On the dynamics of some vector fields tangent to non-integrable plane fields

Nicola Pia

Let $\mathcal{E}^3 \subset TM^n$ be a smooth 3-distribution on a smooth n-manifold, and $\mathcal{W} \subset \mathcal{E}$ a line field such that $[\mathcal{W}, \mathcal{E}] \subset \mathcal{E}$. We give a condition for the existence of a plane field \mathcal{D}^2 such that $\mathcal{W} \subset \mathcal{D}$ and $[\mathcal{D}, \mathcal{D}] = \mathcal{E}$ near a closed orbit of \mathcal{W} . If \mathcal{W} has a non-singular Morse-Smale section, we get a condition for the global existence of \mathcal{D} . As a corollary we obtain conditions for a non-singular vector field \mathcal{W} on a 3-manifold to be Legendrian, and for an even contact structure $\mathcal{E} \subset TM^4$ to be induced by an Engel structure \mathcal{D} .

1. Introduction

The only topologically stable families of smooth distributions on smooth manifolds are line fields, contact structures, even contact structures, and Engel structures [2, 6, 8, 17]. An even contact structure is a maximally non-integrable hyperplane field on an even dimensional manifold. An Engel structure is a 2-plane field \mathcal{D} on a 4-manifold M such that $\mathcal{E} = [\mathcal{D}, \mathcal{D}]$ is an even contact structure. Engel structures were discovered more than a century ago [2, 6] and they have sparked big interest throughout the years [3, 14, 16, 19, 20].

We want to understand which even contact structures (M^4, \mathcal{E}) are induced by Engel structures \mathcal{D} , i.e. $[\mathcal{D}, \mathcal{D}] = \mathcal{E}$. There are some obvious topological obstructions: M admits an even contact structure if (up to a 2-cover) its Euler characteristic vanishes (see [12]), whereas it admits an Engel structure only if it is parallelizable (up to a 4-cover, see [20]). For this reason we only consider even contact structures \mathcal{E} which admit a framing $\mathcal{E} = \langle W, A, B \rangle$ where W spans the characteristic foliation, i.e. the unique

The author is supported by the DAAD program Research Grants for Doctoral Candidates and Young Academics and Scientists (more than 6 months) No. 57381410, 2018/19.

line field $W \subset \mathcal{E}$ satisfying $[W, \mathcal{E}] \subset \mathcal{E}$. In this case an orientable Engel structure compatible with \mathcal{E} takes the form $\mathcal{D}_L = \langle W, L \rangle$, where $L \in \Gamma \langle A, B \rangle$ and $[\mathcal{D}_L, \mathcal{D}_L] = \mathcal{E}$.

The same framework can be used to describe different contexts. For example if M is an orientable manifold of dimension 3 and $\mathcal{E} := TM = \langle W, A, B \rangle$, then a plane field of the form $\mathcal{D}_L = \langle W, L \rangle$, where $L \in \Gamma \langle A, B \rangle$ and $[\mathcal{D}_L, \mathcal{D}_L] = \mathcal{E}$, is an orientable contact structure for which W is Legendrian. We introduce a more general family of distributions which permits to treat the above cases at once. For a given 3-distribution $\mathcal{E} \subset TM$ on a manifold M, we say that a 2-plane field $\mathcal{D} \subset \mathcal{E}$ generates \mathcal{E} or that \mathcal{D} is maximally non-integrable within \mathcal{E} if $[\mathcal{D}, \mathcal{D}] = \mathcal{E}$.

Definition 1.1. If $\mathcal{E} = \langle W, A, B \rangle$ and $\mathcal{W} = \langle W \rangle$ satisfy $[\mathcal{W}, \mathcal{E}] \subset \mathcal{E}$, we say that $\mathcal{D}_L = \langle W, L \rangle \subset \mathcal{E}$ generates \mathcal{E} up to homotopy if there is a family of plane fields $\mathcal{D}_{L_s} = \langle W, L_s \rangle \subset \mathcal{E}$ continuous in $s \in [0, 1]$ and such that $\mathcal{D}_{L_0} = \mathcal{D}_L$ and \mathcal{D}_{L_1} generates \mathcal{E}^{-1} .

If γ is an orbit of $W = \langle W \rangle$, $p \in \gamma$ and ϕ_t denotes the flow of W at time t, we introduce a rotation angle function $\theta(p;t)$ associated with L, whose derivative is non-vanishing if and only if $\mathcal{D}_L = \langle W, L \rangle$ generates \mathcal{E} in a neighbourhood of γ . If γ is closed of period T, we consider the quantity $\operatorname{rot}_{\gamma,p}(L) = \theta(p;T) - \theta(p;0)$, which we call the rotation number of L along γ at p. The maximal rotation number $\operatorname{maxrot}_{\gamma}(L)$ of L along γ is the maximum of the rotation number under homotopies of L and $\langle A, B \rangle$. This quantity gives an obstruction to the existence of \mathcal{D} generating \mathcal{E} in a neighbourhood of γ . If the dynamics of W are particularly simple, we can give a necessary and sufficient condition for the global existence of \mathcal{D} generating \mathcal{E} .

Theorem A. Let $\mathcal{E} = \langle W, A, B \rangle$ be a rank 3 distribution on a manifold M, and denote by $W = \langle W \rangle$. Suppose that $[W, \mathcal{E}] \subset \mathcal{E}$, and let W be a non-singular Morse-Smale vector field. There exists $\mathcal{D} \subset \mathcal{E}$ such that $W \subset \mathcal{D}$ and that positively generates \mathcal{E} on M if and only if there exists $L \in \Gamma \langle A, B \rangle$ such that $\max_{X \in \mathcal{E}} \langle L \rangle > 0$ for all closed orbits γ of W.

The previous theorem is new already in the special case of Legendrian vector fields. This question has already been studied in the case of Morse-Smale gradient vector fields in [7].

¹We do not consider all possible homotopies of the plane field $\mathcal{D}_L \subset \mathcal{E}$, only those tangent to \mathcal{W} .

1.1. Structure of the paper

In Section 2 we introduce the rotation number, and we study its behaviour under homotopies in Section 3. In Section 4 we apply the theory to Morse-Smale vector fields. In Sections 5 we study the case of Legendrian vector fields and even contact structures.

Acknowledgements. I would like to thank my advisors Gianluca Bande and Dieter Kotschick. The intuition on the rotation number was pointed out to me at the AIM workshop *Engel structures* in San José, for this I am particularly thankful to Yakov Eliashberg. I am very thankful to the referee for the detailed reading and the useful comments. Finally I thank Thomas Vogel, Vincent Colin, Rui Coelho, and Giovanni Placini.

2. Rotation number

Suppose that $\mathcal{E} \subset TM$ is a rank 3 distribution which admits a global framing $\mathcal{E} = \langle W, A, B \rangle$, such that the flow of W preserves \mathcal{E} , and denote $W = \langle W \rangle$. Given $L \in \Gamma \mathcal{E}$ nowhere tangent to W, we want to determine when the distribution $\mathcal{D}_L := \langle W, L \rangle$ is homotopic within \mathcal{E} to a maximally non-integrable plane field within \mathcal{E} . Since we have fixed a framing, \mathcal{E} is oriented. Moreover every \mathcal{D}_L that generates \mathcal{E} uniquely defines an orientation of \mathcal{E} given by $\{W, L, [W, L]\}$. We say that \mathcal{D}_L positively (resp. negatively) generates \mathcal{E} if these orientations coincide (resp. they are opposite).

In analogy with [1, 14], for a given orbit of W parametrized by the immersion $\gamma:[a,b]\to M$ we define the developing map

$$\begin{split} \delta_{\gamma} &: [a,b] \to \mathbb{RP}^1 \equiv \mathbb{P}(\mathcal{E}/\mathcal{W}|_{\gamma[0]}) \\ \text{via} \quad \delta_{\gamma}(t) &= \left[\left. \mathcal{D}_L \right|_{\gamma(t)} \right] \in \mathbb{P}(\mathcal{E}/\mathcal{W}|_{\gamma[t]}) \equiv \mathbb{P}(\mathcal{E}/\mathcal{W}|_{\gamma[0]}), \end{split}$$

where the identification $\mathcal{E}/\mathcal{W}|_{\gamma[t]} \equiv \mathcal{E}/\mathcal{W}|_{\gamma[0]}$ is given by γ_*^{-1} . A framing $\{A, B\}$ fixes a trivialization of \mathcal{E}/\mathcal{W} and permits to lift δ_{γ} to an angle function θ at $p = \gamma(a)$, up to choosing a lift $\theta(p; 0)$. If we fix W such that $W = \langle W \rangle$, this furnishes a parametrization γ via the flow ϕ_t of W, so that the angle function θ satisfies

$$\delta_{\gamma}(t) = [\phi_{-t_*}L(p)] = [\cos\theta(p;t)A(p) + \sin\theta(p;t)B(p)].$$

With techniques similar to the ones used in [1, 4] we can prove the following

Proposition 2.1. The distribution $\mathcal{D}_L = \langle W, L \rangle \subset \mathcal{E}$ generates \mathcal{E} in a neighbourhood of a orbit parametrized by an immersion γ if and only if δ_{γ} is an immersion.

Definition 2.2. Let $\mathcal{E} = \langle W, A, B \rangle$ be as above and let $\phi_t : [0, T] \to M$ parametrize a closed orbit of W of period T. We call rotation number of L around γ at $p = \gamma(0)$ the quantity

$$rot_{\gamma, p}(L) = \theta(p; T) - \theta(p; 0).$$

The rotation number is not an integer. Moreover it depends on the choice of $\{A, B\}$, and is not invariant under homotopies of L, as the following example shows.

Example 2.3. The Lie algebra \mathfrak{g} of the Lie group Sol_1^4 is generated by $\{W, X, Y, Z\}$ satisfying [W, X] = -X, [W, Y] = Y, [X, Y] = Z, and all other brackets are zero. We have a left-invariant Engel structure $\mathcal{D} = \langle W, X + Y \rangle$ (see [19] for more details). The left-invariant even contact structure $\langle W, X, Y \rangle$ has characteristic foliation spanned by W, whose flow preserves $\langle X \rangle$ and $\langle Y \rangle$. Hence for each compact quotient Sol_1^4/Γ such that W admits a closed orbit γ , we have $\mathrm{rot}_{\gamma,p}(X) = 0$. Notice that $L_s = X + sY$ gives a homotopy $\mathcal{D}_{L_s} = \langle W, L_s \rangle$ between $\mathcal{D}_{L_0} = \langle W, X \rangle$ and $\mathcal{D}_{L_1} = \langle W, X + Y \rangle$, which is an Engel structure. In particular $\mathrm{rot}_{\gamma,p}(X+Y) \neq 0$ by Proposition 2.1.

We have invariance of the rotation number under a smaller family of homotopies of L.

Lemma 2.4. Let L_{τ} for $\tau \in [0,1]$ be a smooth family of vector fields tangent to $\mathcal{E} = \langle W, A, B \rangle$ and nowhere tangent to \mathcal{W} . If $L_{\tau}(p) = L_0(p)$ for all $\tau \in [0,1]$ then $\operatorname{rot}_{\gamma,p}(L_1) = \operatorname{rot}_{\gamma,p}(L_0)$.

Proof. Parametrize γ via ϕ_t , the flow of W, and denote by θ_{τ} the angle function associated with L_{τ} . Now the angle functions θ_0 and θ_1 are homotopic relative to the end points through the family of angle functions θ_{τ} , which concludes the proof.

If L(p) and W are fixed, but the homotopy class of L is allowed to vary, the rotation number may vary by an integer multiple of 2π . By definition, $\operatorname{rot}_{\gamma,p}(L)$ is invariant under homotopies of $\{A, B\}$ relative to p. One can show that changing representative in the homotopy class of $\{A, B\}$ changes

the rotation number at most π (see the proof of Proposition 3.1). This suggests to take into account all possible "initial phases" of L and choices of $\mathcal{B}(p) = \{A(p), B(p)\}$. More precisely, identifying L with a map $L: M \to S^1$ via the framing $\{A, B\}$, and denoting by $R(\eta)$ the rotation of S^1 of angle $\eta \in \mathbb{R}$, we define

(2.1)
$$\Phi_{\gamma, \mathcal{B}(p)}^{L} : \mathbb{R} \to \mathbb{R} \quad \text{s.t.} \quad \eta \mapsto \operatorname{rot}_{\gamma, p} \left(R(\eta) \circ L \right).$$

Taking the maximum with respect to all possible initial phases and choices of $\mathcal{B}(p)$ we get

Definition 2.5. The maximal rotation number of L along γ is

$$\operatorname{maxrot}_{\gamma}(L) = \operatorname{max} \left\{ \Phi_{\gamma, \mathcal{B}(p)}^{L}(\eta) \,\middle|\, \eta \in \mathbb{R}, \, \mathcal{B}(p) \right\}.$$

Lemma 2.6. The maximal rotation number of L along γ does not depend on p.

Proof. Applying the linearised flow of W, we see that $r = \Phi^L_{\gamma,\mathcal{B}(p)}(\eta)$ coincides with the rotation number of $\phi_{t*}R(\eta) \circ L$ calculated with respect to $\phi_{t*}(\mathcal{B}(p))$. There is an angle $\eta' \in \mathbb{R}$ such that $R(\eta') \circ L$ and $\phi_{t*}R(\eta) \circ L$ coincide at $\phi_t(p)$, up to a positive rescaling. Since both $R(\eta') \circ L$ and $\phi_{t*}R(\eta) \circ L$ are homotopic to L, they must be homotopic to each other relative to $\{\phi_t(p)\}$. By Lemma 2.4 $r = \Phi^L_{\gamma,\phi_{t*}(\mathcal{B}(p))}(\eta') \leq \max_{\tau} L$ calculated in $\phi_t(p)$. Now using transitivity of ϕ_t we conclude the proof.

Theorem 2.7. Let $\mathcal{E} = \langle W, A, B \rangle$ be a distribution of rank 3 such that $[W, \mathcal{E}] \subset \mathcal{E}$, and let γ be a closed orbit for W. Then $\mathcal{D}_L = \langle W, L \rangle$ generates \mathcal{E} in a neighbourhood of γ up to homotopy if and only if $|\max_{\gamma}(L)| > 0$.

Proof. Let L_{τ} for $\tau \in [0,1]$ be a homotopy such that $L = L_0$ and $\langle W, L_1 \rangle$ is maximally non-integrable within \mathcal{E} in a neighbourhood of γ . We need to show that for some $p \in \gamma$, there is a homotopy relative to $L_1(p)$ between L_1 and $R(\eta) \circ L$ for some $\eta \in \mathbb{R}$. This is done by taking η such that $R(\eta) \circ L(p) = L_1(p)$, exactly as in the proof of Lemma 2.6. This implies the claim thanks to Lemma 2.4 and Proposition 2.1.

Conversely let $|\max \operatorname{rot}_{\gamma}(L)| > 0$. Without loss of generality we can suppose that $\operatorname{rot}_{\gamma,p}(L) > 0$. First homotope L relative to $\{p\}$ and to the boundary of $\mathcal{O}p(p)$ to a maximally non-integrable distribution within \mathcal{E} near p. The rotation number does not change by Lemma 2.4. Fix $\mathcal{W} = \langle W \rangle$ and let ϕ_t denote its flow. For $\epsilon > 0$ small, take a disc $D^3 \hookrightarrow M$ centered at $\phi_{\epsilon}(p)$ and

Figure 2.1: Homotopy of θ when the rotation number is positive.

everywhere transverse to W. Up to shrinking the disc D^3 , we can suppose that the map $F: D^3 \times [\epsilon, T - \epsilon] \to M$ given by the flow $(q, t) \mapsto \phi_t(q)$ is an embedding and hence a flow box for W. In this chart for $q \in D^3$ we can express

$$F^*L(\phi_t(q)) = \rho(q;t) \Big(\cos\theta(q;t) \ F^*A(\phi_t(q)) + \sin\theta(q;t) \ F^*B(\phi_t(q))\Big),$$

for some functions $\rho > 0$ and θ . Since $\operatorname{rot}_{\gamma,p}(L) > 0$, up to choosing $\epsilon > 0$ small enough, we can suppose that $\theta(0; T - \epsilon) - \theta(0; \epsilon) > 0$. Hence there exists a homotopy $\theta_{\tau} : D^3 \times [\epsilon, T - \epsilon] \to \mathbb{R}$ such that $\theta_0 = \theta$, the restriction of θ_{τ} to the boundary $\partial(D^3 \times [\epsilon, T - \epsilon])$ is θ , and

$$\theta_1(0;t) = h(t) \Big(\theta(0;T-\epsilon) - \theta(0;\epsilon) \Big) + \theta(0;\epsilon)$$

for a smooth step function h (see Figure 2.1). This defines a family of vector fields L_t such that \mathcal{D}_{L_1} generates \mathcal{E} on a (possibly smaller) neighbourhood of γ .

3. Character of closed orbits of \mathcal{W}

We now consider the action $[\phi_{t*}]: \mathbb{P}(\mathcal{E}_p/\mathcal{W}_p) \to \mathbb{P}(\mathcal{E}_{\phi_t(p)}/\mathcal{W}_{\phi_t(p)})$ of the flow ϕ_t of a section W of W on $\mathbb{P}(\mathcal{E}/\mathcal{W})$. This is discussed in detail in [13] for the case of Engel structures. If $p \in M$ is contained in a closed orbit of W of period T, then $P := [\phi_{T*}] \in \mathrm{PSL}(2,\mathbb{R})$, where we identify $\mathbb{RP}^1 = \mathbb{P}(\mathcal{E}_p/\mathcal{W}_p)$. We say that a closed orbit γ is:

• Elliptic if $|\operatorname{tr} P| < 2$ or $P = \pm id$, in which case we can represent P by a rotation $P \equiv R(\delta)$ with $\delta \in \mathbb{R}$.

• Parabolic if $|\operatorname{tr} P| = 2$ and $P \neq \pm id$, in which case we can represent P by

$$P \equiv \pm \begin{pmatrix} 1 & \pm 1 \\ 0 & 1 \end{pmatrix}.$$

• Hyperbolic if $|\operatorname{tr} P| > 2$, in which case we can represent P by

$$P \equiv \pm \begin{pmatrix} e^{-\mu} & 0 \\ 0 & e^{\mu} \end{pmatrix} \qquad \mu \in \mathbb{R}.$$

The following result analyses how $\Phi_{\gamma,p}^L(\eta)$ changes when we change η .

Proposition 3.1. Let $\mathcal{E} = \langle W, A, B \rangle$ be a distribution of rank 3 such that $[W, \mathcal{E}] \subset \mathcal{E}$, \mathcal{D}_L a distribution of rank 2 such that $\mathcal{D}_L = \langle W, L \rangle \subset \mathcal{E}$, γ a closed orbit for W, and p a point on γ .

- 1) If γ is hyperbolic, then for every $\eta \in \mathbb{R}$ we have $\left|\Phi_{\gamma,p}^{L}(\eta) \operatorname{rot}_{\gamma,p}(L)\right| < \pi$. Moreover there exists a constant $c \in (0, \pi)$ such that \mathcal{D}_{L} positively generates \mathcal{E} in a neighbourhood of γ up to homotopy if and only if $\operatorname{rot}_{\gamma,p}(L) > -c$.
- 2) If γ is parabolic, then for every $\eta \in \mathbb{R}$ we have $\left|\Phi_{\gamma,p}^{L}(\eta) \operatorname{rot}_{\gamma,p}(L)\right| < 2\pi$. Moreover there exists a constant $c \in (0, 2\pi)$ such that \mathcal{D}_{L} positively generates \mathcal{E} in a neighbourhood of γ up to homotopy if and only if $\operatorname{rot}_{\gamma,p}(L) > -c$.
- 3) If γ is elliptic, then $\Phi_{\gamma,p}^L(\eta)$ does not depend on η .

Proof. The developing map δ_{γ}^{η} of the rotated plane field $\mathcal{D}_{R(\eta)L}$ satisfies

$$\delta_{\gamma}^{\eta}(T) = [\phi_{-T} R(\eta) L(p)] = [\phi_{-T} R(\eta) \phi_{T}] \delta_{\gamma}(T) = P^{-1} R(\eta) P \circ \delta_{\gamma}(T).$$

We need to analyse the rotation induced by $M = P^{-1}R(\eta)P$ on $v = \phi_{-T}L(p)$. P will rotate v by an angle r, $R(\eta)$ will further rotate it by an angle η , and finally P^{-1} by an angle r'. Now denoting by $\theta_{R(\eta)L}$ and θ_L the rotation angles associated with $R(\eta)L$ and L we have

$$\operatorname{rot}_{\gamma,p}(R(\eta)L) = \theta_{R(\eta)L}(p;T) - \theta_{R(\eta)L}(p;0)$$
$$= \theta_L(p;T) + r + \eta + r' - \theta_L(p;0) - \eta,$$

hence it suffices to study the term r + r'. In the case of a hyperbolic orbit we have |r|, $|r'| < \pi/2$, whereas for a parabolic orbit we have |r|, $|r'| < \pi$. If γ is elliptic, then $M = R(\delta)R(\eta)R(-\delta) = R(\eta)$, so that r + r' = 0.

Remark 3.2. The cases where $\operatorname{rot}_{\gamma,p}(L) \leq 0$ and nonetheless $\mathcal{D}_L = \langle W, L \rangle$ positively generates \mathcal{E} up to homotopy on γ occur only when γ is hyperbolic or parabolic. In these cases $\operatorname{rot}_{\gamma,p}(L)$ is not allowed to be "too negative".

Corollary 3.3. Let $\mathcal{E} = \langle W, A, B \rangle$ be a distribution of rank 3 such that $[W, \mathcal{E}] \subset \mathcal{E}$, and let γ be an unknotted elliptic closed orbit for W. Then the rotation number $r = \operatorname{rot}_{\gamma, p}(L)$ of $L \in \Gamma \langle A, B \rangle$ does not depend on L. In particular there exists an oriented plane field \mathcal{D} such that $W \subset \mathcal{D} \subset \mathcal{E}$ and which positively generates \mathcal{E} on a neighbourhood of γ if and only if r > 0.

Proof. Let L and L' be non-singular vector fields in $\langle A, B \rangle$; identify them with maps $L, L' : M \to S^1$. Since γ is unknotted, there is an embedded disc D^2 such that $\partial D^2 = \gamma$, hence there exists a homotopy between L and L'. Since γ is elliptic, by point (3) of Proposition 3.1 we have that $r = \operatorname{rot}_{\gamma, p}(L) = \operatorname{rot}_{\gamma, p}(L')$. The second claim now follows directly from Theorem 2.7.

Notice that the hypothesis that γ is unknotted is equivalent to γ being null-homotopic if the dimension of M is greater than 3.

4. Morse-Smale vector fields

Since the dynamics of non-singular Morse-Smale (NMS) vector fields can be described once we understand neighbourhoods of the closed orbits, it is reasonable to expect that the rotation number will play a central role when W is NMS. For the basic theory of Morse-Smale vector fields see [10].

4.1. Morse-Smale vector fields and round handle decompositions

Recall that a NMS vector field W is a non-singular vector field which has finitely many non-degenerate closed orbits γ_1,\ldots,γ_m , whose union is the non-wandering set $\Omega=\gamma_1\cup\cdots\cup\gamma_m$. Moreover for every $i,j\in\{1,\ldots,m\}$ the stable manifold $W^s(\gamma_i)$ and the unstable manifold $W^u(\gamma_j)$ intersect transversely. A round handle decomposition (RHD) of M is a filtration $M_1\subset M_2\subset\cdots\subset M_m=M$ where M_k is obtained from M_{k-1} by attaching a round handle $R_h=D^h\times D^{n-h-1}\times S^1$. We call h the index of the round handle, $\partial_+R_h=D^h\times S^{n-h-2}\times S^1$ the enter region or the positive boundary and $\partial_-R_h=S^{h-1}\times D^{n-h-1}\times S^1$ the exit region or the negative boundary.

Theorem 4.1 [15]. Let W be a non-singular Morse-Smale vector field on M. Then M admits a RHD $M_1 \subset M_2 \subset \cdots \subset M_m = M$ such that every round handle R is a neighbourhood of a closed orbit γ of W, and the index of R (as a handle) is the index of γ (as a closed orbit). The attaching procedure is performed via the flow of W, which is transverse to ∂M_k pointing outwards for every k.

We include a sketch of the proof for completeness, since it will be relevant in the proof of Theorem 4.2.

Sketch of proof. The idea is to order the closed orbits of M via $\gamma_i \leq \gamma_j$ if $W^u(\gamma_i) \cap W^s(\gamma_j) \neq 0$, and reason by induction. In other words, $\gamma_i \leq \gamma_j$ if there is a orbit whose α -limit is γ_i and whose ω -limit is γ_j . The no cycle condition (see [18]) ensures that this is compatible with a total ordering of $\{\gamma_1, \ldots, \gamma_m\}$.

The first orbits in the ordering are the source orbits, i.e. the ones for which $W^u = \emptyset$, hence we construct M_1 by taking a neighbourhood of γ_1 . Suppose that we have constructed inductively M_{k-1} such that $\gamma_1, \ldots, \gamma_{k-1} \subset M_{k-1}$, $\gamma_j \cap M_{k-1} = \emptyset$ for j > k-1, and the flow is transverse to ∂M_{k-1} pointing outwards. If γ_k is a source orbit, then we take a neighbourhood R_k disjoint from M_{k-1} and define $M_k = M_{k-1} \cup R_k$.

If γ_k is not a source orbit, this means that M_{k-1} contains all of them, so a generic point in $M \setminus \{\gamma_1, \ldots, \gamma_{k-1}\}$ has to have one of the source orbits as α -limit. We take a small tubular neighbourhood R_k of γ_k and we attach it using all flow lines of W that have α -limit in M_{k-1} . This might introduce corners and the boundary of M_k will not be transverse to W. For these reasons we smoothen it as illustrated in Figure 4.1. For further details on the proof see [15].

4.2. Morse-Smale flows preserving a 3-distribution

We give a necessary and sufficient condition for the existence of $\mathcal{D} \subset \mathcal{E}$ that generates \mathcal{E} when W is NMS.

Theorem 4.2. Let $\mathcal{E} = \langle W, A, B \rangle$ be a rank 3 distribution on a manifold M, and denote by $\mathcal{W} = \langle W \rangle$. Suppose that $[\mathcal{W}, \mathcal{E}] \subset \mathcal{E}$, and let W be a non-singular Morse-Smale vector field. There exists $\mathcal{D} \subset \mathcal{E}$ such that $\mathcal{W} \subset \mathcal{D}$ and that positively generates \mathcal{E} on M if and only if there exists $L \in \Gamma \langle A, B \rangle$ such that $\max_{\mathcal{E}} (L) > 0$ for all closed orbits γ of W.

Figure 4.1: Smoothen the corners.

Proof. If such a plane field \mathcal{D} exists, then we can take L to be any vector field satisfying $\mathcal{D} = \langle W, L \rangle$ and the claim follows by Proposition 2.1. The idea for the converse is to construct \mathcal{D} inductively using the RHD of Theorem 4.1. First we construct \mathcal{D} in a neighbourhood of the source orbit γ_1 using Theorem 2.7. Suppose that we have attached k-1 handles to obtain M_{k-1} , and that we want to attach the k-th handle R_k . If γ_k is a source orbit then we construct \mathcal{D} on $R_k = \mathcal{O}p(\gamma_k)$ as above, and attach it by disjoint union $M_k = M_{k-1} \cup R_k$. This procedure yields a plane field \mathcal{D} homotopic to $\mathcal{D}_L = \langle W, L \rangle$ which generates \mathcal{E} along the core of each handle.

If γ_k is not a source orbit, the proof Theorem 4.1 ensures that R_k is a neighbourhood of γ_k , and that the attaching procedure happens via the flow of W. We first construct \mathcal{D} on R_k using Theorem 2.7. The existence of L ensures that the \mathcal{D} extends to a plane field on M_k which generates \mathcal{E} on a neighbourhood of M_{k-1} and of γ_k .

In general we cannot homotope this plane field to a maximally non-integrable one on M_k . The problem is that the attaching region is of the form $\partial_+ R_k \times I$, where $\partial_+ R_k \times \{1\}$ is the subset of R_k where W points inwards, and W is tangent to the I-factor on $\partial_+ R_k \times I$. This means that, on the universal cover $\partial_+ \tilde{R}_k \times I$, a lift of L takes the form $\tilde{L} = \cos f_t \tilde{A} + \sin f_t \tilde{B}$, where \tilde{A} and \tilde{B} are lifts of A and B, and $f_t : \partial_+ \tilde{R}_k \to \mathbb{R}$ is a I-family of angle functions. Hence we can homotope L transversely to ∂_t so that $\langle \partial_t, L \rangle$ generates \mathcal{E} if and only if $f_1 > f_0$. There is no reason for this to happen in general.

Let $K = \max\{f_1(p) - f_0(p) | p \in \partial_+ \tilde{R}_k\}$. For any $p \in \partial M_{k-1} \times (-\epsilon, \epsilon)$ on a collared neighbourhood ∂M_{k-1} , the vector field L can be described by an embedding $h_p : (-\epsilon, \epsilon) \to S^1$. We substitute it by $\tilde{h}_p : (-\epsilon, \epsilon) \to S^1$ which coincides with h on $\mathcal{O}p(\{-\epsilon, \epsilon\})$, and such that it makes a number of turns around S^1 bigger than $K/2\pi$. In this way we obtain a new vector field L', not homotopic to L in general, and such that its associated family of angle functions f'_t satisfies $f'_1 > f'_0$. We can now homotope L' to a maximally nonintegrable plane field within \mathcal{E} on the attaching region. We might now need to round the corners of M_k , and this can be done exactly as in the proof of Theorem 4.1 (see Figure 4.1).

5. Morse-Smale Legendrians and even contact structures

Theorem 4.2 gives a necessary and sufficient condition for a NMS vector field to be Legendrian. An interesting example of 3-manifold admitting NMS vector fields is S^3 . However only very few 3-manifolds admit such vector fields (see [15, Theorem A]). It is interesting to know when a given vector field L is transverse to a contact structure. This question has already been studied in [9] for L tangent to the fibres of a S^1 -bundle over a surface, and in [11] for L tangent to the fibres of a Seifert fibration.

If L is Legendrian for some orientable contact structure \mathcal{D} , then there is a contact structure $\tilde{\mathcal{D}}$ transverse to L. Indeed choose \tilde{L} such that $\mathcal{D} = \langle L, \tilde{L} \rangle$ and consider $\tilde{\mathcal{D}} = \phi_{\epsilon_*} \mathcal{D}$, where ϕ_{ϵ} denotes the flow of \tilde{L} for small time ϵ . The contact condition ensures that $\tilde{\mathcal{D}}$ is transverse to \mathcal{D} , moreover it contains \tilde{L} , so it is transverse to L.

Corollary 5.1. There exists a vector field on S^3 which is transverse to a contact structure but never Legendrian.

Proof. Consider the vector field W normal to the canonical Reeb foliation on S^3 . Using the theory of confoliations [5, Chapter 2] we can \mathcal{C}^0 -deform the tangent bundle of the Reeb foliation to get a contact structure, so that L is transverse to a contact structure. L has two unknotted elliptic closed orbits with trivial monodromy, which obstructs the existence of a contact structure for which L is Legendrian.

Theorem 4.2 suggests to study even contact structures which admit a NMS section of W. It is not clear if every parallelizable 4-manifold admits such structures, and in fact many NMS flows on 4-manifolds cannot span the characteristic foliation of an even contact structure. On the other hand this property becomes true if we allow perturbations of W.

Lemma 5.2. Near every closed orbit γ of a NMS vector field W on M there exists an even contact structure \mathcal{E} , whose characteristic line field is spanned by a \mathcal{C}^0 -perturbation of W fixing γ .

Proof. Up to a perturbation, γ has a tubular neighbourhood $\nu \gamma = S^1 \times D^3$ where

$$W|_{\nu\gamma} = \partial_{\theta} + 2\epsilon_1 x \partial_x + 2\epsilon_2 y \partial_y + 4\epsilon_3 z \partial_z,$$

with $\epsilon_i = \pm 1$ depending on the index of γ . This is proven using the linearised Poincaré map (see [10] for more details). If ϵ_i are all equal, then W is Liouville for the symplectic form $\omega = dx \wedge dy + dz \wedge d\theta$, so we have an even contact form $\alpha = i_W \omega$. If the ϵ_i are not all equal, then the vector field $V = 2\epsilon_1 x \partial_x + 2\epsilon_2 y \partial_y + 4\epsilon_3 z \partial_z$ preserves the contact structure defined by $\eta = dz - x dy + y dx$ on D^3 , so that $\nu \gamma$ is the suspension of the time 1 flow of V (see [13] for more details on this construction).

The methods developed in this paper are well-suited for constructing examples of even contact structures which do not admit compatible Engel structures.

Proposition 5.3. Every even contact structure is C^0 -close to one which is not induced by an Engel structure.

Proof. On a manifold M consider an even contact structure \mathcal{E} with characteristic foliation \mathcal{W} . On a small neighbourhood U construct an even contact structure \mathcal{E}' with a contractible characteristic closed orbit γ having trivial monodromy. Make sure that $\mathcal{E}'|_{\mathcal{O}p(\gamma)}$ extends to a formal even contact structure on M, which coincides with \mathcal{E} on $M \setminus U$. We conclude the proof using the (relative) complete h-principle for even contact structures (see [12]). \square

References

- [1] R. L. Bryant and L. Hsu, Rigidity of integral curves of rank 2 distributions, Invent. Math. 114 (1993), no. 1, 435–461.
- [2] E. Cartan, Sur quelques quadratures dont l'élément différentiel contient des fonctions arbitraires, Bull. Soc. Math. France 29 (1901), 118–130.
- [3] R. Casals, J. L. Perez, A. del Pino, and F. Presas, Existence h-principle for Engel structures, Invent. Math. 210 (2017), 417–451.
- [4] R. Casals, A. del Pino, and F. Presas, Loose Engel structures, Compos. Math. 156 (2020), 412–434.

- [5] Y. Eliashberg and W. P. Thurston, Confoliations, American Mathematical Soc., Vol. 13 (1998).
- [6] F. Engel, Zur Invariantentheorie der Systeme Pfaff'scher Gleichungen, Leipz. Ber. Band 41 (1889), 157–176.
- [7] J. Etnyre and R. Ghrist, Gradient flows within plane fields, Comment. Math. Helv. 74 (1999), no. 4, 507–529.
- [8] V. Y. Gershkovich and A. M. Vershik, Nonholonomic dynamical systems, Geometry of Distributions and Variational Problems (Russian) (1987).
- [9] E. Giroux, Structures de contact sur les variétés fibrées en cercles au dessus d'une surface, Comment. Math. Helv. **76** (2001), 218–262.
- [10] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and Its Applications. Cambridge: Cambridge University Press (1995).
- [11] P. Lisca and G. Matić, Transverse contact structures on Seifert 3-manifolds, Algebr. Geom. Topol. 4 (2004), no. 2, 1125–1144.
- [12] D. McDuff, Applications of convex integration to symplectic and contact geometry, Ann. Inst. Fourier 37 (1987), 107–133.
- [13] Y. Mitsumatsu, Geometry and dynamics of Engel structures, preprint (2018), arXiv:1804.09471.
- [14] R. Montgomery, Engel deformations and contact structures, North. Calif. Sympl. Geom. Sem., AMS Transl. Ser. 2 196 (1999), 103–117.
- [15] J. W. Morgan, Non-singular Morse-Smale flows on 3-dimensional manifolds, Topology 18 (1978), 41–53.
- [16] A. del Pino and T. Vogel, The Engel-Lutz twist and overtwisted Engel structures, to appear in Geometry and Topology. Preprint (2018), arXiv:1712.09286.
- [17] F. Presas, Non-integrable distributions and the h-principle, Eur. Math. Soc. Newsl. **99** (2016), 18–26.
- [18] S. Smale, Differentiable dynamical systems, Bull. Am. Math. Soc. 73 (1967), 747–817.
- [19] T. Vogel, Maximally non-integrable plane fields on Thurston geometries, International Mathematics Research Notes (2006), 1–30.

[20] T. Vogel, $Existence\ of\ Engel\ structures,$ Ann. of Math. (2) $\bf 169$ (2009), no. 1, 79–137.

Mathematisches Institut, LMU München Theresienstr. 39, 80333 München, Germany $E\text{-}mail\ address:\ pia@math.lmu.de}$

RECEIVED JUNE 12, 2020 ACCEPTED AUGUST 13, 2020