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Let p ≥ 2 be a prime, and Fp be the field with p elements. We
construct an isomorphism between the Floer cohomology of an
exact or Hamiltonian symplectomorphism ϕ, with Fp coefficients,
and the Z/pZ-equivariant Tate Floer cohomology of its p-th power
ϕp. This extends a result of Seidel for p = 2. The construction
involves a Kaledin-type quasi-Frobenius map, as well as a Z/pZ-
equivariant pants product: an equivariant operation with p inputs
and 1 output. Our method of proof involves a spectral sequence for
the action filtration, and introduces a new key component: a local
Z/pZ-equivariant coproduct providing an inverse on the E2-page.
This strategy has the advantage of accurately describing the effect
of the isomorphism on filtration levels. We describe applications
to the symplectic mapping class group, as well as develop Smith
theory for the persistence module of a Hamiltonian diffeomorphism
ϕ on symplectically aspherical symplectic manifolds. We illustrate
the latter by giving a new proof of the celebrated no-torsion theo-
rem of Polterovich, and by relating the growth rate of the number
of periodic points of the pk-th iteration of ϕ and its distance to
the identity. Along the way, we prove a sharpening of the classical
Smith inequality for actions of Z/pZ.
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1. Introduction

Equivariant cohomology with respect to the action of the cyclic group of
order p, and the resulting Smith-type inequalities (see [7, 8, 26] for the clas-
sical theory) have been obtained and used to great effect in various Floer
theories in recent years, see for example [28, 29, 31, 48, 50, 55]. In the case
of symplectic fixed point Floer cohomology HF ∗(ϕ) of a symplectic auto-
morphism ϕ of a Liouville manifold, and the Z/2Z-equivariant cohomology
of its second iterate ϕ2, Smith theory was most recently studied by Seidel
[48], after previous work of Hendricks [28]. In particular, Seidel proves that
under suitable assumptions the following analogue of the Smith inequality
holds true for fixed point Floer cohomology:

(1) dimF2
HF ∗(ϕ) ≤ dimF2

HF ∗(ϕ2)Z/2Z ≤ dimF2
HF ∗(ϕ2).

The proof uses a remarkable cohomological operation coming from the Z/2Z
symmetry of the pair of pants with boundary conditions given by ϕ on the
two input cylinders, and by ϕ2 on its output cylinder.

In this paper, we extend the work of Seidel to all primes p ≥ 2, to
fixed point Floer cohomology in an generic action window I = (a, b), a, b ∈
R ∪ {±∞}, and to local Floer cohomology. In the last case, a Smith-type
inequality was obtained by more elementary methods in [59] during the
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preparation of this paper. We note that the case of action windows and that
of local Floer cohomology are of interest already for Hamiltonian diffeomor-
phisms of symplectically aspherical symplectic manifolds.

We record sample applications, proven in Section 12. Let ϕ be a Hamil-
tonian diffeomorphism of a symplectically aspherical symplectic manifold,
and ϕp its p-th iterate. Assume that p · a and p · b are not critical values of
the Hamiltonian action functional corresponding to ϕp on the free homotopy
class of contractible loops. Then the Floer cohomology of ϕ in the interval
I = (a, b) and that of ϕp in the interval p · I = (p · a, p · b) are related by the
following Smith-type inequality:

(2) dimFp
HF ∗(ϕ)I ≤ dimFp

(HF ∗(ϕp)p·I)Z/pZ ≤ dimFp
HF ∗(ϕp)p·I .

We remark that these cohomology groups are defined by perturbing ϕ by a
sufficiently C2-small Hamiltonian diffeomorphism to ϕ1, and using the fact
that the endpoints of the interval are not in the spectrum. In this case, we can
choose a perturbation ϕ1 so that ϕp1 is a sufficiently C2-small Hamiltonian
perturbation of ϕp.

There are two essentially immediate consequences of the above Smith-
type inequalities (1) and (2). Similarly to the results obtained by Hendricks
[28] and Seidel [48] in the case of p = 2, one first obtains the following corol-
lary, that is proven as Corollary 12.2 in Section 12, for the p-th iterates of
ϕ in the symplectic mapping class group.

Corollary 1.1. Given an exact symplectic manifold W which is cylin-
drical at infinity, and a compactly supported exact symplectomorphism ϕ,
if dimFp

HF ∗(ϕ) > dimFp
H∗(W ), then [ϕp

k

] ̸= 1 in the symplectic mapping
class group of W for all k ≥ 0.

Furthermore, with the help of the action-filtered version of the Smith-
type inequality (2), we also provide a new proof of a well-known theorem of
Polterovich [37], stating that the group of Hamiltonian diffeomorphisms of a
closed symplectically aspherical symplectic manifold contains no non-trivial
torsion elements. It is stated below as Theorem D together with our new
proof.

Corollary 1.2 (Polterovich [37]). Let ϕ ∈ Ham(M,ω) be a Hamiltonian
diffeomorphism of a symplectically aspherical symplectic manifold, such that
ϕk = 1 for some k ∈ Z>1. Then ϕ = id.
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Furthermore, we apply (2) together with additional combinatorial argu-
ments, as well as arguments of [42], to prove the following result regarding
Hamiltonian diffeomorphisms ϕ that are not torsion, but whose iterations
ϕp

k

approach the identity in various natural distances, such as the spectral
distance γ(ϕ) [44], the C0 distance, or the Hofer distance. It is proven as
Theorem E in Section 12. We recall that a fixed point x of a Hamiltonian
diffeomorphism ϕ ∈ Ham(M,ω) is called contractible if the loop {ϕtx} for
any Hamiltonian isotopy {ϕt} with ϕ1 = ϕ is contractible in M. It is a stan-
dard consequence of Floer theory that this property does not depend on the
choice of such an isotopy.

Corollary 1.3. Let ϕ ∈ Ham(M,ω) be a Hamiltonian diffeomorphism of a
closed symplectically aspherical symplectic manifold, such that for all k ≥ 0,
ϕp

k

is non-degenerate. Then setting N(ϕp
k

) for the number of contractible
fixed points of ϕp

k

we have

lim inf
k→∞

N(ϕp
k

) · γ(ϕp
k

)/pk > 0.

We note that Corollary 1.3 implies that if lim infk→∞ γ(ϕp
k

) = 0, then
N(ϕp

k

) grows super-linearly in pk. The same consequence holds if
lim infk→∞ dC0(ϕp

k

, id) = 0, or lim infk→∞ dHofer(ϕ
pk , id) = 0. It is a well-

known conjecture that Hamiltonian diffeomorphisms of closed symplecti-
cally aspherical symplectic manifolds for which these limits vanish should
not exist. Our result is a new step in this direction.

To prove our main theorem, we use a cohomological operation com-
ing from a branched cover of a cylinder that has p inputs and 1 output,
and its Z/pZ-symmetry, as in [48] for p = 2. However, showing that this
Z/pZ-equivariant product map is an isomorphism on the associated Tate
cohomology groups requires substantially more complicated tools. Indeed,
for p = 2 the local contributions can be deduced from a few specific exam-
ples, including the period-doubling bifurcation, as discussed in [48, Section
6]. However, for p > 2 there is a shortage of such examples, and Seidel has
remarked that a more refined approach is necessary. We proceed by provid-
ing a local inverse map for the product in terms of an equivariant coproduct
operation with 1 input and p outputs, inspired by the approach briefly out-
lined for p = 2 by Seidel in [48, Remark 6.10]. It is curious to note that the
classical Wilson theorem from number theory ultimately plays an impor-
tant role in the calculation leading to local invertibility. We emphasize that
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besides the generalization to p > 2, our approach differs from the one sug-
gested by Seidel in that we discuss the coproduct in local Floer cohomology,
instead of defining the coproduct globally in the aspherical setting. While
this situation is slightly more analytically difficult, since there is in general
no inverse pair of PSS isomorphisms in local Floer cohomology, proceeding
this way simplifies a few topological arguments and has the advantage of
applying to Floer cohomology in action windows, which is interesting for
Hamiltonian dynamics. It is also more flexible for extensions to the non-
aspherical case. To implement this approach, we prove a general “crossing
energy” result to define and discuss local equivariant Floer cohomology. This
also allows us to remove certain “general position” assumptions present in
Seidel’s paper. Finally, the local-to-global argument proceeds by the use of
the action-filtration spectral sequence.

Besides the approach of local coproduct and product-coproduct opera-
tions, that is found in Section 10, other technical innovations in this paper
include the following. First, in Section 6.2 we present new algebraic argu-
ments that allow us to improve on the classical Smith inequality. Second, in
Section 7 we give an elementary proof of Proposition 7.1, which is a very gen-
eral “crossing energy” argument that clarifies the phenomenon (statements
of this kind are usually proved using considerably more advanced techniques
such as the target-local Gromov compactness of Fish [15]). It is this result
that allows us to define local equivariant Floer cohomology, and to reduce
our consideration to individual fixed points, removing extra “general posi-
tion” assumptions made in [48]. Finally, Appendix A contains a discussion
of signs and orientations necessary for working with coefficients in Fp.

To give a taste of the algebra involved in the proof, we record our main
technical result, Theorem A, from which inequality (2) follows purely alge-
braically. In fact a stronger inequality follows (see Remark 12.1). We refer
to Sections 2, 5, 6, and 8 below, for detailed definitions of all the notions
involved in the formulation of this theorem. At the moment we just remark
that Tate cohomology, on the level of Z/pZ vector spaces, is a cohomology
theory that vanishes on free Z/pZ vector spaces. In this paper we use cer-
tain more complicated versions of this construction, wherein it corresponds
roughly to discarding contributions from simple p-periodic points of ϕ, i.e.
the fixed points of ϕp that are not fixed points of ϕ.

Theorem A. Let ϕ be an exact symplectic automorphism of a Liouville
domain, or a Hamiltonian diffeomorphism of a closed symplectically as-
pherical symplectic manifold. For a generic interval I = (a, b) with a < b,
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a, b ∈ R ∪ {±∞}, and a prime p ≥ 2, working with coefficients in Fp, there
exists an algebraically defined (quasi-Frobenius) isomorphism of Tate coho-
mology groups

F : Ĥ∗(Z/pZ, HF ∗(ϕ)I)(1) → Ĥ∗(Z/pZ, (CF ∗(ϕ)⊗p))p·I

and a Floer-theoretically defined (product) map between Z/pZ group coho-
mology and the Z/pZ-equivariant Floer cohomology group

P : H∗(Z/pZ, CF ∗(ϕ)⊗p)p·I → HF ∗
Z/pZ(ϕ

p)p·I

that becomes an isomorphism of Tate cohomology groups

P : Ĥ∗(Z/pZ, (CF ∗(ϕ)⊗p))p·I → ĤF
∗
Z/pZ(ϕ

p)p·I

after tensoring with Fp((u)) over Fp[[u]]. Here

Ĥ∗(Z/pZ, HF ∗(ϕ)I)(1) ∼= HF ∗(ϕ)I ⊗Fp
Fp((u)) ⟨θ⟩ ,

where u and θ are formal variables of degree 2 and 1 respectively, Fp((u)) =
Fp[u

−1, u]] denotes the formal Laurent power series in u, ⟨θ⟩ denotes an
exterior algebra on θ, and the superscript (1) denotes the Tate twist.

We observe that this result has the following immediate corollary.

Corollary 1.4. The composition

P ◦ F : HF ∗(ϕ)I ⊗Fp
Fp((u)) ⟨θ⟩ → ĤF

∗
Z/pZ(ϕ

p)p·I

is an isomorphism of Fp((u)) vector spaces.

Studying the dimensions of the vector spaces from Corollary 1.4, we
deduce (2).

Since the case of p = 2 amounts essentially to a repetition, with perhaps
a very slight extension, of results of [48], for brevity we omit the discussion
of this case and assume throughout that p > 2. However, we note that our
result for p = 2, due to our use of slightly more complicated algebraic tools
is a bit stronger than the one in [48], in view of the inequality (125).

We add that a generalization of a part of the results of this paper to the
monotone case, as well as further applications to dynamics, can be found in
[51].
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2. Group cohomology and Tate cohomology

In this section, we recall the preliminary definitions of group cohomology
and Tate cohomology for vector spaces and cochain complexes endowed with
G = Z/pZ actions.

For a fixed prime p, we let K be a field of characteristic p and consider
Z/2Z- or Z-graded vector spaces or cochain complexes V ∗ defined over K.
In this paper, we mainly consider the case when K = Fp.

We add that in this section, and in this paper in general, we make ex-
tensive use of the notion of a spectral sequence. Since it is quite standard
nowadays, we refer to [56, Chapter 5] for all the relevant preliminary ma-
terial, sometimes mentioning specific relevant results for the convenience of
the reader.

An action of the cyclic group G = Z/pZ on a (graded) vector space V
is given by a (degree-preserving) linear transformation σ : V → V such that
σp = id. Alternatively, the G-action on V is equivalent to a (graded) K[G]-
module structure on V. Given such a G-action, the G-invariants and the
G-coinvariants are defined as follows

V G = Ker(1− σ) = {x ∈ V | g · x = x for all g ∈ G}(3)

VG = V/ Im(1− σ),(4)

where Im(1− σ) := ⟨1− σ⟩V is the K[G]-submodule generated by g · x for
g = 1− σ and x ∈ V. The group homology and cohomology can be then
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defined as the (derived) G-coinvariants and G-invariants of the G-action

Hi(G;V ) := Tor
K[G]
i (K, V ),(5)

H i(G;V ) := Exti
K[G](K, V ).(6)

To compute these (co)homology groups explicitly for cyclic groups G :=
Z/pZ, one takes the free resolution of the ground field K as a K[G]-module
given by

(7) 0← K
ϵ
←− K[G]

1−σ
←−− K[G]

N
←− K[G]

1−σ
←−− K[G]

N
←− · · ·

where ϵ(
∑

i aigi) =
∑

i ai is the augmentation map, and N = id+ σ + σ2 +

· · ·+ σp−1 is the norm map of the G-action. Let P• := (K[G]
1−σ
←−− K[G]

N
←−

K[G]
1−σ
←−− K[G]

N
←− · · · ). The group homology and cohomology can be com-

puted explicitly as the homology of

P• ⊗K[G] V and HomK[G](P•, V ).

One the other hand, the Tate invariants and coinvariants are the ker-
nels and cokernels of the norm map N acting on ordinary invariants and
coinvariants,

(8) Ĥ0(G;V ) = Ker(N)/ Im(1− σ), Ĥ0(G;V ) = Ker(1− σ)/ Im(N).

Extending the previous free resolution (7) two-periodically, one obtains the
Tate “resolution”

(9) Q• := (· · ·
1−σ
←−− K[G]︸ ︷︷ ︸

−1

N
←− K[G]︸ ︷︷ ︸

0

1−σ
←−− K[G]︸ ︷︷ ︸

1

N
←− K[G]︸ ︷︷ ︸

2

1−σ
←−− · · · )

The Tate homology and cohomology are defined to be the (derived) Tate
invariants and coinvariants,

Ĥi(G;V ) := Hi(Q• ⊗K[G] V ),(10)

Ĥ i(G;V ) := Hi(HomK[G](Q•, V )) ∼= Hi((Q
∨)• ⊗K[G] V ),(11)

where (Q∨)• := HomK[G](Q•,K[G]) is the dual resolution.

For a cochain complex (V, dV ) of K[G]-modules, so that the degree of
dV is 1, the equivariant (co)homology can be defined as the homology of the
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equivariant (co)chain complex

Ck(Z/pZ;V ) =
⊕

i−j=k
Pi ⊗ V

−j , d = d† + (−1)idV ,(12)

Ck(Z/pZ;V ) =
⊕

i+j=k

(P∨)i ⊗ V j , d = d† + (−1)idV ,(13)

for (P∨)• := HomK[G](P•,K[G]) and the Tate (co)homology can be defined
as the homology of the Tate (co)chain complex

Ĉk(Z/pZ;V ) =
⊕

i−j=k
Qi ⊗ V

−j , d̂ = d† + (−1)idV ,(14)

Ĉk(Z/pZ;V ) =
⊕

i+j=k

(Q∨)i ⊗ V j , d̂ = d† + (−1)idV ,(15)

where on Ĉk(Z/pZ;V ), d† = d0 := N = 1 + σ + · · ·+ σp−1 if i is even and

d† = d1 := 1− σ if i is odd, whereas on Ĉk(Z/pZ;V ), d† = (d0)
∨ = 1− σ

for i even and d† = (d1)
∨ = N for i odd. Note that in (14) we look at the

chain complex V −∗, whose differential is of degree (−1), naturally obtained
from the cochain complex V ∗. This distinction is important in the Z-graded
setting. We remark that the complexes appearing in (14) and (15) are tensor
products of the complexes Q• and (Q∨)• respectively with V, and are hence
completely analogous to (10) and (11) but in the monoidal category of chain
complexes.

One can therefore rewrite the Tate homology complex with coefficients
in a cochain complex (V, dV ) as

(16)
(
V ⊗K K((u))⟨θ⟩, d̂

)
,

where the differential d̂ with respect to the splitting V ⊗K K((u))⊗K 1 ⊕
V ⊗K K((u))⊗K θ is written as follows

(17)
d̂(x⊗ 1) = dV (x)⊗ 1 + u−1N x⊗ θ,

d̂(x⊗ θ) = −dV (x)⊗ θ + (1− σ)x⊗ 1.

Here, u, θ are formal variables of degrees 2 and 1 respectively, ⟨θ⟩ is the
exterior algebra generated over K by θ, and K((u)) is the field of Laurent
series in u. We observe that strictly speaking rewriting the complex would
feature the ring K[u−1, u] of Laurent polynomials in u, but for our purposes
it is convenient to consider its u-adic completion, which is K((u)).
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Similarly, the Tate cohomology complex with coefficients in (V, dV ) is
defined as the complex V ⊗K K((u))⟨θ⟩ with the differential
(18)
d̂(x⊗ 1) = dV (x)⊗ 1 + (1− σ)x⊗ θ, d̂(x⊗ θ) = −dV (x)⊗ θ + uN x⊗ 1.

The Tate homology Ĥ∗(G;V ) and cohomology Ĥ∗(G;V ) are the
(co)homology of the above complexes (we remind the reader that we have
considered the u-adically completed versions). We observe that if the G-
action on V is trivial then

Ĥ∗(G;V ) ∼= H∗(V )⊗K K((u))⟨θ⟩.

In this paper, we mainly use Tate cohomology. We prove its functorial prop-
erties in the following lemma.

Lemma 2.1. Let (V, dV ) and (W,dW ) be cochain complexes over K equipped
with G-actions.

(1) Suppose that H∗(V ) ∼= 0, then the group and Tate cohomology groups
are also zero:

H∗(G;V ) ∼= 0 and Ĥ∗(G;V ) ∼= 0.

(2) Suppose that there is an G-equivariant chain map f : (V, dV )→ (W,dW )

that induces a quasi-isomorphism f∗ : H∗(V )
∼=
−→ H∗(W ), then one has

f∗ : H
∗(G;V )

∼=
−→ H∗(G;W ) and f∗ : Ĥ

∗(G;V )
∼=
−→ Ĥ∗(G;W ).

(3) Given a short exact sequence of cochain complexes and G-equivariant
maps between them

0→ V1 → V2 → V3 → 0,

there is an induced long exact sequence in group or Tate cohomology
groups

· · · → H∗(G;V1)→ H∗(G;V2)→ H∗(G;V3)→ H∗+1(G;V1)→ · · ·

· · · → Ĥ∗(G;V1)→ Ĥ∗(G;V2)→ Ĥ∗(G;V3)→ Ĥ∗+1(G;V1)→ · · ·

(4) Let V be a free K[G]-module. Then Ĥ∗(G;V ) = 0.
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Proof. For (1), one defines the zero chain maps F : C∗(G;V )→ 0 and F̂ :
Ĉ∗(G;V )→ 0. There are vertical filtrations on C∗(G;V ) and Ĉ∗(G;V ) de-
fined by

(19)
F kC∗(G;V ) = ⊕i≥k,jP

i ⊗K[G] V
j

and F̂ kĈ∗(G;V ) = ⊕i≥k,jQ
i ⊗K[G] V

j .

The conditionH∗(V ) ∼= 0 implies that the chain maps F and F̂ induce quasi-
isomorphisms on the associated spectral sequences converging to H∗(G;V ),
Ĥ∗(G;V ), and the zero group respectively. By comparison of spectral se-
quences [56, Theorem 5.5.11], one obtains the result.
The proof of (2) follows similarly from the fact that the map of spectral
sequences associated to the vertical filtrations on C∗(G;V ) and C∗(G;W )
induces a quasi-isomorphism on E1-pages. The proof of (3) is standard ho-
mological algebra. Finally, (4) follows by explicit calculation for V = K[G],
since (Q∨)• is exact in all degrees. □

Remark 2.2. Note that Lemma 2.1 implies that for a chain complex V over
a fieldK, H∗(G, V ⊗p)∼=H∗(G,H(V )⊗p), and Ĥ∗(G, V ⊗p)∼=Ĥ∗(G,H(V )⊗p),
where the action on V ⊗p is by cyclically permuting the factors with suitable
signs defined precisely in Equation (21) below, and similarly for H(V )⊗p.
Indeed as V is quasi-isomorphic to H(V ), V ⊗p is G-equivariantly quasi-
isomorphic to H(V )⊗p.

3. Quasi-Frobenius maps

Let (V, d) be a graded chain complex over a perfect field K of characteristic
p, that is, a field for which the Frobenius automorphism K→ K, k 7→ kp is
invertible. Our main example is K = Fp. The Tate twist V

(1) of V is defined
to be V as an abelian group, but with the following structure of a K-module:

(20) a : K× V (1) → V (1), a(k, x) = g(k) · x,

where · is the original action of K on V, and g : K→ K is the inverse of the
Frobenius automorphism. The differential on V (1) is induced by that of V.
Finally, we note that if K = Fp then g = id and hence V (1) coincides with
V as a vector space.

Having defined the Tate twist V (1), one considers the Tate complexes
associated to the trivial Z/pZ-action on V (1) and the Z/pZ action V ⊗p
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given by

(21) σ · x0 ⊗ · · · ⊗ xp−1 = (−1)|xp−1|(|x0|+···+|xp−2|)xp−1 ⊗ x0 ⊗ · · · ⊗ xp−2.

There is a natural map

V (1) → V ⊗p, x 7→ x⊗p

which induces the so-called quasi-Frobenius map on the associated Tate com-
plexes

(22) F : Ĉ∗(Z/pZ, V (1))→ Ĉ∗(Z/pZ, V ⊗p).

The name of the quasi-Frobenius map has originated in the study of the
non-commutative analogue of the Frobenius map a 7→ ap for associative al-
gebras [27, Section 4]. At a first glance, the morphism F is not a chain map,
because it fails to be additive. However, we will prove that this map descends
to an isomorphism of K-modules in homology. The following result and its
proof are a slightly more explicit version of [27, Lemma 4.1] and its proof.

Lemma 3.1. Let (V, d) be a graded cochain complex over a perfect field K

of characteristic p. Then there is an isomorphism of K((u))⟨θ⟩-modules

F : Ĥ∗(Z/pZ, V (1))→ Ĥ∗(Z/pZ, V ⊗p)

Proof. We will prove the case when (V, d) has trivial differential, as the
general case then follows from Remark 2.2 above. For a graded vector space
V over K, as the Z/pZ-action on V (1) is trivial, this amounts to proving that
for each degree i, there is an isomorphism of K-modules

V (1) ∼= Ĥ i(Z/pZ, V ⊗p).

Since for the Tate twist V (1), the quasi-Frobenius map F is K-equivariant
(that is, F (k · v) = k · F (v) for all v ∈ V (1), k ∈ K), it suffices to check that
Im(F ) ⊂ Ker(d̂) and that F descends to an additive isomorphism in homol-
ogy. First, it is clear that Im(F ) ⊂ Ker(d̂) since x⊗p ∈ Ker(1− σ) ∩KerN
for all x ∈ V (1). Now, let us show that F is additive in homology. Set
n := {0, 1, · · · , n− 1}. If a basis {vj}

n−1
j=0 of V (1) as a K-module is given,
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then the induced basis of V ⊗p is of the form

{vf = vf(0) ⊗ · · · ⊗ vf(p−1) | f : Z/pZ→ n}.

Denote by [f ] the equivalence class of f in the quotient Φ(Z/pZ, n) of
{f : Z/pZ→ n} by the Z/pZ-action of cyclically permuting the inputs. We
denote by Φ(Z/pZ, n)nc ⊂ Φ(Z/pZ, n) the subset of classes [f ] with f non-
constant. For i even, one has that

∑

f : Z/pZ→n

Cf · vf(0) ⊗ · · · ⊗ vf(p−1) ∈ Ker(1− σ) =⇒

∑

f : Z/pZ→n,
f is non-constant

Cf · vf(0) ⊗ · · · ⊗ vf(p−1)

= N

( ∑

f∈Φ(Z/pZ,n)nc

Cf · vf(0) ⊗ · · · ⊗ vf(p−1)

)
.

The condition that f is nonconstant is required, as v⊗p ∈ Ker(1− σ) and
v⊗p /∈ Im(N). To see that this holds similarly for i odd, one notices that (1−
σ)p−1 = N over a field of characteristic p. This implies that on V ⊗p

non-const =
{vf | f : Z/pZ→ n, is non-constant}, Ker(N) ∼= Im(1− σ) and Im(N) ∼=
Ker(1− σ), and the proof when i is odd follows from the case when i is
even. This shows that the quasi-Frobenius map F becomes a K-linear map
in homology, since for all x, y ∈ V (1),

(x+ y)⊗p = x⊗p + y⊗p + c(x, y)

where c(x, y) ∈ V ⊗p
non-const ∩Ker(1− σ) ∩Ker(N). Similarly, we obtain that

F : V (1) → Ĥ i(Z/pZ, V ⊗p) is an isomorphism. Indeed by the above calcula-
tion, or by Lemma 2.1, property (4),

Ĥ i(Z/pZ, V ⊗p) ∼= V ⊗p
const = {vf | f : Z/pZ→ n, is constant},

which is also Im(F ). Moreover dimK V
⊗p
const = dimK V = dimK V

(1). This fin-
ishes the proof. □
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4. Morse functions on classifying spaces

Let us consider the Hilbert space

(23) H = L2(Z≥0,C) = {z = (zk)k∈Z≥0
| zk ∈ C,

∑

k∈Z≥0

|zk|
2 <∞}

with the standard inner product ⟨z, w⟩ =
∑

k∈Z≥0
zkwk.

Let C∞ ⊂ H denote the (non-closed) subspace

C
∞ = {z = (zk)k∈Z≥0

∈ H | zk = 0 for all k sufficiently large},

and define S∞ ⊂ C∞ by

S∞ = {z ∈ C
∞ |

∑

k∈Z≥0

|zk|
2 = 1}.

There is a free action of Z/pZ on S∞ given by

(24) (m · z)k = e2πim/p · zk for m ∈ Z/pZ.

Consider the standard Morse-Bott function

(25) f : S∞ → R, f(z) :=
∑

k

k · |zk|
2.

It is invariant under the Z/pZ-action on S∞ and descends to a Morse-Bott
function f0 on BZ/pZ := S∞/Z/pZ with critical submanifolds being the
S1-fibers of the fibration π : BZ/pZ→ BS1. In fact f is invariant under a
natural S1-action on S∞ and descends to a Morse function f on CP∞ =
BS1 = S∞/S1. Now the critical manifolds of f0 are given as preimages under
π of the critical points of f, and those of f are given as the preimages of
these critical points by the natural projection S∞ → BS1. The latter critical
manifolds are described as follows: for each l ∈ Z≥0 there is precisely one
critical submanifold S1

l of f of Morse-Bott index 2l,

(26) S1
l = {(zk)k∈Z≥0

| |zl| = 1, zk = 0, k ̸= l}.

Note that the coindex of each critical submanifold is infinite, while its
index is finite. There is an embedding τ of S∞ into itself such that τ∗f =
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f + 1 defined by

(27) τ(z0, z1, z2, · · · ) = (0, z0, z1, · · · ).

This map is compatible with the Z/pZ-action on S∞, which yields an au-
tomorphism of BZ/pZ that sends the critical submanifold S1

l to S1
l+1. By

choosing a small Z/pZ-invariant perturbation of the Morse-Bott function f
near each critical submanifold S1

l , one obtains a Fp-perfect Morse function F
on BZ/pZ. As the symmetry group Z/pZ is discrete, one can lift the perfect
Morse function F to a Z/pZ-invariant Morse function F̃ on S∞ such that
there are exactly p critical points of index i on S∞, denoted by Z0

i , . . . , Z
p−1
i ,

lying over each critical point of index i of F . We also require F̃ to satisfy
τ∗F̃ = F̃ + 1. In fact, we can use the following explicit Z/pZ-invariant Morse
perturbation F̃ of f :

F̃ (z) = f(z) + ϵ ·
∑

k

Re(zpk) =
∑

k

(
k · |zk|

2 + ϵ · Re(zpk)
)
,

for ϵ > 0 a sufficiently small constant. Its critical points of index 2l + 1 are
z ∈ S1

l with zl ∈ µp and those of index 2l are z ∈ S1
l with zl ∈ µ2p \ µp =

−µp, where for an integer d ≥ 1, µd ⊂ S
1 ⊂ C denotes the set of roots of

unity of order d.
One can also choose a Riemannian metric g on BZ/pZ and lift it to a

Z/pZ-invariant metric g̃ on S∞. We choose the metric to satisfy τ∗g̃ = g̃. Fur-
thermore we require that the multiplication of each coordinate of S∞ ⊂ C∞

by ζ ∈ µp is an isometry of g̃. Under these conditions, it is easy to see that

the gradient of F̃ is tangent to the submanifolds S2l+1 ⊂ S∞. Furthermore,
by standard transversality methods in Morse theory (cf. [43]), applied induc-
tively to unions

⋃
k∈Z≥0

τkS2l+1 for increasing N, one can choose g̃ satisfying

the above conditions in such a way that (F̃ , g̃) is a Morse-Smale pair (that
is a Morse-Smale pair on each S2l+1 ⊂ S∞). A useful point of view on this
situation is provided by its relation to the cascades complex for Morse-Bott
functions (see [4, Section 5]).

Now due to the Z/pZ-invariance of the Morse function F and the Rie-
mannian metric g̃, there is a Z/pZ-action on the critical points of index i,
given by m · Zji 7→ Zj+m mod p

i , making each cochain group of degree i into
a free Z/pZ-module of rank 1. Under this identification, the Morse cochain
complex of F̃ can be written as

(28) Fp[Z/pZ]
1−σ
−−→ Fp[Z/pZ]

N
−→ Fp[Z/pZ]

1−σ
−−→ Fp[Z/pZ]

N
−→ · · ·
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where Fp[Z/pZ] is the group ring of Z/pZ with coefficients in K = Fp, and
σ is the action of 1 ∈ Z/pZ. We recall that N is defined as N = id+ σ +
σ2 + · · ·+ σp−1. The homology of this complex is hence Fp in degree 0, and
vanishes in all other degrees. The Morse complex of F is given by tensoring
by Fp over Fp[Z/pZ] :

(29) Fp
0
−→ Fp

0
−→ Fp

0
−→ Fp

0
−→ · · ·

The cohomology ring, for p > 2, can be identified with Fp[u]⟨θ⟩ for a
formal degree 2 variable u and formal degree 1 variable θ, so θ2 = 0. Here
u corresponds to the generator of H∗(BS1,Fp) under π∗, for the natural
projection π : BZ/pZ→ BS1, and θ is the preimage of u ∈ H2(BZ/pZ;Fp)
under the Bockstein isomorphism H1(BZ/pZ;Fp)

∼
−→ H2(BZ/pZ;Fp). The

class θ evaluates to 1 on the Fp-homology class of the fiber of BZ/pZ→ BS1.
However, as before, we prefer to complete all complexes u-adically, and in
this case the homology can be identified as

Rp = Fp[[u]] ⟨θ⟩ ,

a notation that we keep for the rest of the paper. Furthermore, we set

R̂p = Fp((u)) ⟨θ⟩ = Rp ⊗Fp[[u]] Fp((u))

for its version with u inverted. This corresponds to Rp being the (com-

pleted) Fp group cohomology of Z/pZ, and R̂p being the (completed) Fp

Tate cohomology of Z/pZ. Note that R̂p is a vector space of dimension 2
over K = Fp((u)). Finally, for p = 2, the cohomology ring becomes F2[h] for
a formal variable h of degree 1, its completion is R2 = Fp[[h]], and its Tate

version is R̂2 = F2((h)).
We denote by P

i,m
0 the moduli space of parametrized flow lines w : R→

S∞ satisfying

(30) ∂sw(s) +∇F̃ (w) = 0

lim
s→−∞

w(s) = Zmi , and lim
s→∞

w(s) = Z0
0 .

Similarly, we denote by P
i,m
1 the parametrized flow lines that satisfy (30)

and have asymptotic behaviors lim
s→−∞

w(s) = Zmi and lim
s→∞

w(s) = Z0
1 . There
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are free R-actions on P
i,m
0 , Pi,m1 defined by translations

(31) r · w(s) 7→ w(s+ r).

Their quotients are defined as Q
i,m
0 = P

i,m
0 /R and Q

i,m
1 = P

i,m
1 /R respec-

tively. Below, we shall use the notations Pi,mα and Q
i,m
α for α ∈ {0, 1}.

The standard compactification of the moduli space of unparametrized
Morse flow lines, together with the τ -invariance, provides that

(32) Q
i,m
α0

∼=
⊔

Qi1,m1

α1
× Qi2,m2

α2
× · · · × Qin,mn

αn
,

where the union is taken over all tuples of triples (i1, α1,m1), . . . , (in, αn,mn),
where αj ∈ {0, 1} for all 1 ≤ j ≤ n, such that m1 +m2 + . . .+mn = m in
Z/pZ, α1 = α0, in = i (mod 2), and

∑n
j=1(ij − αj) = i− α0. Indeed, for two

critical points Z,Z ′ of F̃ , denote by P(Z ′, Z) the space of parametrized flow
lines, and by Q(Z ′, Z) = P(Z ′, Z)/R the space of unparametrized flow lines
w(s) with lim

s→−∞
w(s) = Z and lim

s→∞
w(s) = Z ′. Then, by standard Morse

theory

Q
i,m
α0

=
⊔

Q(Z [1], Z [2])× . . .× Q(Z [n], Z [n+1])

the union running over (n+ 1)-tuples of critical points {Z [1], . . . , Z [n+1]} of
F̃ , with Z [n+1] = Zmi , Z

[1] = Z0
α0
, and

F̃ (Z [1]) < . . . < F̃ (Z [n+1]),

λ(Z [1]) < . . . < λ(Z [n+1]),

where λ denotes the Morse index. Now write Z [j] = Z
m′

j

i′j
for 1 ≤ j ≤ n+ 1,

so that i′j = λ(Z [j]), and observe that

Q(Z [j], Z [j+1]) = Q(Z
m′

j

i′j
, Z

m′
j+1

i′j+1
) ∼= Q(Z0

αj
, Z

m′
j+1−m′

j

ij
) = Qij ,mj

αj
,

where mj = m′
j+1 −m

′
j in Z/pZ, ij − αj = i′j+1 − i

′
j , and ij = i′j+1 (mod 2),

by the τ translation invariance and the Z/pZ-invariance of the Morse-Smale
data. Observe that m1 + . . .+mn = m in Z/pZ, α1 = i′1 = α0, i

′
n+1 = i,

in = i (mod 2), and
∑n

j=1(ij − αj) =
∑n

j=1 i
′
j+1 − i

′
j = i′n+1 − i

′
1 = i− α0.

Vice versa, given an n-tuple of triples {(ij , αj ,mj)}1≤j≤n as above, we can
reconstruct the (n+ 1)-tuple {Z [j]}1≤j≤n+1.

A parametrized flow line of the Morse function F̃ on S∞ is a unparame-
trized flow line of the Morse function Ψ + F̃ on R× S∞, where Ψ : R→ R
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is a Morse function which has a unique maximum at r = 1 and a unique
minimum at r = 0. Then compactifying the space of Morse flow lines on
R× S∞ between (1, Zmi ) and (0, Z0

0 ) yields a compactification of the moduli
space of parametrized flow lines
(33)

P
i,m
α0

=
⊔

Qi1,m1

α1
× · · · × Qid−1,md−1

αd−1
× Pid,md

αd
× Qid+1,md+1

αd+1
× · · · × Qin,mn

αn
,

where the union is taken over the same indexing set of triples {(ij , αj ,mj)}.
In the subsequent sections, we will use these geometric moduli spaces to
define the Z/pZ-equivariant Floer cohomology and the Z/pZ-equivariant
product and coproduct maps correspondingly.

5. Fixed point Floer cohomology

Given a symplectomorphism ϕ of a symplectic manifold (M,ω), we recall a
few equivalent definitions of its fixed point Floer cohomology. While these
definitions are equivalent, each one highlights different aspects of the theory,
which turns out to be useful. A few references for this section are [12,13,45,
47] and [36] for a more general setup.

We assume throughout that our symplectic manifold (M,ω) is exact or
symplectically aspherical. In the case when (M,ω) is exact we assume that
it is a Liouville domain. We consider a suitable class of symplectomorphisms
in each case such that the conditions on the symplectic manifold and the
symplectomorphism imply that we can work over a ground field K, without
the presence of a Novikov field. We make no assumption on grading, since
our main isomorphisms are essentially those of ungraded filtered homologies.

Similar definitions work in the case when (M,ω) is closed or tame at
infinity and weakly monotone, and symplectomorphisms are monotone, as
in [46]. However, these cases necessitate the introduction of Novikov coeffi-
cients, which is not the focus herein. We simply note that if M is monotone
and simply-connected, then all symplectomorphisms ofM are automatically
monotone.

For a time-dependent Hamiltonian H ∈ H = C∞(R/Z×M,R) we de-
note by ϕtH the time-t Hamiltonian diffeomorphism generated by the time-
dependent Hamiltonian vector field Xt

H , produced by the Hamiltonian con-
struction

ιXt
H
ω = −dHt,



✐

✐

“4-Shelukhin” — 2022/5/28 — 2:05 — page 1119 — #19
✐

✐

✐

✐

✐

✐

The Z/pZ-equivariant product-isomorphism 1119

for Ht(−) = H(t,−). As long as Xt
H is integrable as a time-dependent vector

field, this construction is in fact defined for all t ∈ R by considering H(t, x)
to be a smooth function on R×M, 1-periodic in the t variable.

We recall in detail the hypotheses on (M,ω) and ϕ ∈ Symp(M,ω) that
we consider.

(a) (Exact) In this case the symplectic form is ω = d θM, and the Liouville
vector field Z, defined by iZω = θM, points strictly outwards along the
boundary ∂M, which is equivalent to the condition that α := θM |∂M
is a contact form. The symplectomorphism ϕ : M →M is exact, that
is, one has that ϕ∗ θM = θM+dGϕ for some Gϕ ∈ C

∞
c (M). For a small

Hamiltonian perturbation Hϵ, which we shall typically choose to be of
the form ϵ · r near ∂M, wherein r is the Liouville radial coordinate,
one can always assume that ϕ1Hϵ

◦ ϕ has nondegenerate isolated fixed
points.

(b) (Symplectically aspherical) In this case M is closed and ω(A) = 0 for
all classes A ∈ HS

2 (M ;Z) in the image of the Hurewicz homomorphism
π2(M)→ HS

2 (M ;Z). In this case we consider Hamiltonian symplecto-
morphisms ϕ of M, that is, the time-one maps ϕ1H all Hamiltonian
isotopies generated by H ∈ H. Moreover, we pick the normalization
condition

∫
M H(t,−)ωn = 0 for all t ∈ [0, 1] on H. Furthermore, here

we work with Floer cohomology in the free homotopy class of con-
tractible loops.

Remark 5.1. In case (b) one may define fixed point Floer cohomology over
K under less stringent assumptions. For example one may define it for those
ϕ ∈ Symp(M,ω) for which

∫
C ω = 0 for all cylinders C : S1 × [0, 1]→M

with C(s, 0) = ϕ(C(s, 1)) for all s ∈ S1 and C(0, t) = x0 for all t ∈ [0, 1] (such
a cylinder represents a loop in the twisted loop space LϕM described below
based at a fixed point x0 of ϕ). Whenever both ϕ and ϕp satisfy such a
condition, our main result Theorem A, and its corollary (2) apply. We note,
however, that in general this condition requires the symplectic manifold
to be symplectically atoroidal, that is, ω(A) = 0 for all A represented by
continuous maps from T 2 to M, at least those representing loops in certain
free homotopy classes of loops, and is furthermore not in general preserved
under iteration.

For a pair constisting of a symplectic manifold (M,ω) and symplec-
torphism ϕ ∈ Symp(M,ω), as above, we will describe the fixed point Floer
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cohomology HF ∗(ϕ) in the following three ways. In case (b), the cohomol-
ogy HF ∗(ϕ) is isomorphic to H∗(M ;K), and the main interest of our results
lies in the associated filtered cohomology theory.

5.1. Twisted loop space

First consider an exact symplectic manifold (M,ω) and ϕ ∈ Symp(M), as
in (a) above. The flow of the Liouville vector field Z near ∂M gives rise to
a trivialization of the collar neighborhood of the boundary

Ψ: (−ϵ, 0]×∂M →M,(34)

(r,y) 7→ ϕrZ(y).

This implies that for R = er one has R|∂M = 1 and Z ·R = R near ∂M . On
the collar neighborhood (−ϵ, 0]× ∂M, the symplectomorphism ϕ satisfies

(35) ϕ∗ θM− θM = dGϕ,

where Gϕ is a smooth function onM which vanishes near the boundary ∂M ,
which ensures that near the boundary ∂M we have ϕ∗R = R. Consider time-
dependent ω-compatible almost complex structures Jt for t ∈ R satisfying

(36) Jt = ϕ∗Jt+1.

Observe that the condition

(37) dR ◦ Jt = − θM on (−ϵ, 0]× ∂M

is preserved under replacing Jt by its push-forward ϕ∗Jt = (ϕ−1)∗Jt by ϕ.
We denote the space of almost complex structures satisfying (36) and (37)
for all t ∈ R by Jϕ.

Given such a symplectomorphism ϕ ∈ Symp(M), the mapping torus of
ϕ is defined by

(38) Mϕ := R×M/(t, ϕ(x)) ∼ (t+ 1, x).

By construction, there is a natural projection map π : Mϕ → S1. The twisted
loop space is defined as

(39) LϕM := {x ∈ C∞(R,M) | x(t) = ϕ(x(t+ 1))}.

Furthermore, LϕM is identified with the space of smooth sections of π.
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Given ϕ ∈ Symp(M), we can associate a 1-form αϕ on the twisted loop
space

(40) αϕ(x)(ξ) = −

∫ 1

0
ω(ξ(t),

∂x

∂t
) dt.

In our exact case, this one-form is given as the differential of the action
functional

Aϕ : Lϕ → R,

Aϕ(x) = −

∫ 1

0
x∗ θM−Gϕ(x(1)).

The critical points of the action functional Aϕ are therefore the constant
paths in Lϕ at fixed points of ϕ. For this reason we shall identity these paths
with Fix(ϕ). For tracking action values of fixed points, it will be convenient
for us to use the functional

Aϕ = −Aϕ.

We call the set of critical values of Aϕ(Fix(ϕ)) the spectrum Spec(ϕ) of
ϕ = (ϕ,Gϕ). While Gϕ is uniquely determined by ϕ in our situation, we
prefer to keep it in the notation.

Each time-dependent Jt in Jϕ defines a L2-metric on the twisted free
loop space LϕM . With respect to this metric, negative gradient flow lines of
Aϕ which are asymptotic to fixed points x0, x1 are in bijection with solutions
u : R2 →M to Floer’s equation

∂su+ Jt∂tu = 0;(41)

u(s, t) = ϕ(u(s, t+ 1));(42)

lim
s→−∞

u(s, t) = x0(t), lim
s→+∞

u(s, t) = x1(t).(43)

The maximum principle applied to the subharmonic function R(u) ensures
that no solutions of (41) reach the boundary ∂M . We denote the solutions
to (41) up to translations in the s-direction byM(x0, x1). For generic choice
of Jt, the moduli space M(x0, x1) is a smooth finite dimensional manifold
of dimension

(44) dimM(x0, x1) = |x0| − |x1| − 1

The Floer cochain complex is now defined by

(45) CF i(ϕ) :=
⊕

|x|=i
K⟨ox⟩,
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with differential given by

dϕ(x1) =
∑

|x0|=|x1|+1

#M(x0, x1)x0.

Here the notation ox is the orientation line associated to the generator x ∈
Fix(ϕ) defined in Appendix A, which we shall henceforth omit from the
notation. For questions regarding signs in the differential d, we also refer
the reader to Appendix A. Since we work with cohomology, the fixed point
x1 should be considered to be the “input”, and the fixed point x0 shall be
considered to be the “output”. In fact, throughout the paper we adopt the
general convention that postitive cylindrical ends correspond to inputs and
negative cylindrical ends correspond to outputs.

It is readily verified that

Aϕ(dϕx) < Aϕ(x),

where

Aϕ

(∑
ajxj

)
= max{Aϕ(xj) | aj ̸= 0},

Aϕ(0) = −∞.

In the case when the manifold (M,ω) is closed and symplectically as-
pherical, and ϕ ∈ Ham(M,ω), writing ϕ = ϕ1H for H ∈ H, the twisted loop
space LϕM is identified with the usual free loop space LM by the map
DH : LϕM → LM, z(t) 7→ ϕtHz(t). It is easy to see that

(D−1
H )∗Aϕ = AH ,

(D−1
H )∗Aϕ = −AH ,

for

AH : LM → R,

AH(x) =

∫ 1

0
H(t, x(t)) dt−

∫

x
ω,

where x : D→M is a map with boundary values x(e2πit) = x(t). Note that
the differential in Floer cohomology for H decreases (−AH), as it increases
AH .

In both the exact and the sympectically aspherical case, we denote by ϕ
the tuple consisting of ϕ and the data required to define the action functional
Aϕ, and call it a filtered symplectic brane. In the first case, this means the
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primitive Gϕ of ϕ∗ θM− θM . In the second case it can be considered to be
either (i) the choice of a base-point of the connected component of LϕM
corresponding to the component LptM of contractible loops in LM, or (ii) in
the LM description: a choice of a Hamiltonian H ∈ H generating ϕ. Observe
that for each contractible Hamiltonian loop η : S1 → Ham(M,ω), η0 = id,
the map Dη : LM → LM given by z(t) 7→ ηtz(t) satisfies AH = D∗

ηAH#K ,
where K ∈ H is the normalized Hamiltonian generating the loop η.

Finally, let ϕ be non-degenerate, that is, ker(D(ϕ)x − id) = 0 for all x ∈
Fix(ϕ). Let I be an admissible action window, that is, I = (a, b) with a < b,
such that a, b ∈ (R \ Spec(ϕ)) ∪ {±∞}.We define HF ∗(ϕ)I as the homology
of the quotient complex

CF ∗(ϕ)I = CF ∗(ϕ)<b/CF ∗(ϕ)<a,

where CF ∗(ϕ)<c is the subcomplex spanned by generators x of action value
A(x) < c. These chain complexes and homologies admit natural compari-
son maps CF ∗(ϕ)I1 → CF ∗(ϕ)I2 for I1 = (a1, b1), I2 = (a2, b2) with a1 ≤ a2,
b1 ≤ b2. When ϕ is degenerate, then for a, b as above, we perturb it slightly
to a non-degenerate symplectomorphism ϕ1,G = ϕ1Gϕ, where ϕ

1
G is the time-

1 map of a sufficiently C2-small Hamiltonian G. Then it still satisfies a, b ∈
(R \ Spec(ϕ)) ∪ {±∞}, and for all G sufficiently C2-small the homologies

HF ∗(ϕ1,G)I are canonically isomorphic, whence we define HF ∗(ϕ)I as the
colimit of the associated indiscrete groupoid1.

Considering Hamiltonian isotopies {ϕtG} induced by Hamiltonians G, it
is classical to show that HF ∗(ϕ1G ◦ ϕ) does not depend on G. This is due
to the fact that each symplectic isotopy {ψt} of M generated by 1-forms bt
such that bt+1 = ϕ∗(bt) and whose flux

∫ 1
0 btdt satisfies

(46)

∫ 1

0
btdt ∈ Im(ϕ∗ − id) ⊂ H1(M ;R)

induces a canonical isomorphism between fixed point Floer cohomologies
HF ∗(ψ1 ◦ ϕ) ∼= HF ∗(ϕ) (see [46]). When ψ1 = ψ1

G for some Hamiltonian
perturbation, this allows us to define HF ∗(ϕ).

1This notion is known under different names in the literature: “simple connected
system”, for example. It comprises a category with precisely one morphism between
every two objects. These morphisms are all isomorphisms.
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5.2. Symplectic fibrations

Given a symplectic manifold (M,ω) we let a symplectic fibration π : E →
B over a base manifold B with fiber (M,ω) be a smooth fibration with
a closed two-form Ω on E, such that for all z ∈ B, setting Ez = π−1(z),
(Ez,Ω|Ez

) is a symplectic manifold symplectomorphic to (M,ω). This is not
quite the standard terminology: for example in [34, Chapter 8] symplectic
fibrations satisfy a more general condition, while the fibrations we consider
are called locally Hamiltonian. Denote by V ert = ker(Dπ) ⊂ TE the vertical
subbundle of vectors tangent to the fibers. Furthermore, let

Hor = {v ∈ TE : ιvΩ|V ert = 0}

be the horizontal subbundle of TE. It is transverse to V ert and isomorphic to
π∗(TB) via Dπ, whence it induces an Ehresmann connection on E → B. An
important feature of such fibrations is that the holonomy of this connection
over each loop in the base is a symplectomorphism of the fiber, which is
Hamiltonian if the loop is contractible. Finally, we let Π : TE → V ert be
the projection parallel to Hor, and define the vertical two-form Ωv on E by
Ωv(ξ, η) = Ω(Π(ξ),Π(η)) for ξ, η ∈ TeE.

When the base B = S is a surface endowed with a complex structure jS ,
we call an almost complex structure J on E compatible with the fibration,
and more specifically with Ω, if J(ker dπ) = ker dπ and dπ ◦ J = jS ◦ dπ.
That is, J preserves the fibers and makes the projection map holomorphic
with respect to the complex structure jS on S, and furthermore J |ker dπ is
compatible with the symplectic form Ω|ker dπ.

We note that the mapping torus Mϕ → S1 of a symplectomorphism
ϕ ∈ Symp(M,ω) is a symplectic fibration over S1 with fiber (Mϕ)t =M over
each t ∈ S1: the form ω on M naturally extends to a closed form Ω = ωϕ
on Mϕ with Ω|(Mϕ)t = ω for all t ∈ S1. Furthermore, Fix(ϕ) is in bijective
correspondence with the flat sections Pϕ of Mϕ → S1. We note that al-
most complex structures from Section 5.1 satisfying condition (36) induce
Ω-compatible almost complex structures on R×Mϕ. We shall denote the
latter space of almost complex structures JMϕ

.
Following [45], we can define

CF i(ϕ) =
⊕

|x|=i
K⟨ox⟩,

where now x ranges over the set Pϕ of flat sections of Mϕ → S1. For the
differential, set Z = R× S1 with the standard complex structure, and let
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πEϕ
: Eϕ = R×Mϕ → Z be the pullback symplectic fibration of Mϕ → S1

by the natural projection Z → S1. Then the differential counts isolated so-
lutions (modulo the R-action by translation) of finite energy

∫
Z u

∗Ωv to the
equation

u : Z → Eϕ, πEϕ
◦ u = idZ(47)

(du)(0,1) = 0

u(s, t)
s→±∞
−−−−→ σx±

(s, t),

where σx for x a flat section of Mϕ → S1 is the induced flat section of Eϕ.
Here the convergence is exponential in suitable trivializations over the ends
and the (0, 1)-part is taken with respect to an Ω-compatible almost complex
structure. The comparison between this definition and the one in Section 5.1
is rather straightforward: it essentially amounts to the well-known Gromov
graph trick [34, Chapter 8].

Similarly to the previous section, one can consider a class of pertur-
bations to the symplectic connection associated to the symplectic fibration
πEϕ

, which is induced by smooth families of 1-forms bt satisfying bt+1 = ϕ∗bt
and the condition (46). Every such family bt is equivalent to an exact 2-form
B on Mϕ that pulls back to dt ∧ bt on R×M. Now in the case that ϕ has
degenerate fixed points, there is an open dense subset Breg of such bt con-
sidered above such that if we define the new symplectic fibration to be

(Mϕ, Ω̃ = Ω +B),

then the condition (46) implies that the monodromy of this symplectic fi-
bration becomes ψ1 ◦ ϕ. Then the map

Ψ: Pϕ → Pψ1◦ϕ,

Ψ(γ)(t) = ψt ◦ γ(t)

gives rise to the canonical isomorphism HF ∗(ϕ) ∼= HF ∗(ψ1 ◦ ϕ). Again, it
suffices in our case to choose some Hamiltonian isotopy ψt := ϕtK generated
by some K ∈ C∞([0, 1]×M,R) to ensure the non-degeneracy, and set bt =
−d(Kt).
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5.3. Lagrangian graph construction

Alternatively, we may consider the symplectic manifold M− ×M = (M ×
M,−ω ⊕ ω) and let

HF ∗(ϕ) = HF (graph(ϕ),∆),

where

graph(ϕ) = {(ϕ(x), x) | x ∈M} ⊂M− ×M,

∆ = graph(idM ) ⊂M− ×M

are (weakly) exact Lagrangian submanifolds. The comparison between this
approach and the one in Section 5.1 is again straightforward, and has to
do with choosing product type almost complex structures on M− ×M. We
refer for example to [28] for details, remarking that there graph(ϕ) is defined
as graph(ϕ) = {(x, ϕ(x)) | x ∈M} ⊂M ×M−.

For the above Floer cohomology to be well-defined, one needs that the
graph of ϕ intersect the diagonal Lagrangian transversally. This can always
be achieved for example by adding a small Hamiltonian perturbation to ϕ, or
by introducing a small Hamiltonian perturbation into the Floer equation for
the differential. Indeed the non-degeneracy of the fixed points of ψ1

K ◦ ϕ is
equivalent to the graph of the perturbed symplectomorphism ψ1

K ◦ ϕ being
transverse to the diagonal Lagrangian ∆ in M− ×M.

5.4. The Z/kZ-action on HF (φk)

For any integer k, we define the fixed point Floer cohomology associated to
ϕk following [48]. Given the function Gϕ such that ϕ∗ θM− θM = dGϕ, one
can choose the corresponding function for ϕk to be

(48) Gϕk = (ϕ∗)k−1Gϕ + · · ·+ ϕ∗Gϕ +Gϕ.

so that (ϕ∗)k θM− θM = dGϕk . Consider the twisted loop space of period k
for ϕ,

(49) Lϕ,kM := {x ∈ C∞(R,M) | x(t) = ϕk(x(t+ k))}.

Note that this space is not the same as Lϕk as defined in (39) in Section
5.1. However, there is a natural diffeomorphism Lϕk → Lϕ,k given by x(t) 7→
x(t/k) with inverse Lϕ,k → Lϕk given by y(t) 7→ y(kt).
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On this space one defines the action functional Aϕ,k : Lϕ,k(M)→ R given
by

Aϕ,k(x) = −

∫ k

0
x∗ θM−Gϕk(x(1)).

Set

Aϕ,k = −Aϕ,k.

There is a Z/kZ action on Lϕ,k(M) defined by

Z/kZ× Lϕ,k(M)→ Lϕ,k(M),(50)

(m,x(t)) 7→ ϕm(x(t+m)).

The fixed point set of the Z/kZ-action is precisely LϕM seen as a subset of
Lϕ,kM. For x(t) ∈ LϕM , we have

(51) Aϕ,k(x(t)) = kAϕ(x(t)).

We denote the space of compatible almost complex structures corresponding
to ϕk by

(52) Jϕ,k = {(Jt)t∈R | Jt is ω-compatible and Jt = ϕk(Jt+k)}.

For any integer k ∈ Z, there is an action of the finite group Z/kZ on Jϕ,k
defined as follows

ρ̃ : Z/kZ× Jϕ,k → Jϕ,k,(53)

(m,Jt) 7→ (ϕm)∗(Jt+m), ∀m ∈ Z.

We call the almost complex structure J in Jϕ,k symmetric if it is invariant
under the Z/kZ-action defined above, and set for J ∈ Jϕ,k,

(54) ρ∗J = ρ̃(1, J).

Next we describe a Z/kZ-action in Floer cohomology HF ∗(ϕk) for each
k ∈ Z. Similar to the Z/2Z case in [48, Section 4] and the Z/kZ case con-
sidered in [38],[40],[63], and in [54], [59, Section 3], where the signs and
orientations were made explicit, the chain map which induces the generator
of the Z/kZ-action in cohomology is the following composition of maps for
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J ∈ Jϕ,k

σ : (CF ∗(ϕk), dJ)
c
−→ (CF ∗(ϕk), dρ∗J)

ρ∗
−→ (CF ∗(ϕk)), dJ),

where dJ and dρ∗J denotes the differentials of the fixed point Floer cochain
complex defined using the almost complex structure Jϕk ∈ Jϕk and its image
ρ∗Jϕk under the action of 1 ∈ Z/kZ. The first cochain map c : (CF ∗(ϕk), dJϕk

)

→ (CF ∗(ϕk), dρ∗Jϕk
) is given by a standard continuation map for the almost

complex structures Jϕk and ρ∗Jϕk , and the second map is induced by apply-
ing ρ∗ in (54) to the Floer data defining (CF ∗(ϕk), dJϕk

) and identifying the

generators with those of (CF ∗(ϕk), dρ∗Jϕk
). Since we work in cohomology,

the map goes in the specified direction. It can be checked that both of these
maps are quasi-isomorphisms, and so is their composition. We denote the
induced map in cohomology by

σ∗ : HF
∗(ϕk)→ HF ∗(ϕk).

It is straightforward to see that it satisfies (σ∗)k = id. The same definition
goes through for cohomology groups in all admissible action windows I,
giving a map

σ∗ : HF
∗(ϕk)I → HF ∗(ϕk)I ,

satisfying (σ∗)k = id and commuting with the interval comparison maps.
In fact, the following alternative cochain-level description of the map

σ∗, which we still denote by σ, will define a homotopical action of Z/kZ on
CF ∗(ϕk), which is more closely related to equivariant Floer cohomology, as
considered in this paper (see Section 6). One first considers the interpolation
of almost complex structures to define the continuation map σ. For J ∈ Jϕ,k
set

Js,t =

{
Jt, s≫ 1

ρ∗Jt, s≪ −1

Define Mϕ,k to be the period k mapping torus of ϕ,

Mϕ,k = (R×M)/(t, ϕk(x)) ∼ (t+ k, x).

This space differs from Mϕk as defined above, but is diffeomorphic to it.
Observe that Js,t gives an almost complex structure J ∈ JMϕ,k

. That is J
is compatible with the structure of symplectic fibration on R×Mϕ,k over
Zk = R× R/kZ.
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Then one considers section solutions u : Zk → R×Mϕ,k to the following
continuation equation:

(55)




(du)

(0,1)
Js,t

= 0

lim
s→∞

u(s, t) = x0(t) and lim
s→−∞

u(s, t) = ϕ(x1(t+ 1)).

When |x0| = |x1|, one defines the map σ by counting rigid solutions to the
above equation. This replaces the continuation map c in the first definition
above by the slightly more complicated asymptotic condition at s→ −∞.
See Section 6 for further discussion of related notions.

Let γ be a flat section of Mϕ. Denote γ traversed k times by γk. Let
γ(k) be the natural lift of γk to a flat section of Mϕ,k. Now suppose that
x0 = x1 = γ(k) for a flat section γ of Mϕ. It is convenient to think of such
flat sections γ ofMϕ and γ(k) ofMϕ,k as Reeb orbits of the Reeb vector field
of a natural stable Hamiltonian structure (ω, dt) on Mϕ and respectively
Mϕ,k. Note that γk is also a Reeb orbit on Mϕ. We discuss this further
in Section 6.1. It has been shown in [62, Lemma 6.7] that depending on
the parity of the index difference µCZ(γ

k)− µCZ(γ) and parity of k, the
induced map in cohomology σ∗ can have either trivial or non-trivial signs.
Specifically, the linearization of the equation (55) is given by the following
operator

T : W 1,p(Zk,R
2n+2)→ Lp(Zk,R

2n+2), ∂s + J0∂t + Sk(t+ β(s)),

where S1(t) is the loop of symmetric matrices associated to the orbit γ
defined in equation (A.3) in the Appendix, Sk(t) = S1(kt), and the function
β : R→ [0, 1] is a smooth cut-off function such that

lim
s→−∞

β(s) = 1, lim
s→∞

β(s) = 0.

Now it is shown in [62, Lemma 6.7] that this operator acts as an orientation
reversing map on Det(O(Sk, S))

2 if and only if k is even and the difference
of Conley-Zehnder indices µCZ(γ

k)− µCZ(γ) is odd. In this case the Reeb
orbit γ is called bad in the literature.

2The definition of the determinant line associated to the Fredholm operator T is
in Appendix A.
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6. The Z/pZ-equivariant Floer cohomology

6.1. Definitions

The Z/2Z-equivariant Floer cohomology HF ∗
Z/2Z(ϕ

2) has been considered

in [48]. In this section, we fix a prime number p and consider the analogous
constructions for the Z/pZ-equivariant Floer cohomology HF ∗

Z/pZ(ϕ
p).

Let (M,ϕ) be a pair satisfying conditions (a) or (b) listed in Section 5.
As in Section 5.1 that the mapping torus of ϕ is defined as

Mϕ := R×M/(t, ϕ(x)) ∼ (t+ 1, x).

The symplectic form ω on M induces a two-form of maximal rank on Mϕ,
which we now denote by ω by a slight abuse of notation. We consider R×Mϕ

as a locally Hamiltonian fibration over Z = R× S1, as above, and discuss
holomorphic sections. However, we can think of this situation in a slightly
different way, which is of use for intuition. The pair (ω, dt) defines a stable
Hamiltonian structure on the mapping torus Mϕ, which is a pair (λ, ω) of
a one-form λ, and a two-form ω, such that ω is of maximal rank, λ ∧ ωn >
0, and kerω ⊂ ker(dλ). We refer to [10] and references therein for further
discussion of this notion. The symplectization of this stable Hamiltonian
structure, which is a symplectic manifold in its own right, is

(56) (R×Mϕ, ω̃ = ω + ds ∧ dt).

As before any almost complex structure Jt ∈ Jϕ, extends to an ω-compatible

almost complex structure Ĵt on the horizontal fibration ker(dt) of Mϕ →
R/Z. In turn, it extends to an ω̃-compatible almost complex structure J̃t on
R×Mϕ canonically by seeing the symplectization as

(57) R×Mϕ = C×M/(s, t, ϕ(x)) ∼ (s, t+ 1, x).

We let J (Mϕ) be the space of the former almost complex structures

Ĵt and J (R×Mϕ) be the space of the latter ω̃-compatible almost complex
structures J̃t obtained by such an extension.

Given a fixed prime number p, we consider as before the following model
of the mapping torus Mϕp :

Mϕ,p = R×M/(t, ϕp(x)) ∼ (t+ p, x).
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This is the pull-back of Mϕ → S1 under the obvious covering map

S1
p = R/pZ→ S1 = R/Z.

It is also endowed with a natural stable Hamiltonian structure. Moreover,
each Jt ∈ Jϕ,p extends to an almost complex structure Ĵt on the horizontal
fibration ker(dt) of Mϕ,p → R/pZ, and to an almost complex structure J̃t
on the symplectization R×Mϕ,p. We let J (Mϕ,p) be the space of the for-
mer almost complex structures, and J (R×Mϕ,p) be the space of the latter
almost complex structures.

To define the equivariant differential, we define the following class of al-
most complex structures on R×Mϕ,p parametrized by S∞. Let J̃t ∈ J (R×
Mϕ,p) be an almost complex structure on R×Mϕ,p. We extend J̃t to an
almost complex structure J̃t,z = J̃s,t,x,z (depending trivially on s ∈ R) on
R×Mϕ,p parametrized by z ∈ S∞, satisfying the following properties

• (Locally constant at critical points): J̃t,z = J̃t for z in a neighbourhood
of Z0

i for each i.

• (Z/pZ-equivariance): for all m ∈ Z/pZ and z ∈ S∞, one has that
J̃t,m·z = ϕm∗ J̃t+m,z. In particular J̃t,z = ϕm∗ J̃t+m for z in a neighbour-
hood of Zmi for each i and m in Z/pZ.

• (Invariance under shift τ): J̃t,z = J̃t,τ(z) for all z in S∞.

We denote by J Z/pZ(R×Mϕ,p) the set of all almost complex structures
on R×Mϕ,p parametrized by S∞ satisfying these properties.

Recall that fixed points of ϕp are in bijection with flat sections Pϕ,p of
Mϕ,p → S1, which are the Reeb orbits γ of the stable Hamiltonian structure
Mϕ,p with “period”

∫
γ dt = p.

Fix a non-negative integer i and a group element m ∈ Z/pZ. The moduli

space M̃i,m
α (x0, x1), where α ∈ {0, 1}, consists of solutions u : R× R/pZ→

R×Mϕ,p with πϕ,p ◦ u = id, for πϕ,p : R×Mϕ,p → R× S1 the natural pro-
jection, and w : R→ S∞ to the following parametrized J-holomorphic equa-
tions

(58)

{
du ◦ j = Jt,w(s) ◦ du,

∂sw(s) +∇F̃ (w) = 0,
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with asymptotic behavior

(59)
lim

s→−∞
(u(s, t), w(s)) = (ϕm(x0(t+m)), Zmi ),

lim
s→∞

(u(s, t), w(s)) = (x1(t), Z
0
α).

Here the input orbit is x1 ∈ Pϕ,p and the output orbit is ϕm(x0(t+m)) ∈
Pϕ,p. As we consider the fixed points as flat sections, or Reeb orbits in the
mapping torus, the latter notion requires a definition. In terms of fixed points
x0 ∈ Pϕ,p corresponds to a fixed point x0(0) ∈M ∼=M × {0} ⊂Mϕ,p of ϕp.
Then ϕm(x0(t+m)) ∈ Pϕ,p corresponds to the fixed point ϕm(x0(0)) ∈M of
ϕp. In other words, in terms of the twisted loop space, given the twisted loop
x0(t) ∈ Lϕ,pM, we have the twisted loop ϕm(x0(t+m)) ∈ Lϕ,pM. We are
using a slight abuse of notation: for a twisted loop x0(t) we denote the section
of Mϕ,p that it induces again by x0(t), while in fact it is given at t ∈ R/pZ
by [(t, x0(t))] ∈Mϕ,p. Similarly, the section obtained from ϕm(x0(t+m)) is
given at t ∈ R/pZ by [(t, ϕm(x0(t+m)))] ∈Mϕ,p.

There is a free R-action on M̃i,m
α (x0, x1) given for r ∈ R by

(60) r · (u(s, t), w(s)) 7→ (u(s+ r, t), w(s+ r)).

We denote the quotient space by this action by

Mi,m
α (x0, x1) := M̃

i,m
α (x0, x1)/R.

If ϕp is non-degenerate, that is if Ker(D(ϕp)x − id) = 0 for each fixed point x
of ϕp, then for generic choice of almost complex structure J̃t,z ∈ J

Z/pZ(R×
Mϕ,p) this moduli space is a smooth finite dimensional manifold of dimension

(61) dimMi,m
α (x0, x1) = |x0| − |x1|+ i− α− 1 for all α.

For |x0| = |x1| − i+ α+ 1, one can define di,mα : CF ∗(ϕp)→ CF ∗+1−i+α(ϕp)
by

di,m0 (x1) =
∑

x0:|x1|=|x0|−i+1

#Mi,m
0 (x0, x1)x0,(62)

di,m1 (x1) =
∑

x0:|x1|=|x0|−i+2

#Mi,m
1 (x0, x1)x0.(63)

Let u be a formal variable of degree 2 and θ be a formal variable of degree
1 so that θ2 = 0 as in Section 2. We set diα = di,0α + di,1α + · · ·+ di,p−1

α . The
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equivariant differential

(64) dZ/pZ = d
Z/pZ
ϕp : CF ∗(ϕp)[[u]]⟨θ⟩ → CF ∗+1(ϕp)[[u]]⟨θ⟩

can be written as

dZ/pZ(x⊗ 1) = d00(x)⊗ 1 + u d20(x)⊗ 1 + u2 d40(x)⊗ 1 + . . .

+ d10(x)⊗ θ + u d30(x)⊗ θ + u2 d50(x)⊗ θ + . . .

dZ/pZ(x⊗ θ) = d11(x)⊗ θ + ud31(x)⊗ θ + u2d51(x)⊗ θ + . . .

+ u d21(x)⊗ 1 + u2 d41(x)⊗ 1 + u3 d61(x)⊗ 1 + . . .

We abbreviate this to

dZ/pZ(x⊗ 1) = D1
1(x)⊗ 1 +Dθ

1(x)⊗ θ

dZ/pZ(x⊗ θ) = D1
θ(x)⊗ 1 +Dθ

θ(x)⊗ θ.

There is a natural projection map

(65) Mi,m
α (x0, xi)→ Qi,mα induced by (w, u) 7→ w.

Considering the codimension 1 strata in the compactifications of the un-
parametrized moduli spaces Q

i,m
α described in (33), gives, by standard

Gromov-Floer compactness, transversality, and gluing arguments, that
(dZ/pZ)2 = 0 (for a discussion of the analytic issues see [48, Section 4.2]).

We call CF ∗
Z/pZ(ϕ

p)=CF ∗(ϕp)⊗Rp with the differential dZ/pZ the Z/pZ-

equivariant cochain complex of ϕp, and its homology HF ∗
Z/pZ(ϕ

p) the Z/pZ-

equivariant cohomology of ϕp. Furthermore, we observe that CF ∗
Z/pZ(ϕ

p)

and HF ∗
Z/pZ(ϕ

p) are modules over Rp. We call the homology ĤF
∗
Z/pZ(ϕ

p)

of ĈF
∗
Z/pZ(ϕ

p) = CF ∗
Z/pZ(ϕ

p)⊗Rp
R̂p with the differential d̂Z/pZ = dZ/pZ ⊗ id

the Z/pZ-equivariant Tate homology of ϕp.

We outline a selected technical aspect.

Lemma 6.1. For generic choice of almost complex structures, all elements
in M̃i,m

α (x0, x1) are regular for all i,m and α.

Proof. All solutions to equation (58) except for the constant solutions can
be made regular by choosing generic almost complex structure as in [33,
Proposition 6.7.7]. For an energy zero solution w = (a, u) : R× R/pZ→ R×
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Mϕ,p, after composing with the projection to M, the map πM (w) = u is the
constant map whose image is some fixed point x of ϕp. The linearization of
the Cauchy-Riemann equation of u at x ∈M is of the form

(66) Du : W
k,p(R2, TxM)→W k−1,p(R2, TxM), Du(ξ) = ∂sξ + Jt,w(s)∂tξ

for some ξ : R→ TxM satisfying ξ(s, t) = Dϕpx(ξ(s, t+ p)). As x is a non-
degenerate fixed point of ϕp, the linear operator Du is Fredholm. The index
of Du is

(67) dimKer(Du)− dimCoker(Du) + i = |x| − |x|+ i = i.

To achieve surjectivity of Du, it hence suffices to show that the linearization
Du is injective for any almost complex structure Jt,w(s). Suppose Duξ = 0.
In particular, we have ||Duξ||W 1,2(R×[0,1]) = 0 for (k, p) = (2, 2) in (66). With
respect to the metric on TxM defined by Jt,w(s) that we chose, one computes

(68) 0 =

∫

R×[0,1]
|Duξ|

2 + 2

∫

R×[0,1]
ξ∗ωx =

∫

R×[0,1]
|∂sξ|

2 + |∂tξ|
2.

The second term
∫
R×[0,1] ξ

∗ωx on the left-hand side vanishes by Stokes’ The-
orem. Hence we can conclude that ξ = 0 by above equation, which completes
the proof. □

By (55) and unwinding the definition of dZ/pZ, the following statement
is evident.

Lemma 6.2. The differentials d10, d
2
1 : CF

∗(ϕp)→ CF ∗(ϕp) are chain maps,
and induce

[d10] = (1− σ∗) : HF
∗(ϕp)→ HF ∗(ϕp),

[d21] = N∗ = (1 + σ∗ + . . .+ σp−1
∗ ) : HF ∗(ϕp)→ HF ∗(ϕp)

on cohomology.

Finally, all constructions and statements in this section have analogues
for admissible action windows I for ϕp. Indeed, by an index argument and
the finiteness of Fix(ϕ), in the non-degenerate case, dZ/pZ contains only a
finite number of terms. Hence for each admissible window I = (a, b) we can
choose the perturbation data for the equivariant differential in such a way
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as to have CF ∗
Z/pZ(ϕ

p)<a and CF ∗
Z/pZ(ϕ

p)<b be subcomplexes with respect

to dZ/pZ, and then set HF ∗
Z/pZ(ϕ

p)I as the homology of the quotient complex

CF ∗
Z/pZ(ϕ

p)I = CF ∗
Z/pZ(ϕ

p)<b/CF ∗
Z/pZ(ϕ

p)<a.

One shows that this does not depend on the choice of perturbations, pro-
vided that they are sufficiently small. Finally, for ϕp degenerate, we perturb
it as ϕp1, so that ϕ1, ϕ

p
1 are non-degenerate, and sufficiently C2 close to ϕ, ϕp.

Then the interval stays admissible, and making the perturbations for the dif-
ferential sufficiently small, we can show that HFZ/pZ(ϕ

p
1)
I does not depend,

up to canonical isomorphism, on ϕ1 provided that it is sufficiently close to
ϕ. The same applies to ĤFZ/pZ(ϕ

p
1)
I .

6.2. The algebraic spectral sequence

For the purposes of this section, consider the following grading on CF ∗(ϕp)⊗
Rp that we call the algebraic degree. Recall that Rp = Fp[[u]]⟨θ⟩. The alge-
braic degree of 1 ∈ Rp is 0, that of u is 2, that of θ is 1, and elements of
CF ∗(ϕp) have degree zero. Requiring that degrees of non-zero products add
up, we extend this degree to CF ∗(ϕp)⊗Rp.

Consider the decreasing filtration Fkalg = Fkalg(CF
∗(ϕp)⊗Rp) generated

as an Rp-module by the elements of CF ∗(ϕp)⊗Rp of algebraic degree at
least k. It is easy to check that for all k ≥ 0,

dZ/pZ(Fkalg) ⊂ F
k
alg,

and hence Fkalg forms a decreasing filtration on (CF ∗(ϕp)⊗Rp, dZ/pZ), which
is complete. We call it the algebraic filtration. The same applies when we fix
an admissible action window I = (a, b), −∞ ≤ a < b ≤ ∞, and consider the
algebraic filtration on the complex (CF ∗(ϕp)I ⊗Rp, dZ/pZ) in action win-
dow I. In each case, this filtration, being complete and exhaustive, gives
a regular spectral sequence (see [56, Definition 5.2.10]) which converges to
HFZ/pZ(ϕ

p)I , as Rp is already complete with respect to this filtration. We
start by describing the E1-page of this algebraic spectral sequence. The only
terms in dZ/pZ that do not increase filtration are d00 and d

1
1, both correspond-

ing to the usual Floer differential on CF (ϕp). Hence the E1-page is given
by

E1 = HF (ϕp)⊗Rp.
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Furthermore, the differential in this page is given by

dE1
(x⊗ 1) = [d10](x)⊗ θ,(69)

dE1
(x⊗ θ) = u[d21](x)⊗ 1,(70)

observing that (dZ/pZ)2 = 0 implies that d10 and d21 are in fact chain maps.
Furthermore, by Lemma 6.2, [d10] = 1− σ∗, and [d21] = 1 + σ∗ + . . .+ (σ∗)p−1,
for σ∗ : HF (ϕp)→ HF (ϕp) the generator of the Z/pZ-action. This means
that the E2-page of the spectral sequence is given by

E2 = H∗(Z/pZ, HF (ϕp))

as anRp-module. We claim that there exists a differential d2,∞ ofRp-modules
on H∗(Z/pZ, HF (ϕp)) whose homology calculates H∗

Z/pZ(ϕ
p). Indeed, by an

application of the homological perturbation lemma [32, BPL] to the initial
complex, making the homology subspaces and projection operators invariant
with respect to multiplication by u, there exists a differential d1,∞ on E1 of
the form

(71) d1,∞ = dE1
+D1,

where D1 consists of maps of order ≥ 2 in the algebraic filtration. In a
similar way, a second application of the homological perturbation lemma
with respect to the splitting (71), produces the required differential. Conse-
quently, tensoring with K((u)) over K[[u]], we obtain a differential d̂2,∞ of

R̂p-modules on Ĥ∗(Z/pZ, HF (ϕp)), whose homology is Ĥ∗
Z/pZ(ϕ

p). In par-
ticular, we obtain that

(72) dimK((u)) Ĥ
∗
Z/pZ(ϕ

p) ≤ dimK((u)) Ĥ
∗(Z/pZ, HF (ϕp)).

Furthermore, the same applies to cohomology in all admissible action
windows.

7. Action and energy estimates

In this section we collect two classical results on action and energy of solu-
tions to the Floer equation that we resort to throughout the paper.

Let S̄ be a closed Riemann surface with complex structure jS , and
with k−+k+ marked points Γ : I→ S̄, where I = I− ⊔ I+, I− = {1, . . . , k−},
I+ = {1, . . . , k+}. We denote by S = S \ Γ(I) the associated punctured Rie-
mann surface. Let S be equipped with holomorphically embedded cylindrical
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ends ϵ−j : (−∞,−1]× S1 → S around Γ(j), j ∈ I−, and ϵ
+
j : [1,∞)× S1 → S

around Γ(j), j ∈ I+.
Let u : S → E be a section of a locally Hamiltonian symplectic fibration

π : E → S, with cylindrical trivializations over the cylindrical ends of E and
connection form Ω.

Assume that u converges to sections x±j of Ej± → S1 for j± ∈ I± in
the cylindrical ends corresponding to Γ(j). Assume that u satisfies the
Floer equation (du)(0,1) = 0 with respect to an Ω-compatible almost complex
structure on E. Then the energy E(u) =

∫
S u

∗Ωv satisfies

E(u) =

∫

S
u∗Ω−

∫

S
u∗R(Ω),

where R(Ω) is the curvature form of the locally Hamiltonian fibration (cf.
[34, Lemma 8.2.9]). Furthermore, if we equip Ej± → S1 for j± ∈ I± with the
structure of a filtered symplectic brane, in a way that is compatible with
(E,Ω), so that

∫

S
u∗Ω =

∑

j∈I−
Aj(x

−
j )−

∑

j∈I+
Aj(x

+
j ),

we obtain the action identity

(73)
∑

j∈I−
Aj(x

−
j )−

∑

j∈I+
Aj(x

+
j ) = E(u) +

∫

S
u∗R(Ω).

This way, lower bounds on E(u), the most elementary of which is of
course E(u) ≥ 0, combined with lower bounds on the curvature term∫
S u

∗R(Ω) uniform in u, yield upper bounds on the action shift

∑

j∈I+
Aj(x

+
j )−

∑

j∈I−
Aj(x

−
j ).

Typically, we will be able to make our curvature terms arbitrarily small.
Secondly, to describe a slightly more sophisticated lower bound on E(u),

we adapt a well-known monotonicity lemma [52, Proposition 4.3.1.(ii)] to
show the following quite general “crossing energy” type argument. One may
prove the same statement in a different way (following [22,23,35]), applying
the target-local Gromov compactness of Fish [15], but we choose to present
a more elementary argument, which is sufficient for our purposes.
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Suppose that our Riemann surface S, as well as the (locally Hamil-
tonian) symplectic fibration E over it (see Section 5.2), is obtained by a
branched cover from an s-invariant fibration E1 over the standard cylin-
der Z = R× S1. By s-invariance we mean that for a symplectic fibration
E0 → S1, the fibration E1 → Z satisfies E1 = π∗S1E0, for the projection πS1 :
Z → S1 to the S1-factor. Furthermore, we assume that the Hamiltonian per-
turbation term is sufficiently small. Then, if the asymptotic conditions of a
solution u are distinct, this solution must satisfy an energy monotonicity
statement: its energy is bounded from below by ϵ > 0, depending only on
J, the asymptotic Floer data, and on the isolating neighborhoods of the
asymptotics. These estimates shall be used later in defining various flavors
of local Floer cohomology and related operations.

In the statement below, we consider Floer data (J,K) where K ∈
Ω2(S,C∞(E,R)) is exact, and J is compatible with ΩK = Ω+K.

Proposition 7.1. Let p : S → Z = R× S1 be a branched covering with fi-
nite branch set. Let (E,Ω) be a symplectic fibration over S, obtained by
base-change by p from a symplectic fibration over Z of the form (E1,Ω1) =
π∗S1(E0,Ω0), where (E0,Ω0) is a symplectic fibration over S1. Let J0 be an
almost complex structure compatible with the fibration p : S → Z, and let
x, y : S1 → E0 be two different flat sections of E0.

Then there exist ϵ > 0 depending only on x, y, and (E,Ω) such that for
all Floer data (J,K) sufficiently close to (J0, 0) in the C∞ topology the
following holds. Each section u : S → E of E → S which is a solution to the
Floer equation du(0,1) = 0 with respect to (J,K) with horizontal asymptotics
at the cylindrical ends of S, at least two of which are x, y, satisfies

E(u) ≥ ϵ > 0.

Furthermore, there exists a small neighborhood Ux of σx, such that if all the
asymptotics of u are at x, then the image of u is contained in Ux.

Proof. Let us first deal with the case of at least two different asymptotics
x, y. To begin, we assume that (J,K) = (J0, 0). Since our fibration is ob-
tained from (E1,Ω1) = π∗S1(E0,Ω0), the sections x, y of (E0,Ω0) give us
flat sections σx, σy : S → E. The asymptotic conditions on u yield that u
is asymptotic to σx on a cylindrical end ϵx of S, and to σy on cylindrical
end ϵy of S. Clearly, as x, y are flat and different, they have disjoint im-
ages and so do σx, σy. Consider a small tubular 2δ-neighborhood Ux(2δ) of
Im(σx) inside E that is disjoint from Im(σy), and admits a trivialization Φ :
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Ux(2δ)
∼
−→ D2n(2δ)× S as a symplectic fibration, with Φ(σx(z)) = (0, z) and

DΦσx(z)(V ertσx(z)) = T0(D
2n(2δ))⊕ 0 = V erttriv(0,z) for all z ∈ S. Let Sx(δ) =

Ux(
3
2δ) \ Ux(

1
2δ) ⊂ Ux(2δ) be a shell around Im(σx). Note that Sx(δ) =

Φ−1(S2n(δ)× S), where S2n(δ) = D
2n
(32δ) \D

2n(12δ). We claim that there
exists δ > 0, and ϵ > 0, as in the formulation of Proposition 7.1, such that

E(u) ≥

∫

u−1(Sx(δ))
u∗Ωv ≥ ϵ > 0.

We start with the obvious observation that

∫

u−1(Sx(δ))
u∗Ωv =

∫

(Φ◦u)−1(S2n(δ)×S)
(Φ ◦ u)∗Ωvtriv,

where now Ωvtriv = Φ∗(Ωv) is a certain symplectic connection form on the
trivial fibration D2n(2δ)× S. Note that at the points of {0} × S, Ωvtriv =
ω ⊕ 0, since σx was a flat section. This means Ωvtriv = ω ⊕ 0 + η, for a two-
form η on D2n(2δ)× S such that ||ηw,z|| ≤ C4 · |w| for (w, z) ∈ D

2n(2δ)× S,
and C4 ≥ 0 a constant.

Set v = Φ ◦ u. Note that J ′
0 = Φ∗(J0) preserves the fibers, and is of the

form

J ′
0(w, z) =

[
Jvw,z Aw,z
0 jz

]
,

where j = jS is a complex structure on S, Jvz,w is a z-dependent almost
complex structure on D2n compatible with ω, and Aw,z is a (jz, J

v
w,z) anti-

complex map TzS → TwD
2n(2δ). By definition, it is clear that {Jvz }z∈S is

contained in a compact set of almost complex structures on D2n. Consider
the standard Riemannian metric g on D2n. Then there exists a uniform
constant C1 such that ω(ξ, Jvz,wξ) ≥ C1 · gw(ξ, ξ) and ||ω|| ≤ C2 for all z ∈
S,w ∈ D2n. Furthermore, as A0,z = 0 for all z ∈ S, again by definition, there
is a uniform constant C3 such that ||Aw,z|| ≤ C3 · |w|. Furthermore, we may
choose these constants for δ = δ0, and keep them for all δ ≤ δ0. Choosing
locally two vectors ∂s, ∂t tangent to S with j∂s = ∂t, we obtain that

v∗Ωvtriv(∂s, ∂t) = v∗Ωvtriv(∂s, j∂s)(74)

= ωv(z)(∂sv, J
v
z,v(z)∂sv) + ωv(z)(∂sv,Az,v(z)∂sv)

+ ηz,v(z)(∂sv, (J
v
z,v(z) +Az,v(z))∂sv)

≥ C(δ)|∂sv|
2,



✐

✐

“4-Shelukhin” — 2022/5/28 — 2:05 — page 1140 — #40
✐

✐

✐

✐

✐

✐

1140 E. Shelukhin and J. Zhao

where

C(δ) = C1 − C2C3δ − 2C2C
−1
1 C4δ − 4C3C4δ

2.

Similarly,

v∗Ωvtriv(∂s, ∂t) ≥ C(δ)|∂tv|
2.

Set δ1=min{δ0, δ∗}, where C(δ)≥C1/2 for all δ≤δ∗ and choose δ ∈ [12δ1, δ1].
Now for a compact submanifold with boundary B ⊂ v−1(S2n(δ)× S), we
have Areag(v|B) ≤ C5

∫
B v

∗Ωvtriv, for a suitable constant C5. From now on,
for generic δ ∈ [12δ1, δ1], the argument of Sikorav [52, Section 4.3] applies
without change to show that

∫
v−1(S2n(δ)×S) v

∗Ωvtriv ≥ ϵ > 0, for ϵ that de-
pends only on the geometric situation: x, y, J0, E.

To obtain the result for general data (J,K) sufficiently close to (J0, 0)
one may for example apply the appropriate version of Gromov compactness
[45, Section 12], or argue in an elementary way as above, with a few extra
estimates. Indeed, taking (J,K) to be sufficiently C∞-close to (J0, 0), and
denoting by ΩK and ΩvK the corresponding connection forms, and by HorK
the new horizontal distribution, we obtain that ΩvK,triv = Φ∗(ΩvK) in the
trivialization Φ above near σx satisfies ΩvK,triv = Ωvtriv +Θ, for a two-form
Θ with ||Θ|| < δ1, while J

′ = Φ∗(J) still preserves the fibers, and is of the
form

J ′(w, z) =

[
Jvw,z Aw,z +Bw,z
0 jz

]
= J ′

0(w, z) +

[
0 Bw,z
0 0

]

where ||Bw,z|| < δ2, for arbitrary pre-fixed δ1, δ2 > 0. Similarly to (74) we
obtain the bound

v∗Ωvtriv,K(∂s, ∂t) ≥ C
′(δ, δ1, δ2)|∂sv|

2

and a similar one in terms of |∂tv|
2, where now

C ′(δ, δ1, δ2) = C(δ)− C2δ2 − 2C3δδ2 − C2C
−1
1 δ1 − 2C3δ1δ − δ1δ2.

Hence there exist δ1,∗, δ2,∗ > 0, and δ′∗ > 0, such that for all δ1 ≤ δ1,∗, δ2 ≤
δ2,∗, and δ ≤ δ′∗, we have C

′(δ, δ1, δ2) ≥ C1/2. Now continuing as above yields
the desired estimate.

Finally, for the case of all asymptotics identical, if u is not contained in
Ux = Ux(2δ), then the same argument as above applies to show that E(u) ≥
ϵ > 0. However, E being a branched cover of a cylinder, the curvature of
Ω is zero. Therefore, for (J,K) close to (J0, 0), by formula (73) the energy
E(u) is arbitrarily close to 0. This is a contradiction. □
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8. Z/pZ-equivariant pants product and coproduct

8.1. The product

In this section we define the Z/pZ-equivariant pants product. It generalizes
Seidel’s definition [48] of the equivariant pair-of-pants product for p = 2.
Its Morse analogue, described in Section 10.3, is related to the Steenrod
p-th power operations on the cohomology of a compact manifold. Broadly
speaking, this product relates the Floer cohomology of ϕ and the equivariant
Floer cohomology of ϕp for a prime p. The key point is that the constant
“p-legged pants” (see Figure 1) with p inputs all given by x, a fixed point of
ϕ, and 1 output x(p) being x considered as a fixed point of ϕp, is in general
not regular even for generic choices of auxiliary data, because it may have
negative index. However, when set up suitably and counted in a positive-
dimensional family, in this case coming from the space of negative flow-lines
of the Z/pZ-invariant Morse function F̃ on S∞, the constant “p-legged”
pants do contribute to the product. In fact, one of our main technical results,
detailed in Section 10, states, in rough terms, that their contributions are
non-trivial. We refer to [48] for further introduction to this notion in the
case p = 2.

We proceed with technical definitions, which by the abundance of pa-
rameters that need to be taken into account are really quite elaborate. To
help the reader follow them we now outline their meaning. We wish to take
the Z/pZ-symmetry of the “p-legged pants” curve SP defined below into
account. This Z/pZ-symmetry rotates the output cylindrical end and cycli-
cally permutes the input cylindrical ends, and we choose the auxiliary data
accordingly. Furthermore, to be compatible with the Borel-type construc-
tion of equivariant cohomology that we described above, the auxiliary data
is parametrized by S∞ and is required to satisfy natural Z/pZ-equivariance
properties. Finally, to simplify the complexes that we consider, as we have
done in the definition of equivariant Floer cohomology, we require the aux-
iliary data to be invariant under the shift map τ : S∞ → S∞. Finally, to
define the product operation we consider solutions to the Floer equation
with the auxiliary data evaluated on negative gradient trajectories of F̃ in
P
i,m
α . In Section 8.3 we explain that the product indeed provides a chain

map between suitable equivariant complexes.
Let h : SP → R× S1 be the branched cover of R× S1 at (0, 0) ∈ R×

S1 of ramification index p defined explicitly via the commutative diagram,
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where the horizontal arrows are isomorphisms:

SP

h
��

// C\{e
2πim

p }

y=1−zp
��

R× S1 ψ−

// C∗,

where for (s, t) ∈ R× S1, ψ− is given by

ψ−(s, t) = e−2π(s+it).

The covering transformation group Z/pZ acts on SP . For each positive punc-
ture of SP , there is a trivialization of the cylindrical ends of SP over s ≥ 1,

(75)

ϵ+i : [1,∞)× S1 → SP , i ∈ Z/pZ,

h(ϵ+i (s, t)) = (s, t) ∈ R× S1, m · (ϵ+i (s, t)) = ϵ+i+m mod p(s, t)

for m ∈ Z/pZ.

Recall that we denote S1
p = R/pZ. For t ∈ S1

p we shall usually denote its
class [t] ∈ S1, where S1 = R/Z, again by t. For the negative puncture, one
has cylindrical trivializations for s ≤ −1 given by

ϵ−i : (−∞,−1]× S1
p → SP , i ∈ Z/pZ,(76)

h(ϵ−i (s, t)) = (s, t), m · (ϵ−i (s, t)) = ϵ−i (s, t+m) = ϵ−i+m(s, t),(77)

m ∈ Z/pZ

Since by the last property, the trivializations ϵ−i are equivalent, we work
with the fixed choice ϵ−0 of such a negative end. The curve SP and its cylindri-
cal ends are described in Figure 1. To streamline the exposition, we already
mention that in this paper we adopt the standard convention that positive
punctures, namely those equipped with a positive cylindrical end, corre-
spond to inputs in Floer-cohomological operations, and negative punctures,
those with negative cylindrical ends, correspond to outputs.

Explicitly, choosing a branch of the logarithm on C∗ around z = 1 for
(78) and around z = −1 for (79), we write

SP = {(s, t, y) ∈ R× S1 × C | yp = 1− e−2π(s+it)}

ϵ+k (s, t) = (s, t, e2πki/p(1− e−2π(s+it))
1

p );(78)

ϵ−k (s, t) = (s, t, e2πki/pe−2π(s+it)/p(e2π(s+it) − 1)
1

p );(79)

m · (s, t, y) = (s, t, e−2πim/p · y), m ∈ Z/pZ
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ǫ
−

0

ǫ
+

0

ǫ
+

1

ǫ
+

2

s = −∞

s = +∞

ǫ
+

0

ǫ
+

1

ǫ
+

2

ǫ
−

0

Figure 1: The curve SP and its cylindrical ends for p = 3. Left: schematic
picture emphasizing the curve structure. Right: schematic picture emphasiz-
ing the Z/3Z symmetry; this is a Z/3Z-symmetric configuration of 4 punc-
tures and cylindrical ends, 3 positive and 1 negative, on CP 1 ∼= C ∪ {∞}.

Note that in (78) the variables are (s, t) ∈ [1,∞)× S1, while in (79) we have
(s, t) ∈ (−∞,−1]× S1

p .
Having defined the domain Riemann surface SP , we prescribe the fami-

lies of Z/pZ-equivariant Floer data

(Jz,w, Yz) ∈ C
∞(SP × S

∞,J (Mϕ))× Ω1(SP , T (R×Mϕ))

that are parametrized by SP × S∞ and SP respectively. Let H(Mϕ), respec-

tively H(Mϕ,p), denote the spaces of smooth functions H̃ :Mϕ → R, respec-

tively H̃ :Mϕ,p → R, coming from smooth functions H : R×M → R that
satisfy H(t+ 1, x) = H(t, ϕ(x)) and respectively H(t+ p, x) = H(t, ϕp(x)).

One first chooses (J̃t,w, H̃t) in J
Z/pZ(R×Mϕ,p)×H(Mϕ,p) and (J̃ it , H̃

i
t)

in J (R×Mϕ)×H(Mϕ) for i = 0, 1, · · · , p− 1 as the initial Floer data, with

H̃t ≡ 0, H̃ i
t ≡ 0. Recall that J (Mϕ) can be naturally seen as a subspace of

J (Mϕ,p). Then one can define almost complex structures J−
s,t,w on R×Mϕ

and J+,i
s,t,w on R×Mϕ,p parametrized by R× S1 × S∞ as follows. For s ≤ 1,

one requires J−
s,t,w to satisfy the following properties

• (Prescribed on the cylindrical ends): J−
s,t,w = J̃t,w for s ≤ −2 and w ∈

S∞.

• (Interpolation): J−
s,t,w ∈ J (Mϕ) for s ∈ [−1, 1].

• (Z/pZ-equivariance): J−
s,t,m·w = ϕm∗ J

−
s,t+m,w for all m ∈ Z/pZ.

• (Invariance under shift): J−
s,t,w = J−

s,t,τ(w) for all w in S∞.
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Similarly if s ≥ −1, we ask that

• (Prescribed on the cylindrical ends): J+,i
s,t,w = J̃ it for s ≥ 2 and for all

w ∈ S∞.

• (Interpolation): J+,i
s,t,w = J−

s,t,w ∈ J (Mϕ) for s ∈ [−1, 1] and all i ∈ Z/pZ,
w ∈ S∞.

• (Z/pZ-equivariance): J+,i
s,t,m·w = J+,i+m

s,t,w for allm ∈ Z/pZ, i ∈ Z/pZ and
w ∈ S∞.

• (Invariance under shift): J+,i
s,t,w = J+,i

s,t,τ(w) for all w in S∞ and all i ∈

Z/pZ.

Now, consider the symplectic fibration EP = h∗(R×Mϕ)→ SP over SP
obtained from R×Mϕ → R× S1 by pull-back by h : SP → R× S1. Write
πP : EP → SP for the projection map.

Let w : R→ S∞ be a parametrized Morse flow line of F̃ : S∞ → R in
P
i,m
α defined in Section 4 for α = 0, 1. One can then define a family Jz,w

of domain-dependent almost complex structures parametrized by z ∈ SP by
setting

Jz,w = h∗J+,i
s,t,w(s) = h∗J−

s,t,w(s) if z ∈ π
−1([−1, 1]× S1);(80)

Jz,w = h∗J+,i
s,t,w(s) if z = ϵ+i (s, t) for all i = 0, 1, · · · , p− 1;(81)

Jz,w = J−
s,t,m·w(s) for all m ∈ Z/pZ and z = ϵ−m(s, t).(82)

Note that over the negative end, EP → SP is isomorphic to R→Mϕ,p →
R/pZ. Also note that thanks to the Interpolation property, we can con-
sider J−

s,t,w(s) for s ∈ [−1, 1] to be a complex structure in J (Mϕ), whence

h∗J−
s,t,w(s) is well-defined, and moreover Jz,w is smooth along {s = 1} and

{s = −1}.
Similarly, one chooses the domain-dependent perturbation term Yz ∈

Ω1(SP , T (R×Mϕ)) that satisfies the following conditions

• (Constant on the cylindrical ends): Yϵ+i (s,t) = XHi,+
t
⊗ dt and Yϵ−m(s,t) =

XH−
t+m
⊗ dt for our H i,+

t ∈ H(Mϕ) and H
−
t ∈ H(Mϕ,p).

• (Compactly supported near the ends): Yz ≡ 0 outside the images of
the cylindrical parametrizations ϵ+i and ϵ−j for i, j ∈ Z/pZ. In fact we

may assume that Yz ≡ 0 on the image of ϵ−j .

• (Z/pZ-invariance): Ym·z = Yz for all m ∈ Z/pZ, acting as the covering
transformation of h.
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For any Morse flow line w : R→ S∞ that is asymptotic to Zmi at −∞ and Z0
α

at∞ for α = 0, 1, one can choose Jz,w and Yz as above. Then we consider the

moduli space Mi,m
P,α(x

−, x+0 , · · · , x
+
p−1) of solutions (w, u) consisting of w ∈

P
i,m
α and a section u : SP → EP , πP ◦ u = πP , to the parametrized Cauchy-

Riemann equation

(du− Yz) ◦ j = Jz,w ◦ (du− Yz)(83)

satisfying the asymptotic conditions

(84) lim
s→−∞

u(ϵ−0 (s, t)) = x−(t), lim
s→−∞

u(ϵ+k (s, t)) = x+k (t), for k ∈ Z/pZ.

We remark that in this case lim
s→−∞

u(ϵ−m(s, t)) = lim
s→−∞

u(m · ϵ−0 (s, t)) =

ϕm(x−(t+m)).

Remark 8.1. One can equivalently formulate the above equation without
mentioning symplectic fibrations, as in [48]. We found the above descrip-
tion more easily accessible, but we sketch the other definition now. Con-
sider the Z-cover πZ : R× R→ R× S1, and let S̃P = (πZ)

∗(SP) be the fiber
product of πZ : R× R→ R× S1 and h : SP → R× S1 along R× S1. Then
S̃P → SP is a Z-cover, with deck transformations generated by θ : S̃P → S̃P
corresponding to θZ : R× R→ R× R, (s, t) 7→ (s, t+ 1). The curve S̃P has p
disjoint negative ends ϵ̃m− : (−∞,−1]× R→ S̃P , and p disjoint positive ends
ϵ̃m+ : [1,∞)× R→ S̃P for m ∈ Z/pZ on which θ acts as follows: θ(ϵ̃m+ (s, t)) =
ϵ̃m+ (s, t+ 1), θ(ϵ̃m− (s, t)) = ϵ̃m−1

− (s, t+ 1). Considering the almost complex
structure J ′

z,w = Jπ(z),w as an almost complex structure onM with ϕ(J ′
θ(z),w)

= J ′
z,w, we write the equation on u : S̃P →M, ϕ(u(θ(z))) = u(z),

(du− Yz) ◦ j = J ′
z,w ◦ (du− Yz)

for a Hamiltonian perturbation described above, with asymptotic conditions

lim
s→−∞

u(ϵ̃−0 (s, t)) = x−, lim
s→−∞

u(ϵ̃+k (s, t)) = x+k ,

for k ∈ Z/pZ. It is not hard to see that the two definitions are equivalent.
The second definition has the advantage of working directly inside M.

As noticed in [48, Section 3c], for constant solutions of (83) one can-
not achieve transversality purely by varying the almost complex structures
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Jz,w. This is the reason that we also introduce the Hamiltonian perturba-
tion term Yz in (83). For generic choice of Jz,w and Yz, the moduli space

Mi,m
P,α(x

−;x+0 , · · · , x
+
p−1) can be shown to be a smooth finite dimensional

manifold of dimension

(85) dimMi,m
P,α(x

−;x+0 , · · · , x
+
p−1) = |x

−| −
∑

k

|x+k |+ i− α.

For each m ∈ Z/pZ and |x−| =
∑

k |x
−
k | − i+ α, one can define an operation

by

P i,mα : CF ∗(ϕ)⊗p → CF ∗−i+α(ϕp)(86)

P i,mα (x+0 , · · · , x
+
p−1) =

∑

x−

#Mi,m
P,α(x

−;x+0 , · · · , x
+
p−1)x

−,(87)

taking signs into account as in Appendix A. As before if we set P iα =∑
m∈Z/pZ P

i,m
α , then the Z/pZ-equivariant product can be written as

P : CF ∗(ϕ)⊗p[[u]]⟨θ⟩ → CF ∗(ϕp)[[u]]⟨θ⟩(88)

P(−⊗ 1) = (P0
0 + uP2

0 + . . .)⊗ 1 + (P1
0 + uP3

0 + . . .)⊗ θ,(89)

P(−⊗ θ) = (uP2
1 + u2P4

1 + . . .)⊗ 1 + (P1
1 + uP3

1 + . . .)⊗ θ.(90)

For a generator X = x0 ⊗ . . .⊗ xp−1 of CF ∗(ϕ)⊗p, we abbreviate this to

P(X ⊗ 1) = P 1
1 (X)⊗ 1 + P θ1 (X)⊗ θ

P(X ⊗ θ) = P 1
θ (X)⊗ 1 + P θθ (X)⊗ θ.

8.2. The coproduct

The Z/pZ-equivariant coproduct is analogous to the Z/pZ-equivariant prod-
uct that we defined above, with the difference that it now has 1 input and
p outputs. Intuitively speaking it relates to the Z/pZ-equivariant product
in the same way as the inverse PSS isomorphism relates to the PSS isomo-
prhism.

To define the Z/pZ-equivariant coproduct, we first define a Riemann
surface with one positive puncture and p negative punctures by the following
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fiber diagram

SC

h̃
��

// C\{e
2πim

p }

y=1−zp
��

R× S1 ψ+

// C∗,

where for (s, t) ∈ R× S1, ψ+ is given by

ψ+(s, t) = e2π(s+it).

Similarly to the case of Z/pZ-equivariant product, one looks at the sym-
plectic fibration πC : EC = h̃∗(R×Mϕ)→ SC , and one chooses p positive and
p negative cylindrical trivializations as ϵ̃+i and ϵ̃−j for i, j = 0, 1, · · · , p− 1.

ǫ
+

0

ǫ
−

0

ǫ
−

1

ǫ
−

2

s = −∞

s = +∞

ǫ
−

0

ǫ
−

1

ǫ
−

2

ǫ
+

0

Figure 2: The curve SC and its cylindrical ends for p = 3. Left: schematic pic-
ture emphasizing the curve structure. Right: schematic picture emphasizing
the Z/3Z symmetry; this is a Z/3Z-symmetric configuration of 4 punctures
and cylindrical ends, 1 positive and 3 negative, on CP 1 ∼= C ∪ {∞}.

Then one choose similar families of Floer data (Jz̃,w, Yz̃) parametrized
by SC × S∞ and SC separately with the direction of the s-parameter re-
versed relative to the product case. Finally, one considers the moduli space
Mi,m

C,α(x
−
0 , · · · , x

−
p−1;x

+) of solutions w ∈ P
i,m
α , u : SC → EC , πC ◦ u = πC , to

the parametrized perturbed Cauchy-Riemann equation

(91) (du− Yz̃) ◦ j = Jz̃,w ◦ (du− Yz̃),

with asymptotic behavior

(92) lim
s→−∞

u(ϵ̃−i (s, t)) = x−i (t), lim
s→−∞

u(ϵ̃+0 (s, t)) = x+(t).

Again, a definition as in Remark 8.1 working entirely in M is also available.
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For generic choice of Jwz and Hw, the moduli space of non-constant so-
lutions (u,w) to (91)Mi,m

C,α(x
−
0 , · · · , x

−
p−1;x

+) is a smooth finite dimensional
manifold of dimension

(93)
∑

k

|x−k | − |x
+|+ i− α− 2n(p− 1).

For each m ∈ Z/pZ and
∑p−1

k=0 |x
−
k | = |x

+| − i+ α+ 2n(p− 1), one can de-
fine an operation by

Ci,mα : C∗(Z/pZ;CF ∗(ϕp))→ C∗−i+α+2n(p−1)(Z/pZ;CF ∗(ϕ)⊗p)(94)

Ci,mα (x+) =
∑

x−

#Mi,m
C,α(x

−
0 , · · · , x

−
p−1;x

+)(x−0 ⊗ · · · ⊗ x
−
p−1).(95)

As before if we set Ciα =
∑

m C
i,m
α , then the Z/pZ-equivariant coproduct is

given by

C : CF ∗(ϕp)[[u]]⟨θ⟩ → CF ∗(ϕ)⊗p[[u]]⟨θ⟩(96)

C(−⊗ 1) = (C00 + uC20 + . . .)⊗ 1 + (C10 + uC30 + . . .)⊗ θ,(97)

C(−⊗ θ) = (uC21 + u2C41 + . . .)⊗ 1 + (C11 + uC31 + . . .)⊗ θ.(98)

8.3. Chain-map property

Our next goal is to show that the Z/pZ-equivariant product and coproduct
maps P and C define chain maps. Both cases are treated similarly, so we
focus on

P : C∗(Z/pZ, CF ∗(ϕ)⊗p)→ CF ∗
Z/pZ(ϕ

p),

where the complexes are taken with their respective differentials. The chain
map relation follows by standard Gromov-Floer compactness, transversality,
and gluing arguments, from looking at compactifications of the 1-dimensional
moduli spaces

Mi,m
P,α(x

−;x+0 , · · · , x
+
p−1),

coming from either Floer breaking in the interior, or from codimension 1
strata of Pi,mα at the boundaries (see [48, Section 4.3] for a discussion of the
analytical issues).
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Specifically, we show that for the differential

d
⊗p,Z/pZ
ϕ = d : C∗(Z/pZ, CF ∗(ϕ)⊗p)→ C∗(Z/pZ, CF ∗(ϕ)⊗p)

from (13) and the differential

d
Z/pZ
ϕp : CF ∗

Z/pZ(ϕ
p)→ CF ∗

Z/pZ(ϕ
p)

from (64) we have the relation:

(99) P ◦ d
⊗p,Z/pZ
ϕ = d

Z/pZ
ϕp ◦ P.

For X = x0 ⊗ . . . xp−1 an arbitrary generator of CF ∗(ϕ)⊗p, this is equiv-
alent to the following four relations. The first two come from evaluating on
X ⊗ 1, and the second two come from evaluating on X ⊗ θ :

P 1
1 (d

⊗p
ϕ (X)) + P 1

θ ((1− σ)(X)) = D1
1 ◦ P

1
1 (X) +D1

θ ◦ P
θ
1 (X)

P θ1 (d
⊗p
ϕ (X)) + P θθ ((1− σ)(X)) = Dθ

1 ◦ P
1
1 (X) +Dθ

θ ◦ P
θ
1 (X)

−P 1
θ (d

⊗p
ϕ (X)) + uP 1

1 (N(X)) = D1
1 ◦ P

1
θ (X) +D1

θ ◦ P
θ
θ (X)

−P θθ (d
⊗p
ϕ (X)) + uP θ1 (N(X)) = Dθ

1 ◦ P
1
θ (X) +Dθ

θ ◦ P
θ
θ (X)

Recall that the compactification P
i,m
α of the space of parametrized gra-

dient trajectories Pi,mα has the following codimension 1 strata:

Qi1,m1

α × Pi2,m2

α2
, Pi1,m1

α × Qi2,m2

α2
,

where m1 +m2 = m in Z/pZ, i2 = i (mod 2) and i1 + i2 − α2 = i. Fixing i
and α, the relations above are obtained from the behavior of the compacti-

ficationM
i,m
P,α(x

−;x+0 , · · · , x
+
p−1) of the corresponding 1-dimensional moduli

space over these strata in P
i,m
α , for x+0 , · · · , x

+
p−1 = X. The identities are ob-

tained for pairs (i, α) for which ([i], α) ∈ Z/2Z× Z/2Z is (0, 0), (1, 0), (0, 1),
(1, 1) respectively (in the order of appearance).

Let us explain the first case, for example. Fix i = 2k, α = 0. Then
i2 = i (mod 2), i1 = α2 (mod 2), and i1 + i2 − α2 = i. Then the solutions
of the limiting Floer equation over strata P

i1,m1

0 × Q
i2,m2

α2
lead (after consid-

ering the various i = 2k, and summing over all suitable m,m1,m2) to the
positive order components of the term D1

1 ◦ P
1
1 (X) for α2 = 0, and to the
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term D1
θ ◦ P

θ
1 (X) for α2 = 1. The strata Q

i1,m1

0 × P
i2,m2

α2
can contribute non-

trivially only when i1 = 1, and hence α2 = 1, since otherwise they do not
give isolated solutions (see [48, (4.114)]). This leads to the second term on
the left hand side. The first term on the left hand side (as well as the zeroth
order component dϕ,p ◦ P

1
1 (X) in the first term on the right hand side) is

obtained from usual Floer breaking in the codimension 0 strata.

9. Local Floer cohomology and the action filtration

We describe the local Floer cohomology at an isolated fixed point of a sym-
plectomorphism and its Z/pZ-equivariant version. Furthermore, we discuss
the action spectral sequence starting with the direct sum of local Floer co-
homologies and converging to the total Floer cohomology. This spectral se-
quence shall subsequently be used to prove that the Z/pZ-equivariant pants
product is a filtered chain-homotopy equivalence between the two relevant
filtered complexes, and in the proofs of our main applications. We refer to
[21, 24] for more details on local Floer cohomology.

9.1. Local Floer cohomology

Let ϕ be a symplectomorphism of a symplectic manifold M as specified in
Section 5. Given an isolated fixed point x of ϕ, there exists an isolating neigh-
borhood U of x (more precisely, of the image of the flat section σx inMϕ) for
Floer cohomology. In particular, all Floer trajectories of each sufficiently C2

small non-degenerate Hamiltonian perturbation ϕ′ of ϕ between generators
in U are contained in U, and the resulting Floer cohomology as computed
inside U is well-defined and independent of the perturbation. This cohomol-
ogy is called the local Floer cohomology HF loc(ϕ, x) of ϕ at x.Whenever the
local Floer cohomology is considered as an ungraded K-module it depends on
no additional data. A similar statement and definition applies to an isolated
Morse-Bott submanifold X of fixed points ϕ (see e.g. [16, 17, 35,41]).

We recall the following additional properties of HF loc(ϕ, x). First, if x
is non-degenerate as a fixed point of ϕ, then as K-modules,

HF loc(ϕ, x) ∼= K.

Second, let c ∈ Spec(ϕ) be an isolated action value, such that all x ∈ Fix(ϕ)
with Aϕ(x) = c are isolated. In view of Section 7, for two distinct fixed points
x, y ∈ Fix(ϕ), there exists ϵ0 > 0, such that all Floer trajectories, or product
structures considered in this paper, with x, y among their asymptotics, carry
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energy of at least ϵ0. Hence for ϵ > 0 sufficiently small,

HF (ϕ)(c−ϵ,c+ϵ) ∼=
⊕

x∈Fix(ϕ),
Aϕ(x)=c

HF loc(ϕ, x).

Finally, the above “building block” property implies that if all x ∈ Fix(ϕ) are
isolated, and M is aspherical or exact, then for each a, b ∈ (R \ Spec(ϕ)) ∪
{±∞}, a < b, there is a spectral sequence arising from the action filtration,
that converges to HF (ϕ)(a,b) and has E1-page given by

⊕

x∈Fix(ϕ),
a<Aϕ(x)<b

HF loc(ϕ, x),

filtered by Aϕ.

9.2. Local equivariant Floer cohomology

The above situation readily extends to the case of equivariant Floer coho-
mology. Indeed, supposing that all fixed points Fix(ϕp) of ϕp are isolated
(or more generally belong to isolated connected Morse-Bott submanifolds),
there is an upper and a lower bound depending only on ϕ and dimM on the
possible indices of the fixed points of a sufficiently C2-small non-degenerate
Hamiltonian perturbation of ϕp. We choose this perturbation to be of the
form ϕp1, where ϕ1 is a sufficiently C2-small non-degenerate perturbation of
ϕ. In particular, the terms diα of the equivariant differential vanish for all
i > i0(ϕ), independently of the choice of perturbation data. Therefore, the
equivariant differential depends only on the perturbation data Jt,w, Ht in a
compact family corresponding to w ∈ Si0(ϕ). Hence, Proposition 7.1 ensures
that the perturbation data can be chosen in such a way that the trajectories
of the equivariant differential between generators inside a sufficiently small
isolating neighborhood Ux of x ∈ Fix(ϕp) (again, more precisely of the image
of the flat section σx in Mϕp) stay inside Ux. Furthermore, the same is true
for neighborhoods Uϕmx of ϕmx for m ∈ Z/pZ. Therefore, by definition of
the equivariant differential, gluing, and compactness, the critical points of
ϕp1 in U =

⋃
m∈Z/pZ Uϕmx form a complex, and the cohomology of this com-

plex is independent of the Hamiltonian perturbation ϕp1 of ϕp. We call this
cohomology the equivariant local Floer cohomology HF loc

Z/pZ(ϕ
p,Z/pZx) of

the orbit Z/pZx. In the special case when x is an iterated fixed point, that
is ϕ(x) = x, or Z/pZx = {x}, then ϕm(x) = x for all m ∈ Z/pZ and only
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one isolating neighborhood U of x with respect to ϕp is necessary, and we
abbreviate HF loc

Z/pZ(ϕ
p,Z/pZx) to HF loc

Z/pZ(ϕ
p, x(p)). We remark that in the

case of simple p-periodic points, where the orbit Z/pZx has p elements, all
the points ϕm(x) for m ∈ Z/pZ are distinct, hence the flat sections σϕm(x)

for m ∈ Z/pZ have disjoint images in Mϕp , and the isolating neighborhoods
Uϕmx can, and should, be chosen to be disjoint.

The local equivariant Floer cohomology enjoys properties similar to
those of usual local Floer cohomology. First if x is non-degenerate as a
fixed point of ϕp, then if x is iterated, we have

HF loc
Z/pZ(ϕ

p, x(p)) ∼= H∗(Z/pZ,K) = Rp

as Rp-modules, and if x is simple, then Z/pZ-action on Z/pZx is free and
transitive, and

HF loc
Z/pZ(ϕ

p,Z/pZx) ∼= H∗(Z/pZ,K[Z/pZ]) = K = Rp/ ⟨u, θ⟩ .

Second, let c ∈ Spec(ϕp) be an isolated action value, such that all x ∈
Fix(ϕp) with Aϕp(x) = c are isolated. In view of Section 7, we again obtain
that for ϵ > 0 sufficiently small,

HF ∗
Z/pZ(ϕ

p)(c−ϵ,c+ϵ) ∼=
⊕

HF loc
Z/pZ(ϕ

p,Z/pZx),

the sum running over the orbits of the Z/pZ-action on {x ∈ Fix(ϕp) | Aϕp(x)
= c}.

Furthermore, if all x ∈ Fix(ϕp) are isolated, and M is aspherical or ex-
act, then for each a, b ∈ (R \ Spec(ϕ)) ∪ {±∞}, a < b, there is a spectral

sequence arising from the action filtration that converges to HF ∗
Z/pZ(ϕ

p)(a,b)

and has E1-page given by

⊕

O∈{x∈Fix(ϕp),a<Aϕ(x)<b}/Z/pZ
HF loc

Z/pZ(ϕ,O),

filtered by Aϕp .
Finally, tensoring with K = K((u)) over K[[u]] everywhere we obtain a

similar spectral sequence for the Tate cohomology groups with E1-page given
in terms of the local Tate cohomology groups.
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9.3. Local product and coproduct operations

Consider an isolated fixed point x ∈ Fix(ϕ), with isolating neighborhood
U of σx in Mϕ that extends to a neighborhood UP of σx in EP and a
neighborhood UC of σx in EC .

By Proposition 7.1, and the argumentation of Section 9.2, for a suffi-
ciently C2-small Hamiltonian perturbation of ϕ, the moduli spaces defin-
ing the product and coproduct operations with all inputs and outputs re-
stricted to lie inside U involve only sections that lie inside UP and UC respec-
tively. Furthermore, they define chain maps on the suitable local cohomology
groups, and hence operations

P loc
x : H∗(Z/pZ;CF loc(ϕ, x)⊗p)→ HF loc

Z/pZ(ϕ
p, x(p)),

Clocx : HF loc
Z/pZ(ϕ

p, x(p))→ H∗(Z/pZ;CF loc(ϕ, x)⊗p).

Finally, choosing sufficiently small isolating neighborhoods, it is straight-
forward to deduce that the local Floer cohomology, its equivariant version
at an iterated fixed point, and the local products and coproducts P loc

x , Clocx
depend only on the germ of ϕ at x.

10. The local coproduct-product is invertible

We first prove the assertion of Theorem A in the case of a non-degenerate
fixed point x of ϕ. The case of local Floer cohomology, as well as the general
symplectically aspherical and exact cases, will follow directly by a spectral
sequence argument. The argument in this section is the main technical nov-
elty of the paper, allowing us to extend results of [48] to primes p > 2.

Fix for the duration of this section a non-degenerate fixed point x ∈
Fix(ϕ) and isolating neighborhoods U of x for Floer cohomology and U (p)

of x(p) for Z/pZ-equivariant Floer cohomology. Recall that

HF loc(ϕ, x) ∼= K,

HF ∗(Z/pZ;CF loc(ϕ, x)⊗p) ∼= Rp,

HF ∗,loc
Z/pZ(ϕ

p, x(p)) ∼= Rp.

Consider the local product and coproduct operators
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P loc
x : HF ∗(Z/pZ;CF loc(ϕ, x)⊗p)→ HF ∗,loc

Z/pZ(ϕ
p, x(p)),

Clocx : HF ∗,loc
Z/pZ(ϕ

p, x(p))→ HF ∗(Z/pZ;CF loc(ϕ, x)⊗p).

In the subsections below we show that

(100) Clocx ◦ P
loc
x = (−1)nu(p−1)n · id,

and hence it becomes invertible after tensoring with K = Fp((u)). Indeed,

u(p−1)n is a unit in K. Recall that R̂p = Fp((u))⟨θ⟩. Since dimK R̂p <∞, this
implies that P loc

x becomes invertible after extending coefficients to K.

10.1. Invariance properties

First, using invariance properties of Clocx ◦ P
loc
x under isolated deformations,

we show that

(101) Clocx ◦ P
loc
x = cn · u

(p−1)n · id,

for a constant cn ∈ K. In Section 10.3 we calculate that cn = (−1)n, using a
reduction to the Morse-theoretic model of Betz-Cohen [6] type.

We follow the arguments of Seidel [48, Section 6], combined with the
additional flexibility provided by an alternative interpretation of Clocx ◦ P

loc
x

as an operation

Z loc
x : HF ∗(Z/pZ;CF loc(ϕ, x)⊗p)→ HF ∗(Z/pZ;CF loc(ϕ, x)⊗p)

obtained by counting p-tuples of Floer cylinders with a diagonal-type in-
cidence constraint. Intuitively, one should think of the cup product with a
suitable equivariant diagonal class. This corresponds to requiring our Floer
cylinders to be incident when evaluated at a marked point in each domain
curve. Technically speaking, this operation allows us to show a more general
isolated-deformation invariance than that of P loc

x : indeed, chambers in the
linear symplectic group defined by excluding p-th roots of unity as eigen-
values, as in (120), play no role for this new map. In turn, this is useful for
reducing the question to Morse theory in the setting of local Floer cohomol-
ogy (recall that there is in general no inverse pair of PSS isomorphisms in
this setting, which presents an additional technical difficulty).
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Definition 10.1. The chain-level operation

Z loc
x : CF ∗(Z/pZ;CF loc(ϕ, x)⊗p)→ CF ∗(Z/pZ;CF loc(ϕ, x)⊗p)

is defined as follows. Consider p cylinders Cm = R× S1, m ∈ Z/pZ. Choose
p almost complex structures Jms,t,w ∈ Jϕ each depending on the point (s, t) ∈
Cm, and w ∈ S∞. We require that

Jms,t,τ(w) = Jms,t,w, for all w ∈ S
∞(102)

Jm,±s,t,k·w = Jm+k,±
s,t,w , for all k ∈ Z/pZ(103)

Jms,t,w = Jt, for |s| ≥ 2.(104)

For a Morse flow line w : R→ S∞ in P
i,m
α , for α ∈ {0, 1}, as defined in

Section 4, we set Jm,ws,t = Jms,t,w(s).

Now as in the definitions in Section 8, introducing C2-small Hamilto-
nian perturbations Hm

s,t with corresponding perturbation form Ym = Y m
s,t ⊗

dt compactly supported away from (0, 0) ∈ Cm, we look at the moduli
spaces Mi,m

Z,α(x
−
0 , . . . , x

−
p−1;x

+
0 , . . . , x

+
p−1) of solutions (w, (um)m∈Z/pZ), to

the following parametric Floer equation. Let C̃m = R× R be the univer-
sal cover of Cm, and λ(s, t) = (s, t+ 1) the deck transformation. Identifying
Z/pZ = {0, 1, . . . , p− 1} as a set, um : C̃m →M and w ∈ P

m,i
α satisfy

(105)





(dum − Ym)
(0,1)
Jm,w
s,t

= 0

um(z) = ϕ(um(λ(z)))

u0(0, 0) = u1(0, 0) = . . . = up−1(0, 0).

with asymptotic conditions

(106) lim
s→−∞

uk(s, t) = x−k (t), lim
s→∞

uk(s, t) = x+k (t)

where ϕ(x±k (t+ 1)) = x±k (t) ≡ x
±
k are the suitable fixed points, considered

as twisted loops.

Remark 10.2. It is not difficult to define an equivalent equation alterna-
tively in terms of suitable symplectic fibrations. Indeed, by Section 5, we
may consider each um as a section of a copy of R×Mϕ, with suitable per-
turbation and boundary data. Furthermore, the fiber over (0, 0) ∈ R× S1

of Mϕ is naturally identified with M. This allows us to write the necessary
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C0

C1

C2

s = −∞ s = +∞

C1

C0

C2

const

Figure 3: Left: three Floer cylinders with incidence constraint at a marked
point. Right: diagram manifesting the Z/3Z symmetry, where the cylinders
are viewed “from the side”, and the incidence constraint is viewed as a
constant disk in the middle.

incidence condition. To work locally, we restrict attention to a neighborhood
of the flat section σx by Section 7.

It is straightforward to show that transversality for the moduli spaces
obtained thus can be achieved by generic choice of Jms,t,z and H

m
s,t, the latter

being C2-small, making Mi,m
Z,α(x

0
−, . . . , x

p−1
− ;x0+, . . . , x

p−1
+ ) a smooth mani-

fold of dimension

∑

k

|x−k | −
∑

k

|x+k |+ i− α− 2n(p− 1).

Furthermore, the dimension 0 moduli spaces, corresponding to the con-
dition

∑
k |x

−
k | =

∑
k |x

+
k | − i+ α+ 2n(p− 1), are compact by a standard

Gromov-Floer compactness argument, since in the local and the weakly ex-
act cases there are no holomorphic curves present. Hence they consist of a
finite number of points.

Then Z loc
x , which we abbreviate as Z, is given by the collection of oper-

ations

Z i,mα : C∗(Z/pZ;CF ∗(ϕ)⊗p)→ C∗−i+α+2n(p−1)(Z/pZ;CF ∗(ϕ)⊗p)(107)

Z i,mα (x+0 ⊗ · · · ⊗ x
+
p−1)(108)

=
∑

#Mi,m
Z,α(x

−
0 , · · · , x

−
p−1;x

+
0 , · · · , x

+
p−1)(x

−
0 ⊗ · · · ⊗ x

−
p−1).
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Following the usual recipe, if we set Z iα =
∑

mZ
i,m
α , then the Z/pZ-

equivariant p-cylinder map is given by

Z : CF ∗(ϕp)[[u]]⟨θ⟩ → CF ∗(ϕ)⊗p[[u]]⟨θ⟩(109)

Z(−⊗ 1) = (Z0
0 + uZ2

0 + . . .)⊗ 1 + (Z1
0 + uZ3

0 + . . .)⊗ θ,(110)

Z(−⊗ θ) = (uZ2
1 + u2Z4

1 + . . .)⊗ 1 + (Z1
1 + uZ3

1 + . . .)⊗ θ.(111)

As for C,P, the chain map relation for Z follows, by Section 7 and
standard Gromov-Floer compactness, transversality, and gluing arguments,
from looking at compactifications of the 1-dimensional moduli spaces
Mi,m

Z,α(x
−
0 , · · · , x

−
p−1;x

+
0 , · · · , x

+
p−1). Furthermore the following identity holds

on the chain level in the isolated non-degenerate case.

Lemma 10.3. Clocx ◦ P
loc
x = Z loc

x

Proof. The idea behind this proof consists in a degeneration-gluing argu-
ment. However, to carry it out, we must replace the p trajectories um :
C̃m →M, incident at um(0, 0), m ∈ Z/pZ, by a map u : C̃ →M, where now
C is the nodal curve consisting of the curves Cm, m ∈ Z/pZ, and one genus
zero curve S ∼= CP 1 ∼= C ∪∞, with nodes given by identifying (0, 0) ∈ Cm

with e2πmi/p ∈ S. Of course in the local, and the weakly exact, cases the
restriction u∗ of the holomorphic curve u to S will be constant. However,
this turns out to be the right domain to perform gluing. Note that C admits
a holomorphic Z/pZ-action, given by cyclically permuting the Cm under
the natural identification and rotating S by the corresponding p-th roots of
unity. The degenerations are schematically described in Figures 4 and 5.

Consider the following familyR ∼= (0, 1) of Riemann surfaces with Z/pZ-
action. Choose cylindrical ends ϵm+ : [1,∞)× S1 → S at the points e2πmi/p ∈

S that are equivariant with respect to the Z/pZ-action, k · ϵm+ (ζ) = ϵm+k
+ (ζ)

for all ζ ∈ [1,∞)× S1 and k ∈ Z/pZ, and ϵm− : (−∞, 1]× S1 → Cm that are
identified under the isomorphisms Cm ∼= R× S1. Performing gluing with
parameter l+ ∈ [1,+∞) we obtain one part of the family, [1,∞)→ R. An-
other part of the family, (−∞, 1]→ R is given by gluing SP and SC along
ϵ−0 : (−∞, 1]× S1 → SP and ϵ+0 : [1,∞)× S1 → SC with gluing parameter
−l− ∈ [1,∞), where l− ∈ (−∞, 1]. Of course, by equivariance, this gives the
same Riemann surface as gluing along ϵ−m, ϵ

+
m would give, for all m ∈ Z/pZ.

Let r denote the natural coordinate on R. The gluing above, after suitable

reparametrization, gives a map {|r| ≥ 1} →M
Z/pZ
0,p,p to the moduli space of

genus 0 curves with Z/pZ-action, with p negative ordered marked points, and
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Figure 4: Gluing of the coproduct and the product.

C1

C0

C2

const

Figure 5: Degeneration from the glued coproduct-product to Z loc
x , “side-

view”.

p positive ordered marked points, each p-tuple being Z/pZ-equivariant. Fi-

nally, for r ∈ [−1, 1], we choose an extension of the map {|r| ≥ 1} →M
Z/pZ
0,p,p ,

up to reparametrization, to a smooth map R→M
Z/pZ
0,p,p . This is indeed possi-

ble, by direct construction involving hyperbolic polygons: for example, rep-
resenting each such complex structure by a hyperbolic metric with cusps
at the marked points, and requiring that the metric be invariant under the
Z/pZ-action (which, we recall, acts freely transitively on the set of neg-
ative cusps, and also on the set of positive cusps), as well as under the
orientation-reversing involution obtained from complex conjugation on S
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and (s, t) 7→ (−s, t) on each Cm, the parameter r ∈ R ∼= R, is given, up
to reparametrization, by r = − log(l), where l is the length of the closed
geodesic in the homotopy class determined by ϵ0−(pt× S

1).
Denote by S → R the universal Riemann surface. Note that R admits a

natural compactification R ∼= [0, 1], where R0 is given by C̃, and R1 is given
by a nodal surface with the complement of the node given by two connected
components isomorphic to SC and SP respectively. Finally, we note that
each Sr, r ∈ R, admits a holomorphic map πr : Sr → Z = R× S1, that is a
branched cover with branch locus consisting of two points in Z.Moreover we
may choose cylindrical ends ϵm− : (−∞,−1]×R → S, ϵm+ : [1,∞)×R → S,
for m ∈ Z/pZ, so that for each r ∈ R, ϵm−,r = ϵm− (−, r), and ϵm+,r = ϵm+ (−, r)
satisfy πr ◦ ϵ

m
−,r = id(−∞,−1]×S1 , πr ◦ ϵ

m
+,r = id[1,∞)×S1 , for all m ∈ Z/pZ.

Counting solutions to the parametric Floer equation on the family S →
R of Riemann surfaces, with Floer data depending on points in S∞, as
above, provides a chain homotopy between Z loc

x and Clocx ◦ P
loc
x . We sketch

the technical details below.
We choose Floer data {Jz,w,r}r∈R, {Yz,r}r∈R, depending on z ∈ Sr, and

w ∈ S∞, which with respect to the z, w coordinates are constant on the
cylindrical ends, and satisfy the interpolation (with respect to the πr map),
Z/pZ-invariance, and shift-invariance axioms (see Sections 6, 8). Further-
more, as in [49, Chapter 9], we choose this Floer data compatible with the
compactification R of R and choices of Floer data for SP , SC and for C̃.
Note that in fact, we should also take our fibrations πSr

: ESr
→ Sr com-

patible with the compactification. This does not present a difficulty, as the
fibrations in the definitions are merely auxiliary, and all the Floer equations
we consider can be written in terms of maps from suitable surfaces to M.

Then for w : R→ S∞ denoting a gradient flow line that is asymptotic to
Zmi at −∞ and Z0

α at∞, one considers the moduli spaceMi,m
K,α(x

−
0 , . . . , x

−
p−1;

x+0 , . . . , x
+
p−1) of solutions (r, w, u : Sr → ESr

), πSr
◦ u = πSr

, where r ∈ R,
to the parametrized perturbed Cauchy-Riemann equation

(112) (du− Yz̃,r) ◦ j = Jz̃,w,r ◦ (du− Yz̃,r),

with asymptotic behavior

(113) lim
s→−∞

u(ϵ̃−k (s, t)) = x−k (t), lim
s→−∞

u(ϵ̃+k (s, t)) = x+k (t) for k ∈ Z/pZ.

For generic choice of Jwz and Hw
t , the moduli space of non-constant solutions

to (112) Mi,m
K,α(x

−
0 , . . . , x

−
p−1;x

+
0 , . . . , x

+
p−1) is a smooth finite dimensional
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manifold of dimension

(114)
∑

k

|x−k | −
∑

k

|x+k |+ i− α− 2n(p− 1) + 1.

For eachm ∈ Z/pZ and
∑p−1

k=0 |x
−
k | =

∑p−1
k=0 |x

+
k | − i+ α+ 2n(p− 1)− 1, one

can define an operation by

Ki,mα : C∗(Z/pZ;CF ∗(ϕ)⊗p)→ C∗−i+α+2n(p−1)−1(Z/pZ;CF ∗(ϕ)⊗p)(115)

Ki,mα (x+0 ⊗ · · · ⊗ x
+
p−1)(116)

=
∑

#Mi,m
K,α(x

−
0 , · · · , x

−
p−1;x

+
0 , · · · , x

+
p−1)(x

−
0 ⊗ · · · ⊗ x

−
p−1).

Again, we set Kiα =
∑

mK
i,m
α , and consider the map

K : CF ∗(ϕp)[[u]]⟨θ⟩ → CF ∗(ϕ)⊗p[[u]]⟨θ⟩(117)

K(−⊗ 1) = (K0
0 + uK2

0 + . . .)⊗ 1 + (K1
0 + uK3

0 + . . .)⊗ θ,(118)

K(−⊗ θ) = (uK2
1 + u2K4

1 + . . .)⊗ 1 + (K1
1 + uK3

1 + . . .)⊗ θ.(119)

By standard compactness, transversality, and gluing arguments, we ob-
tain that

Clocx ◦ P
loc
x −Z

loc
x = dZ/pZ,locx K −KdZ/pZ,locx ,

as required. □

Remark 10.4. The same definition of Z works in the general context of
local Floer cohomology, as well as globally, in the symplectically aspherical
and exact cases, and the above argument can be modified to prove that Z is
chain-homotopic to C ◦ P. In general, however, these maps differ on the chain
level. In case of Hamiltonian diffeomorphisms, this point is not important
for us, since it is straightforward to see that HFZ/pZ(ϕ

p) ∼= H∗(M)⊗Rp by
either a continuation map argument, or by a suitable equivariant PSS map
(see [58]). The local version of this map, however, is required for our main
invertibility argument. We shall also use the fact that Z is a chain map in
a very particular local case for the proof of Lemma 10.7.

Remark 10.5. The above curve C suggests the configurations one should
consider in the presence of holomorphic spheres (in the non-local, non weakly
exact case). We believe that at least when the manifold is monotone this
can be carried out, but we opt to leave this point for discussion elsewhere.
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For a matrix A ∈ Sp(2n,R) and λ ∈ C set ρλ(A) = det(A− λ · id), and
denote

Sp(2n,R)∗ = Sp(2n,R) \ ρ−1
1 ({0}).

Note that Sp(2n,R)∗ has two connected components, and

sign(ρ1) : π0(Sp(2n,R)
∗)→ {±1}

determines an isomorphism of sets. Similarly, let

(120) Sp(2n,R)p∗ = Sp(2n,R) \
⋃

λp=1

ρ−1
λ ({0}).

Lemma 10.6. Z loc
x = cn,± · u(p−1)n · id, where cn,± depends only on the

connected component of Dϕx ∈ Sp(2n,R)∗.

Proof. We follow [48, Section 6], the difference being that we consider the op-
erator Z loc

x , and hence we may deform the differential of the symplectomor-
phism inside Sp(2n,R)∗. First of all, by degree reasons, and since CF ∗(ϕ)locx
has, in the non-degenerate case that we consider, the unique generator x,

Z loc
x (x⊗p ⊗ 1) =

(∑
#M

2n(p−1),m
Z,0 (x, . . . , x;x, . . . , x)

)
un(p−1)x⊗p ⊗ 1.

It is sufficient to show that for an isolated deformation of the germ of ϕ at

x, keeping x a non-degenerate fixed point, the count
∑

#M
2n(p−1),m
Z,0 (x, . . . ,

x;x, . . . , x) remains invariant. This is carried out precisely as in [48, Section
6], by a cobordism argument, which ultimately works because the structure
of the compactification of the spaces of Morse flow lines P

i,m
α0

yields the
cancellation of the signed counts of the boundary points of the compacti-
fied one-dimensional parametric moduli spaces, lying over the interior (0, 1)
of the parameter space [0, 1], after summing over m ∈ Z/pZ. Specifically,
given a point in the boundary of the compactification of a one-dimensional
component of the space of solutions to the parametric equation occurring
at r ∈ (0, 1), by considering the structure of the corresponding boundary
curve, and an index calculation, it is seen as in [48, Section 6] that the
corresponding solution must correspond to the strata

Q
1,m1

0 × P
2n(p−1),m2

1 , P
2n(p−1)−1,m1

0 × Q
2,m2

1 ,

where m1 +m2 = m in Z/pZ. The principal component of our boundary so-

lution in the compactified parametrized moduli spaceM
2n(p−1),m
Z,0 (x, . . . , x;
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x, . . . , x)para sits therefore in M
2n(p−1),m2

Z,1 (x, . . . , x;x, . . . , x)para or in

M
2n(p−1)−1,m1

Z,0 (x, . . . , x;x, . . . , x)para, and can be seen to be regular. The
boundary point is obtained from the principal component and constant non-
principal components. However, fixing m2 in the first case, and m1 in the
second case, by varying m2 or respectively m1, we obtain p contributions
to the count of boundary points, each one for a different m. The constant
non-principal components appear with the same signs as the corresponding
unparametrized negative gradient trajectories, and therefore the different
contributions in each case cancel out modulo p in the sum over all m. In-
deed, in the first case this is because 1− 1 = 0 (mod p), and in the second
case, 1 + . . .+ 1 = p · 1 = 0 (mod p). □

Lemma 10.7. We have cn,+ = cn,−.

Proof. Here we follow [48, Section 7], but for Z loc
x . Consider the case when

locally in a ball B ⊂ (R2n, ωst), ϕ has two non-degenerate fixed points y, z
with dy = z. For example, we may take a small Morse function H with y, z
being critical points that lie in B, with one gradient trajectory from y to z,
and let ϕ be the Hamiltonian flow of H for a small positive time ϵ > 0.

HenceHF loc(ϕ,B) = 0, and henceH∗(Z/pZ;CF loc(ϕ,B)⊗p) = 0.More-
over, clearly, for the Tate cohomology Ĥ∗(Z/pZ;CF loc(ϕ,B)⊗p) = 0. Now,
the Tate cohomology can be computed by the action spectral sequence,
whose Ep+1-st page is given by the map induced from d : K ⟨y⟩ → K ⟨z⟩ ,
which becomes the identity map after identifying the domain and target
withK by means of the natural bases {y}, {z} by the natural quasi-Frobenius
isomorphisms (see Lemma 3.1)

Ĥ∗(Z/pZ, CF loc(ϕ, y)⊗p) ∼= R̂p ⊗K K ⟨y⟩(1) ,

Ĥ∗(Z/pZ, CF loc(ϕ, z)⊗p) ∼= R̂p ⊗K K ⟨z⟩(1) .

We proceed to note that Dϕ(y), Dϕ(z) lie in different components of
Sp(2n,R)∗. Furthermore, since Z induces a chain map between the Tate
complexes, it induces a map of the action spectral sequences, for sufficiently
small perturbation data, and in particular it induces a chain map on the
E(p+1)-st page. This immediately yields cn,+ = cn,−. □

Below, we apply a suitable Floer-to-Morse reduction to show that cn,+ =
(−1)n, and hence by Lemma 10.7, cn,± = (−1)n.We could also calculate cn,−
separately in the same way, proving our result without the above lemma.
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10.2. Local Floer-to-Morse collapse

Section 10.1 allows one to reduce the consideration of Z loc
x to the local

case of a fixed ball B ⊂ (Cn, ωst) of radius 1, and symplectomorphism ϕ
generated by Hamiltonian H = ϵ · |z|2, where |z|2 = 1

π

∑n
j=1 |zj |

2, and 1≫
ϵ > 0 chosen arbitrarily. Note that we may choose the complex structure to
coincide with the standard one Jst outside

19
20B, and to be C2-close to Jst

on B. In this section we reduce the calculation in this case to Morse theory.

We start with the classical observation that the local Floer complex of
ϕ1H at 0, as computed with an ωst-compatible almost complex structure J
coinciding with Jst outside

19
20B, is isomorphic to the local Lagrangian Floer

complex CF loc(∆, H ⊕ 0, x) of the Lagrangian diagonal

∆ ⊂ X,

X = C
n × (Cn)−

at (ϕ1H × id)−1∆ ∩∆ = {x = (0, 0)}, with Hamiltonian perturbation H ⊕
0, and almost complex structure J ⊕−J. Furthermore, denoting by ∆H =
(ϕ1H⊕0)

−1∆, under this identification

Z loc
x = Z loc,Lagr

x : C∗(Z/pZ;CF loc(∆,∆H , x)
⊗p)

→ C∗(Z/pZ;CF loc(∆,∆H , x)
⊗p),

the latter being defined analogously to Z loc
x , yet in terms of Lagrangian Floer

cohomology.
Finally, we note that the complex structure Jst ⊕−Jst on X ∼= T ∗∆, co-

incides with the complex structure on X, induced by the standard Rieman-
nian metric g on ∆. We recall that a Riemannian metric induces an ωcan =
d(λcan)-compatible almost complex structure by identifying T(p,q)(T

∗∆) ∼=
T ∗
q∆⊕ Tq∆, via the Levi-Civita connection, and acting by (α, ξ) 7→

(−Gξ,G−1α), where G : Tq∆→ T ∗
q∆ is the isomorphism G(ξ) = gq(ξ,−).

Furthermore, we recall that the symplectomorphism Θ : X → T ∗∆, with the
standard symplectic structures, is given by the symplectic Cayley transform
(z, w) 7→ (p, q), p = w−z

i
√
2
, q = z+w√

2
.

Let π : T ∗∆→ ∆ be the natural projection. We rewrite the Z loc
x map

yet again as

Z loc
x = Z loc,cot

x : C∗(Z/pZ;CF loc(∆, π∗F, x)⊗p)

→ C∗(Z/pZ;CF loc(∆, π∗F, x)⊗p)
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with F ∈ C∞(∆,R) such that

ΓdF = ∆H = (ϕ1H⊕0)
−1∆.

The Morse function F is given in terms of H by the Cayley transform.
In particular, like H, F has a unique non-degenerate minimum at x. More
precisely, for q ∈ ∆ ∼= Cn,

F (q) = Θ#H(q) =

∫ 1

0

〈
(π|∆H

)−1(t · q), q
〉
dt.

In other words Θ#H(q) =
∫
{(π|∆H

)−1(t·q) | t∈[0,1]} λ. This formula establishes

a bijective correspondence between functions H ′ that are C2-close to H and
functions F ′ that are C2-close to F, which is continuous in the C2-topology.
Moreover, the last observation applies to H = 0. Therefore by making H
sufficiently C2 small in a suitable neighborhood of 0 we can make F as C2-
small as necessary in a neighborhood of x. Hence we may consider the latter
model for all our purposes.

The above Lagrangian reformulation allows us somewhat more freedom
in the choice of almost complex structures, while the reformulation in terms
of the function F allows us to relate our constructions to Morse theory. We
shall use both, together with a classical convexity argument of Floer [16] to
show the following result.

Lemma 10.8. There exists ϵ0 > 0 such that for Hamiltonian perturbations
Fs of F that have C2 norm smaller than ϵ0, and coincide with F outside
1
20B, all continuation maps

C({Fs}) : CF
loc(∆, π∗F, x)→ CF loc(∆, π∗F, x)

along a family of Hamiltonians {Fs}s∈R, with Fs = F for |s| ≫ 1, and al-
most complex structures Js suitably chosen, in fact coincide with the Morse
continuation maps along {Fs} considered as Morse functions, with suitable
Riemannian metrics gs.

As a consequence, we obtain a Morse-theoretical description of Z loc,cot
x ,

which we detail in slightly larger generality in Section 10.3, and use in Sec-
tion 10.4.

Proof of Lemma 10.8. We begin by describing the class of almost complex
structures Js that we consider. Firstly, as long as a complex structure is



✐

✐

“4-Shelukhin” — 2022/5/28 — 2:05 — page 1165 — #65
✐

✐

✐

✐

✐

✐

The Z/pZ-equivariant product-isomorphism 1165

sufficiently C2-close to Jst ⊕−Jst, a classical monotonicity argument [52,
Section 4.3], together with standard action estimates (similar to (73), see
[49, Section (8g)]), shows that all relevant curves do not escape a given fixed
neighborhood U ⊂ B ×B of x. We take as U a symplectically embedded
copy of D∗( 1√

2
B), the unit co-disk bundle taken with respect to the standard

metric on B (indeed x ∈ U). Hence, given gs sufficiently C2-close to g, we
may assume that in U, Js concides at the zero section with the almost
complex structure on the co-disk bundle induced by gs. In this case, each
trajectory γ : R→ Cn satisfying the Morse continuation equation

(121) ∂sγ + (∇Fs) ◦ γ = 0,

γ(s)
s→±∞
−−−−→ x,

is in fact also a solution of the Floer equation

∂su+ Js ◦ u (∂tu−X
t
π∗Fs
◦ u) = 0,(122)

u(s, t)
s→±∞
−−−−→ x,

on maps u : R× [0, 1]→ X. Moreover, given that |Fs|C2(U,gs) < ϵ0 for all s,
each solution u of (122), which necessarily lies inside U, is in fact of the
above form. Indeed, writing u(s, t) = (y(s, t), x(s, t)), where x(s, t) ∈ 1√

2
B,

and y(s, t) ∈ T ∗
x(s,t)(

1√
2
B), and setting

η(s) =

∫ 1

0
|y(s, t)|2gs dt,

one shows closely following Floer [16] the convexity estimate

η′′(s) ≥ δ · η(s)

for a positive constant δ = ϵ20/2 > 0. As η(s)
s→±∞
−−−−→ 0, the convexity esti-

mate implies that η ≡ 0, whence y(s, t) ≡ 0. Now in view of (122), ∂tx ≡ 0,
and γ(s) = x(s) satisfies (121). □

10.3. The Betz-Cohen computation for Morse functions

In this subsection, we consider the analogue of Fukaya [20] and Betz-Cohen
[6] (see also [5],[11]) operations defined by counting of Morse trees with a
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Z/pZ-symmetry. We remark that when p = 2, the analogue of our construc-
tion has been defined in the work of Seidel [48] and that of Wilkins [57]
recently.

Given any smooth manifold M and a Morse function f ∈ C∞(M), for
each fixed prime number p ≥ 2, we consider the graph Γp with p inputs and
one output, oriented and parametrized as (−∞, 0] ∪

⋃p
i=1[0,∞)i

∼
−→ Γp. The

edges eout and e
i
in of tree are parametrized by half-infinite intervals (−∞, 0]

and [0,∞) respectively. We can choose a domain-dependent perturbation f is
of f on each edge of Γp such that

f is = f for |s| ≫ 1 in [0,∞),

and

f0s = pf for |s| ≫ 1 in (−∞, 0].

The latter choice is convenient for our arguments, but in general one could
pick f0s = f for |s| ≫ 1 in (−∞, 0] as well.

e1

ei

ep

e0

s = 0

s = ∞

s = −∞

Figure 6: The graph Γp.

We let C∗(M) := C∗
Morse(M) be the Morse cochain complex defined by

f. We grade the critical points of f by the Morse index. For each prime
p, one can define the p-th product map on the Morse cochain complex by
PM : C∗(M)⊗p → C∗(M) by

(123) PM (x1 ⊗ x2 · · · ⊗ xp) =
∑

x0∈Crit(f)

#M(Γp; f
i
s)x0,
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where #M(Γp; f
i
s) denotes the signed counts of the virtual dimension zero

part of the moduli space of Morse trajectories u : Γp →M satisfy the fol-
lowing conditions

(1) d(u|ei)/ds = −∇f
i
s for all i = 0, 1 · · · , p;

(2) lim
s→−∞

u|eout
(s) = x0;

(3) lim
s→∞

u|ejin(s) = xj for all j = 1, 2, · · · , p.

We remark that our perturbations f is of f should be chosen satisfying suit-
able, generically satisfied, transversality conditions so that the moduli space
of Morse trajectories M(Γp; f

i
s) are regular (we refer to [11, Section 6] for

a discussion of transversality in a more general setting, and more specifi-
cally [57, Appendix B] for a detailed discussion of transversality for the case
p = 2 in the above construction). Now if all the inputs are the same, that
is, one has x1 = x2 = · · · = xp, then the Z/pZ-action on the domain graph
Γp, which is free and transitive on the input edges, preserves the bound-
ary conditions. We would like to study the equivariant operation that this
symmetry produces.

A priori if one takes the perturbation f1s = · · · = fps respectively, the
moduli space M(Γp; f

i
s) also admits an action by Z/pZ. One may want

to study its quotient and define the Z/pZ-equivariant product by counting
the virtual dimension zero part of M(Γp; f

i
s)/Z/pZ. However, there is a

major problem thatM(Γp; f
i
s) cannot be made regular for Z/pZ-symmetric

perturbations f is, since one cannot achieve Z/pZ transversality for elements
in M(Γp; f

i
s). As a solution, we consider Z/pZ-equivariant perturbations

{f is,w} parametrized by w ∈ S∞ as before. For a given Morse trajectory
w : R→ S∞ which is asymptotic to a critical point Zmi of index i when
s→ −∞ and another critical point Z0

α of index α ∈ {0, 1} as s→∞, one
has that the Z/pZ-equivariant perturbation satisfy

(1) (Diagonal Z/pZ-action) fm·i
s,m·w = f is,w for all i = 1, 2, · · · , p and f0s,z =

f0s,m·w for allm∈Z/pZ and w∈S∞, wherem ∈ Z/pZ acts on {1, . . . , p}
by τm, for the cyclic permutation τ = (1 2 . . . p) and m · w = e2πimw.

(2) (Invariant under shift) f is,τ(w) = f is,w for all i and w ∈ S∞.
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Given any parametrized Morse flow line w ∈ P
i,m
α for fixed i and m ∈

Z/pZ, we define the operation P i,mM,α : C∗(M)⊗p → C∗−i+α(M) by

P i,mM,α(x1 ⊗ · · · ⊗ xp) =
∑

x0

#M
i,m
α (M ; f js,z)x0,

where #M
i,m
α (M ; f js,z) denotes the signed counts of the virtual dimension

zero part of the moduli space of pairs (u,w) satisfying w ∈ P
i,m
α and

(124)





d(u|ei)/ds = −∇f
i
s,w(s) for all i = 0, 1 · · · , p;

lim
s→−∞

u|eout
(s) = x0;

lim
s→∞

u|ejin(s) = xj for all j = 1, 2, · · · , p.

It is then straightforward to check that, as in the definitions of Section
8, the operations P i,mM,α combine to give a chain map

PM : C∗(Z/pZ;CM∗(f)⊗p)→ CM∗(pf)⊗Rp.

Observe that Condition (1) of the perturbations is necessary for PM to be a
chain map, and Condition (2) yields linearity with respect to multiplication
by u.

10.4. Morse coproduct, and the local case

Similarly to the operation PM defined above, we define operations

CM : CM∗(f)⊗Rp → C∗(Z/pZ;CM∗(f)⊗p),

given by the graph Γp with one input and p outputs, oriented and parame-
trized as

⋃p
i=1(−∞, 0]

i ∪ [0,∞)
∼
−→ Γp.

Consider also the operation

ZM : C∗(Z/pZ;CM∗(f)⊗p)→ C∗(Z/pZ;CM∗(f)⊗p),

given by the graph Γp,p with p inputs and p outputs parametrized and ori-
ented as

⋃p
i=1(−∞, 0]

i ∪
⋃p
i=1[0,∞)i

∼
−→ Γp,p. The analysis in Section 10.1

above shows that ZM is chain homotopic to CM ◦ PM .
Considering the case of local Morse cohomology of a function f(z) =

ϵ|z|2 on Cn at 0 ∈ Cn, we get that under the natural isomorphisms of the
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e1

ei

ep

e0s = 0
s = ∞

s = −∞

Figure 7: The graph Γp.

e
−

1

e
−

i

e
−

p

s = 0

s = ∞s = −∞

e
+

1

e
+

i

e
+
p

Figure 8: The graph Γp,p.

equivariant cohomology groups with Rp, we have

ZM = (−1)nun(p−1) · id.

In this case the construction of Section 10.3 for ZM is in fact given, in
the topological model of equivariant cohomology, by multiplication by the
Euler class of the vector bundle V = E/EZ/pZ over B(Z/pZ), where E =
(R2n)p ×Z/pZ S

∞, and EZ/pZ ∼= R2n ×B(Z/pZ) is the subbundle in E corre-
sponding to the Z/pZ-invariant subspace in (R2n)p. Indeed the above con-
struction of ZM describes in this case the map dual to the cap product by
the Euler class of E, given by intersection product with the zero section in
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the total space of E, taking into account that the latter, being the total
space of a vector bundle, is deformation equivalent to the base (see also [6]).

We calculate this Euler class as follows. Using the standard isomorphism
Cn ∼= R2n of real vector spaces, we endow R2n with a complex structure and
note that the Z/pZ-action on (R2n)p is in fact complex-linear. Hence we may
consider E,EZ/pZ and V as complex vector bundles of ranks np, n, n(p− 1)
respectively. In particular the Euler class of V is given by its top Chern class
cn(p−1)(V ). Considering (Cn)p as a complex Z/pZ-representation and split-
ting it into isotypical components, we obtain the isomorphism of complex
vector bundles

V ∼=


 ⊕

χ∈(Z/pZ)∨\{1}
Lχ




⊕n

,

where Lχ = C×Z/pZ S
∞ is the complex line bundle over B(Z/pZ) associated

to the character χ ∈ (Z/pZ)∨ = Hom(Z/pZ,C×). Note that the sum does
not include the component of the trivial character, since we took the quotient
by the Z/pZ-invariants. Now by [2, Section 8], the (Fp-reductions of) c1(Lχ)
for χ ∈ (Z/pZ)∨ are given by aχu for different invertible elements aχ in Fp,
where u is the standard generator of H2(B(Z/pZ),Fp) ∼= Fp, coming from
H2(CP∞,Fp). In view of the Whitney sum formula, we obtain

cn(p−1)(V ) =


 ∏

χ∈(Z/pZ)∨\{1}
aχ



n

un(p−1) = (−1)nun(p−1),

the last step being Wilson’s theorem, whereby

∏

χ∈(Z/pZ)∨\{1}
aχ = −1.

However, we saw in Section 10.2 that in our particular local case, for
x = 0 a fixed point of the Hamiltonian flow ϕ = ϕ1H of H(z) = f(z),

Z loc
x = ZM .

This finishes the proof.
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11. Proof of Theorem A: spectral sequence argument

First let us consider the case when ϕ and ϕp as above have all fixed points
non-degenerate. Consider the equivariant product map

P : C∗(Z/pZ;CF ∗(ϕ)⊗p)→ CF ∗
Z/pZ(ϕ

p).

It induces a map on the action spectral sequences associated to the action
filtrations on both sides. Tensoring with K = K((u)) over K[[u]], we obtain a
map of the corresponding spectral sequences for Tate cohomology groups. In
view of Lemma 2.1 in Section 2 and the description of the action-filtration
spectral sequences for the non-equivariant and equivariant Floer cohomology
in Sections 9.1 and 9.2, the E1-page on the left is given by

⊕
Ĥ∗(Z/pZ;HF loc(ϕ, x)⊕p)

and on the right by
⊕

ĤF
loc

Z/pZ(ϕ
p, x(p)),

the sum running over all the fixed points x of ϕ, and furthermore, by Sec-
tion 9.3, the map P induces the map

⊕P loc
x

on these E1 pages. By Section 10, this map on the E1 page is invertible, and
hence by the spectral sequence comparison argument [56, Theorem 5.5.11],
we obtain that

P : Ĥ∗(Z/pZ;HF ∗(ϕ)⊗p)→ ĤF
∗
Z/pZ(ϕ

p)

is an isomorphism. This finishes the proof in the non-degenerate case.
Now, to generalize to the case of local Floer cohomology, we first note

that the same argument, after choosing a small isolating neighborhood and
a small Hamiltonian perturbation non-degenerate therein, applies to prove
that

P loc
x : Ĥ∗(Z/pZ;HF loc(ϕ, x)⊗p)→ ĤF

loc

Z/pZ(ϕ
p, x(p))

is an isomorphism for an isolated fixed point of ϕ that is isolated as a fixed
point of ϕp as well.

Finally, we proceed to the general case. For a subset A ⊂ R, we introduce
the following notation: A+p = {a1 + . . .+ ap | aj ∈ A, 1 ≤ j ≤ p}. Choose an
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interval I = (a, b) with pa, pb ∈ (R \ (Spec(ϕp) ∪ Spec(ϕ)+p)) ∪ {±∞}. Then
the same argument, after choosing sufficiently small non-degerate Hamilto-
nian perturbations ϕ1, (ϕ1)

p of ϕ, ϕp, we obtain that

Pp·I : Ĥ∗(Z/pZ;CF ∗(ϕ)⊗p)p·I → ĤF
∗
Z/pZ(ϕ

p)p·I

is an isomorphism, where

Ĥ∗(Z/pZ;CF ∗(ϕ)⊗p)p·I = Ĥ∗(Z/pZ; (CF ∗(ϕ)⊗p)p·I),

for the quotient complex

(CF ∗(ϕ)⊗p)p·I ∼= (CF ∗(ϕ)⊗p)<p·b/(CF ∗(ϕ)⊗p)<p·a,

where for x1 ⊗ . . .⊗ xp ∈ CF
∗(ϕ)⊗p, we set

Aϕ,⊗p(x1 ⊗ . . .⊗ xp) =
∑
Aϕ(xj).

Observe that there is a natural inclusion of complexes

(CF ∗(ϕ)I)⊗p → (CF ∗(ϕ)⊗p)p·I ,

such that the Z/pZ-action on the quotient is free. Therefore by Lemma 2.1
it induces a natural isomorphism

Ĥ∗(Z/pZ, (CF ∗(ϕ)I)⊗p)
∼=
−→ Ĥ∗(Z/pZ, (CF ∗(ϕ)⊗p)p·I).

In all cases, we finish the proof by an application of Lemma 3.1.

12. Applications and discussion

First, in the exact case, we prove the following version of the Smith inequality
for fixed point Floer cohomology, extending the work of Seidel to prime
orders p > 2.

Theorem B. Let ϕ be an exact symplectomorphism of a Liouville domain
W which is cylindrical at infinity. Then the ranks of its fixed point Floer
cohomology, and that of its p-th iterate ϕp satisfy the following inequality:

dimFp
HF ∗(ϕ) ≤ dimFp

HF ∗(ϕp)Z/pZ ≤ dimFp
HF ∗(ϕp).
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Proof. Observe that by Corollary 1.4 of the main result, Theorem A, we
obtain

2 dimFp
HF ∗(ϕ) = dimFp((u)) Ĥ

∗(Z/pZ, HF ∗(ϕ))(1) = dimFp((u)) Ĥ
∗
Z/pZ(ϕ

p).

However, by estimate (72) the latter dimension satisfies

dimFp((u)) Ĥ
∗
Z/pZ(ϕ

p) ≤ dimFp((u)) Ĥ
∗(Z/pZ, HF ∗(ϕp)),

whence we obtain the bound

(125) 2 dimFp
HF ∗(ϕ) ≤ dimFp((u)) Ĥ

∗(Z/pZ, HF ∗(ϕp))

By the structure theorem for modules over PID, and the observation that
Fp[Z/pZ] ∼= Fp[t]/(t

p), where t = σ − 1, we have thatHF ∗(ϕp), as a Fp[Z/pZ]-
module, splits into a direct sum

HF ∗(ϕp) =
⊕

1≤k≤p
(Fp[t]/(t

k))⊕mk ,

for multiplicities mk ≥ 0. It is easy to calculate that

dimFp((u)) Ĥ
∗(Z/pZ, HF ∗(ϕp)) = 2(m1 + . . .+mp−1),

while 2 dimFp
HF ∗(ϕp)Z/pZ = 2(m1+. . .+mp−1+mp). Indeed, the Tate dif-

ferentials in (9) become multiplications by t and tp−1, and setting Fp[t]/(t
k),

1 ≤ k ≤ p for V in (11) immediately yields the result. □

Remark 12.1. Note that ifmp>0, then the bound (125) is strictly stronger
than the Smith-type inequalities (1), (2), which are directly analogous to the
classical Smith inequality for Z/pZ-actions on, say, manifolds. Indeed, mp >
0 would correspond to a summand of Fp[Z/pZ] ∼= Fp[t]/(t

p) in HF ∗(ϕp) as a
Fp[Z/pZ]-module, which does contribute to dimFp

HF ∗(ϕp)Z/pZ. We observe
that the algebraic methods used in the proof of this bound work in the
classical setting of the Smith inequality (see [7, 8, 26]), for example when
the space in question is a finite simplicial complex and the Z/pZ-action is
simplicial, and provide a sharpening thereof. We have not found this sharper
version in the literature. Of course in the classical setting, quite a lot more
than the Smith inequality is known by now. For example, the cohomology
of the fixed point set of a Z/pZ-action was completely described in terms
the associated equivariant cohomology, as a module over both Rp and the
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Steenrod algebra [14]. It would be very interesting to find an analogue of
the latter result in Floer theory.

Corollary 12.2. In particular, if dimFp
HF ∗(ϕ) > dimFp

H∗(W ) then

[ϕp
k

] ̸= 1 in the symplectic mapping class group of W for all k ≥ 0.

This corollary is immediate, since HF ∗(id) ∼= HF ∗(W ) and HF ∗(ϕ) is
invariant under isotopies of exact symplectomorphisms of W cylindrical at
infinity. Furthermore, iterating the inequality of Theorem B we obtain that
dimFp

HF ∗(ϕp
k

) is a non-decreasing function of k ∈ Z≥0.
Furthermore, in both the exact and the symplectically aspherical setting,

denoting for an open interval I ⊂ R, of the form (a, b), a, b ∈ R, or (−∞, b),
b ∈ R, by

HF ∗(ϕ)I

the cohomology of the subcomplex generated by points of action value in I,
and by k · I for k > 0, the interval (ka, kb) in the first case and (−∞, kb)
in the second case, we obtain the following sharpening of Theorem B. We
always assume that the finite endpoints of an interval are not in the spectrum
of the associated Hamiltonian diffeomorphism.

Theorem C. Let ϕ be an exact symplectomorphism of a Liouville domain
W which is cylindrical at infinity or a Hamiltonian diffeomorphism of a
closed symplectically aspherical symplectic manifold. Then the ranks of its
fixed point Floer cohomology in action window I, and that of its p-th iterate
ϕp in action window p · I satisfy the following inequality:

dimFp
HF ∗(ϕ)I ≤ dimFp

(HF ∗(ϕp)p·I)Z/pZ ≤ dimFp
HF ∗(ϕp)p·I .

We remark that this inequality is invariant with respect to shifts of
the relevant action functionals, and therefore makes sense independently of
them. Furthermore, we note that Theorem C below is interesting for Hamil-
tonian diffeomorphisms on symplectically aspherical symplectic manifolds,
even though the total cohomology is trivial, in the sense that in this case
HF ∗(ϕ) ∼= HF ∗(id) ∼= H∗(M) for all ϕ ∈ Ham(M,ω).

In both settings, we can consider the system (HF ∗(ϕ)<t, πs,t) where t ∈
R, s≤ t, and HF ∗(ϕ)<t :=HF ∗(ϕ)(−∞,t), while πs,t : HF ∗(ϕ)<s→HF ∗(ϕ)<t

is the map induced by inclusions. In case ϕ is non-degenerate, it was observed
in [38] that this system is a persistence module with certain additional con-
structibility properties. It therefore has an associated finite barcode, deter-
mined uniquely up to permutation: a finite multiset B(ϕ) = {(Ij ,mj)} of
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intervals of the form Ij = (aj , bj ] or (aj ,∞), and multiplicities mj ∈ Z>0.
One of the properties of such a barcode is that the number of infinite bars,
with multiplicities, is equal to the total dimension B(ϕ,Fp) ofHF

∗(ϕ), which
in case of ϕ a Hamiltonian diffeomorphism of a closed symplectic manifold
coincides with the total Betti number B(Fp) = dimFp

H∗(M,Fp) of the sym-
plectic manifold. We denote by K(ϕ,Fp) the number of finite bars in this
barcode, counting with multiplicities. In the non-degenerate case, the num-
ber N(ϕ) of generators of the Floer complex, which is the number of con-
tractible fixed points of ϕ in the Hamiltonian case, and the number K(ϕ,Fp)
satisfy the relation

N(ϕ) = 2K(ϕ,Fp) +B(ϕ,Fp).

In the Hamiltonian case this reads

N(ϕ) = 2K(ϕ,Fp) +B(Fp).

Furthermore, we have the identities for non-spectral t, a, b ∈ R,

dimHF ∗(ϕ)(−∞,t) =
∑

t∈Ij
mj ,

dimHF ∗(ϕ)(t,∞) =
∑

t∈Ij , finite
mj +

∑

t/∈Ij , infinite
mj ,

dimHF ∗(ϕ)(a,b) =
∑

b∈Ij ,a/∈Ij
mj +

∑

b/∈Ij ,a∈Ij
mj .

In the Hamiltonian case, we normalize actions in such a way that the
barcode of id consists of B(Fp) infinite bars starting at 0. In the closed sym-
plectically aspherical case this is ensured by requiring that the Hamiltonian
H ∈ H generating ϕ have zero mean over M for all t ∈ [0, 1].

Theorem C has the following two applications. First, it gives a new proof
of a celebrated “no-torsion” theorem of Polterovich for the Hamiltonian
group of closed symplectically aspherical manifolds.

Theorem D (Polterovich [37]). Let ϕ ∈ Ham(M,ω) be a Hamiltonian
diffeomorphism of a symplectically aspherical symplectic manifold, such that
ϕk = 1 for some k ∈ Z>1. Then ϕ = id.

Proof. Our new proof proceeds as follows. Let p be a prime dividing k. Then
ϕ1 = ϕk/p satisfies ϕp1 = id. By an easy recursive argument it is therefore
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enough to prove the theorem for all k = p prime. Fix a prime p and suppose
ϕ ̸= id, ϕp = id. Fix Fp as the coefficient field for Floer cohomology. Let c+
and c− be the maximal and minimal starting point of an infinite bar. By
[44, Theorem 1.3] we have ϕ ̸= id if and only if c+(ϕ) > c−(ϕ). Therefore
there exists an interval I = (a, b) with closure contained in R \ {0}, such
that a, b are not in the spectrum of ϕ, pa, pb are not in the spectrum of ϕp,
and

dimFp
HF ∗(ϕ)I > 0.

Then by Theorem C, we obtain dimFp
HF ∗(ϕp)p·I ≥ 1. However, since ϕp =

id, and 0 /∈ p · I,

dimFp
HF ∗(ϕp)p·I = 0.

This is a contradiction that finishes the proof. □

The spectral norm is given in our setting [44] by γ(ϕ) = c+(ϕ)− c−(ϕ).
In the wake of arguments in [51], we prove the second application of The-
orem C which yields information of the growth rate of the number of fixed
points of ϕp

k

in terms of the spectral distance γ(ϕp
k

) of ϕp
k

to the identity
diffeomorphism.

Theorem E. Let ϕ ∈ Ham(M,ω) be a Hamiltonian diffeomorphism of a
closed symplectically aspherical symplectic manifold, such that ϕp

k

for all
k ≥ 0 is non-degenerate. Then setting N(ϕp

k

) for the number of contractible
fixed points of ϕp

k

we have

lim inf
k→∞

N(ϕp
k

) · γ(ϕp
k

)/pk > 0.

In particular if lim infk→∞ γ(ϕp
k

) = 0, then N(ϕp
k

) grows super-linearly in
pk.

By [44] γ is continuous in the Hofer metric, while by [9] γ is continu-
ous in the C0 topology on the Hamiltonian group. Hence we obtain that if
dC0(ϕp

k

, id)→ 0 or dHofer(ϕ
pk , id)→ 0 as k →∞ then N(ϕp

k

) grows super-
linearly in pk.

Finally, it is conjectured that lim inf l→∞ γ(ϕl) > 0, and Theorem E is to
the best of our knowledge a new result in this direction. We refer to [25] for
further discussion of this question.
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Remark 12.3. We expect that using further arguments related to persis-
tence modules, and the Conley conjecture [21], one may extend Theorem
E to arbitrary Hamiltonian diffeomorphisms ϕ, by replacing, for a possibly
degenerate ψ ∈ Ham(M,ω) the number N(ψ) by the number N(ψ,Fp) of
the endpoints of bars in the barcode of ψ. Of course for ψ non-degenerate
N(ψ) = N(ψ,Fp). These questions shall be investigated in further work [39].

Proof. Letting βtot(ϕ), for a non-degenerate Hamiltonian diffeomorphism ϕ,
be the sum of the lenghts of the finite bars in B(ϕ), with Fp coefficients, and
letting β(ϕ) be the maximal length of a finite bar, we shall prove that

(126) βtot(ϕ
p) ≥ p · βtot(ϕ).

This implies that

βtot(ϕ
pk) ≥ pk−k0 · βtot(ϕ

pk0

)

for all k ≥ k0. Since the number K(ϕp) = 1
2(N(ϕp)−B(Fp)) of finite bars

in the barcode is finite, we obtain

K(ϕp
k

)β(ϕp
k

) ≥ pk−k0βtot(ϕ
pk0

).

However, by [30, Theorem C] (see also [51, Proposition 9]) γ(ϕp
k

) ≥ β(ϕp
k

),
hence we get that

(N(ϕp
k

)−B(Fp)) · γ(ϕ
pk) ≥ 2pk−k0βtot(ϕ

pk0

).

Now, by the argument of [42, Theorem A], N(ϕp
k

) is unbounded. As it
is clearly non-decreasing, this means that there exists k0 such that for all
k ≥ k0, N(ϕp

k

) > B(Fp) whence βtot(ϕ
pk) > 0. Then for all k ≥ k0,

N(ϕp
k

)γ(ϕp
k

) ≥ pkc,

where c = 2p−k0βtot(ϕp
k0 ) > 0.

It remains to prove (126). We claim that for each generic point t ∈ R, the
number m(t,B(ϕ)) of finite bars of B(ϕ) containing t is at most the number
m(p · t,B(ϕp)) of finite bars of B(ϕp) containing p · t. Indeed, by applying
Theorem C to the windows (−∞, t) and (t,∞), and taking the sum, we get
that

2 ·m(t,B(ϕ)) +B(Fp) ≤ 2 ·m(p · t,B(ϕp)) +B(Fp),

or as required,

m(t,B(ϕ)) ≤ m(p · t,B(ϕp)).

Now, (126) follows by taking integrals with respect to t. □
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Appendix A. Orientations and signs

As we need to work with Fp coefficients when defining the relevant Floer
cochain groups and various operations, in this appendix we discuss how to
choose consistent orientations on our moduli spaces in order to obtain well-
defined signed counts in Sections 5, 6, 8. The material here is standard, but
it was to the best of our knowledge not applied in the situation that we
work in. We refer for example to [1, 49, 61] for a detailed discussion of this
approach in general and to [62] for a discussion in the case of S1-equivariant
cohomology which is similar to our setting.

Let S̊ = S \ (Z+ ∪ Z−) be a punctured Riemann surface, where Z± =⋃p±

i=1{z
±
i } are finite subsets of a closed Riemann surface S. One can equip

it with cylindrical ends

ϵ−i : (−∞,−1]× S1 → S̊ and ϵ+j : [1,+∞)× S1 → S̊

for i = 1, · · · , p−, j = 1, · · · , p+.

We consider the solutions u : S̊ → R×Mϕ to the perturbed Cauchy-
Riemann equation of the form

(A.1) (du− Yw(s)) ◦ j = Js,t,w(s) ◦ (du− Yw(s)),

where w(s) ∈ P i,mα is a parametrized Morse flow line of the Z/pZ-equivariant
Morse function on S∞ and for z ∈ S∞, Yz ∈ Ω1(S̊, T (R×Mϕ)). Further-
more, the solution u satisfies the asymptotic conditions

(A.2) lim
s→±∞

u(ϵ±i (s, t)) = γ±i (t), i = 1, · · · , p±

for some sets of Reeb orbits Γ± =
⋃p±

i=1{γ
±
i } respectively at the positive and

the negative ends of this symplectization R×Mϕ. We denote by M(Γ+,Γ−)
the moduli space of solutions to the equation (A.1) satisfying (A.2) modulo
automorphisms. We will first explain how to orient this moduli space as
follows. Given any path Ψ(t) for t ∈ [0, 1] in Sp(2n) such that Ψ(0) = id
and det(id−Ψ(1)) ̸= 0, one can reparametrize Ψ(t) so that it is constant for
t near {0, 1} and associate it with a loop of symmetric matrices A(t) that
satisfies

Ψ̇(t) = J0A(t) ·Ψ(t).

Such a loop A(t) will be called nondegenerate if det(id−Ψ(1)) ̸= 0. For non-
degenerate A(t), we denote by O+(A) and O−(A) the spaces of all operators
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of the form

DΨ : W 1,p(C,R2n)→ Lp(C,R2n), p > 2(A.3)

DΨ(X) = ∂sX + J0∂tX + Â ·X,

where Â ∈ C0(C, gl(2n)) is required to satisfy

Â(es+2πit) = A(t) for s≫ 0, if DΨ ∈ O+(A),

Â(e−s−2πit) = A(t) for s≪ 0, if DΨ ∈ O−(A).

Similarly, for collections of loops of nondegenerate symmetric matrices

Γ− = {A−
i (t)}1≤i≤p− and Γ+ = {A+

j (t)}1≤j≤p+

corresponding to paths Ψ−
i (t) and Ψ+

j (t) in Sp(2n) for i = 1, · · · , p− and j =
1, · · · , p+ respectively, one defines O(Γ−,Γ+) as the space of all operators

D : W 1,p(S̊,R2n)→ Lp(S̊,R2n), p > 2

such that there exists Â ∈ C0(S̊, gl(2n)) satisfying the following conditions
on all the cylindrical ends

Â(ϵ−i (s, t)) = A−
i (t) for s≪ 0 and Â(ϵ+j (s, t)) = A+

j (t) for s≫ 0,

and the operator D coincides with ∂sX + J0∂tX +A±
i ·X on the positive

and negative ends respectively.
One can verify that O+(A), O−(A) and O(Γ−,Γ+) consist of Fredholm

operators. There are determinant line bundles Det(O±(A)), Det(O(Γ−,Γ+)
defined over the spaces O±(A) and O(Γ−,Γ+), whose fibers over an element
D in O±(A) or O(Γ−,Γ+) are given by the determinant line bundle det(D)
of the Fredholm operator D (see [64]). If we fix nondegenerate asymptotic
data A(t) and Γ±, the spaces O±(A) and O(Γ−,Γ+) are contractible. This
implies that line bundles Det(O±(A)) and Det(O(Γ−,Γ+) are trivial for fixed
asymptotic data.

For given nondegenerate asymptotic data Γ− and Γ+, we consider the
following Fredholm operators

K ∈ O(Γ−,Γ+) and L+
j ∈ O−(A

+
j ) for j = 1, . . . , p+ or

L−
i ∈ O+(A

−
i ) and K ∈ O(Γ−,Γ+) for i = 1, . . . , p− or

K1 ∈ O(Γ−
1 ,Γ

+
1 ) and K2 ∈ O(Γ−

2 ,Γ
+
2 ) and p

+
1 = p−2 .
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There is a linear gluing operation, denoted asK#ρL, for Fredholm operators

K and L defined on the glued Riemann surfaces
⋃p−

i=1C#ρS̊, S̊#ρ
⋃p+

j=1C

and S̊1#ρS̊2 under the identifications

S̊ ⊃ ϵ−i ([ρ, 2ρ]× S
1)→ {z | eρ ≤ |z| ≤ e2ρ} ⊂ C :

(s, t) 7→ e3ρ−s−2πit,

S̊ ⊃ ϵ+j ([ρ, 2ρ]× S
1)→ {z | eρ ≤ |z| ≤ e2ρ} ⊂ C :

(s, t) 7→ es+2πit.

For ρ≫ 0, we then obtain the glued operators K#ρ{L
+
j }

p+

j=1, {L
−
i }

p−

i=1#ρK

and K1#ρK2 in O−(A−), O+(A+) and O(Γ−
1 ,Γ

+
2 ) in each case. With respect

to this gluing operation, it is shown in [18, Proposition 9] that there are
canonical isomorphisms

det(K#ρ{L
+
j }

p+

j=1)
∼= det(K)⊗ det(L+

1 )⊗ · · · ⊗ det(L+
p+)(A.4)

det({L−
i }

p−

i=1#ρK) ∼= det(L−
1 )⊗ · · · ⊗ det(L−

p−)⊗ det(K)

det(K1#ρK2) ∼= det(K1)⊗ det(K2),

up to multiplication by a positive real number.
We now proceed to various operations. For any Jt ∈ J(Mϕ), the complex

vector bundle (γ∗T (R×Mϕ), Jt) over S1 can be trivialized. We choose a
trivialization along the Reeb orbit γ(t) given by ξ(t) : R2n → Tγ(t)(R×Mϕ)
and obtain a path Ψx(t) in Sp(2n) as the composition of

R
2n ξ(0)
−−→ Tγ(0)M̂

dψt
H−−→ Tγ(t)M̂

ξ−1(t)
−−−−→ R

2n.

Given Reeb orbits γ−i (t) and γ+j (t) in the positive and the negative ends

of R×Mϕ, we denote by A−
i (t) and A

+
j (t) the loops of symmetric matrices

which generate Ψi−(t) and Ψj+(t), respectively. The construction in (A.3)
yields operators DΨ

γ
−
i

and DΨ
γ
+
j

in O−(A
−
i ) and O+(A

+
j ) respectively. For

a Reeb orbit γ ∈ Γ+ ∪ Γ− we introduce the notation

oγ := | det(DΨγ
)|

where | · | denotes the graded abelian group generated by the two orienta-
tions of det(DΨγi

) and modulo the relation that the sum vanishes. In the

case that there is a free R action on the moduli space M̃(Γ−,Γ+) of solu-
tions to (A.1), we take u ∈ M̃(Γ−,Γ+) and define ou := | det(Du)|, where
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Du ∈ O(Γ−,Γ+) is the linearization of the Floer equation at u with respect

to a trivialization of u∗(TM̂)→ R× S1 that agrees with the trivializations

of γ∗i (TM̂)→ S1 as s→ ±∞. For different choices of trivializations, Lemma
13 in [18] and Proposition 1.4.10 in [1] show that the corresponding determi-
nant line bundles det(DΨγi

) and det(Du) are isomorphic. This implies that
oγ−

i
, oγ+

j
and ou are well-defined for i = 1, · · · , p− and j = 1, · · · , p+. By the

gluing property (A.4), we have a canonical isomorphism

ou ⊗ oγ−
1
⊗ · · · ⊗ oγ−

p−

∼= oγ+
1
⊗ · · · ⊗ oγ+

p+
.

Together with the fact that ou ∼= |R∂s| ⊗ |M(Γ−,Γ+)|, where M(Γ−,Γ+)
= M̃(Γ−,Γ+)/R, we obtain an isomorphism

(A.5) oγ+
1
⊗ · · · ⊗ oγ+

p+

∼= |R∂s| ⊗ |M(Γ−,Γ+)| ⊗ oγ−
1
⊗ · · · ⊗ oγ−

p−
,

where R∂s is the 1-dimensional subspace of ker(Du) spanned by translation
in positive s-direction. (If there is no translation automorphism for u in the
case of the continuation maps, then we set ou ∼= |M(Γ−,Γ+)|.) For

∑
i |γ

−
i | =∑

j |γ
+
j |+ 1, we have that TM(Γ−,Γ+) is canonically trivial as M(Γ−,Γ+)

is a 0-dimensional manifold. By comparing the fixed orientations on both
sides of (A.5), we obtain an isomorphism

(A.6) ϵu : oγ+
1
⊗ · · · ⊗ oγ+

p+
→ oγ−

1
⊗ · · · ⊗ oγ−

p−
.

Now the linearization of the equation (A.1) yields a linear map

D : R⊕ TwQ
i,m
α ⊕W 1,p(R× S1, u∗(TM̂))→ Lp(R× S1, u∗(TM̂)),

where p > 2, and Q
i,m
α =W u(Zmi ) ∩W s(Z0

α)/R, where W
u(Zmi ) is the un-

stable manifold of the critical point Zmi of index i on S∞, and similarly
W s(Z0

α) is the stable manifold of Z0
α inside SN for N large enough. The

orientations of the spaces W u(Zmi ), W s(Z0
α) can be chosen compatibly with

the inclusions SN → SN
′

, N < N ′. The Floer data (Jw,s,t, Hw,s,t) is regular
if the linear map D is surjective. This is equivalent to surjectivity of the
linear map TwQ

i,m
α → Coker(Du), where Du is the linearized operator as-

sociated to an element (u,w) in Mi(Γ
−,Γ+) with w fixed, and the map is

given by the restriction of D to the TwQ
i,m
α summand. In this case there is
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an isomorphism of determinant lines

(A.7) det(TuM̃i(Γ
−,Γ+)) ∼= det(Du)⊗ det(TwQ

i,m
α ),

which can either be seen to come from the theory of Fredholm triples [61,64]
or from the exact sequence:

(A.8) 0→ TuM̃i(Γ
−,Γ+)→ TwQ

i,m
α ⊕ ker(Du)→ Coker(Du)→ 0,

where the first map is given by p⊕ q, where p is the projection to TwQ
i,m
α ,

and q is the projection to ker(Du) inside TuM̃i(Γ
−,Γ+) = ker(D); the second

map is the restriction of D post-composed with projection to Coker(Du).
By trivializing det(R) by ∂s for s the natural coordinate on R, (A.7)

induces the isomorphism

(A.9) det(TuMi(Γ
−,Γ+)) ∼= det(Du)⊗ det(TwQ

i,m
α ).

Now (A.7), (A.9) combined with an isomorphism coming from gluing
theory yields an isomorphism

| det(TuMi(Γ
−,Γ+))| ⊗ oγ+

1
⊗ · · · ⊗ oγ+

p+
(A.10)

∼= | det(TwQ
i,m
α )| ⊗ oγ−

1
⊗ · · · ⊗ oγ−

p−
.

We choose a coherent orientation for each unstable manifold W u(Zmi ) of
a critical point Zmi on S∞, and on the unstable manifolds of Z0

α in SN

for various N, compatibly with the inclusions. This induces a coherent sys-
tem of orientations on the spaces Pi,mα and Q

i,m
α . For |γ0| = |γ1| − i− 1 + α,

the moduli space M
i,m
α (Γ−,Γ+) is zero-dimensional and TuM

i,m
α (Γ−,Γ+) is

canonically trivial. Now by (A.10), one obtains an isomorphism

ϵi,mα (u) : oγ+
1
⊗ · · · ⊗ oγ+

p+
→ oγ−

1
⊗ · · · ⊗ oγ−

p−

for each u in M
i,m
α (Γ−,Γ+). When p+ = p and p− = 1, then this gives the

signs in the definition of the Z/pZ-equivariant product map, and similarly
when p+ = 1 and p− = p, this defines the signed count for the coproduct
map. For example, the operations P i,mα that define the Z/pZ-equivariant
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product map can be then rewritten as

Pi,mα : CF ∗(ϕ)⊗p → CF ∗−i+α(ϕp)(A.11)

Pi,mα |oγ+
0

⊗···⊗o
γ
+
p−1

=
⊕

|γ−|=∑ |γ+

i |−i+α

∑

u∈Mi,m
α (Γ−,Γ+)

ϵi,mα (u).(A.12)

As the construction of the isomorphisms was canonical, it is compatible
with gluing which can be used to show that differentials square to zero, and
that various Leibnitz identities hold. We refer to [1, 49, 61, 62] for further
discussion of canonical orientations and their compatibility properties.

References

[1] M. Abouzaid, Symplectic cohomology and Viterbo’s theorem, Free loop
spaces in geometry and topology, 2015, pp. 271–485.

[2] M. F. Atiyah, Characters and cohomology of finite groups, Inst. Hautes
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Birkhäuser Verlag, Basel, 1993.

[44] , On the action spectrum for closed symplectically aspherical
manifolds, Pacific J. Math. 193 (2000), no. 2, 419–461.

[45] P. Seidel, Floer homology and the symplectic isotopy problem, Ph.D.
Thesis, University of Oxford, 1997.

[46] , Symplectic Floer homology and the mapping class group, Pacific
J. Math. 206 (2002), no. 1, 219–229.

[47] , Lectures on four-dimensional Dehn twists, Symplectic 4-
manifolds and algebraic surfaces, 2008, pp. 231–267.

[48] , The equivariant pair-of-pants product in fixed point Floer co-
homology, Geom. Funct. Anal. 25 (2015), no. 3, 942–1007.

[49] , Fukaya categories and Picard-Lefschetz theory, Zurich Lectures
in Advanced Mathematics, European Mathematical Society (EMS),
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