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The purpose of this paper is to introduce Liouville hypersurfaces in
contact manifolds, which generalize ribbons of Legendrian graphs
and pages of supporting open books. Liouville hypersurfaces are
used to define a gluing operation for contact manifolds called the
Liouville connect sum. Performing this operation on a contact man-
ifold (M, ξ) gives an exact — and in many cases, Weinstein —
cobordism whose concave boundary is (M, ξ) and whose convex
boundary is the surgered manifold. These cobordisms are used to
establish the existence of “fillability” and “non-vanishing contact
homology” monoids in symplectomorphism groups of Liouville do-
mains, study the symplectic fillability of a family of contact man-
ifolds which fiber over the circle, associate cobordisms to certain
branched coverings of contact manifolds, and construct exact sym-
plectic cobordisms that do not admit Weinstein structures.

The Liouville connect sum generalizes the Weinstein handle at-
tachment and is used to extend the definition of contact (1/k)-
surgery along Legendrian knots in contact 3-manifolds to contact
(1/k)-surgery along Legendrian spheres in contact manifolds of
arbitrary dimension. We use contact surgery to construct exotic
contact structures on 5- and 13-dimensional spheres after estab-
lishing that S2 and S6 are the only spheres along which gen-
eralized Dehn twists smoothly square to the identity mapping.
The exoticity of these contact structures implies that Dehn twists
along S2 and S6 do not symplectically square to the identity,
generalizing a theorem of Seidel. A similar argument shows that
the (2n+ 1)-dimensional contact manifold determined by an open
book whose page is (T ∗Sn,−λcan) and whose monodromy is any
negative power of a symplectic Dehn twist is not exactly fillable.
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1. Introduction

1.1. Preliminaries

A contact manifold is a pair (M, ξ) where M is an oriented (2n+ 1)-
dimensional manifold and ξ is a globally cooriented (2n)-plane field on M
such that there is a 1-form α ∈ Ω1(M) satisfying

ker(α) = ξ and α ∧ (dα)n > 0

with respect to the orientation onM . We also say that ξ is a contact structure
onM . A 1-form α satisfying the above equation is a contact form for (M, ξ).

An oriented, codimension-1 submanifold M of a symplectic manifold
(W,ω) is a contact hypersurface [Wei79] if there is a neighborhood N(M) of
M such that ω = dλ for some λ ∈ Ω1(N(M)) and the vector field X deter-
mined by ω(X, ∗) = λ is positively transverse to M . This implies that λ|TM

is a contact form on M . In this paper, we will be primarily concerned with
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the following class of symplectic manifolds whose boundaries are contact
hypersurfaces:

Definition 1.1. A Liouville domain is a pair (Σ, β) where

1) Σ is a smooth, compact manifold with boundary,

2) β ∈ Ω1(Σ) is such that dβ is a symplectic form on Σ, and

3) the unique vector field Xβ satisfying dβ(Xβ , ∗) = β points out of ∂Σ
transversely.

The vector field Xβ on Σ described above is called the Liouville vector field
for (Σ, β).

We say that two Liouville 1-forms β and β′ are homotopic if there is
a smooth family βt, t ∈ [0, 1], of Liouville 1-forms on Σ with β0 = β and
β1 = β′, such that βt = β for all t on some neighborhood of ∂Σ.

Example 1.2. Denote by D2n+2 the unit disk in R2n+2. The standard 1-
form on D2n+2 is

λstd =
1

2

n+1∑

1

(xjdyj − yjdxj)

in terms of coordinates (x1, . . . , xn+1, y1, . . . , yn+1). The standard contact
sphere, denoted (S2n+1, ξstd), is the boundary of D2n+2 with ξstd =
ker(λstd|TS3).

1.2. Liouville submanifolds of contact manifolds

We would like to define a class of codimension 1 submanifolds of contact
manifolds formally analogous to contact hypersurfaces in symplectic mani-
folds. One natural candidate definition would be that of a convex hypersur-
face introduced by Giroux in [Girou91, §1.3] and reviewed in Section 2.4. In
this paper we study the following more restricted class of hypersurfaces in
contact manifolds:

Definition 1.3. Let (M, ξ) be a (2n+ 1)-dimensional contact manifold
and let (Σ, β) be a 2k-dimensional Liouville domain. A Liouville embed-
ding i : (Σ, β) → (M, ξ) is an embedding i : Σ →M such that there exists
a contact form α for (M, ξ) for which i∗α = β. The image of a Liouville
embedding will be called a Liouville submanifold and will be denoted by
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(Σ, β) ⊂ (M, ξ). When k = n, we say that (Σ, β) ⊂ (M, ξ) is a Liouville hy-
persurface in (M, ξ).

Remark 1.4. In Section 5 it is shown that every Liouville submanifold in
a contact manifold (M, ξ) can be realized as the zero section of a symplectic
disk bundle whose total space is a Liouville hypersurface in (M, ξ).

Definition 1.3 implies that the boundary ∂Σ of a Liouville hypersurface
(Σ, β) ⊂ (M, ξ) is a codimension 2 contact submanifold of (M, ξ) when ori-
ented as the boundary of Σ. For example, when (M, ξ) is 3-dimensional, the
boundary of a Liouville hypersurface is a (positive) transverse link. Intu-
itively, we think of Liouville hypersurfaces in a contact manifold (M, ξ) as
positive regions of convex hypersurfaces in (M, ξ). This will be made more
precise in Proposition 7.2.

Σ
(1) (2) (3)

N (Σ) ∂N (Σ)

∂z

Figure 1: Moving from left to right we have (1) a Liouville hypersurface
(Σ, β) represented by a pair of pants, (2) a neighborhood N (Σ) of Σ repre-
sented by a handlebody, and (3) ∂N (Σ) depicted as an abstract surface. In
schematic figures Liouville domains and hypersurfaces will be represented
by pairs-of-pants unless otherwise stated. Whenever we draw convex hyper-
surfaces, we lightly shade the positive regions and heavily shade the negative
regions. See Section 2.4 for further explanation.

Every Liouville hypersurface (Σ, β) ⊂ (M, ξ) admits a neighborhood of
the form

N(Σ) = [−ϵ, ϵ]× Σ on which α = dz + β

where z is a coordinate on [−ϵ, ϵ]. After rounding the edges (∂[−ϵ, ϵ])× ∂Σ
of [−ϵ, ϵ]× Σ, we obtain a neighborhood N (Σ) of Σ for which ∂N (Σ) is a
smooth convex surface in (M, ξ) with contact vector field

(1.2.1) Vβ = z∂z +Xβ

and dividing set {0} × ∂Σ. See Figure 1. Details of the edge rounding de-
scribed appear in Section 3.



✐

✐

“2-Avdek” — 2021/12/7 — 23:53 — page 869 — #5
✐

✐

✐

✐

✐

✐

Liouville hypersurfaces and connect sum cobordisms 869

Example 1.5 (Neighborhoods of isotropic submanifolds as Liouville
hypersurfaces). If

(Σ, β) = (D2n, λstd) ⊂ (M, ξ)

is a Liouville submanifold of a (2n+ 1)-dimensional contact manifold, then
the interior of N (Σ) is a Darboux ball. If L ⊂ (M, ξ) is an isotropic sphere
with trivial normal bundle and α is a contact form for (M, ξ), then we can
find a compact hypersurface Σ with non-empty boundary in (M, ξ) which de-
formation retracts onto L and is diffeomorphic to a tubular neighborhood of
the zero section of the bundle R2m ⊕ T ∗L→ L for which α|TΣ = λstd − λcan.
Here m+ dim(L) = n and λcan is the canonical 1-form on T ∗L described in
Example 2.1, below.

Similar statements hold without the assumptions that the normal bundle
of L is trivial or that L is a sphere, by the results in Section 5. The case
(Σ, β) = (D2n, λstd) corresponds to the case where L is a single point. See
Examples 1.2 and 2.1.

1.3. The Liouville connect sum and associated cobordisms

Convex hypersurfaces provide a simple method of constructing contact man-
ifolds by cut-and-paste. However, examples are hard to find in high (> 3) di-
mensional contact manifolds and it is notoriously difficult to determine how
geometric properties of contact structures — such as symplectic fillability, or
tightness — behave under convex gluing. See, for example, [Hon02, Wa15].

Using Liouville hypersurfaces, we introduce a special type of convex glu-
ing for contact manifolds called the Liouville connect sum. Theorem 1.8
shows that this gluing operation determines an exact symplectic cobordism
whose negative boundary is (M, ξ) and whose positive boundary is the surg-
ered manifold #(Σ,β)(M, ξ), allowing us to relate symplectic filling properties
of #(Σ,β)(M, ξ) to those of (M, ξ).

1.4. Outline of the main construction

In this section we define the Liouville connect sum and state Theorem 1.8
from which most of our other results will be derived.

Fix a (2n)-dimensional Liouville domain (Σ, β) and a (possibly discon-
nected) (2n+ 1)-dimensional contact manifold (M, ξ). Let i1 and i2 be Li-
ouville embeddings of (Σ, β) into (M, ξ) whose images, which we will denote
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by Σ1 and Σ2, are disjoint. Let α be a contact form for (M, ξ) satisfying

i∗1α = i∗2α = β.

Consider neighborhoods N (Σ1),N (Σ2) ⊂M as described in Section 1.2.
Taking coordinates (z, x) on each such neighborhood with x ∈ Σ, we may
consider the mapping

Υ : ∂N (Σ1) → ∂N (Σ2), Υ(z, x) = (−z, x).

The map Υ sends

1) the positive region of ∂N (Σ2) to the negative region of ∂N (Σ1),

2) the negative region of ∂N (Σ1) to the positive region of ∂N (Σ2), and

3) the dividing set of ∂N (Σ1) to the dividing set of ∂N (Σ2)

in such a way that we may perform a convex gluing. In other words, the map
Υ naturally determines a contact structure #((Σ,β),(i1,i2))ξ on the manifold

#(Σ,(i1,i2))M :=
(
M \ Int

(
N (Σ1) ∪N (Σ2)

))
/ ∼

where p ∼ Υ(p) for p ∈ ∂N (Σ1). A careful construction of the neighborhood
N (Σ) as well as the normalizations of the contact forms required to perform
the convex gluing used to define the Liouville connect sum will be described
in Section 3.

Definition 1.6. In the above notation, we say that the contact manifold

#((Σ,β),(i1,i2))(M, ξ) := (#(Σ,(i1,i2))M,#((Σ,β),(i1,i2))ξ)

is the Liouville connect sum of (M, ξ) associated to the Liouville embeddings
i1, i2.

When the embeddings i1 and i2 of Definition 1.6 are understood, we will
use the short-hand notation #(Σ,β)(M, ξ) for #((Σ,β),(i1,i2))(M, ξ). It should
be noted that the Liouville connect sum in general depends on the embed-
dings i1 and i2, not just the images of Σ under these mappings.

Example 1.7 (Weinstein surgery as a Liouville connect sum). Con-
sider the disjoint union (M, ξ) ⊔ (S2n+1, ξstd) of some arbitrary (2n+ 1)-
dimensional contact manifold and the standard (2n+ 1)-sphere. Let L be
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an isotropic k-sphere in (M, ξ) with trivial normal bundle. By consider-
ing S2n+1 ⊂ R2n+2 as in Example 1.2, we may define L′ ⊂ (S2n+1, ξstd) =
∂(D2n+2, λstd) to be the isotropic k-sphere S

2n+1 ∩ Span(x1, . . . , xk+1). Then
we can find Liouville hypersurfaces (Σ1, λstd − λcan) ⊂ (M, ξ) and (Σ2, λstd −
λcan) ⊂ (S2n+1, ξstd) which deformation retract onto L and L′, respectively,
as described in Example 1.5. Now let (Σ, β) be an additional copy of a
neighborhood of the zero section of the bundle R2m ⊕ T ∗Sk → Sk with
β = λstd − λcan and define Liouville embeddings i1 : (Σ, β) → (M, ξ) and
i2 : (Σ, β) → (S2n+1, ξstd) for which ij((Σ, β)) = (Σj , λstd − λcan), j = 1, 2.

Applying a Liouville connect sum, we have that

#(Σ,β)

(
(M, ξ) ⊔ (S2n+1, ξstd)

)

is the same contact manifold as is described by a Weinstein handle attach-
ment along L ⊂ (M, ξ) (with respect to some framing of the symplectic
normal bundle of L). See Section 2.3.

The main result of this paper is the following theorem, whose proof
appears in Section 4.

Theorem 1.8. Let (M, ξ) be a closed, possibly disconnected, (2n+ 1)-
dimensional contact manifold. Suppose that there are two Liouville embed-
dings i1, i2 : (Σ, β) → (M, ξ) with disjoint images. Then there is an exact
symplectic cobordism (W,λ) whose negative boundary is (M, ξ) and whose
positive boundary is #(Σ,β)(M, ξ). Moreover, if (Σ, β) admits a Weinstein
structure, then so does the cobordism (W,λ).

The proof of Theorem 1.8 consists of attaching a symplectic handle
(HΣ, ωβ) to the symplectization of (M, ξ). Note that the cobordism
(W,λ) described above is always Weinstein when dim(M) = 3 as every 2-
dimensional Liouville domain admits a Weinstein structure. The proof of
Theorem 1.8 provides an explicit Weinstein handle decomposition of the
cobordism (W,λ) in the event that (Σ, β) admits the structure of a We-
instein domain. The Weinstein decomposition of the handle HΣ is roughly
summarized by saying that a Weinstein k handle in (Σ, β) determines a
Weinstein k + 1 handle in the associated symplectic cobordism.

When the components of (M, ξ) appear as convex boundary components
of a weak symplectic cobordism (W,ω) (see Definition 2.6) and ij : (Σ, β) →
(M, ξ), j = 1, 2, are Liouville embeddings, then it is possible to attach a
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slightly modified version of (HΣ, ωβ) to ∂W as above, provided the vanish-
ing of a cohomological obstruction. This obstruction always vanishes when
dim(M) = 3. See Section 4.3.

Example 1.9 (Weinstein handle attachment as a connect sum
cobordism). Consider the Liouville connect sum #(Σ,β)

(
(M, ξ) ⊔

(S2n+1, ξstd)
)
from Example 1.7. In this case, the cobordism (W,λ) from(

(M, ξ) ⊔ (S2n+1, ξstd)
)
to #(Σ,β)

(
(M, ξ) ⊔ (S2n+1, ξstd)

)
described in Theo-

rem 1.8 is the same as the usual cobordism (from (M, ξ) to #(Σ,β)

(
(M, ξ) ⊔

(S2n+1, ξstd)
)
) provided by a Weinstein handle attachment with a standard

ball (D2n+2, λstd) removed from its interior. See Sections 2.3 and 4.

1.5. Applications

Now we state some consequences of Theorem 1.8 whose proofs will appear
later in the text. Throughout, we freely make use of the definitions and
notation of Section 2.2.

1.5.1. Open books and fillability monoids. Our first application of
Theorem 1.8 is to the study of contact manifolds determined by open books.
Proofs of the following results appear in Sections 8.1 and 8.2.

Definition 1.10. Let Σ be a compact, oriented manifold with non-empty
boundary. Let Diff+(Σ, ∂Σ) be the group of orientation preserving diffeo-
morphisms of Σ which restrict to the identity on some collar neighborhood
of ∂Σ. When Σ admits a symplectic form ω, the symplectomorphism group
of (Σ, ω) will refer to the subgroup

Symp((Σ, ω), ∂Σ) ⊂ Diff+(Σ, ∂Σ)

whose elements preserve ω.

For each pair (Σ,Φ) with Φ ∈ Diff+(Σ, ∂Σ) we can build a smooth man-
ifold M(Σ,Φ) defined by

M(Σ,Φ) = (Σ× [0, 1])/ ∼ where

(Φ(x), 1) ∼ (x, 0) ∀ x ∈ Σ,

(x, t) ∼ (x, t′) ∀ (x, t), (x, t′) ∈ (∂Σ)× [0, 1].

The manifold M(Σ,Φ) is called the open book associated to the pair (Σ,Φ).
The diffeomorphism class ofM(Σ,Φ) depends only on Φ up to conjugation and
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isotopy in Diff+(Σ, ∂Σ). Each Σ× {t} ⊂M(Σ,Φ) is called a page of the open
book. The codimension two submanifold ∂Σ of M(Σ,Φ) is called the binding
and is naturally oriented as the boundary of a page. The diffeomorphism Φ
is called the monodromy.

Definition 1.11. Let (M, ξ) be a (2n+ 1)-dimensional contact manifold,
let (Σ, β) be a 2n-dimensional Liouville domain, and let

Φ ∈ Symp((Σ, dβ), ∂Σ).

We say (M, ξ) is supported by the pair ((Σ, β),Φ) if M =M(Σ,Φ) and there
is a contact form α for (M, ξ) such that

1) the restriction of α to the binding B is a contact form,

2) the restriction of dα to each page is symplectic, and

3) the Liouville vector field Xt for dα on each page Σt points outward
along a collar of ∂Σt.

Theorem 1.12 ([Girou02, TW75]). Let (Σ, β) be a Liouville domain
and let Φ ∈ Symp((Σ, dβ), ∂Σ). Then

1) M(Σ,Φ) naturally carries a contact structure ξ((Σ,β),Φ) supported by the
pair ((Σ, β),Φ).

2) (M(Σ,Φ), ξ((Σ,β),Φ)) depends only on (Σ, β) and Φ up to conjugacy and
isotopy in Symp((Σ, dβ), ∂Σ).

3) Every 3-dimensional contact manifold is supported by an open book,
and

4) Two contact 3-manifolds (M(Σ,Φ), ξ((Σ,β),Φ)) and (M(Σ′,Ψ), ξ((Σ′,β′),Ψ))
are contact-diffeomorphic if and only if the pairs (Σ,Φ) and (Σ′,Ψ)
are related by a sequence of positive stabilizations.

We recommend the exposition [Et06] for further details on the above the-
orem. For simplicity, we will denote the contact manifold (M(Σ,Φ), ξ((Σ,β),Φ))
described in Theorem 1.12(1) by (M, ξ)((Σ,β),Φ).

Remark 1.13. Giroux [Girou02] has also outlined a program for charac-
terizing high dimensional contact manifolds in terms of open books with We-
instein pages. When dim(Σ) = 2, a symplectic form on Σ is simply a volume
form and every such Σ admits the structure of a Liouville domain (Σ, β). In
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this case, after having specified such a 1-form β on Σ, every Φ ∈ Diff+(Σ, ∂Σ)
is isotopic to an element of Symp((Σ, dβ), ∂Σ). Furthermore, any two Liou-
ville 1-forms on a compact oriented surface with boundary are homotopic
in the sense of Section 2.2. Therefore the study of monodromies of open
books determining contact 3-manifolds reduces to the study of mapping
class groups of compact, oriented surfaces with non-empty boundary.

Definition 1.14. Let (Σ, β) be a 2n-dimensional Liouville domain. A
property P of contact (2n+1)-manifolds is a monoid property for
Symp((Σ, dβ), ∂Σ) if the collection of Φ ∈ Symp((Σ, dβ), ∂Σ) for which
(M, ξ)((Σ,β),Φ) satisfies P is a monoid in Symp((Σ, dβ), ∂Σ).

For the following results, we abbreviate Symp = Symp((Σ, dβ), ∂Σ) when
(Σ, β) is understood.

Theorem 1.15. Let (Σ, β) be a Liouville domain.

1) “Symplectically fillable” and “exactly symplectically fillable” are monoid
properties for Symp.

2) If dim(Σ) = 2, then “weakly fillable” and “Weinstein fillable” are
monoid properties for Symp.

3) Moreover, if (Σ, β) is of any even dimension and admits the structure
of Weinstein domain, then “Weinstein fillable” is a monoid property
for Symp.

Theorem 1.15 was motivated by and generalizes results of Baker, Etnyre,
and van Horn-Morris [BEV10, §1.2] and Baldwin [Ba10, Theorems 1.1-1.3].

The question of whether or not “weakly fillable” is a monoid property for
Liouville domains of dimension greater than two appears to be more subtle.

Theorem 1.16. Let (Σ, β) be a Liouville domain for which dim(Σ) > 2,
and let Φ,Ψ ∈ Symp. Suppose that (M, ξ)((Σ,β),Φ) and (M, ξ)((Σ,β),Ψ) ad-
mit weak symplectic fillings (W1, ω1) and (W2, ω2), respectively. Then, if
i∗Φω1 = i∗Ψω2 ∈ H2(Σ;R), the contact manifold (M, ξ)((Σ,β),Φ◦Ψ) is weakly
symplectically fillable.

In particular, if H2(Σ;R) = 0, then “weakly symplectically fillable” is a
monoid property for Symp.

If (Σ, β) is a Liouville domain, then IdΣ ∈ Symp is an element of the “ex-
actly symplectically fillable” monoid in Symp((Σ, dβ), ∂Σ). This is a conse-
quence of the fact that the contact manifold (M, ξ)((Σ,β),IdΣ) can be realized
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as the boundary of the Liouville domain obtained by rounding the corners
of (Σ× D2, β + λstd). Similarly, if (Σ, β) admits the structure of a Weinstein
domain, then IdΣ is an element of the “Weinstein fillable” monoid in Symp.
This is a consequence of the fact that (Σ× D2, β + λstd) admits the struc-
ture of a Weinstein domain after rounding the corners of the product. For
more information on Weinstein domains of this type, see [C02].

Given a Liouville domain (Σ, β) and some Φ ∈ Symp, there is a natural
Liouville embedding iΦ of (Σ, β) into the contact manifold (M, ξ)((Σ,β),Φ)

whose image is the page of the associated open book. The naturality of
this embedding follows from the fact that the manifold M(Σ,Φ) is defined
constructively. The proof of Theorem 1.15 consists of constructing
(M, ξ)((Σ,β),Φ◦Ψ) from (M, ξ)((Σ,β),Φ) ⊔ (M, ξ)((Σ,β),Ψ) by a Liouville connect
sum and then appealing to the existence of the symplectic cobordism (W,λ)
described in Theorem 1.8. The fact that this cobordism is exact provides us
with the following easy corollary:

Corollary 1.17. Let (Σ, β) be a Liouville domain. Then “non-vanishing
contact homology with rational coefficients” is a monoid property for Symp.

This result is analogous to a theorem first proved in [Ba08, Theorem 1.2]
(see also [BEV10, Ba10]) regarding the non-vanishing of contact classes in
the Heegaard Floer homologies of contact 3-manifolds.

1.5.2. Fillability of fibered contact manifolds. Here we define a fam-
ily (M, ξ)((Σ,β),Φ,Ψ) of (2n+ 1)-dimensional contact manifolds which fiber
over the circle S1, each determined by a 2n-dimensional Liouville domain
(Σ, β) and a pair of symplectomorphisms Φ,Ψ ∈ Symp((Σ, dβ), ∂Σ). When
dim(Σ) = 2, this family of contact manifolds forms a subset of the collection
of universally tight surface bundles over S1. The tightness and fillability of
contact structures on surface bundles over the circle have been studied ex-
tensively. See, for example, [DG01, El96, Gh06, Girou94, Hon00b, HKM03,
VHM07, Wen13].

Consider a tubular neighborhood [−1, 1]× ∂N (Σ) where N (Σ) is the
model neighborhood described in Section 1.2 and θ is a coordinate on [−1, 1].
The manifold [−1, 1]×N (Σ) inherits a θ-invariant contact structure from
the contact form dθ + β on N(Σ). By gluing

1) the positive region of {1} × ∂N (Σ) to the negative region of {−1} ×
∂N (Σ) using the map Φ and

2) the positive region of {−1} × ∂N (Σ) to the negative region of {1} ×
∂N (Σ) using the map Ψ



✐

✐

“2-Avdek” — 2021/12/7 — 23:53 — page 876 — #12
✐

✐

✐

✐

✐

✐

876 Russell Avdek

we obtain (M, ξ)((Σ,β),Φ,Ψ). See Figure 2. In the simplest case, with Φ = Ψ =
IdΣ, (M, ξ)((Σ,β),Φ,Ψ) is the boundary of the Liouville domain obtained by
rounding the corners of (Σ× D∗S1, β − λcan).

Φ

Ψ

∂θ

Figure 2: The contact manifold (M, ξ)((Σ,β),Φ,Ψ). It is determined by the
convex gluing instructions shown on the boundary of the contact manifold(
[−1, 1]× ∂N (Σ), ξ(Σ,β)

)
. See Section 8.3 for further explanation.

Remark 1.18. Our convention that Φ and Ψ point in opposite direction in
Figures 2, 5, and 11 as well as in Section 3.5 has been chosen so as to fit into
the following scenario: If (M1, ξ1) and (M2, ξ2) are standard neighborhoods
of some (Σ, β), then the contact manifold obtained by the gluing described
— with Φ sending the positive region of ∂M1 to the negative region of ∂M2

and Ψ sending the positive region of ∂M2 to the negative region of ∂M1

— will be supported by an open book decomposition with page (Σ, β) and
whose monodromy is Φ ◦Ψ ∈ Symp((Σ, β), ∂Σ).

A slight variation of the proof of Theorem 1.15 — appearing in Sec-
tion 8.3 — yields the following result which relates the fillability of these
contact manifolds to fillability of open book decompositions:

Theorem 1.19. Let (Σ, β) be a 2n-dimensional Liouville domain.

1) If (M, ξ)((Σ,β),Φ◦Ψ) is symplectically (exactly) fillable, then
(M, ξ)((Σ,β),Φ,Ψ) is also symplectically (exactly) fillable.

2) If (Σ, β) admits a Weinstein structure, and (M, ξ)((Σ,β),Φ◦Ψ) is Wein-
stein fillable then so is (M, ξ)((Σ,β),Φ,Ψ).

3) If dim(M) = 3 and (M, ξ)((Σ,β),Φ◦Ψ) is weakly fillable, then so is
(M, ξ)((Σ,β),Φ,Ψ).
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Furthermore, if dim(M) > 3, (M, ξ)((Σ,β),Φ◦Ψ) admits a weak filling (W,ω),
and i∗Φ◦Ψ ◦ (IdΣ−Φ∗)ω ∈ Ω2(Σ) is exact, then (M, ξ)((Σ,β),Φ,Ψ) is also weakly
fillable.

1.5.3. Fillability of branched covers. Our next application of The-
orem 1.8 concerns branched covers of contact manifolds. Let (M, ξ) be a
contact manifold and suppose that we have a compact, codimension 1 sub-
manifold Σ ⊂M whose boundary is a compact codimension 2 contact sub-
manifold (∂Σ, ζ) of (M, ξ). Then for each k > 0, the hypersurface Σ deter-
mines a k-fold contact-branched covering (M, ξ)Σ,k of (M, ξ), with branch
locus ∂Σ.

Theorem 1.20. Suppose that the hypersurface Σ described above is a Li-
ouville hypersurface (Σ, β) ⊂ (M, ξ). Then for k ≥ 2 there is an exact sym-
plectic cobordism (W,λ) whose concave boundary is ⊔k(M, ξ) and whose con-
vex boundary is (M, ξ)Σ,k. If (Σ, β) admits a Weinstein structure, then so
does the cobordism (W,λ). Moreover, if (M, ξ) is weakly fillable, then so is
(M, ξ)Σ,k.

Theorem 1.20 is similar in flavor to results of Baldwin [Ba10] and of Har-
vey, Kawamuro, and Plamenevskaya [HPK09] regarding cyclic branched cov-
erings of contact 3-manifolds. These results will summarized in Section 8.4
along side the proof of Theorem 1.20.

1.5.4. Liouville domains without Weinstein structures. In Section
8.6 we discuss how Theorem 1.8 can be used to construct Liouville domains
and exact symplectic cobordisms which do not admit Weinstein structures.
The examples we provide have connected boundary, although their construc-
tion relies on the existence of Liouville domains with disconnected boundary
— c.f. [Ge94, MNW13, Mc91]. The examples appearing in Section 8.6 show
that the cobordisms described in Theorem 1.8 are not always Weinstein.

1.5.5. Contact (1/k)-surgery and generalized Dehn twists. In
[DG01], Ding-Geiges define contact (1/k)-surgery along Legendrian knots
in contact 3-manifolds, generalizing Weinstein’s Legendrian surgery [Wei91]
in the 3-dimensional case. Using the Liouville connect sum and generalized
Dehn twists [Ar95, S97], we provide a definition of contact (1/k)-surgery
along Legendrian n-spheres in contact (2n+ 1)-manifolds for arbitrary n ≥ 1
which coincides with the usual definition for n = 1. For k = −1, our defini-
tion coincides with that Legendrian surgery. For n = 1, our definition coin-
cides with the usual notion of contact (1/k)-surgery.
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As in those known cases, contact (1/k) surgery may be summarized as
follows: We take a neighborhood [−ϵ, ϵ]× D∗Sn of a Legendrian sphere in
a contact (2n+ 1)-manifold, remove it, and then glue it back, applying −k
symplectic Dehn twists applied to the “top” {ϵ} × D∗Sn of our neighbor-
hood.

In the case n = 1, our Legendrian sphere is a knot K and the surgery
described is smoothly a Dehn surgery with coefficient (1/k) with respect
to the framing on K determined by the contact structure. See for example
[OS04, Section 11]. Likewise, for n = 1 a generalized Dehn twist coincides
with the usual notion of a positive Dehn twist on the annulus.

This construction is described in detail in Section 9. There we observe
that many properties of contact (1/k)-surgery known to hold in the 3-
dimensional case easily carry over to contact manifolds of arbitrary dimen-
sion.

Denote by τn ∈ Symp((D∗Sn,−λstd), ∂D
∗Sn) a positive symplectic Dehn

twist. Our first application of contact surgery concerns contact manifolds
constructively described as open books.

Theorem 1.21. Let k and n be positive integers. Then the contact man-
ifold determined by the open book whose page is (D∗Sn,−λstd) and whose
monodromy is τ−k is not exactly symplectically fillable.

The above generalizes the well-known case n = 1, whence the contact
manifold described is an overtwisted lens space, and the case k = 1 originally
due to Bourgeois and van Koert [BvK10].

A theorem of Seidel asserts that the square of a generalized Dehn twist
along S2 is smoothly isotopic to the identity mapping. In Section 9.2 we
make use of his proof [S99, Lemma 6.3] as well as some classic homotopy
theoretic results [Ad58, JW54] to enhance this theorem.

Theorem 1.22. Considered as an element of Diff+(D∗Sn, ∂D∗Sn), τ2n is
isotopic to the identity mapping if and only if n is either 2 or 6.

With the help of Theorem 1.22, we construct exotic contact structures
on S5 and S13 by performing contact 1

2k -surgeries along Legendrian spheres
in (S5, ξstd) and (S13, ξstd). The following theorem then immediately follows
from this construction.
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Theorem 1.23. Considered as elements of Symp((D∗Sn,−λstd), ∂D
∗Sn)

(n = 2, 6), τ22 and τ26 are not isotopic to the identity.1

The case n = 2 of Theorem 1.23 was originally proved in [S97] using
Floer homology. Our proof is a consequence of the exoticity of the contact
spheres described above, which we establish using the Eliashberg-Floer-
Gromov-McDuff theorem [El91, Mc91] asserting that an exact symplectic
filling (W,λ) of (S2n+1, ξstd) must be such thatW is diffeomorphic to D2n+2.

More examples of exotic contact structures on spheres of dimension
greater than three can be found in [DG04], [El91], and [U99]. Non-standard
contact structures on S3 are completely understood by [Be82, El89, El92,
Hu13]. Another contact-geometric proof of the symplectic non-triviality of
squares of Dehn twists along S2 — obtained by analyzing the contact man-
ifolds described in [U99] — can be found in [vKN05].

1.6. Outline

The remainder of this paper is organized as follows:
Section 2. This section consists mostly of the establishment of notation

and includes a brief overview of Weinstein handle attachment.
Section 3. We carry out the technical details concerning neighborhood

theorems for Liouville hypersurfaces required to rigorously define the Liou-
ville connect sum.

Section 4. This section contains the proof of Theorems 1.8.
Section 5. Here we analyze neighborhoods of Liouville submanifolds of

codimension greater than one.
Section 6. In this section we give various examples of Liouville hyper-

surfaces in contact manifolds.
Section 7. We describe further basic consequences of Definition 1.3.
Section 8. Here we prove some of the corollaries of Theorem 1.8 stated

in Section 1.5. We also provide an example which shows how the proof
of Theorem 1.8 can be used to draw a Kirby diagrams for the cobordism
described in Theorem 1.8 in the event that the contact manifold (M, ξ) is
3-dimensional.

Section 9. This section defines and outlines some of the basic properties
of contact (1/k)-surgery. There we also briefly review known facts about
contact (1/k)-surgery on contact 3-manifolds and generalized Dehn twists.

1A considerably stronger version of this result which is specific to the case n = 2
can be found in [S97, Proposition 2.6].
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Section 10. In this section we use open books and contact (1/k)-surgery
to study the symplectic topology of generalized Dehn twists, proving Theo-
rems 1.21, 1.22, and 1.23.

1.7. Updates

We briefly address some research developments which have occurred since
the first version of this article was posted to the ArXiv in 2012. The follow-
ing comments are ordered in accordance with the appearances of relevant
content in the text below.

Regarding foundational aspects of Liouville domains and their role in
contact topology, the reader is referred to Giroux’s [Girou17] which estab-
lishes new notion of completed Liouville domain useful for studying convex
surfaces. See also [HH18, HH19], in which Honda-Huang explore foundations
of convex surface theory in contact manifolds of dimension greater than 3.

Regarding the applications of Theorem 1.8 appearing in Section 8: Foun-
dations of contact homology (Corollary 1.17) have since been rigorously es-
tablished by Bao-Honda [BH15] and Pardon [P19]. In [Giron20], Gironella
provides an updated and more natural definition of contact-branched cover
as considered in Theorem 1.20

For content pertaining to contact surgery in Section 9: Overtwisted con-
tact structures have been defined and classified in all dimensions by Borman-
Eliashberg-Murphy in [BEM14]. The equivalences of various notions of over-
twistedness — such as those appearing Conjecture 10.4 — have been estab-
lished by Casals-Murphy-Presas in [CMP19].
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2. Notation and definitions

This section begins by establishing some notation which will be used through-
out the paper. In Section 2.2 we recall some definitions and basic examples
from symplectic geometry. In Section 2.3 we provide a brief overview of
handlebody constructions and decompositions of Weinstein domains and
cobordisms.

2.1. Notation

Suppose that L is a smooth n-dimensional manifold.
A vector bundle E → L over L will always assumed to be smooth and

have finite rank. Such a vector bundle will always be considered as a real
vector bundle, even if it is equipped with a complex structure.

The cotangent bundle will be written T ∗L. After equipping L with a
Riemannian metric ⟨∗, ∗⟩ we may consider the unit disk and sphere bundles
in T ∗L. These will be denoted by D∗L and S∗L, respectively. In this paper,
we will not be interested in the geometry of any particular Riemannian
metrics, and so — with the exception of Section 9.2 — we will refer to D∗L
and S∗X without explicitly specifying a metric.

For a vector field V on L, the diffeomorphism of L determined by the
time-t flow of V will be written Flowt

V . Lie derivatives with respect to V
will be written LV .

If L is closed and oriented, then the fundamental class of L in Hn(L,Z)
will be written [L].

For a contact manifold (M, ξ), with contact form α, the associated Reeb
vector field will be denoted by Rα. Recall that Rα is uniquely determined
by the equations

α(Rα) = 1 and dα(Rα, ∗) = 0.

For a smooth function f ∈ C∞(W ) on a symplectic manifold (W,ω), the
Hamiltonian vector field Xf is defined by the convention that

df(∗) = ω(Xf , ∗).

2.2. Definitions from symplectic geometry

We continue with the discussion started in Section 1.1.
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Example 2.1. Let L be a closed, smooth n-manifold. The cotangent bundle
T ∗L of L admits a Liouville 1-form −λcan. If (q1, . . . , qn) is a coordinate chart
on L then, in the associated coordinate (qi, pi) on T

∗L — the pj being the
coefficients of the dqj — we have λcan =

∑
pjdqj . The associated Liouville

vector field is given by the radial vector field, written Xcan =
∑
pj∂pj

in
local coordinates. Then (D∗L,−λcan) is a Liouville domain. The induced
contact structure ξcan = ker(−λcan) on S∗L is called the canonical contact
structure. Similarly, λcan is called the canonical 1-form and −dλcan is called
the canonical symplectic form on T ∗L. Note that ξcan is independent of the
metric used to define S∗L by Gray’s stability theorem.

Example 2.2. Let (Σ, β) and (Σ′, β′) be two Liouville domains. Then (Σ×
Σ′, β + β′) admits the structure of a Liouville domain after rounding the
corners (∂Σ)× (∂Σ′) of the product.

Definition 2.3. A Weinstein domain (Σ, ω,X, f) is a Liouville domain
(Σ, ω(X, ∗)) whose Liouville vector field X is gradient-like for a Morse func-
tion f : Σ → R for which ∂Σ is a regular value.

The above conditions imply that the Liouville vector field X satisfies
df(X) ≥ 0 with strict inequality along ∂Σ. Note that (D2n+2, λstd), as de-
scribed in Example 1.2 has a Weinstein structure with f(z) = ∥z∥2.

Definition 2.4. Let (M, ξ) be a contact manifold and suppose that (M ′, ξ′)
is another contact manifold with dim(M ′) = dim(M). A symplectic manifold
(W,ω) with ∂W =M ⊔ (−M ′) is

1) a symplectic cobordism with concave boundary (M ′, ξ′) and convex
boundary (M, ξ) if both M and M ′ are contact-type hypersurfaces
in (W,ω) and the induced contact structures on M and M ′ are ξ and
ξ′ respectively.

2) an exact symplectic cobordism with concave boundary (M ′, ξ′) and con-
vex boundary (M, ξ) if it is a symplectic cobordism and the 1-form λ
used to identify M and M ′ as contact-type hypersurface (as described
in Section 1.1) is defined on all of W .

3) a Weinstein cobordism with concave boundary (M ′, ξ′) and convex
boundary (M, ξ) if it is an exact symplectic cobordism for which there
exists a Morse function f :W → R such that M and M ′ are inverse
images of regular values of f and X is gradient-like for f .
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Similarly, we say that (M, ξ) is symplectically (resp. exactly, Weinstein) fill-
able if there is a symplectic (resp. exact, Weinstein) cobordism with concave
boundary (M, ξ) and empty concave boundary.

When a symplectic cobordism (W,ω) is exact (or Weinstein) with λ ∈
Ω1(W ) satisfying dλ = ω as in item (2) of the above definition, it shall be
specified by the pair (W,λ) to emphasize exactness.

Two exact symplectic cobordisms (W,λ) and (W,λ′) will be called homo-
topic if there is a smooth [0, 1]-family λt of 1-forms on W such that λ0 = λ,
λ1 = λ′, and (W,λt) is an exact symplectic cobordism for all t ∈ [0, 1]. Note
that if (W,λ) and (W,λ′) are homotopic, then the concave and convex
boundaries of (W,λ) and (W,λ′) are pairwise contact-diffeomorphic.

Definition 2.5. Let (M, ξ) be a closed contact manifold with contact 1-
form α and let C1, C2 be a pair of real constants with C1 < C2. A finite
symplectization

([C1, C2]×M, etα)

is an exact symplectic cobordism whose concave and convex boundaries are
both (M, ξ). Writing t for a coordinate on [C1, C2], it is clear that

([−C1, C2]×M,d(et · α), ∂t, t)

is a Weinstein cobordism without critical points.

There is one last type of cobordism we will consider in this paper:

Definition 2.6. Let (M, ξ) and (M ′, ξ′) be (2n+ 1)-dimensional contact
manifolds. A compact symplectic manifold (W,ω) is a weak symplectic cobor-
dism with convex boundary (M, ξ) and concave boundary (M ′, ξ′) if

1) ∂W =M ⊔ (−M ′),

2) both α ∧ (dα+ ω|ξ)
n and α ∧ ω|nξ define positive volume forms on M

for every choice of contact 1-form α for (M, ξ), and

3) both α′ ∧ (dα′ + ω|ξ′)
n and α′ ∧ ω|nξ′ define positive volume forms on

M ′ for every choice of contact 1-form α′ for (M ′, ξ′).

In the event that M ′ = ∅, we say that (W,ω) is a weak symplectic filling of
(M, ξ).

The above definition — first stated in [MNW13] — is related to the
notion of ω-dominating cobordism — first defined in [EG89, §3]. We say that
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a symplectic manifold (W,ω) with non-empty boundary dominates a contact
structure ξ on its boundary if the conformal class of ω|ξ coincides with the
conformal class of symplectic structure on ξ determined by a contact form
for (∂W, ξ). This definition is the same as Definition 2.6 for 3-dimensional
contact manifolds. See [MNW13] for further discussion.

As pointed out by McDuff in [Mc91, Lemma 2.1], ω-dominating cobor-
disms between (or fillings of) contact manifolds of dimension greater than
or equal to 5 are symplectic cobordisms (fillings) in the sense of Defini-
tion 2.4(1). However, there are 4-dimensional weak symplectic — but not
symplectic — cobordisms and fillings. See, for example, [DG01, Theorem
1], [El96, §3], [Girou94, §2.D], and [Wen13, §1.2]. In [MNW13] a strategy is
described for constructing weakly fillable — but not symplectically fillable
— contact manifolds of all dimensions greater than three, with examples
provided in dimension five [MNW13, Theorem E].

2.3. Weinstein handles

Now we define Weinstein handle attachments and outline their role in the
construction of Weinstein domains and cobordisms. We have included this
material as the proof of the second statement of Theorem 1.8, which is
contained in Section 4.2, will require an explicit description of the differential
forms involved. It should be noted that we could alternatively have chosen
to state many of the results of this paper in the language of Stein manifolds.
See [CE12, El90, EG89, Gom98].

2.3.1. Definition and construction of the handle. Consider R2n with
its standard Liouville form λstd and Liouville vector field Xλstd

=
1
2

∑n
1 (xj∂xj

+ yj∂yj
) as described in Example 1.2. Let Dk ⊂ R2n be the unit

disk in the plane Span(x1, . . . , xk). Then Dk is an isotropic submanifold of
(R2n, dλstd). Consider a tubular neighborhood Hn,k := Dk × D2n−k of Dk.
Then

∂Hn,k =
(
(∂Dk)× D2n−k

)
∪
(
Dk × (∂D2n−k)

)

=
(
Sk−1 × D2n−k

)
∪
(
Dk × S2n−k−1

)
.

Now consider the function fk(x, y) =
∑k

1 xjyj . The Hamiltonian vector

field of fk with respect to dλstd is Xfk =
∑k

1(xj∂xj
− yj∂yj

). Then Xλstd
+

Xfk is a symplectic dilation of (R2n, dλstd) which points into Hn,k along
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Sk−1 × D2n−k and out of Hn,k along Dk × S2n−k−1. In other words, the 1-
form

λn,k(∗) := dλstd(Xλ +Xfk , ∗)(2.3.1)

=

k∑

1

(
3

2
xjdyj +

1

2
yjdxj

)
+

1

2

n∑

k+1

(
xjdyj − yjdxj

)

determines a contact structure on each of the smooth pieces of ∂Hn,k, such
that Sk−1 × D2n−k is concave and Dk × S2n−k−1 is convex.

Definition 2.7. (Hn,k, λn,k) is called the 2n-dimensional Weinstein k-
handle.

Now suppose that (W,ω) is a (2n+ 2)-dimensional symplectic with con-
cave boundary (M ′, ξ′) and convex boundary (M, ξ) and that there is a
contact embedding of (Sk−1 × D2n+2−k, ker(λn+1,k)) into (M, ξ). By Equa-
tion (2.3.1) L := Sk−1 × {0} is an isotropic submanifold of (M, ξ). On a
collar neighborhood (12 , 1]×M of M in W , we can write ω = d(t · α) where
α is a contact form for (M, ξ). As (M, ξ) is a convex component of (W,ω)
and Sk−1 × D2n+2−k is a concave component of (Hn+1,k, λn+1,k) then we can
patch together the Liouville forms t · α and λk on the manifold

W ∪Sk−1×D2n+2−k Hn+1,k

to get a new symplectic cobordism whose concave boundary is (M ′, ξ′) and
whose convex boundary is a contact manifold (M ′′, ξ′′) obtained from (M, ξ)
via surgery. This procedure is called Weinstein handle attachment along L
and is due to Weinstein [Wei91]. When k = n+ 1, the submanifold L is
Legendrian and the handle attachment is often called Legendrian surgery.

Remark 2.8. Note that the above discussion excludes the edge-rounding
required to make the boundary of the manifold obtained by handle attach-
ment smooth. A more careful description of the gluing map for Weinstein
handle attachment can be found in [Wei91] or by following the handle at-
tachment construction of Section 4.1.

The manifold produced by performing Legendrian surgery along an
isotropic sphere will in general depend on the chosen parameterization of
L as well as a choice of framing on its normal bundle. A description of nor-
mal bundles of isotropic submanifolds are described in Example 1.5. The
results of Section 5.2 may be viewed as a generalization. Parameterization
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choices for (2n)-dimensional n-handles in relation to contact surgery and
symplectic Dehn twists are discussed in Section 9.3.3.

Example 2.9. Again consider the Lagrangian disk L = Span(x1, . . . , xn) ∩
D2n in (R2n, dλstd). Then ∂L is a Legendrian sphere in (S2n−1, ξstd) =
∂(D2n, λstd). Suppose that we attach a Weinstein handle Hn,n to ∂D2n along
∂L producing a new Liouville domain (W,λ). If we write L′ for the core disk
Dn × {0} ⊂ Hn,n of the Weinstein handle, we see that L ∪ L′ is a closed La-
grangian submanifold of (W,dλ) which is homeomorphic to the sphere Sn.
By applying the time t flow of the vector field −Xλ on W (for t ∈ (0,∞)
arbitrarily large) and appealing to the Weinstein neighborhood theorem for
Lagrangian submanifolds, we see that (W,λ) is Liouville homotopic to the
cotangent disk bundle (D∗(L ∪ L′),−λcan).

2.3.2. Handle decompositions of Weinstein domains. Passing
through a critical level of a Morse function on a Weinstein cobordism corre-
sponds to attaching a Weinstein handle. The following theorem allows us to
use the following working definition: A Weinstein domain (cobordism) is a
Liouville domain (resp. exact symplectic cobordism) built by a finite sequence
of Weinstein handles.

Theorem 2.10. Let (M, ξ) and (M ′, ξ′) be (2n+ 1)-dimensional contact
manifolds.

1) Let (W,λ) be a Weinstein cobordism with convex end (M, ξ). If we
attach a Weinstein handle to W along an isotropic sphere L ⊂ (M, ξ),
then the resulting symplectic cobordism is also Weinstein.

2) A 2n-dimensional Liouville domain (W,λ) is Weinstein if and only if
it admits a filtration

⊔(D2n, λstd) = (W0, λ0) ⊂ · · · ⊂ (Wn, λn) = (W,λ)

where each (Wk, λk) is a Weinstein domain obtained from (Wk−1, λk−1)
by the attachment of a finite number of 2n-dimensional Weinstein k-
handles.

3) Similarly, a (2n+ 2)-dimensional symplectic cobordism (W,ω) from
(M ′, ξ′) to (M, ξ) is Weinstein if and only if it can be obtained from
the finite symplectization of (M ′, ξ′) by a finite sequence of Weinstein
handle attachments.
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This observation will be particularly useful in Section 8. For further
discussion of the topology of Weinstein manifolds with an emphasis on the 4-
dimensional case, see [Gom98, Gom09, OS04]. For a more general treatment,
see [CE12].

2.4. Convex hypersurfaces

Throughout this section, (M, ξ) will be a fixed (2n+ 1)-dimensional contact
manifold. For simplicity, we only consider closed convex hypersurfaces in
this paper.

Definition 2.11. A convex hypersurface in (M, ξ) is a pair (S,X) consist-
ing of

1) a closed, oriented 2n-dimensional submanifold S ⊂M and

2) a vector field X, defined on a neighborhood of S, which is positively
transverse to S and whose flow preserves ξ.

Let (S,X) be a convex hypersurface in (M, ξ). The vector field X and
contact structure ξ provide a decomposition of S into three pieces:

1) the positive region S+ consisting of all points in S for which X is
positively transverse to ξ,

2) the dividing set ΓS consisting of all points in S for which X ⊂ ξ, and

3) the negative region S− consisting of all points in S for which X is
negatively transverse to ξ.

It is easy to see that if we define (S′, X ′) = (−S,−X), then as oriented
manifolds

(S′)+ = −S−, ΓS′ = ΓS , (S′)− = −S+.

Condition (2) of Definition 2.11 is equivalent to saying that for each contact
form α for ξ we have LXα = Gα for some smooth function G defined in a
tubular neighborhood of S. Now suppose that we identify a neighborhood of
S with N(S) := [−1, 1]× S, and X = ∂θ where θ is a coordinate on [−1, 1].
Then we can write α = f · dθ + β for some function f ∈ C∞(N(S),R) and
β ∈ C∞([−1, 1],Ω1(S)). The following proposition allows us to normalize
the Lie derivative of α with respect to the vector field ∂θ on N(S).
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Proposition 2.12. In the above notation, let H ∈ C∞(N(S),R) be a
smooth function defined in a tubular neighborhood N(S) of a convex hy-
persurface (S, ∂θ). Then we can choose a contact form α for (M, ξ) such
that on a neighborhood of S,

L∂θ
(α) = Hα.

Proof. Let α′ be a contact form on N(S) satisfying L∂θ
α′ = Gα′. We will

find a function F so that α = eFα′ is as desired. We have that

L∂θ
(eFα′) = eF

(
∂F

∂θ
α′ + L∂θ

α′

)
= eF

(
∂F

∂θ
+G

)
α′.

Therefore, we can find the function F solving the equation H = ∂F
∂θ +G by

defining

F (z, x) =

∫ θ

0

(
H(t, x)−G(t, x)

)
dt

for θ ∈ [−1, 1] and x ∈ S. □

Taking the function H in Proposition 2.12 to be zero, we are guaranteed
the existence of a contact form α for (M, ξ) such that

(2.4.1) α|N(S) = f · dθ + β

where ∂f
∂θ = 0 and L∂θ

β = 0. With respect to this θ-invariant contact form,
we can compute

(2.4.2) α ∧ (dα)k = (fdθ ∧ dβ + β ∧ dβ + kβ ∧ df ∧ dθ) ∧ (dβ)k−1

for k ≥ 1. By analyzing this equation, we are led to the following proposition,
the 3-dimensional case of which was first observed in [Girou91].

Proposition 2.13. In the above notation, ΓS is a closed, non-empty,
codimension-1 submanifold of S. When oriented as the boundary of S+, it
is a non-empty codimension-2 contact submanifold of (M, ξ). Possibly after
multiplying α by a non-vanishing function, the restriction of dα to S+ (S−)
with a collar neighborhood of its boundary removed is symplectic with respect
to its positive (resp. negative) orientation inherited from the inclusion in S.
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Proof. For k = n, Equation (2.4.2) shows that the contact condition is

α ∧ (dα)n = dθ ∧ (fdβ + nβ ∧ df) ∧ (dβ)n−1 > 0

with respect to the orientation on [−1, 1]× S. This implies that 0 must be a
regular value of the function f and we see that α ∧ (dα)n−1 must then be a
volume form for Γ = {f = θ = 0}. Hence Γ is a contact submanifold of M .

For the statement regarding Liouville forms, possible after multiplying
α by a function S → (0,∞), we may assume that the function f in Equation
(2.4.1) is constant on the complement of a neighborhood of Γ in S. Where
f is constant, the contact condition becomes dθ ∧ (dβ)n so that (dβ)n ̸= 0
where f is constant.

If Γ = ∅, then S would equal its positive or negative region. In this
case, with this special contact form α, we would have

∫
S(dα)

n ̸= 0 which is
impossible by Stokes theorem and our assumption that S is closed. □

For further discussion, see [Girou17] in which Giroux defines ideal Liou-
ville domains. These objects elegantly encode the geometry of positive and
negative regions of convex hypersurfaces.

2.5. Convex gluing

Suppose that (M1, ξ1) and (M2, ξ2) are two contact manifolds with convex
boundary, where the contact vector fields X1 and X2 defined on collar neigh-
borhoods of ∂M1 and ∂M2 point out of M and M ′, respectively. If we can
identify the convex boundary components of (M, ξ) and (M ′, ξ′) using the
collar neighborhoods of theMj , these collar neighborhoods may be identified
to obtain a larger contact manifold by convex gluing.

Example 2.14 (Convex gluing of cotangent bundles). Let L and
L′ be two smooth, compact (n+ 1)-dimensional manifolds with non-empty
boundaries which are identified via some orientation reversing diffeomor-
phism Φ : ∂L→ ∂L′. Consider the associated contact manifolds (M, ξ) =
(S∗L, ξcan) and (M ′, ξ′) = (S∗L′, ξcan). Suppose that ∂L and ∂L′ each have
collar neighborhoods [−1, 1]× ∂L and [−1, 1]× ∂L′ on which we identify
∂L = {1} × ∂L and ∂L′ = {1} × ∂L′. Assume that we have fixed Rieman-
nian metrics on L and L′ which restrict to product metrics on each collar
neighborhood and are such that the map Φ is an isometry with respect to
the induced metrics on ∂L and ∂L′.

Let t be a coordinate on [−1, 1]. Then ∂t lifts to a vector field on S∗L
which points out of the boundary of S∗L. By our choice of metrics, the vector
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field ∂̃t is tangent to S∗L, and when restricted to M , is convex where it is
defined. The dividing set may be identified with S∗(∂L), and the positive
and negative regions can each be shown to be diffeomorphic to a tubular
neighborhood of the zero-section of the cotangent bundle of ∂M . Define a
similar convex vector field on a neighborhood of ∂S∗L′ which points out of
the boundary of M ′.

By the restrictions imposed upon metrics used to define S∗L and S∗L′,
the mapping Φ provides a diffeomorphism Φ̂ : ∂(S∗X) → ∂(S∗L′). Then we
can use Φ̂ to perform a convex gluing using the map (t, x) 7→ (−t,Φ(x)) from
[−1, 1]× ∂M to [−1, 1]× ∂M ′. Under this identification

(M, ξ) ∪ (M ′, ξ′) = (S∗(L ∪Φ L
′), ξcan).

3. Neighborhood constructions and the Liouville
connect sum

In this section we provide a rigorous account of the construction of neigh-
borhoods of Liouville hypersurfaces and the Liouville connect sum. We also
discuss convex gluings which modify the Liouville connect sum which will
later be useful for the constructions of contact manifolds in Section 8. We
begin by collecting some prerequisite results regarding neighborhoods of Li-
ouville hypersurfaces.

We note that our constructions and the analyses of contact forms in-
volved are inspired by and consequently quite similar to the construction of
a contact manifolds from open book decompositions with symplectic mon-
odromy. See Remark 1.18.

3.1. Neighborhood theorems and deformations of contact forms

Lemma 3.1. Suppose that Σ is a submanifold of a contact manifold (M, ξ)
and that (M, ξ) is equipped with a contact form α for which dα|TΣ is a
symplectic form on Σ. Then the Reeb vector field R for α is transverse to Σ.

Proof. If R was tangent to Σ at some point x ∈ Σ, then dα(R, ∗) would be
zero on TxΣ in violation of our hypothesis that dα|TΣ is non-degenerate. □

Lemma 3.2. Suppose that (Σ, β) is a Liouville hypersurface contained in
the interior of a contact manifold (M, ξ) and that α is a contact form for
(M, ξ) for which α|TΣ = β. Then for a sufficiently small positive constant ϵ,



✐

✐

“2-Avdek” — 2021/12/7 — 23:53 — page 891 — #27
✐

✐

✐

✐

✐

✐

Liouville hypersurfaces and connect sum cobordisms 891

there is a neighborhood of Σ of the form

N(Σ) = [−ϵ, ϵ]× Σ satisfying α|N(Σ) = dz + β.

Here z is a coordinate on [−ϵ, ϵ], and Σ = {0} × Σ.

Proof. Define a map [−ϵ, ϵ]× Σ →M by

(z, x) 7→ Flowz
Rα

(x).

For ϵ > 0 sufficiently small, this will be an embedding by Lemma 3.1 and
our presumed compactness for Σ. As α is Rα-invariant, it pulls back to
[−ϵ, ϵ]× Σ as desired. □

The remainder of Section 3.1 describes how contact forms can be modi-
fied on neighborhoods of Liouville hypersurfaces as described in the previous
lemma.

Lemma 3.3. Suppose that β and β′ are two Liouville forms on a compact
manifold Σ which agree on a collar neighborhood of ∂Σ and satisfy dβ = dβ′.
Then there is an isotopy ϕt, t ∈ [0, 1], of Σ such that

1) ϕ0 = IdΣ and ϕ∗1β − β′ = df for some smooth function f on Σ which
vanishes on a collar neighborhood of ∂Σ,

2) there is a collar neighborhood of ∂Σ on which ϕt is the identity mapping
for all t ∈ [0, 1], and

3) ϕ∗tdβ = dβ for all t ∈ [0, 1].

See [Girou17, Corollary 5] for a similar result.

Proof. Define a vector field V on Σ as the unique solution to the equation
dβ(V, ∗) = β′ − β. Then LV (dβ) = 0 and LV (β

′ − β) = 0 so that Flowt
V pre-

serves dβ and β′ − β. Moreover, Flowt
V is equal to the identity on a collar

neighborhood of ∂Σ. Now we calculate

∂

∂t

(
(Flowt

V )
∗(β)

)
= (Flowt

V )
∗(LV β)

= (Flowt
V )

∗
(
dβ(V, ∗) + d(β(V ))

)

= (Flowt
V )

∗
(
β′ − β + d(β(V ))

)

= β′ − β + dgt
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where gt = (Flowt
V )

∗(β(V )). By our hypotheses that β − β′ is supported on
the complement of a collar neighborhood of ∂Σ, there is a collar neighbor-
hood of ∂Σ on which V , and hence β(V ) and gt vanish for all t.

Then (Flow1
V )

∗β = β′ + df where f =
∫ 1
0 gtdt. Defining ϕt = Flowt

V com-
pletes the proof. □

Lemma 3.4. Let I be a connected 1 manifold parameterized by a variable
θ and let βθ be an I-family of 1 forms on a (2n)-dimensional manifold Σ.
Then the 1 form

α = dθ + βθ

is contact on I × Σ if and only if

dβθ +
∂βθ
∂θ

∧ βθ

is a non-degenerate 2-form on each {θ} × Σ.

Proof. We compute

dα = dθ ∧
∂βθ
∂θ

+ dΣβθ, (dα)n = (dΣβθ)
n−1 ∧

(
ndθ ∧

∂βθ
∂θ

+ dΣβθ

)

where dΣβθ is the restriction of dβθ to tangent spaces of the {θ} × Σ. Then

α ∧ (dα)n = (dθ + βθ) ∧ (dΣβθ)
n−1 ∧

(
ndθ ∧

∂βθ
∂θ

+ dΣβθ

)

= dθ ∧ (dΣβθ)
n−1 ∧

(
dΣβ + n

∂βθ
∂θ

∧ βθ

)
.

If follows that α is contact if and only if

(dΣβθ)
n−1 ∧

(
dΣβ + n

∂βθ
∂θ

∧ βθ

)
=

(
dΣβθ +

∂βθ
∂θ

∧ βθ

)n

is a volume form on each {θ} × Σ. The above computations shows that
satisfaction of the contact condition is equivalent to the non-degeneracy
condition appearing in the statement of the lemma. □
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Lemma 3.5. Suppose that α′ is a contact form on a (2n− 1)-dimensional
manifold M ′. Let Iθ and Is be connected 1-manifolds parameterized by vari-
ables θ and s respectively. Then for functions

f(s), g(θ, s), h(s),

the 1 form

α = f(s)dθ + g(θ, s)ds+ h(s)α′

is a contact form on the (2n+ 1)-dimensional manifold M = Iθ × Is ×M ′

if and only if

hn−1

(
f
∂h

∂s
−

(
∂f

∂s
−
∂g

∂θ

)
h

)
> 0

for all s ∈ Is.

Proof. We need to compute the contact condition for α as it is defined above:

dα = ds ∧

((
∂f

∂s
−
∂g

∂θ

)
dθ +

∂h

∂s
α′

)
+ hdα′

(dα)n = nhn−1ds ∧

((
∂f

∂s
−
∂g

∂θ

)
dθ +

∂h

∂s
α′

)
∧ (dα′)n−1

α ∧ (dα)n = nhn−1

(
f
∂h

∂s
−

(
∂f

∂s
−
∂g

∂θ

)
h

)
dθ ∧ ds ∧ α′ ∧ (dα′)n−1.

□

3.2. Construction of N (Σ)

We now give a rigorous description of the edge-rounding on the neighborhood

N(Σ) = [−ϵ, ϵ]× Σ

provided by Lemma 3.2, producing a model neighborhood N (Σ) of Σ with
smooth, convex boundary as described in Section 1.3.

Due to the Weinstein neighborhood theorem for contact type hyper-
surfaces in symplectic manifolds, we can decompose Σ into two parts Σ =
Σ̂ ∪ C. Here Σ̂ is diffeomorphic to Σ and is disjoint from ∂Σ. The manifold
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C is a collar neighborhood of ∂Σ of the form

C =

[
1

2
, 1

]
× ∂Σ

where {1} × ∂Σ = ∂Σ. Taking a coordinate t on [12 , 1] we can assume that

β|C = t · α′

for some contact form α′ on ∂Σ. This induces a decomposition of [−ϵ, ϵ]× Σ
into two pieces

[−ϵ, ϵ]× Σ =
(
[−ϵ, ϵ]× Σ̂

)
∪
(
[−ϵ, ϵ]× C

)
.

z

t

γ

Figure 3: The curve (z, t) = (z(s), t(s)) whose image is denoted by γ.

To smooth the corners of [−ϵ, ϵ]× Σ we can then focus our attention on
[−ϵ, ϵ]× [12 , 1]× ∂Σ. Let

(z, t) = (z, t)(s) : [−1, 1] → [−ϵ, ϵ]×

[
1

2
, 1

]

be a smooth curve satisfying the following conditions:

1) (z, t)(−1) = (ϵ, 12), ∂s(z, t)(−1) = (0, 1), and (∂s)
k(z, t)(−1) = (0, 0) for

all k > 1.

2) (z, t)(1) = (−ϵ, 12), ∂s(z, t)(1) = (0,−1), and (∂s)
k(z, t)(1) = (0, 0) for

all k > 1.

3) (z, t)(−s) = (−z, t)(s) for all s ∈ [−1, 1].

4) The one form zdt− tdz evaluated at ∂s(z, t) is always positive.

Write γ for the curve (z, t) in [−ϵ, ϵ]× [12 , 1]. See Figure 3.
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Definition 3.6. In the above notation, letN (Σ) be the region in [−ϵ, ϵ]× Σ
containing [−ϵ, ϵ]× Σ̂ and bounded by

(
{−ϵ, ϵ} × Σ̂

)
∪
(
γ × ∂Σ

)
.

Here, γ × ∂Σ is considered as a subset of [−ϵ, ϵ]× C. We call a neighbor-
hood N (Σ) of Σ constructed in this fashion a standard neighborhood of the
Liouville hypersurface (Σ, β) ⊂ (M, ξ).

Provided a Liouville vector field Xβ for (Σ, β), the vector field Vβ of
Equation (1.2.1) is defined on N (S) is positively transverse to ∂N (S) and
satisfies LVβ

(α) = α. Thus (∂N (S), Vβ) is a convex surface in (M, ξ) as de-
scribed in Section 2.4.

3.3. Contact forms on [−δ, δ] × ∂N (Σ)

In order to perform a convex gluing along two copies of ∂N (Σ) using (a
modification of) the map Υ described in Section 1.4, we must analyze contact
forms in a neighborhood of this hypersurface. The cost we pay for having
such a simple description for the map Υ is that the modification of contact
forms will necessarily be non-trivial.

The hypersurface ∂N (Σ) is smooth and transverse to the vector field
Vβ = z∂z +Xβ whose flow is defined for time T ∈ (−∞, δ) for some δ > 0.
By the construction of the neighborhood N (Σ) of Σ in the previous section,
we can write

α|∂N (Σ) =

{
β on {−ϵ, ϵ} × Σ̂
∂z
∂sds+ t(s) · α′ on γ × ∂Σ.

Identify a tubular neighborhood of ∂N (Σ) with [−δ,Θ]× ∂N (Σ) where ∂θ =
−Vβ . Here θ is a coordinate on [−δ,Θ] with Θ an arbitrarily large positive
constant. Our choice of sign for Vβ is chosen so that ∂θ provides an outward
pointing normal vector if we cut FlowΘ

−Vβ
(N (Σ)) out of M . Then

α(∂θ) = −z, L∂θ
α = −α.

Therefore

eθα =

{
∓ϵdθ + β on [−δ,Θ]× {±ϵ} × Σ̂

−z(s)dθ + ∂z(s)
∂s ds+ t(s)α′ on [−δ,Θ]× γ × ∂Σ.
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where ∂N (Σ) is identified with the level set {0} × ∂N (Σ) ⊂ [−δ,Θ]× ∂N (Σ)
of the function θ. The contact form α can then be normalized over [−δ,Θ]×
∂N (Σ) to obtain a θ-invariant contact form

α0 = eθα.

The ∂z(s)
∂s ds term in the above equation will be inconvenient for convex

gluing (using the simple expression Υ̂ appearing below) so we describe how
it can be removed on some

I × ∂N (Σ) ⊂ [−δ, 4Θ]× ∂N (Σ), Θ > 0

using a Moser argument. Pick a small δ > 0 and consider functions G(θ) :
[−δ, 4Θ] → R satisfying

1) G = 1 on [−δ, 0] ∪ [3Θ, 4Θ],

2) G = 0 on [Θ− δ, 2Θ].

For any positive constant C > 0, we can choose Θ to be large enough so that
∂G
∂θ is bounded in absolute value point-wise by C. See Figure 4.

0 Θ 2Θ 3Θ 4Θ

Figure 4: A schematic for the function G. The value 1 is depicted as a dashed
arc.

Using the function G, we can define a 1 form α̂ on [−δ, 4Θ]× ∂N (Σ) by
deforming α0 as follows
(3.3.1)

αG =

{
∓ϵdθ + β on [−δ, 4Θ]× {±ϵ} × Σ̂

−z(s)dθ +G(θ)∂z(s)∂s ds+ t(s)α′ on [−δ, 4Θ]× γ × ∂Σ.

Denote by α̂ a choice of αG for which α̂ is contact. As described above,
such a choice is possible by

1) making Θ large,

2) bounding |∂G∂θ | point-wise,
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3) and then applying Lemma 3.5.

For such a choice of G, we have that

Tα0 + (1− T )α̂

is constant in T outside of a compact set and is contact for all T ∈ [0, 1].
Hence the contact structures determined by α and α̂ is isotopic by Moser’s
argument.

Simplifying notation, we henceforth write θ for what we have previously
expressed as θ + 2Θ− δ. In our new notation,

(3.3.2) α̂ =

{
∓ϵdθ + β on [−Θ, δ]× {±ϵ} × Σ̂

−z(s)dθ + t(s)α′ on [−Θ, δ]× γ × ∂Σ.

It will be of importance in Section 3.5 below that Θ may be chosen taken
to be arbitrarily large.

3.4. Convex gluing for the Liouville connect sum

Now we show that the map Υ from Equation (1.4) determines a convex
gluing. Again consider two disjoint Liouville embeddings i1, i2 : (Σ, β) →
(M, ξ). The construction of Section 3.2 above provides two disjoint neigh-
borhoods N (i1(Σ)) and N (i2(Σ)) of i1(Σ) and i2(Σ), respectively. The con-
struction in that section also provides us with collar neighborhoods

[−Θ, δ]× ∂N (i1(Σ)), [−Θ, δ]× ∂N (i2(Σ))

and a contact form α̂ which is, in each of the collar neighborhoods, θ-
invariant. Then by the conditions defining the curve γ (used to smooth
the corners of [−ϵ, ϵ]× Σ) and the explicit formula for α̂ in Equation (3.3.2),
the map

(3.4.1)
Υ̂ : [−δ, δ]× ∂N (i1(Σ)) → [−δ, δ]× ∂N (i2(Σ)),

Υ̂(θ, x) = (−θ,Υ(x))

satisfies

Υ̂∗α̂|[−δ,δ]×∂N (i2(Σ)) = α̂|[−δ,δ]×∂N (i1(Σ)).

Hence this map can be used to perform the desired convex gluing which
defines the Liouville connect sum as described in Section 1.3.
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3.5. Modifications of Υ̂

Now we discuss how the gluing map Υ̂ defined in the previous section can
be modified using a pair of symplectomorphisms

Φ,Ψ ∈ Symp((Σ, β), ∂Σ).

This will be useful for the constructions of contact manifolds in Section 8.
The construction of this section is summarized in Figure 5. See Remark 1.18
regarding our choice of gluing convention. Our goals are to show that this
schematic description determines a convex gluing — after an appropriate
perturbation — and that the contact manifold determined by such a gluing
depends only on the isotopy classes of Φ and Ψ within Symp((Σ, β), ∂Σ).

S1 S2

Φ

Ψ

Figure 5: This figure gives a schematic description of a convex gluing per-
formed using convex gluing instructions (Φ,Ψ) (without the correction iso-
topies ϕt and ψt). Our convention is such that the maps Φ and Ψ each
send the positive region of one convex boundary component of (M, ξ) to the
negative region of the other convex boundary component.

Suppose, as in the previous section, that we have a contact manifold
(M, ξ), disjoint collar neighborhoods [−Θ, δ]× ∂N (ij(Σ)), j = 1, 2 of two

convex boundary components of M , and a fixed identification Υ̂ between
the [−δ, δ]×N (ij(Σ)) as described in Equation (3.4.1). For notational sim-
plicity, we write

S1 = ∂N (i1(Σ)), S2 = ∂N (i2(Σ))

throughout the remainder of this section. We assume that we have a contact
form α̂ as described in Equation (3.3.2) with the parameter Θ > arbitrarily
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large and δ > 0 arbitrarily small.2 Note that using the outward pointing
vector field ∂θ as in the previous subsection that {−ϵ} × Σ̂ is contained in
the positive region of ∂M and that {ϵ} × Σ̂ is contained in the negative
region of ∂M .

Let Φ and Ψ be symplectomorphisms as described above which we as-
sume to coincide with the identity outside of Int(Σ̂). Writing x for points in
S1, we define a diffeomorphism
(3.5.1)

Υ̂(Φ,Ψ) : [−δ, δ]× S1 → [−δ, δ]× S2

Υ̂(Φ,Ψ)(θ, x) =





(−θ,Φ(x)) ∈ {ϵ} × Σ̂ x ∈ {−ϵ} × Σ

(−θ,Ψ−1(x)) ∈ {−ϵ} × Σ̂ x ∈ {ϵ} × Σ

Υ̂(θ, x) on [−δ, δ]× γ × ∂Σ.

Along [−δ, δ]× γ × ∂Σ, we have Υ̂∗
(Φ,Ψ)α̂ = α̂. However along [−δ, δ]×

{±ϵ} × Σ̂ we are only guaranteed to have

(3.5.2) Υ̂∗
(Φ,Ψ)α̂ = ∓ϵdθ + β±

for β± ∈ Ω1({±ϵ} × Σ̂) for which dβ± = dβ and (β± − β) is supported on
Int(Σ̂). In order for this to be a contact gluing, we must connect the β± to
β. We choose a function

H(θ) : [−Θ, δ] → [0, 1]

for which H = 1 along [0, δ] and H = 0 along [−Θ,−Θ+ δ]. With a fixed
choice of H, define

βθ,± = H(θ)β± + (1−H(θ))β.

Using the fact that Θ can be chosen arbitrarily large, we can ensure that
∂H
∂θ — and so ∂βθ,±

∂θ — is small enough so that the 1-form

(3.5.3) α̂Φ,Ψ =

{
∓ϵdθ + βθ,± on [−Θ, δ]× {±ϵ} × Σ̂

−z(s)dθ + t(s)α′ on [−Θ, δ]× γ × ∂Σ.

2In the setup of the previous subsection, we are allowed to have Θ as large as we
like using the fact that the flow of the vector field −Vβ is defined for all positive
time. In an abstract setup — a contact manifold with this type of convex boundary
— we may extend a neighborhood of the boundary by attaching an arbitrarily large
collar.
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is contact over the collar neighborhood of S1 and extends Υ̂∗
(Φ,Ψ)α̂. Here we

are applying Lemma 3.4. We can therefore use this contact form to define
our gluing operation.

Note that a 1-parameter family HT of such cut-off functions will produce
a 1-parameter family of contact forms on the surgered contact manifold. Be-
cause the support of H0 −HT is compact for all T ∈ [0, 1], the 1-parameter
family of contact forms produced will determine isotopic contact forms by
Moser’s argument. Hence our definition is independent of the choice of H.

Definition 3.7. We say that the contact manifold obtained from (M, ξ)
by the above construction is described by convex gluing instructions (Φ,Ψ).

The following lemma— which will be important in applications — shows
that the construction only depends on the Φ and Ψ up to deformation in
Symp((Σ, dβ), ∂Σ).

Lemma 3.8. Suppose that ΦT and ΨT are paths in Symp((Σ, β), ∂Σ) pa-
rameterized by T ∈ [0, 1]. Then the contact manifolds determined by the glu-
ing instructions (Φ0,Ψ0) and (Φ1,Ψ1) are contactomorphic.

Proof. We simply update the above construction where required to incor-
porate 1-parameter families and will use similar notation: Consider the
T ∈ [0, 1] family of diffeomorphisms

Υ̂(ΦT ,ΨT ) : [−δ, δ]× S1 → [−δ, δ]× S2

as described in Equation (3.5.1). Define a manifoldW = [0, 1]×M/ ∼ using
the relation

(
T, (θ, x)

)
∼

(
T, Υ̂(ΦT ,ΨT )(θ, x)

)
for (θ, x) ∈ [−δ, δ]× S1.

By the definition of ∼, each MT0
= {T = T0} ⊂W is the smooth manifold

determined by the convex gluing instructions Υ̂(ΦT0
,ΨT0

).
Following Equation (3.5.2), we define 1-forms

β−,T = Φ∗
Tβ, β+,T = Ψ∗

Tβ

on Σ. Along the subsets

[0, 1]× [−Θ, δ]× {±ϵ} × Σ ⊂ [0, 1]× [−Θ, δ]× S1
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of W we define 1-forms βθ,±,T by the formula

βθ,±,T = H(θ)β±,T + (1−H(θ))β

where H is described as above. The 1-form α̂ΦT ,ΨT
∈ Ω1(W ) determined by

the formula

α̂ΦT ,ΨT
=

{
∓ϵdθ + βθ,±,T on {T} × [−Θ, δ]× {±ϵ} × Σ̂

−z(s)dθ + t(s)α′ on {T} × [−Θ, δ]× γ × ∂Σ.

is then well defined and restricts to αΦT0
,ΨT0

on each MT0
as defined in

Equation (3.5.3). By the compactness of [0, 1], we may choose H so that
∂βθ,±,T

∂θ is small enough to ensure that the restriction of αΦT ,ΨT
to each MT0

is a contact form. Moreover, our construction is such that each

ξT0
= ker(αΦT ,ΨT

|MT0
) ⊂ TMT0

is the contact structure determined by the gluing instructions (ΦT0
,ΨT0

) on
MT0

.
Noting that dt is well defined on W , let Z be a vector field on W such

that dt(Z) = 1 and Z = ∂t away from the gluing region whereW is obviously
a product manifold. Then the restriction of the time T flow, FlowT

Z , of Z
to M0 is well defined for T ∈ [0, 1] and maps M0 diffeomorphically to MT .
Moreover

(FlowT
Z)

∗αΦT ,ΨT
∈ Ω1(M0)

is a 1-parameter family of contact forms. As the (FlowT
Z)

∗αΦT ,ΨT
all coincide

away from the gluing region, we may apply Moser’s argument to conclude
that each

(M0, ker
(
(FlowT

Z)
∗αΦT ,ΨT

)
, T ∈ [0, 1]

is a contact structure homotopic to the one determined by the convex gluing
instructions (Φ0,Ψ0). Observing that (M0, ker((Flow

1
Z)

∗αΦ1,Ψ1
)) equivalent

to (M1, ker(αΦ1,Ψ1
)), the proof is complete. □

4. Symplectic cobordisms associated to Liouville
connect sums

This section is devoted to the proof of Theorem 1.8. In Section 4.1 we prove
the first part of the theorem, establishing the existence of the cobordism
(W,λ). Then in Section 4.2, we prove the second statement of Theorem 1.8
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by showing that when the Liouville hypersurface (Σ, β) is Weinstein, the
cobordism (W,λ) admits a Weinstein handle decomposition. Contact mani-
folds appearing as the convex boundaries of weak symplectic cobordisms are
dealt with in Section 4.3.

Throughout this section we will be building upon the notation and anal-
ysis appearing in Section 3.

4.1. Symplectic handle attachment

We construct a handleHΣ from a standard neighborhoodN (Σ) of a Liouville
hypersurface (Σ, β) ⊂ (M, ξ) as described in Section 3.1, and then attach
HΣ to the convex boundary of the finite symplectization ([−ϵ, 0]×M, etα)
of (M, ξ).

Step 1: Setup. Let (M, ξ) be a (2n+ 1)-dimensional contact manifold with
a fixed contact form α and let (Σ, β) be a 2n-dimensional Liouville domain.
Let i1 and i2 be embeddings of Σ into M whose images are disjoint and sat-
isfy i∗1α = i∗2α = β. By the results of Section 3.1 there exist tubular neigh-
borhoods N (ij(Σ)) of ij(Σ), j = 1, 2, with smooth convex boundary.

We fix an additional copy of a standard neighborhood N (Σ) from which
HΣ will be constructed. The contact form α is assumed to take the form
α = dz + β in each of these neighborhoods.

Step 2: Model geometry on the handle. Our construction of HΣ begins
with the description of a simplified handle HΣ. Consider the symplectic
manifold

(HΣ, ωβ) = ([−1, 1]×N (Σ), dθ ∧ dz + dβ),

where θ is the coordinate on [−1, 1]. The vector field Vβ = z∂z +Xβ —
defined in Equation (1.2.1) and studied in Section 7.1 — on N (Σ) satisfies
LVβ

α = α, where Xβ is the Liouville vector field for (Σ, β). Viewing Vβ as a
θ-invariant vector field on HΣ,

ωβ(Vβ , ∗) = −zdθ + β, LVβ
ωβ = ωβ .

It follows that Vβ is a symplectic dilation of (HΣ, ωβ). This vector field
points transversely out of ∂HΣ along [−1, 1]× ∂N (Σ) and is tangent to
{±1} × N (Σ). Therefore, −zdθ + β is a θ-invariant contact 1-form on
[−1, 1]× ∂N (Σ) inducing the θ-invariant contact structure on [−1, 1]×
∂N (Σ) described in Proposition 2.12. The handle HΣ along with the vector
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✲ θ

✻

N (Σ)
Σ

Figure 6: The handle HΣ and the vector field Vβ . On the left we see Σ sitting
inside of the boundary of the handle. On the right is a simplified schematic
picture which we’ll adopt for the remainder of the proof.

field Vβ is depicted in Figure 6.

Step 3: Concavity of the negative end of the handle. In order to be
able to attach {±1} × N (Σ) to the “top” {0} ×M of the finite symplectiza-
tion of (M, ξ) in a way so that etα on [−ϵ, 0]×M extends over HΣ, we must
modify Vβ so that the {±1} × N (Σ) is concave in the sense of Definition 2.4.

Figure 7: The handle HΣ and the vector field Z.

To achieve concavity, write Xzθ = θ∂θ − z∂z for the Hamiltonian vector
field of the function zθ on HΣ with respect to the symplectic form ωβ . Then

Z = Vβ −Xzθ = −θ∂θ + 2z∂z +Xβ

is a symplectic dilation of ωβ . Moreover, Z points into HΣ along {±1} ×
N (Σ) and out of HΣ along [−1, 1]× ∂N (Σ). See Figure 7. The time T flow
of Z is easily computed as

(4.1.1) FlowT
Z(θ, z, x) = (e−T θ, e2T z,FlowT

Xβ
(x))
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where x ∈ Σ. Define

(4.1.2) λ = ωβ(Z, ∗) = −θdz − 2zdθ + β.

Then dλ = ωβ so that Z is the Liouville vector field of λ and λ|{±1}×N (Σ) =
∓dz + β.

Step 4: Flattening the negative ends of the handle. Another modifica-
tion of the handle HΣ is required so that after the negative end of our handle
is attached to the top of a finite symplectization, the convex boundary of the
space obtained will be smooth. Here we modify HΣ to that the concave and
convex boundaries share an overlap. The result will be our finished handle
HΣ.

Figure 8: The handle HΣ and the vector field Z. The collar regions (− ϵ
2 , 0]×

N (Σ) are shaded dark gray.

Noting that Z points into HΣ along the set {±1} × N (Σ) ⊂ ∂HΣ, we
extend HΣ by collar regions (− ϵ

2 , 0]×N (Σ) whose (− ϵ
2 , 0]-factor parame-

terizes the flow of the vector field Z. One such collar region is appended
to each end {±1} × N (Σ) of the concave boundary of HΣ, resulting in an
extended handle H ′

Σ.
We now modify the subset [−1, 1]× ∂N (Σ) ⊂ ∂HΣ ∩ ∂H ′

Σ along which
Z points out of H ′

Σ. Identify a collar neighborhood of [−1, 1]× ∂N (Σ) in
H ′

Σ with (−ϵ, 0]× [−1, 1]× ∂N (Σ), so that the (−ϵ, 0]-factor parameterized
by a variable σ for which

∂σ = Z, {0} × [−1, 1]× ∂N (Σ) = [−1, 1]× ∂N (Σ).

Let h = h(θ) : [−1, 1] → (−ϵ, 0] be a function satisfying the following condi-
tions:

1) There is a small, positive constant δ < ϵ such that h(θ) = ϵ
2 for θ ∈

[−1 + 2δ, 1− 2δ].
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2) Along [−1,−1 + δ], h(θ) = log(−θ) and along [1− δ, 1], h(θ) = log(θ).

We define the handle HΣ to be the complement of the set

{σ > h(θ)} ⊂ (−ϵ, 0]× [−1, 1]× ∂N (Σ)

in H ′
Σ. Clearly Z points out of ∂HΣ along the newly modified subset {σ =

h(θ)} of ∂HΣ.
To complete this step of the construction, we must establish that a neigh-

borhood of the boundary of {σ = h(θ)} is contained in {±1} × N (Σ). View
the set {σ = h(θ)} as the image of [−1, 1]× ∂N (Σ) in [−1, 1]×N (Σ) under
the mapping

Ξ(θ, z, x) = Flowh(θ)(θ, z, x) = (e−h(θ)θ, e2h(θ)z,Flow
h(σ)
Xβ

(x)).

The second equality above follows from Equation (4.1.1). By our restrictions
on the function h, near θ = ±1 we have the more explicit formula

Ξ(θ, z, x) = (e− log(±θ)θ, e2 log(±θ)z,Flow
log(±θ)
Xβ

(x))

= (±1, θ2z,Flow
log(±θ)
Xβ

(x)),

establishing the desired result. The handle HΣ is shown in Figure 8.

Step 5: Attaching the handle. Consider a finite symplectization ([−ϵ, 0]×
M, etα) of the contact manifold M . According to our setup, this space con-
tains subsets of the form

[−ϵ, 0]×N (ij(Σ)), etα = et(dz + β)

which are finite symplectizations of the neighborhoods of our Liouville hy-
persurfaces.

We may identify each connected component of the collar of HΣ with the
(− ϵ

2 , 0]×N (ij(Σ)), determining an attachment of the handle to [−ϵ, 0]×
M . By the construction of λ on HΣ, the Liouville forms λ and etα agree
according to this identification.

By the fact that the convex boundary {σ = h(θ)} ⊂ ∂HΣ is tangent
to {±1} × N (Σ) near its boundary, the convex boundary of the manifold
obtained by the handle attachment is smooth. The handle attachment is
depicted in Figure 9.



✐

✐

“2-Avdek” — 2021/12/7 — 23:53 — page 906 — #42
✐

✐

✐

✐

✐

✐

906 Russell Avdek

HΣ

[−ϵ, 0]×M

�
��✠

❅
❅❅❘

(− ϵ
2 , 0]×N (Σ)

Figure 9: Attaching the smoothed handle HΣ to a finite symplectization of
(M,α).

Step 6: Identifying the boundary as the connect sum. To complete
our construction, we must show that the symplectic cobordism obtained by
the gluing construction described above recovers the Liouville connect sum
along its convex boundary.

We study the contact form λ restricted to the convex boundary of the
flat handle HΣ, obtaining a change of coordinates between

1) a collar neighborhood of the boundary ∂N (ij(Σ)) of the surgery locus
N (ij(Σ)) in M and

2) [±1,±1∓ δ)× ∂N (Σ) ⊂ ∂HΣ

by following flow lines of the vector field Z.
Following Section 3.3, we write

[−1, 1]× ∂N (Σ) =

(
[−1, 1]× {±ϵ} × Σ̂

)
∪

(
[−1, 1]× γ × ∂Σ

)
.

Using Equation (4.1.2) and our description of the curve γ in Section 3.2,

λ =

{
−2ϵdθ + β along [−1, 1]× {±ϵ} × Σ̂

−2z(s)dθ − θ ∂z∂sds+ t(s)α′ along [−1, 1]× γ × ∂Σ.

After applying a transformation which divides θ by 2, we obtain a case of the
perturbed contact form αG described in Equation (3.3.1) used to describe
the Liouville connect sum in Section 3.3.

This completes the construction of the symplectic handle attachment
described in Theorem 1.8.
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4.2. Weinstein handle decomposition of the
connect-sum cobordism

In this subsection we show that when (Σ, β) is Weinstein then so is the sym-
plectic cobordism constructed by the attachment of the handleHΣ described
above.

Again, let (M, ξ) be a (2n+ 1)-dimensional contact manifold with con-
tact form α. In this section we continue use of the notation appearing in
the previous section. Suppose that the Liouville domain (Σ, β) is Weinstein.
Then there is a decomposition

(4.2.1) ⊔ (D2n, λstd) = (Σ0, β0) ⊂ · · · ⊂ (Σn, βn) = (Σ, β)

of (Σ, β) as described in Theorem 2.10(3). Consider the symplectic cobor-
dism (W,λ) from (M, ξ) to #(Σ,β)(M, ξ) described in the previous section.
We will use the filtration described in Equation (4.2.1) to filter (W,λ) as

([0,−ϵ]×M, etα) = (W−1, λ−1) ⊂ (W0, λ0) ⊂ · · · ⊂ (Wn, λn)(4.2.2)

= (W,λ)

where each (Wk, λk) is obtained from (Wk−1, λk−1) by attaching some num-
ber of (2n+ 2)-dimension Weinstein (k + 1)-handles.

Consider the restrictions of the embeddings i1 and i2 to (Σj , βj). Let
Nj,1 and Nj,2 denote neighborhoods of i1(Σj) and i2(Σj) given by

[−ϵ, ϵ]× Σk ⊂ [−ϵ, ϵ]× Σ with α = dz + βk.

Define (Wk, λk) to be the cobordism associated to the Liouville connect sum
of (M, ξ) along Nk,1 and Nk,2. The filtration of Equation (4.2.1) induces a
filtration of handles

(HΣk
, λk|HΣk

= −θdz − 2zdθ + βk).

Therefore we have

(4.2.3) (HΣ0
, λ0) ⊂ · · · ⊂ (HΣn

, λn).

As each of the (Wk, λk) is given by the attachment of (HΣk
, λk) to the finite

symplectization of (M, ξ), then Equation (4.2.3) induces the filtration of
Equation (4.2.2).

Note that (W0, λ0) is obtained from ([−ϵ, 0]× (M, ξ), etα) by attachment
of some number of (2n+ 2)-dimensional Weinstein 1-handles. This may be
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seen by comparing the first part of the proof of Theorem 1.8 and the expo-
sition in Section 2.3.

Now consider the cobordism (Wk−1, λk−1). Let Λj , j = 1, . . . ,m be the
core k-disks of the 2n-dimensional Weinstein k handles that are attached to
the boundary of (Σk−1, βk−1) to obtain (Σk, βk). Consider, for each j, two
copies Λj,1 and Λj,2 of Λj living in the boundary of (Wk−1, λk−1) as

Λj,i = {z = 0} × Λj

⊂
(
Nk,i \ Int(Nk−1,i)

)

⊂
(
{t = 1} × (M \ Int(Nk−1,1 ∪Nk−1,2))

)
⊂ ∂Wk−1

for i = 1, 2. Define the (k + 1)-dimensional disks

Λ̃j = [−1, 1]× Λj ⊂
(
HΣk

\ Int(HΣk−1
)
)
⊂ (Wk \ Int(Wk−1)) .

The 1-form β vanishes on Λ = {0} × Λ ⊂ [−ϵ, ϵ]× Σk by the explicit descrip-
tion of the Weinstein handle given in Equation (2.3.1). Consequently, the

Liouville 1-form λ = −θdz − 2zdθ + β vanishes on Λ̃j . The boundary of Λ̃j

is the piecewise smooth k-sphere

∂Λ̃j = Λj,1 ∪ ([−1, 1]× ∂Λj) ∪ Λj,2.

After smoothing the corners of Wk−1, Λ̃j ∩Wk−1 will be a smooth

isotropic sphere Sk
j , by the vanishing of the form λ along Λ̃. Noting that

(Wk, λk) is obtained from (Wk−1, λk−1) by attaching Weinstein handles
along each of the Sk

j , the proof of Theorem 1.8 is complete.

4.3. Attaching handles to weak symplectic
cobordisms and fillings

In this section we describe when it is possible to attach a modified version
of the symplectic handle (HΣ, ωΣ) to the positive boundary of a weak sym-
plectic cobordism (W,ω). The main result of this section is the following:

Theorem 4.1. Let (M, ξ) be a (2n+ 1)-dimensional contact manifold,
which is the convex boundary of a weak symplectic cobordism (W,ω) with
concave boundary (M ′, ξ′). Let (Σ, β) be a 2n-dimensional Liouville domain
and let ij : (Σ, β) → (M, ξ), j = 1, 2, be Liouville embeddings with disjoint
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images. Assume that

[i∗1ω] = [i∗2ω] ∈ H2(Σ,R).

Then there is a weak symplectic cobordism whose negative boundary is (M ′, ξ′)
and whose positive boundary is the manifold #(Σ,β)(M, ξ) obtained from
(M, ξ) by a Liouville connect sum.

To prove Theorem 4.1, we need the following lemma, summarizing some
results of [MNW13]:

Lemma 4.2. Suppose that (M, ξ) is the positive boundary of weak symplec-
tic cobordism (W,ω) and α is a contact 1-form for (M, ξ). Then W can be
extended to a non-compact symplectic manifold (W ′, ω′) for which

1) W ′ \W is diffeomorphic to (0,∞)×M ,

2) the symplectic form ω′ coincides with ω on W ,

3) ω′|(t0,∞)×M) = ω|TM + d(etα) for a sufficiently large constant t0 > 0,
where t is a coordinate on (0,∞), and

4) each of the level sets ({t} ×M, ξ) is weakly filled for t > t0.

Furthermore, if ω′′ is a 2-form on M with [ω′′] = [ω|TM ] ∈ H2(M) then ω′

may be chosen so that is coincides with ω′′ + d(etα) on (t0,∞)×M for
t0 > 0 sufficiently large.

Proof of Theorem 4.1. We continue to make use of the notation described
in Section 4.1, modifying the construction described there as needed.

Suppose that α is a contact form for (M, ξ) such that i∗jα = β for j = 1, 2.
Consider the embeddings

i−|{θ=−1}, i+|{θ=1} : N (Σ) →M

defined in the handle attachment of Section 4.1. By our hypothesis,

[i−|
∗
{θ=−1}ω] = [i+|

∗
{θ=1}ω] ∈ H2(N (Σ)).

By deforming ω within its class [ω] ∈ H2 and applying Lemma 4.2 we may
choose a collar ((0,∞)×M,ω′) over the convex boundary of (W,ω) for
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which

(4.3.1)
ω′ = ω′′ + d(etα),

i−|
∗
{θ=−1}ω

′′ = i+|
∗
{θ=1}ω

′′ ∈ Ω2(N (Σ)).

along some (t0,∞)×M .
Let (W0, ω

′) be the compact symplectic manifold obtained by removing
the open collar (2t0,∞)×M from W ′. Attach the handle HΣ to ∂W0 as de-
scribed in the symplectic handle attachment of Section 4.1. By construction,
d(tα) extends over the handle. To complete our proof, we must show that
ω′′ — and hence ω′ — can be smoothly extended over the handle so that
the extension determines a weak filling of the contact manifold determined
by the union of (W0, ω

′) with the handle.
We can extend the 2-form ω′′ over the handle HΣ as a θ-invariant form

determined by its value along the gluing locus. The two-form ω′ = ω′′ +
d(e2t0+tλ) with t > 0 obtained is conformally equivalent to

e−2t0ω′′ + d(etα)

and so is guaranteed to be symplectic on the contact hyperplanes of the
convex boundary of HΣ for t0 sufficiently large by the compactness of HΣ.

□

5. A neighborhood theorem for Liouville submanifolds
of high codimension

The purpose of this section is to show that every Liouville submanifold (Σ, β)
of a contact manifold (M, ξ) whose codimension is greater than one embeds
into a Liouville hypersurface (Σ̂, β̂) ⊂ (M, ξ) which smoothly retracts onto
Σ.

The proof consists of two parts. The first part of this proof, established
in Theorem 5.3, is an existence result asserting that the total space of every
symplectic disk bundle over a Liouville domain admits the structure of a
Liouville domain in a natural way. It is easy to construct an exact symplectic
form on the total space of such a bundle using, for example, Thurston’s
technique [MS99, Theorem 6.3]. That being said, the content of Theorem 5.3
is that the Liouville vector field can be made transverse to the boundary
of the total space of this disk bundle and so our construction will rely on
a different technique. The second part follows the standard Gray-Moser-
Weinstein argument used to establish neighborhood theorems in contact
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and symplectic geometry, showing that we can isotop a submanifold Σ̂ of
(M, ξ) containing Σ so that α|T Σ̂ coincides with the model Liouville 1-form
provided by Theorem 5.3 where α is a fixed contact form for (M, ξ).

5.1. Existence results for 1-forms on disk bundles

Lemma 5.1. Let π : E →M be a rank 2m vector bundle over a compact
manifold M equipped with a smooth section ω of E∗ ∧ E∗ → X which is
symplectic on each fiber of E. Then there is a 1-form λ ∈ Ω1(E) on the total
space E such that

1) on each fiber Ex, x ∈M , there is a linear coordinate system pj , qj , j =
1, . . . ,m for which

λ|TEx
=

1

2

m∑

1

(pjdqj − qjdpj),

2) dλ(∂t(vx + twx), ∂t(vx + tw′
x)) = ω(wx, w

′
x) for all vx, wx, w

′
x ∈ Ex, x ∈

M ,

3) λ and dλ are both annihilated by vectors tangent to the zero section of
E, and

4) λ = 1
2dλ(RE , ∗) where RE is the radial vector field on E when re-

stricted to the tangent spaces of fibers of E.

Definition 5.2. A vector bundle E equipped with a fiber-wise bilinear
form ω as described in the statement of the above lemma will be referred to
as a symplectic vector bundle and will be denoted by the pair (E,ω).

Proof of Lemma 5.1. Fix a complex structure J and bundle metric ⟨∗, ∗⟩ on
E so that ω(∗, J∗) = ⟨∗, ∗⟩. Such a complex structure and bundle metric
always exist as can be seen in [MS99, §2.6]. Let {Ui} be a finite covering of
M where each Ux consists of a ball centered about a point xi ∈M . We write
{hi} for a collection of functions on M determining a partition of unity for
the cover with each hi supported in Ui.

Pick a unitary trivialization pj , qj of E within each Ui, providing an
identification

ϕi : E|Ui
→ Ui × R2m

ω(pj , qk) = δj,i, ω(pi, pj) = ω(qi, qj) = 0.
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We define λ =
∑

i λi where the λi is defined over each E|Ui
as

λi =
hi
2

m∑

j=1

(pjdqj − qjdpj) =
hi
2
(pdq − qdp)

in short-hand notation. Then

dλi = hi




m∑

j=1

dpj ∧ dqj


+

dhi
2

∧




m∑

j=1

(pjdqj − qjdpj)


 .

Let i1 ̸= i2 be distinct indices of our covering. Then the unitary-matrix-
valued transition function A = Aj,k(x) for the local trivializations provided
above allow us to write

λi2 =
hi2
2
((Ap)d(Aq)− (Aq)d(Ap))

=
hi2
2
(pdq − qdp+ ((Ap)q − (Aq)p)dA).

From this we see that within each Ui we can write

(5.1.1) λ =
1

2
(pdq − qdp) + fidθi

where θi is a 1-form whose kernel contains the ∂pj
, ∂qj and fi is a function

which vanishes up to second order on the pj , qj at pj = qj = 0. □

Theorem 5.3. A sufficiently small neighborhood D of the zero section of
a rank 2m symplectic vector bundle π : (E,ω) → Σ over a Liouville domain
(Σ, β) carries the structure of a Liouville domain (Σ̂, β̂), where Σ̂ is obtained
by rounding the corners ∂(π−1(∂Σ)) of D. The 1-form β̂ is such that

1) on each fiber Dx, x ∈ Σ, there is a coordinate system pj , qj , j = 1, . . . ,m
for which

β̂|TDx
=

1

2

m∑

1

(pjdqj − qjdpj),

2) dβ̂(∂t(vx + twx), ∂t(vx + tw′
x)) = ω(wx, w

′
x) for all vx, wx, w

′
x ∈ Dx, x ∈

Σ, and

3) β̂ coincides with β when restricted to the tangent space of the zero-
section of D.
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The proof of this theorem is a continuation of the construction described
in the proof of Lemma 5.1 and makes use of the unitary structure (ω, J, ⟨∗, ∗⟩)
and the system of local trivializations over the Ui on the vector bundle E
described there.

Proof. We define β̂ = λ+ π∗β where λ is as described in Lemma 5.1. By the
properties of λ listed in the statement of Lemma 5.1 it follows that on a
sufficiently small neighborhood

Dϵ := {v ∈ E : ⟨v, v⟩ ≤ ϵ}

of the zero-section of E the 2-form dβ̂ is symplectic. As π∗β and dπ∗β = π∗dβ
are annihilated by tangent vectors in the vertical subspaces of TE, β̂ satisfies
the properties listed in the statement of the theorem. Therefore, all that
remains to be shown is that the vector field X

β̂
determined by the equation

dβ̂(X
β̂
, ∗) = β̂ is positively transverse to the boundary of Dϵ for a sufficiently

small constant ϵ > 0.
Let Xβ be the Liouville vector field of (Σ, β). Over each coordinate patch

Ui in Σ, we can use the trivialization ϕ to write

X
β̂
=
RE

2
+Xβ + Zi

where RE is the radial vector field for the bundle RE = p∂p + q∂q. The
vector field Zi is our error term which will be analyzed to complete the
proof. Following Equation (5.1.1), we have

dβ̂ = dβ + dp ∧ dq + dfi ∧ dθi.

Using the above calculation and Equation 5.1.1, we see that Zi is the solution
to the equation

dβ̂(Zi, ∗) = β̂ − dβ̂

(
RE

2
+Xβ , ∗

)

=

(
fi − dfi(Xβ)−

dfi(RE)

2

)
dθi + dθi(Xβ)dfi.

From this calculation, the fact that the fi vanishes up to second order
along the zero-section of E, and compactness of Σ we conclude that for some
ϵ > 0 the vector field X

β̂
is positively transverse to the boundary of Dϵ along

the boundary of π−1(Int(Σ)).



✐

✐

“2-Avdek” — 2021/12/7 — 23:53 — page 914 — #50
✐

✐

✐

✐

✐

✐

914 Russell Avdek

To finish our proof we will show that for ϵ sufficiently small, X
β̂

is

transverse to the boundary of Dϵ along π−1(∂Σ). To see this, observe that
for any ϵ > 0

1) 1
2RE is tangent to the boundary of Dϵ along π

−1(∂Σ),

2) the vector field X̃β is positively transverse to the boundary of Dϵ along
π−1(∂Σ), and

3) the vector field Z vanishes along the zero-section of Dϵ.

We conclude that for ϵ sufficiently small, X
β̂
is transverse to ∂Dϵ along

π−1(∂Σ). After having fixed such an ϵ, we can round the corners of Dϵ to
obtain a manifold with smooth boundary Σ̂ ⊂ Dϵ for which Xβ̂

is positively

transverse to ∂Σ̂ so that β̂ is a Liouville 1-form on Σ̂. □

The same construction can be easily applied to symplectic vector bundles
over contact manifolds.

Theorem 5.4. Let (M, ξ) be a compact contact manifold with contact form
α. Then a sufficiently small neighborhood D of the zero section of a rank 2m
symplectic vector bundle π : (E,ω) →M naturally carries the structure of
a contact manifold (D, ξE). The contact structure ξE can be described as
ker(α̂) for a 1-form α̂ such that

1) on each fiber Dx, x ∈M , there is a coordinate system pj , qj , j = 1, . . . ,m
for which

α̂|TDx
=

1

2

m∑

1

(pjdqj − qjdpj),

2) dα̂(∂t(vx + twx), ∂t(vx + tw′
x)) = ω(wx, w

′
x) for all vx, wx, w

′
x ∈ Dx, x ∈

M , and

3) α̂ coincides with α when restricted to the tangent space of the zero-
section of D.

To prove this theorem, we may define α̂ = λ+ π∗α. The 1-form α̂ is
contact on a sufficiently small tubular neighborhood of the zero-section of
E by Equation (5.1.1). It is well known that the contact structure on a
tubular neighborhood of a contact submanifold is uniquely determined by
its symplectic normal bundle. However, the author is unsure as to whether
or not a proof of the existence of a contact structure on the total space of
a symplectic disk bundle over a given contact manifold has been written
anywhere.
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5.2. Liouville submanifolds of codimension > 1

Theorem 5.5. Let (M, ξ) be a (2n+ 1)-dimensional contact manifold with
contact form α and suppose that Σ is a compact 2k-dimensional submanifold
of the interior of M such that k < n and α|TΣ is a Liouville 1-form on Σ.
Then Σ admits a neighborhood of the form [−ϵ, ϵ]× Σ̂ on which α = dz + β̂
for a Liouville 1-form β̂ on Σ̂. The manifold Σ̂ is obtained by rounding the
corners π−1(∂Σ) of a disk bundle π : D → Σ. Moreover, there is a coordinate
system (pj , qj) on each fiber of the disk bundle on which

α|π−1(x) =
1

2

n−k∑

1

(pjdqj − qjdpj).

Proof. By Lemma 3.1, the Reeb vector field Rα for α is nowhere tangent
to Σ. Thus we may decompose the vector bundle ξ|Σ into a direct sum
ξ|Σ = ξΣ ⊕ ξ⊥Σ where

ξΣ := {v − α(v)Rα : v ∈ TΣ} and

ξ⊥Σ := {v ∈ ξ|Σ : dα(v, w) = 0 ∀w ∈ ξΣ}.

Observe that ξΣ is isomorphic to TΣ and that dα is fiber-wise symplectic
on each of ξΣ and ξ⊥Σ . This follows from the computation

dα(v − α(v)Rα, w − α(w)Rα) = dβ(v, w)

for each pair of vectors v, w ∈ TΣ, coupled with the fact that ξ⊥Σ is by defi-
nition the symplectic complement of ξΣ with respect to dα.

Fix a Riemannian metric ⟨∗, ∗⟩ onM and denote by exp : TM →M the
associated exponential map, sending each tangent vector vx ∈ TxM to γ(1)
where γ(t) is the unique geodesic in M satisfying γ(0) = x and ∂tγ(0) = vx.
To be completely rigorous, we should either restrict the domain of exp or
assume that the metric ⟨∗, ∗⟩ is complete so that the mapping is defined.
However, this will not be an issue as we will be applying exp to vectors of
arbitrarily small length along TM |Σ and have assumed that Σ is contained
in the interior of M .

Denote by Dϵ the collection of vectors in ξ⊥Σ of length less than or equal
to ϵ for an arbitrarily small constant ϵ > 0. As exp has the property that for
each vx ∈ TM , ∂t(exp(tvx)) = vx, that we can choose the constant ϵ to be
small enough so that exp(Dϵ) is embedded and symplectic with respect to the
2-form dα. For simplicity, we shall henceforth use the symbol Dϵ to denote
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the image exp(Dϵ) ⊂M . These assumptions guarantee that Rα is transverse
to Dϵ. By appealing to this transversality and using the assumption that ϵ
is chosen to be small enough so that Dϵ is contained in the interior of M ,
we obtain a neighborhood [−δ, δ]× Dϵ of Dϵ via the mapping

(z, x) 7→ Flowz
Rα

(x) for x ∈ Dϵ.

Indeed, choosing the constant δ > 0 to be sufficiently small, we may assume
that this mapping is an embedding. Note that α[−δ,δ]×Dϵ

= dz + α|TDϵ
, where

we consider α|TDϵ
to be a z-invariant 1-form which evaluates to zero on ∂z.

Possibly after further shrinking ϵ there is an isotopy Φt : Dϵ → Dϵ, t ∈
[0, 1], such that Φ0 = IdDϵ

, Φt|Σ = IdΣ for all t, and dα|TDϵ
is equal to

the symplectic 2-form Φ∗
1dβ̂ determined by the symplectic vector bundle

(ξ⊥Σ , dα|ξ⊥Σ ) as described in Theorem 5.3. This is a consequence of the fact

that the symplectic forms dα|TDϵ
and β̂ agree on TD|Σ. See [MS99, Lemma

3.14]. Therefore α− Φ∗
1β̂ is closed. We also observe that β̂ and α agree on

TDϵ|Σ, implying that α|TDϵ
− Φ∗

1β̂ is exact. This allows us to find a function

f ∈ C∞(Dϵ,R) satisfying α|TDϵ
− Φ∗

1β̂ = df and f |Σ = 0.
If necessary, further shrink ϵ so that |f | < δ on Dϵ. To complete the proof,

isotop Dϵ to the graph of the function −f in [−δ, δ]× Dϵ. Then α|TDϵ
= β̂.

By the properties of β̂ listed in Theorem 5.3, we see that after rounding the
corners ∂(π−1(∂Σ)) of Dϵ we obtain a Liouville hypersurface (Σ̂, β̂) ⊂ (M, ξ)
as desired. □

6. Examples of Liouville hypersurfaces

In this section we give some simple examples of Liouville hypersurfaces in
contact manifolds.

6.1. Legendrian graphs

Let L ⊂ (M, ξ) be a Legendrian submanifold of the (2n+ 1)-dimensional
contact manifold (M, ξ). Then L admits a tubular neighborhood

N(L) = [−ϵ, ϵ]× D∗L where ξ|N(L) = ker(dz − λcan)

where z is a coordinate on [−ϵ, ϵ]. Then {0} × D∗L is a Liouville hypersurface
in (M, ξ). More generally, we can construct interesting Liouville hypersur-
faces by considering Legendrian graphs in (M, ξ).

Definition 6.1. Let (M, ξ) be a (2n+ 1)-dimensional contact manifold.
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1) A Legendrian graph in (M, ξ) is a pair (L, ϕ) where L is a compact
(n)-manifold and a Legendrian immersion ϕ : L→M with only double
point singularities, possibly occurring along ∂L. At each double point
x = ϕ(p) = ϕ(q), p ̸= q, we require that ξx = (TpL)⊕ (TqL).

2) A ribbon of a Legendrian graph (L, ϕ) is a smooth, compact 2n-
dimensional submanifold R(ϕ(L)) of M such that
a) ϕ(L) ⊂ R(ϕ(L)) ,
b) R(ϕ(L)) deformation retracts onto ϕ(L), and
c) for x ∈ R(ϕ(L)), ξx = TxR(ϕ(L)) if and only if x ∈ ϕ(L) ⊂ R(ϕ(L)).

If (L, ϕ) is a Legendrian graph in (M, ξ) then ϕ(L) admits a neighbor-
hood of the form

N(ϕ(L)) = [ϵ, ϵ]×R(ϕ(L)) such that ξ|N(ϕ(L)) = ker(dz + β)

where β is a Liouville 1-form on the ribbon R(ϕ(L)). A ribbon of a Legen-
drian graph (L, ϕ) is Liouville diffeomorphic to a plumbing of the cotangent
bundle of L at the double points of the immersion ϕ. For examples of Liou-
ville domains constructed from plumbings of cotangent bundles, see [El91,
§7]. The above definition can easily be extended to isotropic graphs.

6.2. Inclusions

By the results of Section 5, the Liouville hypersurface property is well be-
haved with respect to inclusion mappings. Suppose that (Σ, β) is a Liou-
ville hypersurface in a contact manifold (C, ζ) of dimension (2k + 1) and
we realize (C, ζ) as a contact submanifold of a (2n+ 1)-dimensional contact
manifold (M, ξ). Then (Σ, β) is a Liouville submanifold of (M, ξ) and we
can apply Theorem 5.5.

6.3. Liouville hypersurfaces in unit cotangent bundles

Let L be a smooth manifold. We consider the unit cotangent bundle
(S∗L, ξcan) and write π for the projection map S∗L→ L.

Suppose that L is oriented and that M is an oriented, codimension-
one submanifold of L. As noted in Example 2.14, S = π−1(M) is a convex
hypersurface in (S∗L, ξcan) whose dividing set is Γ = S∗M . The orientation
on M allows us to specify one of the components of π−1(M) \ Γ as the
positive region S+ by taking the vector field ∂t from Example 2.14 to be
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oriented so that it is positively transverse toM . In this situation (S+,−λcan)
is the cotangent bundle (T ∗M,−λcan) of M .

6.4. Counterexamples: Cabling and overtwisted submanifolds

Now we give examples of null-homologous contact embeddings which do
not bound Liouville hypersurfaces. Let (M, ξ) be a 5-dimensional contact
manifold and let T 2 ⊂M be a Legendrian torus. Identify S∗T 2 = T 3 ⊂M
as the boundary of the ribbon of T 2. After fixing a trivialization of the
normal bundle of T 3, we can identify a tubular neighborhood N of T 3 with

N = T 3 × D2, ξ|N = ker
(
sin(2πz)dx+ cos(2πz)dy + r2dθ

)

where we consider coordinates (x, y, z) on T 3 = ([0, 1]/0 ∼ 1)3 and polar
coordinates on D2.

For R ∈ (0, 1), consider the map Ψn,R : T 3 →M given by

Ψn,R(x, y, z) =
(
(x, y, nz), Re2πiz

)
∈ N = T 3 × D2,

Ψ∗
n,Rα = sin(2πnz)dx+ cos(2πnz)dy + 2πR2dz

where α is the contact form on N used above to describe ξ|N . The map
Ψn,R is a contact embedding whose image is null-homologous. By applying
Moser’s trick to the family of contact forms Ψ∗

n,Rα as R goes to zero, it

can be seen that the contact structure on T 3 determined by Ψn,R for any
R ∈ (0, 1) is the well known (T 3, ξn), where

ξn = ker(sin(2πnz)dx+ cos(2πnz)dy).

According to [El96], for n > 1 these 3-tori are not symplectically fillable and
so cannot bound a Liouville hypersurface in (M, ξ). However, as noted in
[Girou94], these tori are weakly symplectically fillable.

This example can be generalized to find “cables” of arbitrary
codimension-2 submanifolds in a manifold of any dimension. Suppose that
C is a closed, codimension-2 submanifold of a manifold M whose normal
bundle is trivial. Fix an identification of a tubular neighborhood N(C) of C
with C × D2.

Suppose that we have a surjective representation ρ : π1(C) → Z/qZ of
the fundamental group of C into a finite cyclic group. Denote by π : C̃ → C
the universal cover and define Eρ → C to be the complex line bundle over
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C determined by

Eρ = (C̃ × C)/ ∼,

(x, v) ∼ (γ · x, e
ρ(γ)

q
2πi · v), γ ∈ π1(C).

Here γ · x denotes the action of γ ∈ π1(C) on x ∈ C̃ by deck transformation.
Let Dρ be the unit disk bundle in Eρ and suppose that we have a trivial-
ization Φ : Dρ → C × D2. Such a trivialization exists if c1(Eρ) = 0, which is
guaranteed when H2(C,Z) is torsion-free, as Eρ has a flat connection with
S1 = U(1) holonomy by its construction. This gives rise to an immersion of
C̃ into M by

1) identifying C̃ with the section C̃ × {1} ⊂ C̃ × C,

2) immersing C̃ × {1} into Dρ using the projection C̃ × C → Eρ, and
finally

3) applying the embedding Φ into M using the identification C × D2 =
N(C).

The image of this immersion will be a q-fold covering C̃q of C corresponding

to the representation ρ. The image of the fundamental class of C̃ρ is [C̃ρ] =
q[C] ∈ Hdim(M)−2(M,Z).

In the simplest case, of an oriented unknot C in S3 with the obvious
surjective representation ρ : π1(S

1) → Z/qZ, this construction yields a (p, q)-
torus knot. The integer p is determined by the trivialization of N(C). As in
the case of T 3 above, we can see that if C is a contact submanifold (C, ζ) of a
contact manifold (M, ξ) this embedding is a contact embedding of (C̃ρ, π

∗ζ)
into (M, ξ).

This procedure can be used to find null-homologous embeddings of over-
twisted contact 3-manifolds into contact 5-manifolds. For example if (C, ζ)
is exactly symplectically fillable with filling (Σ, β), by taking a Liouville
embedding of (Σ, β) into (M, ξ), we have a null-homologous contact embed-
ding of (C, ζ) into (M, ξ) as the boundary of (Σ, β) ⊂ (M, ξ). If (C, ζ) has
a finite-cyclic, overtwisted cover then apply the above construction. Exam-
ples of closed, Weinstein fillable contact 3-manifolds which have finite-cyclic,
overtwisted covers can be found in the work of Gompf [Gom98] and Honda
[Hon00a].

The cabling construction described above can be used in other contexts
to produce interesting codimension-2 submanifolds of a given manifold. For
example, let Σ be a closed, connected, 2-dimensional symplectic subman-
ifold of a 4-dimensional symplectic manifold (W,ω). Assume that Σ has
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genus g(Σ) ≥ 1 and self-intersection number [Σ] · [Σ] = 0. This implies that
the symplectic normal bundle to Σ is trivial so that we can identify a neigh-
borhood of Σ in W with N(Σ) = Σ× D2 where ω|N(Σ) = dλstd + σ for some
symplectic form σ on Σ. Applying the cabling construction to a surjective
representation ρ : π1(Σ) → Z/qZ produces a closed, connected, embedded,
symplectic surface Σ̃ρ ⊂W with genus g(Σ̃ρ) = q(g − 1) + 1 and fundamen-

tal homology class [Σ̃ρ] = q · [Σ] ∈ H2(W,Z).

7. More basic consequences of Definition 1.3

In this section we outline more of the basics of Liouville hypersurfaces in
contact manifolds. Special results for contact 3-manifolds are listed in Sec-
tion 7.2. We begin with a discussion concerning a special family of contact
vector fields called contact dilations.

7.1. Contact dilations

Every standard neighborhood N (Σ) of a Liouville hypersurface (Σ, β) in a
contact manifold (M, ξ) admits a special contact vector field which points
out of ∂N (Σ). LetXβ be the Liouville vector field for (Σ, β). Then the vector
field Vβ = z∂z +Xβ of Equation (1.2.1) satisfies

(7.1.1) LVβ
α = α,

and points transversely out of N (Σ) along its boundary so that (S =
∂N (Σ), Vβ) is a convex surface in (M, ξ).

Definition 7.1. A vector field for which there exists a contact form α
such that the Lie derivative condition of Equation (7.1.1) is satisfied will be
referred to as a contact dilation.

Note that if a compact contact manifold (M, ξ) admits a contact dilation
which is defined on all of M , then the boundary of M is necessarily non-
empty.

Proposition 7.2. A hypersurface Σ ⊂M is Liouville if and only if there is
a closed convex hypersurface (S,X) in (M, ξ) for which Σ is the complement
of a collar neighborhood of ∂S+ in S+.

Proof. The “if” statement is a consequence of our ability to normalize con-
tact forms in tubular neighborhoods in convex hypersurfaces as mentioned
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in Section 2.4. For the “only if” statement, let Σ ⊂M be a Liouville hyper-
surface. Then, in the notation of Section 3.1, Σ is isotopic through a family
of Liouville hypersurfaces to {ϵ} × Σ̂ ⊂ (∂N (Σ))+ for a standard neighbor-
hood N (Σ) of Σ. □

Liouville hypersurfaces provide a simple means of partially characteriz-
ing contact dilations.

Proposition 7.3. Let (M, ξ) be a compact (2n+ 1)-dimensional contact
manifold with contact 1-form α. Suppose that (M, ξ) has a contact dilation
vector field V for the contact form α which points out of ∂M . Then (M, ξ)
is contact-diffeomorphic to a neighborhood of a Liouville hypersurface.

Proof. Let z :M → R be the function z = α(V ) and let Rα be the Reeb field
for α. Then

(7.1.2)
α = LV α = dα(V, ∗) + d(α(V )) = dα(V, ∗) + dz, and

1 = α(Rα) = dα(V,Rα) + dz(Rα) = dz(Rα).

Therefore dz is never zero and the vector field Rα is transverse to every level
set of the function z.

As V is positively transverse to ∂M , (M, ξ) has convex boundary. By
the definition of the function z, the associated dividing set on ∂M is

Γ∂M = ∂M ∩ {z = 0}.

Moreover, by the preceding paragraph Σ := {z = 0} is a Liouville hypersur-
face in M with boundary equal to Γ∂M . As Σ is transverse to ∂M in M ,
Σ admits a tubular neighborhood [−ϵ, ϵ]× Σ on which α = dz + β by the
results in Section 3.1. Here β = α|TΣ. Indeed, the transversality of Rα with
Σ implies that dα is symplectic on Σ. Moreover, V is tangent to Σ, and
when considered as a vector field on Σ is the Liouville vector field for (Σ, β).

Again, from the definition of z and Equation (7.1.2), V points trans-
versely out of N (Σ) and is non-vanishing on M \ N (Σ). Therefore we can
identify M \ N (Σ) as being contained in [0,∞)× ∂N (Σ) by placing a coor-
dinate s on [0,∞) such that ∂s = V . Because of the transversality of V with
∂M , we have that ∂M is the graph of a function ∂N (Σ) → [0,∞) contained
in [0,∞)× ∂N (Σ). □

The above proposition is false without the assumption that the vector
field V is positively transverse to ∂M . For example, if S is a closed convex
hypersurface in a contact manifold (M, ξ), then Proposition 2.12 indicates
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that S admits a tubular neighborhood of the form N(S) = [−1, 1]× S on
which there is a contact form α admitting a contact dilation pointing into
N(S) along {−1} × S and out of N(S) along {1} × S.

7.2. Special properties when dim(M) = 3

In this section we state some results specific to Liouville surfaces in 3-
dimensional contact manifolds. We assume that the reader is familiar with
the basics of transverse knots, self-linking numbers, and characteristic foli-
ations. For more information, see [Et05].

Proposition 7.4. Suppose that (M, ξ) is a 3-dimensional contact manifold.

1) Σ ⊂M is a Liouville surface if and only if it is isotopic through a 1-
parameter family of Liouville surfaces to a ribbon (Definition 6.1) of
some Legendrian graph.

2) (M, ξ) is tight if and only if every one of its Liouville surfaces is genus
minimizing among embedded surfaces with the same boundary and in
the same boundary-relative homology class.

3) (M, ξ) is tight if and only if the boundary of every Liouville surface in
(M, ξ) is transversely non-destabilizeable.

Item (2) appears in [BCV09, Theorem 8] where additional results re-
garding ribbons of Legendrian graphs in overtwisted contact manifolds can
also be found. In the second item we use the generalized definition of Seifert
genus for links. A surface Σ bounding a link L is of minimal genus if it real-
izes the maximal Euler characteristic among all surfaces bounding L with no
sphere components. Note that (2) can be used to compute genera of certain
topological knots and links as in [Ga81, Theorem 2].

The necessity of taking into account relative homology classes in item (2)
can be seen in the following simple example: Let Σ− be a torus with a disk
removed and let Σ+ be a genus 2 surface with a disk removed. Denote by
Σ+ ∪ Σ− the closed genus three surface obtained by identifying the boundary
components of Σ+ and Σ−. Let (M, ξ) be the S1-invariant contact structure
on S1 × (Σ+ ∪ Σ−) whose (oriented) dividing set on each slice {θ} × (Σ+ ∪
Σ−) is ∂Σ+. Then each {θ} × Σ+ is a Liouville surface which does not realize
the Seifert genus of its boundary. (M, ξ) is universally tight by Giroux’s
criterion and so is tight.
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Proof. (1) For the first item, we see that Σ is isotopic (as in the statement
above) to (∂N (Σ))+. Using the Legendrian realization principle [Hon00a,
§3.3.1] it is easy to construct a Legendrian graph onto which (∂N (Σ))+

deformation retracts.
(2) This is immediate from (1) and [BCV09, Theorem 8].
(3) Suppose that (M, ξ) is overtwisted. Then the standard transverse

unknot given by the boundary of a Liouville disk (D2, λstd) ⊂ (M, ξ) is trans-
versely destabilizeable. See [Et05, Theorem 3.2]. Therefore overtwistedness
of (M, ξ) implies the existence of Liouville surfaces with transversely desta-
bilizeable boundaries. To complete the proof, we will show that tightness
of (M, ξ) would imply that the boundaries of all Liouville surfaces are non-
destabilizeable.

So suppose that (M, ξ) is tight and that Σ is a Liouville surface in
(M, ξ) bounding a transverse link T = ⊔Tj . Then the Thurston-Bennequin
inequality applies. This asserts that for any transverse link T bounding an
embedded, oriented surface Σ ⊂M , the inequality

(7.2.1) sℓ(T,Σ) ≤ −χ(Σ)

is satisfied. Eliashberg’s proof [El92] of this inequality relies on the inequality

(7.2.2) sℓ(T,Σ) + χ(Σ) = eΣ− − hΣ− ≤ 0

where eΣ− and hΣ− are the number of negative elliptic and negative hyper-
bolic singularities of a generic characteristic foliation on the surface Σ, re-
spectively. As the Liouville condition is an open condition, we may assume
that the characteristic foliation of Σ is generic — i.e. its singularities are
isolated and of Morse type — and apply Equation (7.2.2). In this case the
numbers eΣ− and hΣ− are both zero as by definition there is a contact form
α for (M, ξ) for which dα|TΣ is symplectic. Hence, Σ satisfies the equality
sℓ(T,Σ) = −χ(Σ).

Now suppose that some component Tj of T is a transverse stabilization
of a transverse knot T ′

j in the complement of M \ (T \ Tj). Then we would
be able to find another embedded surface S, which is smoothly isotopic to
Σ bounding T ′ = (T \ Tj) ∪ T

′
j . Therefore, we would have

sℓ(T ′, S) = sℓ(T,Σ) + 1 = −χ(Σ) + 1

contradicting Equation (7.2.1). □

It would be interesting to know what transverse knots bound Liouville
surfaces.
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Question 7.5. Is it possible to characterize the transverse links in (S3, ξstd)
which bound Liouville surfaces in terms of braid theory?

Implicit in the above question is the fact, due to Bennequin [Be82], that
every transverse link in (S3, ξstd) can be represented as a transverse braid.
See [Et05, §2.4] and the references therein.

It would also be interesting to know whether or not a Liouville surface
bounding a given transverse link is unique.

Question 7.6. Does there exist a transverse link T in (S3, ξstd) and two
Liouville surfaces Σ,Σ′ ⊂ (S3, ξstd) for which ∂Σ = ∂Σ′ = T and such that
Σ is not isotopic to Σ′ through a family of Liouville surfaces?

An answer to the above question in the affirmative would analogous to
the non-uniqueness of minimal genus Seifert surfaces of topological knots in
R3. See, for example, [R90, §5.A].

8. Applications of Theorem 1.8

In this section we provide proofs of most of the applications of Theorem 1.8
stated in Section 1.5. The proof of each theorem will provide an example of
a Liouville connect sum.

8.1. Open books and mapping class monoids

The purpose of this section is to prove Theorem 1.15.
The relationship between symplectomorphism groups of Liouville do-

mains and contact manifolds established in Theorem 1.12 has attracted a
great deal of interest, especially in dimension three. As an example, Baker-
Etnyre-van Horn-Morris [BEV10, §1.2] and Baldwin [Ba10, Theorems 1.1
- 1.3] have shown that for a compact oriented surface Σ with ∂Σ ̸= ∅, the
contact manifolds supported by open books with page Σ which are fillable
(in any of the senses of Definitions 2.4 and 2.6) constitute a monoid of
Symp((Σ, dβ), ∂Σ). The Liouville connect sum and Theorem 1.8 provide a
natural generalization of this result to open books whose pages are Liouville
domains of any even dimension, as stated in Theorem 1.15.
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∂z ∂z

Φ

Ψ

Figure 10: A Heegaard decomposition of a contact manifold (M, ξ)((Σ,β),Φ◦Ψ)

determined by an open book decomposition. The maps Φ and Ψ provide
instructions for performing a convex gluing as described in Section 3.5.

The first step in the proof of Theorem 1.15 is the following lemma,
which allows us to translate open book descriptions of contact manifolds
into Heegaard decompositions. See Figure 10.3

Lemma 8.1. Let (Nj , ξ(Σ,β)) (j = 1, 2) be two standard neighborhoods of a
Liouville domain (Σ, β) and let Φ,Ψ ∈ Symp((Σ, dβ), ∂Σ). Define the con-
tact manifold (M, ξ) by the convex gluing instructions (Φ,Ψ) : ∂N1 → ∂N2

so that (Φ,Ψ) maps

1) (∂N1)
+ to (∂N2)

− via Φ and

2) (∂N2)
+ to (∂N1)

− via Ψ.

See Figure 10. Then (M, ξ) is diffeomorphic to the contact manifold
(M, ξ)((Σ,β),Φ◦Ψ) determined by the pair ((Σ, β),Φ ◦Ψ).

Proof. This is a slight modification of the proof of Theorem 1.12(1). See
[Et06, §3]. □

Proposition 8.2. Let (Σ, β) be a Liouville domain and let
Φ,Ψ ∈ Symp((Σ, dβ), ∂Σ). Then (M, ξ)((Σ,β),Φ◦Ψ) can be obtained from
(M, ξ)((Σ,β),Φ) ⊔ (M, ξ)((Σ,β),Ψ) by a Liouville connect sum.

Proof. Let N1, N2, N
′
1 and N ′

2 be copies of a standard neighborhood of
Σ, each endowed with the contact structure determined by the contact
form dz + β as described in Section 3.1. By Lemma 8.1 we can construct

3Our use of the expression “Heegaard decomposition” is, of course, informal when
speaking of contact manifolds whose dimensions are greater than three.
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(M, ξ)((Σ,β),Φ) by identifying ∂N1 and ∂N2 using the convex gluing instruc-
tions (Φ, IdΣ). Similarly, we can construct (M, ξ)((Σ,β),Ψ) by identifying ∂N ′

1

and ∂N ′
2 using the convex gluing instructions (Ψ, IdΣ).

Now perform a Liouville connect sum on (M, ξ) := (M, ξ)((Σ,β),Φ) ⊔
(M, ξ)((Σ,β),Ψ) by removing N2 and N ′

2 and then identifying ∂N1 and ∂N ′
1.

Then the resulting contact manifold #(Σ,β)(M, ξ) can be described by identi-
fying ∂N1 and ∂N ′

1 using the convex gluing instructions (Φ,Ψ). By
Lemma 8.1, we have #(Σ,β)(M, ξ) = (M, ξ)((Σ,β),Φ◦Ψ). □

Proof of Theorems 1.15 and 1.16. Items (1) and (3) of Theorem 1.15 are
immediate from Proposition 8.2, Theorem 1.8, and the fact that a composi-
tion of symplectic (exact, Weinstein) cobordisms is a symplectic (resp. exact,
Weinstein) cobordism. For Theorem 1.15(2), the cobordism (W,λ) from The-
orem 1.8 can be obtained by a sequence of Weinstein handle attachments
as both (M, ξ)((Σ,β),Φ) and (M, ξ)((Σ,β),Ψ) are 3-dimensional. Regarding the
weak symplectic fillings of Theorem 1.16, we note that the hypothesis of
the theorem guarantees that Theorem 4.1 can be applied, providing a weak
symplectic filling of (M, ξ)((Σ,β),Φ◦Ψ). □

Remark 8.3. In the case dim(Σ) = 2, the proof of Theorem 1.15 coincides
with the proofs of [BEV10, Theorem 1.3] and [Ba10, Theorem 1.1]. This can
be worked out by analyzing their proofs, the proof of Theorem 1.15, and
the proof of the second statement of Theorem 1.8 appearing in Section 4.2.
Further intuition can be obtained by reading Section 8.5.

8.2. Mapping class monoids from contact homology

The purpose of this section is to prove Corollary 1.17 as a consequence of
Proposition 8.2. The corollary follows from some basic properties of contact
homology (HC∗), a symplectic field theory (SFT) invariant of closed con-
tact manifolds [EGH00]. We recommend the exposition [Bo09] for a basic
introduction. Rigorous proofs of its well definition and functoriality for exact
symplect cobordisms are due to Bao-Honda [BH15] and Pardon [P19]. The
following theorem — following the exposition of [P19, Section 1] — summa-
rizes the basic properties of HC∗ which we will need for Corollary 1.17.

Theorem 8.4. To each closed contact manifold (M, ξ), we may associate
a Z/2Z-graded Q-algebra HC∗(M, ξ) satisfying the following properties:
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1) For a pair of contact manifolds of the same dimension, (M1, ξ1) and
(M2, ξ2),

HC∗(M1 ⊔M2, ξ1 ⊔ ξ2) ≃ HC∗(M1, ξ1)⊗HC∗(M2, ξ2).

2) Every symplectic cobordism (W,λ) with convex boundary (M, ξ) and
concave boundary (M ′, ξ′) induces a unital algebra homomorphism

Φ(W,λ) : HC∗(M, ξ) → HC∗(M
′, ξ′).

In the last statement above, we note that if HC∗(M
′, ξ′) ̸= 0, then

HC∗(M, ξ) ̸= 0. For if 1 ̸= 0 in HC∗(M
′, ξ′) and 0 = 1 ∈ HC∗(M

′, ξ′), then
we have the contradictory statement 0 = Φ(W,λ)(0) = 1 ∈ HC∗(M, ξ) from
the fact that Φ(W,λ) preserves multaplicative units. According to a theorem
of Eliashberg and Yau [Y06], the contact homology of an overtwisted contact
manifold is zero.

Proof of Corollary 1.17. Suppose as in the statement of the corollary that
(Σ, β) is a Liouville domain and Φ,Ψ ∈ Symp((Σ, dβ), ∂Σ) are such that the
contact manifolds (M, ξ)((Σ,β),Φ) and (M, ξ)((Σ,β),Ψ) both have non-vanishing
contact homology with coefficient ring Q. By the above theorem, the disjoint
union (M, ξ)((Σ,β),Φ) ⊔ (M, ξ)((Σ,β),Ψ) also has non-vanishing contact homol-
ogy. Applying the exact symplectic cobordism provided by Proposition 8.2,
the contact homology of (M, ξ)((Σ,β),Φ◦Ψ) must also be non-zero. □

8.3. Contact manifolds which fiber over the circle

In this section we discuss symplectic fillability of the contact manifolds
(M, ξ)((Σ,β),Φ,Ψ) described in the discussion preceding the statement of The-
orem 1.19.

The contact manifolds (M, ξ)((Σ,β),Φ,Ψ) can also be described using sup-
porting open books and the contact fiber sum [Ge97, §3]. Perform a contact
fiber sum of the contact manifolds (M, ξ)((Σ,β),Φ) and (M, ξ)((Σ,β),Ψ) along
the bindings of their associated open books, using the pages of the open
books to frame the relevant normal bundles. The resulting contact manifold
will be (M, ξ)((Σ,β),Φ,Ψ). Using this description, if follows from Theorem 1.12
the the contact isotopy class of (M, ξ)((Σ,β),Φ,Ψ) depends only on the iso-
topy classes of Φ and Ψ in Symp((Σ, dβ), ∂Σ). In dimension three, this is
an example of the blown-up, summed open book construction described in
[Wen13].



✐

✐

“2-Avdek” — 2021/12/7 — 23:53 — page 928 — #64
✐

✐

✐

✐

✐

✐

928 Russell Avdek

To prove Theorem 1.19 we follow the same strategy as the proof of The-
orem 1.15, considering Heegaard splitting-type decompositions of contact
manifolds determined by open books. This time, instead of Liouville con-
nect summing pages of distinct open books, we apply the Liouville connect
sum to the interiors of two pages of the same open book. Again, we refer to
Remark 1.18 regarding our choice of convention for gluing instructions.

Φ

∂θ

IdΣ

ΨIdΣ

N1 N2

[−1, 1]× ∂N (Σ)

Figure 11: A decomposition of the contact manifold (M, ξ)((Σ,β),Φ◦Ψ) into
three pieces with convex gluing instructions.

Lemma 8.5. Let (Σ, β) be a Liouville domain and let Φ,Ψ ∈
Symp((Σ, dβ), ∂Σ). The contact manifold (M, ξ)((Σ,β),Φ,Ψ) can be obtained
from a contact manifold supported by an open book determined by the pair
((Σ, β),Φ ◦Ψ) by a Liouville connect sum.

Proof. We decompose the contact manifold (M, ξ)((Σ,β),Φ◦Ψ) into three pieces
[−1, 1]× ∂N (Σ), N1 and N2. This decomposition will be a slight modifica-
tion of the Heegaard splitting-type decomposition used in Lemma 8.1.

Take N1 and N2 to be standard neighborhoods of the Liouville domain
(Σ, β). Attach {−1} × ∂N (Σ) to ∂N1 using the convex gluing instructions
(IdΣ,Φ). Similarly, attach {1} × ∂N (Σ) to ∂N2 using the convex gluing
instructions (IdΣ,Ψ). The resulting contact manifold is (M, ξ)((Σ,β),Φ◦Ψ) as
can be seen from Lemma 8.1. See Figure 11.

Now perform a Liouville connect sum on (M, ξ)((Σ,β),Φ◦Ψ) along the stan-
dard neighborhoods of Liouville hypersurfaces N1 and N2. This may be done
by removing N1 and N2 from (M, ξ)((Σ,β),Φ◦Ψ) and gluing together the new
convex boundary components. By the identifications described in the previ-
ous paragraph, the resulting contact manifold is exactly (M, ξ)((Σ,β),Φ,Ψ). □

Together with Theorem 1.8, the above lemma immediately proves The-
orem 1.19(1-2). As for the statement regarding weak symplectic fillings, we
must show that the cohomological condition described in the statement of
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Theorem 1.19 coincides with the one described in the statement of Theo-
rem 4.1. We observe that the Liouville embeddings required to perform the
necessary symplectic handle attachment must agree with the submanifolds
N1 and N2 in the above proof. Note that if we isotop N2 through the region
[−1, 1]×N (Σ) and into N1 counterclockwise through the diagram shown in
Figure 11, we see that ω|N2

= (Φ−1)∗ω|N1
giving the cohomological obstruc-

tion described in Theorem 1.19 whose vanishing is required by Theorem 4.1.

8.4. Fillability of branched covers

In this section we apply Theorem 1.8 to study branched covers. We begin by
reviewing some known results on branched coverings of contact manifolds.
The following theorem is a consequence of Gironella’s [Giron20], refining
results of Geiges [Ge97] and Gonzalo [Gon87].

Theorem 8.6. Let (M, ξ) be a (2n+ 1)-dimensional contact manifold and
let (C, ζ) ⊂ (M, ξ) be a closed, connected, codimension two contact subman-

ifold with trivial normal bundle. Let π : M̃ →M be a branched cover of M
with branch locus C ⊂M . Then M̃ naturally carries a contact structure ξπ
for which the associated unbranched covering

π :
(
M̃ \ π−1(N(C)), ξπ

)
→

(
M \N(C), ξ

)

satisfies Tπ(ξπ) = ξ where N(C) is an arbitrarily small tubular neighborhood
of C.

For a precise statement regarding the naturality of the contact structure
ξπ described above, we refer to [Giron20, Proposition A]. The following sum-
marizes known results regarding branched coverings of contact 3-manifolds.
Note that a k-fold cyclic branched cover (S3, ξstd)C,k over a transverse knot
C ⊂ (S3, ξstd) is uniquely determined by the branch locus and branch index.

Theorem 8.7. Let (M, ξ) be a 3-dimensional contact manifold containing
the transverse link C.

1) (M, ξ) can be described as a (not necessarily cyclic) branched cover
over a transverse link in (S3, ξstd) [Girou02, MM91].

2) If C is a knot which realizes its Bennequin bound (Equation (7.2.1)),
then there is a Weinstein cobordism with concave boundary (M, ξ) and
convex boundary (M, ξ)C,k [Ba10].
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3) If C is a knot, for any k > 0 the contact distribution on (S3, ξstd)C,k

satisfies c1(ξC,k) = 0 and its homotopy class depends only on the self-
linking number and topological type of C. If C is destabilizeable, then a
cyclic branched cover over C is overtwisted. If C can be represented as
a quasipositive braid, then a cyclic branched cover over C is Weinstein
fillable [HPK09].

Now we describe the branched coverings appearing in Theorem 1.20.
Our discussion follows the construction of cyclic branched covers, branched
over null-homologous links in 3-manifolds described in [R90, Chapter 5, Sec-
tion C] with slightly modified notation. As in the discussion preceding the
statement of Theorem 1.20, we assume that M is a manifold containing a
compact, codimension 1, properly embedded submanifold Σ ⊂M with non-
empty boundary.

The manifold MΣ,k is constructed as follows:

1) Identify a neighborhood of Σ with [0, 1]× Σ.

2) Write Nj for the set [ (j−1)
k , jk ]× Σ ⊂ [0, 1]× Σ for j = 1, . . . , k − 1.

3) Consider (k − 1) additional copies of M , labeled Mj . Define N ′
j =

[0, 1k ]× Σ ⊂Mj .

4) Define M0 =M . Inductively define M j = (M j−1 \Nj) ∪Φj
(Mj \N

′
j)

where Φj : ∂N
′
j → ∂Nj is given by

Φj(z, x) =

(
j

k
− z, x

)
for z ∈

[
0,

1

k

]
, x ∈ Σ.

The map Φj above sends the bottom {0} × Σ ⊂Mj of each N
′
j ⊂Mj to the

top { j
k} × Σ ⊂M of each Nj and the top of each N ′

j to the bottom of each
Nj .

The above construction provides a piece-wise linear description of MΣ,k.
To make this construction smooth, we can round the edges of each ∂Nj to
obtain some Nj and perform the gluing using maps

Υ̂ : (−ϵ, ϵ)× ∂N ′
j → (−ϵ, ϵ)× ∂Nj

described in Equation (3.4.1).
The proof of Theorem 1.20 is then immediate from the construction

described as each such gluing used to smoothly define MΣ,k may be realized
as a Liouville connect sum provided that Σ is a Liouville hypersurface (Σ, β)
and each Nk is as described in Lemma 3.2. To see that this construction
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recovers the branched cyclic coverings over transverse knots appearing in
[Ba10, HPK09] we follow [R90] in which case any — not necessarily Liouville
— Seifert surface Σ of a transverse knot may be used to construct the
branched cover. The branched covering

MΣ,k →M

as described in [R90, Chapter 5, Section C] has branch locus ∂Σ — a contact
submanifold of (M, ξ) — and so determines a contact branched covering as
described in Theorem 8.6.

8.5. Kirby diagrams from the proof of Theorem 1.8

Now we will give an example of a Weinstein cobordism associated to a
branched cover as described in Theorem 1.20. By combining the proof of this
theorem with the exposition in Section 4.2, we will be able to give a Kirby
diagram description of the cobordism as in [Gom98]. This example should
serve as a guide as to how to use the proof of Theorem 1.8 — in the Weinstein
case — to explicitly describe cobordisms associated to the Liouville connect
sum in terms of Weinstein handle attachment. For a similar construction, see
[HPK09] where an algorithm is described which produces a contact surgery
diagram of a cyclic branched cover, branched over a transverse braid in
(S3, ξstd).

Throughout this section figures will be drawn in the front projection
R3 → {0} × R2 of

(R3, ξstd = ker(dz − ydx)).

Here (R3, ξstd) is identified with the complement of a point in (S3, ξstd).
Consider the Legendrian graph in Figure 12. Using [Av11, §4] we can

draw its ribbon Σ in the front projection. The boundary C of this ribbon is
a Whitehead double of a homologically non-trivial knot in the contact lens
space (L(2, 1), ξstd) = (S∗S2, ξcan) — which can be described by a Legen-
drian surgery along an unknot with tb = −1.

By Theorem 1.20, there is a Weinstein cobordism with concave boundary
⊔k(L(2, 1), ξstd) and whose convex boundary is the k-fold cyclic branched
cover (S3, ξstd)C,k. We will provide a Kirby diagram for this cobordism in
the case q = k and then describe a completed diagram for the case q = k.
According to the proof of Theorem 1.20, we can describe (S3, ξstd)C,2 by
taking two copies of (L(2, 1), ξstd) each containing a copy of Σ and then
perform a Liouville connect sum to the disjoint union of two copies of L(2, 1)
by identifying the copies of Σ.
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−1 −1

Figure 12: On the left is a Legendrian graph in the contact manifold
(L(2, 1), ξstd). The ambient contact manifold is presented as the result of
a Legendrian (or, equivalently, a contact −1) surgery on a Legendrian un-
knot with tb = −1. We will omit the surgery coefficient associated to this
unknot in subsequent diagrams. On the right hand side of the figure is the
ribbon Σ of the graph. The boundary of Σ is the transverse knot T .

a✛ ✲

b✛ ✲

−1

Figure 13: A Weinstein handle decomposition of the surface Σ gives rise to
an isotropic graph in the ambient contact manifold.

In our situation, the Liouville surface Σ is a genus 1 surface with a single
non-empty boundary component. Therefore Σ admits a Weinstein handle
decomposition as a pair of 2-dimensional 1-handles attached to a single disk
as depicted in the left-hand side of Figure 13. There, the 0-handle is marked
with a black dot which we will call p. We label the curves of the core disks
of the 2-dimensional 1-handles a and b. The left-hand side of Figure 13
shows the curves a and b embedded in (L(2, 1), ξstd). Consider a and b to be
oriented counterclockwise in the figure.
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−1 −1

Figure 14: A Kirby diagram for the 2-fold cyclic branched cover of
(L(2, 1), ξstd) over T . The boxes represent the fact that the concave end
of the cobordism is disconnected. Weinstein 1-handles are represented by
spheres connected by dashed lines. The Legendrian knots in the diagram
are the attaching loci of the Weinstein 2-handles, and are drawn as thick,
black lines. A description of how Legendrian arcs are identified when passing
through the 1-handles is described in the text.

Now we consider two disjoint copies of (L(2, 1), ξstd), each containing the
surface Σ, and so the graph a ∪ b ∪ p. We will call one of the surfaces Σ1

and the other Σ2 and fix a diffeomorphism between them induced from the
identification of the two copies of (L(2, 1), ξstd). Similarly we will label the
graphs a ∪ b ∪ p in each of the copies of L(2, 1) by aj ∪ bj ∪ pj , j = 1, 2.

The proof of Theorem 1.20 tells us that we can describe the double
branched cover of (L(2, 1), ξstd) over T by Liouville connect summing the
two copies of L(2, 1) along Σ1 and Σ2, using the identification Σ1

∼= Σ2

described in the previous paragraph. Theorem 1.8 then tells us that this
double branched cover can be realized as the convex boundary component of
a symplectic cobordism (W,λ) whose concave boundary is ⊔2(L(2, 1), ξstd).
The proof of Theorem 1.8(2) described in Section 4.2 provides a handle
decomposition of this cobordism as follows:

1) Each 2-dimensional 0-handle of the surface Σ gives rise to a 4-
dimensional 1-handle in (W,λ). We attach a 4-dimensional 1-handle to
the finite symplectization of ⊔2(L(2, 1), ξstd) along 3-dimensional disks
centered about the points p1 and p2.
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2) Each 2-dimensional 1-handle of Σ gives rise to a 4-dimensional 1-handle
in (W,λ). The proof shows that we are to attach one of these two
handles along the Legendrian knot a1 ∪ (−a2) and another along b1 ∪
(−b1). These knots are indeed closed by identifying ∂(a1) with ∂(−a2)
and ∂(b1) with ∂(−b2) using the 1-handle attachment along p1 and p2.

Figure 14 shows the completed diagram. Performing the Weinstein han-
dle attachments described above provides a Weinstein cobordism with con-
cave boundary ⊔2(L(2, 1), ξstd) and convex boundary (L(2, 1), ξstd)C,2.

−1 −1

−1

Figure 15: A Kirby diagram for the 3-fold cyclic branched cover of
(L(2, 1), ξstd) branched over T .

Now we will briefly describe the Weinstein cobordism with concave
boundary ⊔3(L(2, 1), ξstd) and convex boundary the triple branched cover
(L(2, 1), ξstd)C,3 over the transverse knot T . This time we start with 3 copies
of (L(2, 1), ξstd). One of the copies contains one copy Σ1 of Σ, another con-
tains two copies Σ2 and Σ′

2 = Flow−ϵ
∂z
(Σ2) of Σ, and the last contains a single

copy Σ3 of Σ. Here, ϵ is an arbitrarily small positive constant. The proof of
Theorem 1.20 indicates that we can describe the branched cover by perform-
ing two Liouville connect sums; the first identifying Σ1 with Σ2, while the
second identifies Σ′

2 with Σ3. Again, by following the proof of Theorem 1.8(2)
we obtain a Weinstein handle decomposition of the associated cobordism as
in the case of the double-branched cover, described above. The completed
diagram is shown in Figure 15.
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8.6. Exact cobordisms which are not Weinstein

In this section we construct high-dimensional Liouville domains which do
not admit Weinstein structures. The examples below serve to illustrate that
the cobordism described in Theorem 1.8 is not always Weinstein.

By Theorem 2.10, a connected Weinstein domain (Σ, β) of dimension
greater than 2 must have connected boundary. The first examples of con-
nected 4-dimensional Liouville domains whose boundaries are disconnected
(and therefore, are not Weinstein) were discovered by McDuff [Mc91]. The
examples were obtained by modifying the contact form −λcan on the unit
cotangent disk bundle D∗Sg of a closed, oriented, genus g > 1 surface away
from a neighborhood N(Sg) of its zero section, creating a Liouville 1-form on
[−1, 1]× S∗Sg ∼= D∗Sg \ Int(N(Sg)). In [Ge94], Geiges generalized this con-
struction, listing a set of conditions associated to a fixed odd-dimensional
manifoldM which guarantee the existence of a Liouville 1-form on the prod-
uct [−1, 1]×M and providing examples in the case dim(M) = 5. Examples
of Liouville 1-forms of manifolds of the form [−1, 1]×M — with dim(M)
an arbitrary positive odd integer — are described by Massot, Niederkrüger,
and Wendl in [MNW13, Theorem C].

The cobordism associated to a Liouville connect sum performed on the
convex boundary of a symplectic cobordism (W,ω) either preserves or de-
creases the number of convex boundary components of (W,ω). To establish
that certain cobordisms constructed using Theorem 1.8 are not Weinstein,
we can use singular homology instead of numbers of boundary components.

Lemma 8.8. Suppose that (W,λ) is a connected (2n+ 2)-dimensional, We-
instein cobordism with concave boundary (M, ξ). Then the inclusion map of
M into W induces isomorphisms

Hk(W ;Z) ∼= Hk(M ;Z) ∀ k > n+ 1.

In particular, if (W,λ) is a (2n+ 2)-dimensional Weinstein domain, then
W has the homotopy type of an (n+ 1)-dimensional CW complex and so
Hk(W ;Z) = 0 for all k > n+ 1.

Proof. This follows immediately from Theorem 2.10 and the application of a
Mayer-Vietoris sequence associated to a Weinstein handle attachment. □

Theorem 8.9. Let (M, ξ) be a (2n+ 1)-dimensional contact manifold where
n > 1 and let T be a closed (2n− 1)-dimensional manifold. Suppose that
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[−1, 1]× T has a Liouville 1-form β and that there are disjoint Liouville
embeddings i1, i2 : ([−1, 1]× T, β) → (M, ξ). Suppose further that

i1[T ] = i2[T ] in H2n−1(M,Z).

Then the exact cobordism (W,λ) of Theorem 1.8 associated to the Liouville
connect sum of (M, ξ) along the ij([−1, 1]× T ) (j = 1, 2) is not Weinstein.

Proof. Again, we apply a Mayer-Vietoris sequence to the handle-attachment
pair ([12 , 1]×M,H[−1,1]×T ). It follows that H2n(W ;Z) ∼= H2n(M ;Z)⊕ Z,
completing the proof by Lemma 8.8.

The extra Z factor in H2n(W ;Z) can be explicitly described as fol-
lows: Let X be an oriented 2n-dimensional cobordism with boundary T ∪
−T such that there is a map iX : X →M with iX(∂X) = i1(T ) ∪ i2(T ).
Let Y = [−1, 1]× T and let iY : Y → H[−1,1]×T = [−1, 1]×N([−1, 1]× T )
be the map (θ, x) 7→ (θ, 0, 0, x). Here we are using the coordinates on a
standard neighborhood as described in the proof of Theorem 1.8. Then
iX [X] + iY [Y ] ∈ H2n(W,Z) generates the desired homology class. □

Now we will provide some concrete examples.

Example 8.10. Let (Σ, β) be a 2n-dimensional Liouville domain for which
Σ = [−1, 1]× T for some closed, smooth (2n− 1)-dimensional manifold T .
Here we require that n > 1. As pointed out in the discussion following the
statement of Theorem 1.15, (D2 × Σ, λstd + β) is a Liouville domain whose
boundary is a contact manifold admitting an open book determined by the
pair ((Σ, β), IdΣ). Here the boundary manifold is diffeomorphic to S2 × T .
Under this identification the binding of the open book is given by the product
of the north and south poles of the sphere with T and each page is given by
the product of a longitudinal line with T .

For each θ ∈ S1 = [0, 2π]/ ∼ denote by Σθ the page of this open book
corresponding to θ, with a collar neighborhood of its boundary removed.
Then each Σθ is a Liouville hypersurface in the contact manifold ∂(D2 ×
Σ, λstd + β).

Choose an even natural number 2g and let σ be a permutation which
fixes no element of the set {1, . . . , 2g} and squares to the identity, σ2 = Id.
Perform g Liouville connect sums along ∂(D2 × Σ, λstd + β), identifying each
Σπj/g with Σπσ(j)/g. Using the handle attachment described in the proof of
Theorem 1.8 we can view this new contact manifold as the boundary of a
Liouville domain whose underlying manifold is diffeomorphic to Hg × T for
a genus-g handlebody Hg.
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9. Contact (1/k)-surgeries on contact manifolds of
arbitrary dimension

The purpose of this section is to define contact (1/k)-surgery and describe
some of its basic properties as stated in the introduction. For the purpose
of motivation, we begin by giving a brief overview of contact surgery on
contact 3-manifolds as defined in [DG01].

9.1. The case dim(M) = 3

Suppose that (M, ξ) is a contact 3-manifold containing a Legendrian knot
L and let k be any integer. Then L admits a tubular neighborhood N(L) in
(M, ξ) of the form N(L) = [−ϵ, ϵ]× D∗S1 = [−ϵ, ϵ]× S1 × [−1, 1] on which
ξ = ker(dz − λcan). To perform contact (1/k)-surgery on L ⊂ (M, ξ), remove
N(L) from (M, ξ) and glue it back using a map which is boundary-relative
isotopic to −k Dehn twists along {ϵ} × D∗S1 and isotopic to the identity on
the remainder of the boundary of N(L). The boundary relative isotopy class
of the Dehn twists may be chosen in such a way that the surgered mani-
fold naturally admits a contact structure, which depends only on (M, ξ), the
Legendrian isotopy class of L in (M, ξ), and the integer k [DG01, Proposi-
tion 7].4

=
+1

Figure 16: A Kirby diagram depicting the statement of Theorem 9.1(3). We
emphasize that the diagram on the right only represents a 3-manifold, not
a Weinstein 4-manifold.

Theorem 9.1. Let (M, ξ) be a connected contact 3-manifold.

1) Performing a contact (−1)-surgery along a Legendrian knot L ⊂ (M, ξ)
gives the same contact manifold as is obtained by performing a 4-
dimensional Weinstein 2-handle attachment along L.

4Contact (1/k)-surgery along a Legendrian L is so-called, as in dimension 3 it
is topologically a Dehn surgery with coefficient (1/k) when computed using the
longitudinal framing determined by the contact structure ξ.
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2) For any Legendrian knot L ⊂ (M, ξ), the contact manifold described by
performing a contact (1/p)-surgery on L, followed by a (1/q)-surgery
on a push-off of L is equivalent to the contact manifold described by
performing a (1/(p+ q))-surgery on L ⊂ (M, ξ).

3) Performing a contact (+1)-surgery on a standard Legendrian unknot in
(M, ξ) produces the contact connect sum of (M, ξ) with (S1×S2, ξstd) =
∂(D∗S1 × D2,−λcan + λstd). See Figure 16.

4) Performing a contact (12)-surgery on a standard Legendrian unknot in
(M, ξ) yields M equipped with an overtwisted contact structure.

5) Performing a contact (+1)-surgery on a stabilized Legendrian knot in
(M, ξ) produces an overtwisted contact manifold.

6) There is a Legendrian link L = L+ ∪ L− in (S3, ξstd) such that per-
forming (+1)-surgery along the components of L+ and (−1)-surgery
along the components of L− yields (M, ξ).

For proofs of the above statements, we refer the reader to the exposition
[OS04, §11.2] and the references therein. An alternate proof of item (6) can
be found in [Av11]. Statements (1-4) in the above theorem can also be viewed
as special cases of Theorem 9.14, below.

9.2. Generalized Dehn twists

The essential ingredient in our definition of contact (1/k)-surgery is the
generalized Dehn twist, first discovered in the context of symplectic geometry
by Arnol’d in [Ar95] and further popularized in the work of Seidel [S97, S99].

Identify the cotangent bundle of the n-sphere with the set

T ∗Sn = {(u, v) ∈ Rn+1 × Rn+1 : ∥u∥ = 1, ⟨u, v⟩ = 0}.

Here ⟨∗, ∗⟩ denotes the standard inner product on Rn+1 and we may view
u, v as the real and imaginary parts of vectors in Cn+1. We consider T ∗Sn

as a symplectic manifold with the canonical symplectic form −dλcan =∑n+1
1 dui ∧ dvi. In this model situation we can write −λcan = −

∑n+1
1 vidui.

Fix an arbitrarily small positive constant ϵ < 1, and let f : [0,∞) → R be a
function such that

1) f(0) = π and all derivatives vanish on a neighborhood of 0,

2) f is non-decreasing, and
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3) f(x) = 2π for all x ≥ ϵ.

Now define the diffeomorphism on the complement of the zero-section
of T ∗Sn

τ̂n : (T ∗Sn \ Sn) → (T ∗Sn \ Sn)

determined by the formula

τ̂n(u, v) =

(
cos ◦f(∥v∥) · u+ sin ◦f(∥v∥) ·

v

∥v∥
,

− ∥v∥ sin ◦f(∥v∥) · u+ cos ◦f(∥v∥) · v

)

using coordinates u, v on Cn+1.
By our conditions on the function f , τ̂n extends to a diffeomorphism τn

of T ∗Sn which extends smoothly over the zero-section. The restriction of τ̂n
to the zero-section Sn is the antipodal map and the restriction to a collar
neighborhood of ∂D∗Sn ⊂ T ∗Sn is the identity map by our assumption that
ϵ < 1. Hence we will view τn as an element of Diff+(D∗Sn, ∂D∗Sn).5

Theorem 9.2. The diffeomorphism τn preserves −dλcan and its isotopy
class in Symp((D∗Sn,−dλcan), ∂D

∗Sn) is independent of the constant ϵ < 1
and the choice of function f .

A proof may be found in [S97, S99].

Definition 9.3. We call any symplectomorphism which is boundary-relative
symplectically isotopic to τn ∈ Symp((D∗

ϵ ,−dλcan), ∂D
∗
ϵS

n) a generalized
Dehn twist.

It is easy to see that the mapping τ1 coincides with the usual notion of
a right-handed Dehn twist on an annulus when n = 1.

5The reader may note that our choices of orientation on T ∗Sn and conditions
defining the function f above are the opposite of those often appearing in the
literature. However, the end result is the same. See [S99, Remark 6.4].
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Example 9.4 ([Ar95]). Consider the function f : Cn+1 → C given by

(z1, . . . , zn+1) 7→
n+1∑

1

z2j .

This function induces an open book decomposition of S2n+1 = ∂D2n+2 whose
binding is f−1(0) ∩ S2n+1. In this case, each page is diffeomorphic to D∗Sn

and the monodromy is given by a generalized Dehn twist. This open book
is compatible with the standard contact structure ξstd on S2n+1.

9.3. Contact (1/k)-surgery

We give two equivalent definitions of contact (1/k)-surgery. The first will
make it clear that our definition extends the 3-dimensional one described
above, while the second will make it easier to prove some of its basic prop-
erties. Afterwards we briefly discuss a subtlety in this definition, which is
irrelevant when performing surgery on 3-dimensional contact manifolds.

9.3.1. First definition. Our first definition of contact surgery uses con-
vex gluing instructions as defined in Section 3.5.

Let (M, ξ) be any (2n+ 1)-dimensional contact manifold containing a
Legendrian sphere L. The Weinstein neighborhood theorem for Legendrian
submanifolds asserts that for any contact form α for (M, ξ), we can find a
ribbon Σ = D∗L for which α|D∗L = −λcan. Consider a Liouville embedding
I : (D∗Sn,−λcan) → (M, ξ) whose image is the ribbon Σ of L.

Definition 9.5. To perform contact (1/k)-surgery on L with parameter I,
remove a standard neighborhood N (Σ) of Σ from (M, ξ) and then reattach
∂N (Σ) to ∂(M \ Int(N (Σ))) using the convex gluing instructions (τ−k, IdΣ).

9.3.2. Second definition. Our second definition of contact surgery uses
Liouville connect sums between a given contact manifold and model contact
manifolds provided by the following.

Definition 9.6. For each natural number n > 0 define (Pn,k, ζn,k) to be
the (2n+ 1)-dimensional contact manifold determined by the open book for
the pair ((D∗Sn,−λstd), τ

k
n).

Example 9.7. The smooth manifold underlying (Pn,−1, ζn,−1) is S
2n+1, al-

though its contact structure is not ξstd. As shown in [BvK10], (Pn,−1, ζn,−1)
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is not symplectically fillable for any n. This fact is well known in the case
n = 1, as (Pn,−1, ζn,−1) is overtwisted. For a more explicit description of
(Pn,−1, ζn,−1), see [NP10, Example 5]. Theorem 1.21 similarly addresses fil-
lability of the (Pn,k, ζn,k).

As pointed out in the discussion following the statement of Theorem
1.16, (Pn,0, ζn,0) can be realized as the boundary of the Liouville domain
(D2 × D∗Sn, λstd − λcan). By Example 9.4 (Pn,1, ζn,1) is diffeomorphic to the
standard contact sphere (S2n+1, ξstd).

We claim that the contact manifold (Pn,2, ζn,2) coincides with the canon-
ical contact structure on the unit cotangent bundle S∗Sn+1. By Example 2.9,
we see that (S∗Sn+1, ξcan) can be realized by performing a Weinstein handle
attachment along a Legendrian sphere — the standard Legendrian unknot
— in (S2n+1, ξstd). According to Example 9.4, this Legendrian sphere can be
realized as the zero section of D∗Sn which we identify with one of the pages
of the open book used to describe (Pn,1, ζn,1) = (S2n+1, ξstd). According to
Example 1.9, the surgered contact manifold (S∗Sn+1, ξcan) can be described
by performing a Liouville connect sum on two disjoint copied of (Pn,1, ζn,1),
by identifying a page of one copy with a page of the other copy. According
to the proof of Theorem 1.15, the resulting contact manifold is (Pn,2, ζn,2).
Thus (Pn,2, ζn,2) = (S∗Sn+1, ξcan).

Again, let (M, ξ) be any (2n+ 1)-dimensional contact manifold
containing a Legendrian sphere L and consider a Liouville embedding I :
(D∗Sn,−λcan) → (M, ξ) whose image is the ribbon Σ of L. We have a fixed
identification of D∗Sn with a page of the open book (Pn,k, ζn,k) for each k
as this manifold is defined constructively.

Definition 9.8. Define the contact manifold (M, ξ)(L,I,k) as the Liouville
connect sum of

(M, ξ) ⊔ (Pn,−k, ζn,−k)

using the Liouville embedding I. We say that (M, ξ)(L,I,k) is obtained by
contact (1/k)-surgery on L with parameter I.

This definition, together with Theorem 1.8 allows us to associate a Wein-
stein cobordism to a contact (1/k)-surgery. In Figure 17 we provide a Kirby
diagram for one such cobordism.

Proposition 9.9. Definitions 9.5 and 9.8 are equivalent.
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=

1

1
2

Figure 17: On the right we have a Weinstein cobordism whose concave
boundary is a disjoint union of (S3, ξstd) with the overtwisted 3-sphere
(P1,−1, ζ1,−1). The overtwisted sphere is given as the result of a (12)-surgery
on the standard Legendrian unknot in (S3, ξstd). The convex end of this
cobordism is equivalent to the contact manifold on the left, described by a
(+1)-surgery on a right-handed Legendrian trefoil in (S3, ξstd). The cobor-
dism is decomposed into two Weinstein handle attachments; a 4-dimensional
1-handle attachment labeled by the 3-disks attached by a dotted line, and a
4-dimensional 2-handle determined by the unlabeled Legendrian knot which
passes twice through the 1-handle. This handle decomposition is given by
applying the reasoning of Section 8.5 to the decomposition of (D∗S1,−λcan)
into a 2-dimensional 0-handle together with a single 2-dimensional 1-handle.

Proof. As in Lemma 8.1, we can present (Pn,k, ζn,k) as two copies N1 and N2

of a standard neighborhood of (D∗Sn,−λcan) whose boundaries are identi-
fied via the convex gluing instructions (τkn , IdD∗Sn). Hence we can perform
contact (1/k)-surgery as described in Definition 9.8 by removing N2 from
(Pn,k, ζn,k), removing N (Σ) from (M, ξ) and performing a convex gluing.
This is clearly equivalent to Definition 9.5. □

9.3.3. Dependence on the parameter I. A priori the contact mani-
fold (M, ξ)(L,I,k) depends on the parameterization I — not just the image L
of I. For example, by combining Examples 1.9 and 2.9, we see that different
parameterization of a Legendrian sphere in (S2n+1, ξstd) can produce contact
manifolds which may be inequivalent — unit cotangent bundles of possibly
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exotic homotopy spheres. See [Ab12, EKS16] for related results and discus-
sion pertaining to cotangent bundles of spheres. There are however certain
cases in which we can guarantee that (M, ξ)(L,I,k) is independent of I.

Proposition 9.10. Suppose that H : D∗Sn × [0, 1] →M is an isotopy of
Legendrian spheres in (M, ξ). That is, for each t ∈ [0, 1], H(∗, t) : Sn →M
yields an embedded Legendrian sphere. Writing H(∗, 0) = I, H(∗, 1) = I ′,
I(Sn)=L, and I ′(Sn)=L′ we have that (M, ξ)(L,I,k) is contact-diffeomorphic
to (M, ξ)(L′,I′,k). Moreover, if Diff+(Sn) is path connected, then (M, ξ)(L,I,k)
depends only on the submanifold L and is independent of the chosen param-
eterization I.

The first statement follows from the fact that we can write H(∗, t) =
ϕt ◦H(∗, 0) for an isotopy ϕt of M which preserves ξ. See [Et05, Theorem
2.12]. The existence of such an isotopy of (M, ξ) then provides a homotopy
of Liouville embeddings (D∗Sn,−λstd) → (M, ξ) by extending the original
embedding using a Weinstein neighborhood theorem and applying the ϕt.
The second statement is essentially [S99, Lemma 6.2] which states that iso-
topic parameterizations of the zero-section of D∗Sn determine Dehn twists
which are isotopic through a family of compactly supported symplectomor-
phisms. The hypothesis of the second statement is known to hold true for
n = 1, 2, 3, 4, 5, 11, 60 and is known to not hold true for any other values of
n ≤ 63 [Mi11].

9.4. Basic properties

Now we outline some basic properties of contact (1/k)-surgery, showing that
many of the results of Theorem 9.1 continue to hold in high dimensions. In
order to state our results, we must first define the standard Legendrian sphere
and Legendrian push-offs.

Definition 9.11. The standard Legendrian sphere in (S2n+1, ξstd), denoted
Lstd, is given by S2n+1 ∩ Span(x1, . . . , xn+1) where we consider
(S2n+1, ξstd) = ∂(D2n+2, λstd). Let (M, ξ) be a (2n+ 1)-dimensional contact
manifold and identify (M, ξ) with the contact connect sum of (M, ξ) and
(S2n+1, ξstd), where the connect sum is performed outside of a tubular neigh-
borhood of Lstd ⊂ S2n+1. In this way, we view Lstd as a Legendrian sphere in
(M, ξ) = (M, ξ)#(S2n+1, ξstd). We say that a Legendrian sphere L in (M, ξ)
is a standard Legendrian sphere if it is Legendrian isotopic to Lstd ⊂ (M, ξ).
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According to the above definition, a standard Legendrian sphere in a
contact 3-manifold is a Legendrian unknot with Thurston-Bennequin num-
ber equal to −1. The sphere Lstd has a canonical parametrization given by
its identification with the unit n-sphere in Span(x1, . . . , xn+1).

Lemma 9.12. Performing contact (1/k) surgery on a standard Legendrian
sphere in some (2n+ 1)-dimensional contact manifold (M, ξ) produces a
contact connected sum of (M, ξ) with (Pn,1−k, ζn,1−k).

Proof. Applying Definition 9.11, we may be view the surgery locus as living
inside of (S2n+1, ξstd). It therefore suffices to prove that contact (1/k) surgery
on the standard unknot in (S2n+1, ξstd) is contactomorphic to (Pn,1−k, ζn,1−k).
The standard Legendrian sphere L in (S2n+1, ξstd) may be viewed as lying
in a page of the open book decomposition which identifies (S2n+1, ξstd) with
(Pn,1, ζn,1). As in this case, Definition 9.8 coincides exactly with the proof of
Proposition 8.2, and we see that the contact manifold obtained by perform-
ing (1/k) surgery along L will be supported by an open book decomposition
with page D∗Sn and monodromy is the product of the monodromies τn and
τ−k
n . □

Definition 9.13. Let L ⊂ (M, ξ) be a Legendrian submanifold and identify
a tubular neighborhood N(L) of L with N(L) = [−ϵ, ϵ]× D∗L. We say that a
Legendrian submanifold of (M \N(L), ξ) is a push-off of L if it is Legendrian
isotopic to {ϵ} × L ⊂M \ Int(N(L)).

This notion of push-off clearly extends the usual definition of a push-off
of a Legendrian knot in a contact 3-manifold. A parametrization I : Sn → L
of a Legendrian sphere in (M, ξ) gives rise to a canonical parametrization of
a push-off by (ϵ, I) : Sn → N(L).

Theorem 9.14. Let (M, ξ) be a connected (2n+ 1)-dimensional contact
manifold.

1) Performing a contact (−1)-surgery along any Legendrian sphere L ⊂
(M, ξ) gives the same contact manifold as the one obtained by per-
forming a (2n+ 2)-dimensional Weinstein (n+ 1)-handle attachment
along L.

2) For any Legendrian sphere L ⊂ (M, ξ), the contact manifold described
by performing a contact (1/p)-surgery on a parameterized L, followed
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by a (1/q)-surgery on a push-off of L (with its natural parameteriza-
tion) is equivalent to the contact manifold described by performing a
(1/(p+ q))-surgery on L ⊂ (M, ξ).

3) Performing a contact (+1)-surgery on a standard Legendrian sphere
in (M, ξ) with its natural parametrization produces the contact connect
sum of (M, ξ) with (Sn × Sn+1, ξstd) := ∂(D∗Sn × D2,−λcan + λstd).

4) Performing a contact (12)-surgery on a standard Legendrian sphere in
(M, ξ) yieldsM equipped with an algebraically overtwisted [BN10] (and
so not symplectically fillable) contact structure.

Proof. The first assertion follows from a combination of Examples 1.9
and 9.4.

For the second: Suppose that we perform a (1/p)-surgery on L ⊂ (M, ξ)
using a Liouville embedding

I : (D∗Sn,−λcan) → (M, ξ).

Write N (Σ) for a standard neighborhood of the image Σ of I. Legendrian
isotop the push-off of L into the interior of N (Σ) — now considered as a
subset of (M, ξ)(L,I,p) — in the obvious fashion so that it is identified with the
zero-section of D∗Sn which we considered to be a page of (Pn,−p, ζn,−p) by
alternately thinking of N (Σ) as a subset of (Pn,−p, ζn,−p). Performing (1/q)-
surgery on this sphere in (Pn,p, ζn,p) amounts to adding −k Dehn twists to
the monodromy of the open book determining (Pn,−p, ζn,−p) and so results
in (Pn,−p−q, ζn,−p−q). Therefore the end result is a Liouville connect sum of
(M, ξ) and (Pn,−p−q, ζn,−p−q) along Σ using the parametrization I.

The third and fourth statements follow immediately from Lemma 9.12
together with the descriptions of (Pn,0, ζn,0) and (Pn,−1, ζn,−1) appearing in
Example 9.7. □

10. Applications to the study of Dehn twists

For our final application of the Liouville connect sum we use contact (1/k)-
surgery as a tool to study generalized Dehn twists. We begin with a contin-
uation of the previous section, proving Theorem 1.21.

Throughout, we will make use of the contact manifolds (Pn,k, ζn,k) as
described in Definition 9.6.
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10.1. Negative monodromy and overtwistedness

Now we provide an alternate proof and generalization of Theorem 9.14(4).
The following is a restatement of Theorem 1.21 in the notation of the present
section.

Theorem 10.1. Let k > 0 be a natural number and let (Pn,−k, ζn,−k) be as
in Definition 9.6. Then (Pn,−k, ζn,−k) does not admit a symplectic filling with
(W,ω) with ω|π2(W ) = 0. In particular, it does not admit an exact symplectic
filling.

Our proof of Theorem 1.21 is a simple application of the following the-
orem of Eliashberg- Floer-Gromov-McDuff [El91, Mc91].

Theorem 10.2. Let n ≥ 1 be a positive integer and suppose that (W,ω) is
a symplectic filling of (S2n+1, ξstd) for which ω integrates to zero over every
embedded 2-sphere in W . Then W is diffeomorphic to D2n+2.

Clearly exact symplectic manifolds contain no such symplectically em-
bedded spheres.

Proof of Theorem 1.21. Applying a Liouville connect sum to pages of the
provided open books for

(Pn,k+1, ζn,k+1), (Pn,−k, ζn,−k)

produces an exact symplectic cobordism whose convex boundary is
(Pn,1, ζn,1) = (S2n+1, ξstd) and whose concave boundary is (Pn,k+1, ζn,k+1) ⊔
(Pn,−k, ζn,−k). Denote the smooth manifold with boundary underlying this
cobordism as Y .

We now describe a symplectic filling (W,ωW ) of (Pn,k+1, ζn,k+1). For
ϵ ∈ S1 ⊂ C let Dn+1

ϵ be the rotation of the Lagrangian disk Dn+1 × {0} ⊂
Rn+1 × Rn+1 ⊂ Cn+1 by ϵ. Note that the boundary of each Dn+1

ϵ is a Leg-
endrian sphere realized as the zero-section of a page T ∗Sn of the standard
open book decomposition of (S2n+1, ξstd) described in Example 9.4 and that
for ϵ1 ̸= ϵ2, D

n+1
ϵ1 and Dn+1

ϵ1 have a single intersection at 0 ∈ Cn+1 which
is transverse. We obtain (W,ωW ) by performing a Weinstein handle attach-
ment to ∂Dn+1

ϵj for ϵj = ζj , j = 0, . . . , k where ζ is a primitive (k + 1)-th root
of unity. Denote by Lj the Lagrangian spheres in (X,ωX) given by the union
of the Dn+1

ϵj with the core sphere of its associated Weinstein handle. Then
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each pair of distinct Lj share a single transverse intersection. As k + 1 ≥ 2,
we have at least two such Lagrangian spheres L1, L2.

6

To complete the proof, let (W,ωW ) be an exact symplectic filling of
(Pn,−k, ζn,−k) whose existence would contradict the statement of the theo-
rem. Glue the cobordisms together to construct a manifold Z =W ∪X ∪ Y
by identifying the concave boundary components of Y with the convex
boundaries of X and W in the obvious fashion. We thus have an exact
symplectic filling of ∂Z = (S2n+1, ξstd). By considering L1, L2 as subman-
ifolds of Z, we would see that its middle dimensional homology Hn+1(Z)
has non-zero intersection form which contradicts the fact that Z must be
diffeomorphic to a disk by Theorem 10.2. □

Remark 10.3. Here is an alternate proof of Theorem 1.21 in the case k > 1,
utilizing [BvK10] which asserts that (Pn,−1, ζn,−1) has vanishing contact
homology for all n. This implies that (Pn,−1, ζn,−1) is not exactly fillable by
Theorem 8.4.

As in the proof above, we use the Liouville connect sum to construct
a cobordism W whose convex boundary is (Pn,−1, ζn,−1) and whose con-
cave boundary is (Pn,k+1, ζn,k+1) ⊔ (Pn,−k, ζn,−k). The contact homology of
the convex end of W is HC∗(Pn,k−1, ζn,k−1)⊗HC∗(Pn,−k, ζn,−k) by Theo-
rem 8.4. By the Weinstein fillability of (Pn,k−1, ζn,k−1), its contact homology
is non-zero and we have that the contact homology of the concave boundary
of W is zero if and only if HC∗(Pn,−k, ζn,−k) is zero.

By the facts that HC(Pn,−1, ζn,−1) = 0 and the cobordism W induces
an algebra homomorphism between contact homologies, HC∗(Pn,−k, ζn,−k)
must also be zero. Hence (Pn,−k, ζn,−k) is not Liouville fillable.

Following classical results in 3-dimensional contact topology and the
above theorem, we ask how contact (1/k)-surgery could be used to produce
more examples of non-symplectically fillable contact manifolds in arbitrary
dimension or even be used to characterize overtwistedness.

In [EES05, §4.1] a notion of “stabilized Legendrian sphere” is described,
in analogy with the usual notion of a stabilized Legendrian knot in a contact
3-manifold. Certain stabilized spheres, called loose Legendrian spheres are

6We could just as easily described such a pair of such Lagrangian spheres via
matching paths for a Lefschetz fibration description of (W,ωW ) over the disk with
generic fiber T ∗Sn and k + 2 singular fibers, but want to avoid additional machinery
and definitions. See for example [AS04]. Likewise, we could see that (Pn,k+1, ζn,k+1)
is the boundary of a Brieskorn variety [KvK16] and appeal to classic homological
computations to achieve the end result.
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classified (up to Legendrian isotopy) by homotopy theoretic data [Mu12].
Based on Theorem 9.1(5) and the fact that these spheres have trivial holo-
morphic curve invariants — see [EES05, Proposition 4.8] and [Mu12, §8] —
we present the following as a conjectured analogue of Theorem 9.1(5).

Conjecture 10.4. Let L ⊂ (M, ξ) be a loose Legendrian sphere in a contact
manifold of dimension greater than three. A contact manifold obtained by
performing a contact (+1)-surgery along L is “overtwisted”.

Here “overtwistedness” of a contact manifold (M, ξ) of dimension greater
than three can be taken to mean — or at least imply — any of the following
conditions:

1) (M, ξ) does not admit a weak symplectic filling.

2) Every contact form on (M, ξ) has a contractible Reeb orbit.

3) The contact homology of (M, ξ) is zero for any choice of coefficient
system.

4) (M, ξ) contains a plastikstufe as described in [N06].

5) The contact structure ξ is determined by qualitative and homotopical
data as in [El89].

10.2. Squares of smooth Dehn twists

In this section, we continue our study of symplectic Dehn twists, proving
Theorem 1.22.

Lemma 10.5. Suppose that n ̸= 2, 6. Then τ2n is not isotopic to the identity
mapping in Diff+(D∗Sn, ∂D∗Sn).

Proof. If τ2n is isotopic to the identity in Diff+(D∗Sn, ∂D∗Sn), then the
smooth manifolds underlying (Pn,0, ζn,0) and (Pn,2, ζn,2) are diffeomorphic.
Therefore, according to Example 9.7 it suffices to show that the unit cotan-
gent bundle of Sn+1 is not diffeomorphic to Sn × Sn+1 for n ̸= 0, 2, 6. We
observe that these spaces are not homotopy equivalent.

If n is odd, then Hn(S∗Sn+1;Z) = Z/2Z — as can be computed using
a cohomological Gysin sequence from the fact that χ(Sn+1) = 2 — while
H∗(Sn × Sn+1,Z) has no torsion. In the event that n is even, then S∗Sn+1

is homotopy equivalent to Sn × Sn+1 if and only if n+ 1 = 1, 3, 7 as can
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be seen by combining results of Adams [Ad58, Theorem 1(b)] and James-
Whitehead [JW54, Theorem 1.12]. Specifically, [Ad58, Theorem 1 (b)] as-
serts that there is a map S2n−1 → Sn with Hopf invariant equal to one if
and only if n = 1, 2, 4, 8 while [JW54, Theorem 1.12] asserts that S∗Sn+1

is homotopy equivalent to Sn × Sn+1 if and only if there is an element in
π2n−1(S

n) with Hopf invariant equal to one. □

Lemma 10.6. For n = 2, 6 the square of the generalized Dehn twist τ2n is
isotopic to the identity mapping in Diff+(D∗Sn, ∂D∗Sn).

Proof. Our proof is lifted from [S99, Lemma 6.3] where the case n = 2 is
established. The mechanism underlying the proof is the existence of an al-
most complex structure on S2. Our only contribution is the observation that
S6 also admits an almost complex structure which preserves the standard
Riemannian metric determined by the cross product on the imaginary octo-
nians. Thus we suppose that Sn is a sphere equipped with an almost complex
structure J compatible with the standard round metric.

Let u ∈ Sn. Then Ju : TuS
n → TuS

n determines an element ju of the Lie
algebra so(n+ 1) of SO(n+ 1) as follows. Using the standard metric on TSn

provided by the natural inclusion of Sn into Rn+1, identify the (n− 1)-sphere
of unit length vectors in TuS

n with the (n− 1)-sphere of points in Sn which
are orthogonal to u when considered as vectors in Rn+1. In this way we can
see that Ju generates a circle subgroup of the subgroup of transformations in
SO(n+ 1) which fix the point u. Indeed, for each θ ∈ S1 = [0, 2π]/ ∼ we can
consider that map eθ·Ju : TuS

n → TuS
n as a map Sn → Sn fixing u. Denote

by ju ∈ so(n+ 1) the infinitesimal generator of this action.
Similarly, if v ∈ T ∗

uS
n is a non-zero cotangent vector then there is an

associated vector vu ∈ so(n+ 1). Denote by v∗ the associated dual vector
in TuS

n, which we will consider as a vector in Rn+1. Define vu to be the
infinitesimal generator of the SO(n+ 1)-circle action on Sn which rotates
the oriented plane Span(u, 1

∥v∗∥v
∗) counterclockwise and fixes the orthogonal

complement of this plane.
In the notation of Section 9.2, we can use the above definitions to express

the Dehn twist τn as

τn(u, v) =
(
ef(∥v∥)·vuu, ef(∥v∥)·vuv

)

for each pair (u, v) satisfying v ̸= 0. Here f is the function described in
Section 9.2. For points of the form (u, 0) ∈ D∗Sn, τn(u, 0) = (−u, 0). Using
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the above formula we can write

τ2n(u, v) =
(
e2f(∥v∥)·vuu, e2f(∥v∥)·vuv

)

for pairs (u, v) ∈ D∗Sn satisfying v ̸= 0, and τ2n(u, 0) = (u, 0) for each (u, 0) ∈
Sn ⊂ D∗Sn.

Consider the [0, 1]-family of diffeomorphisms of D∗Sn given by the for-
mula

Φt(u, v) =
(
e2f(∥v∥)·

(
(1−t)ju+tvu

)
u, e2f(∥v∥)·

(
(1−t)ju+tvu

)
v
)

for v ̸= 0 and Φt(u, 0) = (u, 0) for all t ∈ [0, 1]. Note that Φ1 = τ2n, so that
Φt provides an isotopy from τ2n to the diffeomorphism

Φ0(u, v) = (u, e2f(∥v∥)juv)

in such a way that Φt restricts to the identity mapping along the zero-section
and boundary of D∗Sn for all t ∈ [0, 1]. To complete the proof, consider the
isotopy

Ψt(u, v) = (u, et2f(∥v∥)juv)

which interpolates between Φ0 and the identity mapping in

Diff+(D∗Sn, ∂D∗Sn).
□

The above lemmas combine to prove Theorem 1.22.

10.3. Squares of symplectic Dehn twists and exotic
contact spheres

With Theorem 1.22 established, we study the contact manifolds
(Pn,2k+1, ζn,2k+1) to complete the proof of Theorem 1.23. Throughout this
section, unless stated otherwise, we use n to denote either 2 or 6.

Theorem 10.7. For k a non-zero integer and n = 2, 6, the smooth manifold
underlying (Pn,2k+1, ζn,2k+1) is S

2n+1. However, this contact manifold is not
contact-diffeomorphic to (S2n+1, ξstd).

As in Theorem 1.21, this is another simple application of Theorem 10.2.

Proof. For the first statement, the monodromy of the open book decom-
position underlying (Pn,2k+1, ζn,2k+1) is smoothly isotopic to τn. Therefore
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Mn,2k+1 is diffeomorphic to the manifold determined by the open book with
page D∗Sn and monodromy τn, which is exactly S2n+1.

For k < 0, the fact that (Pn,2k+1, ζn,2k+1) is not contact-diffeomorphic to
(S2n+1, ξstd) follows from the fact that (S2n+1, ξstd) is exactly fillable while
(Pn,2k+1, ζn,2k+1) is not by Theorem 1.21.

The case k > 0 follows a similar argument. By the proof of Theorem 1.21,
we see that (Pn,2k+1, ζn,2k+1) admits a Weinstein filling of whose Euler char-
acteristic is 1 + 2m ̸= 1. However, by Theorem 10.2, any exact filling of
(S2n+1, ξstd) must have Euler characteristic equal to 1. □

Proof of Theorem 1.23. If τ2n ∈ Symp((D∗Sn,−dλcan), ∂D
∗Sn) was isotopic

to the identity mapping, then for k ̸= 0, the contact manifold
(Pn,2k+1, ζn,2k+1) would be contact-diffeomorphic to (S2n+1, ξstd) by The-
orem 1.12 contradicting Theorem 10.7. □

References

[Ab12] M. Abouzaid, Framed bordism and Lagrangian embeddings of ex-
otic spheres, Ann. of Math. 175 (2012), 71–185.

[Ad58] J. F. Adams, On the nonexistence of elements of Hopf invariant
one, Bull. Amer. Math. Soc. Vol. 64 (1958), 279–282.

[Ar95] V. I. Arnol’d, Some remarks on symplectic monodromy of Milnor
fibrations, in: The Floer Memorial Volume, pp. 99–103, Progr.
Math. 133, Birkhäuser, Basel, (1995).

[Av11] R. Avdek, Contact surgery and supporting open books, Algebr.
Geom. Topol. 13 (2013), no. 3, 1613–1660.

[AS04] D. Aroux and I. Smith, Lefschetz Pencils, Branched Covers
and Symplectic Invariants, Lecture Notes in Mathematics 1938,
Springer-Verlag (2004).

[BCV09] S. Baader, K. Cieliebak, and T. Vogel, Legendrian ribbons in
overtwisted contact structures, J. Knot Theory Ramifications 18
(2009), 523–529.

[BEV10] K. L. Baker, J. B. Etnyre, and J. van Horn-Morris, Cabling, con-
tact structures and mapping class monoids, J. Differential Geom.
90 (2012), no. 1, 1–80.

[Ba08] J. A. Baldwin, Comultiplicativity of the Ozsváth-Szabó contact in-
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