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We derive a complete asymptotic expansion of generalized Wit-
ten integrals for Hamiltonian circle actions on arbitrary symplec-
tic manifolds, characterizing the coefficients in the expansion as
integrals over the symplectic strata of the corresponding Marsden-
Weinstein reduced space and distributions on the Lie algebra. The
obtained coefficients involve singular contributions of the lower-
dimensional strata related to numerical invariants of the fixed-
point set.
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1. Introduction

Let (M,ω) be a 2n-dimensional connected symplectic manifold with a non-
trivial Hamiltonian action of a compact connected Lie group G and momen-
tum map J :M → g∗, where g∗ denotes the dual of the Lie algebra g of

Formerly known as Benjamin Küster.

1281
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G. If ζ ∈ g∗ is a regular value of J , the corresponding Marsden-Weinstein
symplectic quotient or reduced space M ζ := J −1({ζ})/G is a symplectic orb-
ifold, and if ζ is not a regular value, M ζ is a stratified space which can have
serious singularities. The geometry and topology of M ζ have been exten-
sively studied in the last decades [9, 13, 14, 16, 24, 26] mostly for compact
M , a major tool being the Witten integral and its asymptotic expansion,
which carries important geometric and topological information.

In this paper, we study Witten-type integrals in the case where G = T :=
SO(2) ∼= S1 is the circle group and ζ ∈ t∗ := g∗ is not necessarily a regular
value. While we do not assume M to be compact, we consider compactly
supported integrands. More precisely, we derive a complete asymptotic ex-
pansion of generalized Witten integrals of the form

(1.1) Iζa,σ(ε) :=

ˆ

t

ˆ

M
ei(J (p)−ζ)(x)/εa(p) dM(p)σ(x) dx

for arbitrary ζ ∈ t∗ in integer powers of ε > 0, where t := so(2) is the Lie
algebra of T for which we fix an identification t ∼= R, a ∈ C∞

c (M) a compactly
supported amplitude, σ ∈ S(t) a Schwartz function on t, dM := ωn/n! the
symplectic volume form on M , and dx the Lebesgue measure on t ∼= R.

We regard

(1.2) Iζa,σ(ε) = Iζ(ε)(a⊗ σ)

as the evaluation of a distribution Iζ(ε) ∈ (D(M)⊗ S(t))′ at the test func-
tion a⊗ σ ∈ D(M)⊗ S(t). By complete asymptotic expansion we mean an
expansion of Iζ(ε) in (D(M)⊗ S(t))′ of the form

(1.3) Iζ(ε) ∼ εj0(ζ)
∞∑

j=0

εjAζj , Aζj ∈ D′(M)⊗ S ′(t), j0(ζ) ∈ Z,

that is, for each J0 ∈ N0 and each compact set K ⊂M there is an NJ0,K,ζ ∈
N0 and a family of differential operators {Dl

J0,K,ζ
}0≤l≤NJ0,K,ζ

onM such that
for all σ ∈ S(t) and all a ∈ C∞

c (M) with supp a ⊂ K one has

∣∣∣Iζa,σ(ε)− εj0(ζ)
J0∑

j=0

εjAζj (a⊗ σ)
∣∣∣ ≤

NJ0,K,ζ∑

k,l=0

∥∥∥Dl
J0,K,ζa

∥∥∥
∞

∥∥σ(k)
∥∥
∞ε

j0(ζ)+J0+1.
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Here D(M) denotes the space of test functions onM , given by C∞
c (M) with

the test function topology; its dual D′(M) is the space of distributions1 on
M , and D′(M)⊗ S ′(t) embeds into (D(M)⊗ S(t))′. We are specially inter-
ested in the dependence of the coefficient distributions Aζj and the leading
order

ℓ(ζ) := j0(ζ) + inf
{
j ∈ N0 | Aζj ̸= 0

}

on the parameter ζ ∈ t∗, which may be a regular or singular value of J .
Distributions of the form Iζ(ε) arise in the study of the Fourier trans-

form of Duistermaat-Heckman-type distributions. The latter are tempered
distributions Lϱ ∈ S ′(t) associated with a compactly supported equivariant
differential form ϱ on M , that is a polynomial map ϱ : t → Ωc(M)T , by

(1.4) Lϱ(x) :=

ˆ

M
ei(J(x)−ω)ϱ(x), x ∈ t, J(x)(p) := J (p)(x), p ∈M.

The connection between the integrals (1.1) and the distributions (1.4) is
explained in detail in Section 2.2, where we also describe how the original
integral studied by Witten [26] arises as a special case of the generalized Wit-
ten integral (1.1). If M is compact and ϱ = 1, Lϱ corresponds to the inverse
Fourier transform of the pushforward J∗(dM) of the symplectic volume form
along J . As was discovered by Duistermaat and Heckman [5], J∗(dM) is a
piecewise polynomial measure on t∗, or equivalently, Lϱ is exactly given by
the leading term in the stationary phase approximation. This can be seen
as a special instance of the localization formula of Berline-Vergne [2, 3] and
Atiyah-Bott [1], one of the central principles in equivariant cohomology. For
generalM and ϱ, one would expect that the coefficients Aζj in the expansion

of Iζ(ε) are given by piecewise polynomial measures on t∗ as well, and our
results show that this is indeed the case. Furthermore, as will be discussed
below, these measures have a geometric meaning in terms of the symplectic
data of M ζ .

If ζ ∈ t∗ is a regular value of J , the phase function ψζ(p, x) := J (p)(x)−
ζ(x) in (1.1) is a Morse-Bott function and the stationary phase theorem

1In this paper, we shall identify distributions with distribution densities onM via
the symplectic volume form dM , which defines a strictly positive smooth density
on M .
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yields an expansion (1.3) of Iζ(ε) with j0(ζ) = ℓ(ζ) = 1 and

(1.5)

Aζ0(a⊗ σ) = 2πσ(0)

ˆ

M ζ

⟨a⟩T dM ζ ,

Aζj (a⊗ σ) = σ(j)(0)

ˆ

M ζ

〈
Dζ
ja
〉
T
dM ζ ,

where Dζ
j is a differential operator of order j defined near J −1({ζ}), Dζ

0 is

just multiplication by 2π, dM ζ is the symplectic volume form on the orbifold
M ζ = J −1({ζ})/T , and ⟨f⟩T (T · p) :=

´

T f(g · p) dg denotes the function
on M/T defined by integrating f ∈ C∞

c (M) over an orbit T · p ⊂M using
the Haar measure dg on T fixed by our identification t ∼= R. Furthermore,
Dζ
j is transversal to J −1({ζ}), and the coefficients in (1.5) depend smoothly

on ζ in the sense that if V ⊂ t∗ is an open set consisting entirely of regular
values of J , then the function V ∋ ζ → Aζj (a⊗ σ) ∈ C is smooth for each
j, a, and σ, see Proposition 2.5 for more details.

When ζ is a singular value of J , serious difficulties arise in the study
of the integrals (1.1), since then the stationary phase principle cannot be
applied. Moreover, the behavior of the coefficients in the regular expansion
(1.5) as ζ approaches a singular value is unclear a priori. In this paper,
we address both of these problems. In order to state our results, consider
for an arbitrary ζ ∈ t∗ the stratification of the symplectic quotient M ζ =
J −1({ζ})/T by infinitesimal orbit types

(1.6) M
ζ = M

ζ
top ⊔ M

ζ
sing, M

ζ
ℵ := (J −1({ζ}) ∩M(hℵ))/T,

where M(hℵ) denotes the stratum of M of infinitesimal orbit type (hℵ) with
htop = {0} and hsing = t. M

ζ
top is an orbifold called the top stratum. It is

either dense in M ζ or empty, which happens iff T acts trivially on J −1({ζ}).
The orbifold M

ζ
top inherits a symplectic form ωζtop uniquely characterized

by i∗ω = π∗ωζtop, where i : J −1({ζ}) ∩M(htop) →M is the inclusion and π :

J −1({ζ}) ∩M(htop) → M
ζ
top the orbit projection. Writing MT for the space

of fixed-points of the T -action on M and F for the set of all connected
components of MT , each F ∈ F is a symplectic submanifold of (M,ω) on
which J is constant, and the singular values of J are {J (F ) : F ∈ F} ⊂ t∗.
The space M

ζ
sing can be identified with the union of all F ∈ F with J (F ) =

ζ. Each F ∈ F provides certain numerical invariants of the Hamiltonian
T -space (M,ω,J ). The simplest is the codimension of F in M , an even
number denoted by codimF , which is non-zero thanks to our assumptions
that the T -action onM is non-trivial and thatM is connected. Moreover, the
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behavior of J near F intrinsically determines two non-negative even integers
n±F fulfilling n+F + n−F = codimF . Technically, n+F and n−F arise as the positive
and negative indices of inertia of some non-degenerate quadratic form QF
on RcodimF assigned to F , see Section 2.3. We therefore call F definite
with sign sF ∈ {+,−} if nsFF = codimF and indefinite otherwise. With these
preparations, we can state our first main result, proved in Section 5.1.

Theorem 1.1. For each ζ ∈ t∗ ∼= R, the generalized Witten integral (1.1)
has an asymptotic expansion

Iζ(ε) ∼ ε

∞∑

j=0

εjAζj

in (D(M)⊗ S(t))′ with coefficient distributions of the form

Aζj = (Aζj )top + (Aζj )sing

given by

(1.7)

(Aζj )top(a⊗ σ) = σ(j)(0)

ˆ

M
ζ
top

〈
Dζ
ja
〉
T
dM ζ

top,

(Aζj )sing(a⊗ σ) =
∑

F∈F :J (F )=ζ,
F∩supp a ̸=∅

Aj,F (a⊗ σ),

where Aj,F = 0 unless j ≥ 1
2codimF − 1, in which case one has

Aj,F (a⊗ σ) =





σ
[j]
∓ (0)

ˆ

F
Dj,Fa dF, F definite, sF = ±,

σ
[j]
+ (0)

ˆ

F
D+
j,Fa dF + σ

[j]
− (0)

ˆ

F
D−
j,Fa dF, F indefinite.

The objects occurring here are as follows:

• S(t) ∋ σ 7→ σ
[j]
± (0) ∈ C are tempered distributions defined by

(1.8) σ
[j]
± (0) :=

ij

2π

〈
ξj±, σ̂

〉
:=

(±i)j
2π

ˆ ∞

0
σ̂(±ξ)ξj dξ, j ∈ N0,

where we use our identification R ∼= t∗ and σ̂ is the Fourier transform of
σ, normalized such that

σ
[j]
+ (0) + σ

[j]
− (0) = σ(j)(0);
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• Dζ
j is a differential operator of order j defined on a neighborhood of

J −1({ζ}) ∩M(htop) in M(htop), transversal to J −1({ζ}) ∩M(htop), and for

j = 0 one has Dζ
0 = 2π;

• Dj,F (in the definite case) and D±
j,F (in the indefinite case) are ζ-

independent differential operators of order 2j + 2− codimF defined on
a neighborhood of F in M , and for the lowest index j = 1

2codimF − 1
these operators equal the following constants:

DcodimF/2−1,F = 2codimF/2−1CF ,

CF = (2π)2
(πi)codimF/2−1

|λF1 · · ·λFcodimF/2|(codimF/2− 1)!
,

D±
codimF/2−1,F = N±

F CF , N±
F ∈ Z \ {0},

(1.9)

where λF1 , . . . , λ
F
codimF/2 ∈ Z \ {0} are the weights of the fiber-wise T -action

on the symplectic normal bundle of F in M , see Section 2.3, and the non-
zero integers N±

F are explicitly determined by the invariants n+F and n−F ,
see (5.4);

• dM ζ
top := (ωζtop)

n−1/(n− 1)! and dF := ωdimF/2/(dimF/2)! are the sym-
plectic volume forms.

In particular, the leading order of the asymptotic expansion is given by

ℓ(ζ) =

{
1, M

ζ
top ̸= ∅,

inf{codimF/2 : F ∈ F , J (F ) = ζ}, M
ζ
top = ∅.

Furthermore, the operators Dζ
j , Dj,F , and D

±
j,F are natural in the following

sense: if (M ′, ω′,J ′) is another Hamiltonian T -space and Φ :M →M ′ an
isomorphism of Hamiltonian T -spaces, then the above statements hold for
(M ′, ω′,J ′) with the operators

(Dζ
j )

′ := Φ∗D
ζ
j , (Dj,F ′)′ := Φ∗Dj,Φ−1(F ′),

(D±
j,F ′)

′ := Φ∗D
±
j,Φ−1(F ′), F ′ ∈ F ′,

where we use the notation Φ∗D(f) := D(f ◦ Φ) for a differential operator
D defined on an open subset U ⊂M and f ∈ C∞(Φ(U)), and F ′ = {Φ(F ) :
F ∈ F} is the set of connected components of M ′T .

Remark. 1) If ζ is a regular value of J , then Theorem 1.1 reduces to the
usual asymptotic expansion (1.5) since (Aζj )sing = 0 and M

ζ
top = M ζ .
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2) The constants in (1.9) are non-zero, so the singular contributions (Aζj )sing
do occur in general.

3) We emphasize that the distributions (Aζj )sing depend on ζ only via the
condition J (F ) = ζ in the sum in (1.7); the individual distributions Aj,F
are independent of ζ.

4) Note that the sum over all F ∈ F with F ∩ supp a ̸= ∅ in (1.7) is finite
because supp a is compact. Moreover, as each compact subset of M in-
tersects only finitely many connected components F ∈ F non-trivially,
one has for each j ∈ N0 the convergence of distributions

(Aζj )sing =
∑

F∈F :J (F )=ζ

Aj,F in D′(M)⊗ S ′(t),

where the sum on the right hand side may be infinite because we do not
assume M to be compact.

5) The expressions Aζj in the expansion of Iζ(ε) are given in terms of the

piecewise polynomial measures ξj± ∈ S ′(t∗), j ∈ N0. This was to be ex-
pected from the Duistermaat-Heckman theorem or, more generally, from
the localization principle. But since the latter only applies to equivari-
antly closed differential forms, while we are considering general ampli-
tudes, we could not rely on localization. Also notice that the remainder
in the expansion of the generalized Witten integral does not vanish in
general – this is an exclusive phenomenon for equivariantly closed differ-
ential forms and constitutes the essence of the localization principle. In
fact, localization implies that the expansion of Theorem 1.1, when ap-
plied to the original Witten integral (2.9), consists only of finitely many
terms.

Theorem 1.1 shows that the coefficients in the asymptotic expansion are
sums of two qualitatively different terms: for each ζ ∈ t∗ there are regular
contributions (Aζj )top of the same form as the coefficients in (1.5), and there

are singular contributions (Aζj )sing, which are tensor products of distribu-

tions on M supported in J −1({ζ}) ∩MT and some mildly exotic tempered
distributions on t. In particular, there are singularly leading terms associated
with each fixed point set component F ∈ F fulfilling J (F ) = ζ, occurring
at j = 1

2codimF − 1. In the latter, the obtained distribution on the mani-
fold is simply integration over F , up to a constant determined uniquely by
the numerical invariants n+F , n

−
F and the weights λF1 , . . . , λ

F
codimF/2. If ζ is a

regular value, the singular contributions vanish. For general singular values
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of ζ, both regular and singular contributions appear, and in the special case
that M

ζ
top = ∅, the regular contributions vanish and the singularly leading

terms actually make up the leading term of the asymptotic expansion. Let us
also emphasize that all coefficient distributions in the asymptotic expansion
have a clear symplectic meaning given in terms of the symplectic structure
of the strata of M ζ .

Note that Theorem 1.1 gives an asymptotic expansion for each individual
ζ ∈ t∗ and makes no statement about the continuity of the obtained coeffi-
cients upon variations of ζ. This question is dealt with in Section 5.2, where
we prove the following statement on the (dis)continuity of the coefficients,
our second main result.

Theorem 1.2. For every ζ0 ∈ t∗ ∼= R, a ∈ C∞
c (M), σ ∈ S(t), and j ∈ N0,

one has

lim
ζ→ζ0

±(ζ−ζ0)>0

Aζj (a⊗ σ) = σ(j)(0)

(
ˆ

M
ζ0
top

〈
Dζ0
j a
〉
T
dM ζ0

top

+
∑

F∈F :J (F )=ζ0,
codimF/2−1≤j,
F indefinite,
F∩supp a ̸=∅

ˆ

F
D∓
j,Fa dF +

∑

F∈F :J (F )=ζ0,
codimF/2−1≤j,
F definite, sF=±,
F∩supp a ̸=∅

ˆ

F
Dj,Fa dF

)
.

The previous theorem shows that for j > 0 the functions t∗ ∋ ζ 7→ Aζj (a⊗
σ) ∈ C are in general highly discontinuous at each singular value ζ = ζ0,
where the discontinuities are three-fold:

1) the family of definite fixed point sets F contributing to the limit depends
on the sign in the limit. In particular, this produces discontinuities at
j = codimF/2− 1 which can be quantitatively calculated in terms of
explicit scalar multiples of

´

F a dF using (1.9) and (5.4);

2) the operators occurring in the contributions of the indefinite fixed point
sets F depend on the sign in the limit. In particular, one has

D+
codimF/2−1,F ̸= D−

codimF/2−1,F

by (1.9) since N+
F ̸= N−

F , see (5.4). Again, the discontinuities produced
at j = codimF/2− 1 can be quantitatively calculated in terms of explicit
scalar multiples of

´

F a dF ;
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3) neither when approaching ζ0 from above or below need the limit agree
with the value Aζ0j (a⊗ σ). This is because Aζ0j involves the distributions

σ 7→ σ
[j]
± (0), which occur in neither of the limits, and also due to the fact

that the distributions on the manifold occurring in Aζ0j are different from
those appearing in the limits in Theorem 1.2.

On the other hand, if ζ0 is a regular value of J , then the result of Theorem 1.2
reduces to the statement that the coefficients in the regular asymptotic ex-
pansion (1.5) depend continuously on ζ at ζ0.

Methods. To overcome the problems arising in the asymptotic expan-
sion of the generalized Witten integral at singular values of the momentum
map, we do not perform a desingularization procedure, but implement a
destratification process which consists of several steps. First, we linearize
the phase function near each F ∈ F using the Guillemin-Sternberg-Marle
local normal form and a classical result by Whitney on smooth extensions
of even functions defined on half-spaces. This linearization is not the result
of a monomialization of the phase function, so that no desingularization of
the critical set has taken place. As a result, for each F ∈ F one obtains
an oscillatory integral with a clean critical set but with an integrand which
is not smooth at the singular value J (F ), so that the stationary phase
principle cannot be applied. Instead, in a second step we take the Fourier
transform on the Lie algebra and split the integral at J (F ) to obtain C∞-
amplitudes. In a third step, we Taylor expand the integrand in powers of
ε, resulting in a separation into singular and regular contributions and a
complete asymptotic description for the linearized integral. It is this sepa-
ration of the contributions originating from the different strata that we call
destratification. Finally, we translate the results obtained in the local model
into meaningful expressions that live on the strata of the symplectic quotient
and can be patched together to get the stated global results.

In this work we restricted ourselves to the simplest case of an S1-action
since the derivation of a complete asymptotic expansion of the Witten inte-
gral for arbitrary compact group actions or even torus actions is considerably
more involved. In fact, restricting to circle actions has the advantage that
general phenomena such as the discontinuities of the asymptotic expansion
at singular values due to the contributions by lower-dimensional strata are
clearly visible while the computational effort is reduced to a minimum. An-
other simplification (which occurs for any abelian Lie group) is that we do
not have to distinguish between orbit reduction and point reduction.
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Previous results. For compact Hamiltonian G-manifolds M arising
in geometric invariant theory, an asymptotic expansion of the Witten in-
tegral was derived by Jeffrey, Kiem, Kirwan, and Woolf [9, Theorem 34]
using Parseval’s formula on the Lie algebra g and the localization formula
of Berline-Vergne and Atiyah-Bott on the manifold M . The latter amounts
to performing an exact stationary phase analysis only in the manifold vari-
ables, the critical set in question being clean. The terms in their expansion
are given in terms of piecewise polynomial functions evaluated on a Gaus-
sian. Our approach could be regarded as a singular stationary phase analysis
performed simultaneously in the manifold and Lie algebra variables. In par-
ticular, the vanishing of the Lie algebra derivatives enforces a localization on
level sets of the momentum map, which in the case of circle actions leads to a
precise description of the coefficients of the piecewise polynomial functions
in the expansion [9, Theorem 34] in terms of integrals on the symplectic
strata of the reduced space. In case that 0 is a regular value of the mo-
mentum map, a stationary phase expansion similar to ours was given for
arbitrary G by Meinrenken [19, Theorem 3.1], generalizing a corresponding
formula of Jeffrey-Kirwan [10, Proposition 8.10]. In case that 0 is a singular
value, the main term in the Witten expansion was implicitly characterized
in [9, Theorem 18] as an integral over a desingularization of the symplectic
quotient, as well as by Lerman and Tolman [16, Theorem 5.1] in the spe-
cial case of S1-actions. As explained above, our approach is not based on a
desingularization but a destratification process, which results in an intrin-
sic symplectic characterization of all coefficients that could not be obtained
before via desingularization techniques.

For non-compact Hamiltonian G-manifolds, the generalized Witten in-
tegral was studied by the second author in [23] in the special case that
M = T ∗N is the cotangent bundle of a smooth manifold N , equipped with
the canonical symplectic form, and the action of G on M is the lift of a
smooth G-action on N . Performing a stationary phase analysis in the Lie
algebra and manifold variables and desingularizing partially, the leading
term of the asymptotic expansion was characterized as an integral on the
top stratum of the reduced space, together with a remainder estimate. Nev-
ertheless, the employed desingularization techniques would require further
development to consider higher order terms; in particular, the singular con-
tributions (Aζj )sing occurring in our asymptotic expansion in Theorem 1.1
were not seen in [23]. Before, Prato and Wu [22] proved a Duistermaat-
Heckman type formula in the non-compact setting under a suitable proper-
ness assumption on the momentum map.
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Applications and outlook. The asymptotic behavior of the Witten
integral plays an essential role in the derivation of residue formulas in equiv-
ariant cohomology, which was the main theme of [9, 10] and [23]. These
formulas, in principle, allow to compute the (intersection) cohomology of
reduced spaces in terms of the equivariant cohomology of the underlying
Hamiltonian space and the fixed-point data of the group action. The mo-
tivation for the present work was to extend the results obtained in [23] for
basic differential forms to arbitrary equivariant differential forms. This re-
quires a complete asymptotic expansion of the Witten integral and not just
a computation of the leading term with a remainder estimate, which was
sufficient to deal with basic forms.

Residue formulas were also applied by Jeffrey and Kirwan [11] to
Riemann-Roch numbers and the Guillemin-Sternberg conjecture under the
assumption that 0 is a regular value of the momentum map. This conjecture
was proved by Meinrenken [19] under similar assumptions relying directly
on the stationary phase expansion of the Witten integral. In the case when
0 is a singular value, the Guillemin-Sternberg conjecture was first proved
by Meinrenken and Sjamaar [18]. Another proof was given by Paradan and
Vergne [21], both approaches being based on desingularizations of the re-
duced space.

In forthcoming papers, we intend to apply the results derived in this
paper to the study of the cohomology of symplectic quotients for general
Hamiltonian circle actions via residue formulas, complementing the previ-
ous works [16] and [9]. In particular, we plan to extend their work to non-
compact manifolds and to interpret the residues in terms of the symplectic
data of the strata of the reduced space. Our destratification approach should
also yield new insights into the Guillemin-Sternberg conjecture for circle ac-
tions.

Structure of the paper. This paper is structured as follows: Section
2 contains a brief introduction to Hamiltonian actions and reduced spaces,
followed by the definition of the Witten integral, and gives normal forms for
the momentum map and the relevant local integrals. In Section 3, complete
asymptotic expansions are derived for the local integrals via a destratifica-
tion process. The coefficients in the local expansions are interpreted geo-
metrically in Section 4. Our main results are then proved in Section 5. A
notation index can be found at the end of this paper.
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2. Background and setup

We begin by introducing some concepts in the general setting of a Hamilto-
nian action of a general compact connected Lie group G, and then specialize
to the circle case G = T = S1.

2.1. Hamiltonian actions and reduced spaces

Let M be a 2n-dimensional symplectic manifold with symplectic form ω.
Assume that M carries a Hamiltonian action of a compact connected Lie
group G of dimension d with Lie algebra g, and denote the corresponding
Kostant-Souriau momentum map by

J :M → g∗, J (p)(X) = J(X)(p),

which is characterized by the property

(2.1) dJ(X) = ιX̃ω ∀ X ∈ g,

where X̃ denotes the fundamental vector field on M associated to X, d
is the de Rham differential, and ι denotes contraction. Note that J is G-
equivariant in the sense that J (k−1p) = Ad ∗(k)J (p). Let (Ω∗

G(M)c, D) be
the complex of compactly supported equivariant differential forms on M .
The elements in Ω∗

G(M)c can be regarded as G-equivariant polynomial maps
g → Ω∗

c(M), where G acts on g by the adjoint action Ad (G) and on the
algebra Ω∗

c(M) of compactly supported differential forms by the pullbacks
associated to the G-action on M . The differential D is then defined by

D(α)(X) := d(α(X)) + ιX̃(α(X)), α ∈ Ω∗
G(M)c.
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We denote the cohomology of the complex (Ω∗
G(M)c, D), which is called the

equivariant cohomology of M , by H∗
G(M)c. Further, let

(2.2) ω := ω − J

be the equivariantly closed extension ω of the symplectic form ω. The ap-
proach used here is usually called the Cartan model.

Remark 2.1 (Sign convention). The sign convention in the definition
of D (and hence ω) varies in the literature. We define D in coherence with
[1], while in [10] one has D(α)(X) := d(α(X))− ιX̃(α(X)), which leads to
ω = ω + J as opposed to our definition (2.2).

From the definition of the momentum map it is clear that the kernel of
its derivative is given by

(2.3) ker dJ |p = (g · p)ω, p ∈M,

where we denoted the symplectic complement of a subspace V ⊂ TpM by

V ω, and g · p := {X̃p : X ∈ g}. Consequently, if ζ ∈ J (M) is a regular value
of J , the level set J −1({ζ}) is a (not necessarily connected) manifold of
codimension 1, and Tp(J −1({ζ})) = ker dJ |p = (g · p)ω, which is equivalent
to

X̃p ̸= 0 ∀ p ∈ J −1({ζ}), 0 ̸= X ∈ g,

compare [20, Chapter 8]. The latter condition means that all stabilizers of
points p ∈ J −1({ζ}) are finite, and therefore either of exceptional or prin-
cipal type, so that J −1({ζ})/Gζ is an orbifold. In addition, in view of the
exact sequence

0 −→ Tp(J −1({ζ})) dιζ−→ TpM
dJ−→ Tζg

∗ −→ 0, p ∈ J −1({ζ}),

where ιζ : J −1({ζ}) →֒M denotes the inclusion, and the corresponding dual
sequence, J −1({ζ}) is orientable because M is orientable, compare [15,
Chapter XV.6].

If ζ is not a regular value, both J −1({ζ}) and J −1({ζ})/Gζ are stratified
spaces. While usually the orbit type stratification [24] is more common, for
our purposes it will be more convenient to consider the infinitesimal orbit
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stratification

J −1({ζ}) =
⋃

(h)

J −1({ζ})(h),

see [18, Section 3]. Its strata consist of infinitesimal orbit type orbifolds,
where an infinitesimal orbit type (h) of the G-action is an equivalence class
of isotropy algebras h ⊂ g, and two such algebras h, h′ are equivalent if there
is an element g ∈ Gζ with h = Ad(g)h′.

Let us now restrict to the case G = T = S1. The infinitesimal orbit type
stratification is then quite simple. In fact, the quotient M ζ = J −1({ζ})/T
is stratified by infinitesimal orbit types according to

(2.4) M
ζ = M

ζ
top ⊔ M

ζ
sing, M

ζ
ℵ := (J −1({ζ}) ∩M(hℵ))/T,

where M(hℵ) denotes the stratum of M of infinitesimal orbit type (hℵ) with
htop = {0} and hsing = t.

Remark 2.2. It can happen that M
ζ
top is empty. For example, if M = R2

with S1 acting by rotations around the origin, the zero level set J −1({0})
consists only of the origin, which is a fixed point.

Since ω is non-degenerate, we see from (2.3) that

p ∈MT =M(hsing) ⇐⇒ dJ |p = 0.

Since J is constant on each F we have

Lemma 2.3. The momentum map J :M → t∗ has no critical points in
M(htop) and its singular values are {J (F ) : F ∈ F}. □

As already mentioned in the introduction, the top stratum M
ζ
top is dense

in M ζ if non-empty and an orbifold, while M
ζ
sing is a smooth manifold, each

of its components being identical to some F ∈ F . Furthermore, each F is a
symplectic submanifold of M , and there is also a natural symplectic form
ωζtop on M

ζ
top, as explained on page 1284.

2.2. The Witten integral

The central objects of our study are generalized Witten integrals of the form
(1.1), and our main tools for their investigation will be Fourier analysis and
singular stationary phase expansion. Fix an identification t ∼= t∗ ∼= R and let
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dx and dζ be measures on t and t∗ that correspond to Lebesgue measure by
the fixed identifications, respectively. Denote by

Ft : S(t∗) → S(t), Ft : S ′(t) → S ′(t∗)

the Fourier transform on the Schwartz space and the space of tempered
distributions, given by2

ψ̂(x) := (Ftψ)(x) :=

ˆ

t∗
e−i⟨ζ,x⟩ψ(ζ) dζ,(2.5)

⟨ζ, x⟩ := ζ(x), x ∈ t, ψ ∈ S(t∗),

and recall that ω := ω − J . Consider now the generalized Duistermaat-
Heckman integral

(2.6) Lϱ : t → C, Lϱ(x) :=

ˆ

M
e−i ω(x)ϱ(x), ϱ ∈ Ω∗

T (M)c,

regarded as a tempered distribution in S ′(t), compare [6, 10, 26]3. If M
is compact and ϱ = 1, Lϱ is the classical Duistermaat-Heckman integral,
whose t-Fourier transform is given by the pushforward J∗(ωn/n!) of the
Liouville form along J , which is a piecewise polynomial measure on t∗ [5].
Motivated by this, we shall examine the behavior of the Fourier transform
of Lϱ near the origin, and for this sake consider an approximation of the
Dirac δ-distribution centered at ζ ∈ t∗ given by

ϕζε(ξ) := ϕ((ξ − ζ)/ε)/ε, ε > 0,

where ϕ ∈ C∞
c (t∗) is a test function satisfying ϕ̂(0) = 1. We are then inter-

ested in the limit

lim
ε→0+

〈
L̂ϱ, ϕ

ζ
ε

〉
= lim

ε→0+

ˆ

t

Lϱ(x)ϕ̂
ζ
ε(x) dx = lim

ε→0+

ˆ

t

Lϱ(x)e
−iζ(x)ϕ̂(εx) dx

= lim
ε→0+

ε−1

ˆ

t

[
ˆ

M
ei(J−ζ)(x)/εe−iωϱ(x/ε)

]
ϕ̂(x) dx,

(2.7)

which does not need to exist a priori in general, and its dependence on ζ in
a neighbourhood of 0 ∈ t∗. Thus, we are led to the definition of the Witten

2Regarding normalization conventions, see [12, footnotes on p. 125].
3Jeffrey and Kirwan use the notation Π∗(ϱe

−iω) for our map Lϱ, see [10, p. 299].
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integral

Wζ
ϱ,ϕ(ε) :=

ˆ

t

[
ˆ

M
ei(J−ζ)(x)e−iωϱ(x)

]
ϕ̂(εx) dx,(2.8)

ϱ ∈ Ω∗
T (M)c, ϕ ∈ S(t∗), ε > 0, ζ ∈ t∗,

and to the investigation of its asymptotic behavior as ε→ 0+ and ζ → 0.
Note that in this notation, ⟨L̂ϱ, ϕζε⟩ = Wζ

ϱ,ϕ(ε). Furthermore, if ϱ is equivari-

antly closed, Wζ
ϱ,ϕ(ε) actually only depends on the cohomology class of ϱ in

view of [23, Lemma 1].

Remark 2.4. The original Witten integral considered in [26] reads in our
setting

(2.9)
1

(2π)2i

ˆ

t

[
ˆ

M

(
e−iω̄ϱ

)
(x)

]
e−ν

x2

2 dx, ν > 0, ϱ ∈ Ω∗
T (M)c.

Writing ε :=
√
ν we see that this equals ((2π)2i)−1 times Wζ

ϱ,ϕ(ε) with

ϕ̂(x) = e−
x2

2 and ζ = 0.

To formulate (2.8) more explicitly, write ϱ as a finite linear combination

(2.10) ϱ(x) =
∑

k,m

ϱk,mx
k, ϱk,m ∈ Ωm(M)c, k,m ∈ N ∪ {0}.

For those ϱk,m which are differential forms of odd degree, there is no appro-
priate power N ∈ N ∪ {0} such that ωN ∧ ϱk,m is a volume form, therefore

only the ϱk,m with m even contribute to Wζ
ϱ,ϕ(ε). Thus,

Wζ
ϱ,ϕ(ε) =

∑

k,m, m even

ε−k−1

ˆ

t

[
ˆ

M
ei(J−ζ)(x)/ε

(−iω)n−m/2ϱk,m
(n−m/2)!

]
xkϕ̂(x) dx.

We associate to each ϱk,m a T -invariant function ak,m ∈ C∞
c (M) by the

relation

(2.11)
(−iω)n−m/2ϱk,m

(n−m/2)!
= ak,m dM,

where dM := ωn/n! is the symplectic volume form on M . In this way, we
are reduced to studying the asymptotic behavior of the generalized Witten
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integrals

(2.12) Iζa,σ(ε) =

ˆ

t

ˆ

M
eiψ

ζ(p,x)/εa(p) dM(p)σ(x) dx, ζ ∈ t∗, ε→ 0+,

with amplitudes a ∈ C∞
c (M), σ ∈ S(t), where the phase function ψζ ∈

C∞(M × t) is given by

(2.13) ψζ(p, x) := J (p)(x)− ζ(x).

Now, when trying to describe the asymptotic behavior of the integral Iζa,σ(ε)
by means of the generalized stationary phase principle, one faces the serious
difficulty that the critical set of the phase function ψζ is in general not
smooth. Indeed, due to the linear dependence of J(x) on x we obtain

∂x ψ
ζ(p, x) = J (p)− ζ,

and because of the non-degeneracy of ω,

dJ(x) = ιx̃ω = 0 ⇐⇒ x̃ = 0,

where x̃ is the fundamental vector field on M associated to x. Hence, the
critical set reads

Crit(ψζ) :=
{
(p, x) ∈M × t : dψζ(p, x) = 0

}
(2.14)

=
{
(p, x) ∈ J −1({ζ})× t : x̃p = 0

}
.

Let us first assume that ζ is a regular value. As discussed in Section 2.1,
J −1({ζ}) is an orientable manifold, and all stabilizers of points in J −1({ζ})
are finite. Consequently, Crit(ψζ) = J −1({ζ})× {0}; in particular, it is an
orientable manifold. Even further, the critical set of the phase function ψζ

is clean [23, Proof of Proposition 2], which means that the transversal Hes-
sian is non-degenerate at all points in Crit(ψζ), and the generalized sta-
tionary phase theorem [23, Theorem C] can be applied, yielding a complete
asymptotic expansion for Iζa,σ(ε). More precisely and generally, we have the
following:

Proposition 2.5. For each ζ ∈ t∗, there is a family {Dζ
j }j∈N0

of differen-

tial operators D
ζ
j of order j defined on a neighborhood of the submanifold

J −1({ζ}) ∩M(htop) which are transversal to it such that the following holds:
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For each J0 ∈ N0 and each compact set K ⊂M with J −1({ζ}) ∩K contain-
ing only regular points of J , there exists an NJ0,K,ζ ∈ N0 and a family of
differential operators {Dl

J0,K,ζ
}0≤l≤NJ0,K,ζ

onM such that for all a ∈ C∞
c (M)

with supp a ⊂ K and all σ ∈ S(R) one has
(2.15)
∣∣∣Iζa,σ(ε)− ε

J0∑

j=0

εjσ(j)(0)Iζj (a)
∣∣∣ ≤

NJ0,K,ζ∑

k,l=0

∥∥Dl
J0,K,ζa

∥∥
∞
∥∥σ(k)

∥∥
∞ εJ0+2 ∀ ε > 0

with distributions Iζj ∈ D′(M) of the form

(2.16) Iζj (a) =
ˆ

M
ζ
top

〈
D
ζ
j a
〉
T
dM ζ

top, Iζ0 (a) = 2π

ˆ

M
ζ
top

⟨a⟩T dM
ζ
top,

where dM ζ
top is the symplectic volume form on M

ζ
top, and for a function f

on M and a T -orbit T · p ⊂M , we put ⟨f⟩T (T · p) :=
´

T f(g · p) dg, where
dg is the Haar measure on T fixed by our identification t ∼= R. Moreover, if
V ⊂ t∗ is an open set such that J −1(V ) ∩K contains only regular points of
J , then the functions V ∋ ζ 7→ Iζj,k(a) ∈ C are smooth for all a ∈ C∞

c (M)
with supp a ⊂ K.

Proof. It suffices to apply [23, Proposition 2 and Proposition 7], where the
form of the coefficients as stated here follows from [23, Eqs. (18), (62)], taking
into account that the function H appearing in [23, Eq. (62)] is linear with
respect to the t-variable in our case, exactly as in [23, proof of Proposition 3].

□

If ζ is not a regular value of J , there are compact subsets K ⊂M such
that Crit(ψζ) ∩K × t is not clean and the usual stationary phase theorem
cannot be applied. Instead, we shall linearize the phase function ψζ in suit-
able local coordinates to derive an asymptotic expansion of the generalized
Witten integral by a careful direct analysis.

2.3. Local normal forms for the momentum map
and the Witten integral

We shall now introduce suitable coordinates on M near the set of fixed-
points

MT := {p ∈M : t · p = p ∀ t ∈ T} .
The connected components ofMT are symplectic submanifolds ofM of pos-
sibly different dimensions. Recall that we denote the set of these components
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by F . Let F ∈ F and consider the symplectic normal bundle EF := TFω ⊂
TM of F in M . Since F is symplectic, one has TM |F = TF ⊕ EF and EF
carries a symplectic structure. In particular, the total space of EF becomes a
symplectic manifold. Furthermore, the group T = S1 acts on EF fiberwise,
and we may choose an S1-invariant complex structure on EF compatible
with the symplectic one. Each fiber of the so complexified bundle EF then
splits into a direct sum of complex 1-dimensional representations of S1, so
that with dimF = 2nF

(2.17) EF =

n−nF⊕

j=1

EFj ,

the EFj being complex line bundles over F . The Lie algebra t acts on them
by

(EFj )p ∋ v 7→ iλFj (x)v ∈ (EFj )p, p ∈ F, x ∈ t, λFj ∈ t∗ ∼= R,

where λF1 , . . . , λ
F
n−nF

∈ Z \ {0} are the weights of the T -action on (EF )p.
They do not depend on the point p ∈ F because F is connected, and they can
be grouped into positive weights λF1 , . . . , λ

F
ℓ+F

and negative weights λF
ℓ+F+1

, . . . ,

λF
ℓ+F+ℓ−F

. The codimension of F in M is given by codimF = 2(n− nF ) =

2(ℓ+F + ℓ−F ). We shall now make use of the local normal form theorem for the
momentum map J due to Guillemin-Sternberg [7] and Marle [17], which in
our situation reads as follows:

Proposition 2.6. For each component F ∈ F , there exist

1) a faithful unitary representation ρF : S1 → (S1)ℓ
+
F+ℓ−F ⊂ U(ℓ+F )× U(ℓ−F ) ⊂

U(ℓ+F + ℓ−F ) with positive weights λF1 , . . . , λ
F
ℓ+F

∈ N and negative weights

λF
ℓ+F+1

, . . . , λF
ℓ+F+ℓ−F

∈ −N,

2) a principal KF -bundle PF → F , where KF is a subgroup of U(ℓ+F )×
U(ℓ−F ) commuting with ρF (S

1),

such that

EF ∼= PF ×KF
C
ℓ+F+ℓ−F ,

where PF ×KF
Cℓ

+
F+ℓ−F → F is the vector bundle associated to PF by the KF -

action. Furthermore, there is a symplectomorphism ΦF : UF → VF from an
S1-invariant neighborhood UF of F in M onto an S1-invariant neighborhood
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VF of the zero section in EF , which is equivariant with respect to the S1-
action on EF ∼= PF ×KF

Cℓ
+
F+ℓ−F given by ρF , and

J ◦ Φ−1
F ([℘,w]) =

1

2

ℓ+F+ℓ−F∑

j=1

λFj |wj |2 + J (F ),(2.18)

w = (w1, . . . , wℓ+F+ℓ−F
), [℘,w] ∈ PF ×KF

C
ℓ+F+ℓ−F .

In particular, 2ℓ−F and 2ℓ+F are the dimensions of the negative and positive
eigenspaces of the Hessian of J at a point of F , respectively.

Proof. See [16, Lemma 3.1]. □

Note that the local normal form neighborhood UF has the property that

(2.19) UF ∩MT = F.

By shrinking the UF , we shall assume that each point p ∈M lies in only
finitely many UF . We then choose a locally finite partition of unity
{χtop, χF }F∈F on M subordinate to the open cover

M =M(htop) ∪
⋃

F∈F
UF ,

consisting of T -invariant functions such that χF ≡ 1 in a neighborhood of
F for each F ∈ F .

The generalized Witten integral (2.12) with parameter ζ ∈ t∗ and am-
plitudes a ∈ C∞

c (M), σ ∈ S(t) can now be written as

(2.20) Iζa,σ(ε) = Iζaχtop,σ(ε) +
∑

F∈F :F∩supp a ̸=∅
IζaχF ,σ(ε),

which is a finite sum because supp a is compact and our partition of unity
is locally finite. More abstractly and conveniently, we can write the decom-
position in terms of distributions as

(2.21) Iζ(ε) = Iζχtop
(ε) +

∑

F∈F
IζχF

(ε) in (D(M)⊗ S(t))′.

We shall focus our attention in the following on the localized integrals
IζaχF ,σ(ε). In terms of the coordinates provided by ΦF we obtain with (2.18)
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and the notation

ζF := ζ − J (F )

for each of the localized integrals the formula

IζaχF ,σ(ε) =

ˆ

t

ˆ

VF

ei(J◦Φ−1
F ([℘,w])−ζ)(x)/ε (aχF )(2.22)

× (Φ−1
F ([℘,w])) d[℘,w]σ(x) dx

=

ˆ

R

ˆ

PF×KF
C

ℓ
+
F

+ℓ
−
F

ei
x

2ε
(⟨QFw,w⟩−2ζF ) (aχF )

× (Φ−1
F ([℘,w])) d[℘,w]σ(x) dx,

where we identified t with R, d[℘,w] denotes the symplectic form on PF ×KF

Cℓ
+
F+ℓ−F ∼= EF , which agrees on VF with the pullback of the symplectic vol-

ume form (Φ−1
F )∗(dM |UF

), and we introduced on Cℓ
+
F+ℓ−F the non-degenerate

quadratic form

⟨QFw,w⟩ :=
ℓ+F+ℓ−F∑

j=1

λFj |wj |2 =
ℓ+F+ℓ−F∑

j=1

λFj
(
(Rewj)

2 + (Imwj)
2
)
.(2.23)

Since J ◦ Φ−1
F ([℘,w]) = ⟨QFw,w⟩ depends only on w ∈ Cℓ

+
F+ℓ−F , we want to

lift IζaχF ,σ to PF × Cℓ
+
F+ℓ−F in order to integrate independently over w in

(2.22). Thus, let

dF := ωdimF/2/(dimF/2)!

be the symplectic volume form on F and let d℘ be a smooth volume density
on PF . Then, since PF is a smooth fiber bundle over F , there is a differential
form ηF on PF such that

(2.24) d℘ = |ηF ∧ π∗FdF |,

where πF : PF → F is the fiber bundle projection (cf. [15, p. 430]). Let us fix
a preferred volume density d℘ by demanding that the fiber volume V (p) :=
´

π−1
F ({p}) ηF is equal to 1 for each p ∈ F . This can be simply achieved by

normalizing some chosen d℘ with the function 1/V . Let now dw be the
symplectic volume form on Cℓ

+
F+ℓ−F with respect to the standard symplectic

structure on Cℓ
+
F+ℓ−F . Then we claim that the product measure d℘ dw on
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PF × Cℓ
+
F+ℓ−F fulfills

(2.25) d℘ dw = |Π∗
F ηF ∧ π̃∗Fd[℘,w]|,

where π̃F : PF × Cℓ
+
F+ℓ−F → PF ×KF

Cℓ
+
F+ℓ−F is the fiber bundle projection,

and ΠF : PF × Cℓ
+
F+ℓ−F → PF is the projection onto the first factor. The re-

lation (2.25) can be proved as follows. By (2.24), we have

(2.26) d℘ dw = |Π∗
F ηF ∧ (πF ◦ΠF )∗dF ∧ dw|,

where we identified dw with its pullback along the projection PF × Cℓ
+
F+ℓ−F →

Cℓ
+
F+ℓ−F onto the second factor. Since (2.25) is a pointwise relation, it suffices

to establish it locally. Let therefore p ∈ F and let U ⊂M be a Darboux
chart around p such that U ∩ F is the vanishing locus of the last 2(ℓ+F + ℓ−F )
coordinates in U . Then the symplectic normal bundle EF ∼= PF ×KF

Cℓ
+
F+ℓ−F

of F in TM is trivial over U ∩ F and with respect to this trivialization
EF |U∩F ∼= (U ∩ F )× Cℓ

+
F+ℓ−F one has d[℘,w]|EF |U∩F

= dFdw. This gives us

on Ũ := (πF ◦ΠF )−1(U ∩ F ) ⊂ PF × Cℓ
+
F+ℓ−F the relation

(πF ◦ΠF )∗dF ∧ dw = π̃∗Fd[℘,w],

proving (2.25) on Ũ . Covering all of PF × Cℓ
+
F+ℓ−F with sets of the form Ũ

finally proves (2.25). Thanks to (2.25) and the fiber volume normalization
V ≡ 1, we now have for any continuous function f on PF ×KF

Cℓ
+
F+ℓ−F with

compact support the equality

(2.27)

ˆ

PF×C
ℓ
+
F

+ℓ
−
F

π̃∗F (f) d℘ dw =

ˆ

PF×KF
C

ℓ
+
F

+ℓ
−
F

f([℘,w]) d[℘,w].

Applying this to our integral IζaχF ,σ yields with Fubini

IζaχF ,σ(ε) =

ˆ

R

ˆ

C
ℓ
+
F

+ℓ
−
F

ei
x

2ε
(⟨QFw,w⟩−2ζF )

×
[
ˆ

PF

(aχF )(Φ
−1
F (π̃F (℘,w))) d℘

]
dw σ(x) dx

=:

ˆ

R

ˆ

RcodimF

ei
x

2ε
(⟨QFw,w⟩−2ζF ) ãF (w) dw σ(x) dx,

where we identified Cℓ
+
F+ℓ−F with R2(ℓ+F+ℓ−F ) = RcodimF . With respect to this

identification, denote by

n+F := 2ℓ+F , n−F := 2ℓ−F
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the real dimensions of the positive and negative eigenspaces of QF , and
assume first that both n+F ̸= 0 and n−F ̸= 0. Introducing polar coordinates

w+ = (w1, . . . , wn+
F
) = rθ+ ∈ Rn

+
F and w− = (wn+

F+1, . . . , wcodimF ) = sθ− ∈
Rn

−
F in these directions with radii r, s > 0 and θ± ∈ Sn

±
F−1 ⊂ Rn

±
F and substi-

tuting (wj , wj+1) 7→ |λFj |−1/2(wj , wj+1) for 1 ≤ j ≤ codimF − 1, j ∈ 2N−
1, the integral IζaχF ,σ(ε) reads

(2.28) IζaχF ,σ(ε) = Λ−1
F

ˆ ∞

−∞

ˆ ∞

0

ˆ ∞

0
ei

x

2ε
(r2−s2−2ζF ) αF (r, s) dr ds σ(x) dx,

where the Jacobian of the substitution is given by Λ−1
F rn

+
F−1sn

−
F−1 with the

constant

(2.29) ΛF :=

codimF/2∏

j=1

|λFj | ∈ N

and we put, with dθ± denoting the standard round measure on the Euclidean
unit sphere Sn

±
F−1,

αF (r, s) := rn
+
F−1sn

−
F−1SF (r, s),

SF (r, s) :=

ˆ

Sn
+
F

−1

ˆ

Sn
−
F

−1

ãF (rθ
+, sθ−) dθ+ dθ−,

ãF (w) :=

ˆ

PF

(aχF )
(
Φ−1
F

(
π̃F

(
℘, w1

|λF
1 | 12

, w2

|λF
1 | 12

, . . . , wcodimF−1

|λF
codimF/2|

1
2
, wcodimF

|λF
codimF/2|

1
2

)))
d℘.

(2.30)

The function ãF is a local cutoff of the original amplitude a which has been
transformed using the normal form symplectomorphism ΦF . Note that the
double spherical mean SF (r, s) is symmetric in r and s. If n+F = 0 and n−F ̸= 0
or n+F ̸= 0 and n−F = 0, the integral (2.22) can be written as

(2.31) IζaχF ,σ(ε) = Λ−1
F

ˆ ∞

−∞

ˆ ∞

0
ei

x

2ε
(±r2−2ζF ) αF (r) dr σ(x) dx, n∓F = 0,

where, with ãF as in (2.30) and with dθ denoting the standard round mea-
sure on ScodimF−1, one has

αF (r) := rcodimF−1SF (r), SF (r) :=

ˆ

ScodimF−1

ãF (rθ) dθ,(2.32)

and the spherical mean SF (r) is symmetric in r.
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3. Asymptotic expansions

As before, consider a 2n-dimensional symplectic manifold (M,ω) carrying a
Hamiltonian action of T = S1 with momentummap J :M → t∗. We are now
ready to derive an asymptotic expansion of the generalized Witten integral
Iζa,σ(ε) introduced in (2.12). For this sake, we shall use the decomposition

(2.20) of Iζa,σ(ε) into a global regular part Iζaχtop,σ(ε) and a finite sum of

potentially singular localized integrals IζaχF ,σ(ε) which are singular iff J(F ) =
ζ, as can be read off from their presentation (2.28). In the following, we shall
determine asymptotic expansions for each of those localized integrals, which
are at the heart of our results.

3.1. Contribution of the top stratum

By Lemma 2.3 the momentum map is regular on Mhtop
. Therefore Propo-

sition 2.5 yields a complete stationary phase expansion for Iζaχtop,σ(ε). The

coefficients Qζj,k(aχtop) do have a geometric interpretation in terms of inte-

grals over M
ζ
top and are smooth in ζ. Let us next turn to the more interesting

contributions localized in the neighborhoods UF .

3.2. Contributions of the indefinite fixed point set components

Let us start by considering an F ∈ F for which QF is indefinite, so that n+F ̸=
0 and n−F ̸= 0 holds, our departing point being the integrals (2.28). While in
a previous version of this paper we followed an approach of Brummelhuis,
Paul, and Uribe [4], we shall now follow a simpler approach kindly pointed
out to us by Michèle Vergne. The starting point is the following classical
result of Whitney on extensions of even functions.

Lemma 3.1 ([25, Theorem 1 on p. 159 and Remark on p. 160]).
Given n ∈ N and i ∈ {1, . . . , n}, let f ∈ C∞(Rn) be a function that is even
in the i-th variable, that is, one has

f(x1, . . . , xi, . . . , xn) = f(x1, . . . ,−xi, . . . , xn) ∀ x = (x1, . . . , xn) ∈ R
n.

Then there exists a function g ∈ C∞(Rn) such that

f(x) = g(x1, . . . , x
2
i , . . . , xn) ∀ x = (x1, . . . , xn) ∈ R

n.

This important result has a direct application to functions on R2 which
are even in both variables:



✐

✐

“1-Ramacher” — 2022/5/26 — 1:52 — page 1305 — #25
✐

✐

✐

✐

✐

✐

Asymptotic expansion of generalized Witten integrals 1305

Corollary 3.2. For every function f ∈ C∞(R2) which is even in both vari-
ables, there is a function g ∈ C∞(R2) such that f(x, y) = g(x2, y2) for all
x, y ∈ R.

Proof. Given f , we apply Lemma 3.1 with i = 1 to get a function h̃ ∈
C∞(R2) with f(x, y) = h̃(x2, y) for all x, y ∈ R. The function y 7→ h̃(x, y)
does not need to be even when x < 0, but it suffices to put

h(x, y) :=
1

2

(
h̃(x, y) + h̃(x,−y)

)
, x, y ∈ R,

to obtain a function h ∈ C∞(R2) which is even in the second variable and
satisfies h(x2, y) = f(x, y) for all x, y ∈ R. Applying now Lemma 3.1 with
i = 2 to h gives us the desired function g ∈ C∞(R2). □

As a consequence, we can write the spherical mean SF (r, s), which is a
compactly supported even function in both variables r and s, in the form

(3.1) SF (r, s) = SF (r
2, s2) r, s ∈ R,

with a function SF ∈ C∞
c (R2). Indeed, Corollary 3.2 gives us a function

GF ∈ C∞(R2) satisfying the analog of (3.1); a function SF as desired can
then be constructed by multiplying GF with an arbitrary cutoff function
equal to 1 on the compact set {(r, s) : (

√
|r|,
√

|s|) ∈ supp SF } ⊂ R2. This
reduces the study of the integrals (2.28) to the general study of integrals of
the form

Iζ
S ,σ(ε) :=

ˆ

R

ˆ ∞

0

ˆ ∞

0
ei(r

2−s2−ζ)x/εr2L
+−1s2L

−−1
S (r2, s2) dr ds σ(x) dx,

(3.2)

ε > 0, ζ ∈ R,

where L+, L− ≥ 1 are two natural numbers and S ∈ C∞
c (R2), σ ∈ S(R) are

functions, S(R) denoting the space of Schwartz functions on R.
The first crude, but central asymptotics are obtained in the following
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Proposition 3.3. If ±ζ > 0, one has for every M ∈ N0 the asymptotics

Iζ
S ,σ(ε) = ε

(
M∑

j=0

εjσ(j)(0)

L∑

k=0

ζk
ˆ ∞

|ζ|

[min(k+j,L)∑

l=k

cj,k,l t
L−l(∂− − ∂+)

j−l+k
]

× S

( t+ ζ

2
,
t− ζ

2

)
dt

+

L∑

k=0

|ζ|k
M∑

j=L−k+1

εjσ(j)(0)
∑

max(0,j−L−1)≤p+q≤k+j−L−1

c∓j,k,p,q(∓∂±)p(∂− − ∂+)
q
S ((|ζ|, |ζ|)±)

)

+OM

(
εM+2(1 + |ζ|L + |ζ|−M−1)

×
2(M+1)∑

l=0

M+L+1∑

r=0

∥Dl,MS ∥∞
ˆ

R

|σ̂(u)|(1 + |u|)r du
)
,

where Dl,M is a differential operator of order ≤M + 1 on R2. If ζ = 0, one
has

I0S ,σ(ε) = ε

(
M∑

j=0

εjσ(j)(0)

ˆ ∞

0

[min(j,L)∑

l=0

cj,0,l t
L−l(∂− − ∂+)

j−l
]
S

( t
2
,
t

2

)
dt

+

M∑

j=L+1

εj
∑

p+q=j−L−1

[
c+j,0,p,qσ

[j]
+ (0)∂p− + c−j,0,p,qσ

[j]
− (0)(−∂+)p

]

× (∂− − ∂+)
q
S (0, 0)

)

+OM

(
εM+2

2(M+1)∑

l=0

M+L+1∑

r=0

∥Dl,MS ∥∞
ˆ

R

|σ̂(u)|(1 + |u|)r du
)
,

where L := L+ + L− − 2, (x, y)+ := (x, 0), (x, y)− := (0, y), the expressions

σ
[j]
± (0) are as in (1.8), ∂+S and ∂−S are the partial derivatives of S with

respect to the first and second variable, respectively, and cj,k,l, c
±
j,k,p,q ∈ C are
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explicitly computable in terms of L+, L−. Some particular values are

c0,0,0 = 2−2−Lπ,

c±L+1,0,0,0 = 2−2−Lπ(−i)L−1

×
L∑

l=0

(±1)L−l+1

L− l + 1

∑

l++l−=l
0≤l±≤L±−1

(−1)l
+

(
L+ − 1

l+

)(
L− − 1

l−

)
.

(3.3)

To begin, notice that the critical set of the phase function in (3.2), re-
garded as a function on R3, becomes singular for ζ = 0. One could therefore
be inclined to desingularize the critical set in some way in order to be able
to apply the stationary phase theorem. This was the way followed in [23],
which was sufficient to compute the leading term and an estimate for the
remainder. Nevertheless, serious difficulties arise when trying to find a com-
plete asymptotic expansion. Instead, the proof of Proposition 3.3 will be
based on a destratification process, which we shall carry out in the following.
As a first step, we linearize the phase function by means of the substitution
r2 = T , s2 = U , yielding

Iζ
S ,σ(ε) =

1

4

ˆ

R

ˆ ∞

0

ˆ ∞

0
ei(T−U−ζ)x/εTL

+−1UL
−−1

S (T, U) dT dU σ(x) dx.

Performing the substitutions U − T = u, U + T = t we then obtain with
L := L+ + L− − 2 the formula

Iζ
S ,σ(ε) = 2−3−L

ˆ

R

ˆ

R

e−i(u+ζ)x/εσ(x)

×
ˆ ∞

|u|
(t− u)L

+−1(t+ u)L
−−1

S

( t− u

2
,
t+ u

2

)
dt dx du,

where the t-integrals correspond to integrals over the level sets {(T, U) |
U − T = u} ⊂ R2

+. The critical set of the linearized phase function4 now
consists of the single point (u, x) = (−ζ, 0), but a stationary phase analysis
is not possible since the amplitude is not smooth at u = 0 due to the integral
limit |u|. Instead, we carry out the Fourier transform on the Lie algebra, and
split the u-integral at 0 in order to obtain smooth coefficients. Expanding in

4Note that the linearization of the phase function is not the result of a monomi-
alization, so that no desingularization of the critical set as in [23] has taken place.
In particular, as a consequence of a desingularization, an exceptional divisor would
have to appear, which is not the case here.
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addition the binomial expressions (t∓ u)L
±−1 and substituting u 7→ εu− ζ,

we arrive at

Iζ
S ,σ(ε) = 2−3−Lε

L∑

l=0

cl

[
ˆ ∞

ζ/ε
σ̂(u)(εu− ζ)l(3.4)

×
ˆ ∞

εu−ζ
tL−lS

( t− εu+ ζ

2
,
t+ εu− ζ

2

)
dt du

+

ˆ ζ/ε

−∞
σ̂(u)(εu− ζ)l

×
ˆ ∞

−εu+ζ
tL−lS

( t− εu+ ζ

2
,
t+ εu− ζ

2

)
dt du

]

with

(3.5) cl :=
∑

l++l−=l
0≤l±≤L±−1

(−1)l
+

(
L+ − 1

l+

)(
L− − 1

l−

)
, l ∈ N0.

In order to obtain an expansion in powers of ε, it is natural to Taylor ex-
pand the t-integral at ε = 0 which, by the following lemma, will result in a
separation into singular and regular contributions.

Lemma 3.4. For N ∈ N0, ζ ∈ R, and S ∈ C∞
c (R2), define two functions

F±
N,ζ,S ∈ C∞(R) by

F±
N,ζ,S (v) :=

ˆ ∞

±(v−ζ)
tNS

( t− v + ζ

2
,
t+ v − ζ

2

)
dt.

Then, for m ∈ N0, the m-th derivative of F±
N,ζ,S is of the form

(F±
N,ζ,S )(m)(v) =

1

2m

ˆ ∞

±(v−ζ)
tN (∂− − ∂+)

m
S

( t− v + ζ

2
,
t+ v − ζ

2

)
dt

+

m−1∑

i=0

(∓1)m+i(±(v − ζ))max(0,N+1−m+i)

×
∑

p+q=i

CN,m,p,q(±∂∓)p(∂− − ∂+)
q
S ((ζ − v, v − ζ)∓),
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where the notation is as in Proposition 3.3, and the constants CN,m,p,q ∈ R

satisfy

(3.6)
CN,m,m−1,0 = 1, CN,N+1,0,0 = (−1)NN !,

CN,m,0,m−1 = 21−m, CN,m,p,q = 0 if p+ q < max(0,m− 1−N).

Proof. For m = 0 the claim is trivially true; there are no constants CN,0,p,q
because the sum over i is empty. For m = 1 we get

(F±
N,ζ,S )(1)(v) =

d

dv

ˆ ∞

±(v−ζ)
tNS

( t− v + ζ

2
,
t+ v − ζ

2

)
dt

=
1

2

ˆ ∞

±(v−ζ)
tN (∂− − ∂+)S

( t− v + ζ

2
,
t+ v − ζ

2

)
dt

∓ (±(v − ζ))NS ((ζ − v, v − ζ)∓),

so that the claim holds. Assuming now that it holds for some m ≥ 1, we
obtain

(F±
N,ζ,S )(m+1)(v)

=
d

dv

(
1

2m

ˆ ∞

±(v−ζ)
tN (∂− − ∂+)

m
S

( t− v + ζ

2
,
t+ v − ζ

2

)
dt

+

m−1∑

i=0

(∓1)m+i(±(v − ζ))max(0,N+1−m+i)

×
∑

p+q=i

CN,m,p,q(±∂∓)p(∂− − ∂+)
q
S ((ζ − v, v − ζ)∓)

)

=
1

2m+1

ˆ ∞

±(v−ζ)
tN (∂− − ∂+)

m+1
S

( t− v + ζ

2
,
t+ v − ζ

2

)
dt

∓ 1

2m
(±(v − ζ))N (∂− − ∂+)

m
S ((ζ − v, v − ζ)∓)

+

m−1∑

i=max(0,m−N)

(∓1)m+i(±1)(N + 1−m+ i)(±(v − ζ))max(0,N+1−m+i)−1

×
∑

p+q=i

CN,m,p,q(±∂∓)p(∂− − ∂+)
q
S ((ζ − v, v − ζ)∓)

+

m−1∑

i=0

(∓1)m+i(±(v − ζ))max(0,N+1−m+i)

×
∑

p+q=i

CN,m,p,q(±∂∓)p+1(∂− − ∂+)
q
S ((ζ − v, v − ζ)∓).
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Taking into account that max(0, N + 1−m+ i) ≥ 1 in the summand of∑m−1
i=max(0,m−N) and performing the substitutions i 7→ i+ 1, p 7→ p− 1 in the

final sums, the expression for (F±
N,ζ,S )(m+1)(v) becomes

1

2m+1

ˆ ∞

±(v−ζ)
tN (∂− − ∂+)

m+1
S

( t− v + ζ

2
,
t+ v − ζ

2

)
dt

∓ 1

2m
(±(v − ζ))N (∂− − ∂+)

m
S ((ζ − v, v − ζ)∓)

−
m−1∑

i=max(0,m−N)

(∓1)m+1+i(N + 1−m+ i)(±(v − ζ))max(0,N+1−m−1+i)

×
∑

p+q=i

CN,m,p,q(±∂∓)p(∂− − ∂+)
q
S ((ζ − v, v − ζ)∓)

+

m∑

i=1

(∓1)m+1+i(±(v − ζ))max(0,N+1−m−1+i)

×
∑

p+q=i
p≥1

CN,m,p−1,q(±∂∓)p(∂− − ∂+)
q
S ((ζ − v, v − ζ)∓).

This is of the claimed form with

CN,m+1,p,q =





2−m, p = 0, q = m

CN,m,p−1,q, p+ q = m, p ≥ 1,

CN,m,p−1,q − (N + 1−m+ p+ q)CN,m,p,q,

m− 1 ≥ p+ q ≥ max(0,m−N), p ≥ 1,

−(N + 1−m+ q)CN,m,0,q,

m− 1 ≥ q ≥ max(0,m−N), p = 0,

CN,m,p−1,q,

1 ≤ p+ q ≤ max(0,m−N)− 1, p ≥ 1,

0, else.

The first two lines prove the two equations on the left in (3.6) since
CN,m,m−1,q = 1 by the induction hypothesis. In the only case above where
p+ q < max(0,m−N), we have CN,m+1,p,q = CN,m,p−1,q, which is zero by
the induction hypothesis because p− 1 + q < max(0,m− 1−N). Finally,
inspecting the case q = p = 0 yields CN,m+1,0,0 = −(N + 1−m)CN,m,0,0 for
1 ≤ m ≤ N , CN,1,0,0 = 1, which gives us by iteration the desired formula
CN,N+1,0,0 = (−1)NN !, so that (3.6) is fully verified. □
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As an immediate consequence, we get

Corollary 3.5. In the situation of Lemma 3.4, there are differential oper-
ators D±

N,m of order m on R2 such that

(3.7) |(F±
N,ζ,S )(m)(v)| ≤ (1 + |v − ζ|N )

∥∥D±
N,mS

∥∥
∞ ∀ v, ζ ∈ R.

□

We are now ready to prove Proposition 3.3.

Proof of Proposition 3.3. We perform in (3.4) for each u a Taylor expansion
with Lagrange remainder of the functions ε→ F±

N,ζ,S (εu) at ε = 0, where
N = L− l. With Corollary 3.5 this yields for arbitrary Taylor cutoff orders
M+,M− ∈ N0

Iζ
S ,σ(ε) = 2−3−Lε

L∑

l=0

cl

[
ˆ ∞

ζ/ε
σ̂(u)(εu− ζ)l

(3.8)

×
( M+∑

m+=0

(εu)m
+

(F+
L−l,ζ,S )(m

+)(0)

m+!

)
du+R+

S ,σ,l,M+(ζ, ε)

+

ˆ ζ/ε

−∞
σ̂(u)(εu− ζ)l

( M−∑

m−=0

(εu)m
−

(F−
L−l,ζ,S )(m

−)(0)

m−!

)
du

+R−
S ,σ,l,M−(ζ, ε)

]
,

where

|R±
S ,σ,l,M±(ζ, ε)| ≤ εM

±+1

∥∥D±
L−l,M±+1S

∥∥
∞

(M± + 1)!

×
ˆ

R

|σ̂(u)||εu− ζ|l|u|M±+1
[
1 + sup

|t|≤1
|tεu− ζ|L−l

]
du

= OM±

(
εM

±+1(1 + |ζ|L)
∥∥D±

L−l,M±+1S
∥∥
∞

×
M±+L+1∑

r=0

ˆ

R

|σ̂(u)|(1 + |u|)r du
)
.
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Plugging in the derivatives at 0 from Lemma 3.4, choosing M+ =M− =
M , and expanding the binomial expression (εu− ζ)l, we arrive after some
further basic manipulations at the formula

Iζ
S ,σ(ε) = 2−3−Lε

M∑

j=0

εj
L∑

l=0

(−1)lcl

min(j,l)∑

k=0

(
l

k

)
(−1)k

(j − k)!

×
[
ˆ ∞

ζ/ε
σ̂(u)uj du

(
ζ l−k

2j−k

ˆ ∞

−ζ
tL−l(∂− − ∂+)

j−k
S

( t+ ζ

2
,
t− ζ

2

)
dt

+

j−k−1∑

m=0

(−1)m+1(−ζ)max(l,L−m)−k

×
∑

p+q=j−k−m−1

CL−l,j−k,p,q ∂
p
−(∂− − ∂+)

q
S (0,−ζ)

)

+

ˆ ζ/ε

−∞
σ̂(u)uj du

(
ζ l−k

2j−k

ˆ ∞

ζ
tL−l(∂− − ∂+)

j−k
S

( t+ ζ

2
,
t− ζ

2

)
dt

+

j−k−1∑

m=0

ζmax(l,L−m)−k ∑

p+q=j−k−m−1

CL−l,j−k,p,q (−∂+)p(∂− − ∂+)
q
S (ζ, 0)

)]

+OM

(
εM+2(1 + |ζ|L)

2(M+1)∑

l=0

M+L+1∑

r=0

∥∥Dl
MS

∥∥
∞

×
ˆ

R

|σ̂(u)|(1 + |u|)r du
)

with a new family {Dl
M}l of differential operators defined by D+

l,M+1 for

0 ≤ l ≤M + 1 and by D−
l−M−1,M+1 for M + 2 ≤ l ≤ 2M + 2. Next, we note

that for ζ > 0 and each j,N ∈ N ∪ {0} one has

ζ/ε
ˆ

−∞

σ̂(u)uj du =

∞̂

−∞

σ̂(u)uj du−
∞̂

ζ/ε

σ̂(u)uj du

= 2π(−i)jσ(j)(0)−
∞̂

ζ/ε

σ̂(u)uj du,
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∣∣∣∣
ˆ ∞

ζ/ε
σ̂(u)uj du

∣∣∣∣ =
∣∣∣∣
ˆ ∞

ζ/ε
u−N σ̂(u)uj+N du

∣∣∣∣

≤
ˆ ∞

ζ/ε
|u−N σ̂(u)uj+N | du ≤ εNζ−N

ˆ

R

|σ̂(u)uj+N | du,

and similarly for ζ < 0. This allows us to replace
´ ζ/ε
−∞ σ̂(u)uj du by

2π(−i)jσ(j)(0) up to an error estimated by arbitrarily high powers of ε,
at the cost of getting equally high negative powers of ζ. Together with the
above estimates for the remainder of (3.8), we get the claimed remainder
estimate.

To obtain the claimed form of the coefficients in the asymptotic ex-
pansion, we now substitute k 7→ l − k, swap the sums over k and l, re-
strict the range of m using the vanishing relation in (3.6), and substitute
m 7→ L− l −m+ k. This yields for ±ζ > 0

Iζ
S ,σ(ε) = 2−2−Lπε

M∑

j=0

εj(−i)jσ(j)(0)
L∑

k=0

(−1)k
min(k+j,L)∑

l=k

(
l

k

)
cl

(j − l + k)!

×
(

ζk

2j−l+k

ˆ ∞

|ζ|
tL−l(∂− − ∂+)

j−l+k
S

( t+ ζ

2
,
t− ζ

2

)
dt

+

L−l+k∑

m=L−j+1

(±1)L−l−m+k+1|ζ|max(k,m)

×
∑

p+q=m+j−L−1

CL−l,j+k−l,p,q (∓∂±)p(∂− − ∂+)
q
S ((|ζ|, |ζ|)±)

)

up to the remainder term, and for ζ = 0

I0S ,σ(ε) = 2−2−Lπε

[
M∑

j=0

εj(−i)jσ(j)(0)
min(j,L)∑

l=0

cl
2j−l(j − l)!

(3.9)

×
ˆ ∞

0
tL−l(∂− − ∂+)

j−l
S

( t
2
,
t

2

)
dt

+

M∑

j=L+1

εj(−i)j
L∑

l=0

cl
(j − l)!

(
σ
[j]
− (0)
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×
∑

p+q=j−L−1

CL−l,j−l,p,q (−∂+)p(∂− − ∂+)
q
S (0, 0)

+ (−1)L−l+1σ
[j]
+ (0)

∑

p+q=j−L−1

CL−l,j−l,p,q ∂
p
−(∂− − ∂+)

q
S (0, 0)

)]

up to the remainder term. The formula for ±ζ > 0 immediately leads us to
define

cj,k,l := 2−2−Lπ(−i)j(−1)k
(
l

k

)
cl

2j−l+k(j − l + k)!
.

In particular, we find c0,0,0 = 2−2−Lπ as claimed since c0 = 1. Similarly,
c±j,k,p,q can be computed explicitly from the formula for ±ζ > 0 but in a
much more complicated way than cj,k,l due to the presence of max(k,m) in
the exponent of |ζ|. However, we can read off c±j,0,p,q from (3.9), obtaining

c±j,0,p,q := 2−2−Lπ(−i)j
L∑

l=0

(∓1)L−l+1 clCL−l,j−l,p,q
(j − l)!

, j ≥ L+ 1.

Finally, for the computation of cL+1,0,0,0 we use that CL−l,L+1−l,0,0 =
(−1)L−l(L− l)! by (3.6). □

3.3. Contributions of the definite fixed point set components

It remains to study the less difficult case of a fixed point set component
F ∈ F for which QF is definite, so that one either has n+F = codimF , n−F = 0
or n−F = codimF , n+F = 0. The spherical mean SF from (2.32) is then an even
function of only one variable that we write in the form

SF (r) = SF (r
2) r ∈ R,

with SF ∈ C∞
c (R) by applying again Whitney’s classical result [25]. This

reduces the study of the integrals (2.31) to the general study of integrals of
the form
(3.10)

I±,ζ
S ,σ(ε) :=

ˆ

R

ˆ ∞

0
ei(±r

2−ζ)x/εr2L−1
S (r2) dr σ(x) dx, ε > 0, ζ ∈ R,

where L ≥ 1 is a natural number and S ∈ C∞
c (R), σ ∈ S(R) are functions.
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Proposition 3.6. If ±ζ > 0, then one has for each M ∈ N0, M ≥ L− 1,
the asymptotic estimates

I±,ζ
S ,σ(ε) = ε

L−1∑

k=0

ζk
M−k∑

j=L−1−k
εjσ(j)(0)(±1)j+kcj,kS

(j+k+1−L)(±ζ)

+OM

(
εM+2(1 + |ζ|L−1 + |ζ|−M−1)

×
M+L+1∑

r=0

(∥∥S (r)
∥∥
∞ +

ˆ

R

|σ̂(u)|(1 + |u|)r du
))

,

I∓,ζ
S ,σ(ε) = OM

(
εM+2(1 + |ζ|L−1 + |ζ|−M−1)

×
M+L+1∑

r=0

(∥∥S (r)
∥∥
∞ +

ˆ

R

|σ̂(u)|(1 + |u|)r du
))

,

where

cj,k = π

(
L− 1

k

)
ij

(j + k + 1− L)!
.

If ζ = 0, then one has for each M ∈ N0, M ≥ L− 1, the asymptotic esti-
mates

I±,0
S ,σ(ε) = ε

M∑

j=L−1

εjσ
[j]
∓ (0)(±1)jcj,0S

(j+1−L)(0)

+OM

(
εM+2

M+L+1∑

r=0

(∥∥S (r)
∥∥
∞ +

ˆ

R

|σ̂(u)|(1 + |u|)r du
))

.

Proof. After substituting r2 = u, u 7→ εu± ζ, we can write

I±,ζ
S ,σ(ε) =

ε

2

L−1∑

j=0

εj
(
L− 1

j

)
(±ζ)L−1−j

ˆ ∞

∓ζ/ε
ujS (εu± ζ)σ̂(∓u) du.
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Performing a Taylor expansion of the function x 7→ S (x± ζ) at x = 0 yields,
similarly as in (3.8), for every M ∈ N0

I±,ζ
S ,σ(ε) =

ε

2

L+M−1∑

m=0

εm
ˆ ∞

∓ζ/ε
umσ̂(∓u) du

×
min(m,L−1)∑

j=max(0,m−M)

(
L− 1

j

)
(±ζ)L−1−jS

(m−j)(±ζ)
(m− j)!

+OM

(
εL+M+1(1 + |ζ|L−1)

×
M+L∑

r=0

(∥∥S (r)
∥∥
∞ +

ˆ

R

|σ̂(u)|(1 + |u|)r du
))

.

We can now finish the proof analogously to the proof of Proposition 3.3. □

4. Geometric interpretation of the coefficients

We shall now interpret the coefficients obtained in the previous section ge-
ometrically for ζ = 0.

4.1. Local geometric interpretation

As a first step, we specialize to the situation that in Propositions 3.3 and
3.6 the function S = Sf is given in terms of a spherical mean value of an
arbitrary function f ∈ C∞

c (RcodimF ). Turning first to the indefinite case we
thus write
(4.1)

Sf (r, s) :=

ˆ

Sn
+
F

−1

ˆ

Sn
−
F

−1

f(rθ+, sθ−) dθ+ dθ− =: Sf (r
2, s2), r, s ∈ R.

In order to interpret the coefficients in Proposition 3.3 for such functions
S = Sf , we first observe the following fundamental relation between deriva-
tives of Sf and Sf . For each k ∈ N0, one has

∂k+Sf (t, u) = δkrSf (
√
t,
√
u) ∀ (t, u) ∈ (0,∞)× [0,∞),

∂k−Sf (t, u) = δksSf (
√
t,
√
u) ∀ (t, u) ∈ [0,∞)× (0,∞),

(4.2)

where, as in Proposition 3.3, ∂+Sf and ∂−S are the partial derivatives of
Sf with respect to the first and second variable, respectively, and δkr = (δr)

k,
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δks = (δs)
k are powers of the operators

δrSf (r, s) :=
1

2r

∂Sf
∂r

(r, s) ∀ r > 0, s ≥ 0,

δsSf (r, s) :=
1

2s

∂Sf
∂s

(r, s) ∀ r ≥ 0, s > 0.

Definition 4.1. For ζ ∈ R we introduce the full, pointed, and slit quadrics

Σζ :=
{
w ∈ R

codimF : ⟨QFw,w⟩ − 2ζ = 0
}
,

Σζ• :=
{
w ∈ R

codimF \ {0} : ⟨QFw,w⟩ − 2ζ = 0
}
⊂ Σζ ,

Σζ× :=
{
w ∈ R

n+
F• × R

n−
F• : ⟨QFw,w⟩ − 2ζ = 0

}
⊂ Σζ•,

with the notation R
n±

F• := Rn
±
F \ {0}.

Note that

(4.3) Σζ• = Σζ× ⇐⇒ ζ = 0, Σζ• = Σζ ⇐⇒ ζ ̸= 0.

The quadric Σζ is the local model for the level set J −1(ζ + J (F )) near F ,
with ζ = 0 corresponding to the level set of J (F ). Expressing the coeffi-
cients in Proposition 3.3 in terms of objects living on Σζ will be the first
step towards an intrinsic geometric interpretation of the former. The pointed
quadric Σζ• corresponds to the top stratum of J −1(ζ + J (F )), which is re-
flected by the second relation in (4.3). Finally, the slit quadric Σζ× consists
of all points in Σζ which can be described by the inertial polar coordinates
introduced in Section 2.3.

There is a natural hypersurface measure on Σζ• induced by the symplectic
measure dw on RcodimF , defined by the volume form dΣζ := ΘF |Σζ

•
, where

the (codimF − 1)-form ΘF on RcodimF \ {0} is characterized uniquely near
Σζ• by the relations

(4.4)
dw = ΘF ∧ dqF ,

ΘF |w ∈ ΛcodimF−1T ∗
wΣ

ζ
• ⊂ ΛcodimF−1T ∗

wR
codimF ∀ w ∈ Σζ•,

where we wrote qF (w) :=
1
2 ⟨QFw,w⟩. Let TF : RcodimF → RcodimF be the

isomorphism

w = (w1, . . . , wcodimF )(4.5)

7−→
(

w1

|λF1 |
1

2

,
w2

|λF1 |
1

2

, . . . ,
wcodimF−1

|λFcodimF/2|
1

2

,
wcodimF

|λFcodimF/2|
1

2

)
= TF (w).
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Pulling back both sides of (4.4) along TF yields, with ΛF as in (2.29), the
equation

(4.6) Λ−1
F dw = T ∗

F dw = T ∗
FΘF ∧ d(qF ◦ TF ).

We claim that, on the subset R
n+

F• × R
n−

F• ⊂ RcodimF \ {0}, the form T ∗
FΘF

can be explicitly expressed in terms of the inertial polar coordinates intro-
duced in Section 2.3 as follows:

T ∗
FΘF |T−1

F (rθ+,sθ−) = Λ−1
F rn

+
F−1sn

−
F−1 dθ+ ∧ dθ− ∧ r ds+ s dr

r2 + s2
,(4.7)

(θ+, θ−) ∈ Sn
+
F−1 × Sn

−
F−1.

This follows from (4.6), the equation (qF ◦ TF )(rθ+, sθ−) = 1
2(r

2 − s2), and
the equations

d(qF ◦ TF ) ∧
r ds+ s dr

r2 + s2
= (r dr − s ds) ∧ r ds+ s dr

r2 + s2
= dr ∧ ds,

dw = rn
+
F−1sn

−
F−1 dr ∧ dθ+ ∧ ds ∧ dθ−.

Since n+F ≥ 2, n−F ≥ 2, and T ∗
FdΣ

ζ = T ∗
FΘF |T−1

F (Σζ
•)
, we deduce from (4.7)

that the measure dΣζ is locally finite. Observe that Σζ× is of full measure in

Σζ•. Thus, we get for every f ∈ C∞
c (RcodimF )

ˆ

Σζ
•

f dΣζ =

ˆ

T−1
F (Σζ

×)

f ◦ TF T ∗
FdΣ

ζ

= Λ−1
F

ˆ

{r2−s2=2ζ, r,s>0}

rn
+
F sn

−
F−1Sf◦TF

(r, s) ds+ rn
+
F−1sn

−
F Sf◦TF

(r, s) dr

r2 + s2
.

(4.8)

Note that on the integration domain in the second line we have the relation
rdr = sds.

Next, consider for k ∈ N0 the function WF,k ∈ C∞(R
n+

F• × R
n−

F• ) defined
by

(4.9) WF,k(w) := 4ΛF
∥∥T−1

F w
∥∥2k ∥∥T−1

F w+
∥∥2−n+

F
∥∥T−1

F w−∥∥2−n−
F ,

where we use the notation w = (w+, w−) for an element in Rn
+
F × Rn

−
F =

RcodimF . Furthermore, we define a differential operator D+
F : C∞(R

n+
F• ×
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Rn
−
F ) → C∞(R

n+
F• × Rn

−
F ) and a differential operatorD−

F : C∞(Rn
+
F × R

n−
F• ) →

C∞(Rn
+
F × R

n−
F• ) by

(4.10) D±
F (f)(w) :=

1

2

〈
∇f(w), w±

∥∥T−1
F w±

∥∥2
〉
,

where ∇f(w) ∈ RcodimF is the Euclidean gradient of f at w and ⟨·, ·⟩ is the
standard inner product in RcodimF . The significance of these operators lies
in the following observation, which we shall in fact only use for ζ = 0, when
the pointed and slit quadrics agree.

Proposition 4.1. Let f ∈ C∞
c (RcodimF ) and let f× be the restriction of f

to R
n+

F• × R
n−

F• . For each k, l ∈ N0, the function WF,k(D
+
F −D−

F )
lf× is inte-

grable over Σζ× with respect to dΣζ and one has

ˆ

Σζ
×

WF,k(D
−
F −D+

F )
lf× dΣζ =

ˆ ∞

|2ζ|
tk(∂− − ∂+)

l
Sf◦TF

(
t+ 2ζ

2
,
t− 2ζ

2

)
dt.

Consequently, the integrals on the right hand side have a geometric meaning
in the sense that they correspond to integrals over Σζ× with respect to the
natural hypersurface measure dΣζ .

Proof. Let us first assume ζ ≥ 0 and introduce the short-hand notation
fk,l :=WF,k(D

−
F −D+

F )
lf× with the function WF,k from (4.9) and the oper-

ators D±
F from (4.10). The spherical mean Sfk,l◦TF

(r, s) is well-defined for
r, s > 0 and can be expressed in terms of Sf◦TF

(r, s) according to

(4.11) Sfk,l◦TF
(r, s) = 4ΛF

(r2 + s2)k

rn
+
F−2 sn

−
F−2

( 1

2s

∂

∂s
− 1

2r

∂

∂r

)l
Sf◦TF

(r, s),

as can be seen by writing w and w± in terms of polar coordinates in the
definitions of WF,k and D±

F . Using on Σζ× the relations r =
√
s2 + 2ζ and

rdr = sds, we write with (4.8)

ˆ

Σζ
×

fk,l dΣ
ζ

=
1

ΛF

ˆ ∞

0

(s2+2ζ)n
+
F

/2sn
−
F

−1Sfk,l◦TF

(√
s2+2ζ,s

)
ds+(s2+2ζ)n

+
F

/2−1sn
−
F

+1Sfk,l◦TF

(√
s2+2ζ,s

)
ds

2s2+2ζ
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and then compute with (4.11)

ˆ

Σζ
×

fk,l dΣ
ζ =

1

ΛF

ˆ ∞

0
(s2 + 2ζ)n

+
F /2−1sn

−
F−1Sfk,l◦TF

(√
s2 + 2ζ, s

)
ds

= 4

ˆ ∞

0
s(2s2 + 2ζ)k

( 1

2s
∂s −

1

2
√
s2 + 2ζ

∂r

)l
Sf◦TF

(√
s2 + 2ζ, s

)
ds

= 2

ˆ ∞

0
(2t+ 2ζ)k

( 1

2
√
t
∂s −

1

2
√
t+ 2ζ

∂r

)l
Sf◦TF

(√
t+ 2ζ,

√
t
)
dt

=

ˆ ∞

2ζ
tk

(
1

2
√

t−2ζ
2

∂s −
1

2
√

t+2ζ
2

∂r

)l
Sf◦TF

(√
t+ 2ζ

2
,

√
t− 2ζ

2

)
dt

=

ˆ ∞

2ζ
tk(∂− − ∂+)

l
Sf◦TF

(
t+ 2ζ

2
,
t− 2ζ

2

)
dt.

Here we substituted t := s2 and applied (4.2) in the final step. The integra-
bility claim follows since the right hand side is a finite integral. The case
ζ ≤ 0 is treated analogously by writing s =

√
r2 − 2ζ. □

A further important observation is the following

Proposition 4.2. For all k ∈ N0 and f ∈ C∞
c (RcodimF ), one has

∂k±Sf◦TF
(0, 0) = (2n±F )

−k(volSn
+
F−1)(volSn

−
F−1)(∆QF

± )kf(0),

where vol(Sn
±
F−1) is the volume of Sn

±
F−1 with respect to the standard round

measure and the second order differential operator ∆QF

± : C∞(RcodimF ) →
C∞(RcodimF ) is defined by

∆QF

± (f)(w) := tr (Q±
F )

−1Hess±(f)(w), w ∈ R
codimF .

Here tr denotes the trace, (Q±
F )

−1 is the restriction of Q−1
F to the subspace

Rn
±
F ⊂ RcodimF on which ±QF is positive, and Hess±(f)(w) denotes the

quadrant of the Euclidean Hessian matrix of f at w formed by all second
derivatives with respect to the variables in Rn

±
F .

Proof. For k = 0, the claim is true by (4.1). Assuming that it holds for some
k ∈ N0 and also for k = 0, we have

∂k+1
± Sf◦TF

(0, 0) = ∂±∂k±Sf◦TF
(0, 0) = ∂±S

(2n±
F )−k(∆

QF
± )k(f◦TF )

(0, 0).
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This reduces the proof to the case k = 1. To treat this case, we first recall
that for any bilinear form B on any Euclidean space Rn one has

(4.12)

ˆ

Sn−1

⟨Bθ, θ⟩ dθ = 1

n
volSn−1 trB,

as one verifies by diagonalizing B. For arbitrary f ∈ C∞
c (RcodimF ), we now

compute using (4.2)

∂+Sf◦TF
(0, 0) = lim

ε→0+
∂+Sf◦TF

(ε2, 0) = lim
ε→0+

1

2ε

∂Sf◦TF

∂r
(ε, 0)

= lim
ε→0+

1

2ε

ˆ

Sn
+
F

−1

ˆ

Sn
−
F

−1

〈
∇+f(εTF θ

+, 0), TF θ
+
〉
dθ+ dθ−

= lim
ε→0+

volSn
−
F−1

2ε

(
ˆ

Sn
+
F

−1

〈
∇+f(0, 0), TF θ

+
〉
dθ+

+ ε

ˆ

Sn
+
F

−1

〈
Hess+f(0, 0)TF θ

+, TF θ
+
〉
dθ+ +O(ε2)

)

=
volSn

−
F−1

2

ˆ

Sn
+
F

−1

〈
TFHess+f(0, 0)TF θ

+, θ+
〉
dθ+

because
´

Sn
+
F

−1 ⟨v, θ+⟩ dθ+ = 0 for each v ∈ Rn
+
F and TF is self-adjoint. Ap-

plying (4.12) then yields

∂+Sf◦TF
(0, 0) = (2n+F )

−1(volSn
+
F−1)(volSn

−
F−1) tr(T±

F Hess+f(0, 0)T
±
F ),

where we put T±
F := TF |

R
n
±
F
: Rn

±
F → Rn

±
F . To get the claimed relation, it

now suffices to use the cyclic property of the trace and to observe that
(T±
F )2 = (Q±

F )
−1. The calculation for ∂−Sf (0, 0) is completely analogous.

□

To close this section, we briefly turn to the case of a definite quadratic
form QF and write

(4.13) Sf (r) :=

ˆ

ScodimF−1

f(rθ) dθ =: Sf (r
2), r ∈ R.

Proposition 4.3. One has for all k ∈ N0 and f ∈ C∞
c (RcodimF )

S
(k)
f◦TF

(0) =
vol(ScodimF−1)

(2 codimF )k
(∆QF )kf(0),

where vol(ScodimF−1) is the volume of ScodimF−1 with respect to the standard
round measure and the second order differential operator ∆QF : C∞(RcodimF )
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→ C∞(RcodimF ) is defined by

∆QF (f)(w) := trQ−1
F Hess(f)(w), w ∈ R

codimF .

Here tr denotes the trace and Hess(f)(w) denotes the Euclidean Hessian of
f at the point w.

Proof. In view of the relations

S
(k)
f (t) = δkrSf (

√
t) ∀ t ∈ (0,∞), k ∈ N0, δrSf (r) :=

1

2r
S′
f (r), r > 0,

the proof is completely analogous to the proof of Proposition 4.2. □

4.2. Global geometric interpretation

Let us now carry out the second step of our geometric interpretation by
specializing from a general spherical mean Sf as in (4.1) and (4.13) to the
particular spherical means SF from (2.30) and (2.32) which involve our am-
plitude a, the local normal form symplectomorphism ΦF from Proposition
2.6, and the cutoff function χF from our partition of unity. Our goal is to
translate the expressions from Propositions 4.1, 4.2, and 4.3, which live in
our local model of M near F , into expressions that live on subsets of the
symplectic reduction M ζ . The technical key ingredient to achieving our goal
is the following

Lemma 4.4. Fix (UF ,ΦF ) as in Proposition 2.6, let f ∈ Cc(UF ), and de-
fine the average

⟨f⟩T (T · p) :=
ˆ

T
f(g · p) dg, p ∈M,

where dg is the Haar measure on T fixed by our identification t ∼= R. Let
ζ ∈ R and put ζF = J (F )− ζ.

1) Let dΣζF be the hypersurface measure introduced in (4.4) on the pointed
quadric ΣζF• . Then, with the notation as in (2.25), one has

ˆ

M
ζ
top

⟨f⟩T dM
ζ
top =

ˆ

PF

ˆ

Σ
ζF
•

f(Φ−1
F (π̃F (℘,w))) dΣ

ζF (w) d℘,

where dM ζ
top = (ωζtop)

n−1/(n− 1)! denotes the symplectic volume form

on the top stratum of M ζ .
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2) Similarly, we have with dF = ωdimF/2/(dimF/2)!
ˆ

F
f dF =

ˆ

PF

f(Φ−1
F (π̃F (℘, 0))) d℘.

Proof. We begin with Assertion (1). First, note that from (2.18) and (2.23)
it is clear that

ΦF (J −1({ζ})top ∩ UF ) =
{
[℘,w] ∈ ΦF (UF ) | w ∈ ΣζF• \ {0}

}
.

By slight abuse of notation, let us write qF ([℘,w]) :=
1
2 ⟨QFw,w⟩ =: qF (w),

so that we deduce from (2.18) that

(4.14) (Φ−1
F )∗dJ = dqF .

Furthermore, recall from (2.27) that we have the equality of smooth densities

(Φ−1
F )∗( dM |UF

) = d[℘,w], |π̃∗F (d[℘,w]) ∧Π∗
F ηF | = |d℘ ∧ dw|

and that by (4.4) we have d℘ ∧ dw = d℘ ∧ΘF ∧ dqF . On the other hand,
the hypersurface Liouville measure dJ −1({ζ})top on J −1({ζ})top is charac-
terized by the condition

(4.15) dM |p =
1

n!
ωn|p = dJ |p ∧ dJ −1({ζ})top|p ∈ Λ2n(T ∗

pM)

for any p ∈ J −1({ζ})top. Pulling back (4.15) along Φ−1
F ◦ π̃F and taking

(4.14) into account yields

|(Φ−1
F ◦ π̃F )∗(dJ −1({ζ})top) ∧Π∗

F ηF | = | d℘ ∧ΘF |.

Since ΘF |ΣζF
•

= dΣζF• and
´

π−1
F ({p}) ηF = 1 for each p ∈ F , this proves that

one has for each f ∈ Cc(UF )
(4.16)
ˆ

J−1({ζ})top
f dJ −1({ζ})top =

ˆ

PF

ˆ

Σ
ζF
•

f(Φ−1
F (π̃F (℘,w))) dΣ

ζF
• (w) d℘.

It remains to show that

(4.17)

ˆ

M
ζ
top

⟨f⟩T dM
ζ
top =

ˆ

J−1({ζ})top
f dJ −1({ζ})top.

To this end, recall that ωζtop is characterized by π∗ωζtop = i∗ζω, where iζ :

J −1({ζ})top →M is the inclusion and π : J −1({ζ})top → M
ζ
top the orbit
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projection. Also notice that our identification of t with R corresponds to a
choice of an element x0 ∈ t that is identified with 1, and leads to an identifi-
cation of J with J(x0). On the top stratum M(htop) ⊂M , the fundamental
vector field x̃0 is nowhere-vanishing, so it has a dual one-form ξ0. One then
computes on M(htop)

ιx̃0
(ξ0 ∧ dJ ) = dJ = dJ(x0) = ιx̃0

ω,

where the first equality uses the T -invariance of J , the middle equality
is the remark above, and the last equality is the defining property of the
momentum map J . Consequently,

(4.18) (ξ0 ∧ dJ )|M(htop)
+ β = ω|M(htop)

for some β ∈ Ω2(M(htop)) that fulfills ιx̃0
β = 0. Thus, on M(htop) we have

1

n!
ωn =

1

n!
ωn−1 ∧ ξ0 ∧ dJ +

1

n!
ωn−1 ∧ β

=
1

n!
ωn−1 ∧ ξ0 ∧ dJ +

1

n!
ωn−2 ∧ ξ0 ∧ dJ ∧ β +

1

n!
ωn−2 ∧ β2

=
1

n!

( n∑

j=1

ωn−j ∧ βj−1

)
∧ ξ0 ∧ dJ +

1

n!
βn

but βn = 0 because β is degenerate. Now, if we insert β = ω − ξ0 ∧ dJ , then
all non-zero powers of ξ0 ∧ dJ get killed by the wedge product with ξ0 ∧ dJ ,
and we arrive at

1

n!
ωn =

1

n!

( n∑

j=1

ωn−1

)
∧ ξ0 ∧ dJ =

1

(n− 1)!
ωn−1 ∧ ξ0 ∧ dJ .

Inserting this in (4.15) gives us

dJ −1({ζ})top =
1

(n− 1)!
i∗ζω

n−1 ∧ i∗ζ(ξ0).

On the other hand, we compute

π∗ dM ζ
top = π∗

(
(ωζtop)

n−1/(n− 1)!
)
=

1

(n− 1)!
π∗(ωζtop)

n−1 =
1

(n− 1)!
i∗ζω

n−1,
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so that we find

dJ −1({ζ})top = π∗( dM ζ
top) ∧ i∗ζ(ξ0),

ˆ

J−1({ζ})top
f dJ −1({ζ})top =

ˆ

M 0
top

(
ˆ

T ·p
fξ0

)
dM ζ

top(T · p).

We are left with comparing
´

T ·p fξ0 with ⟨f⟩T (T · p) for any orbit T · p,
where p ∈ J −1({ζ})top. The map Ψp : S

1 ∋ g 7→ g · p ∈ T · p is an S1-
equivariant diffeomorphism, so Ψ∗

pξ0 is a Haar measure on S1 and thus a con-
stant multiple of dg. To determine the constant, we note that the derivative
of Ψp at the identity fulfills DΨp|1(x) = x̃|p, x ∈ t = T1S

1. Consequently,

Ψ∗
pξ0|1(x0) = ξ0(DΨp|1(x0)) = ξ0(x̃0) = 1,

proving Ψ∗
pξ0 = dg. This finishes the proof of (4.17) and Assertion (1). As-

sertion (2) follows along the same arguments taking into account (2.19),
(2.24), and the relation ΦF (F ) = {[℘,w] ∈ ΦF (UF ) | w = 0}. □

Corollary 4.5. Consider a spherical mean SF as in (2.30) and (2.32).
Depending on whether the bilinear form QF is indefinite or definite, write

SF (r, s) =: SãF
(r2, s2) or SF (r) =: SãF

(r2), r, s ∈ [0,∞),

where SãF
is a smooth, compactly supported function on R2 or R as in (4.1)

or (4.13), respectively, associated with the function ãF from (2.30) which is
related to our amplitude a ∈ C∞

c (M) by

ãF (w) =

ˆ

PF

(aχF )(Φ
−1
F (π̃F (℘, TFw))) d℘, w ∈ R

codimF .

1) Suppose that QF is indefinite. Then, for each k, l ∈ N0, there are differ-
ential operators

DF,k,l : C
∞(UF \ F ) → C∞(UF \ F ), Q

±
F,k : C

∞(UF ) → C∞(UF )

of orders k and 2k, respectively, such that

ˆ ∞

0
tl(∂− − ∂+)

k
SãF

( t
2
,
t

2

)
dt =

ˆ

M
J (F )
top

⟨DF,k,l(χFa)⟩T dM
J (F )
top ,

∂k±SãF
(0, 0) =

ˆ

F
Q

±
F,ka dF.

(4.19)
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2) Suppose that QF is definite. Then, for each k ∈ N0, there is a differential
operator QF,k : C

∞(UF ) → C∞(UF ) of order 2k such that

(4.20) S
(k)
ãF

(0) =

ˆ

F
QF,ka dF.

Proof. Applying Lemma 4.4 and Propositions 4.1, 4.2, 4.3 yields the claim
with integrands of the form

⟨DF,k,l(aχF )⟩T , Q
±
F,k(aχF ), QF,k(aχF ),

where the operators DF,k,l, Q
±
F,k, and QF,k are defined as follows: first, we ex-

tend the operatorsD±
F , ∆

QF , ∆QF

± and the functionsWF,k from V ⊂ RcodimF

(here V is RcodimF or R
n+

F• × R
n−

F• ) to the trivial bundle PF × V by pulling
back along the projection PF × V → V . Then these extended operators and
functions induce differential operators D̃±

F , ∆̃
QF , ∆̃QF

± and functions W̃F,k on
PF ×KF

V by identifying smooth functions on PF ×KF
V with KF -invariant

smooth functions on PF × V . By conjugating D̃−
F − D̃+

F with ΦF , taking
the l-th power, and multiplying with W̃F,k and appropriate constants as
prescribed by Proposition 3.3, we obtain the operator DF,k,l. Similarly, we

define the operators QF,k and Q
±
F,k using ∆̃QF and ∆̃QF

± . Finally, since
χF ≡ 1 near F , we can remove χF from the integrals over F . □

5. Proof of the main results

We are now ready to prove our main results, Theorems 1.1 and 1.2.

5.1. Proof of Theorem 1.1

Fix a given ζ ∈ R ∼= t∗, and recall from (2.21) the equality

(5.1) Iζ(ε) = Iζχtop
(ε) +

∑

F∈F
IζχF

(ε)

which is equivalent to the statement (2.20). We shall derive the desired
asymptotic expansion of Iζ(ε) by deriving an asymptotic expansion of each
summand in (5.1). Let us begin with the summands associated with fixed
point set components F ∈ F satisfying J (F ) = ζ. Fix such an F , put jF :=
codimF/2− 1, and recall the notation (3.2) as well as the expression (2.28).
Applying Corollary 4.5 to the statements of Propositions 3.3 and 3.6, taking
S = SãF

, ζ = 0, 2ε as asymptotic parameter, and L = codimF/2− 2 (in
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Proposition 3.3) or L = codimF/2 (in Proposition 3.6) there, we obtain the
following results:

1) Suppose that F is indefinite. Then, there are differential operators Dtop
j,F :

C∞(UF \ F ) → C∞(UF \ F ), j ∈ N0, andD
±
j,F : C∞(UF ) → C∞(UF ), j ≥

jF , of orders j and 2(j + 1)− codimF respectively, such that one has

IJ (F )
χF

(ε) ∼ ε

∞∑

j=0

εjA
J (F )
j,F , in (D(M)⊗ S(t))′

with A
J (F )
j,F = A′

j,F +Aj,F given by

A′
j,F (a⊗ σ) = σ(j)(0)

ˆ

M
J (F )
top

〈
Dtop
j,F (χFa)

〉
T
dM

J (F )
top ,

Aj,F (a⊗ σ) =

{
0, j < jF ,

σ
[k]
+ (0)

´

F D
+
j,Fa dF + σ

[k]
− (0)

´

F D
−
j,Fa dF, j ≥ jF .

2) Suppose that F is definite, sF = ±. Then, there are differential oper-
ators Dj,F : C∞(UF ) → C∞(UF ), j ≥ 1

2codimF − 1, of orders 2j + 2−
codimF such that one has

IJ (F )
χF

(ε) ∼ ε

∞∑

j=0

εjA
J (F )
j,F in (D(M)⊗ S(t))′,

where A
J (F )
j,F vanishes unless j ≥ jF , in which case one has A

J (F )
j,F (a⊗

σ) = Aj,F (a⊗ σ) = σ
[j]
∓ (0)

´

F Dj,Fa dF.

To prove that the operatorsD±
j,F ,Dj,F equal constants for j = 1

2codimF − 1

and to determine the constants Cindef , Cdef ∈ C such that D±
1

2
codimF−1,F

=

C±
indef , D 1

2
codimF−1,F = Cdef , we inspect the differential operators and the

constants occurring in Propositions 3.3, 3.6, 4.2, and 4.3, and recall that
(2.28) and (2.31) involve an overall factor of Λ−1

F , which gives us

C±
indef = Λ−1

F (volSn
+
F−1)(volSn

−
F−1)2codimF/2c±codimF/2−1,0,0,0

=
2codimF/2+2πcodimF/2

ΛF (n
+
F /2− 1)!(n−F /2− 1)!

c±codimF/2−1,0,0,0,
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Cdef = Λ−1
F vol(ScodimF−1)2codimF/2ccodimF/2−1,0

=
2codimF/2+1πcodimF/2

ΛF (codimF/2− 1)!
ccodimF/2−1,0.

Here the additional factors 2codimF/2 occur because we apply Propositions
3.3 and 3.6 with ε replaced by 2ε. Similarly, one finds Dtop

0,F = 2π by taking
into account that the function WF,k occurring in Proposition 4.1 is con-
stant when k = codimF/2− 2, its value being given by WF,codimF/2−2 =

2codimF/2ΛF since ∥w∥2 = 2 ∥w±∥2 for w ∈ T−1
F (Σ0). Plugging in the values

of the constants c±codimF/2−1,0,0,0, and ccodimF/2−1,0, we arrive at

Cdef = (2π)2
(2πi)codimF/2−1

ΛF (codimF/2− 1)!
, C±

indef = (2π)2
(πi)codimF/2−1

ΛF (codimF/2− 1)!
N±
F ,

and we also find that the constants N±
F from (1.9) are given by

(5.2) N±
F =

(−1)codimF/2(codimF/2− 1)!

(n+F /2− 1)!(n−F /2− 1)!

codimF/2−2∑

l=0

(±1)codimF/2−l−1

codimF/2− l − 1

×
∑

l++l−=l
0≤l±≤n±

F /2−1

(−1)l
+

(
n+F /2− 1

l+

)(
n−F /2− 1

l−

)
.

To simplify the formula for N±
F , we perform a computation kindly suggested

by Iosif Pinelis [8]. One computes for arbitrary p, q ∈ N0 with the convention
that

(
a
b

)
= 0 whenever a < b

∑

l≥0

1

p+ q − l + 1

∑

j+k=l
j≥0,k≥0

(−1)j
(
p

j

)(
q

k

)
(5.3)

=
∑

l≥0

ˆ 1

0
xp+q−l

∑

j+k=l
j≥0,k≥0

(−1)j
(
p

j

)(
q

k

)
dx

=

ˆ 1

0
xp+q

∑

l≥0

∑

j+k=l
j≥0,k≥0

(−1)j
(
p

j

)(
q

k

)
x−jx−k dx

=

ˆ 1

0
xp+q

∑

j≥0

(
p

j

)
(−x−1)j

∑

k≥0

(
q

k

)
x−k dx

=

ˆ 1

0
xp+q(1− x−1)p(1 + x−1)q dx =

ˆ 1

0
(x− 1)p(1 + x)q dx,
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and the latter expression can be further rewritten into

ˆ 1

0
(x− 1)p

q∑

k=0

(
q

k

)
xk dx = (−1)p

q∑

k=0

(
q

k

)
ˆ 1

0
(1− x)pxk dx

= (−1)p
q∑

k=0

q!

k!(q − k)!

k!p!

(k + p+ 1)!

= (−1)p
q!p!

(q + p+ 1)!

q∑

j=0

(
q + p+ 1

j

)
.

Applying this to (5.2) gives us the result5

(5.4) N±
F = ±(−1)n

−
F /2−1

n∓
F /2−1∑

j=0

(
codimF/2− 1

j

)
.

In particular, we see that N±
F is a non-zero integer. Let us now turn to the

remaining summands in (5.1):

(3) Assume that F ∈ F is such that J (F ) ̸= ζ. Then ζ is a regular value of
J |UF

, and by Proposition 2.5 there is an asymptotic expansion

IζχF
(ε) ∼ ε

∞∑

j=0

εjAζj,F in (D(M)⊗ S(t))′

with

Aζj,F (a⊗ σ) = σ(j)(0)

ˆ

M
ζ
top

〈
D
ζ
j (χFa)

〉
T
dM ζ

top, D
ζ
0 = 2π.

Of course, instead of applying Proposition 2.5 we could have also treated
this case as in (1) or (2) by applying Corollary 4.5 and Propositions 3.3 or
3.6, respectively. By the uniqueness of the coefficients in the asymptotic
expansion, the results of the two approaches agree. However, the form of
the coefficients obtained in Proposition 2.5 is much more simple.

5The appearance of n−F rather than n∓
F in the exponent determining the overall

sign of N±
F is not a misprint. This subtle and seemingly peculiar asymmetry is a

consequence of the fact that interchanging n+

F and n−
F corresponds to replacing the

momentum map J by −J , which changes the phase function in the generalized
Witten integral (1.1).
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(4) The function J |Mhtop
has only regular values. In particular, ζ is a regular

value and Proposition 2.5 gives us an asymptotic expansion

Iζχtop
(ε) ∼ ε

∞∑

j=0

εjAζj,top in (D(M)⊗ S(t))′

with

Aζj,top(a⊗ σ) = σ(j)(0)

ˆ

M
ζ
top

〈
D
ζ
j (χtopa)

〉
T
dM ζ

top, D
ζ
0 = 2π.

Taking (1)–(4) together we deduce with (5.1) that

Iζ(ε) ∼ ε

∞∑

j=0

εjAζj in (D(M)⊗ S(t))′

with

Aζj (a⊗ σ) = σ(j)(0)

ˆ

M
ζ
top

〈
Dζ
ja
〉
T
dM ζ

top +
∑

F∈F :J (F )=ζ,
F∩supp a ̸=∅

Aj,F (a⊗ σ),

where the differential operator Dζ
j is defined on the neighborhood U

ζ
j ⊂

M(htop) of J −1({ζ}) ∩M(htop) on which the operator D
ζ
j from Proposition

2.5 is defined and acts on a function f ∈ C∞(U ζ
j ) by

Dζ
j (f) := D

ζ
j (χtop|U ζ

j
f) +

∑

F∈F :J (F ) ̸=ζ
D
ζ
j (χF |U ζ

j
f)(5.5)

+
∑

F∈F :J (F )=ζ,
F indefinite

Dtop
j,F (χF f |(UF \F )∩U

ζ
j
).

The sum in (5.5) is locally finite and χF f |(UF \F )∩U
ζ
j
extends smoothly by

zero to U
ζ
j , so that Dζ

j is well-defined. To see that

(5.6)

ˆ

M
ζ
top

⟨Dζ
0a⟩T dM

ζ
top = 2π

ˆ

M
ζ
top

⟨a⟩T dM ζ
top ∀ a ∈ C∞

c (M),

we observe that for each definite fixed point F ∈ F one has

UF ∩ J −1({J (F )}) = F
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and consequently the intersection J −1({J (F )}) ∩M(htop) is disjoint from
UF . This implies that for each ζ ∈ t∗ the family of cutoff functions

{χtop, χF }F∈F :J (F )=ζ,F indefinite

restricts to a partition of unity on the set J −1({ζ}) ∩M(htop). Since D
ζ
0 = 2π

and Dtop
0,F = 2π for all indefinite F ∈ F , we get (5.6).

Finally, to prove the naturality claim, let (M ′, ω′,J ′) be another Hamil-
tonian T -space and Φ :M →M ′ an isomorphism of Hamiltonian T -spaces.
Then F ′ = {Φ(F ) : F ∈ F} is the set of connected components of M ′T ,
and for each F ′ = Φ(F ) ∈ F ′ the map ΦF ′ := ΦF ◦ Φ−1 : U ′

F := Φ(UF ) →
PF serves as the local normal form symplectomorphism in Proposition 2.6.
Furthermore, the partition of unity {χtop ◦ Φ−1, χΦ−1(F ′) ◦ Φ−1}F ′∈F ′ is sub-
ordinate to the coverM ′ =M ′

(htop)
∪⋃F ′∈F ′ UF ′ , and one has n±F ′ = n±Φ−1(F ′),

λF
′

j = λ
Φ−1(F ′)
j for each F ′ ∈ F ′, 1 ≤ j ≤ codimF ′/2 = codimΦ−1(F ′)/2.

The claim now follows from the construction of the operators in the proofs
of Theorem 1.1 and Corollary 4.5, which is carried out locally either us-
ing Proposition 2.5, for which the naturality property holds since the phase
function on M ′ is given by composition with Φ in the manifold variable, or
by composing operators in a Euclidean space which are uniquely determined
by the numbers n±F ′ and λF

′

j with the local normal form symplectomorphism
ΦF ′ and gluing them together using the partition of unity. This concludes
the proof of Theorem 1.1. □

The construction of Dζ
j in (5.5) raises the question whether the coeffi-

cients (Aζj )top in (1.7) depend on the choice of partition of unity when j > 0.
That this is not the case is shown in the following

Lemma 5.1. For each j ∈ N0, the distribution Iζj ∈ D′(M) defined by

Iζj (a) :=
ˆ

M
ζ
top

⟨Dζ
ja⟩T dM

ζ
top,

and consequently the coefficient (Aζj )top in (1.7), is independent of the choice
of partition of unity.

Proof. Applying Theorem 1.1 and Proposition 2.5 immediately yields that
the restriction of Iζj to M(htop) is independent of the choice of partition
of unity by the uniqueness of the coefficients in the respective asymptotic
expansions. Now, given j ∈ N0, ζ ∈ t∗, and a ∈ C∞

c (M), choose ε > 0 and a
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T -invariant cutoff function χ ∈ C∞
c (M) with vol

M
ζ
top
((supp χ)/T ∩ M

ζ
top) <

ε/(∥Dζ
ja∥∞volT ) and χ ≡ 1 near supp a ∩MT . Then we have

Iζj (a) = Iζj (χa) + Iζj ((1− χ)a)

=

ˆ

M
ζ
top

⟨χDζ
ja⟩T dM

ζ
top + Iζj (χ

ζ
ja) + Iζj ((1− χ)a),

where χζj ∈ C∞
c (M) is such that Dζ

j (χa) = χDζ
ja+ χζja. In particular, χζj

vanishes near supp a ∩MT . Since χζja and (1− χ)a are supported inM(htop),

the terms Iζj (χ
ζ
ja) and Iζj ((1− χ)a) are independent of the choice of par-

tition of unity. Finally, the integral of ⟨χDζ
ja⟩T over M

ζ
top is bounded in

absolute value by ε. Since ε > 0 was arbitrary, Iζj (a) does not depend on the
choice of partition of unity. □

5.2. Proof of Theorem 1.2

Fix a given ζ0 ∈ R ∼= t∗. To determine the limit behavior of each individual
term in (1.7) as ζ → ζ0 under the two conditions ±(ζ − ζ0) > 0, we begin
with the summands Aζj,F (a⊗ σ), using the same notation as in the proof of
Theorem 1.1. Thus, fix an F ∈ F . As long as ζ ̸= J (F ), we have two options
how to express the coefficient Aζj,F (a⊗ σ): Either we can observe that ζ is
a regular value of J |UF

, and invoke the general regular stationary phase
asymptotics from Proposition 2.5, as we did in (3) in the proof of Theorem
1.1. Or we can apply Proposition 3.3 (if F is indefinite) or 3.6 (if F is definite)
and Corollary 4.5, as we did in (1) and (2) in the proof of Theorem 1.1. By
uniqueness of the coefficients in asymptotic expansions, the two approaches
do describe the same coefficients. However, only the latter approach is useful
when ζ approaches the singular value J (F ) of J |UF

because the coefficients
featured in Propositions 3.3 and 3.6 do have a clearly visible limit behavior
in this case, in contrast to the less explicit but simpler terms appearing
in Proposition 2.5, where no statement on limits towards singular values is
made. We thus distinguish three cases:
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1) If J (F ) = ζ0 and F is indefinite, we apply Proposition 3.3 with ε replaced
by 2ε, ζ by 2ζF = 2(ζ − J (F )), S = SãF

, and L = codimF/2− 2, to-
gether with Corollary 4.5, yielding

lim
ζ→J (F )

±(ζ−J (F ))>0

Aζj,F (a⊗ σ)

=





σ(j)(0)

ˆ

M
J (F )
top

〈
Dtop
j,F (χFa)

〉
T
dM

J (F )
top , j < jF ,

σ(j)(0)

(
ˆ

M
J (F )
top

〈
Dtop
j,F (χFa)

〉
T
dM

J (F )
top +

ˆ

F
D∓
j,Fa dF

)
, j ≥ jF .

2) If J (F ) = ζ0 and F is definite, we similarly get from Proposition 3.6 and
Corollary 4.5 the result

lim
ζ→J (F )

±(ζ−J (F ))>0

Aζj,F (a⊗ σ) =




0, j < jF or sF = ∓,

σ(j)(0)

ˆ

F
Dj,Fa, j ≥ jF and sF = ±.

3) If J (F ) ̸= ζ0, then all ζ close to ζ0 are regular values of J |UF
, and by

Proposition 2.5 one has

lim
ζ→ζ0

±(ζ−ζ0)>0

Aζj,F (a⊗ σ) = Aζ0j,F (a⊗ σ) = σ(j)(0)

ˆ

M
ζ0
top

〈
D
ζ0
j (χFa)

〉
T
dM ζ0

top.

Finally, it remains to consider the limits of the contributions Aζj,top(a⊗ σ)
of the top stratum:

(4) Since the function J |Mhtop
has only regular values, Proposition 2.5 gives

lim
ζ→ζ0

±(ζ−ζ0)>0

Aζj,top(a⊗ σ) = Aζ0j,top(a⊗ σ) = σ(j)(0)

ˆ

M
ζ0
top

〈
D
ζ0
j (χtopa)

〉
T
dM ζ0

top.

We are now ready to describe the limit behavior of

Aζj (a⊗ σ) = Aζj,top(a⊗ σ) +
∑

F∈F :F∩supp a ̸=∅
Aζj,F (a⊗ σ)
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for each ζ ∈ t∗. Recalling the definition (5.5) of the operators Dζ
j , a combi-

nation of (1)–(4) yields for each j ∈ N0

lim
ζ→ζ0

±(ζ−ζ0)>0

Aζj (a⊗ σ) = lim
ζ→ζ0

±(ζ−ζ0)>0

Aζj,top(a⊗ σ)

+
∑

F∈F :J (F ) ̸=ζ0,
F∩supp a ̸=∅

lim
ζ→ζ0

±(ζ−ζ0)>0

Aζj,F (a⊗ σ)

+
∑

F∈F :J (F )=ζ0,
F∩supp a ̸=∅

lim
ζ→J (F )

±(ζ−J (F ))>0

Aζj,F (a⊗ σ)

= σ(j)(0)

(
ˆ

M
ζ0
top

〈
Dζ0
j a
〉
T
dM ζ0

top +
∑

F∈F :J (F )=ζ0,
codimF/2−1≤j,
F indefinite,
F∩supp a ̸=∅

ˆ

F
D∓
j,Fa dF

+
∑

F∈F :J (F )=ζ0,
codimF/2−1≤j,
F definite, sF=±,
F∩supp a ̸=∅

ˆ

F
Dj,Fa dF

)
.

This concludes the proof of Theorem 1.2. □

Index of Notation

In what follows we include a list with the main notation used in this paper,
explaining its meaning and specifying the place where it is used first.

M A symplectic manifold with symplectic form ω p. 1281
T The circle group, acting on M in a Hamiltonian fash-

ion
p. 1281

t The Lie algebra of T , identified with R by fixing a
Lebesgue measure

p. 1281

J The momentum map M → t∗ p. 1281
J(x) The map M → R given by J (p)(x) = J(x)(p) Eq. (1.4)
S(V ) The space of Schwartz functions on V Eq. (1.1)
D(M) The space of test functions C∞

c (M) with the test func-
tion topology

Eq. (1.2)
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D′(M) The space of distributions on M , identified with the
space of distribution densities on M via the symplec-
tic volume form dM

Eq. (1.3)

M ζ The symplectic reduction M ζ = J −1({ζ})/T Eq. (1.6)

M
ζ
top The top stratum of M ζ Eq. (1.6)

M
ζ
sing The singular stratum of M ζ Eq. (1.6)

M(hℵ) The stratum of M of infinitesimal orbit type (hℵ) Eq. (1.6) f.
F A connected component of the fixed point set MT p. 1284
F The set of all connected components F of MT p. 1284
Iζ(ε) The generalized Witten integral Eq. (1.2)
a A function in C∞

c (M) Eq. (1.2)
σ A function in S(t) Eq. (1.2)

Iζa,σ(ε) The generalized Witten integral evaluated on a⊗ σ Eq. (1.1)

Iζχtop(ε) A component of the generalized Witten integral Eq. (2.21)

IζχF (ε) A component of the generalized Witten integral Eq. (2.21)

Aζj The j-th coefficient in the expansion of Iζ(ε) Thm. 1.1

Σζ The local model for the level set J −1(ζ + J (F )) Def. 4.1

Σζ• A subset of Σζ Def. 4.1

Σζ× A subset of Σζ• Def. 4.1

Aζj,top A contribution to the coefficient Aζj Sec. 5.1

Aζj,F A contribution to the coefficient Aζj Sec. 5.1

a =
O(r)

There is a constant C > 0 such that |a| ≤ Cr Eq. (4.12) f.

a =
Ox(r)

There is a constant C > 0, depending on x, such that
|a| ≤ Cr

Prop. 3.3
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