc-retract Õ defined in
Lemma 3.3. We call R̃ the tame bundle retraction induced by R.

Moreover,

(26) K̃ = K ∩ ({0} × C ✁ F) = π−1(Õ)

holds, so in particular K̃ does not depend on the choices of U and R. We
may view K̃ as a subset of C ✁ F, and we call

(K̃, C ✁ F,E✁ F)

the tame bundle retract induced by the Rn-sliced bundle retract
(K,Rn × C ✁ F,Rn × E✁ F).

In particular, the Rn-sliced local bundle model π : K → O restricted to
K̃ is a tame local bundle model

(27) π̃ := π|K̃ : K̃ → Õ,

which we call the induced tame local bundle model.

Proof. The map R̃ is a strong bundle map and satisfies R̃ ◦ R̃ = R̃, by the
corresponding properties of R, so R̃ is a strong bundle retraction. Moreover,
R̃ is tame because it covers the tame sc-retraction r̃.

We now verify that the first equality in (26) holds. The forwards inclusion
is immediate from the definitions. To see the reverse inclusion, let (x✁

ξ) ∈ K ∩ ({0} × C ✁ F). Then x = π(x✁ ξ) ∈ O ∩ ({0} × C) = Õ, where π :
K → O is the local bundle model given by restriction of the projection along
the fiber π : Rn × C ✁ F→ Rn × C. In particular, x✁ ξ is in the domain
of R̃ = R|Ũ✁F

. Since R is a retraction onto K, it follows that (x✁ ξ) =

R(x✁ ξ) = R̃(x✁ ξ) ∈ im(R̃) = K̃, as required. The second equality in (26)
holds from the definitions and Õ = O ∩ ({0} × C). □
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3.3. Sliced sc-Fredholm germs

In this section, we review the standard notion of a local sc-Fredholm germ
(Definition 3.6) and we introduce the new notions of a tame sc-Fredholm
germ (Definition 3.7) and a Rn-sliced sc-Fredholm germ (Definition 3.8). We
later use tame sc-Fredholm germs as the local models for our new notion of a
tame sc-Fredholm section σ : B → E (Definition 5.4) of a tame strong bundle
ρ : E → B, and we use Rn-sliced sc-Fredholm germs as the local models in
our definition of a slice B̃ ⊂ B (Definition 5.7) of a sc-Fredholm section σ.

We prove in Lemma 3.10 that a Rn-sliced sc-Fredholm germ

σ : O → K

of a Rn-sliced local bundle model K → O induces a tame sc-Fredholm germ

σ̃ := σ|Õ : Õ → K̃

of the induced tame local bundle model K̃ → Õ from (27). The sc-Fredholm
index (29) satisfies

ind(σ̃) = ind(σ)− n.

We now briefly review sc-germ language. Let C be a partial quadrant
of a sc-Banach space E. Then a sc-germ of neighborhoods around 0 ∈ C [16,
Def. 3.1], denoted

U(C, 0),

is a sequence

U = U(0) ⊃ U(1) ⊃ U(2) ⊃ · · ·

where U(m) is a relatively open neighborhood of 0 in C ∩ Em. We often
write U = U(C, 0) for brevity. A sc0-germ h : U(C, 0)→ F [16, Def. 3.2]
into the sc-Banach space F is a continuous map h : U(0)→ F such that
h(U(m)) ⊂ Fm and h : U(m)→ Fm is continuous for all m ≥ 0. A sc1-germ
h : U(C, 0)→ F is a sc0-germ which of is class sc1 in the same sense as for
a usual map except that the sc-differential Dxh is required to exist only
for x ∈ U(1) (where U(1) can be smaller than U(0) ∩ E1 in the germ case);
see [16, Def. 3.2] for a precise definition. We can in turn define a tangent
map on the tangent of a germ and then iterate the notion of sc1 to define a
sc-smooth germ.
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It is convenient to denote any section of a trivial bundle by

h(x) = (x,h(x)) : U → U ✁ F.

We refer to h : U → F as the principal part of h.
Recall the standard notion of a local sc-Fredholm germ.

Definition 3.6. [16, Defs. 3.5, 3.6, 3.7] Consider a tame strong bundle
retract (K,C ✁ F,E✁ F) covering the tame sc-retract (O, C,E) and a sc-
smooth section σ : O → K of the local bundle modelK → O. Assume 0 ∈ O.

Then σ is called a local sc-Fredholm germ if the following conditions
hold:

(a) There exists a sc-germ of neighborhoods U(C, 0) around 0 ∈ C and a
tame sc-retraction r : U → U onto r(U) = O covered by a tame bundle
retraction R : U ✁ F→ U ✁ F onto R(U ✁ F) = K.

(b) The principal part σ : O → F of σ has the property that the composi-
tion

σ ◦ r : U(C, 0)→ F

possesses a filling

h : U(C, 0)→ U(C, 0)✁ F,

which is a section of the trivial bundle U(C, 0)✁ F→ U(C, 0) whose prin-
cipal part h : U(C, 0)→ F is a sc-smooth germ and such that the fol-
lowing conditions (i)–(iii) hold. Recall that R is of the form R(x, ξ) =
(r(x), Γ (x, ξ)) where Γ (x,−) : F→ F is a linear projection.

(i) σ(x) = h(x) for x ∈ O.
(ii) If x ∈ U and h(x) = Γ (r(x),h(x)), then x ∈ O.
(iii) The linearization of the map x 7→ (idF − Γ (r(x), ·)) ◦ h(x) at the point

0, restricted to kerD0r, defines a linear sc-isomorphism kerD0r →
kerΓ (0, ·).

(c) There exists a sc+-section s : U → U ✁ F satisfying s(0) = h(0), a sc-
Banach space W, a sc-germ of neighborhoods

U ′ = U ′(C ′, 0) ⊂ C ′ = [0,∞)s × R
k−s ×W

centered around 0 ∈ C ′ for some k ≥ s ≥ 0, and a strong bundle isomor-
phism

Ψ : U ✁ F→ U ′
✁ R

k′

×W
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(for some k′ ≥ 0) covering a sc-diffeomorphism

ψ : U → U ′

satisfying ψ(0) = 0 and such that the principal part of the section

b := Ψ ◦ (h− s) ◦ ψ−1 : U ′ → U ′
✁ R

k′

×W

is a basic germ. This means that the principal part

b : U ′ → R
k′

×W

of b is a sc-smooth germ satisfying b(0) = 0 and having the following
property: Letting P : Rk′

×W→W denote projection onto W, the germ
P ◦ b : U ′ →W is of the form

P ◦ b(a, w) = w −B(a, w),

for (a, w) ∈ ([0,∞)s × Rk−s)×W, whereB is a sc-smooth germ andB(0) =
0. Also, B is required to satisfy a contraction property: For every ϵ > 0 and
integer m ≥ 0 there exists δ > 0 such that

(28) ∥(a, w)∥m, ∥(a, w
′)∥m < δ

=⇒ ∥B(a, w)−B(a, w′)∥m ≤ ϵ∥w − w
′∥m.

The notation ∥ · ∥m means the Banach norm in the m-level of the sc-
structure. We use the convention4 that the m-norm ∥ · ∥m on (Rk ×W)m =
Rk ×Wm is the sum of the standard Euclidean norm on Rk plus the Wm-
norm.

The index of the local sc-Fredholm germ σ is the integer

(29) ind(σ) := k − k′,

where k and k′ are the dimensions of the finite dimensional spaces split off in
the domain U ′ ⊂ ([0,∞)s × Rk−s)×W and codomain Rk′

×W, respectively,
of the basic germ b.

4This convention is equivalent to using any norm on R
k and any standard norm

on a Cartesian product that is equivalent to the sum norm.
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We now introduce a new class of sc-Fredholm germs, called tame sc-
Fredholm. All currently known sc-Fredholm germs arising in applications to
symplectic topology are tame sc-Fredholm: The required linearity of ψ holds
in applications because ψ is essentially given by splitting off the kernel of a
linear map (see Section 5.1). This linearity is required in the construction
of slice coordinates in Section 4.

Definition 3.7. A local sc-Fredholm germ σ : O → K is called a tame
sc-Fredholm germ if the structures that exist by Definition 3.6 of local
sc-Fredholm germ can be chosen such that the partial quadrant C is in the
standard form (5), i.e. C = [0,∞)s × E′ ⊂ Rs × E′ = E for some sc-Banach
space E′ and integer s ≥ 0, and such that the required sc-diffeomorphism
ψ : U → U ′ in Definition 3.6(c) is the restriction of a linear sc-isomorphism
of the form

ψ = id[0,∞)s × ψ : [0,∞)s × E
′ → [0,∞)s × R

k−s ×W,

(v, e) 7→ (v, ψ(e))

for some linear sc-isomorphism

ψ : E′ → R
k−s ×W.

The following new class of sc-Fredholm germs, called Rn-sliced sc-
Fredholm, is defined for sections of sliced local bundle models K → O (Def-
inition 3.4). We prove in Lemma 3.10 that a Rn-sliced sc-Fredholm germ
σ : O → K induces a tame sc-Fredholm germ σ̃ := σ|Õ : Õ → K̃ of the in-

duced tame local bundle model K̃ → Õ defined in (27).

Definition 3.8. Consider a Rn-sliced bundle retract (Definition 3.4)

(K,Rn × C ✁ F,Rn × E✁ F)

covering the Rn-sliced sc-retract

(O,Rn × C,Rn × E).

Assume 0 ∈ O and that the partial quadrant is in the standard form (5), i.e.
C = [0,∞)s × E′ ⊂ Rs × E′ = E for some s ≥ 0 and sc-Banach space E′.
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Then a local sc-Fredholm germ

σ : O → K

of the Rn-sliced local bundle model K → O is called a Rn-sliced sc-
Fredholm germ if the structures that exist by Definition 3.6 of local sc-
Fredholm germ can be chosen such that the sc-Banach space W and sc-
diffeomorphism ψ : U → U ′ from Definition 3.6(c) have the following form:
First, we have

W = W̃× R
n

for some other sc-Banach space W̃. Moreover, the sc-diffeomorphism ψ :
U → U ′ is of the form

ψ : Rn × [0,∞)s × E
′ ⊃ U → U ′ ⊂ [0,∞)s × R

k−s × W̃× R
n(30)

(p, v, e) 7→ (v, ψ(e), λ(p, v, e))

for some linear sc-isomorphism

ψ : E′ → R
k−s × W̃

and such that the map

(p, v, e) 7→ λ(p, v, e) ∈ R
n

is C1 on all levels Rn × [0,∞)s × E′
m for m ≥ 0.

Remark 3.9. Given a local sc-Fredholm germ σ : O → K of a local bun-
dle model K → O, all essential properties of the setup are preserved after
restricting to the m-level of the sc-structure for any m ≥ 0. Precisely, the m-
shifted mapKm → Om is a local bundle model and σ|Om : Om → Km is a lo-
cal sc-Fredholm germ [16, Cor. 5.1] with the same index ind(σ|Om) = ind(σ).

In particular, if a local sc-Fredholm germ σ : O → K satisfies the prop-
erties required of a Rn-sliced sc-Fredholm germ except for the C1 regularity
of the map (p, v, e) 7→ λ(p, v, e), then the 1-shifted section σ|O1 : O1 → K1

is Rn-sliced sc-Fredholm since the map λ has the required C1 regularity on
all levels m ≥ 1 by [16, Prop. 1.7].

In the following lemma, we prove that a Rn-sliced sc-Fredholm germ of
a Rn-sliced local bundle model K → O (Definition 3.4) restricts to a tame
sc-Fredholm germ of the induced tame local bundle model K̃ → Õ from (27).
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Lemma 3.10. Consider a Rn-sliced bundle retract

(K,Rn × C ✁ F,Rn × E✁ F)

covering a Rn-sliced sc-retract (O,Rn × C,Rn × E). Recall the induced tame
local bundle model K̃ → Õ from (27).

Let σ : O → K be a Rn-sliced sc-Fredholm germ. Then, the restriction
σ̃ := σ|Õ : Õ → K̃ is a tame sc-Fredholm germ with index satisfying ind(σ̃) =
ind(σ)− n.

We call σ̃ the tame sc-Fredholm germ induced by the Rn-sliced
sc-Fredholm germ σ.

Proof. Since σ is a Rn-sliced sc-Fredholm germ, the partial quadrant is in
the standard form C = [0,∞)s × E′ ⊂ Rs × E′ = E and there exists an open
U ⊂ Rn × C and a Rn-sliced sc-retraction r : U → U onto r(U) = O that
satisfies the conditions of Definition 3.2 and Definition 3.8, which we recall
as we use them.

Since r satisfies the properties in Definition 3.6 of local sc-Fredholm
germ, we can assume that there exists a sc-germ of neighborhoods U(Rn ×
C, 0) around 0 satisfying U(0) = U (i.e. the 0-level open set in the germ is the
open set U from above) such that r is covered by a tame bundle retraction
R : U ✁ F→ U ✁ F such that σ ◦ r : U(Rn × C, 0)→ F posesses a filling

h : U(Rn × C, 0)→ U(Rn × C, 0)✁ F.

Since r is a Rn-sliced sc-retraction covered by R, it follows by Defini-
tion 3.4 that R is a Rn-sliced bundle retraction. As in Lemma 3.5, set

Ũ := U ∩ ({0}n × C)

and denote the induced tame sc-retraction and tame bundle retraction by

r̃ : Ũ → Ũ ,

R̃ : Ũ ✁ F→ Ũ ✁ F,

and the induced tame sc-retract and tame bundle retract by

Õ = r̃(Ũ) = O ∩ ({0}n × C),

K̃ = R̃(Ũ ✁ F) = K ∩ ({0}n × C ✁ F).
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Also, let Ũ(C, 0) be the sc-germ of neighborhoods given on level-m by
Ũ(m) := U(m) ∩ ({0}n × C), or more concisely

Ũ(C, 0) := U(Rn × C, 0) ∩ ({0}n × C).

We claim that the restriction

h̃ := h|Ũ(C,0) : Ũ(C, 0)→ Ũ(C, 0)✁ F

is a filling for the composition σ̃ ◦ r̃ : Ũ(C, 0)→ F. It is a section of the
trivial bundle Ũ(C, 0)✁ F→ Ũ(C, 0) and its principal part h̃ is a sc-smooth
germ, because we have

h̃ = h|Ũ(C,0)

and the corresponding properties hold for h. It remains to verify that the
filler properties in Definition 3.6(b).(i)–(iii) hold for σ̃ and h̃. These follow
from the corresponding properties of σ and h, as we now describe. Property
(i) is immediate since σ̃ and h̃ are restrictions of σ and h, respectively. Write
R(x, ξ) = (r(x), Γ (x, ξ)), as in (25). Consider the restriction Γ̃ := Γ |Ũ✁F

.

Then we have R̃(x, ξ) = (r̃(x), Γ̃ (x, ξ)). To verify (ii), let x ∈ Ũ and assume
h̃(x) = Γ̃ (r̃(x), h̃(x)). It follows that h(x) = Γ (r(x),h(x)), which implies
x ∈ O by property (ii) for h. Hence x ∈ Ũ ∩ O = Õ, as required. It remains
to verify (iii) for h̃. We claim that

(31) kerD0r̃ = kerD0r.

The forwards inclusion follows from r̃ being the restriction of r. To see
the reverse inclusion, let ξ ∈ kerD0r. By the defining property (13) of a
Rn-sliced sc-retraction, we see that D0r preserves the Rn-coordinate of ξ
and hence ξ ∈ {0}n × Rs × E′. In particular, ξ is in the domain of D0r̃,
and moreover D0r̃(ξ) = D0r(ξ) = 0. Hence (31) holds. We now verify that
Definition 3.6(iii) holds for h̃. From the corresponding property of h, the
linearization D0L at 0 of the map

L : U → F

x 7→ (idF − Γ (r(x), ·)) ◦ h(x)
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restricts to a linear sc-isomorphism kerD0r → kerΓ (0, ·). We must show
that the linearization at 0 of the map

L̃ : Ũ → F

x 7→ (idF − Γ̃ (r̃(x), ·)) ◦ h̃(x)

restricts to a linear sc-isomorphism kerD0r̃ → ker Γ̃ (0, ·) = kerΓ (0, ·). This
follows from (31) and since L̃ and r̃ are the restrictions of L and r, re-
spectively, to Ũ . This completes the proof that h̃ is a filling for σ̃ ◦ r̃, as
claimed.

To show that σ̃ is a local sc-Fredholm germ, it remains to verify the
properties in Definition 3.6(c). Since σ is a Rn-sliced sc-Fredholm germ, the
corresponding properties in Definition 3.6(c) hold for σ, and in addition the
stronger properties in the definition of Rn-sliced sc-Fredholm germ (Defini-
tion 3.8) hold: There exists a sc+-section

s : U → U ✁ F

satisfying s(0) = h(0), a sc-Banach space of the form

W = W̃× R
n

for some other sc-Banach space W̃, a sc-germ of neighborhoods

U ′ around 0 ∈ ([0,∞)s × R
k−s)× (W̃× R

n),

and a strong bundle isomorphism

Ψ : U ✁ F→ U ′
✁ R

k′

× (W̃× R
n)

covering a sc-diffeomorphism ψ : U → U ′ satisfying ψ(0) = 0 and of the form

ψ : Rn × [0,∞)s × E
′ ⊃ U → U ′ ⊂ [0,∞)s × R

k−s × W̃× R
n

(p, v, e) 7→ (v, ψ(e), λ(p, v, e))

for some linear sc-isomorphism

ψ : E′ → R
k−s × W̃

such that, on all levels Rn × [0,∞)s × E′
m for m ≥ 0, the map

(32) (p, v, e) 7→ λ(p, v, e) ∈ R
n
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is C1. Moreover, the principal part of the section

(33) b := Ψ ◦ (h− s) ◦ ψ−1 : U ′ → U ′
✁ R

k′

× (W̃× R
n)

is a basic germ, which means that, for all a ∈ [0,∞)s × Rk−s and z ∈ W̃× Rn

such that (a, z) ∈ U ′, we have

(34) P ◦ b(a, z) = z −B(a, z),

where P : Rk′

× (W̃× Rn)→ (W̃× Rn) is projection onto W̃× Rn and B :
U ′ → W̃× Rn is sc-smooth, satisfies B(0) = 0, and satisfies the contraction
property (28).

Now, to verify that σ̃ = σ|Õ inherits the local sc-Fredholm germ prop-
erty, consider the restricted sc+ section

s̃ := s|Ũ : Ũ → Ũ ✁ F,

the linear sc-isomorphism given by

ψ̃ : [0,∞)s × E
′ → [0,∞)s × R

k−s × W̃

(v, e) 7→ (v, ψ(e)),

the open set

Ũ ′ := ψ̃(Ũ),

and the strong bundle isomorphism given by

Ψ̃ : Ũ ✁ F→ Ũ ′
✁ (Rk′

× R
n)× W̃

((v, e)✁ ξ) 7→ (ψ̃(v, e)✁ η(Ψ((v, e)✁ ξ)),

where η : Rk′

×(W̃×Rn)→ (Rk′

×Rn)×W̃ is the reordering of factors map.
We claim that the principal part of the section

(35) b̃ := Ψ̃ ◦ (h̃− s̃) ◦ ψ̃−1 : Ũ ′ → Ũ ′
✁ (Rk′

× R
n)× W̃

is a basic germ, where now W̃ plays the role of the sc-Banach space W in
Definition 3.6(c). Let the maps

P̃ : (Rk′

× R
n)× W̃→ W̃,

π
W̃

: Rn × W̃→ W̃,
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be the projections onto the W̃ factor in their respective domains. Notice
that we have P̃ = π

W̃
◦ P ◦ η−1.

We write a ∈ [0,∞)s × Rk−s and w ∈ W̃. Define the map

τ : Ũ ′ → U ′

(a, w) 7→ ψ(0, ψ̃−1(a, w)),

and from the definitions observe

(36) τ(a, w) = (a, w, λ(0, ψ̃−1(a, w))).

From the definitions and (34),(36), we compute

P̃ ◦ b̃(a, w) = π
W̃
◦ P̃ ◦ π

Rk′×Rn×W̃
◦ Ψ̃ ◦ (h̃− s̃) ◦ ψ̃−1(a, w)

= π
W̃
◦ P ◦ π

Rk′×W̃×Rn ◦ Ψ ◦ (h− s)(0, ψ̃−1(a, w))

= π
W̃
◦ P ◦ π

Rk′×W̃×Rn ◦ Ψ ◦ (h− s)

◦ (ψ−1 ◦ ψ)
(

0, ψ̃−1(a, w)
)

= π
W̃
◦ P ◦ b ◦ ψ(0, ψ̃−1(a, w))

= π
W̃
◦ P ◦ b ◦ τ(a, w)

= π
W̃
((w, λ(0, ψ̃−1(a, w)))−B ◦ τ(a, w))

= w − π
W̃
◦B ◦ τ(a, w).

So, setting

B̃ := π
W̃
◦B ◦ τ : Ũ ′ → W̃,

we have P̃ ◦ b̃(a, w) = w − B̃(a, w). Hence to complete the proof that b̃ is a
basic germ it remains to show that B̃ satisfies the contraction property (28).

Recall from (36) the map

λ̃ : Ũ ′ → R
n

(a, w) 7→ λ(0, ψ̃−1(a, w)).

For all m ≥ 0, this map restricted to the m-level Ũ ′
m → Rn is C1 since

the map λ from (32) is C1 on every level by definition of Rn-sliced sc-
Fredholm germ, and since ψ̃ is a linear sc-isomorphism and hence C∞ on
every level. So, there exist constants δ′m > 0 and Cm > 0 such that, for all
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∥(a, w)∥m, ∥(a, w
′)∥m < δ′m, we have the C1-estimate

(37) ∥λ̃(a, w)− λ̃(a, w′)∥Rn ≤ Cm · ∥(a, w)− (a, w′)∥m = Cm · ∥w − w
′∥m.

Then by (36) and our convention that the norm on a Cartesian product is
the sum norm (which is equivalent to any standard Banach norm on the
product), we have the estimate

∥τ(a, w)− τ(a, w′)∥m = ∥(a, w, λ̃(a, w))− (a, w′, λ̃(a, w′))∥m

= ∥λ̃(a, w)− λ̃(a, w′)∥Rn + ∥w − w′∥m,

≤ (Cm + 1) · ∥w − w′∥m.(38)

We now verify the contraction property (28) for B̃. Let ϵ > 0 and m ≥ 0.
By the contraction property which is satisfied for B, there exists δ′m > 0 such
that (28) holds for B and

ϵ′m := ϵ/(Cm + 1).

Shrink δ′m > 0 to be smaller than the δ′m for which (38) holds. We claim that

δm := δ′m/(Cm + 1)

satisfies (28) for B̃ and ϵ. Indeed, consider some

∥(a, w)∥m, ∥(a, w
′)∥m < δm.

Then by τ(0) = ψ(0, ψ̃−1(0)) = 0 and (38), we have

∥τ(a, w)∥m, ∥τ(a, w
′)∥m < (Cm + 1) · δm = δ′m.

We compute, using the contraction property (28) forB and the estimate (38),

∥B̃(a, w)− B̃(a, w′)∥m = ∥π
W̃
◦B ◦ τ(a, w)− π

W̃
◦B ◦ τ(a, w′)∥m

≤ ∥B ◦ τ(a, w)−B ◦ τ(a, w′)∥m

= ∥B(a, w, λ̃(a, w))−B(a, w′, λ̃(a, w′))∥m

≤ ϵ′m · ∥(w, λ̃(a, w))− (w′, λ̃(a, w′))∥m

= ϵ′m · ∥(a, w, λ̃(a, w))− (a, w′, λ̃(a, w′))∥m

= ϵ′m · ∥τ(a, w)− τ(a, w
′)∥m

≤ (Cm + 1) · ϵ′m · ∥w − w
′∥m

= ϵ · ∥w − w′∥m.
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This completes the proof that (28) holds for B̃, and hence that b̃ is a basic
germ.

We have shown that σ̃ is a local sc-Fredholm germ. Moreover, σ̃ is a
tame sc-Fredholm germ because we have ψ̃ = id[0,∞)s × ψ by definition of

ψ̃, where ψ : E′ → Rk−s × W̃ is the linear sc-isomorphism given by the Rn-
sliced sc-Fredholm germ property of σ.

The claimed index formula holds because, by definition of the sc-
Fredholm index (29) and the form of the basic germs b (33) and b̃ (35),
we have ind(σ) = k − k′ and ind(σ̃) = k − (k′ + n). □

4. Slice coordinates for local submersions to R
n

The purpose of this section is to prove Lemma 4.2, which generalizes the
local submersion normal form (Lemma 2.3) for sc-smooth maps f : U → Rn

where the domain U ⊂ [0,∞)s × E is open to maps

f : O → R
n

where the domain is a tame sc-retract (O, [0,∞)s × E,Rs × E). This means
that the set O = r(U) is the image of a tame sc-retraction r : U → U (see
Definition 3.1), which can have much more complicated local structure than
the open set U , for example locally varying dimension. In this case, the
local submersion normal form is obtained by a change of coordinates around
any smooth point x ∈ O∞ at which f is submersive and satisfies f(x) = 0
such that the sc-retract in the new coordinates is a Rn-sliced sc-retract
(Definition 3.2) with induced tame sc-retract (see Lemma 3.3) identified
with a neighborhood of x in f−1(0) ∩ O1. For this reason, we call the sc-
diffeomorphism with this Rn-sliced sc-retract slice coordinates around x.

Moreover, given a tame local bundle model K → O and a tame sc-
Fredholm germ σ : O → K (Definition 3.7), and assuming that f is com-
patible with σ as explained in Lemma 4.2(III), we prove that σ in the new
slice coordinates around x is a Rn-sliced sc-Fredholm germ (Definition 3.8)
and its induced tame sc-Fredholm germ is identified with the restriction of
σ to f−1(0) ∩ O1. See Section 5.1 for a discussion of why evaluation maps
f = ev at marked points are compatible with the Cauchy-Riemann section
σ = ∂J .

For simplicity, in this section we take all partial quadrants C to be
in standard form C = [0,∞)s × E ⊂ Rs × E. There is no loss of generality
because all partial quadrants are linearly sc-isomorphic to a standard partial
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quadrant by definition (see (4)) and hence all sc-retracts are sc-diffeomorphic
to sc-retracts in standard partial quadrants.

The notion of submersion that we use in Lemma 4.2, as in the local
submersion normal form in sc-calculus (Lemma 2.3), requires surjectivity
of the tangent map relative to the boundary: For a point x ∈ O∞ ∩ ({0} ×
E), we require that Dxf(TxO ∩ ({0} × E)) = Rn. Recall that TR

x O = TxO ∩
({0} × E) is the reduced tangent space at x (see (12)). In the following lemma
we interpret TR

x O as the tangent space at x along the corner O ∩ ({0} × E).

Lemma 4.1. Consider a standard partial quadrant [0,∞)s × E and a tame
sc-retract (O, [0,∞)s × E,Rs × E). Then, for any open subset U ⊂ [0,∞)s ×
E and tame sc-retraction r : U → U onto r(U) = O, the restriction of r to
U∂ := U ∩ ({0} × E) is a tame sc-retraction

r∂ := r|U∂
: U∂ → U∂

onto

O∂ := O ∩ ({0} × E).

In particular, the tuple

(O∂ ,E,E)

is a tame sc-retract, which we call the boundary sc-retract associated
to the tame sc-retract O.

Moreover, for all x ∈ O1
∂, we have

(39) TxO∂ = TxO ∩ ({0} × E) = TR
x O.

Proof. Since r is tame, for x ∈ U∂ we have

d[0,∞)s×E(r(x)) = d[0,∞)s×E(x) = s,

and hence r(x) ∈ U∂ . Thus r∂(U∂) ⊂ U∂ holds. It is then immediate that
r∂ is a sc-smooth retraction, as the restriction of the sc-smooth retraction
r. Moreover, the domain U∂ of r∂ is an open subset of a cornerless partial
quadrant, i.e. U∂ ⊂ E, and hence r trivially satisfies the tameness hypothe-
ses.

We now prove that the image of r∂ is O∂ . Indeed, if x ∈ im(r∂) then
x ∈ O and x ∈ U∂ ⊂ {0} × E, hence x ∈ O∂ . For the reverse inclusion, if
x ∈ O ∩ ({0} × E) then x ∈ U∂ and hence x = r(x) = r∂(x).

It remains to prove that (39) holds. Let ξ ∈ TxO∂ . Then ξ ∈ {0} × E

and Dxr(ξ) = Dxr∂(ξ) = ξ, so ξ ∈ TxO. To prove the reverse inclusion, let
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ξ ∈ TxO ∩ ({0} × E). Then we have Dxr∂(ξ) = Dxr(ξ) = ξ, which implies
ξ ∈ TxO∂ , as required. □

In the following lemma, we construct the slice coordinates around a
smooth point x in a tame sc-retract O at which a sc-smooth map f : O → Rn

is submersive on the tangent space TxO∂ at x to the associated boundary
retract O∂ from Lemma 4.1, i.e. Dxf(TxO∂) = Rn.

The statement of the lemma is in three parts: (I) provides slice coordi-
nates for f−1(0), (II) provides slice bundle coordinates for the restriction of
a bundle retract to f−1(0), and (III) provides slice sc-Fredholm coordinates
for the restriction of a sc-Fredholm section.

Lemma 4.2.

(I) Consider a tame sc-retract (O, [0,∞)s × E,Rs × E) and a sc-smooth
map f : O → Rn. Let O∂ = O ∩ ({0}s × E) denote the boundary sc-retract
associated to O (see Lemma 4.1), and f∂ := f |O∂

: O∂ → Rn the restriction
of f . Suppose that, at some x ∈ (O∂)∞ satisfying f(x) = 0, the tangent map
Dxf∂ : TxO∂ → Rn is surjective.

Then, there exists an open subset

Ô ⊂ O1,

a sc-Banach space K, a Rn-sliced sc-retract

(40) (O′,Rn × [0,∞)s ×K
1,Rn × R

s ×K
1),

and a sc-smooth diffeomorphism

g : Ô → O′

satisfying

(41) g(f−1(0) ∩ Ô) = O′ ∩ ({0}n × [0,∞)s ×K
1) =: Õ′.

Here, Õ′ is the tame sc-retract induced by O′ (see Lemma 3.3).
We view g as providing slice coordinates Õ′ ⊂ O′ around x with

respect to (f−1(0) ∩ O1) ⊂ O1.
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(II) Consider, in addition, a tame strong bundle retract

(K, [0,∞)s × E✁ F,Rs × E✁ F)

covering the tame sc-retract O. Let K̂ := π−1(Ô) where π : K1 → O1 is the
1-shifted local bundle model. Set

K ′ := (g ✁ idF1)(K̂).

Then, the tuple

(42) (K ′,Rn × [0,∞)s ×K
1
✁ F

1,Rn × R
s ×K

1
✁ F

1)

is a Rn-sliced bundle retract covering the Rn-sliced sc-retract (40). In par-
ticular, the induced tame strong bundle retract K̃ ′ (see Lemma 3.5) covers
the induced tame sc-retract Õ′.

Moreover,

(43) (g ✁ idF1)(π−1(f−1(0) ∩ Ô)) = K̃ ′

holds, so we view (g ✁ idF1) as providing slice bundle coordinates K̃ ′ ⊂
K ′ for π around x with respect to (f−1(0) ∩ O1) ⊂ O1.

(III) Consider, in addition, a tame sc-Fredholm germ σ : O → K (Defi-
nition 3.7). Assume that x = 0 and that σ has the following property:
There exists a choice of sc-Banach space W and linear sc-isomorphism
ψ : E→ Rk−s ×W satisfying the conditions in Definition 3.7 of tame sc-
Fredholm germ for σ such that, in addition, there exists a sc-complement
L of kerDxf∂ in TxO∂ satisfying

(44) ψ(L) ⊂ ({0}k−s ×W).

Then, the section

σ′ := (g ✁ idF1) ◦ σ ◦ g−1 : O′ → K ′

is a Rn-sliced sc-Fredholm germ. In particular, the restriction to the induced
tame local bundle model

σ̃′ := σ′|Õ′ : Õ
′ → K̃ ′

is a tame sc-Fredholm germ with index satisfying ind(σ̃′) = ind(σ)− n.
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We view σ̃′ as being in slice sc-Fredholm coordinates around x
with respect to (f−1(0) ∩ O1) ⊂ O1.

Proof. Proof of (I): Consider any open subset U ⊂ [0,∞)s × E, tame sc-
retraction r : U → U onto r(U) = O, and the associated retraction on the
boundary (see Lemma 4.1) denoted by r∂ : U∂ → U∂ where U∂ = U ∩ ({0}s ×
E).

Set

K := kerDx(f∂ ◦ r∂) ⊂ TxU∂ = E.

Let L ⊂ E∞ be a sc-complement of kerDxf∂ in TxO∂ , which exists by
Lemma 2.2 since the surjection Dxf∂ : TxO∂ → Rn induces an isomorphism
TxO∂/ kerDxf∂ ∼= Rn. Note that the restriction

(45) Dxf∂ |L : L→ R
n

is an isomorphism.
We claim that L is a sc-complement of K in E, i.e.

(46) E = K⊕ L.

First, note that the sc-splitting E = TxO∂ ⊕ kerDxr∂ holds since the map
Dxr∂ : E→ E is a linear sc-retraction with image TxO∂ . Hence,

E = (L⊕ kerDxf∂)⊕ kerDxr∂ .

From this description of E together with the definition of K, we claim
that kerDxf∂ ⊕ kerDxr∂ = K follows, which then implies (46). Indeed, write
ξ ∈ E as ξ = l + η + ν for l ∈ L, η ∈ kerDxf∂ , and ν ∈ kerDxr∂ . Note that
Dxr∂(η) = η and Dxr∂(l) = l since η, l ∈ TxO∂ . Then if ξ ∈ K we have 0 =
Dx(f∂ ◦ r∂)(ξ) = Dxf∂(l) +Dxf∂(η) = Dxf∂(l), which implies l = 0 by (45),
and hence ξ = η + ν ∈ kerDxf∂ ⊕ kerDxr∂ . To prove the reverse inclusion,
observe that if ξ = η + ν then we have Dx(f∂ ◦ r∂)(ξ) = Dxf∂(η) = 0 and so
ξ ∈ K. Hence (46) holds.

We now prepare to apply the normal form of a sc-smooth local submer-
sion (Lemma 2.3) to the map

f ◦ r : U → R
n.

The restriction of f ◦ r to U∂ = U ∩ ({0}s × E) is equal to f∂ ◦ r∂ . So, by the
hypothesized surjectivity of the map Dxf∂ : TxO∂ → Rn and the definition
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of tangent space TxO∂ = Dxr∂(TxU∂), it follows that the map

F := Dx(f ◦ r|U∩{0}s×E) : E→ R
n

is surjective with kernel K = kerF . Hence Lemma 2.3 applies to the map
f ◦ r and the sc-complement L of K in E. The lemma provides an open
neighborhood

Û ⊂ U1 ⊂ [0,∞)s × E
1

of x in U1, an open set

U ′ ⊂ R
n × [0,∞)s ×K

1,

and a sc-smooth diffeomorphism of the form

g : Û → U ′

(v, e) 7→ (f ◦ r(v, e), v, pr(e)),

where pr : E = L⊕K→ K is the projection along L, such that on every
level m ≥ 0 the map g : Ûm → U ′

m is a Cm+1-diffeomorphism. In particular,

(47) f ◦ r ◦ g−1 : U ′ → R
n is projection onto the R

n-coordinate

and also g preserves the [0,∞)s-coordinate.
We shrink the open sets Û and U ′ in the following way, so that the

smaller open set Û ⊂ Û has the property r(Û) ⊂ Û , making r|
Û
: Û → Û

into a sc-retraction: Set

Û := r−1(Û ∩ O) ∩ Û ,

U ′ := g(Û).

The set Û is open in U1 because Û ∩ O is open in O1 and r : U → O is sc-
continuous. We claim that r(Û) ⊂ Û , so r restricts to a tame sc-retraction
r : Û → Û onto the tame sc-retract

Ô := r(Û).

Indeed, if y ∈ Û then r(r(y)) = r(y) ∈ Û ∩ O, and so it follows that r(y) ∈
Û . Note that

U ′ ⊂ R
n × [0,∞)s ×K

1
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is open since g is a sc-diffeomorphism, and moreover the restricted map

g : Û → U ′

is a sc-diffeomorphism.
The map

r′ := g ◦ r ◦ g−1 : U ′ → U ′

is a sc-smooth retraction since g is a sc-diffeomorphism and r is a sc-smooth
retraction. Indeed, r ◦ r = r implies that r′ ◦ r′ = r′. Set

O′ := r′(U ′).

Notice that

Ô = r(Û) = r ◦ g−1(U ′) = g−1 ◦ r′(U ′) = g−1(O′)

holds, so g restricts to a bijection

g : Ô → O′.

This restriction is a sc-smooth diffeomorphism, as required, since

g ◦ r : Û → U ′

is sc-smooth and g−1 ◦ r′ : U ′ → Û is sc-smooth. Indeed, the definition of a
map between sc-retracts being sc-smooth is that these compositions with
the sc-retractions are sc-smooth, where the domain and codomain are now
open subsets of sc-Banach spaces and sc-smoothness is defined as usual.

We now prove that r′ is a Rn-sliced sc-retraction, and so O′ is the re-
quired Rn-sliced sc-retract (40). We must show that r is tame and satisfies
the defining property (13) of a Rn-sliced retraction, i.e. that r preserves the
Rn-coordinate. To prove (13), notice from the definitions and (47) that we
have

(f ◦ g−1) ◦ r′ = f ◦ r ◦ g−1 = πRn .

Since r′ ◦ r′ = r′, we have

πRn ◦ r′ = (f ◦ g−1) ◦ r′ ◦ r′ = (f ◦ g−1) ◦ r′ = πRn ,

completing the proof of (13).
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We now verify that r′ is a tame sc-retraction. Definition 3.1(1) for
r′ = g ◦ r ◦ g−1 holds because it holds for r and since g preserves the [0,∞)s-
coordinate. To verify Definition 3.1(2) for r′, let y′ ∈ O′

∞ and set y :=
g−1(y′) ∈ Ô∞. Since r is a tame sc-retraction, there exists a sc-subspace
A ⊂ Rs × E1 such that Rs × E1 = TyÔ ⊕A and A ⊂ (Rs × E1)y. We claim
that A′ := Dyg(A) is the required sc-subspace of Rn × Rs ×K1. First, since
g is the identity on [0,∞)s, the tangent map Dyg is the identity on Rs, and
thus A′ ⊂ (Rn × Rs ×K1)y′ by (8). Moreover, by definition of r′ and the tan-
gent space of a retract we have Ty′O′ = Dy′r′(Ty′U ′) = Dyg(Dyr(TyÛ)) =
Dyg(TyÔ). Hence, since Dyg is a linear sc-isomorphism, we have

R
n × R

s ×K
1 = Dyg(R

s × E
1) = Dyg(TyÔ ⊕A) = Ty′O′ ⊕A′,

as required. This completes the verification that r′ is a Rn-sliced sc-retraction
and hence (40) is indeed a Rn-sliced sc-retract.

To complete the proof of (I), it remains to show that (41) holds. First,
recall from above that g(Ô) = O′. Let y ∈ g(f−1(0) ∩ Ô). Since g−1(y) ∈ Ô
is in the image of the retraction r, it follows that 0 = f ◦ g−1(y) = f ◦ r ◦
g−1(y), and hence (47) implies

y ∈ {0}n × [0,∞)s ×K
1,

proving the forwards inclusion in (41). For the reverse inclusion, let y ∈
O′ ∩ ({0}n × [0,∞)s ×K1). Then, again by (47), we have

f ◦ g−1(y) = f ◦ r ◦ g−1(y) = πRn(y) = 0.

This proves the reverse inclusion and hence the equality (41).

Proof of (II): After shrinking the original open set U ⊂ [0,∞)s × E, we
can assume that there exists a tame bundle retraction

R : U ✁ F→ U ✁ F

(y, ξ) 7→ (r(y), Γ (y, ξ))

onto R(U ✁ F) = K covering r. Since r restricts to a retraction

r : Û → Û

onto

r(Û) = Ô



✐

✐

“1-Filippenko” — 2021/5/27 — 18:47 — page 294 — #54
✐

✐

✐

✐

✐

✐

294 Benjamin Filippenko

as discussed above, it follows that R restricts to a tame bundle retraction

R : Û ✁ F
1 → Û ✁ F

1

with image the tame bundle retract

K̂ = R(Û ✁ F
1) = π−1(Ô),

where π : K1 → O1 is the 1-shifted tame local bundle model.
Set

Γ ′ : U ′
✁ F

1 → F
1

(y′, ξ) 7→ Γ (g−1(y′), ξ)

We claim that the map

R′ := U ′
✁ F

1 → U ′
✁ F

1

(y′, ξ) 7→ (r′(y′), Γ ′(y′, ξ))

is a Rn-sliced bundle retraction onto

K ′ := (g ✁ idF1)(K̂),

proving that (42) is a Rn-sliced bundle retract covering the Rn-sliced sc-
retract (40). It is then immediate from Lemma 3.5 that the induced bundle
retract K̃ ′ covers the induced sc-retract Õ′, as claimed. Since r′ = g ◦ r ◦ g−1,
we can write R′ as a composition of strong bundle maps

R′ = (g ✁ idF1) ◦R ◦ (g−1
✁ idF1),

and hence R′ is a strong bundle map. In addition, R′ ◦R′ = R′ follows
from R ◦R = R. Thus R′ is a bundle retraction covering the Rn-sliced sc-
retraction r′, which implies that R′ is a Rn-sliced bundle retraction, as de-
sired. Moreover, by definition of K ′ we have

R′(U ′
✁ F

1) = (g ✁ idF1) ◦R(Û ✁ F
1) = (g ✁ idF1)(K̂) = K ′.

Thus K ′ is indeed the desired Rn-sliced bundle retract (42).
We now prove (43). Let π′ : K ′ → O′ denote the Rn-sliced local bun-

dle model, which restricts to the induced tame local bundle model π̃ =
π′|K̃′ : K̃ ′ → Õ′ (see (27)). Here K̃ ′ = π′−1(Õ′) is the tame bundle retract
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induced by the Rn-sliced bundle retract K ′ (see (26)). To prove (43), let
y ∈ f−1(0) ∩ Ô and let ξ ∈ π−1(y). Then, by (41), we have g(y) ∈ Õ′, and
hence (g ✁ idF1)(ξ) ∈ π′−1(Õ′) = K̃ ′, proving the forwards inclusion. To see
the reverse inclusion, let ξ ∈ K̃ ′. Set y = π′(ξ) ∈ Õ′. Then, again by (41),
we have g−1(y) ∈ f−1(0) ∩ Ô and hence (g−1

✁ idF1)(ξ) ∈ π−1(f−1(0) ∩ Ô).
This proves (43), completing the proof of the statements in (II).

Proof of (III): To prove that the section

σ′ := (g ✁ idF1) ◦ σ ◦ g−1 : O′ → K ′

is a Rn-sliced sc-Fredholm germ (Definition 3.8), we must first show that
it is a local sc-Fredholm germ (Definition 3.6). Since the given section σ is
a tame sc-Fredholm germ (Definition 3.7) by hypothesis, by shrinking the
original open set U ⊂ [0,∞)s × E we can assume that the tame sc-retraction
r : U → U satisfies the properties guaranteed by the definition of a tame sc-
Fredholm germ. Moreover, the 1-shifted section σ|O1 : O1 → K1 is also a
tame sc-Fredholm germ (see Remark 3.9), and since Û ⊂ U1 is an open
subset of the 1-shift of U , the retraction r : Û → Û onto r(Û) = Ô and the
tame bundle retraction R covering r also satisfy the properties required in
the definition of tame sc-Fredholm germ for σ|Ô : Ô → K̂. We explain these
properties as we use them.

There exists a sc-germ of neighborhoods Û([0,∞)s × E1, 0) around 0
such that the 0-level Û(0) in the germ is equal to Û and such that the
composition σ ◦ r : Û([0,∞)s × E1, 0)→ F1 possesses a filling (see Defini-
tion 3.6(b))

h : Û([0,∞)s × E
1, 0)→ Û([0,∞)s × E

1, 0)✁ F
1,

where σ means the principal part in F1 of σ. By hypothesis and the con-
struction of Ô, we have x = 0 ∈ f−1(0) ∩ Ô, and so it follows from the form
of g above that

(48) g(0) = 0 ∈ O′.

The sc-germ of neighborhoods around 0 given by

U ′(Rn × [0,∞)s ×K
1, 0) := g

(

Û([0,∞)s × E
1, 0)

)

has 0-level U ′(0) equal to the set open set U ′ = g(Û) above. From now on,
we abbreviate the sc-germs of neighborhoods simply by their 0-level, i.e. by
Û and U ′.
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We claim that the map

h′ := (g ✁ idF1) ◦ h ◦ g−1 : U ′ → U ′
✁ F

1.

is a filling of σ′ ◦ r′ : U ′ → F1. The required properties Definition 3.6(b).(i)–
(iii) of a filling hold for h′ because they hold for h, as we explain now. To
verify (i) for h′, let y′ ∈ O′. Then y := g−1(y′) ∈ Ô, so by (i) for h we have
σ(y) = h(y), which implies σ′(y′) = h′(y′) by definition of σ′ and h′, as re-
quired. To verify (ii), let y′ ∈ U ′ and assume h′(y′) = Γ ′(r′(y′),h′(y′)). Then,
setting y := g−1(y′) ∈ Û , we have h(y) = h′(y′) = Γ (r(y),h(y)). Hence y ∈
Ô by property (ii) for h, so y′ ∈ g(Ô) = O′, as required. We now verify prop-
erty (iii) for h′. Property (iii) for h says that the linearization D0A at 0 of
the map

A : Û → F
1

y 7→ (idF1 − Γ (r(y), ·)) ◦ h(y)

restricts to a linear sc-isomorphism kerD0r → kerΓ (0, ·). We must show
that the map

A′ : U ′ → F
1

y′ 7→ (idF1 − Γ ′(r′(y′), ·)) ◦ h′(y′)

restricts to a linear sc-isomorphism kerD0r
′ → kerΓ ′(0, ·). Note that, by

definition of Γ ′ and by (48), we have

kerΓ ′(0, ·) = kerΓ (g−1(0), ·) = kerΓ (0, ·).

Moreover, from the definition of h′ we have

h′(y′) = h ◦ g−1(y′),

and so by definition of r′ we have

A′ = A ◦ g−1 : U ′ → F
1.

Hence D0A
′ restricts to the desired isomorphism since D0g

−1 restricts to
an isomorphism kerD0r

′ → kerD0r by definition of r′ and (48). Hence h′ is
indeed a filling of σ′ ◦ r′, as claimed.
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To verify that σ′ is a local sc-Fredholm germ, it remains to check the
properties in Definition 3.6(c). Since

σ : Ô → K̂

is a tame sc-Fredholm germ, we have the following: There exists a sc+-section

s : Û → Û ✁ F
1

satisfying s(0) = h(0), a sc-Banach space W, a sc-germ of neighborhoods

Û ′ around 0 in [0,∞)s × R
k−s ×W

for some k ≥ s, and a strong bundle isomorphism

Ψ : Û ✁ F
1 → Û ′

✁ R
k′

×W,

for some k′ ≥ 0, covering a linear sc-isomorphism

ψ : Û → Û ′

of the form

ψ = id[0,∞)s × ψ : [0,∞)s × E
1 → [0,∞)s × R

k−s ×W

for some linear sc-isomorphism

ψ : E1 → R
k−s ×W,

such that the principal part of the section

(49) b := Ψ ◦ (h− s) ◦ ψ−1 : Û ′ → Û ′
✁ R

k′

×W

is a basic germ.
By the hypothesis (44), we can assume that the subspace L ⊂ E∞ satis-

fies ψ(L) ⊂ {0}k−s ×W. We consider ψ(L) as a sc-subspace of W and let W̃
be any sc-complement W̃⊕ ψ(L) = W which exists by [16, Prop. 1.1] since
L is finite dimensional. After fixing any linear isomorphism ψ(L)→ Rn, we
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obtain a linear sc-isomorphism

τ : W = W̃⊕ ψ(L)→ W̃× R
n.

Define

ψ′ := (id[0,∞)s×Rk−s × τ) ◦ ψ ◦ g−1 : U ′ → [0,∞)s × R
k−s × W̃× R

n,

s
′ := (g ✁ idF1) ◦ s ◦ g−1 : U ′ → U ′

✁ F
1,

Û ′′ := ψ′(U ′) = (id[0,∞)s×Rk−s × τ)(Û ′),

Ψ ′ := ((id[0,∞)s×Rk−s × τ)✁ (id
Rk′ × τ))

◦ Ψ ◦ (g−1
✁ idF1) : U ′

✁ F
1 → Û ′′

✁ R
k′

× W̃× R
n.

We claim that the principal part of the section

(50) b′ := Ψ ′ ◦ (h′ − s
′) ◦ ψ′−1 : Û ′′ → Û ′′

✁ R
k′

× (W̃× R
n)

is a basic germ, where here W̃× Rn plays the role of the space W in Defi-
nition 3.6(c). By hypothesis, the principal part b of the map (49) is a basic
germ, which means that, letting

P : Rk′

×W→W

denote projection onto W, we have, for a ∈ [0,∞)s × Rk−s and w ∈W,

P ◦ b(a, w) = w −B(a, w),

where B : Û ′ →W is a sc-smooth germ satisfying B(0) = 0 and the contrac-
tion property (28). Let

P ′ : Rk′

× (W̃× R
n)→ W̃× R

n

be projection onto W̃× Rn. Define

B′ := τ ◦B ◦ (id[0,∞)s×Rk−s × τ)−1 : Û ′′ → W̃× R
n.

Notice from the definitions that we have

P ′ = τ ◦ P × (id
Rk′ × τ)−1.
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Then, for a ∈ [0,∞)s × Rk−s and z ∈ W̃× Rn such that (a, z) ∈ Û ′′, we com-
pute

P ′ ◦ b′(a, z) = τ ◦ P ◦ (id
Rk′ × τ)−1 ◦ π

Rk′×W̃×Rn

◦ Ψ ′ ◦ (h′ − s
′) ◦ ψ′−1(a, z)

= τ ◦ P ◦ π
Rk′×W

◦ Ψ ◦ (h− s) ◦ ψ−1(a, τ−1(z))

= τ ◦ P ◦ b(a, τ−1(z))

= τ(τ−1(z)−B(a, τ−1(z)))

= z −B′(a, z),

so to prove that b′ is a basic germ, it remains to verify that B′ satisfies
the contraction property (28). Since τ is a linear sc-isomorphism, for every
integer m ≥ 0 there exist constants cm, Cm > 0 such that, for all w ∈W, we
have

∥τ(w)∥m ≤ Cm · ∥w∥m,

and for all (a, z) ∈ ([0,∞)s × Rk−s)× (W̃× Rn) we have

∥(idRk × τ)−1(a, z)∥m ≤ cm · ∥(a, z)∥m.

Fix ϵ > 0 and m ≥ 0. Then since B satisfies the contraction property (28),
there exists δ′m > 0 that suffices for B and ϵ′m := ϵ/(Cm · cm). We claim that
δm := δ′m/cm suffices for B′ and ϵ. Indeed, for any elements a ∈ [0,∞)s ×
Rk−s and z, z′ ∈ W̃× Rn satisfying

∥(a, z)∥m, ∥(a, z
′)∥m < δm,

we have ∥(a, τ−1(z))∥m, ∥(a, τ
−1(z′))∥m < cm · δm = δ′m. So, we compute

∥B′(a, z)−B′(a, z′)∥m = ∥τ(B(a, τ−1(z))−B(a, τ−1(z′)))∥m

≤ Cm · ∥B(a, τ−1(z))−B(a, τ−1(z′))∥m

≤ Cm · ϵ
′
m · ∥τ

−1(z)− τ−1(z′)∥m

= ϵ/cm · ∥τ
−1(z − z′)∥m

≤ ϵ · ∥z − z′∥m,

as required. This completes the proof that b′ is a basic germ, and hence that
σ′ is a local sc-Fredholm germ.

We claim that the additional conditions required for σ′ to be a Rn-
sliced sc-Fredholm germ are satisfied by construction. We must check that
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ψ′ : U ′ → Û ′′ is of the required form (30). Consider the projection

T : W = W̃⊕ ψ(L)→ W̃

along ψ(L) ⊂ {0}k−s ×W. We have L⊕K1 = E1 by (46) and since L ⊂ E∞.
Hence the map

ψ
′
:= (idRk−s × T ) ◦ ψ|{0}⊕K1 : K1 → R

k−s × W̃

is a linear sc-isomorphism. Let (p, v, κ) ∈ U ′ ⊂ Rn × [0,∞)s ×K1. By the
form of the map g above, we can write

g−1(p, v, κ) =: (v, ep,v,κ) ∈ [0,∞)s × E
1

for some ep,v,κ ∈ E1. Moreover, we have pr(ep,v,κ) = κ, where pr is the projec-
tion pr : E1 = L⊕K1 → K1 along L. In particular, we have ep,v,κ − κ ∈ L,
from which we obtain a map to {0} × Rn ⊂ W̃× Rn defined by

λ : U ′ → R
n

(p, v, κ) 7→ τ(ψ(ep,v,κ − κ)).

This map is C1 on every level (U ′)m → Rn for m ≥ 0 because g is a C1-
diffeomorphism on every level and the linear sc-isomorphisms τ and ψ are
C∞ on every level. Then we compute

ψ′(p, v, κ) = (id[0,∞)s×Rk−s × τ) ◦ ψ ◦ (v, ep,v,κ)

= (id[0,∞)s×Rk−s × τ) ◦ (id[0,∞)s × ψ) ◦ (v, ep,v,κ)

= (v, (idRk−s × τ) ◦ ψ(ep,v,κ))

= (v, (idRk−s × τ)(ψ(κ) + ψ(ep,v,κ − κ)))

= (v, (idRk−s × T )(ψ(κ)), τ(ψ(ep,v,κ − κ)))

= (v, ψ
′
(κ), λ(p, v, κ)).

This proves that σ′ is a Rn-sliced sc-Fredholm germ. Hence it follows from
Lemma 3.10 that the restriction σ̃′ = σ′|Õ′ : Õ′ → K̃ ′ is a tame sc-Fredholm
germ with sc-Fredholm index ind(σ̃′) = ind(σ′)− n. Moreover, by definition
(29) of index and by the forms of the basic germs (49) and (50), we have
ind(σ′) = ind(σ). Hence ind(σ̃′) = ind(σ)− n. This completes the proof of
the lemma. □
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Remark 4.3. We note some additional properties of the objects constructed
in the proof of Lemma 4.2. These properties are required for the construction
of quotients of polyfolds by group actions in [24].

The sc-Banach space K is given by

K = kerDx(f∂ ◦ r∂) ⊂ E,

where r∂ : U ∩ ({0} × E)→ U ∩ ({0} × E) is the boundary sc-retraction as-
sociated to a tame sc-retraction r : U → U onto r(U) = O from Lemma 4.1.
There is a sc-complement L of kerDxf∂ in TxO∂ , and moreover L is a
sc-complement of K in E. The change of coordinates g : [0,∞)s × E1 →
Rn × [0,∞)s ×K1, which is defined in a neighborhood of x, is of the form

g(v, e) = (f ◦ r(v, e), v, pr(e))

where pr : E = L⊕K→ K is projection along L. In particular, in the case
x = 0, the sc-differential of g satisfies

D0g({0} × L) = R
n × {0} × {0}

and

D0g({0} ×K
1) = {0} × {0} ×K

1.

5. Slicing tame sc-Fredholm sections with transverse

constraints

The theory of sc-Fredholm sections σ : B → E (Definition 5.3) of tame strong
bundles ρ : E → B (Definition 5.2) over tameM -polyfolds B (Definition 5.1)
is developed in [16]. In this section, we introduce the new stronger notion of
a tame sc-Fredholm section (Definition 5.4), which is the same as a standard
sc-Fredholm section with the stronger condition that the local sc-Fredholm
germs (Definition 3.6) can be chosen to be the tame sc-Fredholm germs
introduced in Definition 3.7: roughly, we require that the change of coordi-
nates that brings the local fillers into basic germ form can be chosen to be
a linear sc-isomorphism on the base. We also introduce the new notion of
slices B̃ ⊂ B (Definition 5.7) of sc-Fredholm sections σ, which are subspaces
of B in which the local sc-Fredholm germs are Rn-sliced (Definition 3.8):
roughly, the dependence of the change of coordinates to basic germ form on
the normal directions to B̃ in B splits off into a Rn-factor in the codomain.

Tame sc-Fredholm sections and slices are the main objects of interest in
this paper. In this section, we prove our main Theorems 5.8, 5.10. Roughly,
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given a tame sc-Fredholm section σ : B → E and a sc-smooth map f : B → Y
to a finite dimensional manifold Y that is σ-compatibly transverse (Defini-
tion 5.9) to a submanifold N ⊂ Y , then f−1(N) is a slice of σ. Moreover,
given a slice B̃ ⊂ B of a sc-Fredholm section σ : B → E , the restriction σ|B̃
is tame sc-Fredholm. The generalizations of the concepts and theorems in
this section to the ep-groupoid case, which are required to handle isotropy
in applications, are developed in Section 6.

In Section 5.1, we explain why the Cauchy-Riemann section

∂J : B → E

is tame sc-Fredholm and why evaluation maps

ev : B → Y

at marked points are ∂J -compatibly transverse to every submanifold N ⊂ Y .
We begin with a review of standard M -polyfold notions.

Definition 5.1. [16, Defs. 2.6, 2.19]

• A tame M-polyfold chart on a topological space B is a tuple

(V, φ, (O, C,E)),

where V ⊂ B is an open set, φ : V → O is a homeomorphism, and (O, C,E)
is a tame sc-retract (Definition 3.1).

• A tame M-polyfold B is a Hausdorff paracompact topological space
together with an equivalence class of tame sc-smooth atlases. A tame sc-
smooth atlas consists of a cover of B by tame M -polyfold charts whose
transition maps are sc-smooth. Atlases are equivalent if and only if their
union is an atlas.

A tame M -polyfold B carries a filtration by a sequence of topological
spaces

B =
(

B0 ←֓ B1 ←֓ · · ·
)

where the maps Bm → Bm+1 are continuous injections with dense image.
This filtration is provided locally by the sc-structure on the sc-retracts in
charts, and it is independent of the choice of charts due to sc-continuity of
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the transition maps. The smooth points B∞ of B are the subset

B∞ := ∩m≥0Bm.

By forgetting about the first m ≥ 0 levels of B, we obtain the m-shift Bm of
B, which is the M -polyfold

Bm :=
(

Bm ←֓ Bm+1 ←֓ · · ·
)

with charts given by restricting charts on B to the m-shift

φ : Vm = V ∩ Bm → Om = O ∩ Em.

Notice that a m-shift does not affect the smooth points, i.e.

B∞ = Bm∞.

The tangent space TxB at a point x ∈ B1 is defined as the set of equiva-
lence classes of tangent vectors in all charts around x, with the equivalence
given by the tangent map of the transition map between charts, which is
a linear isomorphism on every tangent space; see [16, Def. 2.11] for a pre-
cise treatment. The result is a Banach space structure on TxB and, for any
chart (V, φ, (O, C,E)) containing x ∈ V , a tangent mapDxφ : TxV = TxB →
Tϕ(x)O which is a bounded linear isomorphism. If x ∈ B∞ is a smooth point
then φ(x) ∈ O∞ is a smooth point and TxB inherits the structure of a sc-
Banach space from the sc-Banach space Tϕ(x)O.

The reduced tangent space TR
x B [16, Def. 2.20] is defined only for smooth

points x ∈ B∞ as the subspace of TxB such that

(51) Dxφ(T
R
x B) = TR

ϕ(x)O,

where TR
ϕ(x)O is the reduced tangent space to a sc-retract (12). Note that,

since the reduced tangent space to a sc-retract is invariant under sc-
diffeomorphisms of sc-retracts only at smooth points, this global notion of
reduced tangent space TR

x B is well-defined only for smooth points x ∈ B∞.
The degeneracy index dB : B → N0 is defined for x ∈ B as the minimum

over all charts (V, φ, (O, C,E)) containing x ∈ V of the degeneracy index
in the chart dC(φ(x)); see [16, Def. 2.13]. For a smooth point x ∈ B∞, it
is explained in [16, Rmk. 2.4] that there is a global interpretation of this
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quantity:

(52) dB(x) = dim(TxB/T
R
x B) for x ∈ B∞.

We now recall the definition of a tame strong bundle ρ : E → B.

Definition 5.2. [16, Defs. 2.25, 2.26]

• Consider a continuous surjective map ρ : E → B from a topological space
E onto a topological space B such that, for every x ∈ B, the fiber ρ−1(x) =
Ex has the structure of a Banach space. A tame strong bundle chart
for ρ : E → B is a tuple

(ρ−1(V ), Φ, (K,C ✁ F,E✁ F))

in which (K,C ✁ F,E✁ F) is a tame strong bundle retract (Section 3.2)
covering a tame sc-retract (O, C,E), i.e. K → O is a tame strong local
bundle model. In addition, V ⊂ B is the domain of a tame M -polyfold
chart (V, φ, (O, C,E)) and

Φ : ρ−1(V )→ K

is a homeomorphism onto K that covers φ, i.e.

(53) πO ◦ Φ = φ ◦ ρ

holds on ρ−1(V ). Moreover, Φ is linear on the fibers over V , i.e. for all
x ∈ V the map Φ : ρ−1(x)→ π−1

O (φ(x)) is a bounded linear isomorphism
of Banach spaces.

• A tame strong bundle ρ : E → B is a continuous surjective map from a
paracompact Hausdorff space E onto a tameM -polyfold B such that every
fiber has the structure of a Banach space, together with an equivalence
class of tame bundle atlases. A tame bundle atlas consists of a cover
of B by tame strong bundle charts whose transition maps are sc-smooth.
Atlases are equivalent if and only if their union is an atlas.

The tame strong bundle charts on a tame strong bundle ρ : E → B in-
duce a double filtration Em,k for m ≥ 0 and 0 ≤ k ≤ m+ 1 from the double
filtration (24) on the bundle retracts in the charts. From this we distinguish
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the M -polyfolds E [i] for i = 0, 1, by the filtrations

(54) E [i]m = Em,m+i, m ≥ 0.

Both projections

ρ[i] : E [i]→ B

are sc-smooth maps.
There are two notions of smoothness for a section of ρ (see [16, Def. 2.27]),

which correspond to the two projections ρ[i] for i = 0, 1. A section s : B → E
is called a sc-smooth section of ρ if s : B → E [0] is a sc-smooth section of
the bundle ρ[0]. The section s is called a sc+-section of ρ if s(B) ⊂ E [1]
and s : B → E [1] is a sc-smooth section of the bundle ρ[1]. The sc+-sections
become important when perturbating sc-Fredholm sections. They are analo-
gous to compact operators in classical Fredholm theory. In particular, adding
sc+-sections to sc-Fredholm sections preserves the sc-Fredholm property [16,
Thm. 3.2].

We now recall the definition of a sc-Fredholm section σ : B → E .

Definition 5.3. [16, Def. 3.8]

• Consider a section σ : B → E of a tame strong bundle ρ : E → B. Let
x ∈ B∞ be a smooth point. Then a tame strong bundle chart (ρ−1(V ), Φ,
(K,C ✁ F,E✁ F)) for ρ covering a tameM -polyfold chart (V, φ, (O, C,E))
on B is called a sc-Fredholm chart for σ at x if it satisfies x ∈ V and
φ(x) = 0 ∈ O, and if the section

Φ ◦ σ ◦ φ−1 : O → K

of the local bundle model K → O is a local sc-Fredholm germ (Defini-
tion 3.6).

• A sc-Fredholm section σ : B → E of ρ is a section that has the follow-
ing properties:

(1) σ is sc-smooth.
(2) σ is regularizing: x ∈ Bm, σ(x) ∈ Em,m+1 implies x ∈ Bm+1.
(3) For every smooth point x ∈ B∞, there exists a sc-Fredholm chart

for σ at x. The index indx(σ) of σ at x is the index (29) of the local
sc-Fredholm germ in any such chart.

We now introduce the new stronger notion of a tame sc-Fredholm sec-
tion σ : B → E of a tameM -polyfold bundle ρ : E → B. A tame sc-Fredholm
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section is a sc-Fredholm section that is locally tame in the sense of Defini-
tion 3.7.

Definition 5.4.

• Consider a section σ : B → E of a tame strong bundle ρ : E → B. Let
x ∈ B∞ be a smooth point. Then a tame sc-Fredholm chart for σ at
x is a sc-Fredholm chart (Definition 5.3) such that the local sc-Fredholm
germ Φ ◦ σ ◦ φ−1 is in addition a tame sc-Fredholm germ (Definition 3.7).

• A tame sc-Fredholm section σ : B → E of ρ is a sc-Fredholm section
(Definition 5.3) such that there exists a tame sc-Fredholm chart for σ at
every x ∈ B∞.

Remark 5.5. Given a strong bundle ρ : E → B and a sc-Fredholm section
σ : B → E , we obtain the m-shift ρ : Em → Bm and similarly σ : Bm → Em

by restricting domains and codomains to the m-shifts Em and Bm. Perform-
ing this shift preserves all essential features of the polyfold setup. In particu-
lar, σ : Bm → Em is a sc-Fredholm section of the strong bundle ρ : Em → Bm

and the sc-Fredholm index is preserved [16, Cor. 5.1].
Crucially, the zero set of a sc-Fredholm section is preserved under m-

shifts. Indeed, since σ−1(0) ⊂ B∞ by the regularizing property (Def. 5.3(2))
of σ, it follows that

σ−1(0) = σ−1(0) ∩ Bm = σ|−1
Bm(0).

Moreover, compactness of σ−1(0) in the topology of Bm for any fixedm ≥ 0 is
equivalent to compactness in the topology of B∞ (see [16, Thm. 5.3, Cor. 5.1]).
For this reason, we can unambiguously refer to compactness of σ−1(0) with-
out reference to the levels, and m-shifting preserves this compactness.

We now introduce the new notions of a slice B̃ ⊂ B of a tameM -polyfold
B, a slice of a tame strong bundle ρ : E → B, and a slice of a sc-Fredholm
section σ : B → E (Definition 5.7). Roughly, a slice is a subspace B̃ such
that for every point x ∈ B̃ there is a tame M -polyfold chart that identifies a
neighborhood of x in B with a Rn-sliced sc-retract (Definition 3.2), and such
that the induced tame sc-retract (14) is identified with a neighborhood of x
in B̃. To be a slice of the sc-Fredholm section σ, we additionally require that,
at smooth points x ∈ B̃∞ = B̃ ∩ B∞, we can choose the chart on B such that
it is covered by a bundle chart for ρ in which σ is a Rn-sliced sc-Fredholm
germ (Definition 3.8). In such a chart, the induced tame sc-Fredholm germ
(see Lemma 3.10) is identified with the restriction of σ to B̃ near x. Globally,
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the result is that a slice of σ is a finite codimensionM -polyfold B̃ embedded
in B that is compatible with the local fillers for σ in such a way that σ
restricts to a tame sc-Fredholm section over B̃ (Theorem 5.8(III)).

We first introduce the slice notions in charts.

Definition 5.6.

• Consider a subspace B̃ ⊂ B of a tameM -polyfold B. A Rn-sliced chart
with respect to B̃ ⊂ B is a tame M -polyfold chart on B of the form

(55) (V, φ, (O,Rn × C,Rn × E))

where (O,Rn × C,Rn × E) is a Rn-sliced sc-retract (Definition 3.2) with
induced tame sc-retract Õ = O ∩ ({0} × C) (see (14)) satisfying

(56) Õ = φ(B̃ ∩ V ).

• Consider a tame strong bundle ρ : E → B. A Rn-sliced bundle chart
for ρ with respect to B̃ ⊂ B is a tame strong bundle chart for ρ of the
form

(57) (ρ−1(V ), Φ, (K,Rn × C ✁ F,Rn × E✁ F))

covering a Rn-sliced chart with respect to B̃ ⊂ B as in (55). In particu-
lar, the tame bundle retract (K,Rn × C ✁ F,Rn × E✁ F) is a Rn-sliced
bundle retract (Definition 3.4) covering the sc-retract O from (55).

• Consider a section σ : B → E of ρ and a smooth point

x ∈ B̃∞ = B̃ ∩ B∞.

Then a Rn-sliced sc-Fredholm chart for σ at x with respect to
B̃ ⊂ B is a Rn-sliced bundle chart with respect to B̃ ⊂ B as in (57) that
satisfies x ∈ V and φ(x) = 0, and such that the section

Φ ◦ σ ◦ φ−1 : O → K

is a Rn-sliced sc-Fredholm germ (Definition 3.8).

The following global notions of slices of tame M -polyfolds, tame strong
bundles, and sc-Fredholm sections require covers of B̃ by Rn-sliced charts.
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Definition 5.7.

• Consider a tame M -polyfold B. A subspace

B̃ ⊂ B

is called a slice of B if for every x ∈ B̃ there exists an integer

nx = codimx(B̃ ⊂ B) ≥ 0

and a Rnx-sliced chart with respect to B̃ ⊂ B that contains x. For each
x ∈ B̃1 = B̃ ∩ B1, the integer codimx(B̃ ⊂ B) is called the codimension
of the slice at x (and it is well-defined at x and locally constant in B̃,
by Theorem 5.8).

• Consider a tame strong bundle ρ : E → B. A slice B̃ ⊂ B of B is called a
slice of the bundle ρ if for every x ∈ B̃ there exists a Rnx-sliced bundle
chart for ρ with respect to B̃ ⊂ B that contains x.

• Consider a sc-Fredholm section σ : B → E of ρ. A slice B̃ ⊂ B of the
bundle ρ is called a slice of the sc-Fredholm section σ if for every
x ∈ B̃∞ = B̃ ∩ B∞ there exists a Rnx-sliced sc-Fredholm chart for σ at x
with respect to B̃ ⊂ B.

We are now equipped to prove one of the main theorems (Theorem 5.8),
which says that slices of tameM -polyfolds are tameM -polyfolds with locally
constant codimension, bundles restrict to slices, and sc-Fredholm sections
restrict to slices with a drop in Fredholm index given by the codimension.
The essential point in the proof is that sliced charts with respect to B̃ ⊂
B induce tame M -polyfold charts on B̃, sliced bundle charts induce tame
bundle charts on the restricted bundle map, and sliced sc-Fredholm charts
induce tame sc-Fredholm charts on the restricted section. This is the M -
polyfold analog of the classical Fact 1.1 (restrictions of Fredholm sections to
sub-Banach manifolds).

Theorem 5.8. (Restrictions of sc-Fredholm sections to slices)

(I) Consider a tameM -polyfold B and a slice B̃ ⊂ B (Definition 5.7). Then,
B̃ is a tame M -polyfold with atlas induced by the sliced charts with re-
spect to B̃ ⊂ B. For x ∈ B̃1, the codimension codimx(B̃ ⊂ B) is well-defined
and locally constant in B̃, i.e. it equals codimx′(B̃ ⊂ B) for every x′ in an
open neighborhood of x in B̃. For x ∈ B̃∞, the degeneracy index satisfies
dB̃(x) = dB(x).
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(II) Consider, in addition, a tame strong bundle ρ : E → B. If B̃ ⊂ B is a
slice of ρ, then the restriction ρ̃ := ρ|Ẽ : Ẽ := ρ−1(B̃)→ B̃ is a tame strong
bundle with atlas induced by the sliced bundle charts for ρ with respect to
B̃ ⊂ B.

(III) Consider, in addition, a sc-Fredholm section σ : B → E. If B̃ ⊂ B is
a slice of σ, then the restriction σ̃ = σ|B̃ : B̃ → Ẽ is a tame sc-Fredholm
section (Definition 5.4) of ρ̃ with tame sc-Fredholm charts induced by the
sliced sc-Fredholm charts for σ with respect to B̃ ⊂ B. For x ∈ B̃∞, the
index satisfies indx(σ̃) = indx(σ)− codimx(B̃ ⊂ B). If σ−1(0) is compact
and B̃∞ ⊂ B∞ is closed, then σ̃−1(0) is compact.

Proof. Proof of (I): By Definition 5.7 of a slice, for every x ∈ B̃ there is an

integer nx ≥ 0 and a Rnx-sliced chart with respect to B̃ ⊂ B that contains
x. We will show that each of these sliced charts induces a tame M -polyfold
chart on B̃. The transition maps between the tame charts on B̃ constructed
in this way are sc-smooth because they are restrictions of the sc-smooth
transition maps between the sliced charts on B. Hence we have a tame sc-
smooth atlas on B̃, providing the claimed tame M -polyfold structure.

Given a Rn-sliced chart

(58) (V, φ, (O,Rn × C,Rn × E))

with respect to B̃ ⊂ B, we must construct the claimed induced tame M -
polyfold chart on B̃. Use the notation

Ṽ := B̃ ∩ V and φ̃ := φ|Ṽ : Ṽ → φ(Ṽ ),

and recall the induced tame sc-retract (Õ, C,E) from Lemma 3.3. We claim
that the tuple

(59) (Ṽ , φ̃, (Õ, C,E))

is a tameM -polyfold chart on B̃. Indeed, the set Ṽ is open in B̃ since V ⊂ B
is open and B̃ ⊂ B has the subspace topology. Since φ is a homeomorphism,
it follows that its restriction φ̃ is a homeomorphism onto its image, which is
Õ by (56) and definition of Ṽ . This completes the construction of the tame
M -polyfold structure on B̃.
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Let x ∈ B̃1. We now verify that the codimension

nx = codimx(B̃ ⊂ B)

of the slice B̃ ⊂ B at x is well-defined and is locally constant in B̃. There
exists a Rnx-sliced chart as in (58) with x ∈ V . It suffices to show that, for all
y ∈ Ṽ1, we have TyB/TyB̃ ∼= Rnx . Indeed, this proves that the codimension
nx is independent of the sliced chart around x, hence is well-defined, and
moreover that it is constant in the open neighborhood Ṽ of x in B̃. For every
y ∈ Ṽ1, the tangent map

Dyφ : TyV → Tϕ(y)O

of the chart map φ at y is a linear isomorphism. Moreover, Dyφ restricts to
a linear isomorphism Dyφ̃ : TxṼ → Tϕ(y)Õ. Hence Dyφ induces an isomor-
phism

TyV/TyṼ ∼= Tϕ(y)O/Tϕ(y)Õ.

Thus

TyB/TyB̃ = TyV/TyṼ ∼= R
nx

holds by (17). Hence codimy(B̃ ⊂ B) = nx holds for all y ∈ Ṽ1.
We now prove the claimed degeneracy index formula. Let x ∈ B̃∞. Since

x is a smooth point, the reduced tangent space TR
x B is well-defined and

Dxφ restricts to a sc-isomorphism TR
x B → TR

ϕ(x)O. Hence Dxφ induces a

sc-isomorphism TxB/T
R
x B
∼= Tϕ(x)O/T

R
ϕ(x)O. Similarly, Dxφ̃ induces a sc-

isomorphism TxB̃/T
R
x B̃
∼= Tϕ(x)Õ/T

R
ϕ(x)Õ. Then by (18), the inclusion Õ ⊂

O induces an isomorphism

Tϕ(x)Õ/T
R
ϕ(x)Õ

∼= Tϕ(x)O/T
R
ϕ(x)O.

It follows that the inclusion B̃ ⊂ B induces an isomorphism

TxB̃/T
R
x B̃
∼= TxB/T

R
x B.

So by the global description (52) of degeneracy index at smooth points,
we conclude dB̃(x) = dim(TxB̃/T

R
x B̃) = dim(TxB/T

R
x B) = dB(x). This com-

pletes the proof of the statements in (I).

Proof of (II): By definition of a slice of a bundle, there is a cover of

B̃ by sliced bundle charts with respect to B̃ ⊂ B. We will show that each
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of these sliced bundle charts induces a tame strong bundle chart for ρ̃ =
ρ|Ẽ : Ẽ := ρ−1(B̃)→ B̃. The transition maps between the tame charts for ρ̃
constructed in this way are sc-smooth because they are restrictions of the
transition maps between the sliced bundle charts for ρ. Hence we have a
bundle atlas for ρ̃, providing the claimed tame strong bundle structure.

Given a Rn-sliced bundle chart

(60) (ρ−1(V ), Φ, (K,Rn × C ✁ F,Rn × E✁ F))

for ρ with respect to B̃ ⊂ B that covers a Rn-sliced chart with respect to
B̃ ⊂ B as in (58), we must construct the claimed induced tame strong bundle
chart on ρ̃. Let (K̃, C ✁ F,E✁ F) denote the induced tame bundle retract
from Lemma 3.5 and use the notation

Φ̃ := Φ|ρ̃−1(Ṽ ) : ρ̃
−1(Ṽ )→ Φ(ρ̃−1(Ṽ )).

We claim that the tuple

(61) (ρ̃−1(Ṽ ), Φ̃, (K̃, C ✁ F,E✁ F))

is a tame strong bundle chart for ρ̃ that covers the inducedM -polyfold chart
(59). Since πO ◦ Φ = φ ◦ ρ by (53) it follows by restriction that πÕ ◦ Φ̃ =

φ̃ ◦ ρ̃ on ρ̃−1(Ṽ ). It follows that im(Φ̃) = π−1
O (Õ) = K̃, where the second

equality holds by (26). Hence Φ̃ is a homeomorphism onto its image K̃ be-
cause it is the restriction of the homeomorphism Φ, and similarly Φ̃ is linear
on fibers as the restriction of Φ. This completes the proof of (II).

Proof of (III): The final statement about compactness of the zero sets

holds because σ̃−1(0) = σ−1(0) ∩ B̃∞ is the intersection of a compact set and
a closed subset of B∞.

We proceed to verify that σ̃ = σ|B̃ : B̃ → Ẽ is a tame sc-Fredholm section
of ρ̃. The section σ̃ is sc-smooth and regularizing because it is the restriction
of the section σ. So to prove that σ̃ is a tame sc-Fredholm section it remains
to show that there exists a tame sc-Fredholm chart (Definition 5.4) for σ̃ at
every smooth point x ∈ B̃∞. Since B̃ is a slice of the sc-Fredholm section σ,
there exists a Rnx-sliced sc-Fredholm chart for σ at x with respect to B̃ ⊂ B.
This is a Rnx-sliced bundle chart as in (60) such that the local sc-Fredholm
germ Φ ◦ σ ◦ φ−1 is Rnx-sliced and such that φ(x) = 0.

We claim that the tame bundle chart (61) is a tame sc-Fredholm chart
for σ̃ at x. This requires that the local section Φ̃ ◦ σ̃ ◦ φ̃−1 : Õ → K̃ is a tame
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sc-Fredholm germ, which follows from Lemma 3.10 since

Φ ◦ σ ◦ φ−1 : O → K

is a Rnx-sliced sc-Fredholm germ. Moreover, Lemma 3.10 and Def. 5.3(3)
provide the sc-Fredholm index formula

indx(σ̃) = ind(Φ̃ ◦ σ̃ ◦ φ̃−1) = ind(Φ ◦ σ ◦ φ−1)− nx = indx(σ)− nx.

This completes the proof that σ̃ is a tame sc-Fredholm section satisfying the
claimed index formula. □

We now prepare for the proof of our main theorem (Theorem 5.10), which
is the M -polyfold analog of the classical Fact 1.2 (transverse preimages are
sub-Banach manifolds). The result is roughly as follows. Consider a tame sc-
Fredholm section σ : B → E of a tameM -polyfold bundle ρ : E → B. Given a
sc-smooth map f : B → Y to a finite dimensional smooth manifold Y that is
σ-compatibly transverse (Definition 5.9) to a submanifold N ⊂ Y , we prove
that the restriction of σ to the preimage f−1(N) is a tame sc-Fredholm
section. The notion of σ-compatible transversality requires compatibility
between the map f , the submanifold N , and the coordinate changes that
bring the local fillers of σ into basic germ form.

All necessary compatibility is satisfied in applications. In particular, eval-
uation maps f = ev at marked points are ∂J -compatibly transverse to every
submanifold, where ∂J is the Cauchy-Riemann section; see Section 5.1. We
now introduce the precise definition of σ-compatibly transverse.

Definition 5.9. Consider a tame M -polyfold B, a smooth manifold Y to-
gether with a codimension-n submanifold N ⊂ Y , and a sc-smooth map
f : B → Y . Then f is called transverse to N if

(62) Dxf(T
R
x B) + Tf(x)N = Tf(x)Y

holds for all x ∈ f−1(N) ∩ B∞,
Suppose that f is transverse to N , and consider in addition a tame

sc-Fredholm section σ : B → E (Definition 5.4) of a tame strong bundle ρ :
E → B. Then f is called σ-compatibly transverse to N if, for all points
x ∈ f−1(N) ∩ B∞, there exists a tame sc-Fredholm chart (Definition 5.4) for
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σ at x, denoted

(ρ−1(V ), Φ, (K, [0,∞)s × E✁ F,Rs × E✁ F)),

covering a tame M -polyfold chart (V, φ, (O, [0,∞)s × E,Rs × E)) on B such
that the tame sc-Fredholm germ (Definition 3.7)

Φ ◦ σ ◦ φ−1 : O → K

satisfies the following property: There exists a choice of sc-Banach space W

and linear sc-isomorphism

ψ : E→ R
k−s ×W

satisfying the conditions in Definition 3.7 of tame sc-Fredholm germ such
that, in addition, there exists a sc-complement L of the subspace

(Dxf)
−1(Tf(x)N) ∩ TR

x B ⊂ T
R
x B

satisfying

(63) ψ ◦Dxφ(L) ⊂ {0}
k−s ×W.

We are now equipped to prove the main theorem.

Theorem 5.10. (Transverse preimages are slices of sc-Fredholm
sections)

(I) Consider a tame M -polyfold B, a smooth manifold Y together with a
codimension-n submanifold N ⊂ Y , and a sc-smooth map

f : B → Y.

Assume that f is transverse to N (Definition 5.9).
Then, there exists an open neighborhood

B̃ ⊂ f−1(N) ∩ B1

of f−1(N) ∩ B∞ such that B̃ is a slice of B1 with codimx(B̃ ⊂ B
1) = n for

every x ∈ B̃1 = B̃ ∩ B2. In particular, B̃ is a tame M -polyfold with degen-
eracy index satisfying dB̃(x) = dB(x) for all x ∈ B̃∞.
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(II) Consider, in addition, a tame strong bundle ρ : E → B. Then, there
exists a possibly smaller neighborhood B̃ in (I) that is a slice of the bundle
ρ|E1 : E1 → B1. In particular, the restriction

ρ̃ := ρ|Ẽ : Ẽ := (ρ|E1)−1(B̃)→ B̃

is a tame strong bundle.

(III) Consider, in addition, a tame sc-Fredholm section σ : B → E (Defi-
nition 5.4) of ρ. Assume that f is σ-compatibly transverse to N (Defini-
tion 5.9). Then, there exists a possibly smaller neighborhood B̃ in (II) that
is a slice of the tame sc-Fredholm section σ|B1 : B1 → E1. In particular, the
restriction

σ̃ := σ|B̃ : B̃ → Ẽ

is a tame sc-Fredholm section of ρ̃ with index satisfying

indx(σ̃) = indx(σ)− n

for all x ∈ B̃∞. If N is closed as a subset of Y and σ−1(0) is compact, then
σ̃−1(0) is compact.

Proof. Proof of (I): For every x ∈ f−1(N) ∩ B∞ we will construct a Rn-sliced

chart (Definition 5.6) with respect to f−1(N) ∩ B1 ⊂ B1 that contains x.
Then we define B̃ to be the union of the domains of these charts intersected
with f−1(N) ∩ B1.

Let x ∈ f−1(N) ∩ B∞. Let Z ⊂ Y be the domain of a manifold chart
Z

∼
−→ Rn+dimN on Y containing f(x) ∈ N that identifies N ∩ Z with {0}n ×

RdimN . Let γ : Z → Rn be the smooth map given in the chart by the pro-
jection Rn × RdimN → Rn. Then 0 = γ(f(x)) is a regular value of γ and

(64) γ−1(0) = N ∩ Z.

In particular, we have

(65) Tf(x)N = kerDf(x)γ.

Then f−1(Z) is an open neighborhood of x in B. Choose V ⊂ f−1(Z) so
that, in addition, there is a tame M -polyfold chart

(66) (V, φ, (O, [0,∞)s × E,Rs × E))
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on B satisfying φ(x) ∈ {0}s × E. Set

x := φ(x).

By definition (51) of the reduced tangent space TR
x B, we have

Dxφ(T
R
x B) = TR

x O.

So, since f is transverse to N , we conclude from (62) that we have

(67) Dxf ◦Dxφ
−1(TR

x O) + Tf(x)N = Tf(x)Y.

We claim that the map

f := γ ◦ f ◦ φ−1 : O → R
n

satisfies the hypotheses of Lemma 4.2(I) at x. Let O∂ := O ∩ ({0}s × E)
denote the boundary sc-retract associated to O (see Lemma 4.1) and con-
sider the restriction f

∂
:= f |O∂

. Recall from (39) that we have TR
x O = TxO∂ .

Then the tangent mapDxf∂ : TxO∂ → T0R
n = Rn is surjective by (67), (65),

and since 0 is a regular value of γ. Hence, the hypotheses of Lemma 4.2(I)
are indeed satisfied, yielding slice coordinates around x with respect to
(f−1(0) ∩ O1) ⊂ O1. Precisely, this means that we obtain a sc-Banach space
K, a Rn-sliced sc-retract (Definition 3.2)

(68) (O′,Rn × [0,∞)s ×K
1,Rn × R

s ×K
1),

an open set Ô ⊂ O1, and a sc-smooth diffeomorphism

g : Ô → O′

such that the induced tame sc-retract

Õ′ = O′ ∩ ({0}n × [0,∞)s ×K
1)

satisfies

(69) g(f−1(0) ∩ Ô) = Õ′.

Set

V̂ := φ−1(Ô) and φ̂ := g ◦ φ|
V̂
: V̂ → O′.
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Then

(70) (V̂ , φ̂, (O′,Rn × [0,∞)s ×K
1,Rn × R

s ×K
1))

is an M -polyfold chart on B1.
At this point, for every x ∈ f−1(N) ∩ B∞, we have constructed an M -

polyfold chart on B1 with domain V̂x ⊂ B
1 containing x ∈ V̂x. Define

(71) B̃ :=
⋃

x∈f−1(N)∩B∞

V̂x ∩ f
−1(N).

We claim that B̃ ⊂ B1 is a slice. We must show that the chart (70) is a
Rn-sliced chart (Definition 5.6) with respect to B̃ ⊂ B1. The sc-retract (68)
is given as Rn-sliced by Lemma 4.2(I), so it remains to show that (56) holds,
which in the notation of this proof is the statement Õ′ = φ̂(B̃ ∩ V̂ ). Let
p ∈ Õ′. By (69) and the definition of f , we have φ̂−1(p) = φ−1 ◦ g−1(p) ∈

(γ ◦ f)−1(0) ⊂ f−1(N). Hence we have φ̂−1(p) ∈ V̂ ∩ f−1(N) ⊂ B̃ ∩ V̂ . To
see the reverse inclusion, let p ∈ φ̂(B̃ ∩ V̂ ). By (69), we must show that
f(g−1(p)) = 0. From the definitions, we compute

f ◦ g−1(p) = γ ◦ f ◦ φ̂−1(p) ∈ γ(f(B̃ ∩ V̂ )) ⊂ γ(N ∩ Z) = {0},

as required. Hence (70) is indeed a Rn-sliced chart with respect to B̃ ⊂ B1.
This proves that B̃ ⊂ B1 is a slice (Definition 5.7). Hence B̃ is a tame M -
polyfold with the claimed degeneracy index by Theorem 5.8. Moreover, the
existence of a Rn-sliced chart around every y ∈ B̃ proves the claim that
codimy(B̃ ⊂ B

1) = n for every y ∈ B̃1. This completes the proof of the state-
ments (I).

Proof of (II): To prove that B̃ is a slice of the bundle ρ|E1 : E1 → B1, for

every x ∈ B̃ we must construct a sliced bundle chart for ρ|E1 with respect to
B̃ ⊂ B1. We can choose the tame M -polyfold chart (66) so that it is covered
by a tame strong bundle chart

(72) (ρ−1(V ), Φ, (K,C ✁ F,E✁ F))

for ρ. Note that this may require shrinking the open neighborhood V ⊂ B
of x, and so the resulting slice B̃ of B1 defined by the formula (71) may be
smaller than in part (I).
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The tame bundle retract (K,C ✁ F,E✁ F) covers the tame sc-retract
O. Hence Lemma 4.2(II) yields a Rn-sliced bundle retract

(K ′,Rn × [0,∞)s ×K
1
✁ F

1,Rn × R
s ×K

1
✁ F

1)

that covers the sliced sc-retract (68) and satisfies

(g ✁ idF1)(K̂) = K ′,

where K̂ ⊂ K is the preimage of Ô in the local bundle model K1 → O1. Set

Φ̂ := (g ✁ idF1) ◦ Φ|
ρ|−1

E1 (V̂ ) : ρ|
−1
E1 (V̂ )→ K ′.

Then the desired sliced bundle chart for ρ|E1 with respect to B̃ ⊂ B1 is the
tuple

(73) (ρ|−1
E1 (V̂ ), Φ̂, (K ′,Rn × [0,∞)s ×K

1
✁ F

1,Rn × R
s ×K

1
✁ F

1)).

This proves that B̃ ⊂ B1 is a slice of the bundle ρ|E1 . The restriction ρ̃ :
ρ|−1

E1 (B̃)→ B̃ is then a tame strong bundle by Theorem 5.8(II).

Proof of (III): To prove that B̃ is a slice of the tame sc-Fredholm section

σ|B1 : B1 → E1, for every x ∈ B̃∞ we must construct a sliced sc-Fredholm
chart for σ|B1 at x with respect to B̃ ⊂ B1. Since f is σ-compatibly transverse
to N , we can assume that the tame strong bundle chart (72) is also a tame
sc-Fredholm chart for σ at x such that we can choose ψ,W, and L ⊂ TR

x B
satisfying (63). Note that this may require shrinking the open neighborhood
V of x, and so the resulting slice B̃ of ρ|E1 defined by the formula (71) may
be smaller than in parts (I) and (II).

We now show that W, ψ, and L′ := Dxφ(L) satisfy the hypotheses of
Lemma 4.2(III). Indeed, by (63), L is a sc-complement of the sc-subspace

A := (Dxf)
−1(Tf(x)N) ∩ TR

x B

in TR
x B, and so we have the sc-splitting

(74) Dxφ(L)⊕Dxφ(A) = TR
x O.
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Recall from (39) that we have TR
x O = TxO∂ . Then from the definitions

and (65), we compute

Dxφ(A) = Dxφ
(

(Dxf)
−1(Tf(x)N) ∩ TR

x B
)

= Dxφ
(

(Dxf)
−1(kerDf(x)γ)

)

∩ TR
x O

= kerDxf ∩ T
R
x O

= kerDxf∂ ,

and so by (74) the space L′ = Dxφ(L) is indeed a sc-complement of kerDxf∂
in TxO∂ , as required. Moreover, the required condition (44) holds for L′

by (63).
Hence, Lemma 4.2(III) asserts that the section

σ′ := (g ✁ idF1) ◦ σ ◦ g−1 : O′ → K ′

is a Rn-sliced sc-Fredholm germ, which means that (73) is a Rn-sliced sc-
Fredholm chart. This proves that B̃ is a slice of σ|B1 . The restriction σ̃ : B̃ →
Ẽ is then a tame sc-Fredholm section satisfying the claimed index formula
by Theorem 5.8(III).

Since N ⊂ Y is closed it follows that f−1(N) ⊂ B is closed, so B̃∞ =
f−1(N) ∩ B∞ is closed in B∞. Hence if σ−1(0) is compact then it follows
from the final statement of Theorem 5.8(III) that σ̃−1(0) is compact. □

5.1. Example: The Cauchy-Riemann section and evaluation maps
at marked points

Consider a symplectic manifold (Y, ω), a codimension-n submanifold N ⊂ Y,
and an ω-compatible almost complex structure J on Y .

In applications, the M -polyfold B in Theorem 5.10 (or, in the presence
of isotropy, the ep-groupoid X in Corollary 6.8) is a space of maps Σ →
Y modulo reparameterization of the domain Σ, where Σ varies in some
Deligne-Mumford space of Riemann surfaces, and

σ = ∂J : B → E

is the Cauchy-Riemann section associated to J .
For examples of Cauchy-Riemann sections constructed in the polyfold

setting, see the Gromov-Witten polyfolds in [15], the Symplectic Field The-
ory polyfolds in [5][6][7][8][9], the simplified model for Hamiltonian Floery
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theory polyfolds in [22], and the polyfolds for pseudoholomorphic disks with
boundary on a Lagrangian in [17].

We consider the evaluation map

f = ev : B → Y

at a marked point5 that varies in the domains Σ. The purpose of this section
is to explain the following properties of this setup:

• σ is a tame sc-Fredholm section (Definition 5.4),

• f is σ-compatibly transverse to N (Definition 5.9).

To see that σ is a tame sc-Fredholm section, we consider a smooth point
x ∈ B∞ and explain why σ is a tame sc-Fredholm germ (Definition 3.7) in
the chart constructed around x when building the polyfold B. The tame
sc-retract

O ⊂ [0,∞)s × R
t ×D × E

is homeomorphic to the image of the pregluing map near x. Here the [0,∞)s-
factor is gluing parameters near the Morse-type breakings of x, the Rt-factor
is gluing parameters near the nodal points of x, the space D is variations of
the complex structure on the domain Σ of x (i.e. tangent directions to the
Deligne-Mumford space), and the sc-Banach space E corresponds to varying
the map x while preserving the matching conditions at nodes and breaking
points. The tame bundle retract

K ⊂ [0,∞)s × R
t ×D × E✁ F

is homeomorphic to the image of the pregluing map in the fibers near x.
From this local bundle model K → O we obtain a tame M -polyfold chart
on B with domain V ⊂ B and chart map φ : V → O where x ∈ V is identified
with φ(x) = 0 ∈ O. It is covered by a tame strong bundle chart Φ : E|V → K.

The section

Φ ◦ σ ◦ φ−1 : O → K

is a local sc-Fredholm germ (Definition 3.6), and moreover the natural
change of coordinates of the filling to basic germ form satisfies the required

5The evaluation map at k marked points B → Y k can be treated similarly; we
consider a single marked point here for simplicity.
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conditions of a tame sc-Fredholm germ (Definition 3.7). Indeed, a filling

h : [0,∞)s × R
t ×D × E→ [0,∞)s × R

t ×D × E✁ F

of Φ ◦ σ ◦ φ−1 is constructed as in [15, Sec. 4.5]. The change of coordinates
ψ on the domain of the filling h that brings h into basic germ form (Defini-
tion 3.6(c)) is obtained as follows; see [15, Prop. 4.8] for details. Let

P := ker(D0h) ∩ ({0}s+t × {0} × E)

denote the kernel of the linearization of h at 0 in the directions E. Note
that P is finite dimensional since D0h is a sc-Fredholm operator. Then, the
sc-Banach space W and linear sc-isomorphism

ψ : E′ := R
t ×D × E→ R

k−s ×W

required in Definition 3.7 are obtained by choosing any sc-splitting E =
P ⊕W and linear isomorphism D × P ∼= Rk−t−s to obtain the linear sc-
isomorphism

ψ : E′ = R
t ×D × P ⊕W→ R

t × R
k−t−s ×W.

That is, the linear sc-isomorphism ψ = id[0,∞)s × ψ is a suitable choice of
the sc-diffeomorphism in Definition 3.6(c) of local sc-Fredholm germ, so in
particular Φ ◦ σ ◦ φ−1 is a tame sc-Fredholm germ. It follows that σ = ∂J is
a tame sc-Fredholm section.

Proposition 5.11. f is σ-compatibly transverse to N .

Proof. Suppose x ∈ f−1(N) ∩ B∞. To show that f is σ-compatibly trans-
verse to N at x, we now construct a sc-subspace L ⊂ TR

x B which satisfies
the required conditions, in particular condition (63).

Let Z be any complement of Tf(x)N in Tf(x)Y . First we claim that it
suffices to construct L ⊂ TR

x B satisfying

(i) Dxf(L) = Z and Dxf : L→ Z is an isomorphism,

(ii) Dxφ(L) ⊂ {0}
s+t × {0} × E,

(iii) Dxφ(L) ∩ P = {0}.

Observe that f is transverse to N at x by (i); indeed, the required spanning
property (62) holds since Dxf(L) + Tf(x)N = Tf(x)Y . Moreover, we claim
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that L is a sc-complement of A := (Dxf)
−1(Tf(x)N) ∩ TR

x B in TR
x B. Note

that the linear isomorphism Dxf |L : L→ Z is automatically sc-continuous
because all norms on finite dimensional spaces are equivalent. Consider
the projection π : Tf(x)Y = Z ⊕ Tf(x)N → Z and the composition π ◦Dxf :
TR
x B → Z. Then we have A = ker(π ◦Dxf), and moreover π ◦Dxf maps L

isomorphically onto Z. Hence the sc-splitting L⊕ A = TR
x B holds because

the coordinate projections are given by the sc-operators ΠL := (Dxf)|
−1
L ◦

(π ◦Dxf) : T
R
x B → L and (idTR

x B −ΠL) : T
R
x B → A.

Assuming properties (ii) and (iii) of L, we now explain how to choose
W and ψ so that the required property (63) for σ-compatible transversal-
ity holds. By (ii) and the definition of P , we view both Dxφ(L) and P as
subspaces of E. By (iii) and since both Dxφ(L) and P are finite dimen-
sional sc-subspaces of E, their span has a sc-splitting Dxφ(L)⊕ P . Let W

′

be any sc-complement of Dxφ(L)⊕ P in E. Then choose any linear iso-
morphism D × P ∼= Rk−t−s and set W = Dxφ(L)⊕W′. Then, the linear sc-
isomorphism ψ : E′ = Rt ×D × P ⊕W→ Rt × Rk−t−s ×W indeed satisfies
ψ ◦Dxφ(L) ⊂ {0}

k−s ×W, as required.
It remains to construct the sc-subspace L ⊂ TR

x B that satisfies the con-
ditions (i)–(iii). We begin by applying Lemma 5.12 as follows. Note that
Lemma 5.12 is deferred to after this proof. The space E consists of sections
of the pullback tangent bundle of Y along x that have matching asymptotic
conditions at nodes and breaking points. Since P ⊂ E is a finite dimensional
subspace, by Lemma 5.12 (applied to the smooth component of Σ on which
the marked point lies) there exists a neighborhood U of the marked point in
Σ small enough such that the following holds: if ξ ∈ P is a section supported
in U , then ξ = 0. Moreover, the marked point is always in the complement
of the nodes and breakings, so we can choose U disjoint from all such special
points.

Choose any basis {z1, . . . , zn} of the complement Z of Tf(x)N in Tf(x)Y .
For each i = 1, . . . , n, consider a sc-smooth path of the form γi : (−ϵ, ϵ)→ B
through x = γi(0) obtained by deforming x to move the image f(x) of the
marked point in the direction zi, i.e. Dxf(γ

′
i(0)) = zi, while only changing

x in the neighborhood U . The result is that all special points are preserved
along the path, i.e. nodes and breakings do not get glued, and moreover the
complex structure on the domain of x is not varying along the path. Hence
we have

Dxφ(γ
′
i(0)) ∈ {0}

s+t × {0} × E.

Define

L := Span({γ′1(0), . . . , γ
′
n(0)}).
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Then it is clear from the construction that (i) and (ii) hold. Moreover (iii)
holds because every ξ ∈ Dxφ(L) is supported in U by construction of the
γi and hence if ξ ∈ Dxφ(L) ∩ P then ξ = 0 by our choice of U . Note that
L ⊂ TR

x B holds by (ii), since the reduced tangent space TR
x B is defined by

Dxφ(T
R
x B) = TR

0 O ∩ ({0}s × Rt ×D × E). The proof is complete. □

The following lemma was used in the proof of Proposition 5.11.

Lemma 5.12. Consider a smooth manifold Σ and a finite rank vector
bundle V → Σ. Let Γ (V ) denote smooth sections and let q ∈ Σ. Then, if
P ⊂ Γ (V ) is a finite dimensional subspace, there exists an open neighbor-
hood U of q in Σ such that, if ξ ∈ P is supported in U , then ξ = 0.

Proof. We assume that U does not exist and prove that P must then be in-
finite dimensional. We will construct a countable set of linearly independent
elements of P .

Consider any open neighborhood U0 of q. Then there exists some ξ0 ∈
P supported in U0 such that ξ0 ̸= 0. Since ξ0 ̸= 0, there exists an open
neighborhood U1 of q such that ξ0 is not supported in U1 (because if a
smooth section is supported in every neighborhood of a point then it is
identically 0). Note that U0 ⊃ U1 necessarily holds.

Inductively, assume that for some n ≥ 0 we have constructed a nested se-
quence of open neighborhoods U0 ⊃ · · · ⊃ Un+1 and sections ξ0, . . . , ξn such
that, for all 0 ≤ i ≤ n, the section ξi is supported in Ui but is not supported
in Ui+1. Then by our assumption that the claimed open set U does not exist,
there must exist some ξn+1 ∈ P supported in Un+1 such that ξn+1 ̸= 0. Then
let Un+2 be a neighborhood of q on which ξn+1 is not supported. Hence the
inductive hypothesis holds for n+ 1.

This inductive process constructs a section ξn ∈ P for all n ≥ 0 with
support lying in Un but not in Un+1. We claim that the collection {ξn | n ≥
0} is linearly independent, proving the lemma. Indeed, suppose

∑∞
n=0 cn ·

ξn = 0 for some cn ∈ R. Then for every n ≥ 1 the section ξn is supported
in U1, but ξ0 is not supported in U1, hence c0 = 0. Hence

∑∞
n=1 cn · ξn = 0.

Inductively, we conclude that cn = 0 for all n ≥ 0. □

6. Handling isotropy: the ep-groupoid case

In this section, we generalize the main theorems (Theorem 5.8 and Theo-
rem 5.10) to the case of ep-groupoids in Corollary 6.7 and Corollary 6.8. All
of the results in this section follow from the results in the M -polyfold case
in the previous sections.
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We first review tame ep-groupoids (Definition 6.1), bundles over them
(Definition 6.3), and their sc-Fredholm section functors (Definition 6.5), be-
fore we introduce the new notion of tame sc-Fredholm section functors (Def-
inition 6.6) and prove Corollary 6.7 and Corollary 6.8.

A groupoid X = (X,X) is a small category with object set X and mor-
phism set X such that all morphisms are invertible. Associated to any
groupoid are the following structure maps. For a detailed description, see
for example [16, Def. 7.1]. The source map

s : X→ X

and the target map

t : X→ X

send a morphism to its source and target, respectively. The multiplication
map

m : X ×s t X→ X

composes any pair of morphisms such that the source of the first is the target
of the second, and hence m is defined on the fiber product X ×s t X. The
unit map

u : X → X

sends an object to the identity morphism from that object to itself, which
exists and is unique since each self-morphism set is a group. The inverse
map

ι : X→ X

inverts morphisms.

Definition 6.1. [16, Defs. 7.3, 7.6] A tame ep-groupoid X = (X,X) is
a groupoid equipped with tame M -polyfold structures on the object space
X and on the morphism space X satisfying the following properties:

(i) (étale) The source s and target t maps are surjective local sc-
diffeomorphisms,

(ii) The unit map u and the inverse map ι are sc-smooth.
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(iii) (proper) Every x ∈ X possesses an open neighborhood

V (x) ⊂ X

of x such that the map

t : s−1(V (x))→ X

is proper.

(iv) The multiplication map m is sc-smooth, where the fiber product X ×s t

X is equipped with theM -polyfold structure given by [16, Prop. 2.15].
(See Remark 6.2 to compare with the fiber product results in this
paper.)

Remark 6.2. There is an essential difference between the fiber product
results in this paper and the fiber product result in [16, Prop. 2.15] that is
used to give X ×s t X an M -polyfold structure in Definition 6.1(iv).

The M -polyfold structure constructed in [16, Prop. 2.15] requires one of
the maps in the fiber product to be a local sc-diffeomorphism. In the case of
the fiber product X ×s t X from Definition 6.1, both the source map s and
the target map t are local sc-diffeomorphisms.

In this paper, we construct polyfold structures on fiber products over
maps to a finite dimensional smooth manifold (Corollary 7.3). In applica-
tions, these maps will never be local sc-diffeomorphisms because the M -
polyfolds have infinite dimensional tangent spaces.

For an ep-groupoid X = (X,X), the orbit space

(75) |X| = X/ ∼

is the quotient of the object space X by the equivalence relation defined
by x ∼ y if and only if there exists ϕ ∈ X such that s(ϕ) = x and t(ϕ) = y.
That is, to obtain the orbit space, we identify any two objects that have a
morphism between them.

The degeneracy indices dX : X → N0 and dX : X→ N0 are defined as
usual on the M -polyfolds X and X. The induced degeneracy index [16,
Def 7.5]

d|X| : |X| → N0

on the orbit space |X| is defined by d|X|(|x|) = dX(x), and is well-defined
by [16, Prop. 2.7] as discussed above the definition [16, Def 7.5].
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Now we review the notion of a strong bundle over an ep-groupoid X =
(X,X); see [16, Sec. 8.3] for more detail. Consider a strong M -polyfold
bundle

P : E → X

over the object space X of X . Since the source map s is by definition a local
sc-diffeomorphism, an M -polyfold structure on the fiber product X ×s P E
is provided by [16, Prop. 2.15]. Moreover, the projection onto the first factor

π1 : E := X ×s P E → X

is a strong M -polyfold bundle.

Definition 6.3. [16, Def. 8.4] A tame strong bundle over an ep-groupoid
X = (X,X) is a pair (P, µ) of a tame strong bundle

P : E → X

over the object M -polyfold X and a strong bundle map

µ : X ×s P E → E

covering the target map t : X→ X, i.e.

P ◦ µ = t ◦ π1,

and which satisfies

(i) µ(1x, e) = e for all x ∈ X and e ∈ Ex,

(ii) µ(g ◦ h, e) = µ(g, µ(h, e)) for all g, h ∈ X and e ∈ E satisfying s(h) =
P (e) and t(h) = s(g) = P (µ(h, e)).

We call µ the strong bundle structure map.

Remark 6.4. The standard definition [16, Def. 8.4] of a tame strong bundle
requires, in addition to the conditions in Definition 6.3, that the structure
map µ is a surjective local sc-diffeomorphism. However, this condition is
automatically satisfied, as noted in [15] on page 37.

Let (P : E → X,µ) be a strong bundle over the ep-groupoid (X,X). A
sc-smooth section functor σ [16, Def. 8.7] of (P, µ) is a sc-smooth section
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σ : X → E of the strong bundle P : E → X over the object M -polyfold X
satisfying the following compatibility with µ: For all morphisms ϕ ∈ X,

(76) σ(t(ϕ)) = µ(ϕ, σ(s(ϕ)))

holds.

Definition 6.5. [16, Def. 8.7] A sc-Fredholm section functor of a strong
bundle (P : E → X,µ) over an ep-groupoid (X,X) is a sc-smooth section
functor σ : X → E such that, when viewed as a section of the strong bundle
M -polyfold bundle P , it is sc-Fredholm in the M -polyfold sense (Defini-
tion 5.3).

We introduce the following new class of sc-Fredholm section functors.

Definition 6.6. A tame sc-Fredholm section functor of a strong bun-
dle (P : E → X,µ) over an ep-groupoid X = (X,X) is a sc-Fredholm section
functor such that, when viewed as a section of the strong bundleM -polyfold
bundle P , it is tame sc-Fredholm in the M -polyfold sense (Definition 5.4).

We now generalize Theorem 5.8 to the ep-groupoid case.

Corollary 6.7.

(I) Consider a tame ep-groupoid X = (X,X) and a slice X̃ ⊂ X of the
object M -polyfold X, in the sense of Definition 5.7. Assume that X̃ is
closed under morphisms, i.e. for all ϕ ∈ X we have

(77) s(ϕ) ∈ X̃ ⇐⇒ t(ϕ) ∈ X̃,

or equivalently,

s−1(X̃) = t−1(X̃).

Then, denoting the subset of morphisms X that have source and target
in X̃ by

(78) X̃ := s−1(X̃) = t−1(X̃),

the tuple X̃ = (X̃, X̃) is a tame ep-groupoid with the tame M -polyfold atlas
on X̃ induced by the sliced charts (Definition 5.6) with respect to X̃ ⊂ X.
Note that X̃ is the full subcategory of X with object space X̃.

For x ∈ X̃1, the codimension codimx(X̃ ⊂ X) (Definition 5.7) is well-
defined and locally constant in X̃, i.e. it equals codimx′(X̃ ⊂ X) for every
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x′ in an open neighborhood of x in X̃. For x ∈ X̃∞, the degeneracy index
satisfies dX̃(x) = dX(x).

(II) Consider, in addition, a tame strong bundle (P : E → X,µ) over X and
suppose that X̃ is a slice of the bundle P in the sense of Definition 5.7.

Then, the tuple (P̃ , µ̃) consisting of the restrictions

Ẽ := P−1(X̃)

P̃ := P |Ẽ : Ẽ → X̃,

µ̃ := µ|
X̃ ×s P Ẽ : X̃ ×s P Ẽ → Ẽ,

is a tame strong bundle over X̃ , where the bundle atlas for P̃ is induced by
the sliced bundle charts for P with respect to X̃ ⊂ X.

(III) Consider, in addition, a sc-Fredholm section functor σ : X → E of
(P, µ) and suppose that X̃ is a slice of σ in the sense of Definition 5.7.

Then, the restriction σ̃ := σ|X̃ : X̃ → Ẽ is a tame sc-Fredholm section

functor of the bundle (P̃ , µ̃) with tame sc-Fredholm charts induced by the
sliced sc-Fredholm charts for σ with respect to X̃ ⊂ X. For x ∈ X̃∞, the
index satisfies indx(σ̃) = indx(σ)− codimx(X̃ ⊂ X). If |σ−1(0)| is compact
and |X̃∞| ⊂ |X∞| is closed, then |σ̃−1(0)| is compact.

Proof. Proof of (I): First we claim that X̃ = (X̃, X̃) is a groupoid. Given
any subset A of the object set of a groupoid, say A ⊂ X, we obtain a sub-
groupoid (A,A) of (X,X) by defining the morphism set to beA := s−1(A) ∩
t−1(A). Hence, with the set of morphisms X̃ as defined in (78), the tuple
(X̃, X̃) is a groupoid.

Since X̃ ⊂ X is a slice of the tame M -polyfold X, Theorem 5.8(I) pro-
vides a tame M -polyfold structure on X̃ with the claimed degeneracy index
for x ∈ X̃∞ and the claimed locally constant codimension codimx(X̃ ⊂ X)
for x ∈ X̃1.

We now equip X̃ with a tame M -polyfold structure by pulling back
the tame M -polyfold charts on X̃ through the source and target maps s, t :
X→ X on X . That is, since s and t are local sc-diffeomorphisms by the étale
property (Definition 6.1(i)) of X , for every z ∈ X̃ there exists a neighborhood
V ⊂ X of z such that s|V : V → V is a sc-diffeomorphism, where V := s(V ).
Then V is a neighborhood of s(z) in X. Since X̃ ⊂ X is a slice and s(z) ∈ X̃,
after shrinking V we can assume that it is the domain of a sliced chart
with respect to X̃ ⊂ X (Definition 5.6). This induces a tame M -polyfold
chart on X̃ with domain V ∩ X̃, as in the proof of Theorem 5.8. Pulling
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this back through s, we obtain a sliced chart with respect to X̃ ⊂ X with
domain V , and since s(V ∩ X̃) = V ∩ X̃, its induced tameM -polyfold chart
has domain V ∩ X̃. So, we have constructed a tame M -polyfold chart with
domain an open neighborhood of z in X̃. The analogous construction using
the target map t instead of the source map s produces another such chart.
On overlaps between any sliced charts with respect to X̃ ⊂ X produced in
this way, the transition maps are sc-smooth because they are compositions of
the sc-smooth chart maps on X with the sc-smooth source and target maps
(and their local inverses). Hence the transitions between the induced tame
M -polyfold charts on X̃ are also sc-smooth, as restrictions of the transitions
on X. Hence covering X̃ with these M -polyfold charts provides the claimed
M -polyfold structure. Moreover, observe from the construction of the charts
that the source s̃ = s|

X̃
and target t̃ = t|

X̃
maps on X̃ = (X̃, X̃) are local

sc-diffeomorphisms, i.e. X̃ satisfies the étale property (Definition 6.1(i)).
Similarly, the unit map, the inverse map, and the multiplication map on X̃
are sc-smooth since they are restrictions of the corresponding maps on X .
This verifies properties Definition 6.1(ii) and Definition 6.1(iv) for X̃ .

To verify that X̃ is a tame ep-groupoid, it remains to verify properness
(Definition 6.1(iii)). Let x ∈ X̃. By properness of X , there exists an open
neighborhood V (x) of x inX such that the mapping t : s−1(clX(V (x)))→ X
is proper. Shrink V (x) so that it is the domain of a sliced chart (Defini-
tion 5.6) with respect to X̃ ⊂ X. Then V (x) ∩ X̃ is closed in V (x) because
the chart map that homeomorphically identifies V (x) with the sliced sc-
retract (O,Rn × C,Rn × E) sends V (x) ∩ X̃ to the induced tame sc-retract
O ∩ ({0} × C), which is closed in O. Let V ′(x) ⊂ V (x) be a smaller open
neighborhood of x such that clX(V ′(x)) ⊂ V (x). Then we have

clX(V ′(x) ∩ X̃) = clV (x)(V
′(x) ∩ X̃) ⊂ clV (x)(V (x) ∩ X̃) = V (x) ∩ X̃.

In particular, the closure of V ′(x) ∩ X̃ in X̃ and in X agree, i.e.

(79) clX(V ′(x) ∩ X̃) = clX̃(V ′(x) ∩ X̃).

We claim that the open neighborhood V ′(x) ∩ X̃ of x in X̃ satisfies the
required condition, i.e. the map t|

X̃
: s|−1

X̃
(clX̃(V ′(x) ∩ X̃))→ X̃ is proper.

Let K ⊂ X̃ be compact. We must show that the set

A := t|−1

X̃
(K) ∩ s|−1

X̃
(clX̃(V ′(x) ∩ X̃))
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is compact. We have

A = t−1(K) ∩ s−1(clX(V ′(x) ∩ X̃))

by (79) and since by definition X̃ = t−1(X̃) = s−1(X̃). Observe that A is
closed in X since K ⊂ X is closed as a compact subset of the Hausdorff
space X. By our choice of V (x), the set t−1(K) ∩ s−1(clX(V (x))) is com-
pact. Hence A is compact as a closed subset of the compact set t−1(K) ∩
s−1(clX(V (x))). This completes the proof that X̃ is a tame ep-groupoid.

Proof of (II): Since X̃ is a slice of the tame strong bundle P : E → X
in the M -polyfold sense, Theorem 5.8(II) provides a tame strong bundle
structure on the restriction P̃ . To prove that the tuple (P̃ , µ̃) is a tame
strong bundle over the ep-groupoid X̃ , we must show that the map µ̃ has
the required properties. Recall from the lemma statement that µ̃ is the
restriction of µ, i.e.

µ̃ := µ|
X̃ ×s P Ẽ : X̃ ×s P Ẽ → Ẽ.

First of all, µ̃ indeed takes values in Ẽ because, since µ covers t, for any
(ϕ, e) ∈ X̃ ×s P Ẽ we have P ◦ µ(ϕ, e) = t ◦ π1(ϕ, e) = t(ϕ) ∈ X̃ and hence
µ(ϕ, e) ∈ P−1(X̃) = Ẽ. Moreover, µ̃ covers the target map on X̃ since µ̃ is
the restriction of µ which covers the target map t on X . Finally, the required
properties Definition 6.3(i)(ii) of µ̃ follow immediately from the correspond-
ing properties of µ, since µ̃ is the restriction of µ. This completes the proof
that (P̃ , µ̃) is a tame strong bundle over X̃ .

Proof of (III): Since X̃ is a slice of the sc-Fredholm section

σ : X → E

in the M -polyfold sense, Theorem 5.8(III) provides the structure of a tame
sc-Fredholm section on the restricted section

σ̃ := σ|X̃ : X̃ → Ẽ

with the claimed sc-Fredholm index. Moreover, the section σ̃ is a section
functor because the required compatibility (76) with µ̃ is immediate from
the compatibility of σ with µ. Hence σ̃ is a tame sc-Fredholm section functor.

The final statement about compactness of the zero sets holds because
|σ̃−1(0)| = |σ−1(0)| ∩ |X̃∞| is the intersection of a compact set and a closed
subset of |X∞|. □
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The generalization of Theorem 5.10 to the ep-groupoid case now easily
follows by combining Theorem 5.10 with Corollary 6.7.

Corollary 6.8.

(I) Consider a tame ep-groupoid X = (X,X), a smooth manifold Y together
with a codimension-n submanifold N ⊂ Y , and a sc-smooth map f : X → Y
that satisfies the compatibility with morphisms

(80) f(s(ϕ)) = f(t(ϕ)) for all ϕ ∈ X.

Assume that f is transverse to N (Definition 5.9).
Then, there exists an open neighborhood

X̃ ⊂ f−1(N) ∩X1

of f−1(N) ∩X∞ such that X̃ is a slice of X1 in theM -polyfold sense (Defi-
nition 5.7) satisfying codimx(X̃ ⊂ X

1) = n for every x ∈ X̃1 = X̃ ∩X2. In
particular, the full subcategory X̃ = (X̃, X̃) of X 1 with object space X̃ is
a tame ep-groupoid with degeneracy index satisfying dX̃(x) = dX(x) for all

x ∈ X̃∞.

(II) Consider, in addition, a tame strong bundle (P : E → X,µ) over X .
Then, there exists a possibly smaller neighborhood X̃ in (I) that is a slice
of the bundle P |E1 : E1 → X1 in the M -polyfold sense (Definition 5.7). In
particular, the tuple (P̃ , µ̃) consisting of the restrictions

Ẽ := P |−1
E1 (X̃)

P̃ := P |Ẽ : Ẽ → X̃,

µ̃ := µ|
X̃ ×s P Ẽ : X̃ ×s P Ẽ → Ẽ,

is a tame strong bundle over X̃ .

(III) Consider, in addition, a tame sc-Fredholm section functor

σ : X → E

of (P, µ). Assume that f is σ-compatibly transverse to N (Definition 5.9).
Then, there exists a possibly smaller neighborhood X̃ in (II) that is a

slice of the tame sc-Fredholm section σ|X1 : X1 → E1 in the M -polyfold
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sense (Definition 5.7). In particular, the restriction

σ̃ := σ|X̃ : X̃ → Ẽ

is a tame sc-Fredholm section functor of the bundle (P̃ , µ̃) with index sat-
isfying indx(σ̃) = indx(σ)− n for all x ∈ X̃∞. If N is closed as a subset of
Y and |σ−1(0)| is compact, then |σ̃−1(0)| is compact.

Proof. We first prove the statements in (I). Since f is transverse to N , The-
orem 5.10(I) provides an open neighborhood X̃ ⊂ f−1(N) ∩X1 of f

−1(N) ∩
X∞ that is a slice of X1 with the claimed codimension at every point
in X̃1. The compatibility (80) of f with the morphisms X implies that
s−1(X̃) = t−1(X̃) holds. Hence applying Corollary 6.7(I) to the tame ep-
groupoid X 1 = (X1,X1) and the slice X̃ ⊂ X1, we conclude that the full
subcategory X̃ = (X̃, X̃) of X 1 with object space X̃ is a tame ep-groupoid
with the claimed degeneracy index.

We now prove the statements in (II). Theorem 5.10(II) provides a choice
of X̃ in (I) that is in addition a slice of the 1-shifted bundle P |E1 : E1 → X1.
Hence applying Corollary 6.7(II), we conclude that the tuple (P̃ , µ̃) is indeed
a tame strong bundle over X̃ , as claimed.

We now prove the statements in (III). Since f is σ-compatibly transverse
to N , Theorem 5.10(III) provides a choice of X̃ in (II) that is in addition
a slice of the tame sc-Fredholm section σ|X1 : X1 → E1. Hence applying
Corollary 6.7(III), we conclude that the restriction σ̃ = σ|X̃ is indeed a tame

sc-Fredholm section functor of the bundle (P̃ , µ̃) with the claimed index.
It remains to prove the final statement about compactness of the orbit

spaces of the zero sets. Assume that |σ−1(0)| is compact. It suffices to show
that the inclusion of orbit spaces

|X̃∞| ⊂ |(X
1)∞| = |X∞|

is closed, because then Corollary 6.7(III) implies compactness of the space
|σ̃−1(0)|, as required. Notice that, by (80), the map f descends to a map on
the orbit space |f | : |X∞| → Y . Then |X̃∞| = |f |

−1(N) is closed in |X∞| by
continuity of |f |, as required. □

7. Fiber products of tame sc-Fredholm sections

The main result of this section is the construction of fiber products of tame
sc-Fredholm section functors (Corollary 7.3). This result is used in the ap-
plication described in Section 1.2.2. It is a corollary of the construction of
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restrictions of tame sc-Fredholm section functors to transverse preimages of
sc-smooth maps, which is the main result of this paper; see Theorem 5.10 for
the M -polyfold case and Corollary 6.8 for the ep-groupoid generalization.

In this section, we index the M -polyfolds and ep-groupoids with paren-
thesis around the subscript, i.e. B(i) for i = 1, 2, to avoid confusion with the
standard notation Bm for the m-level of an M -polyfold B.

We first describe the Cartesian product of tame sc-Fredholm sections
over M -polyfolds.

Lemma 7.1.

(I) Consider tame M -polyfolds B(i) for i = 1, 2. Then, the Cartesian prod-
uct

B(1) × B(2)

is a tame M -polyfold with charts given by products of charts on the factors,
and with degeneracy index satisfying

dB(1)×B(2)
(x1, x2) = dB(1)

(x1) + dB(2)
(x2)

for all (x1, x2) ∈ (B(1))∞ × (B(2))∞.

(II) Consider tame strong bundles ρi : E(i) → B(i) over B(i) for i = 1, 2.
Then, the product map ρ1 × ρ2 : E(1) × E(2) → B(1) × B(2) is a tame strong
bundle over B(1) × B(2) with bundle charts given by products of bundle
charts on the factors.

(III) Consider tame sc-Fredholm sections σi : B(i) → E(i) (Definition 5.4)
of ρi for i = 1, 2. Then, the product map

σ1 × σ2 : B(1) × B(2) → E(1) × E(2)

is a tame sc-Fredholm section of ρ1 × ρ2 with tame sc-Fredholm charts given
by products of tame sc-Fredholm charts on the factors (after reordering
factors in the charts), and with index satisfying

ind(x1,x2)(σ1 × σ2) = indx1
(σ1) + indx2

(σ2)

for all (x1, x2) ∈ (B(1))∞ × (B(2))∞. If σ−1
i (0) is compact for i = 1, 2, then

(σ1 × σ2)
−1(0) is compact.



✐

✐

“1-Filippenko” — 2021/5/27 — 18:47 — page 333 — #93
✐

✐

✐

✐

✐

✐

Polyfold regularization of constrained moduli spaces 333

Proof. Proof of (I): We first show that products of tame M -polyfold charts
(Definition 5.1) on the factors B(i), i = 1, 2, are indeed tame M -polyfold
charts on the product B(1) × B(2), as claimed. For i = 1, 2, consider a tame
M -polyfold chart

(81) (Vi, φi, (Oi, Ci,Ei))

on B(i), an open subset Ui ⊂ Ci, and a tame sc-retraction ri : Ui → Ui with
image Oi = ri(Ui). We claim that the tuple

(82) (V1 × V2, φ1 × φ2, (O1 ×O2, C1 × C2,E1 × E2))

is a tame M -polyfold chart on B(1) × B(2). We equip B(1) × B(2) with the
product topology on every level. Recall that the product sc-structure is
given by (E1 × E2)m = (E1)m × (E2)m for all m ≥ 0. Then the product set
V1 × V2 is open in B(1) × B(2) and the map φ1 × φ2 : V1 × V2 → O1 ×O2 is a
homeomorphism. It remains to show that O1 ×O2 is a tame sc-retract. The
product map r1 × r2 : U1 × U2 → U1 × U2 is a sc-smooth retraction with im-
age O1 ×O2. We now show that r1 × r2 is tame. To check Definition 3.1(1)
for r1 × r2, let (x1 × x2) ∈ U1 × U2 and then compute using the correspond-
ing property of each ri together with (7) that the degeneracy index satisfies

dC1×C2
((r1 × r2)(x1, x2)) = dC1×C2

(r1(x1), r2(x2))

= dC1
(r1(x1)) + dC2

(r2(x2))

= dC1
(x1) + dC2

(x2)

= dC1×C2
(x1, x2),

as required. To check Definition 3.1(2) for r1 × r2, let

(x1, x2) ∈ (O1 ×O2)∞ = (O1)∞ × (O2)∞

be a smooth point. Then by the corresponding property of each ri, there exist
sc-subspaces Ai ⊂ Ei such that Ei = Txi

Oi ⊕Ai and such that Ai ⊂ (Ei)xi
,

where (Ei)xi
⊂ Ei is the sc-subspace (9). From the definition (9) we have

(83) (E1)x1
× (E2)x2

= (E1 × E2)(x1,x2).

So we have A1 ×A2 ⊂ (E1 × E2)(x1,x2). Moreover, we have the sc-splitting

E1 × E2 = (Tx1
O1 ⊕A1)× (Tx2

O2 ⊕A2)

= T(x1,x2)(O1 ×O2)⊕ (A1 ×A2)
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because, by definition (10) of tangent space to a sc-retract, the tangent space
to a product satisfies

T(x1,x2)(O1 ×O2) = D(x1,x2)(r1 × r2)(T(x1,x2)(U1 × U2))(84)

= Dx1
r1(Tx1

U1)×Dx2
r2(Tx2

U2)

= Tx1
O1 × Tx2

O2.

This completes the proof that r1 × r2 is a tame sc-retraction and hence
O1 ×O2 is a tame sc-retract.

We have shown that the product chart (82) is indeed a tameM -polyfold
chart on B(1) × B(2). Since product charts of this form cover B(1) × B(2) and
have sc-smooth transition maps due to the transitions on each factor being
sc-smooth, the collection of these product charts forms a tame atlas on
B(1) × B(2). Then B(1) × B(2) equipped with this atlas is a tame M -polyfold.

We now prove the claimed degeneracy index formula. Consider any
(x1, x2) ∈ (B(1))∞ × (B(2))∞. From the splitting (84) of the tangent spaces
in the product retract, we conclude

T(x1,x2)(B(1) × B(2))
∼= Tx1

B(1) × Tx2
B(2).

Furthermore, by definition of reduced tangent space in a retract (12) together
with (83) and (84), we conclude

TR
(ϕ1(x1),ϕ2(x2))

(O1 ×O2) = TR
ϕ1(x1)

O1 × T
R
ϕ2(x2)

O2,

which implies by the global definition of reduced tangent space (51) that

TR
(x1,x2)

(B(1) × B(2)) ∼= TR
x1
B(1) × T

R
x2
B(2)

by examining any product chart. Hence, by the global description (52) of
degeneracy index at smooth points, we have

dB(1)×B(2)
(x1, x2) = dim

(

T(x1,x2)(B(1) × B(2))/T
R
(x1,x2)

(B(1) × B(2))
)

= dim(Tx1
B(1)/T

R
x1
B(1)) + dim(Tx2

B(2)/T
R
x2
B(2))

= dB(1)
(x1) + dB(2)

(x2).

This completes the proof of (I).
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Proof of (II): For i = 1, 2, consider a tameM -polyfold chart (81) on B(i)
covered by a tame strong bundle chart (Definition 5.2)

(85) (ρ−1
i (Vi), Φi, (Ki, Ci ✁ Fi,Ei ✁ Fi))

for ρi. We now construct a tame strong bundle chart for ρ1 × ρ2 over the
open set V1 × V2. For i = 1, 2, consider a tame strong bundle retraction (25)

Ri : Ui ✁ Fi → Ui ✁ Fi

(x, ξ) 7→ (ri(x), Γi(x, ξ))

with image Ki = Ri(Ui ✁ Fi), where

Γi : Ui ✁ F→ F

is a linear projection Γi(x, ·) for every x ∈ Ui. Denote the reordering of fac-
tors map by

l : (E1 × F1)× (E2 × F2)→ (E1 × E2)× (F1 × F2),

and note that l is a linear sc-isomorphism. We claim that the tuple

((ρ1×ρ2)
−1(V1 × V2), l ◦ (Φ1 × Φ2),(86)

(l(K1 ×K2), C1 × C2 ✁ F1 × F2,E1 × E2 ✁ F1 × F2))

is a tame strong bundle chart for ρ1 × ρ2 covering the product M -polyfold
chart (82). Since for i = 1, 2, the map Φi : ρ

−1
i (Vi)→ Ki is a homeomorphism

covering φi that is linear on fibers, it follows that the map l ◦ (Φ1 × Φ2) is a
homeomorphism from (ρ1 × ρ2)

−1(V1 × V2) to l(K1 ×K2) covering φ1 × φ2

and is linear on fibers. Moreover, the set l(K1 ×K2) is a tame strong bundle
retract because it is the image of the tame strong bundle retraction

l ◦ (R1 ×R2) ◦ l
−1 : (U1 × U2)✁ (F1 × F2)→ (U1 × U2)✁ (F1 × F2)

(x1, x2, ξ1, ξ2) 7→ (r1(x1), r2(x2), Γ1(x1, ξ1), Γ2(x2, ξ2)).

We have shown that the chart (86) is indeed a tame strong bundle chart for
ρ1 × ρ2. Sc-smoothness of bundle transitions between charts constructed in
this way follows from sc-smoothness in each factor. Hence the collection of
these charts forms a tame bundle atlas for ρ1 × ρ2. This completes the proof
of (II).
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Proof of (III): To prove that σ1 × σ2 is a tame sc-Fredholm section (Def-
inition 5.4) of ρ1 × ρ2, first observe that it is sc-smooth and regulariz-
ing because σ1 and σ2 are sc-smooth and regularizing, and the double fil-
tration satisfies (B(1) × B(2))m = (B(1))m × (B(2))m and (E(1) × E(2))m,m+1 =
(E(1))m,m+1 × (E(2))m,m+1 for all m ≥ 0 (see (54)).

Consider a smooth point (x1, x2) ∈ (B(1))∞ × (B(2))∞. Then since each
σi is tame sc-Fredholm there exist tame bundle charts as in (85) that are
in addition tame sc-Fredholm charts for σi at xi. First of all, this means
that the partial quadrants Ci ⊂ Ei are in the standard form (5), i.e. Ci =
[0,∞)si × E′

i ⊂ Rsi × E′
i = Ei. Now, we will prove that a chart similar to the

tame bundle chart (86) is a tame sc-Fredholm chart for σ1 × σ2 at (x1, x2).
The only issue with (86) is that the partial quadrant C1 × C2 ⊂ E1 × E2 is
not in the standard form. This is easily remedied as follows. Consider the
partial quadrant

C := [0,∞)s1×s2 × E
′
1 × E

′
2

of the sc-Banach space

E := R
s1×s2 × E

′
1 × E

′
2.

Then the reordering of factors map

f : Rs1 × E
′
1 × R

s2 × E
′
2 → R

s1+s2 × E
′
1 × E

′
2

is a linear sc-isomorphism E1 × E2 → E that restricts to an isomorphism
C1 × C2 → C. Applying f to the sc-retract O1 ×O2 produces a tame sc-
retract

O := f(O1 ×O2) ⊂ C

with tame sc-retraction

r := f ◦ (r1 × r2) ◦ f
−1 : U → U,

U := f(U1 × U2) ⊂ C,

onto r(U) = O. Moreover, the map

φ := f ◦ (φ1 × φ2) : V1 × V2 → O

is a homeomorphism, and so from the tameM -polyfold chart (82) we obtain
another tame M -polyfold chart

(V1 × V2, φ, (O, C,E)).
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Similarly, applying f × idF1×F2
to the tame bundle retract l(K1 ×K2) pro-

duces another tame bundle retract

K := (f × idF1×F2
) ◦ l(K1 ×K2)

with tame bundle retraction

R := (f × idF1×F2
) ◦ l ◦ (R1 ×R2) ◦ l

−1 ◦ (f × idF1×F2
)−1

: U ✁ F1 × F2 → U ✁ F1 × F2

onto R(U ✁ F1 × F2) = K. Consider the map

Γ := (Γ1 × Γ2) ◦ l
−1 ◦ (f × idF1×F2

)−1,

and observe that, for (y, ξ1, ξ2) ∈ U ✁ F1 × F2, we have

R(y, ξ1, ξ2) = (r(y), Γ (y, ξ1, ξ2)).

The map

Φ := (f × idF1×F2
) ◦ l ◦ (Φ1 × Φ2) : (ρ1 × ρ2)

−1(V1 × V2)→ K

is a homeomorphism that is linear on the fibers and covers φ. Hence from
the tame bundle chart (86) we obtain another tame bundle chart

(87) ((ρ1 × ρ2)
−1(V1 × V2), Φ, (K,C ✁ F1 × F2,E✁ F1 × F2)).

We claim that the bundle chart (87) is a tame sc-Fredholm chart for
σ1 × σ2 at (x1, x2). We must show that the section

(88) τ := Φ ◦ (σ1 × σ2) ◦ φ
−1 : O → K

is a tame sc-Fredholm germ. Since for each i = 1, 2, the section

τi := Φi ◦ σi ◦ φ
−1
i : Oi → Ki

is a tame sc-Fredholm germ, we can assume that there is a filling

hi : Ui → Ui ✁ Fi

of τi ◦ ri : Ui → Fi, where τi : Oi → Fi denotes the principal part of τi in the
fiber Fi. We claim that

h := (f × idF1×F2
) ◦ l ◦ (h1 × h2) ◦ f

−1 : U → U ✁ (F1 × F2)
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is a filling of τ ◦ r : U → F1 × F2. The required properties in Def. 3.6(b).(i)–
(iii) of a filling follow from the corresponding properties for each hi, as we
now verify. Given y ∈ O, we compute

τ(y) = (f × idF1×F2
) ◦ l ◦ (Φ1 × Φ2) ◦ (σ1 × σ2) ◦ (φ1 ◦ φ2)

−1 ◦ f−1(y)

= (f × idF1×F2
) ◦ l ◦ (τ1 × τ2) ◦ f

−1(y)

= (f × idF1×F2
) ◦ l ◦ (h1 × h2) ◦ f

−1(y)

= h(y),

which verifies property (i) for τ . To see property (ii), let y ∈ U and assume

h(y) = Γ (r(y),h(y)).

Then since the principal parts satisfy h = (h1 × h2) ◦ f
−1, we compute that

(h1 × h2) ◦ f
−1(y) = Γ (r(y),h(y))

= (Γ1 × Γ2) ◦ l
−1

◦ (f × idF1×F2
)−1

(

f ◦ (r1 × r2) ◦ f
−1(y), (h1 × h2) ◦ f

−1(y)

)

= (Γ1 × Γ2) ◦ l
−1((r1 × r2) ◦ f

−1(y), (h1 × h2) ◦ f
−1(y)),

which implies f−1(y) ∈ O1 ×O2 by the corresponding property of τ1 and τ2.
Hence y ∈ O, proving property (ii) for τ . We now verify (iii) for τ . By the
corresponding property for each τi, the linearization D0Li at 0 of

Li : Ui → Fi

yi 7→ (idFi
− Γi(ri(yi), ·)) ◦ hi(yi)

restricts to a linear sc-isomorphism from kerD0ri to kerΓi(0, ·). We must
show that the linearization at 0 of the map

L : U → F1 × F2

y 7→ (idF1×F2
− Γ (r(y), ·)) ◦ h(y)

restricts to a linear sc-isomorphism from kerD0r to kerΓ (0, ·). This follows
from the observations that L = (L1 × L2) ◦ f

−1 holds, the map f−1 is a
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linear sc-isomorphism that restricts to an isomorphism

kerD0r → kerD0(f ◦ (r1 × r2)) = ker(D0r1)× ker(D0r2),

and kerΓ (0, ·) = kerΓ1(0, ·)× kerΓ2(0, ·). Thus h is a filling of τ ◦ r, as
claimed.

We now verify the properties of τ required in Definition 3.6(c) of a
local sc-Fredholm germ. We in addition show that τ satisfies the stronger
properties of a tame sc-Fredholm germ (Definition 3.7).

Since each τi is a tame sc-Fredholm germ, the corresponding properties
hold: There exists a sc+-section

si : Ui → Ui ✁ Fi

satisfying si(0) = hi(0), a sc-Banach space Wi, a sc-germ of neighborhoods

U ′
i around 0 in [0,∞)si × R

ki−si ×Wi

for some ki ≥ si ≥ 0, and a strong bundle isomorphism

Ψi : Ui ✁ Fi → U ′
i ✁ R

k′

i ×Wi

covering a linear sc-isomorphism

ψi = id[0,∞)si × ψi : Ui → U ′
i

satisfying ψi(0) = 0, where

ψi : E
′
i → R

ki−si ×Wi

is a linear sc-isomorphism, and such that the principal part of the section

(89) bi := Ψi ◦ (hi − si) ◦ ψ
−1
i : U ′

i → U ′
i ✁ R

k′

i ×Wi

is a basic germ. This basic germ property means that the principal part

bi : U
′
i → R

k′

i ×Wi

is a sc-smooth germ satisfying bi(0) = 0 and such that, for every

ai ∈ [0,∞)si , di ∈ R
ki−si , wi ∈Wi,
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we have

Pi ◦ bi(ai, di, wi) = wi −Bi(ai, di, wi)

where Pi : R
k′

i ×Wi →Wi is projection onto Wi and Bi is a sc-smooth germ
satisfying Bi(0) = 0 and the contraction property (28).

The section

s := (f × idF1×F2
) ◦ l ◦ (s1 × s2) ◦ f

−1 : U → U ✁ (F1 × F2)

is sc+ because each si is sc
+ and the other maps in the composition are linear

sc-isomorphisms. Denote the linear sc-isomorphisms given by reordering the
factors by

q : ([0,∞)s1 × R
k1−s1 ×W1)× ([0,∞)s2 × R

k2−s2 ×W2)

→ [0,∞)s1+s2 × R
k1−s1+k2−s2 ×W1 ×W2,

Q : (Rk′

1 ×W1)× (Rk′

2 ×W2)→ R
k′

1+k′

2 ×W1 ×W2,

l′ : (U ′
1 ✁ R

k′

1 ×W1)× (U ′
2 ✁ R

k′

2 ×W2)

→ (U ′
1 × U

′
2)✁ (Rk′

1 ×W1 × R
k′

2 ×W2).

Set

U ′ := q(U ′
1 × U

′
2),

ψ := q ◦ (ψ1 × ψ2) ◦ f
−1 : U → U ′,

Ψ := (q ✁Q) ◦ l′ ◦ (Ψ1 × Ψ2) ◦ l
−1 ◦ (f × idF1×F2

)−1

: U ✁ (F1 × F2)→ U ′
✁ (Rk′

1+k′

2 ×W1 ×W2).

We claim that the principal part b of the section

(90) b := Ψ ◦ (h− s) ◦ ψ−1 : U ′ → U ′
✁ (Rk′

1+k′

2 ×W1 ×W2)

is a basic germ. Observe that the principal parts satisfy

b = Q ◦ π
R

k′
1×W1×R

k′
2×W2

◦ (Ψ1 × Ψ2)

◦ ((h1 × h2)− (s1 × s2)) ◦ (ψ1 × ψ2)
−1 ◦ q−1

= Q ◦ (b1 × b2) ◦ q
−1.
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Let P : Rk′

1+k′

2 ×W1 ×W2 →W1 ×W2 denote the projection onto W1 ×
W2. Notice that P = (P1 × P2) ◦Q

−1. Then, for all

(a1, a2) ∈ [0,∞)s1 × [0,∞)s2 , (d1, d2)

∈ R
k1−s1 × R

k2−s2 , (w1, w2) ∈W1 ×W2,

we compute

P ◦ b(a1, a2, d1, d2, w1, w2)

= P ◦Q ◦ (b1 × b2) ◦ q
−1(a1, a2, d1, d2, w1, w2)

= (P1 × P2) ◦ (b1 × b2)(a1, d1, w1, a2, d2, w2)

= (w1 −B1(a1, d1, w1), w2 −B2(a2, d2, w2))

= (w1, w2)− (B1(a1, d1, w1), B2(a2, d2, w2))

= (w1, w2)− (B1 ×B2) ◦ q
−1(a1, a2, d1, d2, w1, w2),

so to prove that b is a basic germ, it remains to verify that the map

B := (B1 ×B2) ◦ q
−1

: [0,∞)s1+s2 × R
k1−s1+k2−s2 ×W1 ×W2 →W1 ×W2

satisfies the contraction property (28). Recall our convention that Banach
norms on Cartesian products are chosen to be the sum norm (which is equiv-
alent to choosing any standard choice of norm on a product). The contraction
property (28) for B then follows from the contraction property for each Bi,
as we now verify. Let ϵ > 0 and m ≥ 0. Then, for i = 1, 2, there exists δi > 0
such that (28) holds for Bi with the same choice of ϵ. Set δ := min(δ1, δ2).
Then, given ∥(a1, a2, d1, d2, w1, w2)∥m, ∥(a1, a2, d1, d2, w

′
1, w

′
2)∥m < δ we have

∥(ai, di, wi)∥m, ∥(ai, di, w
′
i)∥m < δi

for i = 1, 2, from which we compute, using property (28) for the Bi,

∥B(a1, a2, d1, d2, w1, w2)−B(a1, a2, d1, d2, w
′
1, w

′
2)∥m

= ∥(B1(a1, d1, w1), B2(a2, d2, w2))− (B1(a1, d1, w
′
1), B2(a2, d2, w

′
2))∥m

= ∥(B1(a1, d1, w1)−B1(a1, d1, w
′
1), B2(a2, d2, w2)−B2(a2, d2, w

′
2)∥m

= ∥(B1(a1, d1, w1)−B1(a1, d1, w
′
1)∥m

+ ∥B2(a2, d2, w2)−B2(a2, d2, w
′
2)∥m
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(28)

≤ ϵ(∥w1 − w
′
1∥m + ∥w2 − w

′
2∥m) = ϵ · ∥(w1 − w

′
1, w2 − w

′
2)∥m

= ϵ · ∥(w1, w2)− (w′
1, w

′
2)∥m,

as required. This completes the proof that τ is a local sc-Fredholm germ.
We claim that, in addition, τ is a tame sc-Fredholm germ. We must show

that ψ is in the form required by Definition 3.7. Given elements (ai, ei) ∈
[0,∞)si × E′

i for i = 1, 2, write ψi(ei) = (di, wi) ∈ Rki−si ×Wi and compute

ψ(a1, a2, e1, e2) = q ◦ (ψ1 × ψ2)(a1, e1, a2, e2)

= q ◦ (id[0,∞)s1 × ψ1 × id[0,∞)s2 × ψ2)(a1, e1, a2, e2)

= (a1, a2, d1, d2, w1, w2).

So indeed ψ = id[0,∞)s1+s2 × ψ is of the required form, where

ψ : E1 × E2 → R
k1−s1+k2−s2 ×W1 ×W2

is the linear sc-isomorphism given by ψ(e1, e2) = (d1, d2, w1, w2).
We have verified that σ1 × σ2 is a tame sc-Fredholm section of ρ1 × ρ2.

To verify the claimed index formula, note first that by definition of sc-
Fredholm index (29) of a local sc-Fredholm germ and the forms of the basic
germs (89) and (90) we have ind(τi) = ki − k

′
i and

ind(τ) = (k1 + k2)− (k′1 + k′2) = ind(τ1) + ind(τ2).

Then by definition Definition 5.3(3) of index, for

(x1, x2) ∈ (B(1))∞ × (B(2))∞

we have

ind(x1,x2)(σ1 × σ2) = ind(τ) = ind(τ1) + ind(τ2) = indx1
(σ1) + indx2

(σ2),

as claimed.
The final statement about compactness holds because the zero set (σ1 ×

σ2)
−1(0) = σ−1

1 (0)× σ−1
2 (0) ⊂ (B(1))∞ × (B(2))∞ is equipped with the prod-

uct topology in every level (B(1) × B(2))m = (B(1))m × (B(2))m, and for i =

1, 2, the subspace σ−1
i (0) ⊂ (B(i))m is compact for all m ≥ 0 (see Remark 5.5

for a further discussion about compactness in the different levels). □

We now generalize the above Cartesian product construction to the ep-
groupoid setting.
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Lemma 7.2.

(I) Consider tame ep-groupoids X(i) = (X(i),X(i)) for i = 1, 2. Then, the
Cartesian product

X(1) ×X(2) = (X(1) ×X(2),X(1) ×X(2))

is a tame ep-groupoid with degeneracy index satisfying

dX(1)×X(2)
(x1, x2) = dX(1)

(x1) + dX(2)
(x2)

for all (x1, x2) ∈ (X(1))∞ × (X(2))∞.

(II) Consider tame strong bundles (Pi : E(i) → X(i), µi) over X(i) for i =
1, 2. Denote the reordering of factors map by

l : (X(1) ×X(2)) ×s1×s2 P1×P2
(E(1) × E(2))

→ (X(1) ×s1 P1
E(1))× (X(2) ×s2 P2

E(2))

and set

µ := (µ1 × µ2) ◦ l : (X(1) ×X(2)) ×s1×s2 P1×P2
(E(1) × E(2))→ E(1) × E(2).

Then, the tuple

(P1 × P2 : E(1) × E(2) → X(1) ×X(2), µ)

is a tame strong bundle over X(1) ×X(2).

(III) Consider tame sc-Fredholm section functors σi : X(i) → E(i) (Defini-
tion 6.6) of (Pi, µi) for i = 1, 2. Then, the product map

σ1 × σ2 : X(1) ×X(2) → E(1) × E(2)

is a tame sc-Fredholm section functor of (P1 × P2, µ) with index satisfying

ind(x1,x2)(σ1 × σ2) = indx1
(σ1) + indx2

(σ2)

for all (x1, x2) ∈ (X(1))∞ × (X(2))∞. If |σ−1
i (0)| is compact for i = 1, 2,

then |(σ1 × σ2)
−1(0)| = |σ−1

1 (0)| × |σ−1
2 (0)| is compact.
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Proof. We prove the statements in (I). The product X(1) ×X(2) is a groupoid
with structure maps (source, target, multiplication, unit, and inverse) as we
describe below. First note that Lemma 7.1(I) provides tame M -polyfold
structures on the object space X(1) ×X(2) and on the morphism space
X(1) ×X(2) with the claimed degeneracy index. So, to prove (I), it re-
mains to describe the structure maps on X(1) ×X(2), verify that they are
sc-smooth, and verify the étale property (Definition 6.1(i)) and properness
(Definition 6.1(iii)).

For i = 1, 2, let (si, ti,mi, ui, ιi) denote the structure maps on X(i). The
source s1 × s2 : X(1) ×X(2) → X(1) ×X(2), target t1 × t2, unit u1 × u2, and
inversion ι1 × ι2 maps on the product are products of those in each factor,
so sc-smoothness follows from sc-smoothness in each factor. Moreover, the
étale property (Definition 6.1(i)) holds because products of surjective local
sc-diffeomorphisms are surjective local sc-diffeomorphisms.

To see that the multiplication map on the product is sc-smooth, first
note that the reordering of factors map

(X(1) ×X(2))× (X(1) ×X(2))→ (X(1) ×X(1))× (X(2) ×X(2))

is sc-smooth. It restricts to a bijection

q : (X(1) ×X(2)) ×s1×s2 t1×t2 (X(1) ×X(2))

→ (X(1) ×s1 t1 X(1))× (X(2) ×s2 t2 X(2)),

which is sc-smooth by [16, Prop. 2.15] and [16, Prop. 2.6(1)]. The multipli-
cation map on X(1) ×X(2) is the composition

(m1 ×m2) ◦ q : (X(1) ×X(2)) ×s1×s2 t1×t2 (X(1) ×X(2))→ X(1) ×X(2),

hence is sc-smooth.
We now check properness Definition 6.1(iii). Let

(x1, x2) ∈ X(1) ×X(2)

and let V (xi) ⊂ X(i) be open neighborhoods of xi such that

ti : s
−1
i (V (xi))→ X(i)

are proper maps. Then V (x1)× V (x2) is an open neighborhood of (x1, x2)
in X(1) ×X(2) and we have

(s1 × s2)
−1(V (x1)× V (x2)) = s−1

1 (V (x1))× s
−1
2 (V (x2)).
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Hence t1 × t2 : (s1 × s2)
−1(V (x1)× V (x2))→ X(1) ×X(2) is proper, as the

product of proper maps. This completes the proof that X(1) ×X(2) is a tame
ep-groupoid, and so the statements in (I) are proved.

We now prove the statements in (II). For i = 1, 2, the map

Pi : E(i) → X(i)

is a tame strong bundle over theM -polyfold X(i), so Lemma 7.1(II) provides
a tame strong bundle structure on the product map

P1 × P2 : E(1) × E(2) → X(1) ×X(2).

The map µ is a strong bundle map as the composition of the strong bundle
maps µ1 × µ2 and l, and the required properties Definition 6.3(i)(ii) of µ
follow immediately from those of µi for i = 1, 2. Hence (P1 × P2, µ) is a
tame strong bundle over X(1) ×X(2), as claimed.

We now prove the statements in (III). For i = 1, 2, the tame sc-Fredholm
section functor σi : X(i) → E(i) is in particular a tame sc-Fredholm section
of the bundle Pi, in the M -polyfold sense. So Lemma 7.1(III) provides the
product map σ1 × σ2 with the structure of a tame sc-Fredholm section of
the bundle P1 × P2 with the claimed sc-Fredholm index. Moreover, σ1 × σ2
satisfies the required property (76) of a section functor of (P1 × P2, µ) by
the corresponding property of the sections functors σi of (Pi, µi). Indeed, for
all morphisms (ϕ1 × ϕ2) ∈ X(1) ×X(2), we compute

(σ1 × σ2) ◦ (t1 × t2)(ϕ1, ϕ2) = (σ1(t1(ϕ1)), σ2(t2(ϕ2)))

= (µ1(ϕ1, σ1(s1(ϕ1))), µ2(ϕ2, σ2(s2(ϕ2))))

= (µ1 × µ2) ◦ l(ϕ1, ϕ2, σ1(s1(ϕ1)), σ2(s2(ϕ2)))

= µ(ϕ1, ϕ2, (σ1 × σ2) ◦ (s1 × s2)(ϕ1, ϕ2)).

This completes the proof that σ1 × σ2 is a tame sc-Fredholm section functor
of (P1 × P2, µ).

The final statement about compactness holds because the orbit space of
X(1) ×X(2) is equal to the Cartesian product of the orbit spaces of the X(i)

equipped with the product topology. □

We proceed to construct fiber products of tame sc-Fredholm section
functors over ep-groupoids. As usual, the result specializes to the case of
M -polyfolds by considering an M -polyfold B as an ep-groupoid with the
trivial groupoid structure: the object space is B and the morphism space
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consists of the identity morphisms {1x | x ∈ B} which is an M -polyfold by
declaring the bijection x 7→ 1x with B to be a sc-diffeomorphism.

Corollary 7.3.

(I) Consider tame ep-groupoids X(i) = (X(i),X(i)) for i = 1, 2, a smooth
manifold Y , and sc-smooth maps fi : X(i) → Y for i = 1, 2, that satisfy
the compatibility with morphisms

fi(si(ϕ)) = fi(ti(ϕ)) for all ϕ ∈ X(i).

Assume that the product map f1 × f2 : X(1) ×X(2) → Y × Y is transverse
(Definition 5.9) to the diagonal

∆ = {(y, y) | y ∈ Y } ⊂ Y × Y,

and denote the fiber product of object spaces by

X(1) ×f1 f2
X(2) := {(x1, x2) ∈ X(1) ×X(2) | f1(x1) = f2(x2)} ⊂ X(1) ×X(2).

Then, there exists an open neighborhood

X̃ ⊂ (X(1) ×f1 f2
X(2)) ∩ ((X(1))1 × (X(2))1)

of (X(1) ×f1 f2
X(2)) ∩ ((X(1))∞ × (X(2))∞) such that X̃ ⊂ X1

(1) ×X
1
(2) is a

slice in the M -polyfold sense (Definition 5.7) satisfying

codimx(X̃ ⊂ X
1
(1) ×X

1
(2)) = dimY

for every x ∈ X̃1 = X̃ ∩ ((X(1))2 × (X(2))2). In particular, the full subcate-
gory

X̃ := (X̃, X̃)

of X 1
(1) ×X

1
(2) with object space X̃ is a tame ep-groupoid with degeneracy

index satisfying

dX̃(x1, x2) = dX(1)
(x1) + dX(2)

(x2)

for all (x1, x2) ∈ X̃∞.
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(II) Consider, in addition, tame strong bundles (Pi : E(i) → X(i), µi) over

X(i) for i = 1, 2. Then, there exists a possibly smaller neighborhood X̃ in
(I) that is a slice of the bundle

P1|E1
(1)
× P2|E1

(2)
: E1

(1) × E
1
(2) → X1

(1) ×X
1
(2)

in the M -polyfold sense (Definition 5.7). In particular, the tuple (P̃ , µ̃)
consisting of the restrictions

Ẽ := (P1|E1
(1)
× P2|E1

(2)
)−1(X̃)

P̃ := (P1 × P2)|Ẽ : Ẽ → X̃,

µ̃ := (µ1 × µ2) ◦ l|X̃ ×
s1×s2 P̃

Ẽ : X̃ ×
s1×s2 P̃

Ẽ → Ẽ,

is a tame strong bundle over X̃ , where

l : (X(1) ×X(2))× (E(1) × E(2))→ (X(1) × E(1))× (X(2) × E(2))

is the reordering of factors map.

(III) Consider, in addition, tame sc-Fredholm section functors (Def. 6.6)
σi : X(i) → E(i) of (Pi, µi) for i = 1, 2. Assume that f1 × f2 is (σ1 × σ2)-
compatibly transverse to ∆ (Definition 5.9).

Then, there exists a possibly smaller neighborhood X̃ in (II) that is a
slice of the tame sc-Fredholm section

(σ1 × σ2)|X1
(1)×X1

(2)
: X1

(1) ×X
1
(2) → E1

(1) × E
1
(2)

in the M -polyfold sense (Definition 5.7). In particular, the restriction

σ̃ := (σ1 × σ2)|X̃ : X̃ → Ẽ

is a tame sc-Fredholm section functor of the bundle (P̃ , µ̃) with index sat-
isfying

ind(x1,x2)(σ̃) = indx1
(σ1) + indx2

(σ2)− dimY

for all (x1, x2) ∈ X̃∞. If |σ−1
i (0)| is compact for i = 1, 2, then |σ̃−1(0)| is

compact.



✐

✐

“1-Filippenko” — 2021/5/27 — 18:47 — page 348 — #108
✐

✐

✐

✐

✐

✐

348 Benjamin Filippenko

Proof. We prove the statements in (I). Lemma 7.2(I) provides a tame ep-
groupoid structure on X(1) ×X(2) with degeneracy index satisfying

dX(1)×X(2)
(x1, x2) = dX(1)

(x1) + dX(2)
(x2)

for (x1, x2) ∈ (X(1))∞ × (X(2))∞. We claim that Corollary 6.8(I) applies to
the product map

f1 × f2 : X(1) ×X(2) → Y × Y

and the codimension-dimY submanifold∆ ⊂ Y × Y . Indeed, f1 × f2 is trans-
verse to ∆ by hypothesis and the required morphism compatibility (f1 ×
f2) ◦ (s1 × s2)(ϕ1, ϕ2) = (f1 × f2) ◦ (t1 × t2)(ϕ1, ϕ2) holds by the hypothesis
fi(si(ϕi)) = fi(ti(ϕi)). Since the fiber product is the preimage of the diagonal

X(1) ×f1 f2
X(2) = (f1 × f2)

−1(∆),

the result of Corollary 6.8(I) is exactly the assertions in (I).
Similarly, to prove (II), we note that Lemma 7.2(II) provides a tame

strong bundle structure on (P1 × P2, (µ1 × µ2) ◦ l), and then Corollary 6.8(II)
provides the desired result.

We now prove (III). Lemma 7.2(III) shows that

σ1 × σ2 : X(1) ×X(2) → E(1) × E(2)

is a tame sc-Fredholm section functor of (P1 × P2, (µ1 × µ2) ◦ l) with index
satisfying ind(x1,x2)(σ1 × σ2) = indx1

(σ1) + indx2
(σ2) and with |σ−1

1 (0)| ×

|σ−1
2 (0)| compact. Then by Corollary 6.8(III), we conclude that σ̃ is a tame

sc-Fredholm section functor with index satisfying ind(x1,x2)(σ̃) = indx1
(σ1) +

indx2
(σ2)− dimY and such that |σ̃−1(0)| is compact. □
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