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Knot homologies in monopole and
instanton theories via sutures

ZHENKUN LI

In this paper we construct possible candidates for the minus ver-
sions of monopole and instanton knot Floer homologies. For a null-
homologous knot K < Y and a base point p € K, we associate the
minus versions, KHM™ (Y, K,p) and KHI™ (Y, K, p), to the triple
(Y, K, p). We prove that a Seifert surface of K induces a Z-grading,
and there is an U-map on the minus versions, which is of degree
—1. We also prove other basic properties of them. If K < Y is not
null-homologous but represents a torsion class, then we can also
construct the corresponding minus versions for (Y, K, p). We also
proved a surgery-type formula relating the minus versions of a knot
K with those of the dual knot, when performing a Dehn surgery
of large enough slope along K. The techniques developed in this
paper can also be applied to compute the sutured monopole and
instanton Floer homologies of any sutured solid tori.
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1. Introduction
1.1. Statement of results

Floer homologies have become very important tools in the study of 3-
manifolds, since the first construction by Floer in [10]. Among them, two
major branches are the monopole Floer homology, which was introduced
by Kronheimer and Mrowka [20] and the Heegaard Floer homology, which
was introduced by Ozsvéath and Szabd [33] or Rasmussen [34]. For a closed
oriented 3-manifold Y, there are four flavors of homologies associated to Y
in each of the two theories, and they are isomorphic by work of Kutluhan,
Lee and Taubes in [24] and in subsequent papers. If there is a knot K inside
a 3-manifold Y, then there are corresponding four flavors of homologies of
the pair (Y, K) in the Heegaard Floer theory. See Ozsvadth and Szabé [32].
However, some corresponding constructions in the monopole and instanton
theory are missing. The only monopole or (non-singular) instanton Floer
homology for knots in 3-manifolds is a version based on sutured manifolds,
which was introduced by Kronheimer and Mrowka in [2I] and was refined by
Baldwin and Sivek in [I]. The monopole version is proved to be isomorphic
to the hat version of the knot Floer homology in Heegaard Floer theory,
which was due to Baldwin and Sivek [7] or Lekili [25]. In this paper, we
construct Floer homologies associated to a based oriented null-homologous
knot, which are candidates for the monopole and the instanton correspon-
dences of the minus version of the knot Floer homology in Heegaard Floer
theory.

Theorem 1.1. Suppose Y is a closed connected oriented 3-manifold and
K cY is an oriented null-homologous knot. Suppose further that S is a
Seifert surface of K, and p € K is a base point. Then, we can associate the
triple (Y, K,p) a module KHM™ (Y, K, p) over the mod 2 Novikov Ring R.
It is well defined up to multiplication by a unit in R. The Seifert surface S
induces a Z grading on KHM™ (Y, K, p), which we denote by KHM™ (Y, K, P,
S,1). Moreover, the following properties hold.

(1) Fori>g=g(S), KHM (Y, K,p, S,i) = 0.

(2) There is a map

U : KHM (Y, K, p) — KHEM (Y, K, p)

that is of degree —1.
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(8) There exists an Ny € Z such that if i < Ny, then
U:KHM (Y, K,p,S,i) ~ KHM™ (Y, K,p,S,i — 1).
(4) There exists an exact triangle

U

KHM (Y, K, p) KHM™ (Y, K, p)

KHM(Y, K, p)
(5) If Y = S and S realizes the genus of the knot, then we have
KHM~ (Y, K, p, $,) 0

fori=g(S).
A similar construction can also be carried out in instanton theory.

Theorem 1.2. Under the same settings as in Theorem we can con-
struct KHI™ (Y, K, p), using instanton Floer homology, so that all the prop-
erties (1)-(5) in the that theorem hold in the instanton settings.

Remark 1.3. It is worth mentioning that Kutluhan [23] constructed an-
other minus version of knot monopole Floer homology in a different way.
He used the holonomy filtration to construct a to-version of monopole knot
homology and used the isomorphism between monopole and Heegaard Floer
theory (c.f. Kutluhan Lee and Taubes [24]) to show that his to-version of
monopole knot homology is isomorphic to the minus version of knot Floer
homology in Heegaard Floer theory introduced by Oszvath and Szabé [32].
Kutluhan’s depends heavily on the analysis of monopole theory, while our
approach is more topological, and can be easily transported to instanton
theory, as in Section [6]

1.2. Outline of the proof

In the current subsection, we only discuss in the monopole settings, and
the constructions in the instanton settings are similar. The construction of
KHM™ (Y, K, p) is based on sutured monopole Floer homology. A sutured
manifold (M,~) is a compact oriented 3 manifold with a closed oriented
1-submanifold v on dM, which we call the suture. The suture ~ divides
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OM into two parts, according to the orientations of v and the 3-manifold,
which we call R_(y) and Ry (7), respectively. Sutured manifolds were first
introduced by Gabai in [I2]. Kronheimer and Mrowka then carried out the
construction of the monopole and instanton Floer homologies on balanced
sutured manifolds in [21].

A sutured manifold (M, ~) is called balanced if M and R(v) both have
no closed components and x(R_(7y)) = x(R+(7)). To define the sutured
monopole Floer homology for such a pair (M,~), Kronheimer and Mrowka
constructed a closed 3-manifold Y, together with a distinguishing surface
R, out of (M,~). The pair (Y, R) is called a closure of (M, ). Sometimes
we simply call Y a closure. The genus of the closure refers to the genus
of the surface R. To construct a closure, one needs to find a compact con-
nected oriented surface T, whose boundary is diffeomorphic to -, and then
glue [—1,1] x T' to M, with [—1,1] x 0T identified with an annular neigh-
borhood of v € dM. The surface T is called an auxiliary surface. The new
3-manifold after the gluing is called a pre-closure, and it has two boundary
components, R, and R_, of the same genus. Then, we can pick a diffeomor-
phism A from R, to R_ to glue the two boundary components together to
obtain a closure (Y, R). We call h a gluing diffeomorphism.

To study the naturality of sutured monopole Floer homology, Baldwin
and Sivek [4] constructed canonical maps between two different closures
of a same balanced sutured manifold (M,~). Their construction is only
well-defined up to multiplication by a unit, so the closures and canonical
maps form a projective transitive system and result in a canonical module
SHM(M, ~), whose elements are well defined only up to a unit.

The construction of the (canonical) module KHM™ (Y, K, p) was inspired
by Etnyre, Vela-Vick and Zarev in [9], where they use a sequence of balanced
sutured manifolds (Y (K),I',,) and the gluing maps in sutured (Heegaard)
Floer theory, which was introduced by Honda, Kazez, and Mati¢ [I7], to
construct a direct system. They proved that the direct limit is isomorphic
to the classical minus version of knot Floer homology in Heegaard Floer
theory. Here, Y (K) = Y\int(N(K)) is the knot complement, and I',, con-
sists of two curves on dY (K) = T2, which are of class +(1,—n) under the
framing induced by some Seifert surface. In this paper, we construct a sim-
ilar direct system in sutured monopole Floer theory. In particular, there is
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a commutative diagram

P i1

(1) SHM(-Y (K), —I') SHM(=Y (K), =T'n41)

P n+1
+,n+1 +,n+2

+1
Y e

SHM(~Y (K), ~Lys1) SHM(~Y (K), ~Lys2)

Here, the balanced sutured manifolds are the same as described above, and
the maps come from gluing maps in sutured monopole monopole Floer the-
ory, which were constructed by the author in [26].

The commutativity of (|1f) is guaranteed by the functoriality of the gluing
map. The crucial difference from the work of Etnyre, Vela-Vick and Zarev
in [9] is that, because of the involvement of closures, the construction of the
grading in the monopole and the instanton settings is a delicate issue. We
construct a grading in the direct limit in two steps.

The first step is to construct a grading on each SHM(Y (K),T',), for all
n, using the Seifert surface S. To construct such a grading, we work with a
more general case, where (M, ) is an arbitrary balanced sutured manifold,
S is a properly embedded surface whose boundary is connected, and 05
intersects v transversely at 2n points.

For the case n = 1, the construction has already been carried out by
Baldwin and Sivek in [5]. When n = 1, we can pick a properly embedded arc
a < T, where T is an auxiliary surface for (M,~). When gluing [-1,1] x T
to M, we require that the end points of « are glued to the two intersection
points in 05 n 7, and, hence, [—1,1] x « is glued to S along [—1,1] x da.
Then, S becomes a surface S properly embedded in the pre-closure M.
Note M has two boundary components R, and R_, and the two boundary
components of S are contained in different boundary components of M.
Thus, we can pick a gluing diffeomorphism h : R, — R_ which also identifies
the two boundary components of S. Hence, S becomes a closed surface S
inside the closure Y of (M,~). The grading can be defined by looking at
the pairing of the first Chern classes of the spin® structures on Y with
the fundamental class of S. This idea was first introduced by Kronheimer
and Mrowka in [21], and, in [5], Baldwin and Sivek proved that, when n =
1, the definition of the grading is independent of all choices made in the
construction and is well defined in SHM (M, ).
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For a general n, the basic idea to construct a grading is the same. How-
ever, there are more choices involved, and, thus, many new issues arise. For
example, for a general n, we need to pick n arcs ajy, ..., a, instead of just
one, and we need to specify which arc connects which pair of intersection
points in 0S5 N . Thus, this leads to a new combinatorial problem which did
not occur in Baldwin and Sivek [5]. We deal with this combinatorial problem
in Subsection [3:3] To conclude the proof, we also need a new interpretation
of Baldwin and Sivek’s canonical maps between different closures. We use
simply the Floer excision introduced by Kronheimer and Mrowka in [21] to
construct an equivalent canonical map, which was originally introduced by
Baldwin and Sivek in [I]. This is covered in Subsection

When constructing the grading based on a surface S, we need the extra
assumption that n is odd. Recall that |S n | = 2n. If n is even, then we
need to perturb S to create a new pair of intersection points and, thus,
increase n by 1. There are two different ways of perturbations, which we
call positive and negative stabilizations, and denote them by S* and S,
respectively. Based on ST and S, we can construct two different gradings
on SHM(Y (K),T',). The relation between the two gradings will be the key
to the second step of constructing a grading on the direct limit. Also, using
the grading shifting property betweem St and S~, we can compute the
sutured monopole Floer homology of a solid torus with any valid suture.

Proposition 1.4. Suppose V is a solid torus and ~y is a suture on oV with
2n components and slope %, then

SHM(—V, —y) =~ RZ"IPD,
Similarly, in instanton theory, we have the following.

Proposition 1.5. Suppose V is a solid torus and 7y is a suture on 0V with
2n components and slope %, then

SHI(—V, —) = CEPD,

The second step of constructing a grading on the direct limit is to prove
that maps in the commutative diagram shift the grading in a desired
way. To be more explicit, " , ., must be of degree 0, while ¢} ., must
be of degree —1. The construction of the maps ¢ | | relies on the by-pass
attachments in the monopole and instanton settings, which are realized by
contact handle attachments, as introduced by Baldwin and Sivek in [2, [3].
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It is a basic observation that the region we attach contact handles is dis-
joint from the Seifert surface .S, hence if we look at the grading associated to
the "correct’ surfaces, then 9" |, ; and ¢ | 4 will both preserve the grading.
However, the ’correct’ surfaces involves both positive and negative stabiliza-
tions, while, to define a canonical grading on SHM(Y (K),I',,), we only use
negative stabilizations. Hence, the problem is reduced to understanding the
grading shifting between S* and S~.

To understand this grading shifting property, we first need a better un-
derstanding of the construction of the closures, the construction of canonical
maps, and how spin® structures on different closures are related by canonical
maps. In particular, we prove the following result.

Proposition 1.6. Suppose (Y (K),T},) is the balanced sutured manifold de-
scribed as above, and Y, is a closure of (Y (K),T',). Suppose 1 and s9 are
two spin® structures on Yy, so that they both support the sutured monopole
Floer homology of (Y(K),T'y). Then, in terms of Poincdre duals of first
Chern classes of the spin® structures, the difference between s1 and so lies
in Hi(Y(K)). More precisely, there is a 1-cycle x in Y (K) so that

P.D.(ci1(s1) — ci(s2)) = [x] € H(Y).

Proposition will be the basis for understanding the grading shifting
property between the gradings associated to S and S, which are the
positive and negative stabilizations of .S. We deal with the grading shifting
property in Section [l We present the construction of the minus version in
Subsection [5.1] and prove some basic properties of it in Subsection Most
of the basic properties have been stated in Theorem Besides them, we
also prove that the direct system in the construction of the minus version
stabilizes.

Proposition 1.7. For a fixed i € Z, there exists N1 € Z, such that for n >
N1, we have an isomorphism:

U iq  SHM(=Y (K), —T, i) = SHM(=Y (K), ~Tps1,9).

The techniques used in computing the sutured Floer homology of a solid
torus can also be applied to knot complements. As a result, we obtain the
following.

Proposition 1.8. Suppose K Y is a knot and S < Y is a Seifert surface
of K. Suppose Yy is the manifold obtain from Y by doing a Dehn surgery
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along K with slope —g with p,q > 0. We also have the dual knot Ky C Y.
Then for any fized i, there exists N € R, such that if the surgery slope —g <
N, then we have

KHM ™ (—Yy, K4, S,i) ~ KHM ™~ (-Y, K, 5,1).

Moreover, a similar result in instanton theory also holds.
1.3. Updates and future directions

Since the completion of the first version of this paper, there have been many
further developments on related topics. Here we summarize those new up-
dates as well as some still-open questions.

In Section [5] and Section [6] of the paper, we construct the minus version
of monopole and instanton knot homology. The U-module structure of these
homology groups are studied by the author and his collaborators in [14]. In
particular, they proved the following.

Theorem 1.9. Suppose K < S® is a knot. Then
rkp(]KHM ™ (5%, K) = rkepKHI™ (8%, K) = 1.

Theorem implies that for any knot K < S3, there is a unique infinite
U-tower in its minus version. We can then define the 7 invariant of the knot
to be minus the maximal Alexander grading of any homogenous elements
in this infinite U-tower. In [14], the author and his collaborators prove the
following.

Theorem 1.10. The tau invariant T is a surjective group homomorphism
7:C—>7Z,
where C is the knot concordance group.

Note here we have two different 7 invariants, one from monopole theory
and one from instanton theory. Write them 73, and 77, respectively. In Hee-
gaard Floer theory, the 7 invariant was introduced by Ozsvath and Szabd in
[31]. Originally they simply use the notation 7, but in this paper, in order
to distinguish it with other tau invariants, we write it as 7. In instanton
theory, Baldwin and Sivek later defined another concordance invariant, 7
in [0] in a different approach. In [14], the author and his collaborators prove
the following.
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Theorem 1.11. For any knot K — S3, we have
™ = T and 17 = .
We would like to propose the following conjecture.
Conjecture 1.12. For any knot K < S3, we have
v (K) = 11(K)

The minus version of the instanton knot homology, KHI™ of all twist
knots have been computed in [14]. It follows that conjecture holds for
this family of knots. In [6], the 7% of many other families of knots has been
computed, and all coincide with 777. However, Conjecture [1.12] is still open
beyond knowing computational evidence.

It is also worth mentioning that Theorem [1.9] is further generalized in
[27] by the author and his collaborator to the following.

Theorem 1.13. Suppose K Y is a knot so that [K] =0¢€ H(Y;Q).
Then

rkepKHI™ (Y, K) = dimeI*(Y),

where Iﬁ(Y) 1s the framed instanton Floer homology of Y introduced by Kro-
nheimer and Mrowka [2])].

When K c Y satisfies [K] = 0 € H;(Y;Z), Theorem is first proved
by Wang [35]. Note as discussed in the current paper, there is a Z grading
on KHI™. In [27], the argument to prove Theorem is generalized to
construct a decomposition of I*(Y").

Theorem 1.14. Suppose K <Y is a knot so that [K] =0¢€ Hi(Y;Z). Let
Y is obtained from'Y by performing a q/p-surgery along K, with ¢ > 0. Then
we have a decomposition

YY) = @Iﬁ(?,i).
=0

Note when Y is an integral homology sphere, we have H 2(17;Z) = Zq
and there are precisely ¢ many (torsion) spin® structures. Hence the de-
composition in Theorem resembles the torsion spin® decomposition in
monopole and Heegaard Floer theory.
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In Section [3] of the paper, we constructe a Z grading on the sutured
monopole and sutured instanton Floer homology for a surface S properly
embedded in a balanced sutured manifold, with the assumption that the
surface has a connected boundary. Also, in Subsection [3.3] we fix a particu-
lar balanced paring to make the grading well-defined. The requirement that
S has connected boundary and the choice of a particular balanced pairing
are not natural. These two problems are resolved in [19], where the surfaces
are allowed to have disconnected boundaries and it is shown that the grad-
ing is independent of the choice of balanced pairings. Further, in [13], the
author and his collaborator extend the construction to the case of multiple
surfaces. If there are n many properly embedded surfaces inside a balanced
sutured manifold, then there is a Z" grading on sutured monopole or su-
tured instanton Floer homology of the balanced sutured manifold. In [13],
this multi-grading is further used to obtain lower bounds on the rank or
dimension of sutured monopole and instanton Floer homology from the first
relative homology of the balanced sutured manifold, and is used in [2§] to
show that instanton knot homology recovers the multi-variable Alexander
polynomial for links in S3.

In Section [4| of the paper, we prove a grading shifting property for the
gradings associated to different isotopies of the same surface S inside a
balanced sutured manifold (M, ~). In order to prove this property, we make
two assumptions: (1) M has a toroidal boundary and 7 has two components
and (2) the sutured decomposition of (M,~) along S is taut. It is worth
mentioning that the first condition was then removed in [I3] and the second
is removed in [35]. Hence the grading shifting property now holds for the
most general setup.

There are many different versions of knot homology. The first one is the
instanton knot homology introduced by Floer [I1], which was then revisited
by Kronheimer and Mrowka [21]. Then knot Floer homology was introduced
by Ozsvéth and Szabé [32] in Heegaard Floer theory. More recently, Daemi
and Scaduto [8] constructe different flavors of instanton knot homology via
singular instanton Floer homology. Different versions of knot homology have
different merits, so it is interesting to understand the relation between dif-
ferent constructions.

Question 1.15. What’s the relation among the minus version of knot Floer
homology, KHI~, introduced by Ozsvdth and Szabd [32], the minus version
of monopole and instanton knot homology, KHM™ and KHI™, introduced in
the current paper, and the to-version of singular instanton Floer homology,
I, introduced by Daemi and Scaduto [8]?
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In line of Question [1.15] we could study some properties of instanton
theory that have been known in other theories. One important property of
knot Floer homology is the surgery formula [33]. It enables us to compute
the Heegaard Floer homology of Dehn surgeries along a knot K < S3 from
the doubly-filtered chain complex of the knot Floer homology of K.

Question 1.16. Is it possible to develop a surgery formula for instanton
theory?

One obstacle in instanton theory is that the instanton knot homology is
not well-behaved on the chain level and the doubly filtered chain complex
does not exists. Some discussions on this question can be found in [6] 27].

Another important property of knot Floer homology is that the knot
Floer homology is equipped with an Alexander filtration that induces a
spectral sequence from the knot Floer homology of a knot K < Y to the
Heegaard Floer homology of the ambient 3-manifold Y. In instanton theory,
as mentioned above, we don’t have a well defined chain complex for instanton
knot homology. Though in [27], the author and his collaborator constructed
a spectral sequence in the following sense.

Theorem 1.17. Suppose K Y is a knot so that [K] =0€ H1(Y;Q).
Then we can find a sequence of linear maps {d;}icz_, so that the follow-
mng 1S true.

(1) For each i € Z~o, we have d? = 0.

(2) We have

dy: KHI(Y,K) —> KHI(Y, K),

where K HI is the instanton knot homology constructed by Kronheimer and
Mrowka [21)]. For any i € Z~g, we have

di+1 . ker(dl)/lm(dl) i ker(dz)/lm(dz)

(3) There exists a large enough m so that when i > m, we have d; =0
and

ker(dp, ) /im(dy,) = IF(Y),

where Iﬁ(Y) 1s the framed instanton Floer homology of Y introduced by Kro-
nheimer and Mrowka [21).

Recently, Xie mentioned the following question to the author.
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Question 1.18. Suppose K — S3 is a non-trivial knot. Is di in Theorem

always non-zero?

One possible way to recover Theorem from the chain level is to look
at the singular instanton Floer homology that studied by Kronheimer and
Mrowka [22] and Daemi and Scaduto [8]. Singular instanton Floer homology
has a well behaved chain complex, though the problem is that there is no
Alexander filtration. For the instanton knot homology, there is a Z-grading,
called the Alexander grading, on the level of homology coming from the
Seifert surface of the knot. In singular instanton theory, there is no known
construction of such a Z-grading.

Question 1.19. Can we construct an Alexander grading for singular in-
stanton homology?

Overview. In Section [2| we review the basic constructions and proper-
ties in sutured monopole and sutured instanton theory that are necessary
for our construction of the minus version. In Section [3|, we construct a grad-
ing on sutured monopole and sutured instanton homology associated to a
Seifert surface inside the knot complement. We present the construction in
Subsection and prove that the grading is well-defined in the following
two subsections. In particular, in Subsection we introduce a new in-
terpretation of the canonical maps that were constructed by Baldwin and
Sivek in [I] and play an important role in proving that the sutured monopole
and sutured instanton Floer homology is well-defined. This new interpreta-
tion helps us to prove that the definition of the grading is independent of
some choices made in the construction The last remaining choice made in
the construction of the grading is dealt with in Subsection [3.3] where we
reduce the original problem into a combinatorial question about balanced
pairings. In Section [d we prove an important grading shifting property for
the bypass maps introduced by Baldwin and Sivek [2, 5], with respect to the
grading just constructed in Section [3] The construction of gradings and the
gradin shifting property then lead to the construction of a minus version of
monopole knot homology in Section [5], as well as some basic properties of
it. In section [6] we briefly summarize the constructions in instanton theory,
which are essentially the same as those in monopole theory.
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2. Preliminaries
2.1. Balanced sutured manifolds and monopole Floer homology

Definition 2.1. A balanced sutured manifold is a pair (M, ) of a compact
oriented 3-manifold M and a closed oriented 1-submanifold v < dM. On
OM, let A(y) =~ x [—1,1] be an annular neighborhood of v, and let

R(y) = 0M\int(A(y)).

They satisfy the following requirements.

(1) Both M and R(y) have no closed components.

(2) If we orient 0R(y) = 0A(y) = v x {£1} in the same way as v, then
the orientation on dR(y) must induce a unique orientation on R(vy). This
orientation is called the canonical orientation on R(7). Use R4 () to denote
the part of R(y) whose canonical orientation coincides with the boundary
orientation of 0M, and R_(v) the rest.

(3)- x(R+(v)) = x(R-(7))-

To define sutured monopole Floer homology, we need to construct a
closed 3-manifold out of a balanced sutured manifold (M,~). Let T be a
connected oriented surface so that the following holds.

(1) There is an orientation reversing diffeomorphism

f:0T — 7.

(2) T has genus at least 2.
After choosing such a T', we can use f to glue a thickened T to M:

M = M[=1,1] x T.

The manifold M has two boundary components:
oM =R, u—-R_,

where
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Let h : R+ — R_ be an orientation preserving diffeomorphism, then we can
form a closed 3-manifold as

where h: {1} x Ry -> R_ < oM is the map just defined and id: {—1} x
Ry — R4y < 0M is the identity on R. Let R = {0} x Ry < Y, and we make
the following definition.

Definition 2.2. The manifold M is called a pre-closure of (M, ). The pair
(Y, R) is called a closure of (M,~). The choices T, f, ¢, and h are called the
auxiliary data. In particular, the surface T is called an auziliary surface and
h is a gluing diffeomorphism.

Remark 2.3. Throughout this paper, we require that T" is connected and
has large enough genus. However, in general, the choice of auxiliary surface
has more freedoms. See Kronheimer and Mrowka [21].

To construct local coefficients, we also need to choose a non-separating
simple closed curve n < R. The base ring we use in the present paper is the
mod 2 Novikov ring R. For a detailed definition, readers are referred to [2].

Definition 2.4. Suppose Y is a closed connected oriented 3-manifold and
R is a closed oriented surface inside Y, so that each component of R has
genus at least 2. If R is connected, we define the set of top spin® structures
as follows:

S(Y|R) = {spin® structure s on Y|cy1(s)[R] = 2g(R) — 2.}

If R is disconnected and let Ry, ..., R, be its components, then we define
S(Y|R) = [ | 6(Y|Ry).
i=1

For later references, we also define the set of supporting spin€ structures
as follows:

&*(Y|R) = {s € 6(Y|R)|HM.(Y,s;T,) + 0}.

Here, HM. (Y,s;T',) is the to-version of monopole Floer homology with local
coefficients associated to the pair (Y, s). more details, readers are referred
to [20].
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Definition 2.5. The sutured monopole Floer homology of (M, ) is defined
to be

SHM(M,~) = HM(Y|R:T,),
where

HM(Y|R;Ty) = @ HM.(Y,s1y)
s€&(Y|R)

The following lemmas from Kronheimer and Mrowka [21] will be useful.

Lemma 2.6. Suppose Y is a surface bundle over S' whose fibres are closed
connected oriented surfaces of genus at least 2. Let R be a fibre andn < R be
a non-separating simple closed curve. Then, there is a unique spin® structure
s on'Y so that the following is true.

(1) We have c1(s)[R] = 2g(R) — 2.

(2) We have HM ,(Y,s;T';;) # 0.

Moreover, for this spin® structure s, we have
HM.(Y,s;T,) =~ R,
where R is the base ring for local coefficients.

Lemma 2.7. Suppose Y is a closed oriented 3-manifold and R Y is an
embedded closed connected oriented surface of genus at least 1. Suppose fur-
ther that s is a spin® structure such that

ler(8)[R]| > 29(R) = 2,

then we have
HM.(Y,s;T,) =0

for any choice of local coefficients.

Floer’s excision theorem was first introduced by Floer in instanton the-
ory and then was adapted to the settings of monopole theory by Kronheimer
and Mrowka in [21]. In the rest of the current subsection, we summarize the
results that we need in later sections.

For i = 1,2, suppose Y; is a closed connected oreinted 3-manifold and
R; c Y, is an embedded closed connected oriented homologically essential
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surface of genus at least 2. Let n; € R; be a non-separating simple closed
curve. When cutting Y; open along R;, we get

Y; = Yi\int(N(R;)),

where N(R;) is a product neighborhood of R; c Y;. The manifold Y; has two
boundary components

dYi=Riy UR;_.

We orient R; + in the same way as I?;. There are parallel copies of n;, which
we call 7; +, on the surfaces R; +. Pick an orientation preserving diffeomor-
phism

h:Ri — Ry

so that h(n1) = n2. We can use h to glue Ry 4 to Ry and Ry _ to Ra .
Then, 171 and }N/g are glued together to become a connected 3-manifold which
we call Y. Let R < Y be the disjoint union of the surfaces Ry 4 and Rs 1 in
Y. Let n € R be the disjoint union of curves 7; 4 and 72 4.

There is a 4-dimensional cobordism W from Y; uY5 to Y, which is
constructed as follows: Let U be the surface as depicted in Figure [1} It has
four vertical arcs as part of the boundary, and we can assume that each of
them is identified with [0, 1]. Now we can use the identity map and the map
h to glue three pieces }71, Ys and U x Ry together, to obtain the desired
cobordism W. This cobordism W then induces a map as in [21]

(2) HM(W): HM(Y; U Ys|Ry U Ro; Ty 0,) — HM(Y|R;T).

ks TN

142 13

—_

241 22

C_ I D

Ry xU x [0, 1]
Figure 1: C]}Iulng three parts together to get W. The Imddle part'is Ry x U,
while the R; 4 directions shrink to a point in the figure.
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We can also cut and re-glue along tori. For i = 1,2, let Y; be as above.
Let T; c Y; be a torus and R; — Y; be a closed connected oriented surface
so that R; intersects T; transversely along a circle ¢;. Suppose 1; € R; is a
simple closed curve so that 7; intersects ¢; transversely at a point p;. Let

hZT1—>T2

be an orientation preserving diffeomorphism so that h(c;) = ¢ and h(p;) =
p2. As above, we can cut Y; open along T; and re-glue using h to obtain a
connected 3-manifold Y. There is a distinguishing surface R, obtained by
cutting R; open along ¢; and re-glue using h. The curves 7 and 7y are also
cut and re-glued to give rise to a simple closed curve n € R < Y. As above,
there is a cobordism map

(3) HM(W): HM(Y; U Ya|Ry U Ro; Ty 0n,) — HM(Y|R;T).

Theorem 2.8 (Kronheimer and Mrowka [21]). The maps (9) and (3)
are both isomorphisms.

2.2. The naturality of sutured monopole Floer homology

In [4], Baldwin and Sivek constructed a canonical map between two different
closures of the same balanced sutured manifold. To do this, they also refined
the definition of closures.

Definition 2.9. A marked closure D = (Y, R,r,m,n) of a balanced sutured
manifold (M, ~) consists of the following.

(1) A closed connected oriented 3-manifold Y.

(2) A closed connected oriented surface R of genus at least two.

(3) An orientation preserving embedding

r:Rx[-1,1] - Y.
(4) An orientation preserving embedding
m: M — Y\int(im(r)).

(5) A non-separating simple closed curve n ¢ R.
They satisfy the following requirements.
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(a) The embedding m extends to a diffeomorphism

M?T x [—1,1] = Y\int(im(r)),

for some auxiliary data (7', f).
(b) The embedding m restricts to an orientation preserving embedding

Ri(y) = (R x{=1}).

The genus of the marked closure D is referred to the genus of the surface
R. We define

SHM(D)= @  HM(Y,5 T rieiop):
ses(Y[r(Rx {0})

Theorem 2.10 (Baldwin and Sivek [1I]). Suppose (M,~) is a balanced
sutured manifold, then for any two marked closures D1 and Dy of (M,~),
there is a canonical map ®p, p,, well defined up to a unit, from SHM (Dy)

to SHM (D3). The canonical maps satisfy following properties.
(1) If Dy = Dy, then

Op, p, = id.

Here = means equal up multiplication by a unit.
(2) Suppose there is a third marked closure Ds for (M,~), then we have

®p, p, = Pp, p, © Pp, D,-

Hence, for a balanced sutured manifold (M, ), marked closures D and
canonical maps @ fits into a projective transitive system, which is defined in
[1]. The projective system determines a canonical module, which we denote

by
SHM(M, 7).

We can then talk about elements (up to multiplication by a unit) in that
canonical module.

There is an extra ambiguity when dealing with knots in 3-manifolds. Let
K c Y be a knot. The extra ambiguity comes from the choices of tubular
neighborhoods of K < Y to remove to obtain a knot complement. Fix a
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point p € K. Suppose
p:S'x DY

is an embedding, where D? is the unit sphere in the complex plane, and
St = 0D?. We require that

(S x {0}) = K, and p({1} x {0}) = p.

Let Y, = Y\int(im(¢)), and let v, = ¢({&1} x dD?), with opposite ori-
entations on two components. For each fixed ¢, we have a well defined canon-
ical module SHM(Y (), 7,,), and we want also relate different choices of .

Suppose ¢’ is another embedding S' x D? < Y, satisfying the same
conditions as . Pick a tubular neighborhood N of K < Y such that im(y),
im(¢’) € N. Also, pick an ambient isotopy

fi:Y Y, te0,1]

such that the following is true.
(1) For any ¢ € [07 1], ft(p) =D
(2) For any t € [0, 1], f; restricts to identity outside N c Y.
(3) We have fi(im(¢)) = im(¢').
(4) We have fi(p({+1} x 0D?)) = ¢/ ({£1} x D?).
It is clear that f1:(Y,,7,) = (Y, 7y) is a diffeomorphism between
balanced sutured manifolds. Hence, we can define

U, = SHM(f1) : SHM(Y,,v,) — SHM(Y,r, vy )-

Theorem 2.11 (Baldwin and Sivek [I]). The map ¥, s is well defined,
i.e., is independent of the choices of the tubular neighborhood N and the
ambient isotopy fi. Also, it has the following properties.

(1) We have ¥, , = id.

(2) If there is a third embedding ©", then

Voo =W or 0 We .

Thus, we know that {SHM(Y,,,~,)} and {¥,, .} form a transitive system
of projective transitive systems. Thus, they lead to a larger projective tran-
sitive system, and, hence, the monopole knot Floer homology KHM(Y, K, p)
is well defined (as a projective transitive system).
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2.3. Contact structures and contact elements

In this subsection we summarize the results related to contact geometry
which we will use in later sections.

Definition 2.12. A contact sutured manifold (M,~,&) is a triple where
(M, ~) is a balanced sutured manifold, and & is a contact structure on (M, )
so that dM is convex and + is the dividing set. The contact structure & is
said to be compatible with the balanced sutured manifold (M, ).

Theorem 2.13 (Baldwin and Sivek [2]). Suppose (M,~,&) is a contact
sutured manifold, then we can associate an element

¢§ € M(_Ma _7)
to it. This element is called the contact element.

Definition 2.14. Suppose (M’,~’) is a balanced sutured manifold. A su-
tured submanifold (M,~) of (M',~") is another balanced sutured manifold
so that M < int(M").

The gluing maps in sutured monopole Floer homology were define by
the author in [26], and it is crucial in the construction of the direct system
in Section 5

Theorem 2.15. Suppose (M,~) is a sutured submanifold of (M',~") and
suppose Z = M'\int(M). Suppose £ is a contact structure on Z so that
(Z,v uv,€) is a contact sutured manifold. Then, there is a map

®¢ : SHM(—M, —y) — SHM(—M', —"),

so that the following is true.

(1) If (M',~') is a sutured submanifold of (M",~") and there is a contact
structure & on M"\int(M"), making it a contact sutured manifold, then we
have

g0 O = Dgr e : SHM(—M, —) — SHM(—M", —+").

(2) Suppose (M',~',&") is a contact sutured manifold and &'|z = &, then
we have

e (e, ) = P
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Suppose we have three balanced sutured manifold (M, ~;), (M,~2), and
(M, ~3) so that the underlining 3-manifold is the same, but the sutures are
different. Suppose further that 1, 9, and =3 are the same outside a disk
D c 0M, and, within the disk D, they are depicted as in Figure 2] We say
that (M, ~2) is obtained from (M, ~y1) by a by-pass attachment along the arc
a. Similarly, (M,~s3) is obtained from a by-pass attachment from (M, ~2)
and (M,~;) from (M,~3). Then, we have the following theorem.

——————
e 3

~
SN
\\
AY
’
'I
—/
-
~
N
\\
A Y
\
AY
\
1
1
1
1
]
]
1
’
U
4
4
7’
"

S.e e

- ~o

—
\~s~ -
\
P -,

Figure 2: The by-pass exact triangle.

Theorem 2.16 (Baldwin and Sivek [2]). There is an exact triangle

relating the sutured monopole Floer homologies of the three balanced sutured
manifolds:

(4)  SHM(—M, ) puz SHM(— M, —2)

Y31 a3
m(_M7 _73>

In contact geometry, a by-pass is a half disk, which carries some partic-
ular contact structure, attached along a Legendrian arc to a convex surface.
For more details, see Honda [15]. We can describe the maps in (4)) as follows:
We explain the construction of the map 12, and the other two are similar.
Let Z = 0M x [0, 1], and we can pick the suture v; on dM x {0} as well as
the suture 9 on M x {1}. Then, there is a special contact structure {12 on
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Z that corresponds to the by-pass attachment and makes (Z,v1 U 72) a con-
tact sutured manifold. Hence, we can attach Z to M by the identification
OM x {0} = 0M < M. The result (M U Z,,) is diffeomorphic to (M,~2)
and we have

Y12 = Pg,,.

Here, ®¢,, is the gluing map associated to {12 as in Theorem [2.15

In Section 5] we will use the by-passes on knot complements to construct
the direct system. Let K < Y be an oriented knot. Let A and p be the
longitude and meridian according to some framing of the knot. Let I';, be a
suture on Y (K) which consists of two curves of class +(\ —nu), and T'y,
consists of two meridians. In this case, 0Y (K) is a torus, and we have the
following theorem due to Honda [15].

Theorem 2.17. There are two tight and minimal-twisting contact struc-
tures on T? x [0,1] so that, for i = 1,2, T? x {i} is convex with dividing set
being 'y, ;. These two contact structures correspond to two different by-pass
attachments on (Y (K),T},).

Definition 2.18. We denote the two contact structures in Theorem [2.17]
by £+, and {_ ,, respectively. The corresponding two by-passes are called
positive and negative, respectively. The two by-passes can be distinguished

by Figure

Remark 2.19. Here definitions of positive and negative bypasses are most
convenient for the purpose of the current paper. They are different but
equivalent to Honda’s original definitions in [15].

There are by-pass exact triangles associated to the positive and negative
by-passes:

(5)
SHM(~Y (K), ~Tys1)

+1 ©
sz\ YL,

SHM(=Y (K), =I'»)

Note we have 1/1121 = ®¢, .. We also need the following facts.

Proposition 2.20 (Honda [15]). On T? x [0,2], the two contact struc-
tures £ U &4 ny1 and §4 n U E— ny1 are the isotopic rel boundary.
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positive by-pass negative by-pass

Figure 3: The positive and negative by-pass attachments for (Y (K),I's)).
The squares represent the toroidal boundary of Y (K). Note the contact
structures £+ o correspond to the by-passes from the bottom one to the top
left one in each by-pass triangle.

Corollary 2.21. We have a commutative diagram

P i1

SHJ(Y(K),I}J M(Y(K)7Fn+l)

wn n+1
+.mn+1 +,n+2

+1
wf,n+2

SHM(Y (K), Ts1) SHM(Y (K), Tt2)

Proof. The corollary follows from Proposition [2.20] and Theorem o

There is a second way to interpret the maps ¥4 associated to by-pass
attachments by Ozbagci. In [30], he proved that a by-pass attachment can
be realized by attaching a contact 1-handle followed by a contact 2-handle.
In sutured monopole Floer theory, we have maps associated to the contact
handle attachments, due to Baldwin and Sivek [2]. So, we can compose those
contact handle attaching maps to define ¢4. This is the original way that
Baldwin and Sivek constructed the by-pass maps (when they defined by-pass
maps, there was no construction of gluing maps) and proved the existence
of the exact triangle. The two interpretations are the equivalent because of
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the functoriality of the gluing maps. We will use this second point of view
in the proof of Proposition [5.5

3. A grading on sutured monopole Floer homology
3.1. The construction

Definition 3.1. Suppose (M,~) is a balanced sutured manifold, and S is
a properly embedded oriented surface. A stabilization of .S is an isotopy of S
to a surface S’, so that the isotopy creates a new pair of intersection points:

08" ny = (0S8 n7) v ipy,p-}.

We require that there are arcs o = 0S5’ and 3 < v, oriented in the same way
as 05’ and +, respectively, such that the following is true.
(1) We have da = 08 = {p+,p_}.
(2) The curves a and 8 cobound a disk D so that int(D) n (y v dS’) =
7.
The stabilization is called negative if D can be oriented so that 0D =
a U [ as oriented curves. it is called positive if 0D = (—a) U 5. See Figure
@
p—ex_|
AN

negative

Q

\
\
=

)

oS positive

Y

Figure 4: The positive and negative stabilizations of S.

We denote by ST the result of performing & many positive or negative
stabilizations of S.
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The following lemma is straightforward.

Lemma 3.2. Suppose (M,~) is a balanced sutured manifold, and S is a
properly embedded oriented surface. Suppose ST and S~ are the results of
doing a positive and negative stabilization on S, respectively. Then, we have
the following.

(1) If we decompose (M,~) along S or ST, then the resulting two bal-
anced sutured manifolds are diffeomorphic.

(2) If we decompose (M,~) along S, then the resulting balanced sutured
manifold (M',~") is not taut, as R+ (") would both become compressible.

Suppose (M, ) is a balanced sutured manifold, and S is a properly em-
bedded oriented surface. Suppose further that S has precisely one boundary
component and 05 intersects v at 2n points. Since +y is parallel to the bound-
ary of Ry (7), it is null-homologous, so the algebraic intersection number of
0S with v on dM must be zero. We also assume that n = 2k + 1 is odd, as
this can be achieved by a stabilization of S if needed. Suppose the intersec-
tion points are p1, ..., p2,, and they are indexed according to the orientation
of 0S.

Now pick a connected auxiliary surface T' for (M,~), which is of large
enough genus. Let f: 0T — ~ be an orientation reversing diffeomorphism
and let p} = f~1(pi). Suppose ai,...,q, are pair-wise disjoint simple arcs
on T', so that the following is true.

(1) The classes [a1],...,[an] are linearly independent in Hy (T, 0T).

(2) We have that daq = {p,ph}, and, for all 1 <i <k, we have

Oovg; = {pﬁli—lapili-‘rZ}a and dag;y1 = {pﬁlivpili—&—l}'

Let
M=M 1,1 xT S — 1,1
W2 [FL A< T, and Sidgf(i_Ul[ ] % )
We know that
N N k1
aM=R+UR_, and aSﬂRi = Ci,-i_--

1

<.
I

Here we require that for i =1,...,k+ 1,

9,1 X {il} C Ci,i'
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Pick an orientation preserving diffeomorphism h : Ry — R_ so that for i =
1,...,k+1,

WCis) = Cy_.

Then, we can use h and M to obtian a closure (Y, R) of (M, ). The boundary
components of the surface S are glued with each other under h, so S becomes
a closed surface S < Y. From the construction, we know that

X(S) = x(8) —n.

We pick a non-separating simple closed curve n < R, so that 7 is disjoint
from S n R and represents a class which is linearly independent from the
classes represented by the components of S N R in Hi(R).

Definition 3.3. We say that the surface S c Y is associated to the surface
S c M. We can use S to define a grading on SHM (M, ~) as follows.

SHM(M,,S,i) = @ HM.(Y,sT,).
s€&(Y|R)

c1(s)[S]=2i
We say that this grading is associated to the surface S ¢ M. When using
the language of marked closures, the closure (Y, R) corresponds to a marked
closure D = (Y, R, m,r,n), and we write the grading as

SHM(D, S, ).

The grading on SHM(D) also induces a grading on SHM (M, ), as stated
in Theorem We also say it is associated to S and write

SHM(M, v, S, 7).

Theorem 3.4. When 0S is connected, the grading on SHM(M,~) associ-
ated to S is well-defined. That is, it is independent of all the choices made
in the construction.

Proof. There are four types of choices we made in the construction of the
grading:

I. The point p; on 05 N 7.

II. The choice of the arcs aq,...,a, on T.

ITI. The choice of the gluing diffeomorphism h.

IV. The genus of the closure.
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The proof of Theorem makes up the rest of the current section.
First, the argument choices of type IV follows directly from [5] is stated
in Lemma [3.5] Second, we deal with choices of type III. This is done via a
re-formulation of Baldwin and Sivek’s canonical maps. The discussion about
canonical maps is in Subsection 3.2} and in particular Proposition [3.9] proves
that the construction of grading is independent of choice of type III. Third,
choice with type II follows from the arguments in [5] and our reformulation
of the canonical map in Subsection In particular, Corollary states
that the the construction of the grading is independent of choices of type II.
Finally, choices of type I is translated into a combinatorial problem that is
discussed in Subsection and Corollary completes the proof of the

theorem. o

Lemma 3.5 (Baldwin and Sivek [5]). The definition of the grading on
SHM(M, ) associated to the surface S < M is independent of choices of
type 1IV.

Proof. In [5], Baldwin and Sivek have already dealt with the choices of type
II, IIT and IV. Among them, the idea for type IV can be adapted to the
settings of the current paper verbatim. o

To deal with the choices of type II, we have the following lemma.

Lemma 3.6. Suppose T is a compact connected oriented surface-with-

boundary and is of large enough genus. Suppose further that {aq,...,an}
s a set of properly embedded simple arcs on T so that the following is true.

(1) The arcs aq,...,anp are pair-wise disjoint.

(2) The arcs represent linearly independent classes [aa],...,[an] in
Hy(T,oT).

Suppose {a,...,al} is another set of properly embedded simple arcs so

that the following is true.

(3) Fori=1,...,n, we have doy = dcx.

(4) The set of arcs {c,...,al} also satisfies the above conditions (1)
and (2).

Then, there is an orientation preserving diffeomorphism h:T — T so
that h fixes the boundary of T, and, fori=1,...,n, we have

h(a;) = o.

(2
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Proof. Suppose N is a product neighborhood of
aguU-rua,cT.

Let T = T\int(N). The boundary 6T consists of the following:

oT (9TmT Uaz+uaz

Here, «; 4+ are parallel copies of «;, being part of the boundary of the product
neighborhood N. From condition (2), we know that 7' is connected. Also,
by construction,

X(T) = X(T) +n.
Similarly, we can pick N’ to be a product neighborhood of

/ /
ayu-ua, T,

and take

— T\int(N'), and 01" = (0T n T") U U o ual_

By condition (3), we can assume that N n 0T = N’ n 0T, so there is an
orientation preserving diffeomorphism

f:oT — oI’
so that
f‘aTﬁT id, and f(az +> _a +
for all ¢ = 1,...,n. Since we have

X(T') = x(T) +n = x(T),
the diffeomorphism f extends to a diffeomorphism
g:T—>T.

Thus, we can glue T and 1" along o; + and «a t and g is glued to become
a diffeomorphism

h:T—T

that is the desired one. o
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Corollary 3.7. The grading on SHM(M,~) associated to the surface S c
M s independent of choices of type II.

Proof. Equipped with Lemma [3.6] and Proposition [3.9] the rest of the proof
of Corollary (3.7 is similar to that of [5, Theorem 3.5]. o

We deal with the choices of type III in Subsection [3.2]and the choices of
type I in Subsection

3.2. A reformulation of Canonical maps

In this subsection, we give an alternative description of the canonical maps
®p p, which was originally constructed by Baldwin and Sivek in [I] for two
different marked closures of the same genus. For our convenience, we only
study the a special case as described in the following paragraph.

Suppose (M,~) is a balanced sutured manifold and 7" is a connected
auxiliary surface. Let

M=Mu[-1,1]xT, 0M = R, U R_.

Suppose hy and he are two different gluing diffeomorphisms, and there are
corresponding marked closures Dy = (Y1, Ry, r1,m,n) and Dy = (Y2, Ry,
r9,m,n), respectively. Here, we choose the same non-separating simple closed
curve 1 on R, to support local coefficients.

Let h = hl_l o hy, and Y" be the mapping torus of h, i.e., the manifold
obtained from R. x [—1,1] by identifying Ry x {1} with Ry x {—1} via
h. Then, we can obtain Y5 from Y; and Y as follows. Cut Y7 open along
Ry x {0} and cut Y" along R, x {0}. We can re-glue them via the identity
map on R, to get a connected manifold. This resulting manifold is precisely
Y5. As in Theorem there is a cobordism W from Y; U Y" to Ys, and W

induces an isomorphism:
HM(W): HM(Yy uY" R, U R,) — HM(Y3|R,).
Note, from Lemma we know that
HM(Y"R,) ~R.
Let a be a generator of HM (Y"|R,) and let ¢ be the map

v HM(Y1|Ry) — HM(Y1|Ry) @ HM(Y"|R) =~ HM(Y; b Y" R, U R,)
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defined by
uz) =z ®a.

We have the following proposition.
Proposition 3.8. The canonical map ®p, p, can be re-interpreted as
(I)thz = HM(W) O L.

Before proving the proposition, we first use it to prove the fact that the
definition of the grading is independent of the choices of type III. Suppose
(M,~) is a balanced sutured manifold and S ¢ M is a properly embedded
surface with precisely one boundary component, so that 0S5 intersects v at 2n
points for some odd n = 2k + 1. Suppose further that, in the construction
of the grading induced by S, the choices of type I, II, IV are fixed. This
means that there is a connected auxiliary surface T' for (M,~y) and n arcs
Qi, ..., 0, so that the following holds

(1) We have

Olagu--Uay)=05nn.
(2) Let
AMU[-1,1]xT) =Ry UR_, and S = S | J ([-1,1] x a),
i=1n
then we have
0S5 N Ri = Cl,iv e 7Ck+1,i'

Suppose there are two gluing diffeomorphisms h; and ho so that, for
i=1,2
hi(Cr4 v u Ck+1,+) =C1- U UG,y

Suppose further that there are marked closures Dy = (Y1, R, m,71,7n) and
Dy = (Yo, Ry, m,ra,m) corresponding to hy and hg, respectively. Here, we
choose the same non-separating simple closed curve n < R, to construct
local coefficients. We have the following proposition.

Proposition 3.9. For any i € Z, we have
®p, p, : SHM(Dy, S, i) = SHM(Ds, S, 7).

As a result, the definition of the grading on SHM(M,~) is independent of
the choices of type III.
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Proof. Let h = hfl o hy, and form Y as in Proposition From Lemma
2.6] there is a unique spin® structure sg so that

HM(Y" Ry) = HM.(Y" 50:T,) = R.

There are tori inside Y": The cylinders C; y x [—1,1] € Ry x [—1,1]
are glued via h to become a union of tori T'. Lemma [2.7] tells us that

C1 (5()) [T] =0.

Let S; c Y7 and Sy c Y5 be the surfaces induced by S < M as in the
construction of the grading. We know that there is a 3-dimensional cobor-
dism from S; u T to S5 inside the the cobordism W. The construction of
this (3-dimensional) cobordism is similar to that of the Floer excisions. If s
is a spin® structure on W, which contributes non-trivially to the cobordism
map H M (W), then s must restrict to so on Y. Hence, we know that

c1(8)([S2]) = ca(s)([S1] + [T]) = er(s)([S1]) + er(s0)([T]) = ea(s)([51])-

Thus, HM (W) preserves the grading and so does <1>ng D, DY Proposition

]

Now we proceed to prove proposition There are a few preparations
we need.

Lemma 3.10. Under the settings of Proposition |5.8, suppose we have a
third gluing diffeomorphism hs, h' = h2_1 ohg, and " = hoh' = hl_l ohs.
Construct W', W”", /), and (" just in the same way as we construct W and
t. Then, we have an identity:

(6) HM(W") ol = HM(W') o/ c HM(W) o .

Proof. Let Y}, and Y}~ be the mapping tori of A’ and h”, respectively. Since
h” = hoh/, there is an excision cobordism from Y}, L Y,» to Y~ just as we
construct W, W’ and W”. Call this cobordism —W_’, and let W, be the
cobordism from Yy to Y}, u Yy, obtained by putting —W,” up side down
and then reversing the orientation. By Theorem and Lemma [2.6] it is
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straightforward to see that

HMW oW OW,.)owg=HMW') ot o HM(W)o..
Hence, to prove @, it is enough to show that
(7) HMW W' uW,) = HM(W").

However, we can cut W/ u W’ U W, open along the 3-manifold S x R,
as depicted in Figure [5|and glue back two copies of D? x R,. The resulting
4-manifold is exactly W”. Hence, from Proposition 2.5 in [21], holds true
and we conclude the proof of Lemma, [3.10] =

Figure 5: The union W u W’ u W,. The (blue) curve in the middle repre-
sents the 3-manifold S' x R, to cut along.
Corollary 3.11. If hy = ho, then we have
HM(W) o =id.

Proof. From Theorem [2.8] we know that

HM(W)ou
is an isomorphism. From Lemma we know that

HMW)orto HM(W)ov=HM(W)o..

Hence, the corollary follows. =
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Proof of Proposition[3.8. Suppose h is decomposed into Dehn twists:
hN‘DZi O...o_DZ:LL7

as in Baldwin and Sivek [1]. From Theorem[2.10]and Lemma/3.10} it is suffice
to deal with the case when n = 1, i.e., there is only one Dehn twist involved.

When e; =1, the Dehn twist is positive. In this case, the canonical
map @%IDQ is constructed using the cobordism W, as in the hypothesis of
Proposition with the boundary component Y” capped off by the total
space of a relative minimal Lefschetz fibration, see [I, Lemma 4.9]. Since
such a Lefschetz fibration has relative monopole invariant being a unit in
R, as in Proposition B1 in [I], we conclude that

o, 5 = HM(W)ou.

When e; = —1, the Dehn twist is negative. We can instead look at the
canonical map (I)%Z,Dl‘ It corresponds to h~! and is constructed using a
positive Dehn twist. Suppose we construct W’ and ¢/ out of A~!, just as we
construct W and ¢ out of h. Then, from the previous case we know that

<I>gD2’D1 =HM(W')ol.
Then, the identity
%, p, = HM(W)ou

follows from Theorem Lemma and Corollary o

3.3. Pairing of the intersection points

In this subsection, we deal with type I choices, i.e., the choice of p; among
all intersection points in S N 7.

Let us first pick an arbitrary intersection point in 05 n vy as p;. We need
to relax the requirement in the construction of the grading that da; are
chosen to be a special pair of points in S n . To record the data of the end
points of «;, we make the following definition.
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Definition 3.12. Suppose we have a collection of n pair of numbers

P = {(i1,51)s- - - (in, jn)}

so that
{ilajb cee 7inajn} = {1727 .. .,271},

and, for all { = 1,...,n, we have

i # ji (mod 2).

Then, we call such a collection P a pairing of size n. Note for a couple (i, j;),
we don’t distinguish between (i, 7;) and (ji, 7;).

Suppose (M, ) is a balanced sutured manifold and S M is a properly
embedded oriented surface. Suppose further that S has a connected bound-
ary, and it intersects v at 2n = 4k + 2 points. Those points are labeled by
P1,- .-, Pak+2, according to the orientation of 0.5, with an arbitrary chosen
starting point p;. Continuing, suppose P = {(i;, ji)}]_, is a pairing of size n,
T is an auxiliary surface of M, and aq, ..., a, are pair-wise disjoint simple
arcs so that the following is true.

(1) The arcs a,. . ., ay, represent linearly independent classes in Hy (T, 0T).

(2) For I =1,...,n, we have

aOél = {p217p]1}
Then, as in Definition we can construct
— - n
M=MoT x[-1,1], 8p = S u ({ Jar x [-1,1]).
=1

We have
6]\7 = R+ U R_,agp M Ri = Cl,i U Csi,i'

In general, the numbers of intersection circles, s, and s_, are not necessarily
equal to each other, so we make the following definition.

Definition 3.13. A pairing P is called balanced if s_ = s.

Example 3.14. Here are some examples of the pairings. Assume n = 2k +
1 is odd.
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(1) The simplest possible pairing
P =1{(1,2),(3,4),...,(4k + 1,4k + 2)}

has s_ =1 and s, =n, or s_ =n and s; = 1, depending on the choice of
the starting point pi, so it is not a balanced paring for n > 1.

(2) In Definition we have a paring arising from the construction of
the grading:

P9I = {(1,2),(3,6), (4,5), ..., (4k — 1,4k + 2), (4k, 4k + 1)}.

This is an example of a balanced pairing, with s, =s_ =k + 1.
(3) There is a very special balanced pairing with s; = s_ = 1:

P ={(1,2k+2),(2,2k+3),...,(2k + 1,4k + 2)}.

If (M,~), S, and p; are chosen as above, and we are equipped with a
balanced pairing P, then we can repeat the construction in Definition [3.3
and define a grading on SHM(M, ). By Corollary Proposition and
Lemma the grading depends only on the choice of p; and P. Since S
and p; are fixed throughout this subsection, we omit them from the notation
and write, in a moment, the grading as

There is an operation we can perform on balanced pairings. Suppose P
is a balanced pairing and we pick two indices /1 and Il so that the following
two conditions hold.

(i) The two arcs {1} x ag, and {1} x oy, are not contained in the same
boundary component of §7).

(ii) The two arcs {—1} x oy, and {—1} x ay, are not contained in the
same boundary component of 05.

Then, we can perform the following operation on P: Suppose, in the two
pairs (i1,,7;,) and (iy,,71,), 4, and 4;, are odd (and the two other numbers
must be even), then we can obtain a new pairing P’ out of P by removing
the two pairs (i, 7;,) and (4,, j;,) from P and add two new pairings (i, , ji,)
and (i, j1,)-

Definition 3.15. We call the above operation the cut and glue on parings.
Two pairings are called equivalent if one is obtained from the other by a cut
and glue operation.
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Example 3.16. Ifn =3, P ={(1,2),(3,6),(5,4)},l1 = 1,and lo =3 (; =
1 and [ = 2 do not meet the requirements of performing a cut and glue
operation), then the resulting pairing P’ is

P ={(1,4),(3,6),(2,5)},

and it is balanced.

It is obvious that the equivalence is an equivalent relation. Also, the
result of a cut and glue operation on a balanced pairing is still a balanced
one.

Lemma 3.17. Suppose a cut and glue operation on a balanced pairing P
associated to the two indices l1 and ly gives rise to a new balanced pairing
P’, then, for all i € Z, we have

SHM(M,~, P, i) = SHM(M,~, P’ i).

Proof. At this point, we have shown that the choices of type II, III, and IV
do not make difference on the definition of the grading. So, once P is chosen,
we can freely choose other auxiliary data to construct the grading. Let T'
and «q,...,a, be chosen, and the pre-closure M as well as the properly
embedded surface §7> have been constructed. We can assume that they are
chosen so that there is a curve c intersecting both oy, and oy, transversely
at one point. See Figure [6] The requirements (i) and (ii) make sure that
{+1} x oy, and {#+1} x oy, lic in four different boundary components of Sp.
So, there is an orientation preserving diffeomorphism h: Ry — R_, where
OM = Ry U R_, so that

hdS A Ry) =05 R_, h(cx {1}) = ¢ x {—1},

h(ay, x {1}) = oy, x {—1}, and h(ay, x {1}) = oy, x {—1}.
Let
Y =M U [-1,1] x Ry, and R = {0} x R

iduh
be a closure of (M, ~). The surface Sp becomes a closed surface Sp < Y. We
can also choose a simple closed curve n on R = {0} x R, so that n is disjoint
from Sp and 7 intersects ¢ x {0} transversely at one point. Hence, we obtain
a marked closure D = (Y, R, m,r,n), where m and r are both inclusions.
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b))

,'7/
y C D C O

Figure 6: The auxiliary surface T" and the surface ¥

By definition, we have

SHM(D,P,i)= @ HM.(Y,sT,).
s€&(Y|R)
1 (s)[Sp]=2i

Let X5 be a closed connected oriented surface of genus 2. Let ¢/, § and
8 be three simple closed curves on X, as depicted in Figure [6]

Let Y5, be the 3-manifold S* x . There is a torus ¥ = S! x ¢ c Y and
a torus X' = S x ¢ = 8! x ¥5. We can choose an orientation preserving
diffeomorphism &' : ¥ — ¥’ so that, for all te S', we have b/ ({t} x ¢) =
{t} x ¢ as well as

R ({t} x (aq, nc)u (g, ne))) ={t} x (Bnc).

We can use X, Y/, and A’ to perform a Floer excision on Y 1L Ys. The
result is a 3-manifold Y’, with a distinguishing surface R’, obtained from
R 1 Y5 by cutting and re-gluing along the two curves ¢ and ¢’. The surface
Sp Y also becomes a new closed surface Spr — Y’, obtained from S L
(S1 x B) by cutting and re-gluing along four curves S x (ay, ne), St x
(g, nc), and S x (8 n ) (there are two intersection points of 3 with ).
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The curve i together with § < X5 gives rise to a simple closed curve ' < R/.
See Figure [6] Hence, we get a new marked closure D' = (Y', R',m/,r",1/).
The Floer excision results in a cobordism W from Y 1 Yy, to Y/ and a map
HM(W): HM(Y uYs|R U Z9;T06) > HM(Y'|R;Tyy).
Let a € HM (Yx|¥2;T5) = R be a generator. Then, we can define
v: HM(Y|R;Ty)) - HM(Y'|R';T,)
as t(x) = r ® a and we know that
Opp = HM(W)ou,

by the definition of Canonical maps in Baldwin and Sivek [I].

The surface Spr < Y’ can also be obtained from the balanced pairing P’,
which is obtained by performing a cut and glue operation on P associated
to the two indices [; and lz. Just as we did in the proof of Proposition [3.9]
we conclude that, for all 7,

®pp (SHM(D,P,i)) = SHM(D', P, i).

This concludes the proof of Lemma (3.1 O

Definition 3.18. Two balanced pairings P, P’ are called connected if there
is a sequence of balanced pairings

Po=P,P1,....,Pn =P,
so that, for all i = 0,1,...,n — 1, P; and P;41 are equivalent.

Lemma 3.19. For any odd n, the two special balanced pairings P9 and P?
in Ezample[3.1]] are connected to each other.

Proof. In Example [3.16], we have shown that
{(17 2)? (3’ 6)7 (47 5)} a'nd {(17 4)7 (27 5)’ (37 6)}
are equivalent. In a similar way, we can also show that

{(1,6),(2,4),(3,5)} and {(1,4),(2,5),(3,06)}
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are equivalent. So,
{(1,2),(3,6),(4,5)} and {(1,6),(2,4),(3,5)}

are connected. The later one can be thought of being obtained from the
former one by sliding the arc «;, which originally joined the points p; and
po, over the two arcs ao and ag.

If we ignore the pairs (2,4) and (3,5) and look at {(1,6), (7,10),(8,9)},
then the above argument applies again and we can connect it to {(1, 10),
(6,9),(7,8)}, and this can be thought of further sliding o over ay and as.
We can repeat this step for many times.

Case 1. If n is of the form 4k + 1. In this case, we can slide o over to
join p; with pyr.o. Hence, P9 is connected to a new balanced pairing

P ={(1,n+1=4k+2),(2,5),(3,4),...,(4k — 2,4k + 1), (4k — 1,4k),
(4k + 3,4k +6), (4k + 4,4k +5),...,(8k — 1,8k + 2), (8%, 8k + 1)}.

Then, we can perform cut and glue operations on pairs (4l — 2,4l + 1) and
(4l —2+n,4l4+1+n) as well as on pairs (4l — 1,4{) and (4 — 1+ n,4l +
n), for all 1 <1 < k. The result of these operations is nothing but the special
balanced paring P? introduced in Example Hence, we are done.

Case 2. If n is of the form 4k + 3. In this case, we can slide a; to join
p1 With pgr1o, so the balanced pairing P9 is connected to

P ={(1,4k +2),(2,5),(3,4),..., (4k — 2,4k + 1), (4k — 1,4k),
(4k + 3,4k + 6), (4k + 4,4k +5),...,(8k + 3,8k + 6), (8k + 4,8k + 5)}.

Perform another cut and glue operation on pairs (1,4k + 2) and (4k +
4,4k + 5), then we get a new balanced pairing

P ={(1,n+1=4k+4),(2,5),(3,4),...,(4k — 2,4k + 1), (4k — 1, 4k),
(4k + 2,4k + 5), (4k + 3,4k + 6),...,(8k + 3,8k + 6), (8k + 4,8k + 5)}.

There is, then, an arc joining p4r+2 and pyr15, and we can slide it over to
join pyar+5 and po. Similarly, there is an arc joining p4x13 with pyr1¢, and we
can slide it over to join pgx.3 with pgrig. Then, PY is connected to a new
balanced pairing

P'={(I,n+1=4k +4),(2,n+2 =4k +5),(n = 4k + 3,2n = 8k + 6),

(3,6),(4,5)...(4k — 1,4k + 2), (4k, 4k + 1)
(4k + 6,4k +9), (4k + 7,4k + 8),...,(8k + 2,8k + 5), (8k + 3,8k + 4)}.
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Finally, we can perform cut and glue operations on pairs (41 — 1,4l + 2)
and (41 — 1+ n,4l + 2 + n) as well as on (41,41 + 1) and (41 + n,4l + 1 + n),
for all 1 <1 < k, then the final result is P*, and we conclude the proof of
Lemma o

Corollary 3.20. The definition of the grading on SHM(M,~) is indepen-
dent of choices of type I

Proof. 1t is straightforward to check that if we use the special balanced
pairing P?, then the surface Sp- is the same for all possible choices of the
starting point p;. Hence the corollary follows from Lemma[3.17] and Lemma
0. 19 o

Remark 3.21. We want to use PY in the definition of grading because it is
more convenient to use this construction to discuss about the positive and
negative stabilizations (see Definition [3.1)), as we will see in Subsection

Though we only discussed some special pairings, we would like to make
the following conjecture. Note the concept of balancedness, equivalence, con-
nectedness defined above can be reached in a purely combinatorial way and
is independent of all the topological input.

Conjecture 3.22. Any two balanced pairings of the same size n, where n
is odd, are connected.

4. The grading shifting property
4.1. A naive version

Suppose (M, ) is a balanced sutured manifold and suppose S is a properly
embedded surface in M with a connected boundary. In Definition we
constructed a grading on SHM(M, v) associated to S, when |0S n | = 2n
with n being odd. If n is even, then we introduce, in Definition positive
and negative stabilizations S* that both increase n by 1. It is a natural
question to ask how the gradings associated to S and S~ are related to
each other. The following proposition is a first answer to this question.

Proposition 4.1. Suppose (M,~) is a balanced sutured manifold, S < M
is a properly embedded surface with a connected boundary, and that 0S in-
tersects v transversely at 2n points with n = 2k > 0 odd. Suppose further
that the balanced sutured manifold obtained by decomposing (M,~y) along S
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is taut. Let ST and S~ are the positive and negative stabilizations of S,
respectively. Suppose S is of genus g and let

ge=9g+k.
Then, we have
SHM(M,~,S*, g.) € SHM(M,~,S™, g — 1).
We need the following lemma before proving Proposition

Lemma 4.2 (Kronheimer and Mrowka [21]). Suppose (M,~) is a bal-
anced sutured manifold and S is properly embedded surface inside M so that
0S is connected and [0S N y| = 2n with n odd. Let

n—1
2

gc = +g(S)7

then we know that

SHM(M,~, S,i) = 0

for all i > g., and
M(Ma Y5 Sa gc) = M(M/? ’7/)’

where (M',~') is the balanced sutured manifold obtained from (M,~) by de-
composing along S.

Proof. This is a reformulation of Proposition 6.9 in Kronheimer and Mrowka
[21], using our definition of the gradings in Definition The fact that
SHM(M,~,S,i) =0 for all i > g. follows directly from the adjunction in-
equality in Lemma o

Proof of Proposition[{.1 If we have two different negative stabilizations S}
and S, , then we know from Lemma and Lemma that

SHM(M,~, Sy, gc) = SHM(M',~) = SHM(M, ~, 55, g.),

where (M’',~") is obtained from (M,~) by performing a sutured manifold
decomposition along S. Hence, we can choose which negative stabilization
to work with.

Suppose the intersection points of S n ~ are labeled as p1, ..., po, ac-
cording to the orientation of dS. When labeling the points, we need to pick
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a suitable p; so that the new pair of intersection points created by the pos-
itive or negative stabilization lie between p3 and py. Let 3/ < 0S be part of
0S so that 08" = {p3,ps} and B’ contains no other intersection points p; for
Jj # 3,4. Let § < S be a properly embedded arc so that 08 = {ps,p4}, f and
B3’ co-bound a disk on D, and when performing positive and negative stabi-
lizations, the isotopy on S can be fixed outside the disk D. Now if we use the
same starting point p; to label dS* N v, then the new pair of intersection
points are both ps and ps in the two cases. See Figure [7]

A

Figure 7: A negative stabilization of S. Positive stabilizations are similar.

Suppose T is an auxiliary surface for (M, ~) of large enough genus. When
constructing the grading associated to ST, we need to choose linearly inde-
pendent arcs aq, as, ag—r, Qg ...,ant1 < T and the special pairing P9, which
is defined in Example to make it clear what are the end points of the
arcs «;. Here, a;)—r correspond to the different surfaces ST, while 7' and all
other arcs a;, for i # 3, can be chosen to be the same for both ST and
S~ . In the pre-closure M = M u [—1,1] x T, we have two surfaces St and
S—. After picking suitable gluing diffeomorphisms h*, we get two marked
closures

Dt =Y " Rt vt mT nt)and D" = (Y ,R ,r",m " ,n")

so that there are closed surfaces S* and S* inside Y+ and Y, respectively,
and the gradings associated to ST and S~ are defined by looking at the
pairings between the first Chern classes of the spin® structures on Y+ and
Y~ with the fundamental classes of S* and S—, respectively. Note the genus
of S* and S~ are both g. +1 =g+ k + 1.
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From Proposition we know that the canonical map ®p+ _p- can be
interpreted in terms of a Floer excision cobordism W from Y+ 1 Y"*, where
Y" is the mapping torus of h = (h*)" T oh™, to Y.

We can construct a special closed surface of genus 2 as follows. Recall
we have an arc § < S, and since the isotopies for positive or negative sta-
bilizations are supported in the interior of the disk D, 8 also lies in S*.
Let 6 = B U (ag x {0}) = S* be a closed curve. Then, the curve § cuts each
of S* into two parts. One part contains S\int(D) and the other part is a
connected oriented surface T+ < ST of genus 1 and with boundary §. Inside
W, we can define

Yo=TTu[0,1]x6u—-T < W.
It is straightforward to see that, in Ha(W),
[ST]=[S7] + [Z].

Hence, by the adjunction inequality in dimension 4, which is a 4-dimensional
analogue of Lemma we have

(I)D+’D7(SHM(D+, S+,gc)) c SHM(D,S ,g.+ 1)
@SHM(D_,S_,gC)
@®SHM (D™ ,S ,g.—1).

The adjunction inequality also implies that SHM (D, S™,g. + 1) = 0. If we
decompose (M, ~) along S—, and suppose (M”,~") is the resulting balanced
sutured manifold, then, by Lemma [3.2] Ry (y”) is compressible and so

SHM(D™, S, g.) =~ SHM(M",~") = 0.

The first isomorphism follows from Lemma [£.2] and the second equality fol-
lows again from the adjunction inequality in Lemma
Hence, the only possibility left is

(I)DﬂD’(SHM(DJrv SJragc)) < SHM(Div Siagc - 1)
and we we conclude the proof of Proposition o

4.2. Supporting spin€ structures

Let Y be a connected closed oriented 3-manifold. Suppose K < Y is a null-
homologous knot, and S c Y is a Seifert surface of K. The surface S then
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induces a framing on the knot complement Y (K) = Y\N(K). Let u be the
meridian and A = S n dY (K) be the longitude. We can regard S as a prop-
erly embedded surface inside Y (K). Pick v < 0Y(K) be a suture having
two components. We further assume the following: if we write the slope of
as p/q (meridian/longitude), we require that |p| > 1. The surface S induces
gradings on SHM(M, ), after perturbations if necessary. In this and next
subsection, we will study how different gradings associated to perturbations
of S are related with each other.

Suppose (Y, R) is a closure of (Y(K),~), as in Definition In this
subsection, we want to study the set of supporting spin® structures on Y
which is introduced in Definition In particular, we prove the following
proposition.

Proposition 4.3. Suppose after possible perturbation S intersects v trans-
versely at 2n points with n even. Suppose (Y, R) is a closure of (Y(K),~) so
that S extends to a closed surface S <Y as in the construction of gradings
n Sectzon@ Let 51,50 € 6*(Y|R) be two supporting spin® structures on Y.
Then, there is a 1-cycle x inside Y (K), so that

P.D.ci(s1) — P.D.c1(s2) = [z] € H1(Y;Q).
Note the cycle is contained in Y (K) but the identity is on the whole Y .

Remark 4.4. Here we only need QQ coefficients since our aim is to study
the grading which arises from the pairing of the first Chern classes of sup-
porting spin® structures with the fundamental classes of some surfaces. So
Q is enough for this purpose.

To prove Proposition we need to understand the homology of the
closures of (Y(K),v) as well as the homology of the excision cobordisms
which induces the canonical map as in Subsection [3.2] better. Let us start
with an alternative description of the closures of (Y (K), 7).

Let ¥, be a closed oriented connected surface of large enough genus
g. Its first homology is generated by the classes [a1], [b1],...,[ag],[bg], as
depicted in Figure

Let T' = ¥,\int(NN(a1)) be a surface obtained from 3, by cutting ¥,
open along aj, then 7" can be viewed as an auxiliary surface for (Y (K),~).
Let

~

V=V(K)u[-1,1]x T
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Figure 8: The surface ¥,.

be a pre-closure of (M,~), and let
oY =R, UR_.

If we choose a special gluing diffeomorphism h°: R, — R_ so that
hry 1y = id, then we get a special marked closure

DY = (v, 5,70 m° ).

Similar to the closures described in Section 5.1 in [21], the closure (Y°, R)
can be achieved as follows: Let Y, be the surface as in Figure |8, and let
Yy = St x Y,4. By abusing the notations, use a; to also denote the curve
{1} x aq < Yx. Let N(a1) be a tubular neighborhood of a; < Yx. Note a; <
{1} x ¥4, so there is a framing on 0N (a1) induced by {1} x X,. Let A4, fq
be the longitude and meridian, respectively.

Then, we have

YO = Y (K) (¥t (V ().
Here,
¢ :0N(a1) — Y (K)

sends the two copies of A, to the suture . Note there are canonical ways to
identify R4+ with 3,. So, in the marked closure Dy, we have R = X,.

Lemma 4.5. The conclusion of Pmposz’tz’on@ is true for YO, despite of
the fact that S may not extend to Y°.

Proof. From the Mayer-Vietoris sequece, we know that there is an exact
sequence

H(T?%Q) —» Hi(Y(K); Q) @ H1(Ys\int(N(a1)); Q) — H1(Y% Q) — 0,
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where T? = 0M = 0(Yx\int(N(a1))). Hence, we conclude that

H{(Y%Q) = Hy(Y(K); Q) ® Hy(Ys\int(N(a1)); Q)/ ~,

where ~ is the relation induced by the gluing map ¢ :

[Aa] ~ @x([Aal)s [1a] ~ ds([1al)-

A direct calculation shows that

Hy (Ys\int(N(a1)); Q) = {[aa], [b1], - .., [ag], [bg], [s°]),

0

where s? corresponds to the S! direction in Y5 = St x Y4, and

(8) [ta] = 0 € Hi(Ys\int(N(a1)); Q).

Hence, we can write

(9)  Hi(Y%Q) = Hi(Y(K); Q) @{[b1], [az]. [b2], ..., [ag], [bg], [s"]).

This is because [a1] is absorbed into Hi (Y (K); Q).
Suppose s € &*(Y?|3,), then we can express P.D.ci(s) in terms of the
above basis. The coefficient of [s] can be fixed by the evaluation

c1(s)[Zg] = 29 — 2.

There are no [b1],[az], [b2] ... [ag],[bg] terms, since we can apply the ad-
junction inequality in Lemma to tori S! x ay, ' x by..., S x ag < y?
to rule out those classes. The rest of the terms must then lie in H; (Y (K); Q).
So, if we look at the difference (of the Poincaré dual of their first Chern class)
of two supporting spin® structures, it must lie in Y (K). o

Remark 4.6. An error in the previous version of this paper is that previ-
ously we regard [1,] as a non-zero element in H;(Ys\int(N(ay)); Q), contra-
dicting . The reason why is true is that there is a torus S x b; < Y
which intersects a; transversely at one point. Hence in the complement
Yy\int(N(a1)), S' x by becomes a once punctured torus whose boundary
is exactly ;.
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Next, we deal with general closures of (Y (K),~). As above, we have the
pre-closure

Y =Y(K)u[-1,1] x T,
where T' = ¥,\N(a1). Also, recall

oM =R, UR_.

Note, as in the above discussion, there are canonical ways to identify R,
and R_ with ¥;. We can pick any orientation preserving diffeomorphism
h: Ry — R_ to get a closure (Y, %) of (Y (K),7), or a marked closure

D = (177 Zg7rama"7)'

In particular, the special marked closure DP° in Lemma corresponds to
taking h = h? = id.

Let Y" be the mapping torus of the diffeomorphism A : Xy — X4, then
we can reinterpret Y as

Y = Y(K) ug (YMint(N(ar))).

From Proposition @, we know that the canonical map ®p, p can be ob-
tained from a cobordism W from Y? L Y" to Y. The cobordism W arises
from the Floer excision as in Subsection 2.2l

Next, we deal with the class [p,] coming from the meridian of a;. In
general, we don’t know if the class [a1] is trivial inside H;(Y") or not, so we
also don’t know if [j,] is trivial or not. However, when Y satisfies the hy-
pothesis of Proposition we do know more. In the rest of this subsection,
we always assume that Y satisfies the hypothesis of Proposition

Lemma 4.7. We know that
[1a] # 0€ H1(Y;Q), and [a;] = 0 € H (Y;Q).
Proof. Note we have
Y = Y(K) ug (Y"\int(N (1)),

where the gluing map ¢ maps a; to a component of the suture . Re-
call we have assumed that the slope of the suture is p/q with |p| > 1, so

du(lar]) = plu] + g[\]. Hemce, we know that ¢y ([ua]) = p'[1] + ¢/[\] with
|p'| > 1. Note inside Y, we have [u]-[S] =1, and [A] = 0, this means that
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[1a] # 0. If [a1] # 0, then there is a closed oriented surface ¥ = Y so that
[a1] - [Z] # 0. Then, the boundary of ¥ n Y"\int(N(a1)) [ia] represent a
class which equals non-zero multiple of [pu,]. This implies that [u,] =0¢€
H1(Y; Q) which is absurd. D

With Lemma the computation of the first homologies of Y, Y and
W are straightforward, and we can describe them as follows.

(10)  Hi(Y) = Hi(Y(K); Q) @ ([ptal, [a1]; [b1]; - - s [agl, [bg], [s1)/ ~g.n
(11) H(Y"Q) = ([ar], [b1] .. [ag], [bg], [s"1)/ ~n

Hy(W3Q) = Hi(Y (K); Q) @<[an], [b1]. -, [ag], [bg], [°], [s"1)/ ~o.n -

Here, s is a circle inside Y which intersects ¥, once. We can isotope h so
that h has a fixed point p € ¥, then, inside Y, there is a circle s = {p} x S1.
The class s is similar. The relations ~g4h are

[a1] ~ d«([a1]); [1al ~ x([pal), [ai]l ~ h([ai]), [bi] ~ R([bi])-

The relations ~j, are

lai] ~ h([ail), [bi] ~ h([bi])-

Note [e] = 0 € Hy(W;Q), since [uq] = 0€ Hi(Y?; Q).
From and , we know that

Lemma 4.8. Suppose i : Y < W is the inclusion, and let

ix : Hi(Y) = Hi(W; Q)

be the induced map on first homology. Then, we have

ker(ix) = ([nal) = Hi(Y)

Proof of Proposition[{.3. Suppose Y is a closure satisfying the hypothesis
of the proposition. Let Y°, Y* and W be chosen as above. From Lemma
we know that there is a unique supporting spin® structure on Y*, which
we denote by s”. Suppose s; and sy are two supporting spin® structures on
Y. Then, from the fact that W induces an isomorphism and the nature of
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the cobordism map in monopole Floer homology, we know that there are
two supporting spin® structures 5(1) and 53 on Y, so that

P.D.ci(s1) = P.D.c1(s9) + P.D.c;(s") € H(W;Q),

and
P.D.ci(s2) = P.D.c1(s9) + P.D.c;(s") € H(W;Q).
Thus, we know that

P.D.ci(s1) — P.D.ci(s2) = P.D.c;(s0) — P.D.cy(s9) € Hi(W;Q).
From Lemma we know that there is a 1-cycle z inside Y (K') so that
P.D.ci(s)) — P.D.c;(s9) = [z] € H1 (Y% Q).
We then conclude that
P.D.ci(s1) — P.D.ci(s2) € [2] + ker(ix) < H{(Y;Q).

Then, the proposition follows from Lemma o
4.3. The grading shifting property

In this subsection, we prove the following proposition.

Proposition 4.9. Suppose (Y (K),~) is the balanced sutured manifold and
S is a Seifert surface of the knot K, both as described in Subsection [[.2.
Suppose further that S has minimal genus among its homology class and
has minimal intersection with v so that [0S N | = 2n > 0. Suppose further
that decomposing (Y (K),7) along S and —S are both taut. Then, for any
p, k.l € Z such that n + p is odd, we have

SHM(Y (K), 7, 8%, 1) = SHM(Y (K), v, SP**, 1 + k).

Note SP is a stabilization of S as introduced in Definition [3.], and, in par-
ticular, SY = S.

Proof. Suppose we have chosen SP and SP*2* as two stabilizations of S.
Claim 1. There is a fixed integer [y so that for any [ € Z, we have

LHM(Y(K)a 7, 5%, l) = LHM(Y(K)a s Sp+2k7 [+ lO)
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To prove this claim, we start with two disjoint copies of S. Since the
perturbation can be made in an arbitrary neighborhood of S, we can perform
p perturbations on one copy and p + 2k perturbations on the other. The
result is two surfaces SP and SP*2* embedded disjointly into M.

Next, we can carry out the construction of gradings in Section [3] We can
apply the construction in Subsection on both SP and SP*%* simultane-
ously and obtain a closure Y with two surfaces SP and SP+2* extending SP
and SP*2% respectively.

Suppose 51 and so are two supporting spin® structures on Y, then, by
Proposition there is a 1-cycle z inside Y (K) so that

P.D.Cl(ﬁl) — P.D.Cl(ﬁg) = [:B] € Hl(?,(@)
Since SP and SP*2* are the same inside Y (K), we conclude that
[z] - ([S] - [S**]) = 0,

and thus

c1(s1)[S] — .e1(51)[S*] = e1(s2)[S] — 1 (52)[S*].

Note the above equality is equivalent to the existence of [y.

Claim 2. We have [ = k.

Case 1. We have p > 0 and p + 2k > 0. From Lemma 3.2 we know that
if we decompose (M,~) along both SP and SP*2%, we obtain the same taut
balanced sutured manifold (M’,~"). From Lemma we conclude that

SHM(Y (K),, SP, g.(SP)) = SHM(M',~')
~ SHM(Y (K),, SPT2F), g.(SP+2K),

where
- x(S + 2k — x(S
ge(57) = P ;c( ) and a(57) =P . X(5)

Lemma [4.2] also states that g.(SP) and g.(SP*?*) are the top non-vanishing
grading with respect to the grading induced by each surface. Hence, from
Claim 1 we conclude that [y = k.

Case 2. We have p < 0 and p + 2k < 0. The argument is similar as in
Case 1, though working with —S instead of S.

Case 3. We have {p,p+ 2k} ={—1,1}. We can apply Claim 1 and
Proposition [}
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Case 4. We have p and p + 2k to be of different sign. This is a combi-
nation of Case 1, 2, and 3 and Claim 1.
This concludes the proof of Proposition [5.5

4.4. Floer homologies on a sutured solid torus

As a first application of the grading shifting property, we compute the su-
tured monopole Floer homology of any sutured solid tori. A similar result
in sutured Heegaard Floer theory can be found in Juhasz [1§].

Suppose V = S! x D? is a solid torus. Let A denote a longitude S x {t}
where t € 0D? and let i denote a meridian {s} x 0D? where s € S'. Suppose
further v is a suture on V' so that (V,~) is a balanced sutured manifold.
Then, « is parametrized by two quantities, n and s, where 2n is the number
of components of v and s is the slope of the suture. In this subsection, we
write the suture v as 'y&ﬁp). We write the slope s as (¢, —p), and this is
to keep our notations consistent with the ones in Honda [15]. Note (g, —p)
means going around longitude —p times and meridian ¢ times. We always
assume that p > 0.

Proposition 4.10. Suppose (V, ’y?q _p)) is defined as in the above para-
graph. Then, we have

SHM(-V, ¢, ) = R”.

Proof. If p = |q|, then p = +q = 1, since they are co-prime. Then, (V, 7(21 il))
is diffeomorphic to a product sutured manifold (A x [—1, 1], dA x {0}), where
A is an annulus. Thus, we know

SHM(-V, *7(217—1)) =R.

From now on, we assume that p > ¢ > 0. If not we can achieve this
assumption by applying diffeomorphisms of the solid torus V. We want to
re-interpret the by-pass exact triangle as follows: We have a basic by-pass
exact triangles

(13)
M(_M _7(217_1))
Y1 P2

M(_M _’7(21’0)) M(_M _72 )

(07_1)
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Here ¢p_ o = wiop, Vo1 = wg,p and ¢Y_ o = ¢1_7oo, under the notations in
B).

Recall, from Subsection that the map ¢_ ;1 (as well as the other two)
is interpreted as a gluing map: Suppose we have (—V, —7(21 0)) and an iden-
tification T2 = St x D2, then we can glue [0,1] x T2 to V via the identifi-
cation id : 0V = S! x 0D? = {0} x T?. Suppose {0} x T? is equipped with
the suture 7(21’0), and T? x {1} is equipped with the suture 7(217_1), then we
can identify (V, 7(21’_1)) with (V U [0,1] x T2,fy(21’_1)). There exists a com-
patible contact structure £_ 1 on ([0, 1] x T2, 7(21 0) Y 7(21 _1)) so that we have

Yoo =Pe_, : SHM(=V, =3 o)) = SHM(=V, =27 ).

When dealing with other sutures, we can also glue (772 x [0, 1],7(21 0) Y
7(21 _1)) to V, but along a diffeomorphism

g:{0} xT? = oV,

instead of the identity map. Such a map needs to be orientation preserving
and, hence, is parametrized by an element in SLs(Z). We can pick the map
g corresponding to the matrix

_/ _/
A=<q o )est),

P —p

where p'q —pq' =1,p' <p, ¢ <q,¢"=p—p',and p”" = p—p'. (Such p', ¢,
p”,q" are unique.)

Then, the suture 7(2170) on T2 x {0} is glued to 7(2q7,p) on 0V and the
suture 721’71 on T2 x {1} now becomes the suture 'y(zq,ﬁp,)

, they still fit into an exact triangle

. As in Formula

(14)
SHM(=V,=1¢, )
Yo P2

SHM(—V, —

M(_K —’72 ))

: )
(a”,—p") Yo (@,—p

We claim that ¢_ g = 0. Let D), be a meridian disk of V' which intersects

7(2q7,p) at 2p points, then, from a similar argument as in Proposition
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(which we will prove later), we have

Y- o(SHM(-V, _V(Qq’,—p’)’ D;(pip/)’ 7)) = SHM(-V, _V(Zq”,—p”)’ D;r”(pip”)’i)
for any ¢ € Z.

We only deal with the case when p’ is odd and p” is even. Other cases
are similar. From the construction of the grading in Definition [3.3] we know
that there is a suitable marked closure Dy = (Y, R,r,m,n) and a closed
surface Dp/ c Y, so that the grading is defined via the evaluations of the
first Chern classes of spin® structures on the fundamental class of Dp/. From
the construction, we know that

X(Dp’) = x(Dy) -p=1-yp.
Hence, the adjunction inequality in Lemma [2.7] implies that
2 N
SHM(—V, —’Y(q,’_p,), Dpl, ’L) = 0
if 1 < l%ﬂ. Then, from the grading shifting property in Proposition E we
know that
//

. . p
SHM(—V, =0y s Dy 18) = SHM(=V, =13, ). Dy 4 ()

Thus, we know

" N _
7—p’)’Dp’ 1) =0

(15) SHM(-V, -7,
if i < #. Note, by definition, p” = p — p/.

The above argument for Dy, applies to D;,, as well. Note p” is assumed to
be even, so we need to perform a positive stabilization on D,» to construct
the grading. The adjunction inequality in Lemma [2.7] again implies that

(16) M(_M _7(2q//7_p//), D;;/, 7/) = 0

if 1 > % However, from Lemma E we know that

//

5 B = SHM(M', ),

SHM(_‘/, _V(Qq//7_p//), Dp
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where (M’,7) is the result of doing a sutured manifold decomposition on
(-V, —’y?q/, _p//)) along the surface D;,,. From Lemma we know that

D, ') < SHM(M', /) = 0.

(17) SHM(~V, —? .

q// _p//)

The grading shifting property in Proposition then, implies

p—1
).

SHM(—V, =120 _py» Dt i) = SHM(=V, =2, _ ), Dy —

The above equality, together with and , implies that

SHM(-V, —yfq,,,fp,,), Dy i) =0
ifi > 1= - 2" Compare this with , we can see that ¢_ g = 0.
Once we conclude that ¢_ g = 0 we can compute SHM(—V, ’Y(q p)) by

the induction, and Proposition follows. o

Remark 4.11. As in Honda [I5], the two slopes (¢/, —p') and (¢”, —p”) can
be written out explicitly in terms of the continued fraction of (g, —p). Note
we have assumed p > ¢. Suppose

p 1
——=r -,

q Ty —

T3s—...

where it is a finite continued fraction, and r; < —1 for all j. We can write

(18) —g = [Tl,TQ,...,?”k].

Under this notation, we have

/ 1"
—? = [’1“1,7“2.. . ,’r‘k_l], —? = [7"1,7“2. ey Tp—1 + 1],

and in the above notation, we identify [r1,...,7rj_1,7r;, —1] with [ry,...,
Ti—1,T; + 1].

Now we deal with the general sutures 'y? _p) for n > 1. There are two

types by-passes relating (V, 7(27”2)) and (V, 'y(q p)) We call them positive

and negative by-passes according to Figure[9] They give rise to by-pass exact
triangles:
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(19)

2n+2
SHM(-V, “Yig,—p) )

M(_W —’Y(Q,Z_p))

n+1
*,n

Positive by-passes Negative by-passes

Figure 9: The positive and negative by-passes.

Remark 4.12. Unlike the case of two sutures where there are exactly two
different possibilities of by-passes, in the case where v has more than two
components, positive and negative by-passes are not unique. Here, we just
pick two specific by-passes so that they are ’adjacent’ to each other. This is
crucial to the proof of Lemma [£.13]

Lemma 4.13. For any n € Z and slope (q¢,—p), we have

YL oW i = ¥R oYl
e 2n 2n
= id : SHM(=V, —y(r' ) — SHM(=V, =" ).

Proof. We will only prove that wfﬁll ol ;11 = id. The other is the similar.
From [2] or [30] we know that a by-pass attached along an arc a can be
thought of as attaching a pair of contact 1-handle and 2-handle. The contact
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one handle is attached along the two end points da while the contact two
handle is attached along a Legendrian curve

B=aud,

where o is an arc on the contact 1-handle intersecting the dividing set once.

Now z/;ﬁj;ll ol ;41 corresponds to first attaching a by-pass along a4
and then attaching another one along a_, as in Figure However, in
terms of contact handle attachments, the two pairs of handles are disjoint
from each other, so we can reverse the order of attachments: Instead, we can
first attach a by-pass along a— and then along o . If we attach a by-pass
along a_ first, we can see from Figure [I0] that this is a trivial by-pass as
discussed in Honda [16]. In that paper, it is proved that a trivial by-pass
does not change the contact structure. From Theorem [2.15, we conclude
that a trivial by-pass induces the identity map. Then, the second by-pass
attached along « is also trivial and, hence, again induces the identity map.
Thus, we conclude that wfﬁf oYY 4 = id. o

Q4

(

)

Q4

Above: first attach along a_ then o

Below: first attach along a4 then a_

a

Figure 10: Reversing the order of by-pass attachments. Bottom right pic-
ture: we can isotope a_ to this new position, where we can see directly that
the by-pass is trivial.
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Corollary 4.14. Suppose V is a solid torus and 'y( ) s a suture on OV
consisting of 2n many connected simple closed curves of slope —p/q. Then
we have

SHM(-V, —yr_,)) = R 7).

Proof. From Lemma we know that Q,Z)"H is surjective while ¢ , ., is
injective. Hence, we can conclude the statement by using the by-pass exact
triangles and the induction. o

Corollary 4.15. We have

|7TQ(T1ght(V ’Y( ))| = on—1. |T‘1 + 1| ''''' |Tk—1 + 1‘ . |7“k|.

4,=Pp)
Proof. First assume n = 1. In [I5], Honda explained how to construct any
compatible tight contact structures on a sutured solid torus: First we start
with the standard tight contact structure on (V, V(2 )) Then, we can glue k
different layers T2 x [i — 1,4], for 1 <i < k, to V, so that, on T2 x [i — 1,1],
T? x {z — 1} has the dividing set 'y( = while T2 x {i} has the dividing
set 7(1 1—ry- We glue T2 x {0} to oV via identity, while glue T2 x {i}
T? x [i,i+ 1] to T? x {i} = T? x [i — 1,1] so that the dividing sets on these
two surfaces are identified.

Each layer T? x [i — 1,i] is further decomposed into the composition of
—1 —r; (or —ry, for the last layer) many by-passes. There are two by-passes:
One corresponds to the map v_ ; in formula , and the other corresponds
to some 14 1 in a similar by-pass exact triangle. Use the inductive step as
introduced in [I5], which Honda used to construct tight contact structures
on a sutured solid torus, we see that all the contact structures that Honda
constructed have distinct contact elements. Hence, there are at least |rq +

1feeees |rk—1 + 1| - |rx| many different contact structures.
When n is bigger than 1, we proceed by induction. Suppose, for n =
I, there are at least m; = 2171 - [ry + 1] -+ |rp_q + 1| |ri| many different

non-zero contact elements v, ..., 1, € SHM(-V, fy(q p)). From Lemma
we know that wi 141 and Pt 141 are both injective,

41 41 ,
Py ol 1 =0, and YL oy 1y = id.

The first equality is due to the exactness of the by-pass triangle, and the

second is again Lemma |4.13| Hence, we know that, inside SHM(—V, 7(2;+_2p)),

there are at least my g =2\ - |ry +1]----- |rk—1 + 1| - |7x| many different
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contact elements

¢li,l+1(¢£1)7 SR @/}lJ_r,l+1(¢§,,Ll )

Hence, we are done. O

Remark 4.16. When n = 1, the above argument gives an alternative way
to provide a tight lower bound of |mo(Tight(V, 'y(zq’ip)))|, which is originally
done by Honda [15].

When n > 1, as mentioned in Remark there are not just two by-
passes, so this lower bound, a priori, need not to be tight. However, one
could try to study the impact of all other by-pass attachments to see if we
could improve the lower bound.

Remark 4.17. We can use a meridian disk of the solid torus to define a
grading on SHM(—V, —'y?q”ip)). The above method is also capable of com-
puting the graded homology.

5. The direct system and the direct limit
5.1. The construction

Suppose Y is a closed oriented 3-manifold, and K < Y is an oriented knot
with a Seifert surface S < Y. Suppose further that p € K is a fixed base
point and ¢ : S' x D? < Y is an embedding as in Subsection ie., we
require that

p(S" % {0}) = K, and p({1} x {0}) = p.

Then, we have a 3-manifold with boundary Y, = Y\int(im(y)). The Seifert
surface S induces a framing on 0Y,,. We call the meridian s, and the longi-
tude A,. Let Iy, , be a collection of two disjoint parallel oppositely oriented
simple closed curves on 0Y,, each of class +(A\, — np,). Then, we have a
balanced sutured manifold (Y, Ty ;).

Suppose ¢’ is another embedding, then we also have (Y, T, o). Suppose
ft is the ambient isotopy defined as in Subsection relating ¢ and ¢’. We
have the following lemma.

Lemma 5.1. The diffeomorphism fi is a diffeomorphism from (Y,,I'yn )
to (Yo, Tnypr)-

Proof. It is enough to show that f; sends the framing (4, Ay) on 0Y, to
the framing (p1,r, Ay) on 0Y,.



Knot homologies in monopole and instanton theories 1397

By construction, f1 sends ji, to p. fi must also preserve A, since f;
is an isotopy, and A, can be characterized by the fact that it represents a
generator of the map

i H1(0Y,) — Hy(Y,),

where 7 : (9Y<p — Y, is the inclusion. o

Corollary 5.2. There is a transitive system (of projective transitive sys-
tems)

{M(Y@arn,w)} and {‘IJWP’ = SHM(f1)}.

So, we obtain a canonical module SHM(Y, K, p,n) associated to the quadru-
ple (Y, K,p,n).

Once Lemma [5.1, we can fix a knot complement to study with. Sup-
pose Y(K) = Y\int(N(K)) be a knot complement and let A and p be the
longitude and meridian, respectively, with respect to the framing on 0Y (K)
induced by the Seifert surface S. For any n € Z, use I';, to denote the suture
on 0Y (K) consisting of a pair of simple closed curves of class +(A — nu),
and use I'y, to denote the suture on 0Y (K) consisting of a pair of meridians.

Definition 5.3 (Kronheimer and Mrowka [2I], or Baldwin and
Sivek [1]). Define

KHM(Y, K, p) = SHM(Y (K),T').

Definition 5.4. Define the minus version of monopole knot Floer homology
of a based knot K < =Y, which is denoted by KHM ™ (—Y, K, p), to be the
direct limit of the direct system

.. — SHM(—Y/(K),T,,) =2

SHM(—Y (K),Tps1) — ...

Here, the maps ¢” ., are defined in the exact triangle . By Corollary
the maps {¢! ,, 1 }nez, induce a map on KHM™, which we call U:

U : KHM™(-Y, K, p) — KHM ™ (~Y, K, p).
Next, we construct a grading on the direct limit KHM ™ (=Y, K, p). Sup-

pose Sy, is the Seifert surface of K so that .S, intersects I',, at 2n points.
Then, we have the following proposition.
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Proposition 5.5. Suppose n is even, then, for any i € Z, we have

¢g,n+l(m(_Y(K)a _Fn’ S'r%v 7/)) - M(_Y(K)y _Fn+17 S’n+17 Z)

Suppose n is odd, then we have for any i € Z

¢l7n+1(SH7M(—Y(K), _an 57%27 Z)) = SH71\/[(_}/(I{)a _Fn+17 S%—i-l? Z)

Proof. We only prove the proposition for ¢ , ., with n even. Other cases
are similar. In Figure |11} it is clear that the surface S,+1 < (Y(K),I';,) can

also be obtained from the surface S, by a negative stabilization:

Sn+1 = S;

\

\

VLA A

-
......

- \

Figure 11: The solid vertical arc represents the surface S3 = 55 and the

dashed arc represents Ss.

Y2 5

\

S3

r \\\\
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Thus, for any ¢ € Z, we have
SI—IJ(_Y(K% _an S;u Z) = M(_Y(K)v _FTH Sn+17 Z)

For S, = Sp+1 < (Y(K),T';,), we can choose some auxiliary data to con-
struct a marked closure

DT: = (Ynia R,rp, my, 77)7

so that S, extends to a closed surface S, < Y,~ and it induces a grad-
ing on SHM(-Y(K),—T',) that is exactly the one associated to S, . (See
Definition [3.3])

We can obtain (Y (K),',4+1) by attaching a by-pass disjoint from S, 41 =
S, . From Baldwin and Sivek [2], we know the map ¢" , . associated to the
by-pass can be described as follows: There is a curve g < (m, (Y (K))) € Y,
so that a O-framed Dehn surgery on /3, with respect to the 0Y (K) framing,
will result in a 3-manifold Y,,4+1. Since § is disjoint from im(r,), the data R,
rn, and n survive and we get a marked closure

Dn-‘rl = (YTL+1) R) Tn+1,Mnp+1, 77)

which is a marked closure of (Y (K),I';,+1). The surgery description gives
rise to a cobordism W from Y~ to Y;,+1 and the cobordism map associated
to this cobordism induces the by-pass attaching map ¢ , ..

It is a key observation that the surface S, = S,11 is disjoint from the
region we attach the by-pass and, hence, is disjoint from the curve g along
which we perform the Dehn surgery. As a result, the surface S, remains as a
closed surface S, 41 < Y,41 and induces a grading on SHM(Y (K),Tp41). It
is clear that the grading induced by S,,1 is nothing but the one associated
to the surface S,+1 < (Y(K),I',4+1) as in Definition

There is a product cobordism [0,1] x S, = W, from S, < Y, to S,41 <
Y,+1, and, thus, we conclude that

¢E,n+1(SH7M(Y(K)7 FTL’ SEa Z)) < SH71\/[(}/(I()a Fn+17 Sn+1a Z)
This concludes the proof of Proposition [5.5 o

The following Figures [12| and [13] are helpful for understanding how the
maps ¢, and ¥” 4 change the gradings. In the figures, we take K =
k+g(S).
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Now, we perform a grading shifting as follows:

SHM(—Y (K), =T, 57™ i)[o(n)] = SHM(=Y (K), =T, ST i + o(n)).

Here, 7(n) = —1 if n is even and 7(n) = 0 if n is odd, and
-1
o(n) = A\ ;T(n)

We will simply write
SHiM(—Y(K), _an SZ)[G],
and the direct system becomes

.. = SHM(-Y(K), —TI';, 57)[o]

O i .
Lot SHM(—Y (K ), — L1, STy )[o] = - .

n

It is straightforward to check that, after the shifting, ¢” , |, is grading pre-
serving and ¢ . shifts the grading down by 1. Thus, we conclude the
following.

Proposition 5.6. If S is a Seifert surface of K €Y, then S induces a
grading on KHM™ (=Y, K, p), which we write as

7KHM_(_Y: K7p7 S? Z)
Under this grading, the map U is of degree 1.

Definition 5.7. Suppose K c Y is an oriented knot and S is a Seifert
surface of K. We can define the tau invariant 7(Y,K,S) of K <Y with
respect to S as follows:

7(Y, K, S) = —max{i|3z e KHM~ (Y, K, p, S, i), U’z # 0 for any j > 0.}
Here the base point can be fixed arbitrarily.

Question 5.8. What properties does 7(Y, K, S) have?
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5.2. Basic properties

Proposition 5.9. Suppose Y is a closed oriented 3-manifold and K 'Y
is a knot so that there exists an embedded disk S = D? with 0S = K. Then

KHM™ (-Y, K,p) = SHM(—(Y\B?), —6) @& R[U].
Here, p € K is any choice of the base point. (Y\B3,) is the balanced su-

tured manifold obtained from'Y by removing a 3-ball and picking one simple
closed curve on the spherical boundary as the suture.

Proof. First assume that Y = S, then (Y\B3,§) is a product sutured mani-
fold and (Y (K),Ty,) = (V, 7( )) where (V, fy(l )) is the balanced sutured
manifold as defined in Subsection [4.4] From Proposition we know that

SHM(-V, ,7(217_71)) ~ R™.
Suppose S, is a Seifert surface of K that intersects ', (1 n) at 2n points,
then the argument in the proof of Proposition [4.10] can be applied to calcu-

late the graded homology, and we conclude that: (Note S,, are disks when
K is the unknot.)

SHM(=V, =3y, > Shri)o] = R
for all 4 such that 1 — n < ¢ < 0. Moreover, the map

Y g1t SHM(=V, _7(21,7n)7877";)[0—] — SHM(-V, ’7( —1)» ni1)[o]

is of degree —1 and is an isomorphism for all ¢ such that 1 —n < ¢ < 0. Thus,
we conclude that

KHM ™ (-S° K, p) = R[U].
When Y is an arbitrary 3-manifold, we know that

(Y(K),Tn) = (Y\B”,8) 1 (S*(K), 7, —n))) © by

where h is a contact 1-handle, as introduced in Baldwin and Sivek [4],
which connects the two disjoint balanced sutured manifolds ((Y\B?,d) and
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(-S3(K), —fy(zlﬁn)). Thus, we know that

SHM(-Y (K), ~T') = SHM(=(Y\B?), =6) ® (=S*(K), =7{,_n))-
Moreover, the the above isomorphism intertwines with the maps @Zﬂiﬁn 41
on SHM(-Y (K), —TI';) and the maps id ® ¢} ,,,; on SHM(—(Y\B?), —6) ®

(—S3(K), —7(21 771)), since the corresponding contact handle attachments are
clearly disjoint from each other. Thus, we conclude that

KHM™(-Y, K, p) ~ SHM(—(Y\B?), -5) @ R[U].

Proposition 5.10. Suppose K 'Y is a null-homologous knot and S is a
minimal genus Seifert surface of L. Then, the direct system stabilizes: For
any i € Z, if n > g(S) — i, then we have an isomorphism

¢ﬁ,n+1 : m(_Y(K)v —I'y, S;, Z)[U] gSHiM(_Y(K)? —L'ni1, Sngl? Z) [U]
Proof. We have the following exact triangle:

41
(Ll

SI{71\/[(_}/@:()7_Pn-‘rl) : SI—171\/[(_}/<I()7 _FOO>

M v,

SHM(-Y(K), —T's)

We prove the proposition under the assumption that n = 2k is even.
The other case, when n is odd, is similar. When n is even, we know from
Proposition [5.5] that

¢z,n+l(SI{7M(_Y(K)7 _Fnu S;m])) c SI_171\/[(_)/(1:()7 _Fn-‘rlv Sn—i—hj)'

By a similar argument, we have

@™ (SHM(=Y (K), —Lpy1, Sns1,5)) © SHM(=Y(K), —T'os, SE™, )

where S, is a Seifert surface of K that intersects the suture I'y, twice.
Proposition then implies that (recall n = 2k)

SHM(—-Y (K), ~Te, S5, j) = SHM(~Y (K), —T0, Sep, j + k).
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However, the adjunction inequality in Lemma implies that if j + k >
g(S), then

SHM(~Y (K), Lo, S, j + k) = 0.
Thus, for j € Z so that j + k > g(5), we have

¢ g1t SHM(=Y(K), =T, S, j) = SHM(Y (K), Ipt1, S, )

is an isomorphism. From the way we perform the grading shifting in Propo-
sition [5.6] we know that, for any j € Z,

Thus, for the fixed grading 7 € Z as in the hypothesis of the proposition,
when n > ¢(S5) — i, we have (i + k) + k> g(S) and this implies that the
map

n n
P i1 lSHM(—Y (K),=T0,57,0)[0] = P2 g 1]SHM(—Y (K),—T',S7 i+k)
is an isomorphism. =

Corollary 5.11. Under the above conditions, there exists an integer Ny so
that, for any i < Ny, the U map induces an isomorphism.:

KHM™ (=Y, K,p,S,i) ~ KHM ™ (-Y, K,p, S,i— 1),
Proof. The proof is similar to that of the above proposition. =

Corollary 5.12. For a knot K 'Y, a Seifert surface S of K, and a fized
point p e K, we have

KHM ™ (-Y, K, p, S,i) = 0
fori>g, and
M_(_KK,]?,S7Q) QM(—Y,K,]?,S,Q)

Here, g is the genus of the Seifert surface S, and KHM(-Y, K,p, S, g) is
defined in Definition [5.3,

Proof. The first statement that
KHM™ (-Y,K,p,S,i) =0

for ¢ > g follows from the adjunction inequality in Lemma
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For the second part of the statement, we prove the case where n = 2k + 1
is odd. The other case is similar.

Suppose (M’,~') is obtained from (Y (K),I',) by a sutured manifold
decomposition of S, < Y (K). It is straight forward to check that if we de-
compose (Y (K),T'x) along Sy, then we will get exactly the same balanced
sutured manifold (M’',~"). Hence, from Lemma [4.2in [2I], we know that

SHM(—Y (K),~Ty, Snt1,9(S) + k + 1) = SHM(M’,~")
= m(_Y7K7pv SOOug(S))

Then, the corollary follows from Proposition and the grading shifting
we performed in Proposition [5.6 o

Suppose K c Y is a fibred knot with fibre S of genus g. Suppose (S, h) is
an open book corresponding to the fibration of K < Y. It supports a contact
structure £ on Y. We call h not right-veering if there is an arc o < S and
one end point p € da so that near p = S, h(«) is to the left of a. See Figure
See Baldwin and Sivek [5] for more details.

p

Figure 14: Not right-veering

Corollary 5.13. Under the above setting, if h is not right-veering, we have
m_(_ya K7p7 S>g) = Rv
and the generator is in the kernel of the U map.

Proof. This result is the main result in Baldwin and Sivek [5]. The only
difference is that we translate it into our language involving KHM™. o
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Proposition 5.14. We have an exact triangle:

KHM~(-Y, K, p) KHM™ (Y, K, p)

\/

KHM(-Y, K, p)

Proof. We will use the by-pass exact triangle

(20)
SHM(-Y (K

n+1

SHM
SHM

The maps {¢" Yo +1}nez, induce the U map. By a similar argument, the maps
{¢”+1}}nez+ and {d)+ ninez, induce the maps ¢ and ¢’ in the statement of
the proposition. Then, it is formal to check that the by-pass exact triangles
for all n € Z, induce the desired one as stated in the proposition. o

)a _FnJrl)

5.3. Knots representing torsion classes

In this subsection, we extend the definition of KHM™ to the case where K
is not necessarily null-homologous, but represents a torsion class in H;(Y).
Suppose Y is a closed connected oriented 3-manifold. Suppose further that
K c Y is an oriented knot that represents a torsion class in Hi(Y). It is a
basic fact that the map

«  H1(0Y(K); Q) — H1(Y(K); Q),

which is induced by the inclusion map i : 0Y (K) — Y (K), has a kernel of
dimension one. Thus, we can find a curve a € 0Y(K) so that « bounds
a properly embedded surface S < Y(K). We always give S an orientation
so that 05 = « is oriented in a coherent way as K. This surface is usually
called a Rational Seifert surface of K. For more details, readers are referred
to Ni and Vafaee [29]. We still look at the knot complement Y (K). On
Y (K) = T?, there is a preferred class y which is the meridian of K. There
is no preferred longitude class, but we can pick any oriented non-separating
simple closed curve A on 0Y (K) so that [u] and [A] is an oriented basis
of Hi(dY (K)). Then, on Y (K), we can still define the sutures I';, and T'y,
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and there are by-pass exact triangles as in . Note the same formula as
in holds with our new definitions of I';, and I'y,. Furthermore, Corollary
continues to hold for a similar reason, so we can make the following
definition.

Definition 5.15. Suppose K c Y is a knot representing a torsion class in
H,(Y) and p € K is a base point. Then, define the minus version of monopole
knot Floer homology, which is denoted by KHM ™ (—Y, K, p), to be the direct
limit of the direct system

> SHM(— Y (K),T) 22 SHM(—Y (K), Tpst) — ...

Here, the maps ¢” ., are defined in the exact triangle . By Corollary
the maps {9 , 1 }nez, induce a map on KHM™, which we call U:

U :KHM ™ (-Y, K,p) » KHM ™ (Y, K, p).

It is clear that Definition [5.15 is independent of the choice of the lon-
gitude A\ on Y (K). Next, we want to use the rational Seifert surface S of
K c Y to construct a grading on KHM ™ (—Y, K, p). As in Proposition we
need to perform a grading shifting. Instead of directly writing down the value
of the shift, we define the shift in an indirect way. Suppose, for any n € Z,,
Sy is a rational Seifert surface of K, which has the minimal possible inter-
section with the suture I';,. Suppose S} is exactly the surface Sy, if |S,, N 'y,
is of the form 4k + 2, and S} is obtained from S,, by performing a negative
stabilization if else. We define a grading shifting, SHM(-Y (K), —TI",,, S7)[o],
of SHM(-Y(K),-T',,S7), so that

M(_Y(K)a _an ng ’L)[O-] = M(_Y(K)v _Fna S;L—’Z + U(n))

Here, the value o(n) € Z is determined by the following property: The top
non-vanishing grading of SHM(—Y (K, —I'y,, S7)[c] equals g(S), the genus
of S.

Remark 5.16. Note the grading shifting we performed in Proposition [5.6
can also be described in the above way.
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Proposition 5.17. If S is a ration Seifert surface of K Y, then S in-
duces a Z-grading on KHM™ (=Y, K, p), which we write as

KHM™ (-Y, K, p, S, ).

Under this grading, the map U is of degree [, where | is an integer depending
on the knot K C Y.

As we did in Subsection [5.2] we can prove that the direct system in
Definition (.15l stabilizes.

Proposition 5.18. Suppose K 'Y is a knot representing a torsion class
in H1(Y), and S is a rational Seifert surface of L. Then, the direct system
stabilizes: For any i € 7, there exists N so that if n > N, then we have an
1somorphism

n

¢E,n+1 : M(_Y(K)7 _an S:.;, Z) [U];M(_Y(K)> _FnJrla ST+17 ,L)[U]

The most common cases we might encounter a knot which represents
a torsion first homology class is when performing Dehn surgeries. Suppose
K c Y is a null-homologous knot, and S is a Seifert surface of K. Let Y (K)
be the knot complement. Let A and u represent the longitude and meridian
on 0Y (K), respectively, according to the framing induced S. We can perform
a Dehn surgery along the knot K and obtain a surgery manifold

Yy = Y(K)le x D2,

Suppose iy = ¢({1} x dD?) = goA — poprand Ay = ¢(S* x {1}) = 10X — s
This results in a surgery of slope —Z—g. Now Ay and pg form another fram-
ing on Y (K), so that g is the meridian of the knot Ky = S x {0} < Y.
Note Y (K) is also a knot complement of K4 — Y, and Ky is a knot in-
side Y, which represents a torsion class in H;(Yy). Hence, we can use the
new framing to construct a minus version of monopole knot Floer homology
KHM™ (—Yy, K) of (Yy, Ky). Here, we omit the choice of base points, since
the discussion will be carried out on a fixed knot complement. We have the

following property.

Proposition 5.19. For any fized ig € Z, there exists N so that for any
surgery slope _%2 < —N, we have

I(I‘ﬂ\/[_(—yv7 K, S, Z()) = KHM_<—Y¢, K¢, S, Zo>
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Proof. We use the framing (A, ) intricately and write both the curve g\ —
pu or the slope —s as (¢, —p). We use Y(gA—pu) OF V(q,—p) tO denote the suture
consisting of two curves of slope (g, —p). Note, y(1,_,) = ['y, for the notation
', as used in Subsection [5.1]

From the stabilization properties in Propositions and we know
that there exists N1 > ¢g(S) — ig such that for any n > Nj, we have

(21) m_(_}/’ Kv Sa ’LO) = M(_Y(K)7 —71,—n)> ST) iO)[J]a
and
(22) m_(_ydh Kd)a Sv ZO) = M(_Y(K)v VY Np—npg)> ST; ZO)[J]

Hence to prove the theorem, it is suffice to prove that for large enough
n and large enough surgery slope, we have

(23) M(_Y(K)v _’Y(l,—n)vsTaZO)[U]
= M(_Y(K)v TV (No—npg)> STv Z0)[0-]

Fix an ng > N, and write Ay — napg = g\ — pu. From the proof of
Proposition we can construct two sequences of slopes {(q}, —p;-)} and
{(¢], —p})} inductively as follows: Let (g5, —py) = (¢, —p), and, for any j > 1,
suppose we have the continued fraction of (qg»_l, —p;-_l) to be

(Q9—17 _p;'—l) = [7"1, sy Th—g, rk—j-l—l]a

then define

(q;/7_pg) = [rla' c Th—j5 Th—j+1 + 1]’ (q;’_p;) = [7"1,..-,7']@7‘]']-

Note we identify [ry,...,r, —1] as [r1,...,7—1,7 + 1]. We end the sequence
when

(24) (@1, —Ph—1) = [r1] = (1,10).

Here r1 < —2 is the first term in the continued fraction of (¢, —p) = (A\y —
n2u¢).

Remark 5.20. Note (go, —po) is the slope of the surgery that gives rise
to (Yy, Kg), while (g, —pf) = (¢, —p) = Ay — napte. Also we can pick ny as
large as we want.
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To proceed, we only carry out the proof in the case where n is odd,
and for any j, p} is odd and p;-’ is even. Other cases are similar. Under
this assumption, we can un-package the grading shifting we performed in

Propositions and and to prove is equivalent to proving (we
omit the surface S from the notation):

n—1
5 )
~ SHM(-Y(K), (g, —ph)> 10 +

(25) M(_Y(K)a —7(1,-n)> ig +

p6_1)
5 .

Forl=0,...,k—1, write

p—1
2

Z'EZ’L'Q—F

Claim 1. There exists an N > 0 so that if the surgery slope —5—3 < —N,
then, for any [ € {0, ...,k — 2}, there is an isomorphism:

LHM(—Y(K), — ) S, Z;) = LHM(_Y(K% V(D)) S, i;+1)'

qir_p;
Claim 2. There exists an N > 0 so that if the surgery slope —Z—g < —N,
then we have r; > ¢g(S) — ip.
Assuming Claim 1 and 2, we now prove the proposition. By Claim 1,
Claim 2, and Proposition we have (note we have assumed that r; =

—p_q is odd)

) _W(q{],—pg)a S? ZIO)

/
. Do — 1
s " Vabh,—ph)» PO T 9 )-

(-Y(K)
(-Y(K)
= SHM(=Y (K), =Y(g,_,,—p\_,)> > k1)
(=Y(K)
(=Y(K)

Thus is proved, and Proposition follows.
To prove Claim 2, by definition, we have

p P So+ n2po
26 r1=—(=-|+1) and = = ——.
( ) ([QJ ) q 0 + N2qo
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If we choose large enough ny (we can freely make ng larger), then we know
that

(27) 121 = 12— 1.

Hence, for any surgery slope —%’ < N = —(g9(S) —ip), Claim 2 holds.
It remains to prove Claim 1. As in Subsection the sutures of slopes
(q;,—p;) and (g, —p]) fit into a by-pass exact triangle:
(28)
SHM(=Y(K), =Y(g;_, .0/ 1)
Yia Pu2

M(—Y(K)7 _’Y(ql”,pi’))

Y10 M(—Y(K)7 _’Y(ql’,pﬁ))

If Y = 83 and K is the unknot, then Yjk =Y_y for k =0,1,2 in the pre-
vious exact triangle (14). As in Subsection forallle{l,...,k—1} and
j € Z, we have

Y10+ (SHM(=Y (K), —Y(g,—ppy» S~ ) — SHM(=Y (K), —(gp,—p) S, ),

i q/,—p]

d)l,l : M(_Y(K)a Vg, —p})> S+p27j) - M(_Y(K)a ~Ng_,,—1,_1)> S,j),

wl,Q : M(_Y(K>v _7(q27177p271)7 57]) - (M(_Y(K)a _’y(qg,fpg)a Sip;/aj)‘

Note, in above formulae, we have assume that p} ; is odd for all I. From
them, Claim 1 is equivalent to the fact that 1, is an isomorphism at the
grading

/
. o1
J 222_1 :ZO_}—llT?
which is further equivalent to that
(29) SHM (=Y (K), (g, —pp)» ST, _1) = 0.

Note, by assumption, p] = p;_; — p; is even. From the grading shifting
property, Proposition we know that is equivalent to

p—1

(30) M(_Y(K)v Mg, —p})> S+a i;—l + 9

) =0.
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Note we have [0S* N y(gr )| = 2p; + 2. From (the vanishing statement
of) Lemma we know that happens if

/1 "
(31) S BT ) B <
2 2
Recall that
-1
Z‘E_l = ZO + =1 5
so we know that
/ //
y p—1 Py
> g(S —-
11+ 5 g(S) + 9
/ / /!
. -1 p—1 i
> g(S -
<ig + 5 + 5 g9(S) + 5
<p; > g(S) —ip+ 1.
Since, by and , we have
P =P =11 = [Z—SJ > N.

Thus, if we pick N = —(g(S) —1p), then holds and Claim 1 follows.
This concludes the proof of Proposition =

6. Instantons and knot Floer homology

6.1. Instanton Floer homology and generalized eigenspace
decompositions

Suppose Y is a closed connected oriented 3-manifold, and w is a fixed Her-
mitian line bundle whose first Chern class ¢;(w) has an odd pairing with the
fundamental class of some surface. Suppose further that F is an U(2)-bundle
whose determinant line bundle A% E is isomorphic to w. Let gz be the bundle
of traceless skew-hermitian endomorphisms of E, and let Ag be the space
of SO(3)-connections on gg. Let Gg be the group of determinant-one gauge
transformations and let By = Agp/Ggr. Then, we can use the Chern-Simons
functional to construct a well defined SO(3) instanton Floer homology over
C, which we denote by I¥(Y).

If x € Y is a point, then there is an action p(z) on I*(Y). The action p(x)
has eigenvalues 2 and —2. By slightly abusing the notations, from now on we
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use I*(Y) to denote only the generalized eigenspace of u(x) corresponding
to eigenvalue 2.

Suppose ¥ c Y is a closed oriented embedded surface inside Y. Then,
there is also an action p(X) on I“(Y)). We have the following result about
the eigenvalues:

Proposition 6.1 (Kronheimer, Mrowka, [21]). If ¢c1(w) and ¥ has an
odd pairing, then the eigenvalues of the action pu(K) on I1°(Y") belongs to the
set of even integers ranged from 2 — 2g(X) to 2g(%) — 2.

If ¥ and ¥’ are two such embedded surfaces, then the action u(X)
and u(X') commute. Then, we can look at the simultaneous generalized
eigenspace. Similar to [2I, Corollary 7.6], we can make the following defini-
tion.

Definition 6.2. Suppose we have a linear function \ : Hy(Y'; Z) — 2Z, then
we can define

EEn= () U kertato) - Ao)™.
0€H,(Y;Z) N=0

Such a function A is a called an eigenvalue function.

If the embedded surface ¥ represents a zero class in Ha(Y;Q), then the
action p(X) is trivial. This means that if I“(Y)y # 0 then we can lift A to a
linear map (which we will use the same notation to denote)

A Hy(Y;Q) — Q.

Thus, from now on, we regard A as an element in H?(Y;Q). We then have
a decomposition

FY)= @ ¢V

AeH2(Y;Q)
Suppose R c Y is a closed oriented embedded surface inside Y, then as
we did in Definition [2.4] we can define the following.

Definition 6.3. Suppose the pair (Y, R) is as above. Then, we can define
the set

H*(YIR) = {xe H*(Y;Q)IN[R]) = 29(R) — 2, I“(Y)x # 0},

The elements A € H*(Y'|R) are called supporting eigenspace functions.
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The following lemma is an instanton correspondence to the fact that
monopole cobordism maps decompose along spin® structures

Lemma 6.4. Suppose (W,v) is a cobordism between (Y,w) and (Y',u').
Suppose further that A€ H*(Y;Q) and N € H*(Y';Q) are two eigenvalue
functions. Let i : Y — W and i’ : Y' — W are the inclusion map. If

LW, v)(I*(Y)x) n I¢(Y")x # {0},

then there must be an element 7 € H?(W;Q) so that i*(1) = X and (i')*(7) =
N,

Proof. For a second homology class ¢ and a rational number r € Q we can
define

“(Y,o,r) Uker — )N,

N=0

By definition, we know that

)= [] I“(V.oAo0)).

oeH,(Y;Q)

Similarly, we can define I*' (Y, o', 7).
Note we can regard an element 7 € H?(W;Q) as a map

7: Hy(W;Q) — Q.

Suppose there are no such 7 as in the statement of the lemma, then there
is a class 09 € H2(Y; Q) and a class o(, € Hy(Y'; Q) so that

ix(00) = i4(0p) € Ha(W),

while
Aag) # N (ap).
Thus, we know that

(W, v)(I(Y)y) © LW, v)(I*(Y, 00, A(00))) = I* (Y', 0, A(00)).
The last inclusion follows from [5, Lemma 2.6]. However, A(o) # X (0) so

I (Y o, Moo)) n I¥ (Y, 0, N (0h)) = {0}.
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Hence, we conclude
I(W,w)(I°(Y)x) n I/ (Y')x = {0},
which is a contradiction. Thus Lemma [6.4] follows. o

6.2. Sutured instanton Floer homology

Suppose (M, ) is a balanced sutured manifold, then, as we did for monopole
theory, we can construct a closure of (M,~) and apply the construction
of instanton Floer homology in the previous subsection. Pick a connected
auxiliary surface T of large enough genus, then we can get a pre-closure

M=MUuT x [-1,1], with M = R, U R_.

For the construction in instanton theory, we also need to pick a point p e T’
so that there are corresponding points py € Ry. When choosing the gluing
diffeomorphism h: R — R_, we also require that h(p;) = p—. Thus, we
know that, inside the closure (Y, R), there is a closed curve p x S' < Y. Let
w be a complex line bundle over Y whose first Chern class is dual to the
curve p x S'. Then, we can make the following definition.

Definition 6.5 (Kronheimer, Mrowka [21]). Define the sutured instan-
ton Floer homology of (M,~) to be

SHIM,y)=I“(YIR)= @ I“(V)x
Aes*(Y|R)

Baldwin and Sivek [I] also made refinements of closures and constructed
canonical maps for the sutured instanton Floer homology.

Definition 6.6. A marked odd closure D = (Y, R,r,m,n, «) of (M,~) is a
tuple so that (Y, R, 7, m,n) is a marked closure of (M, ) as in definition 2.9]
the simple closed curve « is disjoint from im(m), and a n (R x [—1,1]) is
of the form r(p x [—1,1]).

We can pick a complex line bundle w whose first Chern class is dual to
a un. Then we can define

SHI(D) = I*(Y|r(R x {0})).
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Theorem 6.7 (Baldwin, Sivek [1]). Suppose (M,~) is a balanced sutured
manifold, and D and D' are two marked odd closures of (M,~). Then, there
18 a canonical map

bpp : SHI(D) — SHM(D'),
which is an isomorphism well defined up to multiplication by a non-zero

element in C. Furthermore, the canonical map satisfies the same functori-
ality properties as those of the canonical maps for sutured monopole Floer

homology in Theorem [2.10.

Hence, we have a well defined projective transitive system
SHI(M,~)

associated to (M,~y). For a knot, there is a similar discussion as in Subsec-
tion and we have a well defined projective transitive system

KHI™ (Y, K, p)

associates to a triple (Y, K, p) for a knot K < Y and a base point p € K.
There are similar results for the contact gluing maps and by-pass exact
triangles.

Theorem 6.8 (Li [26]). There is a gluing map for sutured instanton Floer
homology, satisfying the same properties as in Theorem |2.15

Theorem 6.9 (Baldwin and Sivek [5]). Suppose (M,~1), (M,~2) and
(M,~3) are three balanced sutured manifolds which are related in the same
way as in Theorem [2.16. Then there is a by-pass exact triangle

P12

SHI(—M, —m) SHI(—M, —72)

P31 P23
ﬂ(_M7 _73)

where the maps 1;; comes from the gluing maps in sutured instanton Floer
homology, just as the monopole case in Subsection [2.3
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6.3. Statement of results

With Theorem[6.9]in place of Theorem [2.16]and with the help of Lemmal[6.4]
we can recover all results we obtained in this paper for sutured monopole
Floer homology. We present those results without further proofs.

Proposition 6.10. Suppose (M,~) is a balanced sutured manifold and D,
and D' are two marked odd closures of the same genus. Then, the canonical
map ®p p in sutured instanton Floer theory can be interpreted in terms of
the Floer excision cobordism, in a similar way as in Proposition [3.8

Theorem 6.11. Suppose (M,~) is a balanced sutured manifold, and S is a
properly embedded surface inside M so that 0S is connected and [0S N 7| =
2n with n odd. Then, S induces a grading on SHI(M,~y) which we denote by

@(Mur)/) S)Z)

Proposition 6.12. Suppose (M,~) is a balanced sutured manifold so that
M is the complement of a null-homologous knot K < X and v has two com-
ponents. Suppose further that S is a Seifert surface of K, viewed as a properly
embedded surface in M, so that |0S N | = 2n. Then, for any p,l, k € Z such
that n + p is odd, we have

SHI(—M, —v, SP,1) = SHI(—M, —, SP*** 1 — k).

Proposition 6.13. Suppose V is a solid torus and v is a suture on OV

with 2n components and slope g, then

SHI(—V, —y) = C" 1P,

Theorem 6.14. Suppose K is a null-homologous knot inside an closed
connected oriented 3-manifold Y and p € K is a base point. Then, there is
a projective C-vector space KHI™ (Y, K, p), whose elements are well defined
up to multiplication by a non-zero element in C, associated to the triple
(Y, K,p). Also, there is a homomorphism

U : KHI (Y, K, p) — KHI™ (Y, K, p).

If S is a Seifert surface of K, then S induces a Z grading on KHI™ (Y, K, p)
so that U is of degree —1. Furthermore, analogous results to Proposition

Proposition[5.10, Corollary Corollary[5.13, Proposition[5.14, and
Proposition|5.19 all hold for KHI™ (Y, K, p).
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