
✐

✐

“3-Pia” — 2021/4/30 — 15:57 — page 399 — #1
✐

✐

✐

✐

✐

✐

journal of

symplectic geometry

Volume 19, Number 2, 399–412, 2021

On the dynamics of some vector fields

tangent to non-integrable plane fields

Nicola Pia

Let E3 ⊂ TMn be a smooth 3-distribution on a smooth n-manifold,
andW ⊂ E a line field such that [W, E ] ⊂ E . We give a condition for
the existence of a plane field D2 such that W ⊂ D and [D,D] = E
near a closed orbit of W. If W has a non-singular Morse-Smale
section, we get a condition for the global existence of D. As a
corollary we obtain conditions for a non-singular vector field W on
a 3-manifold to be Legendrian, and for an even contact structure
E ⊂ TM4 to be induced by an Engel structure D.

1. Introduction

The only topologically stable families of smooth distributions on smooth
manifolds are line fields, contact structures, even contact structures, and
Engel structures [2, 6, 8, 17]. An even contact structure is a maximally
non-integrable hyperplane field on an even dimensional manifold. An Engel
structure is a 2-plane field D on a 4-manifold M such that E = [D,D] is
an even contact structure. Engel structures were discovered more than a
century ago [2, 6] and they have sparked big interest throughout the years
[3, 14, 16, 19, 20].

We want to understand which even contact structures (M4, E) are in-
duced by Engel structures D, i.e. [D,D] = E . There are some obvious topo-
logical obstructions: M admits an even contact structure if (up to a 2-
cover) its Euler characteristic vanishes (see [12]), whereas it admits an En-
gel structure only if it is parallelizable (up to a 4-cover, see [20]). For this
reason we only consider even contact structures E which admit a framing
E = ⟨W, A, B⟩ where W spans the characteristic foliation, i.e. the unique
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line field W ⊂ E satisfying [W, E ] ⊂ E . In this case an orientable Engel struc-
ture compatible with E takes the form DL = ⟨W, L⟩, where L ∈ Γ⟨A, B⟩ and
[DL,DL] = E .

The same framework can be used to describe different contexts. For
example if M is an orientable manifold of dimension 3 and E := TM =
⟨W, A, B⟩, then a plane field of the form DL = ⟨W, L⟩, where L ∈ Γ⟨A, B⟩
and [DL,DL] = E , is an orientable contact structure for which W is Legen-
drian. We introduce a more general family of distributions which permits
to treat the above cases at once. For a given 3-distribution E ⊂ TM on a
manifold M , we say that a 2-plane field D ⊂ E generates E or that D is
maximally non-integrable within E if [D,D] = E .

Definition 1.1. If E = ⟨W, A, B⟩ and W = ⟨W ⟩ satisfy [W, E ] ⊂ E , we say
that DL = ⟨W, L⟩ ⊂ E generates E up to homotopy if there is a family of
plane fields DLs

= ⟨W, Ls⟩ ⊂ E continuous in s ∈ [0, 1] and such that DL0
=

DL and DL1
generates E 1.

If γ is an orbit of W = ⟨W ⟩, p ∈ γ and ϕt denotes the flow of W at
time t, we introduce a rotation angle function θ(p; t) associated with L,
whose derivative is non-vanishing if and only if DL = ⟨W, L⟩ generates E in
a neighbourhood of γ. If γ is closed of period T , we consider the quantity
rotγ, p (L) = θ(p;T )− θ(p; 0), which we call the rotation number of L along γ
at p. Themaximal rotation number maxrotγ (L) of L along γ is the maximum
of the rotation number under homotopies of L and ⟨A, B⟩. This quantity
gives an obstruction to the existence of D generating E in a neighbourhood
of γ. If the dynamics of W are particularly simple, we can give a necessary
and sufficient condition for the global existence of D generating E .

Theorem A. Let E = ⟨W, A, B⟩ be a rank 3 distribution on a manifold
M , and denote by W = ⟨W ⟩. Suppose that [W, E ] ⊂ E, and let W be a non-
singular Morse-Smale vector field. There exists D ⊂ E such that W ⊂ D and
that positively generates E on M if and only if there exists L ∈ Γ⟨A, B⟩ such
that maxrotγ (L) > 0 for all closed orbits γ of W .

The previous theorem is new already in the special case of Legendrian
vector fields. This question has already been studied in the case of Morse-
Smale gradient vector fields in [7].

1We do not consider all possible homotopies of the plane field DL ⊂ E , only those
tangent to W.
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1.1. Structure of the paper

In Section 2 we introduce the rotation number, and we study its behaviour
under homotopies in Section 3. In Section 4 we apply the theory to Morse-
Smale vector fields. In Sections 5 we study the case of Legendrian vector
fields and even contact structures.

Acknowledgements. I would like to thank my advisors Gianluca Bande
and Dieter Kotschick. The intuition on the rotation number was pointed
out to me at the AIM workshop Engel structures in San José, for this I am
particularly thankful to Yakov Eliashberg. I am very thankful to the referee
for the detailed reading and the useful comments. Finally I thank Thomas
Vogel, Vincent Colin, Rui Coelho, and Giovanni Placini.

2. Rotation number

Suppose that E ⊂ TM is a rank 3 distribution which admits a global framing
E = ⟨W, A, B⟩, such that the flow of W preserves E , and denote W = ⟨W ⟩.
Given L ∈ ΓE nowhere tangent to W, we want to determine when the distri-
bution DL := ⟨W, L⟩ is homotopic within E to a maximally non-integrable
plane field within E . Since we have fixed a framing, E is oriented. Moreover
every DL that generates E uniquely defines an orientation of E given by
{W, L, [W,L]}. We say that DL positively (resp. negatively) generates E if
these orientations coincide (resp. they are opposite).

In analogy with [1, 14], for a given orbit of W parametrized by the
immersion γ : [a, b] → M we define the developing map

δγ : [a, b] → RP
1 ≡ P(E/W|γ[0])

via δγ(t) =
[

DL|γ(t)

]

∈ P(E/W|γ[t]) ≡ P(E/W|γ[0]),

where the identification E/W|γ[t] ≡ E/W|γ[0] is given by γ−1
∗ . A framing

{A, B} fixes a trivialization of E/W and permits to lift δγ to an angle
function θ at p = γ(a), up to choosing a lift θ(p; 0). If we fix W such that
W = ⟨W ⟩, this furnishes a parametrization γ via the flow ϕt of W , so that
the angle function θ satisfies

δγ(t) = [ϕ−t∗L(p)] = [cos θ(p; t)A(p) + sin θ(p; t)B(p)].

With techniques similar to the ones used in [1, 4] we can prove the
following
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Proposition 2.1. The distribution DL = ⟨W, L⟩ ⊂ E generates E in a neigh-
bourhood of a orbit parametrized by an immersion γ if and only if δγ is an
immersion.

Definition 2.2. Let E = ⟨W, A, B⟩ be as above and let ϕt : [0, T ] → M
parametrize a closed orbit of W of period T . We call rotation number of L
around γ at p = γ(0) the quantity

rotγ, p (L) = θ(p;T )− θ(p; 0).

The rotation number is not an integer. Moreover it depends on the choice
of {A, B}, and is not invariant under homotopies of L, as the following
example shows.

Example 2.3. The Lie algebra g of the Lie group Sol41 is generated by
{W, X, Y, Z} satisfying [W,X] = −X, [W,Y ] = Y , [X,Y ] = Z, and all other
brackets are zero. We have a left-invariant Engel structure D = ⟨W, X +
Y ⟩ (see [19] for more details). The left-invariant even contact structure
⟨W, X, Y ⟩ has characteristic foliation spanned by W , whose flow preserves
⟨X⟩ and ⟨Y ⟩. Hence for each compact quotient Sol41 /Γ such that W admits
a closed orbit γ, we have rotγ, p (X) = 0. Notice that Ls = X + sY gives a
homotopy DLs

= ⟨W, Ls⟩ between DL0
= ⟨W, X⟩ and DL1

= ⟨W, X + Y ⟩,
which is an Engel structure. In particular rotγ, p (X + Y ) ̸= 0 by Proposi-
tion 2.1.

We have invariance of the rotation number under a smaller family of
homotopies of L.

Lemma 2.4. Let Lτ for τ ∈ [0, 1] be a smooth family of vector fields tangent
to E = ⟨W, A, B⟩ and nowhere tangent to W. If Lτ (p) = L0(p) for all τ ∈
[0, 1] then rotγ, p (L1) = rotγ, p (L0).

Proof. Parametrize γ via ϕt, the flow of W , and denote by θτ the angle func-
tion associated with Lτ . Now the angle functions θ0 and θ1 are homotopic
relative to the end points through the family of angle functions θτ , which
concludes the proof. □

If L(p) and W are fixed, but the homotopy class of L is allowed to vary,
the rotation number may vary by an integer multiple of 2π. By definition,
rotγ, p (L) is invariant under homotopies of {A, B} relative to p. One can
show that changing representative in the homotopy class of {A, B} changes
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the rotation number at most π (see the proof of Proposition 3.1). This
suggests to take into account all possible “initial phases” of L and choices of
B(p) = {A(p), B(p)}. More precisely, identifying L with a map L : M → S1

via the framing {A, B}, and denoting by R(η) the rotation of S1 of angle
η ∈ R, we define

(2.1) ΦL
γ,B(p) : R → R s.t. η 7→ rotγ, p (R(η) ◦ L) .

Taking the maximum with respect to all possible initial phases and
choices of B(p) we get

Definition 2.5. The maximal rotation number of L along γ is

maxrotγ (L) = max
{

ΦL
γ,B(p)(η)

∣

∣

∣
η ∈ R, B(p)

}

.

Lemma 2.6. The maximal rotation number of L along γ does not depend
on p.

Proof. Applying the linearised flow of W , we see that r = ΦL
γ,B(p)(η) co-

incides with the rotation number of ϕt∗R(η) ◦ L calculated with respect
to ϕt∗(B(p)). There is an angle η′ ∈ R such that R(η′) ◦ L and ϕt∗R(η) ◦
L coincide at ϕt(p), up to a positive rescaling. Since both R(η′) ◦ L and
ϕt∗R(η) ◦ L are homotopic to L, they must be homotopic to each other rela-
tive to {ϕt(p)}. By Lemma 2.4 r = ΦL

γ, ϕt∗
(B(p))(η

′) ≤ maxrotγ (L) calculated

in ϕt(p). Now using transitivity of ϕt we conclude the proof. □

Theorem 2.7. Let E = ⟨W, A, B⟩ be a distribution of rank 3 such that
[W, E ] ⊂ E, and let γ be a closed orbit for W . Then DL = ⟨W, L⟩ generates
E in a neighbourhood of γ up to homotopy if and only if |maxrotγ (L) | > 0.

Proof. Let Lτ for τ ∈ [0, 1] be a homotopy such that L = L0 and ⟨W, L1⟩ is
maximally non-integrable within E in a neighbourhood of γ. We need to show
that for some p ∈ γ, there is a homotopy relative to L1(p) between L1 and
R(η) ◦ L for some η ∈ R. This is done by taking η such that R(η) ◦ L(p) =
L1(p), exactly as in the proof of Lemma 2.6. This implies the claim thanks
to Lemma 2.4 and Proposition 2.1.

Conversely let |maxrotγ (L) | > 0. Without loss of generality we can sup-
pose that rotγ, p (L) > 0. First homotope L relative to {p} and to the bound-
ary of Op(p) to a maximally non-integrable distribution within E near p. The
rotation number does not change by Lemma 2.4. Fix W = ⟨W ⟩ and let ϕt

denote its flow. For ϵ > 0 small, take a disc D3 →֒ M centered at ϕϵ(p) and
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Figure 2.1: Homotopy of θ when the rotation number is positive.

everywhere transverse to W. Up to shrinking the disc D3, we can suppose
that the map F : D3 × [ϵ, T − ϵ] → M given by the flow (q, t) 7→ ϕt(q) is an
embedding and hence a flow box for W . In this chart for q ∈ D3 we can
express

F ∗L(ϕt(q)) = ρ(q; t)
(

cos θ(q; t) F ∗A(ϕt(q)) + sin θ(q; t) F ∗B(ϕt(q))
)

,

for some functions ρ > 0 and θ. Since rotγ, p (L) > 0, up to choosing ϵ > 0
small enough, we can suppose that θ(0;T − ϵ)− θ(0; ϵ) > 0. Hence there
exists a homotopy θτ : D3 × [ϵ, T − ϵ] → R such that θ0 = θ, the restriction
of θτ to the boundary ∂(D3 × [ϵ, T − ϵ]) is θ, and

θ1(0; t) = h(t)
(

θ(0;T − ϵ)− θ(0; ϵ)
)

+ θ(0; ϵ)

for a smooth step function h (see Figure 2.1). This defines a family of vector
fields Lt such that DL1

generates E on a (possibly smaller) neighbourhood
of γ. □

3. Character of closed orbits of W

We now consider the action [ϕt∗] : P(Ep/Wp) → P(Eϕt(p)/Wϕt(p)) of the flow
ϕt of a section W of W on P(E/W). This is discussed in detail in [13] for
the case of Engel structures. If p ∈ M is contained in a closed orbit of W of
period T , then P := [ϕ

T ∗
] ∈ PSL(2,R), where we identify RP

1 = P(Ep/Wp).
We say that a closed orbit γ is:

• Elliptic if | trP | < 2 or P = ±id, in which case we can represent P by
a rotation P ≡ R(δ) with δ ∈ R.
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• Parabolic if | trP | = 2 and P ̸= ±id, in which case we can represent P
by

P ≡ ±

(

1 ±1
0 1

)

.

• Hyperbolic if | trP | > 2, in which case we can represent P by

P ≡ ±

(

e−µ 0
0 eµ

)

µ ∈ R.

The following result analyses how ΦL
γ,p(η) changes when we change η.

Proposition 3.1. Let E = ⟨W, A, B⟩ be a distribution of rank 3 such that
[W, E ] ⊂ E, DL a distribution of rank 2 such that DL = ⟨W, L⟩ ⊂ E, γ a
closed orbit for W , and p a point on γ.

1) If γ is hyperbolic, then for every η ∈ R we have
∣

∣ΦL
γ,p(η)− rotγ, p (L)

∣

∣ <
π. Moreover there exists a constant c ∈ (0, π) such that DL positively
generates E in a neighbourhood of γ up to homotopy if and only if
rotγ, p (L) > −c.

2) If γ is parabolic, then for every η ∈ R we have
∣

∣ΦL
γ,p(η)− rotγ, p (L)

∣

∣ <
2π. Moreover there exists a constant c ∈ (0, 2π) such that DL positively
generates E in a neighbourhood of γ up to homotopy if and only if
rotγ, p (L) > −c.

3) If γ is elliptic, then ΦL
γ,p(η) does not depend on η.

Proof. The developing map δηγ of the rotated plane field DR(η)L satisfies

δηγ(T ) = [ϕ
−T ∗

R(η)L(p)] = [ϕ
−T ∗

R(η)ϕ
T ∗
]δγ(T ) = P−1R(η)P ◦ δγ(T ).

We need to analyse the rotation induced byM=P−1R(η)P on v=ϕ
−T ∗

L(p).
P will rotate v by an angle r, R(η) will further rotate it by an angle η, and
finally P−1 by an angle r′. Now denoting by θR(η)L and θL the rotation
angles associated with R(η)L and L we have

rotγ, p (R(η)L) = θR(η)L(p;T )− θR(η)L(p; 0)

= θL(p;T ) + r + η + r′ − θL(p; 0)− η,

hence it suffices to study the term r + r′. In the case of a hyperbolic orbit
we have |r|, |r′| < π/2, whereas for a parabolic orbit we have |r|, |r′| < π. If
γ is elliptic, then M = R(δ)R(η)R(−δ) = R(η), so that r + r′ = 0. □
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Remark 3.2. The cases where rotγ, p (L) ≤ 0 and nonetheless DL = ⟨W, L⟩
positively generates E up to homotopy on γ occur only when γ is hyperbolic
or parabolic. In these cases rotγ, p (L) is not allowed to be “too negative”.

Corollary 3.3. Let E = ⟨W, A, B⟩ be a distribution of rank 3 such that
[W, E ] ⊂ E, and let γ be an unknotted elliptic closed orbit for W . Then the
rotation number r = rotγ, p (L) of L ∈ Γ⟨A, B⟩ does not depend on L. In
particular there exists an oriented plane field D such that W ⊂ D ⊂ E and
which positively generates E on a neighbourhood of γ if and only if r > 0.

Proof. Let L and L′ be non-singular vector fields in ⟨A, B⟩; identify them
with maps L,L′ : M → S1. Since γ is unknotted, there is an embedded
disc D2 such that ∂D2 = γ, hence there exists a homotopy between L
and L′. Since γ is elliptic, by point (3) of Proposition 3.1 we have that
r = rotγ, p (L) = rotγ, p (L

′). The second claim now follows directly from The-
orem 2.7. □

Notice that the hypothesis that γ is unknotted is equivalent to γ being
null-homotopic if the dimension of M is greater than 3.

4. Morse-Smale vector fields

Since the dynamics of non-singular Morse-Smale (NMS) vector fields can
be described once we understand neighbourhoods of the closed orbits, it is
reasonable to expect that the rotation number will play a central role when
W is NMS. For the basic theory of Morse-Smale vector fields see [10].

4.1. Morse-Smale vector fields and round handle decompositions

Recall that a NMS vector field W is a non-singular vector field which has
finitely many non-degenerate closed orbits γ1, . . . , γm, whose union is the
non-wandering set Ω = γ1 ∪ · · · ∪ γm. Moreover for every i, j ∈ {1, . . . ,m}
the stable manifold W s(γi) and the unstable manifold W u(γj) intersect
transversely. A round handle decomposition (RHD) of M is a filtration
M1 ⊂ M2 ⊂ · · · ⊂ Mm = M where Mk is obtained from Mk−1 by attach-
ing a round handle Rh = Dh ×Dn−h−1 × S1. We call h the index of the
round handle, ∂+Rh = Dh × Sn−h−2 × S1 the enter region or the positive
boundary and ∂−Rh = Sh−1 ×Dn−h−1 × S1 the exit region or the negative
boundary.
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Theorem 4.1 [15]. Let W be a non-singular Morse-Smale vector field on M .
Then M admits a RHD M1 ⊂ M2 ⊂ · · · ⊂ Mm = M such that every round
handle R is a neighbourhood of a closed orbit γ of W , and the index of R
(as a handle) is the index of γ (as a closed orbit). The attaching procedure is
performed via the flow of W , which is transverse to ∂Mk pointing outwards
for every k.

We include a sketch of the proof for completeness, since it will be relevant
in the proof of Theorem 4.2.

Sketch of proof. The idea is to order the closed orbits of M via γi ≤ γj if
W u(γi) ∩W s(γj) ̸= 0, and reason by induction. In other words, γi ≤ γj if
there is a orbit whose α-limit is γi and whose ω-limit is γj . The no cycle
condition (see [18]) ensures that this is compatible with a total ordering of
{γ1, . . . , γm}.

The first orbits in the ordering are the source orbits, i.e. the ones for
which W u = ∅, hence we construct M1 by taking a neighbourhood of γ1.
Suppose that we have constructed inductivelyMk−1 such that γ1, . . . , γk−1 ⊂
Mk−1, γj ∩Mk−1 = ∅ for j > k − 1, and the flow is transverse to ∂Mk−1

pointing outwards. If γk is a source orbit, then we take a neighbourhood Rk

disjoint from Mk−1 and define Mk = Mk−1 ∪Rk.
If γk is not a source orbit, this means that Mk−1 contains all of them,

so a generic point in M \ {γ1, . . . , γk−1} has to have one of the source orbits
as α-limit. We take a small tubular neighbourhood Rk of γk and we attach
it using all flow lines of W that have α-limit in Mk−1. This might introduce
corners and the boundary of Mk will not be transverse to W . For these
reasons we smoothen it as illustrated in Figure 4.1. For further details on
the proof see [15]. □

4.2. Morse-Smale flows preserving a 3-distribution

We give a necessary and sufficient condition for the existence of D ⊂ E that
generates E when W is NMS.

Theorem 4.2. Let E = ⟨W, A, B⟩ be a rank 3 distribution on a manifold
M , and denote by W = ⟨W ⟩. Suppose that [W, E ] ⊂ E, and let W be a non-
singular Morse-Smale vector field. There exists D ⊂ E such that W ⊂ D and
that positively generates E on M if and only if there exists L ∈ Γ⟨A, B⟩ such
that maxrotγ (L) > 0 for all closed orbits γ of W .
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Figure 4.1: Smoothen the corners.

Proof. If such a plane field D exists, then we can take L to be any vector
field satisfying D = ⟨W, L⟩ and the claim follows by Proposition 2.1. The
idea for the converse is to construct D inductively using the RHD of The-
orem 4.1. First we construct D in a neighbourhood of the source orbit γ1
using Theorem 2.7. Suppose that we have attached k − 1 handles to obtain
Mk−1, and that we want to attach the k-th handle Rk. If γk is a source orbit
then we construct D on Rk = Op(γk) as above, and attach it by disjoint
union Mk = Mk−1 ∪Rk. This procedure yields a plane field D homotopic to
DL = ⟨W, L⟩ which generates E along the core of each handle.

If γk is not a source orbit, the proof Theorem 4.1 ensures that Rk is a
neighbourhood of γk, and that the attaching procedure happens via the flow
of W . We first construct D on Rk using Theorem 2.7. The existence of L
ensures that the D extends to a plane field on Mk which generates E on a
neighbourhood of Mk−1 and of γk.

In general we cannot homotope this plane field to a maximally non-
integrable one onMk. The problem is that the attaching region is of the form
∂+Rk × I, where ∂+Rk × {1} is the subset of Rk where W points inwards,
and W is tangent to the I-factor on ∂+Rk × I. This means that, on the
universal cover ∂+R̃k × I, a lift of L takes the form L̃ = cos ft Ã+ sin ft B̃,
where Ã and B̃ are lifts of A and B, and ft : ∂+R̃k → R is a I-family of
angle functions. Hence we can homotope L transversely to ∂t so that ⟨∂t, L⟩
generates E if and only if f1 > f0. There is no reason for this to happen in
general.
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Let K = max{f1(p)− f0(p)| p ∈ ∂+R̃k}. For any p ∈ ∂Mk−1 × (−ϵ, ϵ) on
a collared neighbourhood ∂Mk−1, the vector field L can be described by an
embedding hp : (−ϵ, ϵ) → S1. We substitute it by h̃p : (−ϵ, ϵ) → S1 which
coincides with h on Op({−ϵ, ϵ}), and such that it makes a number of turns
around S1 bigger than K/2π. In this way we obtain a new vector field L′,
not homotopic to L in general, and such that its associated family of angle
functions f ′

t satisfies f
′
1 > f ′

0. We can now homotope L′ to a maximally non-
integrable plane field within E on the attaching region. We might now need
to round the corners of Mk, and this can be done exactly as in the proof of
Theorem 4.1 (see Figure 4.1). □

5. Morse-Smale Legendrians and even contact structures

Theorem 4.2 gives a necessary and sufficient condition for a NMS vector field
to be Legendrian. An interesting example of 3-manifold admitting NMS
vector fields is S3. However only very few 3-manifolds admit such vector
fields (see [15, Theorem A]). It is interesting to know when a given vector
field L is transverse to a contact structure. This question has already been
studied in [9] for L tangent to the fibres of a S1-bundle over a surface, and
in [11] for L tangent to the fibres of a Seifert fibration.

If L is Legendrian for some orientable contact structure D, then there is
a contact structure D̃ transverse to L. Indeed choose L̃ such that D = ⟨L, L̃⟩
and consider D̃ = ϕϵ∗D, where ϕϵ denotes the flow of L̃ for small time ϵ. The
contact condition ensures that D̃ is transverse to D, moreover it contains L̃,
so it is transverse to L.

Corollary 5.1. There exists a vector field on S3 which is transverse to a
contact structure but never Legendrian.

Proof. Consider the vector field W normal to the canonical Reeb foliation
on S3. Using the theory of confoliations [5, Chapter 2] we can C0-deform
the tangent bundle of the Reeb foliation to get a contact structure, so that
L is transverse to a contact structure. L has two unknotted elliptic closed
orbits with trivial monodromy, which obstructs the existence of a contact
structure for which L is Legendrian. □

Theorem 4.2 suggests to study even contact structures which admit a
NMS section of W. It is not clear if every parallelizable 4-manifold admits
such structures, and in fact many NMS flows on 4-manifolds cannot span
the characteristic foliation of an even contact structure. On the other hand
this property becomes true if we allow perturbations of W .
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Lemma 5.2. Near every closed orbit γ of a NMS vector field W on M there
exists an even contact structure E, whose characteristic line field is spanned
by a C0-perturbation of W fixing γ.

Proof. Up to a perturbation, γ has a tubular neighbourhood νγ = S1 ×D3

where

W |νγ = ∂θ + 2ϵ1x∂x + 2ϵ2y∂y + 4ϵ3z∂z,

with ϵi = ±1 depending on the index of γ. This is proven using the lin-
earised Poincaré map (see [10] for more details). If ϵi are all equal, then
W is Liouville for the symplectic form ω = dx ∧ dy + dz ∧ dθ, so we have
an even contact form α = iWω. If the ϵi are not all equal, then the vector
field V = 2ϵ1x∂x + 2ϵ2y∂y + 4ϵ3z∂z preserves the contact structure defined
by η = dz − xdy + ydx on D3, so that νγ is the suspension of the time 1
flow of V (see [13] for more details on this construction). □

The methods developed in this paper are well-suited for constructing
examples of even contact structures which do not admit compatible Engel
structures.

Proposition 5.3. Every even contact structure is C0-close to one which is
not induced by an Engel structure.

Proof. On a manifold M consider an even contact structure E with charac-
teristic foliation W. On a small neighbourhood U construct an even contact
structure E ′ with a contractible characteristic closed orbit γ having trivial
monodromy. Make sure that E ′|

Op(γ) extends to a formal even contact struc-
ture on M , which coincides with E on M \ U . We conclude the proof using
the (relative) complete h-principle for even contact structures (see [12]). □
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