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In this paper we construct possible candidates for the minus ver-
sions of monopole and instanton knot Floer homologies. For a null-
homologous knot K Ă Y and a base point p P K, we associate the
minus versions, KHM´pY,K, pq and KHI´pY,K, pq, to the triple
pY,K, pq. We prove that a Seifert surface of K induces a Z-grading,
and there is an U -map on the minus versions, which is of degree
´1. We also prove other basic properties of them. If K Ă Y is not
null-homologous but represents a torsion class, then we can also
construct the corresponding minus versions for pY,K, pq. We also
proved a surgery-type formula relating the minus versions of a knot
K with those of the dual knot, when performing a Dehn surgery
of large enough slope along K. The techniques developed in this
paper can also be applied to compute the sutured monopole and
instanton Floer homologies of any sutured solid tori.
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1. Introduction

1.1. Statement of results

Floer homologies have become very important tools in the study of 3-
manifolds, since the first construction by Floer in [10]. Among them, two
major branches are the monopole Floer homology, which was introduced
by Kronheimer and Mrowka [20] and the Heegaard Floer homology, which
was introduced by Ozsváth and Szabó [33] or Rasmussen [34]. For a closed
oriented 3-manifold Y , there are four flavors of homologies associated to Y
in each of the two theories, and they are isomorphic by work of Kutluhan,
Lee and Taubes in [24] and in subsequent papers. If there is a knot K inside
a 3-manifold Y , then there are corresponding four flavors of homologies of
the pair pY,Kq in the Heegaard Floer theory. See Ozsvaáth and Szabó [32].
However, some corresponding constructions in the monopole and instanton
theory are missing. The only monopole or (non-singular) instanton Floer
homology for knots in 3-manifolds is a version based on sutured manifolds,
which was introduced by Kronheimer and Mrowka in [21] and was refined by
Baldwin and Sivek in [1]. The monopole version is proved to be isomorphic
to the hat version of the knot Floer homology in Heegaard Floer theory,
which was due to Baldwin and Sivek [7] or Lekili [25]. In this paper, we
construct Floer homologies associated to a based oriented null-homologous
knot, which are candidates for the monopole and the instanton correspon-
dences of the minus version of the knot Floer homology in Heegaard Floer
theory.

Theorem 1.1. Suppose Y is a closed connected oriented 3-manifold and
K Ă Y is an oriented null-homologous knot. Suppose further that S is a
Seifert surface of K, and p P K is a base point. Then, we can associate the
triple pY,K, pq a module KHM´pY,K, pq over the mod 2 Novikov Ring R.
It is well defined up to multiplication by a unit in R. The Seifert surface S
induces a Z grading on KHM´pY,K, pq, which we denote by KHM´pY,K, P,
S, iq. Moreover, the following properties hold.

(1) For i ą g “ gpSq, KHM´pY,K, p, S, iq “ 0.
(2) There is a map

U : KHM´pY,K, pq Ñ KHM´pY,K, pq

that is of degree ´1.
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(3) There exists an N0 P Z such that if i ă N0, then

U : KHM´pY,K, p, S, iq – KHM´pY,K, p, S, i´ 1q.

(4) There exists an exact triangle

KHM´pY,K, pq
U // KHM´pY,K, pq

ψvv

KHMpY,K, pq

ψ1

hh

(5) If Y “ S3 and S realizes the genus of the knot, then we have

KHM´pY,K, p, S, iq ‰ 0

for i “ gpSq.

A similar construction can also be carried out in instanton theory.

Theorem 1.2. Under the same settings as in Theorem 1.1, we can con-
struct KHI´pY,K, pq, using instanton Floer homology, so that all the prop-
erties (1)-(5) in the that theorem hold in the instanton settings.

Remark 1.3. It is worth mentioning that Kutluhan [23] constructed an-
other minus version of knot monopole Floer homology in a different way.
He used the holonomy filtration to construct a to-version of monopole knot
homology and used the isomorphism between monopole and Heegaard Floer
theory (c.f. Kutluhan Lee and Taubes [24]) to show that his to-version of
monopole knot homology is isomorphic to the minus version of knot Floer
homology in Heegaard Floer theory introduced by Oszváth and Szabó [32].
Kutluhan’s depends heavily on the analysis of monopole theory, while our
approach is more topological, and can be easily transported to instanton
theory, as in Section 6.

1.2. Outline of the proof

In the current subsection, we only discuss in the monopole settings, and
the constructions in the instanton settings are similar. The construction of
KHM´pY,K, pq is based on sutured monopole Floer homology. A sutured
manifold pM,γq is a compact oriented 3 manifold with a closed oriented
1-submanifold γ on BM , which we call the suture. The suture γ divides



✐

✐

“2-Li” — 2022/5/27 — 1:30 — page 1342 — #4
✐

✐

✐

✐

✐

✐

1342 Zhenkun Li

BM into two parts, according to the orientations of γ and the 3-manifold,
which we call R´pγq and R`pγq, respectively. Sutured manifolds were first
introduced by Gabai in [12]. Kronheimer and Mrowka then carried out the
construction of the monopole and instanton Floer homologies on balanced
sutured manifolds in [21].

A sutured manifold pM,γq is called balanced if M and Rpγq both have
no closed components and χpR´pγqq “ χpR`pγqq. To define the sutured
monopole Floer homology for such a pair pM,γq, Kronheimer and Mrowka
constructed a closed 3-manifold Y , together with a distinguishing surface
R, out of pM,γq. The pair pY,Rq is called a closure of pM,γq. Sometimes
we simply call Y a closure. The genus of the closure refers to the genus
of the surface R. To construct a closure, one needs to find a compact con-
nected oriented surface T , whose boundary is diffeomorphic to γ, and then
glue r´1, 1s ˆ T to M , with r´1, 1s ˆ BT identified with an annular neigh-
borhood of γ Ă BM . The surface T is called an auxiliary surface. The new
3-manifold after the gluing is called a pre-closure, and it has two boundary
components, R` and R´, of the same genus. Then, we can pick a diffeomor-
phism h from R` to R´ to glue the two boundary components together to
obtain a closure pY,Rq. We call h a gluing diffeomorphism.

To study the naturality of sutured monopole Floer homology, Baldwin
and Sivek [4] constructed canonical maps between two different closures
of a same balanced sutured manifold pM,γq. Their construction is only
well-defined up to multiplication by a unit, so the closures and canonical
maps form a projective transitive system and result in a canonical module
SHMpM,γq, whose elements are well defined only up to a unit.

The construction of the (canonical) module KHM´pY,K, pq was inspired
by Etnyre, Vela-Vick and Zarev in [9], where they use a sequence of balanced
sutured manifolds pY pKq,Γnq and the gluing maps in sutured (Heegaard)
Floer theory, which was introduced by Honda, Kazez, and Matić [17], to
construct a direct system. They proved that the direct limit is isomorphic
to the classical minus version of knot Floer homology in Heegaard Floer
theory. Here, Y pKq “ Y zintpNpKqq is the knot complement, and Γn con-
sists of two curves on BY pKq – T 2, which are of class ˘p1,´nq under the
framing induced by some Seifert surface. In this paper, we construct a sim-
ilar direct system in sutured monopole Floer theory. In particular, there is
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a commutative diagram

(1) SHMp´Y pKq,´Γnq
ψn

´,n`1 //

ψn
`,n`1

��

SHMp´Y pKq,´Γn`1q

ψn`1

`,n`2

��

SHMp´Y pKq,´Γn`1q
ψn`1

´,n`2 // SHMp´Y pKq,´Γn`2q

Here, the balanced sutured manifolds are the same as described above, and
the maps come from gluing maps in sutured monopole monopole Floer the-
ory, which were constructed by the author in [26].

The commutativity of (1) is guaranteed by the functoriality of the gluing
map. The crucial difference from the work of Etnyre, Vela-Vick and Zarev
in [9] is that, because of the involvement of closures, the construction of the
grading in the monopole and the instanton settings is a delicate issue. We
construct a grading in the direct limit in two steps.

The first step is to construct a grading on each SHMpY pKq,Γnq, for all
n, using the Seifert surface S. To construct such a grading, we work with a
more general case, where pM,γq is an arbitrary balanced sutured manifold,
S is a properly embedded surface whose boundary is connected, and BS
intersects γ transversely at 2n points.

For the case n “ 1, the construction has already been carried out by
Baldwin and Sivek in [5]. When n “ 1, we can pick a properly embedded arc
α Ă T , where T is an auxiliary surface for pM,γq. When gluing r´1, 1s ˆ T

to M , we require that the end points of α are glued to the two intersection
points in BS X γ, and, hence, r´1, 1s ˆ α is glued to S along r´1, 1s ˆ Bα.
Then, S becomes a surface rS properly embedded in the pre-closure ĂM .
Note ĂM has two boundary components R` and R´, and the two boundary
components of rS are contained in different boundary components of ĂM .
Thus, we can pick a gluing diffeomorphism h : R` Ñ R´ which also identifies
the two boundary components of rS. Hence, rS becomes a closed surface S̄
inside the closure Y of pM,γq. The grading can be defined by looking at
the pairing of the first Chern classes of the spinc structures on Y with
the fundamental class of S̄. This idea was first introduced by Kronheimer
and Mrowka in [21], and, in [5], Baldwin and Sivek proved that, when n “
1, the definition of the grading is independent of all choices made in the
construction and is well defined in SHMpM,γq.
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For a general n, the basic idea to construct a grading is the same. How-
ever, there are more choices involved, and, thus, many new issues arise. For
example, for a general n, we need to pick n arcs α1, . . . , αn instead of just
one, and we need to specify which arc connects which pair of intersection
points in BS X γ. Thus, this leads to a new combinatorial problem which did
not occur in Baldwin and Sivek [5]. We deal with this combinatorial problem
in Subsection 3.3. To conclude the proof, we also need a new interpretation
of Baldwin and Sivek’s canonical maps between different closures. We use
simply the Floer excision introduced by Kronheimer and Mrowka in [21] to
construct an equivalent canonical map, which was originally introduced by
Baldwin and Sivek in [1]. This is covered in Subsection 3.2.

When constructing the grading based on a surface S, we need the extra
assumption that n is odd. Recall that |S X γ| “ 2n. If n is even, then we
need to perturb S to create a new pair of intersection points and, thus,
increase n by 1. There are two different ways of perturbations, which we
call positive and negative stabilizations, and denote them by S` and S´,
respectively. Based on S` and S´, we can construct two different gradings
on SHMpY pKq,Γnq. The relation between the two gradings will be the key
to the second step of constructing a grading on the direct limit. Also, using
the grading shifting property betweem S` and S´, we can compute the
sutured monopole Floer homology of a solid torus with any valid suture.

Proposition 1.4. Suppose V is a solid torus and γ is a suture on BV with
2n components and slope p

q
, then

SHMp´V,´γq – Rp2n´1¨|p|q.

Similarly, in instanton theory, we have the following.

Proposition 1.5. Suppose V is a solid torus and γ is a suture on BV with
2n components and slope p

q
, then

SHIp´V,´γq – Cp2n´1¨|p|q.

The second step of constructing a grading on the direct limit is to prove
that maps in the commutative diagram (1) shift the grading in a desired
way. To be more explicit, ψn´,n`1 must be of degree 0, while ψn`,n`1 must
be of degree ´1. The construction of the maps ψn˘,n`1 relies on the by-pass
attachments in the monopole and instanton settings, which are realized by
contact handle attachments, as introduced by Baldwin and Sivek in [2, 3].
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It is a basic observation that the region we attach contact handles is dis-
joint from the Seifert surface S, hence if we look at the grading associated to
the ’correct’ surfaces, then ψn´,n`1 and ψ

n
`,n`1 will both preserve the grading.

However, the ’correct’ surfaces involves both positive and negative stabiliza-
tions, while, to define a canonical grading on SHMpY pKq,Γnq, we only use
negative stabilizations. Hence, the problem is reduced to understanding the
grading shifting between S` and S´.

To understand this grading shifting property, we first need a better un-
derstanding of the construction of the closures, the construction of canonical
maps, and how spinc structures on different closures are related by canonical
maps. In particular, we prove the following result.

Proposition 1.6. Suppose pY pKq,Γnq is the balanced sutured manifold de-
scribed as above, and Yn is a closure of pY pKq,Γnq. Suppose s1 and s2 are
two spinc structures on Yn, so that they both support the sutured monopole
Floer homology of pY pKq,Γnq. Then, in terms of Poincáre duals of first
Chern classes of the spinc structures, the difference between s1 and s2 lies
in H1pY pKqq. More precisely, there is a 1-cycle x in Y pKq so that

P.D.pc1ps1q ´ c1ps2qq “ rxs P H1pY q.

Proposition 1.6 will be the basis for understanding the grading shifting
property between the gradings associated to S` and S´, which are the
positive and negative stabilizations of S. We deal with the grading shifting
property in Section 4. We present the construction of the minus version in
Subsection 5.1 and prove some basic properties of it in Subsection 5.2. Most
of the basic properties have been stated in Theorem 1.1. Besides them, we
also prove that the direct system in the construction of the minus version
stabilizes.

Proposition 1.7. For a fixed i P Z, there exists N1 P Z, such that for n ą
N1, we have an isomorphism:

ψn´,n`1 : SHMp´Y pKq,´Γn, iq – SHMp´Y pKq,´Γn`1, iq.

The techniques used in computing the sutured Floer homology of a solid
torus can also be applied to knot complements. As a result, we obtain the
following.

Proposition 1.8. Suppose K Ă Y is a knot and S Ă Y is a Seifert surface
of K. Suppose Yφ is the manifold obtain from Y by doing a Dehn surgery
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along K with slope ´p
q
with p, q ą 0. We also have the dual knot Kφ Ă Y .

Then for any fixed i, there exists N P R, such that if the surgery slope ´p
q

ă
N , then we have

KHM´p´Yφ,Kφ, S, iq – KHM´p´Y,K, S, iq.

Moreover, a similar result in instanton theory also holds.

1.3. Updates and future directions

Since the completion of the first version of this paper, there have been many
further developments on related topics. Here we summarize those new up-
dates as well as some still-open questions.

In Section 5 and Section 6 of the paper, we construct the minus version
of monopole and instanton knot homology. The U -module structure of these
homology groups are studied by the author and his collaborators in [14]. In
particular, they proved the following.

Theorem 1.9. Suppose K Ă S3 is a knot. Then

rkRrUsKHM´pS3,Kq “ rkCrUsKHI´pS3,Kq “ 1.

Theorem 1.9 implies that for any knot K Ă S3, there is a unique infinite
U -tower in its minus version. We can then define the τ invariant of the knot
to be minus the maximal Alexander grading of any homogenous elements
in this infinite U -tower. In [14], the author and his collaborators prove the
following.

Theorem 1.10. The tau invariant τ is a surjective group homomorphism

τ : C Ñ Z,

where C is the knot concordance group.

Note here we have two different τ invariants, one from monopole theory
and one from instanton theory. Write them τM and τI , respectively. In Hee-
gaard Floer theory, the τ invariant was introduced by Ozsváth and Szabó in
[31]. Originally they simply use the notation τ , but in this paper, in order
to distinguish it with other tau invariants, we write it as τH . In instanton
theory, Baldwin and Sivek later defined another concordance invariant, τ 7

in [6] in a different approach. In [14], the author and his collaborators prove
the following.
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Theorem 1.11. For any knot K Ă S3, we have

τM “ τH and τI “ τ 7.

We would like to propose the following conjecture.

Conjecture 1.12. For any knot K Ă S3, we have

τM pKq “ τIpKq

The minus version of the instanton knot homology, KHI´ of all twist
knots have been computed in [14]. It follows that conjecture 1.12 holds for
this family of knots. In [6], the τ 7 of many other families of knots has been
computed, and all coincide with τH . However, Conjecture 1.12 is still open
beyond knowing computational evidence.

It is also worth mentioning that Theorem 1.9 is further generalized in
[27] by the author and his collaborator to the following.

Theorem 1.13. Suppose K Ă Y is a knot so that rKs “ 0 P H1pY ;Qq.
Then

rkCrUsKHI´pY,Kq “ dimCI
7pY q,

where I7pY q is the framed instanton Floer homology of Y introduced by Kro-
nheimer and Mrowka [21].

When K Ă Y satisfies rKs “ 0 P H1pY ;Zq, Theorem 1.13 is first proved
by Wang [35]. Note as discussed in the current paper, there is a Z grading
on KHI´. In [27], the argument to prove Theorem 1.13 is generalized to
construct a decomposition of I7pY q.

Theorem 1.14. Suppose K Ă Y is a knot so that rKs “ 0 P H1pY ;Zq. Let
pY is obtained from Y by performing a q{p-surgery along K, with q ą 0. Then
we have a decomposition

I7ppY q “
q´1à
i“0

I7ppY , iq.

Note when Y is an integral homology sphere, we have H2ppY ;Zq “ Zq
and there are precisely q many (torsion) spinc structures. Hence the de-
composition in Theorem 1.3 resembles the torsion spinc decomposition in
monopole and Heegaard Floer theory.
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In Section 3 of the paper, we constructe a Z grading on the sutured
monopole and sutured instanton Floer homology for a surface S properly
embedded in a balanced sutured manifold, with the assumption that the
surface has a connected boundary. Also, in Subsection 3.3, we fix a particu-
lar balanced paring to make the grading well-defined. The requirement that
S has connected boundary and the choice of a particular balanced pairing
are not natural. These two problems are resolved in [19], where the surfaces
are allowed to have disconnected boundaries and it is shown that the grad-
ing is independent of the choice of balanced pairings. Further, in [13], the
author and his collaborator extend the construction to the case of multiple
surfaces. If there are n many properly embedded surfaces inside a balanced
sutured manifold, then there is a Zn grading on sutured monopole or su-
tured instanton Floer homology of the balanced sutured manifold. In [13],
this multi-grading is further used to obtain lower bounds on the rank or
dimension of sutured monopole and instanton Floer homology from the first
relative homology of the balanced sutured manifold, and is used in [28] to
show that instanton knot homology recovers the multi-variable Alexander
polynomial for links in S3.

In Section 4 of the paper, we prove a grading shifting property for the
gradings associated to different isotopies of the same surface S inside a
balanced sutured manifold pM,γq. In order to prove this property, we make
two assumptions: (1) M has a toroidal boundary and γ has two components
and (2) the sutured decomposition of pM,γq along S is taut. It is worth
mentioning that the first condition was then removed in [13] and the second
is removed in [35]. Hence the grading shifting property now holds for the
most general setup.

There are many different versions of knot homology. The first one is the
instanton knot homology introduced by Floer [11], which was then revisited
by Kronheimer and Mrowka [21]. Then knot Floer homology was introduced
by Ozsváth and Szabó [32] in Heegaard Floer theory. More recently, Daemi
and Scaduto [8] constructe different flavors of instanton knot homology via
singular instanton Floer homology. Different versions of knot homology have
different merits, so it is interesting to understand the relation between dif-
ferent constructions.

Question 1.15. What’s the relation among the minus version of knot Floer
homology, KHI´, introduced by Ozsváth and Szabó [32], the minus version
of monopole and instanton knot homology, KHM´ and KHI´, introduced in
the current paper, and the to-version of singular instanton Floer homology,
Ǐ, introduced by Daemi and Scaduto [8]?
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In line of Question 1.15, we could study some properties of instanton
theory that have been known in other theories. One important property of
knot Floer homology is the surgery formula [33]. It enables us to compute
the Heegaard Floer homology of Dehn surgeries along a knot K Ă S3 from
the doubly-filtered chain complex of the knot Floer homology of K.

Question 1.16. Is it possible to develop a surgery formula for instanton
theory?

One obstacle in instanton theory is that the instanton knot homology is
not well-behaved on the chain level and the doubly filtered chain complex
does not exists. Some discussions on this question can be found in [6, 27].

Another important property of knot Floer homology is that the knot
Floer homology is equipped with an Alexander filtration that induces a
spectral sequence from the knot Floer homology of a knot K Ă Y to the
Heegaard Floer homology of the ambient 3-manifold Y . In instanton theory,
as mentioned above, we don’t have a well defined chain complex for instanton
knot homology. Though in [27], the author and his collaborator constructed
a spectral sequence in the following sense.

Theorem 1.17. Suppose K Ă Y is a knot so that rKs “ 0 P H1pY ;Qq.
Then we can find a sequence of linear maps tdiuiPZą0

so that the follow-
ing is true.

(1) For each i P Zą0, we have d2i “ 0.
(2) We have

d1 : KHIpY,Kq Ñ KHIpY,Kq,

where KHI is the instanton knot homology constructed by Kronheimer and
Mrowka [21]. For any i P Zą0, we have

di`1 : kerpdiq{impdiq Ñ kerpdiq{impdiq.

(3) There exists a large enough m so that when i ą m, we have di “ 0
and

kerpdmq{impdmq – I7pY q,

where I7pY q is the framed instanton Floer homology of Y introduced by Kro-
nheimer and Mrowka [21].

Recently, Xie mentioned the following question to the author.
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Question 1.18. Suppose K Ă S3 is a non-trivial knot. Is d1 in Theorem
1.17 always non-zero?

One possible way to recover Theorem 1.17 from the chain level is to look
at the singular instanton Floer homology that studied by Kronheimer and
Mrowka [22] and Daemi and Scaduto [8]. Singular instanton Floer homology
has a well behaved chain complex, though the problem is that there is no
Alexander filtration. For the instanton knot homology, there is a Z-grading,
called the Alexander grading, on the level of homology coming from the
Seifert surface of the knot. In singular instanton theory, there is no known
construction of such a Z-grading.

Question 1.19. Can we construct an Alexander grading for singular in-
stanton homology?

Overview. In Section 2, we review the basic constructions and proper-
ties in sutured monopole and sutured instanton theory that are necessary
for our construction of the minus version. In Section 3, we construct a grad-
ing on sutured monopole and sutured instanton homology associated to a
Seifert surface inside the knot complement. We present the construction in
Subsection 5.1 and prove that the grading is well-defined in the following
two subsections. In particular, in Subsection 3.2, we introduce a new in-
terpretation of the canonical maps that were constructed by Baldwin and
Sivek in [1] and play an important role in proving that the sutured monopole
and sutured instanton Floer homology is well-defined. This new interpreta-
tion helps us to prove that the definition of the grading is independent of
some choices made in the construction The last remaining choice made in
the construction of the grading is dealt with in Subsection 3.3, where we
reduce the original problem into a combinatorial question about balanced
pairings. In Section 4, we prove an important grading shifting property for
the bypass maps introduced by Baldwin and Sivek [2, 5], with respect to the
grading just constructed in Section 3. The construction of gradings and the
gradin shifting property then lead to the construction of a minus version of
monopole knot homology in Section 5, as well as some basic properties of
it. In section 6, we briefly summarize the constructions in instanton theory,
which are essentially the same as those in monopole theory.
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2. Preliminaries

2.1. Balanced sutured manifolds and monopole Floer homology

Definition 2.1. A balanced sutured manifold is a pair pM,γq of a compact
oriented 3-manifold M and a closed oriented 1-submanifold γ Ă BM . On
BM , let Apγq “ γ ˆ r´1, 1s be an annular neighborhood of γ, and let

Rpγq “ BMzintpApγqq.

They satisfy the following requirements.
(1) Both M and Rpγq have no closed components.
(2) If we orient BRpγq “ BApγq “ γ ˆ t˘1u in the same way as γ, then

the orientation on BRpγq must induce a unique orientation on Rpγq. This
orientation is called the canonical orientation on Rpγq. Use R`pγq to denote
the part of Rpγq whose canonical orientation coincides with the boundary
orientation of BM , and R´pγq the rest.

(3). χpR`pγqq “ χpR´pγqq.

To define sutured monopole Floer homology, we need to construct a
closed 3-manifold out of a balanced sutured manifold pM,γq. Let T be a
connected oriented surface so that the following holds.

(1) There is an orientation reversing diffeomorphism

f : BT Ñ γ.

(2) T has genus at least 2.
After choosing such a T , we can use f to glue a thickened T to M :

ĂM “ M Y
f

r´1, 1s ˆ T.

The manifold ĂM has two boundary components:

B ĂM “ R` Y ´R´,

where

R˘ “ R˘pγq Y
f

t˘1u ˆ T.
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Let h : R` Ñ R´ be an orientation preserving diffeomorphism, then we can
form a closed 3-manifold as

Y “ ĂM Y
idYh

r´1, 1s ˆR`,

where h : t1u ˆR` Ñ R´ Ă B ĂM is the map just defined and id : t´1u ˆ
R` Ñ R` Ă B ĂM is the identity on R`. Let R “ t0u ˆR` Ă Y , and we make
the following definition.

Definition 2.2. The manifold ĂM is called a pre-closure of pM,γq. The pair
pY,Rq is called a closure of pM,γq. The choices T, f, c, and h are called the
auxiliary data. In particular, the surface T is called an auxiliary surface and
h is a gluing diffeomorphism.

Remark 2.3. Throughout this paper, we require that T is connected and
has large enough genus. However, in general, the choice of auxiliary surface
has more freedoms. See Kronheimer and Mrowka [21].

To construct local coefficients, we also need to choose a non-separating
simple closed curve η Ă R. The base ring we use in the present paper is the
mod 2 Novikov ring R. For a detailed definition, readers are referred to [2].

Definition 2.4. Suppose Y is a closed connected oriented 3-manifold and
R is a closed oriented surface inside Y , so that each component of R has
genus at least 2. If R is connected, we define the set of top spinc structures
as follows:

SpY |Rq “ tspinc structure s on Y|c1psqrRs “ 2gpRq ´ 2.u

If R is disconnected and let R1, . . . , Rn be its components, then we define

SpY |Rq “
nč

i“1

SpY |Riq.

For later references, we also define the set of supporting spinc structures
as follows:

S˚pY |Rq “ ts P SpY |Rq|~HM‚pY, s; Γηq ‰ 0u.

Here, ~HM‚pY, s; Γηq is the to-version of monopole Floer homology with local
coefficients associated to the pair pY, sq. more details, readers are referred
to [20].
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Definition 2.5. The sutured monopole Floer homology of pM,γq is defined
to be

SHMpM,γq “ HMpY |R; Γηq,

where

HMpY |R; Γηq “
à

sPSpY |Rq

~HM‚pY, s; Γηq

The following lemmas from Kronheimer and Mrowka [21] will be useful.

Lemma 2.6. Suppose Y is a surface bundle over S1 whose fibres are closed
connected oriented surfaces of genus at least 2. Let R be a fibre and η Ă R be
a non-separating simple closed curve. Then, there is a unique spinc structure
s on Y so that the following is true.

(1) We have c1psqrRs “ 2gpRq ´ 2.

(2) We have ~HM‚pY, s; Γηq ‰ 0.
Moreover, for this spinc structure s, we have

~HM‚pY, s; Γηq – R,

where R is the base ring for local coefficients.

Lemma 2.7. Suppose Y is a closed oriented 3-manifold and R Ă Y is an
embedded closed connected oriented surface of genus at least 1. Suppose fur-
ther that s is a spinc structure such that

|c1psqrRs| ą 2gpRq ´ 2,

then we have

~HM‚pY, s; Γηq “ 0

for any choice of local coefficients.

Floer’s excision theorem was first introduced by Floer in instanton the-
ory and then was adapted to the settings of monopole theory by Kronheimer
and Mrowka in [21]. In the rest of the current subsection, we summarize the
results that we need in later sections.

For i “ 1, 2, suppose Yi is a closed connected oreinted 3-manifold and
Ri Ă Yi is an embedded closed connected oriented homologically essential
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surface of genus at least 2. Let ηi Ă Ri be a non-separating simple closed
curve. When cutting Yi open along Ri, we get

rYi “ YizintpNpRiqq,

where NpRiq is a product neighborhood of Ri Ă Yi. The manifold rYi has two
boundary components

B rYi “ Ri,` YRi,´.

We orient Ri,˘ in the same way as Ri. There are parallel copies of ηi, which
we call ηi,˘, on the surfaces Ri,˘. Pick an orientation preserving diffeomor-
phism

h : R1 Ñ R2

so that hpη1q “ η2. We can use h to glue R1,` to R2,´ and R1,´ to R2,`.

Then, rY1 and rY2 are glued together to become a connected 3-manifold which
we call Y . Let R Ă Y be the disjoint union of the surfaces R1,` and R2,` in
Y . Let η Ă R be the disjoint union of curves η1,` and η2,`.

There is a 4-dimensional cobordism W from Y1 \ Y2 to Y , which is
constructed as follows: Let U be the surface as depicted in Figure 1. It has
four vertical arcs as part of the boundary, and we can assume that each of
them is identified with r0, 1s. Now we can use the identity map and the map
h to glue three pieces rY1, rY2 and U ˆR1 together, to obtain the desired
cobordism W . This cobordism W then induces a map as in [21]

(2) HMpW q : HMpY1 \ Y2|R1 YR2; Γη1Yη2q Ñ HMpY |R; Γηq.

rY1 ˆ r0, 1s R1 ˆ U rY2 ˆ r0, 1s

id

id

h

h

µ2

µ1

µ3

µ4

Figure 1: Gluing three parts together to get W . The middle part is R1 ˆ U ,
while the R1,` directions shrink to a point in the figure.
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We can also cut and re-glue along tori. For i “ 1, 2, let Yi be as above.
Let Ti Ă Yi be a torus and Ri Ă Yi be a closed connected oriented surface
so that Ri intersects Ti transversely along a circle ci. Suppose ηi Ă Ri is a
simple closed curve so that ηi intersects ci transversely at a point pi. Let

h : T1 Ñ T2

be an orientation preserving diffeomorphism so that hpc1q “ c2 and hpp1q “
p2. As above, we can cut Yi open along Ti and re-glue using h to obtain a
connected 3-manifold Y . There is a distinguishing surface R, obtained by
cutting Ri open along ci and re-glue using h. The curves η1 and η2 are also
cut and re-glued to give rise to a simple closed curve η Ă R Ă Y . As above,
there is a cobordism map

(3) HMpW q : HMpY1 \ Y2|R1 YR2; Γη1Yη2q Ñ HMpY |R; Γηq.

Theorem 2.8 (Kronheimer and Mrowka [21]). The maps (2) and (3)
are both isomorphisms.

2.2. The naturality of sutured monopole Floer homology

In [4], Baldwin and Sivek constructed a canonical map between two different
closures of the same balanced sutured manifold. To do this, they also refined
the definition of closures.

Definition 2.9. A marked closure D “ pY,R, r,m, ηq of a balanced sutured
manifold pM,γq consists of the following.

(1) A closed connected oriented 3-manifold Y .
(2) A closed connected oriented surface R of genus at least two.
(3) An orientation preserving embedding

r : R ˆ r´1, 1s ãÑ Y.

(4) An orientation preserving embedding

m :M ãÑ Y zintpimprqq.

(5) A non-separating simple closed curve η Ă R.
They satisfy the following requirements.
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(a) The embedding m extends to a diffeomorphism

M Y
f
T ˆ r´1, 1s Ñ Y zintpimprqq,

for some auxiliary data pT, fq.
(b) The embedding m restricts to an orientation preserving embedding

R`pγq ãÑ rpR ˆ t´1uq.

The genus of the marked closure D is referred to the genus of the surface
R. We define

SHMpDq “
à

sPSpY |rpRˆt0uqq

~HM‚pY, s; Γrpηˆt0uqq.

Theorem 2.10 (Baldwin and Sivek [1]). Suppose pM,γq is a balanced
sutured manifold, then for any two marked closures D1 and D2 of pM,γq,
there is a canonical map ΦD1,D2

, well defined up to a unit, from SHMpD1q
to SHMpD2q. The canonical maps satisfy following properties.

(1) If D1 “ D2, then

ΦD1,D2

.
“ id.

Here
.
“ means equal up multiplication by a unit.

(2) Suppose there is a third marked closure D3 for pM,γq, then we have

ΦD1,D3

.
“ ΦD2,D3

˝ ΦD1,D2
.

Hence, for a balanced sutured manifold pM,γq, marked closures D and
canonical maps Φ fits into a projective transitive system, which is defined in
[1]. The projective system determines a canonical module, which we denote
by

SHMpM,γq.

We can then talk about elements (up to multiplication by a unit) in that
canonical module.

There is an extra ambiguity when dealing with knots in 3-manifolds. Let
K Ă Y be a knot. The extra ambiguity comes from the choices of tubular
neighborhoods of K Ă Y to remove to obtain a knot complement. Fix a
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point p P K. Suppose

ϕ : S1 ˆD2 ãÑ Y

is an embedding, where D2 is the unit sphere in the complex plane, and
S1 “ BD2. We require that

ϕpS1 ˆ t0uq “ K, and ϕpt1u ˆ t0uq “ p.

Let Yϕ “ Y zintpimpφqq, and let γϕ “ ϕpt˘1u ˆ BD2q, with opposite ori-
entations on two components. For each fixed ϕ, we have a well defined canon-
ical module SHMpY pϕq, γϕq, and we want also relate different choices of ϕ.

Suppose ϕ1 is another embedding S1 ˆD2 ãÑ Y , satisfying the same
conditions as ϕ. Pick a tubular neighborhood N of K Ă Y such that impϕq,
impϕ1q Ă N . Also, pick an ambient isotopy

ft : Y Ñ Y, t P r0, 1s

such that the following is true.
(1) For any t P r0, 1s, ftppq “ p.

(2) For any t P r0, 1s, ft restricts to identity outside N Ă Y .
(3) We have f1pimpϕqq “ impϕ1q.
(4) We have f1pϕpt˘1u ˆ BD2qq “ ϕ1pt˘1u ˆD2q.
It is clear that f1 : pYϕ, γϕq Ñ pYϕ1 , γϕ1 q is a diffeomorphism between

balanced sutured manifolds. Hence, we can define

Ψϕ,ϕ1 “ SHMpf1q : SHMpYϕ, γϕq Ñ SHMpYϕ1 , γϕ1 q.

Theorem 2.11 (Baldwin and Sivek [1]). The map Ψϕ,ϕ1 is well defined,
i.e., is independent of the choices of the tubular neighborhood N and the
ambient isotopy ft. Also, it has the following properties.

(1) We have Ψϕ,ϕ “ id.

(2) If there is a third embedding ϕ2, then

Ψϕ,ϕ2 “ Ψϕ1,ϕ2 ˝ Ψϕ,ϕ1 .

Thus, we know that tSHMpYϕ, γϕqu and tΨϕ,ϕ1 u form a transitive system
of projective transitive systems. Thus, they lead to a larger projective tran-
sitive system, and, hence, the monopole knot Floer homology KHMpY,K, pq
is well defined (as a projective transitive system).
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2.3. Contact structures and contact elements

In this subsection we summarize the results related to contact geometry
which we will use in later sections.

Definition 2.12. A contact sutured manifold pM,γ, ξq is a triple where
pM,γq is a balanced sutured manifold, and ξ is a contact structure on pM,γq
so that BM is convex and γ is the dividing set. The contact structure ξ is
said to be compatible with the balanced sutured manifold pM,γq.

Theorem 2.13 (Baldwin and Sivek [2]). Suppose pM,γ, ξq is a contact
sutured manifold, then we can associate an element

φξ P SHMp´M,´γq

to it. This element is called the contact element.

Definition 2.14. Suppose pM 1, γ1q is a balanced sutured manifold. A su-
tured submanifold pM,γq of pM 1, γ1q is another balanced sutured manifold
so that M Ă intpM 1q.

The gluing maps in sutured monopole Floer homology were define by
the author in [26], and it is crucial in the construction of the direct system
in Section 5.

Theorem 2.15. Suppose pM,γq is a sutured submanifold of pM 1, γ1q and
suppose Z “ M 1zintpMq. Suppose ξ is a contact structure on Z so that
pZ, γ Y γ1, ξq is a contact sutured manifold. Then, there is a map

Φξ : SHMp´M,´γq Ñ SHMp´M 1,´γ1q,

so that the following is true.
(1) If pM 1, γ1q is a sutured submanifold of pM2, γ2q and there is a contact

structure ξ1 on M2zintpM 1q, making it a contact sutured manifold, then we
have

Φξ1 ˝ Φξ “ Φξ1Yξ : SHMp´M,´γq Ñ SHMp´M2,´γ2q.

(2) Suppose pM 1, γ1, ξ1q is a contact sutured manifold and ξ1|Z “ ξ, then
we have

Φξpφξ1|M q “ φξ1 .
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Suppose we have three balanced sutured manifold pM,γ1q, pM,γ2q, and
pM,γ3q so that the underlining 3-manifold is the same, but the sutures are
different. Suppose further that γ1, γ2, and γ3 are the same outside a disk
D Ă BM , and, within the disk D, they are depicted as in Figure 2. We say
that pM,γ2q is obtained from pM,γ1q by a by-pass attachment along the arc
α. Similarly, pM,γ3q is obtained from a by-pass attachment from pM,γ2q
and pM,γ1q from pM,γ3q. Then, we have the following theorem.

pM,γ3q

pM,γ1q pM,γ2q

α ✲

�
��✠❅

❅❅■

Figure 2: The by-pass exact triangle.

Theorem 2.16 (Baldwin and Sivek [2]). There is an exact triangle
relating the sutured monopole Floer homologies of the three balanced sutured
manifolds:

(4) SHMp´M,´γ1q
ψ12 // SHMp´M,´γ2q

ψ23uu

SHMp´M,´γ3q

ψ31

ii

In contact geometry, a by-pass is a half disk, which carries some partic-
ular contact structure, attached along a Legendrian arc to a convex surface.
For more details, see Honda [15]. We can describe the maps in (4) as follows:
We explain the construction of the map ψ12, and the other two are similar.
Let Z “ BM ˆ r0, 1s, and we can pick the suture γ1 on BM ˆ t0u as well as
the suture γ2 on BM ˆ t1u. Then, there is a special contact structure ξ12 on
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Z that corresponds to the by-pass attachment and makes pZ, γ1 Y γ2q a con-
tact sutured manifold. Hence, we can attach Z to M by the identification
BM ˆ t0u “ BM Ă M . The result pM Y Z, γ2q is diffeomorphic to pM,γ2q
and we have

ψ12 “ Φξ12 .

Here, Φξ12 is the gluing map associated to ξ12 as in Theorem 2.15.
In Section 5, we will use the by-passes on knot complements to construct

the direct system. Let K Ă Y be an oriented knot. Let λ and µ be the
longitude and meridian according to some framing of the knot. Let Γn be a
suture on BY pKq which consists of two curves of class ˘pλ´ nµq, and Γ8

consists of two meridians. In this case, BY pKq is a torus, and we have the
following theorem due to Honda [15].

Theorem 2.17. There are two tight and minimal-twisting contact struc-
tures on T 2 ˆ r0, 1s so that, for i “ 1, 2, T 2 ˆ tiu is convex with dividing set
being Γn`i. These two contact structures correspond to two different by-pass
attachments on pY pKq,Γnq.

Definition 2.18. We denote the two contact structures in Theorem 2.17
by ξ`,n and ξ´,n, respectively. The corresponding two by-passes are called
positive and negative, respectively. The two by-passes can be distinguished
by Figure 3.

Remark 2.19. Here definitions of positive and negative bypasses are most
convenient for the purpose of the current paper. They are different but
equivalent to Honda’s original definitions in [15].

There are by-pass exact triangles associated to the positive and negative
by-passes:

(5)

SHMp´Y pKq,´Γn`1q
ψn`1

˘,8 // SHMp´Y pKq,´Γ8q

ψ8
˘,ntt

SHMp´Y pKq,´Γnq
ψn`1

˘,n

jj

Note we have ψn`1
˘,n “ Φξ˘,n

. We also need the following facts.

Proposition 2.20 (Honda [15]). On T 2 ˆ r0, 2s, the two contact struc-
tures ξ´,n Y ξ`,n`1 and ξ`,n Y ξ´,n`1 are the isotopic rel boundary.
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positive by-pass negative by-pass

α` α´

λ

BS BS

´µ

Figure 3: The positive and negative by-pass attachments for pY pKq,Γ3qq.
The squares represent the toroidal boundary of Y pKq. Note the contact
structures ξ˘,2 correspond to the by-passes from the bottom one to the top
left one in each by-pass triangle.

Corollary 2.21. We have a commutative diagram

SHMpY pKq,Γnq
ψn

´,n`1 //

ψn
`,n`1

��

SHMpY pKq,Γn`1q

ψn`1

`,n`2

��

SHMpY pKq,Γn`1q
ψn`1

´,n`2 // SHMpY pKq,Γn`2q

Proof. The corollary follows from Proposition 2.20 and Theorem 2.15. ˝

There is a second way to interpret the maps ψ˘ associated to by-pass
attachments by Ozbagci. In [30], he proved that a by-pass attachment can
be realized by attaching a contact 1-handle followed by a contact 2-handle.
In sutured monopole Floer theory, we have maps associated to the contact
handle attachments, due to Baldwin and Sivek [2]. So, we can compose those
contact handle attaching maps to define ψ˘. This is the original way that
Baldwin and Sivek constructed the by-pass maps (when they defined by-pass
maps, there was no construction of gluing maps) and proved the existence
of the exact triangle. The two interpretations are the equivalent because of
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the functoriality of the gluing maps. We will use this second point of view
in the proof of Proposition 5.5.

3. A grading on sutured monopole Floer homology

3.1. The construction

Definition 3.1. Suppose pM,γq is a balanced sutured manifold, and S is
a properly embedded oriented surface. A stabilization of S is an isotopy of S
to a surface S1, so that the isotopy creates a new pair of intersection points:

BS1 X γ “ pBS X γq Y tp`, p´u.

We require that there are arcs α Ă BS1 and β Ă γ, oriented in the same way
as BS1 and γ, respectively, such that the following is true.

(1) We have Bα “ Bβ “ tp`, p´u.
(2) The curves α and β cobound a disk D so that intpDq X pγ Y BS1q “

H.
The stabilization is called negative if D can be oriented so that BD “

α Y β as oriented curves. it is called positive if BD “ p´αq Y β. See Figure 4.

BS

γ

γ

✟✟✟✟✟✯

❍❍❍❍❍❥

positive

negative

D

α

β

D
α

β

Figure 4: The positive and negative stabilizations of S.

We denote by S˘k the result of performing k many positive or negative
stabilizations of S.
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The following lemma is straightforward.

Lemma 3.2. Suppose pM,γq is a balanced sutured manifold, and S is a
properly embedded oriented surface. Suppose S` and S´ are the results of
doing a positive and negative stabilization on S, respectively. Then, we have
the following.

(1) If we decompose pM,γq along S or S`, then the resulting two bal-
anced sutured manifolds are diffeomorphic.

(2) If we decompose pM,γq along S´, then the resulting balanced sutured
manifold pM 1, γ1q is not taut, as R˘pγ1q would both become compressible.

Suppose pM,γq is a balanced sutured manifold, and S is a properly em-
bedded oriented surface. Suppose further that S has precisely one boundary
component and BS intersects γ at 2n points. Since γ is parallel to the bound-
ary of R`pγq, it is null-homologous, so the algebraic intersection number of
BS with γ on BM must be zero. We also assume that n “ 2k ` 1 is odd, as
this can be achieved by a stabilization of S if needed. Suppose the intersec-
tion points are p1, . . . , p2n, and they are indexed according to the orientation
of BS.

Now pick a connected auxiliary surface T for pM,γq, which is of large
enough genus. Let f : BT Ñ γ be an orientation reversing diffeomorphism
and let p1

i “ f´1ppiq. Suppose α1, . . . , αn are pair-wise disjoint simple arcs
on T , so that the following is true.

(1) The classes rα1s, . . . , rαns are linearly independent in H1pT, BT q.
(2) We have that Bα1 “ tp1

1, p
1
2u, and, for all 1 ď i ď k, we have

Bα2i “ tp1
4i´1, p

1
4i`2u, and Bα2i`1 “ tp1

4i, p
1
4i`1u.

Let

ĂM “ M Y
idˆf

r´1, 1s ˆ T, and rS “ S Y
idˆf

p
nď

i“1

r´1, 1s ˆ αiq.

We know that

B ĂM “ R` YR´, and B rS XR˘ “
k`1ď

i“1

Ci,˘.

Here we require that for i “ 1, . . . , k ` 1,

α2i´1 ˆ t˘1u Ă Ci,˘.
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Pick an orientation preserving diffeomorphism h : R` Ñ R´ so that for i “
1, . . . , k ` 1,

hpCi,`q “ Ci,´.

Then, we can use h and ĂM to obtian a closure pY,Rq of pM,γq. The boundary
components of the surface rS are glued with each other under h, so rS becomes
a closed surface S̄ Ă Y . From the construction, we know that

χpS̄q “ χpSq ´ n.

We pick a non-separating simple closed curve η Ă R, so that η is disjoint
from S̄ XR and represents a class which is linearly independent from the
classes represented by the components of S̄ XR in H1pRq.

Definition 3.3. We say that the surface S̄ Ă Y is associated to the surface
S Ă M . We can use S̄ to define a grading on SHMpM,γq as follows.

SHMpM,γ, S, iq “
à

sPSpY |Rq
c1psqrS̄s“2i

~HM‚pY, s; Γηq.

We say that this grading is associated to the surface S Ă M . When using
the language of marked closures, the closure pY,Rq corresponds to a marked
closure D “ pY,R,m, r, ηq, and we write the grading as

SHMpD, S, iq.

The grading on SHMpDq also induces a grading on SHMpM,γq, as stated
in Theorem 3.4. We also say it is associated to S and write

SHMpM,γ, S, iq.

Theorem 3.4. When BS is connected, the grading on SHMpM,γq associ-
ated to S is well-defined. That is, it is independent of all the choices made
in the construction.

Proof. There are four types of choices we made in the construction of the
grading:

I. The point p1 on BS X γ.
II. The choice of the arcs α1, . . . , αn on T .
III. The choice of the gluing diffeomorphism h.
IV. The genus of the closure.
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The proof of Theorem 3.4 makes up the rest of the current section.
First, the argument choices of type IV follows directly from [5] is stated
in Lemma 3.5. Second, we deal with choices of type III. This is done via a
re-formulation of Baldwin and Sivek’s canonical maps. The discussion about
canonical maps is in Subsection 3.2, and in particular Proposition 3.9 proves
that the construction of grading is independent of choice of type III. Third,
choice with type II follows from the arguments in [5] and our reformulation
of the canonical map in Subsection 3.2. In particular, Corollary 3.7 states
that the the construction of the grading is independent of choices of type II.
Finally, choices of type I is translated into a combinatorial problem that is
discussed in Subsection 3.3, and Corollary 3.20 completes the proof of the
theorem. ˝

Lemma 3.5 (Baldwin and Sivek [5]). The definition of the grading on
SHMpM,γq associated to the surface S Ă M is independent of choices of
type IV.

Proof. In [5], Baldwin and Sivek have already dealt with the choices of type
II, III and IV. Among them, the idea for type IV can be adapted to the
settings of the current paper verbatim. ˝

To deal with the choices of type II, we have the following lemma.

Lemma 3.6. Suppose T is a compact connected oriented surface-with-
boundary and is of large enough genus. Suppose further that tα1, . . . , αnu
is a set of properly embedded simple arcs on T so that the following is true.

(1) The arcs α1, . . . , αn are pair-wise disjoint.
(2) The arcs represent linearly independent classes rα1s, . . . , rαns in

H1pT, BT q.
Suppose tα1

1, . . . , α
1
nu is another set of properly embedded simple arcs so

that the following is true.
(3) For i “ 1, . . . , n, we have Bαi “ Bα1

i.
(4) The set of arcs tα1

1, . . . , α
1
nu also satisfies the above conditions (1)

and (2).
Then, there is an orientation preserving diffeomorphism h : T Ñ T so

that h fixes the boundary of T , and, for i “ 1, . . . , n, we have

hpαiq “ α1
i.
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Proof. Suppose N is a product neighborhood of

α1 Y ¨ ¨ ¨ Y αn Ă T.

Let rT “ T zintpNq. The boundary B rT consists of the following:

B rT “ pBT X rT q Y p
nď

i“1

αi,` Y αi,´q.

Here, αi,˘ are parallel copies of αi, being part of the boundary of the product

neighborhood N . From condition (2), we know that rT is connected. Also,
by construction,

χp rT q “ χpT q ` n.

Similarly, we can pick N 1 to be a product neighborhood of

α1
1 Y ¨ ¨ ¨ Y α1

n Ă T,

and take

rT 1 “ T zintpN 1q, and B rT 1 “ pBT X rT 1q Y p
nď

i“1

α1
i,` Y α1

i,´q.

By condition (3), we can assume that N X BT “ N 1 X BT , so there is an
orientation preserving diffeomorphism

f : B rT Ñ B rT 1

so that

f |BTX rT “ id, and fpαi,˘q “ α1
i,˘

for all i “ 1, . . . , n. Since we have

χp rT 1q “ χpT q ` n “ χp rT q,

the diffeomorphism f extends to a diffeomorphism

g : rT Ñ rT 1.

Thus, we can glue rT and rT 1 along αi,˘ and α1
i,˘, and g is glued to become

a diffeomorphism

h : T Ñ T

that is the desired one. ˝
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Corollary 3.7. The grading on SHMpM,γq associated to the surface S Ă
M is independent of choices of type II.

Proof. Equipped with Lemma 3.6 and Proposition 3.9, the rest of the proof
of Corollary 3.7 is similar to that of [5, Theorem 3.5]. ˝

We deal with the choices of type III in Subsection 3.2 and the choices of
type I in Subsection 3.3.

3.2. A reformulation of Canonical maps

In this subsection, we give an alternative description of the canonical maps
ΦD,D1 , which was originally constructed by Baldwin and Sivek in [1] for two
different marked closures of the same genus. For our convenience, we only
study the a special case as described in the following paragraph.

Suppose pM,γq is a balanced sutured manifold and T is a connected
auxiliary surface. Let

ĂM “ M Y r´1, 1s ˆ T, BM “ R` YR´.

Suppose h1 and h2 are two different gluing diffeomorphisms, and there are
corresponding marked closures D1 “ pY1, R`, r1,m, ηq and D2 “ pY2, R`,

r2,m, ηq, respectively. Here, we choose the same non-separating simple closed
curve η on R` to support local coefficients.

Let h “ h´1
1 ˝ h2, and Y h be the mapping torus of h, i.e., the manifold

obtained from R` ˆ r´1, 1s by identifying R` ˆ t1u with R` ˆ t´1u via
h. Then, we can obtain Y2 from Y1 and Y h as follows. Cut Y1 open along
R` ˆ t0u and cut Y h along R` ˆ t0u. We can re-glue them via the identity
map on R` to get a connected manifold. This resulting manifold is precisely
Y2. As in Theorem 2.8, there is a cobordism W from Y1 \ Y h to Y2, and W
induces an isomorphism:

HMpW q : HMpY1 \ Y h|R` YR`q Ñ HMpY2|R`q.

Note, from Lemma 2.6, we know that

HMpY h|R`q – R.

Let a be a generator of HMpY h|R`q and let ι be the map

ι : HMpY1|R`q Ñ HMpY1|R`q bHMpY h|R`q – HMpY1 \ Y h|R` YR`q
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defined by

ιpxq “ xb a.

We have the following proposition.

Proposition 3.8. The canonical map ΦD1,D2
can be re-interpreted as

ΦD1,D2

.
“ HMpW q ˝ ι.

Before proving the proposition, we first use it to prove the fact that the
definition of the grading is independent of the choices of type III. Suppose
pM,γq is a balanced sutured manifold and S Ă M is a properly embedded
surface with precisely one boundary component, so that BS intersects γ at 2n
points for some odd n “ 2k ` 1. Suppose further that, in the construction
of the grading induced by S, the choices of type I, II, IV are fixed. This
means that there is a connected auxiliary surface T for pM,γq and n arcs
α1, . . . , αn so that the following holds

(1) We have

Bpα1 Y ¨ ¨ ¨ Y αnq “ BS X γ.

(2) Let

BpM Y r´1, 1s ˆ T q “ R` YR´, and rS “ S
ď

i“1n

pr´1, 1s ˆ αiq,

then we have

B rS XR˘ “ C1,˘, . . . , Ck`1,˘.

Suppose there are two gluing diffeomorphisms h1 and h2 so that, for
i “ 1, 2

hipC1,` Y ¨ ¨ ¨ Y Ck`1,`q “ C1,´ Y ¨ ¨ ¨ Y Ck`1,´.

Suppose further that there are marked closures D1 “ pY1, R`,m, r1, ηq and
D2 “ pY2, R`,m, r2, ηq corresponding to h1 and h2, respectively. Here, we
choose the same non-separating simple closed curve η Ă R` to construct
local coefficients. We have the following proposition.

Proposition 3.9. For any i P Z, we have

ΦD1,D2
: SHMpD1, S, iq

–
ÝÑ SHMpD2, S, iq.

As a result, the definition of the grading on SHMpM,γq is independent of
the choices of type III.
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Proof. Let h “ h´1
1 ˝ h2, and form Y h as in Proposition 3.8. From Lemma

2.6, there is a unique spinc structure s0 so that

HMpY h|R`q “ ~HM‚pY h, s0; Γηq – R.

There are tori inside Y h: The cylinders Ci,` ˆ r´1, 1s Ă R` ˆ r´1, 1s
are glued via h to become a union of tori T . Lemma 2.7 tells us that

c1ps0qrT s “ 0.

Let S̄1 Ă Y1 and S̄2 Ă Y2 be the surfaces induced by S Ă M as in the
construction of the grading. We know that there is a 3-dimensional cobor-
dism from S1 \ T to S2 inside the the cobordism W . The construction of
this (3-dimensional) cobordism is similar to that of the Floer excisions. If s
is a spinc structure on W , which contributes non-trivially to the cobordism
map HMpW q, then s must restrict to s0 on Y h. Hence, we know that

c1psqprS̄2sq “ c1psqprS̄1s ` rT sq “ c1psqprS̄1sq ` c1ps0qprT sq “ c1psqprS̄1sq.

Thus,HMpW q preserves the grading and so does Φg
D1,D2

, by Proposition 3.8.
˝

Now we proceed to prove proposition 3.8. There are a few preparations
we need.

Lemma 3.10. Under the settings of Proposition 3.8, suppose we have a
third gluing diffeomorphism h3, h

1 “ h´1
2 ˝ h3, and h2 “ h ˝ h1 “ h´1

1 ˝ h3.
Construct W 1, W 2, ι1, and ι2 just in the same way as we construct W and
ι. Then, we have an identity:

(6) HMpW 2q ˝ ι2
.
“ HMpW 1q ˝ ι1 ˝HMpW q ˝ ι.

Proof. Let Yh1 and Yh2 be the mapping tori of h1 and h2, respectively. Since
h2 “ h ˝ h1, there is an excision cobordism from Yh \ Yh2 to Yh2 just as we
construct W , W 1, and W 2. Call this cobordism ´W_

e , and let We be the
cobordism from Yh2 to Yh \ Yh1 , obtained by putting ´W_

e up side down
and then reversing the orientation. By Theorem 2.8 and Lemma 2.6, it is
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straightforward to see that

HMpW YW 1 YWeq ˝ ι3
.
“ HMpW 1q ˝ ι1 ˝HMpW q ˝ ι.

Hence, to prove (6), it is enough to show that

(7) HMpW YW 1 YWeq
.
“ HMpW 2q.

However, we can cutW 1 YW 1 YWe open along the 3-manifold S1 ˆR`,
as depicted in Figure 5 and glue back two copies of D2 ˆR`. The resulting
4-manifold is exactlyW 2. Hence, from Proposition 2.5 in [21], (7) holds true
and we conclude the proof of Lemma 3.10. ˝

S1 ˆR`

W

Y1

Y h

Yh1

Y2

Yh1

W 1 Y3
Yh2 We

Y1

Figure 5: The union W YW 1 YWe. The (blue) curve in the middle repre-
sents the 3-manifold S1 ˆR` to cut along.

Corollary 3.11. If h1 “ h2, then we have

HMpW q ˝ ι
.
“ id.

Proof. From Theorem 2.8, we know that

HMpW q ˝ ι

is an isomorphism. From Lemma 3.10, we know that

HMpW q ˝ ι ˝HMpW q ˝ ι
.
“ HMpW q ˝ ι.

Hence, the corollary follows. ˝



✐

✐

“2-Li” — 2022/5/27 — 1:30 — page 1371 — #33
✐

✐

✐

✐

✐

✐

Knot homologies in monopole and instanton theories 1371

Proof of Proposition 3.8. Suppose h is decomposed into Dehn twists:

h „ De1
a1

˝ ¨ ¨ ¨ ˝Den
an
,

as in Baldwin and Sivek [1]. From Theorem 2.10 and Lemma 3.10, it is suffice
to deal with the case when n “ 1, i.e., there is only one Dehn twist involved.

When e1 “ 1, the Dehn twist is positive. In this case, the canonical
map Φg

D1,D2

is constructed using the cobordism W , as in the hypothesis of

Proposition 3.8, with the boundary component Y h capped off by the total
space of a relative minimal Lefschetz fibration, see [1, Lemma 4.9]. Since
such a Lefschetz fibration has relative monopole invariant being a unit in
R, as in Proposition B1 in [1], we conclude that

Φg
D1,D2

.
“ HMpW q ˝ ι.

When e1 “ ´1, the Dehn twist is negative. We can instead look at the
canonical map Φg

D2,D1

. It corresponds to h´1 and is constructed using a

positive Dehn twist. Suppose we construct W 1 and ι1 out of h´1, just as we
construct W and ι out of h. Then, from the previous case we know that

Φg
D2,D1

.
“ HMpW 1q ˝ ι1.

Then, the identity

Φg
D1,D2

.
“ HMpW q ˝ ι.

follows from Theorem 2.10, Lemma 3.10 and Corollary 3.11. ˝

3.3. Pairing of the intersection points

In this subsection, we deal with type I choices, i.e., the choice of p1 among
all intersection points in S X γ.

Let us first pick an arbitrary intersection point in BS X γ as p1. We need
to relax the requirement in the construction of the grading that Bαi are
chosen to be a special pair of points in S X γ. To record the data of the end
points of αi, we make the following definition.
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Definition 3.12. Suppose we have a collection of n pair of numbers

P “ tpi1, j1q, . . . , pin, jnqu

so that

ti1, j1, . . . , in, jnu “ t1, 2, . . . , 2nu,

and, for all l “ 1, . . . , n, we have

il ı jl pmod 2q.

Then, we call such a collection P a pairing of size n. Note for a couple pil, jlq,
we don’t distinguish between pil, jlq and pjl, ilq.

Suppose pM,γq is a balanced sutured manifold and S Ă M is a properly
embedded oriented surface. Suppose further that S has a connected bound-
ary, and it intersects γ at 2n “ 4k ` 2 points. Those points are labeled by
p1, . . . , p4k`2, according to the orientation of BS, with an arbitrary chosen
starting point p1. Continuing, suppose P “ tpil, jlqunl“1 is a pairing of size n,
T is an auxiliary surface of M , and α1, . . . , αn are pair-wise disjoint simple
arcs so that the following is true.

(1) The arcs α1,. . . , αn represent linearly independent classes inH1pT, BT q.
(2) For l “ 1, . . . , n, we have

Bαl “ tpil , pjlu.

Then, as in Definition 3.3, we can construct

ĂM “ M Y T ˆ r´1, 1s, rSP “ S Y p
nď

l“1

αl ˆ r´1, 1sq.

We have

B ĂM “ R` YR´, B rSP XR˘ “ C1,˘ Y Cs˘,˘.

In general, the numbers of intersection circles, s` and s´, are not necessarily
equal to each other, so we make the following definition.

Definition 3.13. A pairing P is called balanced if s´ “ s`.

Example 3.14. Here are some examples of the pairings. Assume n “ 2k `
1 is odd.
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(1) The simplest possible pairing

P “ tp1, 2q, p3, 4q, . . . , p4k ` 1, 4k ` 2qu

has s´ “ 1 and s` “ n, or s´ “ n and s` “ 1, depending on the choice of
the starting point p1, so it is not a balanced paring for n ą 1.

(2) In Definition 3.3, we have a paring arising from the construction of
the grading:

Pg “ tp1, 2q, p3, 6q, p4, 5q, . . . , p4k ´ 1, 4k ` 2q, p4k, 4k ` 1qu.

This is an example of a balanced pairing, with s` “ s´ “ k ` 1.
(3) There is a very special balanced pairing with s` “ s´ “ 1:

Ps “ tp1, 2k ` 2q, p2, 2k ` 3q, . . . , p2k ` 1, 4k ` 2qu.

If pM,γq, S, and p1 are chosen as above, and we are equipped with a
balanced pairing P, then we can repeat the construction in Definition 3.3
and define a grading on SHMpM,γq. By Corollary 3.7, Proposition 3.9, and
Lemma 3.5, the grading depends only on the choice of p1 and P. Since S
and p1 are fixed throughout this subsection, we omit them from the notation
and write, in a moment, the grading as

SHMpM,γ,P, iq.

There is an operation we can perform on balanced pairings. Suppose P

is a balanced pairing and we pick two indices l1 and l2 so that the following
two conditions hold.

(i) The two arcs t1u ˆ αl1 and t1u ˆ αl2 are not contained in the same
boundary component of rSP .

(ii) The two arcs t´1u ˆ αl1 and t´1u ˆ αl2 are not contained in the
same boundary component of B rS.

Then, we can perform the following operation on P: Suppose, in the two
pairs pil1 , jl1q and pil2 , jl2q, il1 and il2 are odd (and the two other numbers
must be even), then we can obtain a new pairing P 1 out of P by removing
the two pairs pil1 , jl1q and pil2 , jl2q from P and add two new pairings pil1 , jl2q
and pil2 , jl1q.

Definition 3.15. We call the above operation the cut and glue on parings.
Two pairings are called equivalent if one is obtained from the other by a cut
and glue operation.
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Example 3.16. If n “ 3, P “ tp1, 2q, p3, 6q, p5, 4qu, l1 “ 1, and l2 “ 3 (l1 “
1 and l2 “ 2 do not meet the requirements of performing a cut and glue
operation), then the resulting pairing P 1 is

P 1 “ tp1, 4q, p3, 6q, p2, 5qu,

and it is balanced.
It is obvious that the equivalence is an equivalent relation. Also, the

result of a cut and glue operation on a balanced pairing is still a balanced
one.

Lemma 3.17. Suppose a cut and glue operation on a balanced pairing P

associated to the two indices l1 and l2 gives rise to a new balanced pairing
P 1, then, for all i P Z, we have

SHMpM,γ,P, iq “ SHMpM,γ,P 1, iq.

Proof. At this point, we have shown that the choices of type II, III, and IV
do not make difference on the definition of the grading. So, once P is chosen,
we can freely choose other auxiliary data to construct the grading. Let T
and α1, . . . , αn be chosen, and the pre-closure ĂM as well as the properly
embedded surface rSP have been constructed. We can assume that they are
chosen so that there is a curve c intersecting both αl1 and αl2 transversely
at one point. See Figure 6. The requirements (i) and (ii) make sure that
t˘1u ˆ αl1 and t˘1u ˆ αl2 lie in four different boundary components of rSP .
So, there is an orientation preserving diffeomorphism h : R` Ñ R´, where
B ĂM “ R` YR´, so that

hpB rS XR`q “ B rS XR´, hpcˆ t1uq “ cˆ t´1u,

hpαl1 ˆ t1uq “ αl1 ˆ t´1u, and hpαl2 ˆ t1uq “ αl2 ˆ t´1u.

Let

Y “ ĂM Y
idYh

r´1, 1s ˆR`, and R “ t0u ˆR

be a closure of pM,γq. The surface rSP becomes a closed surface S̄P Ă Y . We
can also choose a simple closed curve η on R “ t0u ˆR` so that η is disjoint
from rSP and η intersects cˆ t0u transversely at one point. Hence, we obtain
a marked closure D “ pY,R,m, r, ηq, where m and r are both inclusions.
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T Σ2

η

αl1
αl2

η

αl1
αl2

c
c1 δ

β

η1

α1
l1
α1
l2

η1

α1
l1

α1
l2

Figure 6: The auxiliary surface T and the surface Σ2

By definition, we have

SHMpD,P, iq “
à

sPSpY |Rq
c1psqrS̄P s“2i

~HM‚pY, s; Γηq.

Let Σ2 be a closed connected oriented surface of genus 2. Let c1, δ and
β be three simple closed curves on Σ2, as depicted in Figure 6.

Let YΣ be the 3-manifold S1 ˆ Σ2. There is a torus Σ “ S1 ˆ c Ă Y and
a torus Σ1 “ S1 ˆ c1 Ă S1 ˆ Σ2. We can choose an orientation preserving
diffeomorphism h1 : Σ Ñ Σ1 so that, for all t P S1, we have h1pttu ˆ cq “
ttu ˆ c1 as well as

h1pttu ˆ ppαl1 X cq Y pαl2 X cqqq “ ttu ˆ pβ X c1q.

We can use Σ, Σ1, and h1 to perform a Floer excision on Y \ YΣ. The
result is a 3-manifold Y 1, with a distinguishing surface R1, obtained from
R \ Σ2 by cutting and re-gluing along the two curves c and c1. The surface
S̄P Ă Y also becomes a new closed surface S̄P 1 Ă Y 1, obtained from S̄ \
pS1 ˆ βq by cutting and re-gluing along four curves S1 ˆ pαl1 X cq, S1 ˆ
pαl2 X cq, and S1 ˆ pβ X c1q (there are two intersection points of β with c1).
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The curve η together with δ Ă Σ2 gives rise to a simple closed curve η1 Ă R1.
See Figure 6. Hence, we get a new marked closure D1 “ pY 1, R1,m1, r1, η1q.
The Floer excision results in a cobordism W from Y \ YΣ to Y 1 and a map

HMpW q : HMpY \ YΣ|R Y Σ2; ΓηYδq Ñ HMpY 1|R1; Γη1 q.

Let a P HMpYΣ|Σ2; Γδq – R be a generator. Then, we can define

ι : HMpY |R; Γηq Ñ HMpY 1|R1; Γη1 q

as ιpxq “ xb a and we know that

ΦD,D1 “ HMpW q ˝ ι,

by the definition of Canonical maps in Baldwin and Sivek [1].
The surface S̄P 1 Ă Y 1 can also be obtained from the balanced pairing P 1,

which is obtained by performing a cut and glue operation on P associated
to the two indices l1 and l2. Just as we did in the proof of Proposition 3.9,
we conclude that, for all i,

ΦD,D1 pSHMpD,P, iqq “ SHMpD1,P 1, iq.

This concludes the proof of Lemma 3.17. ˝

Definition 3.18. Two balanced pairings P,P 1 are called connected if there
is a sequence of balanced pairings

P0 “ P,P1, . . . ,Pn “ P 1,

so that, for all i “ 0, 1, . . . , n´ 1, Pi and Pi`1 are equivalent.

Lemma 3.19. For any odd n, the two special balanced pairings Pg and Ps

in Example 3.14 are connected to each other.

Proof. In Example 3.16, we have shown that

tp1, 2q, p3, 6q, p4, 5qu and tp1, 4q, p2, 5q, p3, 6qu

are equivalent. In a similar way, we can also show that

tp1, 6q, p2, 4q, p3, 5qu and tp1, 4q, p2, 5q, p3, 6qu
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are equivalent. So,

tp1, 2q, p3, 6q, p4, 5qu and tp1, 6q, p2, 4q, p3, 5qu

are connected. The later one can be thought of being obtained from the
former one by sliding the arc α1, which originally joined the points p1 and
p2, over the two arcs α2 and α3.

If we ignore the pairs p2, 4q and p3, 5q and look at tp1, 6q, p7, 10q, p8, 9qu,
then the above argument applies again and we can connect it to tp1, 10q,
p6, 9q, p7, 8qu, and this can be thought of further sliding α1 over α4 and α5.
We can repeat this step for many times.

Case 1. If n is of the form 4k ` 1. In this case, we can slide α1 over to
join p1 with p4k`2. Hence, P

g is connected to a new balanced pairing

P 1 “tp1, n` 1 “ 4k ` 2q, p2, 5q, p3, 4q, . . . , p4k ´ 2, 4k ` 1q, p4k ´ 1, 4kq,

p4k ` 3, 4k ` 6q, p4k ` 4, 4k ` 5q, . . . , p8k ´ 1, 8k ` 2q, p8k, 8k ` 1qu.

Then, we can perform cut and glue operations on pairs p4l ´ 2, 4l ` 1q and
p4l ´ 2 ` n, 4l ` 1 ` nq as well as on pairs p4l ´ 1, 4lq and p4l ´ 1 ` n, 4l `
nq, for all 1 ď l ď k. The result of these operations is nothing but the special
balanced paring Ps introduced in Example 3.14. Hence, we are done.

Case 2. If n is of the form 4k ` 3. In this case, we can slide α1 to join
p1 with p4k`2, so the balanced pairing Pg is connected to

P 1 “tp1, 4k ` 2q, p2, 5q, p3, 4q, . . . , p4k ´ 2, 4k ` 1q, p4k ´ 1, 4kq,

p4k ` 3, 4k ` 6q, p4k ` 4, 4k ` 5q, . . . , p8k ` 3, 8k ` 6q, p8k ` 4, 8k ` 5qu.

Perform another cut and glue operation on pairs p1, 4k ` 2q and p4k `
4, 4k ` 5q, then we get a new balanced pairing

P 1 “tp1, n` 1 “ 4k ` 4q, p2, 5q, p3, 4q, . . . , p4k ´ 2, 4k ` 1q, p4k ´ 1, 4kq,

p4k ` 2, 4k ` 5q, p4k ` 3, 4k ` 6q, . . . , p8k ` 3, 8k ` 6q, p8k ` 4, 8k ` 5qu.

There is, then, an arc joining p4k`2 and p4k`5, and we can slide it over to
join p4k`5 and p2. Similarly, there is an arc joining p4k`3 with p4k`6, and we
can slide it over to join p4k`3 with p8k`6. Then, P

g is connected to a new
balanced pairing

P2 “tp1, n` 1 “ 4k ` 4q, p2, n` 2 “ 4k ` 5q, pn “ 4k ` 3, 2n “ 8k ` 6q,

p3, 6q, p4, 5q . . . p4k ´ 1, 4k ` 2q, p4k, 4k ` 1q

p4k ` 6, 4k ` 9q, p4k ` 7, 4k ` 8q, . . . , p8k ` 2, 8k ` 5q, p8k ` 3, 8k ` 4qu.
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Finally, we can perform cut and glue operations on pairs p4l ´ 1, 4l ` 2q
and p4l ´ 1 ` n, 4l ` 2 ` nq as well as on p4l, 4l ` 1q and p4l ` n, 4l ` 1 ` nq,
for all 1 ď l ď k, then the final result is Ps, and we conclude the proof of
Lemma 3.19. ˝

Corollary 3.20. The definition of the grading on SHMpM,γq is indepen-
dent of choices of type I.

Proof. It is straightforward to check that if we use the special balanced
pairing Ps, then the surface rSPs is the same for all possible choices of the
starting point p1. Hence the corollary follows from Lemma 3.17 and Lemma
3.19. ˝

Remark 3.21. We want to use Pg in the definition of grading because it is
more convenient to use this construction to discuss about the positive and
negative stabilizations (see Definition 3.1), as we will see in Subsection 4.

Though we only discussed some special pairings, we would like to make
the following conjecture. Note the concept of balancedness, equivalence, con-
nectedness defined above can be reached in a purely combinatorial way and
is independent of all the topological input.

Conjecture 3.22. Any two balanced pairings of the same size n, where n
is odd, are connected.

4. The grading shifting property

4.1. A naive version

Suppose pM,γq is a balanced sutured manifold and suppose S is a properly
embedded surface in M with a connected boundary. In Definition 3.3, we
constructed a grading on SHMpM,γq associated to S, when |BS X γ| “ 2n
with n being odd. If n is even, then we introduce, in Definition 3.1, positive
and negative stabilizations S˘ that both increase n by 1. It is a natural
question to ask how the gradings associated to S` and S´ are related to
each other. The following proposition is a first answer to this question.

Proposition 4.1. Suppose pM,γq is a balanced sutured manifold, S Ă M

is a properly embedded surface with a connected boundary, and that BS in-
tersects γ transversely at 2n points with n “ 2k ą 0 odd. Suppose further
that the balanced sutured manifold obtained by decomposing pM,γq along S
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is taut. Let S` and S´ are the positive and negative stabilizations of S,
respectively. Suppose S is of genus g and let

gc “ g ` k.

Then, we have

SHMpM,γ, S`, gcq Ă SHMpM,γ, S´, gc ´ 1q.

We need the following lemma before proving Proposition 4.1.

Lemma 4.2 (Kronheimer and Mrowka [21]). Suppose pM,γq is a bal-
anced sutured manifold and S is properly embedded surface inside M so that
BS is connected and |BS X γ| “ 2n with n odd. Let

gc “
n´ 1

2
` gpSq,

then we know that

SHMpM,γ, S, iq “ 0

for all i ą gc, and

SHMpM,γ, S, gcq – SHMpM 1, γ1q,

where pM 1, γ1q is the balanced sutured manifold obtained from pM,γq by de-
composing along S.

Proof. This is a reformulation of Proposition 6.9 in Kronheimer and Mrowka
[21], using our definition of the gradings in Definition 3.3. The fact that
SHMpM,γ, S, iq “ 0 for all i ą gc follows directly from the adjunction in-
equality in Lemma 2.7. ˝

Proof of Proposition 4.1. If we have two different negative stabilizations S´
1

and S´
2 , then we know from Lemma 3.2 and Lemma 4.2 that

SHMpM,γ, S`
1 , gcq – SHMpM 1, γ1q – SHMpM,γ, S`

2 , gcq,

where pM 1, γ1q is obtained from pM,γq by performing a sutured manifold
decomposition along S. Hence, we can choose which negative stabilization
to work with.

Suppose the intersection points of BS X γ are labeled as p1, . . . , p2n ac-
cording to the orientation of BS. When labeling the points, we need to pick
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a suitable p1 so that the new pair of intersection points created by the pos-
itive or negative stabilization lie between p3 and p4. Let β

1 Ă BS be part of
BS so that Bβ1 “ tp3, p4u and β1 contains no other intersection points pj for
j ‰ 3, 4. Let β Ă S be a properly embedded arc so that Bβ “ tp3, p4u, β and
β1 co-bound a disk on D, and when performing positive and negative stabi-
lizations, the isotopy on S can be fixed outside the disk D. Now if we use the
same starting point p1 to label BS˘ X γ, then the new pair of intersection
points are both p4 and p5 in the two cases. See Figure 7.

γ

W

S

BM

γ

BM

S

p3

p4

D

β

p3

p6

Figure 7: A negative stabilization of S. Positive stabilizations are similar.

Suppose T is an auxiliary surface for pM,γq of large enough genus. When
constructing the grading associated to S˘, we need to choose linearly inde-
pendent arcs α1, α2, α

˘
3 , α4 . . . , αn`1 Ă T and the special pairing Pg, which

is defined in Example 3.14, to make it clear what are the end points of the
arcs αi. Here, α

˘
3 correspond to the different surfaces S˘, while T and all

other arcs αi, for i ‰ 3, can be chosen to be the same for both S` and
S´. In the pre-closure ĂM “ M Y r´1, 1s ˆ T , we have two surfaces rS` and
rS´. After picking suitable gluing diffeomorphisms h˘, we get two marked
closures

D` “ pY `, R`, r`,m`, η`q and D´ “ pY ´, R´, r´,m´, η´q

so that there are closed surfaces S̄` and S̄` inside Y ` and Y ´, respectively,
and the gradings associated to S` and S´ are defined by looking at the
pairings between the first Chern classes of the spinc structures on Y ` and
Y ´ with the fundamental classes of S̄` and S̄´, respectively. Note the genus
of S̄` and S̄´ are both gc ` 1 “ g ` k ` 1.
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From Proposition 3.8, we know that the canonical map ΦD`,´D´ can be
interpreted in terms of a Floer excision cobordism W from Y ` \ Y h, where
Y h is the mapping torus of h “ ph`q´1 ˝ h´, to Y ´.

We can construct a special closed surface of genus 2 as follows. Recall
we have an arc β Ă S, and since the isotopies for positive or negative sta-
bilizations are supported in the interior of the disk D, β also lies in S̄˘.
Let δ “ β Y pα2 ˆ t0uq Ă S̄˘ be a closed curve. Then, the curve δ cuts each
of S̄˘ into two parts. One part contains SzintpDq and the other part is a
connected oriented surface T˘ Ă S̄˘ of genus 1 and with boundary δ. Inside
W , we can define

Σ2 “ T` Y r0, 1s ˆ δ Y ´T´ Ă W.

It is straightforward to see that, in H2pW q,

rS̄`s “ rS̄´s ` rΣ2s.

Hence, by the adjunction inequality in dimension 4, which is a 4-dimensional
analogue of Lemma 2.7, we have

ΦD`,D´pSHMpD`, S`, gcqq Ă SHMpD, S´, gc ` 1q

‘ SHMpD´, S´, gcq

‘ SHMpD´, S´, gc ´ 1q.

The adjunction inequality also implies that SHMpD, S´, gc ` 1q “ 0. If we
decompose pM,γq along S´, and suppose pM2, γ2q is the resulting balanced
sutured manifold, then, by Lemma 3.2, R˘pγ2q is compressible and so

SHMpD´, S´, gcq – SHMpM2, γ2q “ 0.

The first isomorphism follows from Lemma 4.2 and the second equality fol-
lows again from the adjunction inequality in Lemma 2.7.

Hence, the only possibility left is

ΦD`,D´ pSHMpD`, S`, gcqq Ă SHMpD´, S´, gc ´ 1q

and we we conclude the proof of Proposition 4.1. ˝

4.2. Supporting spinc structures

Let Y be a connected closed oriented 3-manifold. Suppose K Ă Y is a null-
homologous knot, and S Ă Y is a Seifert surface of K. The surface S then
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induces a framing on the knot complement Y pKq “ Y zNpKq. Let µ be the
meridian and λ “ S X BY pKq be the longitude. We can regard S as a prop-
erly embedded surface inside Y pKq. Pick γ Ă BY pKq be a suture having
two components. We further assume the following: if we write the slope of γ
as p{q (meridian/longitude), we require that |p| ą 1. The surface S induces
gradings on SHMpM,γq, after perturbations if necessary. In this and next
subsection, we will study how different gradings associated to perturbations
of S are related with each other.

Suppose psY , sRq is a closure of pY pKq, γq, as in Definition 2.2. In this
subsection, we want to study the set of supporting spinc structures on sY
which is introduced in Definition 2.4. In particular, we prove the following
proposition.

Proposition 4.3. Suppose after possible perturbation S intersects γ trans-
versely at 2n points with n even. Suppose psY , sRq is a closure of pY pKq, γq so
that S extends to a closed surface sS Ă sY as in the construction of gradings
in Section 3. Let s1, s2 P S˚psY | sRq be two supporting spinc structures on sY .
Then, there is a 1-cycle x inside Y pKq, so that

P.D.c1ps1q ´ P.D.c1ps2q “ rxs P H1psY ;Qq.

Note the cycle is contained in Y pKq but the identity is on the whole sY .

Remark 4.4. Here we only need Q coefficients since our aim is to study
the grading which arises from the pairing of the first Chern classes of sup-
porting spinc structures with the fundamental classes of some surfaces. So
Q is enough for this purpose.

To prove Proposition 4.3, we need to understand the homology of the
closures of pY pKq, γq as well as the homology of the excision cobordisms
which induces the canonical map as in Subsection 3.2 better. Let us start
with an alternative description of the closures of pY pKq, γq.

Let Σg be a closed oriented connected surface of large enough genus
g. Its first homology is generated by the classes ra1s, rb1s, . . . , rags, rbgs, as
depicted in Figure 8.

Let T “ ΣgzintpNpa1qq be a surface obtained from Σg by cutting Σg
open along a1, then T can be viewed as an auxiliary surface for pY pKq, γq.
Let

rY “ Y pKq Y r´1, 1s ˆ T
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a1 ag

b1 bg. . .

Figure 8: The surface Σg.

be a pre-closure of pM,γq, and let

B rY “ R` YR´.

If we choose a special gluing diffeomorphism h0 : R` Ñ R´ so that
hTˆt1u “ id, then we get a special marked closure

D0 “ pY 0,Σg, r
0,m0, ηq.

Similar to the closures described in Section 5.1 in [21], the closure pY 0, Rq
can be achieved as follows: Let Σg be the surface as in Figure 8, and let
YΣ “ S1 ˆ Σg. By abusing the notations, use a1 to also denote the curve
t1u ˆ α1 Ă YΣ. Let Npa1q be a tubular neighborhood of a1 Ă YΣ. Note a1 Ă
t1u ˆ Σg, so there is a framing on BNpa1q induced by t1u ˆ Σg. Let λa, µa
be the longitude and meridian, respectively.

Then, we have

Y 0 “ Y pKq Y
φ

pYΣzintpNpa1qqq.

Here,

φ : BNpa1q Ñ BY pKq

sends the two copies of λa to the suture γ. Note there are canonical ways to
identify R˘ with Σg. So, in the marked closure D0, we have R “ Σg.

Lemma 4.5. The conclusion of Proposition 4.3 is true for Y 0, despite of
the fact that S may not extend to Y 0.

Proof. From the Mayer-Vietoris sequece, we know that there is an exact
sequence

H1pT 2;Qq Ñ H1pY pKq;Qq ‘H1pYΣzintpNpa1qq;Qq Ñ H1pY 0;Qq Ñ 0,



✐

✐

“2-Li” — 2022/5/27 — 1:30 — page 1384 — #46
✐

✐

✐

✐

✐

✐

1384 Zhenkun Li

where T 2 “ BM “ BpYΣzintpNpa1qqq. Hence, we conclude that

H1pY 0;Qq “ H1pY pKq;Qq ‘H1pYΣzintpNpa1qq;Qq{ „,

where „ is the relation induced by the gluing map φ :

rλas „ φ˚prλasq, rµas „ φ˚prµasq.

A direct calculation shows that

H1pYΣzintpNpa1qq;Qq “ xra1s, rb1s, . . . , rags, rbgs, rs0sy,

where s0 corresponds to the S1 direction in YΣ “ S1 ˆ Σg, and

(8) rµas “ 0 P H1pYΣzintpNpa1qq;Qq.

Hence, we can write

(9) H1pY 0;Qq “ H1pY pKq;Qq ‘ xrb1s, ra2s, rb2s, . . . , rags, rbgs, rs0sy.

This is because ra1s is absorbed into H1pY pKq;Qq.
Suppose s P S˚pY 0|Σgq, then we can express P.D.c1psq in terms of the

above basis. The coefficient of rss can be fixed by the evaluation

c1psqrΣgs “ 2g ´ 2.

There are no rb1s, ra2s, rb2s . . . rags, rbgs terms, since we can apply the ad-
junction inequality in Lemma 2.7 to tori S1 ˆ a1, S

1 ˆ b2 . . . , S
1 ˆ ag Ă Y 0

to rule out those classes. The rest of the terms must then lie in H1pY pKq;Qq.
So, if we look at the difference (of the Poincaré dual of their first Chern class)
of two supporting spinc structures, it must lie in Y pKq. ˝

Remark 4.6. An error in the previous version of this paper is that previ-
ously we regard rµas as a non-zero element in H1pYΣzintpNpa1qq;Qq, contra-
dicting (8). The reason why (8) is true is that there is a torus S1 ˆ b1 Ă YΣ
which intersects a1 transversely at one point. Hence in the complement
YΣzintpNpa1qq, S1 ˆ b1 becomes a once punctured torus whose boundary
is exactly µ1.
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Next, we deal with general closures of pY pKq, γq. As above, we have the
pre-closure

rY “ Y pKq Y r´1, 1s ˆ T,

where T “ ΣgzNpa1q. Also, recall

B ĂM “ R` YR´.

Note, as in the above discussion, there are canonical ways to identify R`

and R´ with Σg. We can pick any orientation preserving diffeomorphism
h : R` Ñ R´ to get a closure psY ,Σgq of pY pKq, γq, or a marked closure

D “ psY ,Σg, r,m, ηq.

In particular, the special marked closure D0 in Lemma 4.5 corresponds to
taking h “ h0 “ id.

Let Y h be the mapping torus of the diffeomorphism h : Σg Ñ Σg, then
we can reinterpret sY as

sY “ Y pKq Yφ pY hzintpNpa1qqq.

From Proposition 3.8, we know that the canonical map ΦD0,D can be ob-
tained from a cobordism W from Y 0 \ Y h to sY . The cobordism W arises
from the Floer excision as in Subsection 2.2.

Next, we deal with the class rµas coming from the meridian of a1. In
general, we don’t know if the class ra1s is trivial inside H1pY hq or not, so we
also don’t know if rµas is trivial or not. However, when sY satisfies the hy-
pothesis of Proposition 4.3, we do know more. In the rest of this subsection,
we always assume that sY satisfies the hypothesis of Proposition 4.3.

Lemma 4.7. We know that

rµas ‰ 0 P H1psY ;Qq, and ra1s “ 0 P H1psY ;Qq.

Proof. Note we have

sY “ Y pKq Yφ pY hzintpNpa1qqq,

where the gluing map φ maps a1 to a component of the suture γ. Re-
call we have assumed that the slope of the suture is p{q with |p| ą 1, so
φ˚pra1sq “ prµs ` qrλs. Hence, we know that φ˚prµasq “ p1rµs ` q1rλs with
|p1| ą 1. Note inside sY , we have rµs ¨ r sSs “ 1, and rλs “ 0, this means that
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rµas ‰ 0. If ra1s ‰ 0, then there is a closed oriented surface Σ Ă sY so that
ra1s ¨ rΣs ‰ 0. Then, the boundary of Σ X Y hzintpNpa1qq rµas represent a
class which equals non-zero multiple of rµas. This implies that rµas “ 0 P
H1psY ;Qq which is absurd. ˝

With Lemma 4.7, the computation of the first homologies of sY , Y h and
W are straightforward, and we can describe them as follows.

(10) H1psY q “ H1pY pKq;Qq ‘ xrµas, ra1s, rb1s, . . . , rags, rbgs, rssy{ „φ,h

(11) H1pY h;Qq “ xra1s, rb1s . . . , rags, rbgs, rshsy{ „h

(12)
H1pW ;Qq “ H1pY pKq;Qq ‘ xra1s, rb1s, . . . , rags, rbgs, rs0s, rshsy{ „φ,h .

Here, s is a circle inside Y which intersects Σg once. We can isotope h so
that h has a fixed point p P Σg, then, inside Y , there is a circle s “ tpu ˆ S1.
The class sh is similar. The relations „φ,h are

ra1s „ φ˚pra1sq, rµas „ φ˚prµasq, rais „ hpraisq, rbis „ hprbisq.

The relations „h are

rais „ hpraisq, rbis „ hprbisq.

Note rµas “ 0 P H1pW ;Qq, since rµas “ 0 P H1pY 0;Qq.
From (10) and (12), we know that

Lemma 4.8. Suppose i : sY ãÑ W is the inclusion, and let

i˚ : H1psY q Ñ H1pW ;Qq

be the induced map on first homology. Then, we have

kerpi˚q “ xrµasy Ă H1psY q

Proof of Proposition 4.3. Suppose sY is a closure satisfying the hypothesis
of the proposition. Let Y 0, Y h, and W be chosen as above. From Lemma
2.6 we know that there is a unique supporting spinc structure on Y h, which
we denote by sh. Suppose s1 and s2 are two supporting spinc structures on
sY . Then, from the fact that W induces an isomorphism and the nature of
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the cobordism map in monopole Floer homology, we know that there are
two supporting spinc structures s01 and s02 on Y 0, so that

P.D.c1ps1q “ P.D.c1ps01q ` P.D.c1pshq P H1pW ;Qq,

and

P.D.c1ps2q “ P.D.c1ps02q ` P.D.c1pshq P H1pW ;Qq.

Thus, we know that

P.D.c1ps1q ´ P.D.c1ps2q “ P.D.c1ps01q ´ P.D.c1ps02q P H1pW ;Qq.

From Lemma 4.5, we know that there is a 1-cycle x inside Y pKq so that

P.D.c1ps01q ´ P.D.c1ps02q “ rxs P H1pY 0;Qq.

We then conclude that

P.D.c1ps1q ´ P.D.c1ps2q P rxs ` kerpi˚q Ă H1psY ;Qq.

Then, the proposition follows from Lemma 4.8. ˝

4.3. The grading shifting property

In this subsection, we prove the following proposition.

Proposition 4.9. Suppose pY pKq, γq is the balanced sutured manifold and
S is a Seifert surface of the knot K, both as described in Subsection 4.2.
Suppose further that S has minimal genus among its homology class and
has minimal intersection with γ so that |BS X γ| “ 2n ą 0. Suppose further
that decomposing pY pKq, γq along S and ´S are both taut. Then, for any
p, k, l P Z such that n` p is odd, we have

SHMpY pKq, γ, Sp, lq “ SHMpY pKq, γ, Sp`2k, l ` kq.

Note Sp is a stabilization of S as introduced in Definition 3.1, and, in par-
ticular, S0 “ S.

Proof. Suppose we have chosen Sp and Sp`2k as two stabilizations of S.
Claim 1. There is a fixed integer l0 so that for any l P Z, we have

SHMpY pKq, γ, Sp, lq “ SHMpY pKq, γ, Sp`2k, l ` l0q.
˝
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To prove this claim, we start with two disjoint copies of S. Since the
perturbation can be made in an arbitrary neighborhood of S, we can perform
p perturbations on one copy and p` 2k perturbations on the other. The
result is two surfaces Sp and Sp`2k embedded disjointly into M .

Next, we can carry out the construction of gradings in Section 3. We can
apply the construction in Subsection 5.1 on both Sp and Sp`2k simultane-
ously and obtain a closure sY with two surfaces S̄p and S̄p`2k extending Sp

and Sp`2k, respectively.
Suppose s1 and s2 are two supporting spinc structures on sY , then, by

Proposition 4.3, there is a 1-cycle x inside Y pKq so that

P.D.c1ps1q ´ P.D.c1ps2q “ rxs P H1psY ;Qq.

Since sSp and sSp`2k are the same inside Y pKq, we conclude that

rxs ¨ pr sSs ´ r sS2ksq “ 0,

and thus

c1ps1qr sSs ´ .c1ps1qr sS2ks “ c1ps2qr sSs ´ c1ps2qr sS2ks.

Note the above equality is equivalent to the existence of l0.
Claim 2. We have l0 “ k.
Case 1. We have p ą 0 and p` 2k ą 0. From Lemma 3.2, we know that

if we decompose pM,γq along both Sp and Sp`2k, we obtain the same taut
balanced sutured manifold pM 1, γ1q. From Lemma 4.2, we conclude that

SHMpY pKq, γ, Sp, gcpS
pqq – SHMpM 1, γ1q

– SHMpY pKq, γ, Sp`2kq, gcpS
p`2kq,

where

gcpS
pq “

p´ χpSq

2
and gcpS

pq “
p` 2k ´ χpSq

2
.

Lemma 4.2 also states that gcpSpq and gcpSp`2kq are the top non-vanishing
grading with respect to the grading induced by each surface. Hence, from
Claim 1 we conclude that l0 “ k.

Case 2. We have p ă 0 and p` 2k ă 0. The argument is similar as in
Case 1, though working with ´S instead of S.

Case 3. We have tp, p` 2ku “ t´1, 1u. We can apply Claim 1 and
Proposition 4.1.
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Case 4. We have p and p` 2k to be of different sign. This is a combi-
nation of Case 1, 2, and 3 and Claim 1.

This concludes the proof of Proposition 5.5.

4.4. Floer homologies on a sutured solid torus

As a first application of the grading shifting property, we compute the su-
tured monopole Floer homology of any sutured solid tori. A similar result
in sutured Heegaard Floer theory can be found in Juhász [18].

Suppose V “ S1 ˆD2 is a solid torus. Let λ denote a longitude S1 ˆ ttu
where t P BD2 and let µ denote a meridian tsu ˆ BD2 where s P S1. Suppose
further γ is a suture on V so that pV, γq is a balanced sutured manifold.
Then, γ is parametrized by two quantities, n and s, where 2n is the number
of components of γ and s is the slope of the suture. In this subsection, we
write the suture γ as γnpq,´pq. We write the slope s as pq,´pq, and this is

to keep our notations consistent with the ones in Honda [15]. Note pq,´pq
means going around longitude ´p times and meridian q times. We always
assume that p ě 0.

Proposition 4.10. Suppose pV, γ2pq,´pqq is defined as in the above para-
graph. Then, we have

SHMp´V,´γ2pq,´pqq “ Rp.

Proof. If p “ |q|, then p “ ˘q “ 1, since they are co-prime. Then, pV, γ2p1,˘1qq
is diffeomorphic to a product sutured manifold pAˆ r´1, 1s, BAˆ t0uq, where
A is an annulus. Thus, we know

SHMp´V,´γ2p1,´1qq – R.

From now on, we assume that p ą q ą 0. If not we can achieve this
assumption by applying diffeomorphisms of the solid torus V . We want to
re-interpret the by-pass exact triangle as follows: We have a basic by-pass
exact triangles

(13)

SHMp´V,´γ2p1,´1qq

ψ´,2

))

SHMp´V,´γ2p1,0qq

ψ´,1

55

SHMp´V,´γ2p0,´1qqψ´,0

oo
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Here ψ´,0 “ ψ8
´,0, ψ´,1 “ ψ0

´,1, and ψ´,2 “ ψ1
´,8, under the notations in

(5).
Recall, from Subsection 2.3, that the map ψ´,1 (as well as the other two)

is interpreted as a gluing map: Suppose we have p´V,´γ2p1,0qq and an iden-

tification T 2 “ S1 ˆ BD2, then we can glue r0, 1s ˆ T 2 to V via the identifi-
cation id : BV “ S1 ˆ BD2 “

ÝÑ t0u ˆ T 2. Suppose t0u ˆ T 2 is equipped with
the suture γ2p1,0q, and T

2 ˆ t1u is equipped with the suture γ2p1,´1q, then we

can identify pV, γ2p1,´1qq with pV Y r0, 1s ˆ T 2, γ2p1,´1qq. There exists a com-

patible contact structure ξ´,1 on pr0, 1s ˆ T 2, γ2p1,0q Y γ2p1,´1qq so that we have

ψ´,0 “ Φξ´,0
: SHMp´V,´γ2p1,0qq Ñ SHMp´V,´γ2p1,´1qq.

When dealing with other sutures, we can also glue pT 2 ˆ r0, 1s, γ2p1,0q Y

γ2p1,´1qq to V , but along a diffeomorphism

g : t0u ˆ T 2 Ñ BV,

instead of the identity map. Such a map needs to be orientation preserving
and, hence, is parametrized by an element in SL2pZq. We can pick the map
g corresponding to the matrix

A “

ˆ
q ´ q1 ´q1

p1 ´ p p1

˙
P SL2pZq,

where p1q ´ pq1 “ 1, p1 ď p, q1 ď q, q2 “ p´ p1, and p2 “ p´ p1. (Such p1, q1,

p2, q2 are unique.)
Then, the suture γ2p1,0q on T 2 ˆ t0u is glued to γ2pq,´pq on BV and the

suture γ2p1,´1q on T 2 ˆ t1u now becomes the suture γ2pq1,´p1q. As in Formula

(13), they still fit into an exact triangle

(14)

SHMp´V,´γ2pq,´pqq

ψ´,2

))

SHMp´V,´γ2pq2,´p2qq

ψ´,1

55

SHMp´V,´γ2pq1,´p1qqψ´,0

oo

We claim that ψ´,0 “ 0. Let Dp be a meridian disk of V which intersects
γ2pq,´pq at 2p points, then, from a similar argument as in Proposition 5.5
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(which we will prove later), we have

ψ´,0pSHMp´V,´γ2pq1,´p1q, D
´pp´p1q
p1 , iqq Ă SHMp´V,´γ2pq2,´p2q, D

`pp´p2q
p2 , iq

for any i P Z.
We only deal with the case when p1 is odd and p2 is even. Other cases

are similar. From the construction of the grading in Definition 3.3, we know
that there is a suitable marked closure Dp1 “ pYp1 , R, r,m, ηq and a closed
surface D̄p1 Ă Yp1 so that the grading is defined via the evaluations of the
first Chern classes of spinc structures on the fundamental class of D̄p1 . From
the construction, we know that

χpD̄p1 q “ χpDp1 q ´ p1 “ 1 ´ p1.

Hence, the adjunction inequality in Lemma 2.7 implies that

SHMp´V,´γ2pq1,´p1q, Dp1 , iq “ 0

if i ă 1´p1

2
. Then, from the grading shifting property in Proposition 4.9, we

know that

SHMp´V,´γ2pq1,´p1q, D
´p2

p1 , iq “ SHMp´V,´γ2pq1,´p1q, Dp1 , i` p
p2

2
qq.

Thus, we know

(15) SHMp´V,´γ2pq1,´p1q, D
´p2

p1 , iq “ 0

if i ă 1´p1`p2

2
. Note, by definition, p2 “ p´ p1.

The above argument for Dp1 applies to D`
p2 as well. Note p2 is assumed to

be even, so we need to perform a positive stabilization on Dp2 to construct
the grading. The adjunction inequality in Lemma 2.7 again implies that

(16) SHMp´V,´γ2pq2,´p2q, D
`
p2 , iq “ 0

if i ą p2

2
. However, from Lemma 4.2, we know that

SHMp´V,´γ2pq2,´p2q, D
`
p2 ,

p2

2
q – SHMpM 1, γ1q,
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where pM 1, γ1q is the result of doing a sutured manifold decomposition on
p´V,´γ2pq2,´p2qq along the surface D`

p2 . From Lemma 3.2, we know that

(17) SHMp´V,´γ2pq2,´p2q, D
`
p2 ,

p2

2
q – SHMpM 1, γ1q “ 0.

The grading shifting property in Proposition 4.9, then, implies

SHMp´V,´γ2pq2,´p2q, D
`p1

p2 , iq “ SHMp´V,´γ2pq2,´p2q, D
`
p2 , i´

p1 ´ 1

2
q.

The above equality, together with (16) and (17), implies that

SHMp´V,´γ2pq2,´p2q, D
`p1

p2 , iq “ 0

if i ě 1´p1`p2

2
. Compare this with (15), we can see that ψ´,0 “ 0.

Once we conclude that ψ´,0 “ 0, we can compute SHMp´V,´γ2pq,´pqq by
the induction, and Proposition 4.10 follows. ˝

Remark 4.11. As in Honda [15], the two slopes pq1,´p1q and pq2,´p2q can
be written out explicitly in terms of the continued fraction of pq,´pq. Note
we have assumed p ą q. Suppose

´
p

q
“ r1 ´

1

r2 ´ 1
r3´...

,

where it is a finite continued fraction, and rj ă ´1 for all j. We can write

(18) ´
p

q
“ rr1, r2, . . . , rks.

Under this notation, we have

´
p1

q1
“ rr1, r2 . . . , rk´1s, ´

p2

q2
“ rr1, r2 . . . , rk´1 ` 1s,

and in the above notation, we identify rr1, . . . , rj´1, rj ,´1s with rr1, . . . ,
rj´1, rj ` 1s.

Now we deal with the general sutures γnpq,´pq for n ą 1. There are two

types by-passes relating pV, γ2n`2
pq,´pqq and pV, γ2npq,´pqq. We call them positive

and negative by-passes according to Figure 9. They give rise to by-pass exact
triangles:
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(19)

SHMp´V,´γ2n`2
pq,´pqq

ψn`1

˘,n // SHMp´V,´γ2npq,´pqq

ψn
˘,nuu

SHMp´V,´γ2npq,´pqq

ψn
˘,n`1

ii

Positive by-passes Negative by-passes

Figure 9: The positive and negative by-passes.

Remark 4.12. Unlike the case of two sutures where there are exactly two
different possibilities of by-passes, in the case where γ has more than two
components, positive and negative by-passes are not unique. Here, we just
pick two specific by-passes so that they are ’adjacent’ to each other. This is
crucial to the proof of Lemma 4.13.

Lemma 4.13. For any n P Z and slope pq,´pq, we have

ψn`1
´,n ˝ ψn`,n`1 “ ψn`1

`,n ˝ ψn´,n`1

“ id : SHMp´V,´γ2npq,´pqq Ñ SHMp´V,´γ2npq,´pqq.

Proof. We will only prove that ψn`1
´,n ˝ ψn`,n`1 “ id. The other is the similar.

From [2] or [30] we know that a by-pass attached along an arc α can be
thought of as attaching a pair of contact 1-handle and 2-handle. The contact
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one handle is attached along the two end points Bα while the contact two
handle is attached along a Legendrian curve

β “ α Y α1,

where α1 is an arc on the contact 1-handle intersecting the dividing set once.
Now ψn`1

´,n ˝ ψn`,n`1 corresponds to first attaching a by-pass along α`

and then attaching another one along α´, as in Figure 10. However, in
terms of contact handle attachments, the two pairs of handles are disjoint
from each other, so we can reverse the order of attachments: Instead, we can
first attach a by-pass along α´ and then along α`. If we attach a by-pass
along α´ first, we can see from Figure 10 that this is a trivial by-pass as
discussed in Honda [16]. In that paper, it is proved that a trivial by-pass
does not change the contact structure. From Theorem 2.15, we conclude
that a trivial by-pass induces the identity map. Then, the second by-pass
attached along α` is also trivial and, hence, again induces the identity map.
Thus, we conclude that ψn`1

´,n ˝ ψn`,n`1 “ id. ˝

Above: first attach along α´ then α`

Below: first attach along α` then α´

α`
α´

α`

α´
α´

Figure 10: Reversing the order of by-pass attachments. Bottom right pic-
ture: we can isotope α´ to this new position, where we can see directly that
the by-pass is trivial.
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Corollary 4.14. Suppose V is a solid torus and γ2npq,´pq is a suture on BV
consisting of 2n many connected simple closed curves of slope ´p{q. Then
we have

SHMp´V,´γ2npq,´pqq – Rp2n´1¨pq.

Proof. From Lemma 4.13, we know that ψn`1
˘,n is surjective while ψn˘,n`1 is

injective. Hence, we can conclude the statement by using the by-pass exact
triangles and the induction. ˝

Corollary 4.15. We have

|π0pTightpV, γ2npq,´pqqq| ě 2n´1 ¨ |r1 ` 1| ¨ ¨ ¨ ¨ ¨ |rk´1 ` 1| ¨ |rk|.

Proof. First assume n “ 1. In [15], Honda explained how to construct any
compatible tight contact structures on a sutured solid torus: First we start
with the standard tight contact structure on pV, γ2p1,´1qq. Then, we can glue k

different layers T 2 ˆ ri´ 1, is, for 1 ď i ď k, to V , so that, on T 2 ˆ ri´ 1, is,
T 2 ˆ ti´ 1u has the dividing set γ2p1,´1q, while T

2 ˆ tiu has the dividing

set γ2p1,1´riq. We glue T 2 ˆ t0u to BV via identity, while glue T 2 ˆ tiu Ă

T 2 ˆ ri, i` 1s to T 2 ˆ tiu Ă T 2 ˆ ri´ 1, is so that the dividing sets on these
two surfaces are identified.

Each layer T 2 ˆ ri´ 1, is is further decomposed into the composition of
´1 ´ ri (or ´rk for the last layer) many by-passes. There are two by-passes:
One corresponds to the map ψ´,1 in formula (14), and the other corresponds
to some ψ`,1 in a similar by-pass exact triangle. Use the inductive step as
introduced in [15], which Honda used to construct tight contact structures
on a sutured solid torus, we see that all the contact structures that Honda
constructed have distinct contact elements. Hence, there are at least |r1 `
1| ¨ ¨ ¨ ¨ ¨ |rk´1 ` 1| ¨ |rk| many different contact structures.

When n is bigger than 1, we proceed by induction. Suppose, for n “
l, there are at least ml “ 2l´1 ¨ |r1 ` 1| ¨ ¨ ¨ ¨ ¨ |rk´1 ` 1| ¨ |rk| many different
non-zero contact elements ψξ1 , . . . , ψξml

P SHMp´V, γ2lpq,´pqq. From Lemma

4.13, we know that ψl`,l`1 and ψl´,l`1 are both injective,

ψl`1
˘,l ˝ ψl˘,l`1 “ 0, and ψl`1

¯,l ˝ ψl˘,l`1 “ id.

The first equality is due to the exactness of the by-pass triangle, and the
second is again Lemma 4.13. Hence, we know that, inside SHMp´V, γ2l`2

pq,´pqq,

there are at least ml`1 “ 2l ¨ |r1 ` 1| ¨ ¨ ¨ ¨ ¨ |rk´1 ` 1| ¨ |rk| many different
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contact elements

ψl˘,l`1pφξ1q, . . . , ψl˘,l`1pφξml
q.

Hence, we are done. ˝

Remark 4.16. When n “ 1, the above argument gives an alternative way
to provide a tight lower bound of |π0pT ightpV, γ2pq,´pqqq|, which is originally

done by Honda [15].
When n ą 1, as mentioned in Remark 4.12, there are not just two by-

passes, so this lower bound, a priori, need not to be tight. However, one
could try to study the impact of all other by-pass attachments to see if we
could improve the lower bound.

Remark 4.17. We can use a meridian disk of the solid torus to define a
grading on SHMp´V,´γ2npq,´pqq. The above method is also capable of com-
puting the graded homology.

5. The direct system and the direct limit

5.1. The construction

Suppose Y is a closed oriented 3-manifold, and K Ă Y is an oriented knot
with a Seifert surface S Ă Y . Suppose further that p P K is a fixed base
point and ϕ : S1 ˆD2 ãÑ Y is an embedding as in Subsection 2.2, i.e., we
require that

ϕpS1 ˆ t0uq “ K, and ϕpt1u ˆ t0uq “ p.

Then, we have a 3-manifold with boundary Yϕ “ Y zintpimpϕqq. The Seifert
surface S induces a framing on BYϕ. We call the meridian µϕ and the longi-
tude λϕ. Let Γn,ϕ be a collection of two disjoint parallel oppositely oriented
simple closed curves on BYϕ, each of class ˘pλϕ ´ nµϕq. Then, we have a
balanced sutured manifold pYϕ,Γn,ϕq.

Suppose ϕ1 is another embedding, then we also have pYϕ1 ,Γn,ϕ1 q. Suppose
ft is the ambient isotopy defined as in Subsection 2.2, relating ϕ and ϕ1. We
have the following lemma.

Lemma 5.1. The diffeomorphism f1 is a diffeomorphism from pYϕ,Γn,ϕq
to pYϕ1 ,Γn,ϕ1 q.

Proof. It is enough to show that f1 sends the framing pµϕ, λϕq on BYϕ to
the framing pµϕ1 , λϕ1 q on BYϕ1 .
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By construction, f1 sends µϕ to µϕ1 . f1 must also preserve λϕ, since ft
is an isotopy, and λϕ can be characterized by the fact that it represents a
generator of the map

i˚ : H1pBYϕq Ñ H1pYϕq,

where i : BYϕ Ñ Yϕ is the inclusion. ˝

Corollary 5.2. There is a transitive system (of projective transitive sys-
tems)

tSHMpYϕ,Γn,ϕqu and tΨϕ,ϕ1 “ SHMpf1qu.

So, we obtain a canonical module SHMpY,K, p, nq associated to the quadru-
ple pY,K, p, nq.

Once Lemma 5.1, we can fix a knot complement to study with. Sup-
pose Y pKq “ Y zintpNpKqq be a knot complement and let λ and µ be the
longitude and meridian, respectively, with respect to the framing on BY pKq
induced by the Seifert surface S. For any n P Z`, use Γn to denote the suture
on BY pKq consisting of a pair of simple closed curves of class ˘pλ´ nµq,
and use Γ8 to denote the suture on BY pKq consisting of a pair of meridians.

Definition 5.3 (Kronheimer and Mrowka [21], or Baldwin and
Sivek [1]). Define

KHMpY,K, pq “ SHMpY pKq,Γ8q.

Definition 5.4. Define theminus version of monopole knot Floer homology
of a based knot K Ă ´Y , which is denoted by KHM´p´Y,K, pq, to be the
direct limit of the direct system

. . . Ñ SHMp´Y pKq,Γnq
ψn

´,n`1

ÝÝÝÝÑ SHMp´Y pKq,Γn`1q Ñ . . .

Here, the maps ψn´,n`1 are defined in the exact triangle (5). By Corollary
2.21, the maps tψn`,n`1unPZ`

induce a map on KHM´, which we call U :

U : KHM´p´Y,K, pq Ñ KHM´p´Y,K, pq.

Next, we construct a grading on the direct limit KHM´p´Y,K, pq. Sup-
pose Sn is the Seifert surface of K so that Sn intersects Γn at 2n points.
Then, we have the following proposition.
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Proposition 5.5. Suppose n is even, then, for any i P Z, we have

ψn˘,n`1pSHMp´Y pKq,´Γn, S
˘
n , iqq Ă SHMp´Y pKq,´Γn`1, Sn`1, iq.

Suppose n is odd, then we have for any i P Z

ψn˘,n`1pSHMp´Y pKq,´Γn, S
˘2
n , iqq Ă SHMp´Y pKq,´Γn`1, S

˘
n`1, iq.

Proof. We only prove the proposition for φn´,n`1 with n even. Other cases
are similar. In Figure 11, it is clear that the surface Sn`1 Ă pY pKq,Γnq can
also be obtained from the surface Sn by a negative stabilization:

Sn`1 “ S´
n .

λ

´µ
S3

S3 S3

S2

ψ2

´,3

ÝÝÝÑ

õ

Figure 11: The solid vertical arc represents the surface S3 “ S´
2 and the

dashed arc represents S2.
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Thus, for any i P Z, we have

SHMp´Y pKq,´Γn, S
´
n , iq “ SHMp´Y pKq,´Γn, Sn`1, iq.

For S´
n “ Sn`1 Ă pY pKq,Γnq, we can choose some auxiliary data to con-

struct a marked closure

D´
n “ pY ´

n , R, rn,mn, ηq,

so that S´
n extends to a closed surface S̄´

n Ă Y ´
n and it induces a grad-

ing on SHMp´Y pKq,´Γnq that is exactly the one associated to S´
n . (See

Definition 3.3.)
We can obtain pY pKq,Γn`1q by attaching a by-pass disjoint from Sn`1 “

S´
n . From Baldwin and Sivek [2], we know the map φn´,n`1 associated to the

by-pass can be described as follows: There is a curve β Ă pmnpY pKqqq Ă Y ´
n

so that a 0-framed Dehn surgery on β, with respect to the BY pKq framing,
will result in a 3-manifold Yn`1. Since β is disjoint from imprnq, the data R,
rn and η survive and we get a marked closure

Dn`1 “ pYn`1, R, rn`1,mn`1, ηq

which is a marked closure of pY pKq,Γn`1q. The surgery description gives
rise to a cobordism W from Y ´

n to Yn`1 and the cobordism map associated
to this cobordism induces the by-pass attaching map φn´,n`1.

It is a key observation that the surface S´
n “ Sn`1 is disjoint from the

region we attach the by-pass and, hence, is disjoint from the curve β along
which we perform the Dehn surgery. As a result, the surface S̄´

n remains as a
closed surface S̄n`1 Ă Yn`1 and induces a grading on SHMpY pKq,Γn`1q. It
is clear that the grading induced by S̄n`1 is nothing but the one associated
to the surface Sn`1 Ă pY pKq,Γn`1q as in Definition 3.3.

There is a product cobordism r0, 1s ˆ S̄´
n Ă W , from S̄´

n Ă Y ´
n to S̄n`1 Ă

Yn`1, and, thus, we conclude that

φn´,n`1pSHMpY pKq,Γn, S
´
n , iqq Ă SHMpY pKq,Γn`1, Sn`1, iq.

This concludes the proof of Proposition 5.5. ˝

The following Figures 12 and 13 are helpful for understanding how the
maps ψn`,n`1 and ψn´,n`1 change the gradings. In the figures, we take k1 “
k ` gpSq.
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k1

k1 ´ 1

k1 ´ 2

...

2 ´ k1

1 ´ k1

´k1

D´
2k D2k`1

⃝ ⃝✲

⃝ ⃝✲

⃝ ⃝✲

⃝ ⃝✲

⃝ ⃝✲

⃝

D´
2k D`

2k D2k`1

⃝ ⃝✲

⃝ ⃝✲

⃝ ⃝✲

⃝ ⃝✲

⃝ ⃝✲

⃝ ⃝

⃝

⃝

⃝

⃝

...
...

...
...

...

Figure 12: The maps φ˘ from SHMp´Y pKq,´Γ2kq to
SHMp´Y pKq,´Γ2k`1q. The map φ2k´,2k`1 is depicted on the left and

φ2k`,2k`1 on the right. They are represented by the solid arrows. The circles
⃝ denote the graded homologies. The dashed lines represent the grading
shifting when using different surfaces to construct the grading.

k1

k1 ´ 1

k1 ´ 2

...

2 ´ k1

1 ´ k1

´k1

D2k´1 D´2
2k´1 D´

2k

⃝ ⃝✲

⃝ ⃝✲

⃝ ⃝✲

⃝ ⃝✲

⃝

⃝

⃝

⃝

⃝

D2k´1 D`2
2k´1 D`

2k D´
2k

⃝

⃝ ⃝✲

⃝ ⃝✲

⃝ ⃝✲

⃝ ⃝✲

⃝

⃝

⃝

⃝

⃝

⃝

⃝

⃝

⃝

...
...

...
...

...
...

...

Figure 13: The maps φ˘ from SHMp´Y pKq,´Γ2k´1q to
SHMp´Y pKq,´Γ2kq.
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Now, we perform a grading shifting as follows:

SHMp´Y pKq,´Γn, S
τpnq
n , iqrσpnqs “ SHMp´Y pKq,´Γn, S

τpnq
n , i` σpnqq.

Here, τpnq “ ´1 if n is even and τpnq “ 0 if n is odd, and

σpnq “
n´ 1 ` τpnq

2
.

We will simply write

SHMp´Y pKq,´Γn, S
τ
nqrσs,

and the direct system becomes

. . . Ñ SHMp´Y pKq,´Γn, S
τ
nqrσs

φn
´,n`1

ÝÝÝÝÑ SHMp´Y pKq,´Γn`1, S
τ
n`1qrσs Ñ . . .

It is straightforward to check that, after the shifting, φn´,n`1 is grading pre-
serving and φn`,n`1 shifts the grading down by 1. Thus, we conclude the
following.

Proposition 5.6. If S is a Seifert surface of K Ă Y , then S induces a
grading on KHM´p´Y,K, pq, which we write as

KHM´p´Y,K, p, S, iq.

Under this grading, the map U is of degree 1.

Definition 5.7. Suppose K Ă Y is an oriented knot and S is a Seifert
surface of K. We can define the tau invariant τpY,K, Sq of K Ă Y with
respect to S as follows:

τpY,K, Sq “ ´maxti|Dx P KHM´pY,K, p, S, iq, U jx ‰ 0 for any j ě 0.u

Here the base point can be fixed arbitrarily.

Question 5.8. What properties does τpY,K, Sq have?
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5.2. Basic properties

Proposition 5.9. Suppose Y is a closed oriented 3-manifold and K Ă Y

is a knot so that there exists an embedded disk S “ D2 with BS “ K. Then

KHM´p´Y,K, pq – SHMp´pY zB3q,´δq bR RrU s.

Here, p P K is any choice of the base point. pY zB3, δq is the balanced su-
tured manifold obtained from Y by removing a 3-ball and picking one simple
closed curve on the spherical boundary as the suture.

Proof. First assume that Y “ S3, then pY zB3, δq is a product sutured mani-
fold and pY pKq,Γnq “ pV, γ2p1,´nqq, where pV, γ2p1,´nqq is the balanced sutured
manifold as defined in Subsection 4.4. From Proposition 4.10, we know that

SHMp´V,´γ2p1,´nqq – Rn.

Suppose Sn is a Seifert surface ofK that intersects Γn “ γ2p1,´nq at 2n points,
then the argument in the proof of Proposition 4.10 can be applied to calcu-
late the graded homology, and we conclude that: (Note Sn are disks when
K is the unknot.)

SHMp´V,´γ2p1,´nq, S
τ
n, iqrσs – R

for all i such that 1 ´ n ď i ď 0. Moreover, the map

ψn`,n`1 : SHMp´V,´γ2p1,´nq, S
τ
nqrσs Ñ SHMp´V,´γ2p1,´n´1q, S

τ
n`1qrσs

is of degree ´1 and is an isomorphism for all i such that 1 ´ n ď i ď 0. Thus,
we conclude that

KHM´p´S3,K, pq – RrU s.

When Y is an arbitrary 3-manifold, we know that

pY pKq,Γnq “ ppY zB3, δq \ pS3pKq, γ2p1,´nqqq Y h,

where h is a contact 1-handle, as introduced in Baldwin and Sivek [4],
which connects the two disjoint balanced sutured manifolds ppY zB3, δq and
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p´S3pKq,´γ2p1,´nqq. Thus, we know that

SHMp´Y pKq,´Γnq – SHMp´pY zB3q,´δq b p´S3pKq,´γ2p1,´nqq.

Moreover, the the above isomorphism intertwines with the maps ψn˘,n`1

on SHMp´Y pKq,´Γnq and the maps idb ψn˘,n`1 on SHMp´pY zB3q,´δq b
p´S3pKq,´γ2p1,´nqq, since the corresponding contact handle attachments are
clearly disjoint from each other. Thus, we conclude that

KHM´p´Y,K, pq – SHMp´pY zB3q,´δq b RrU s.

˝

Proposition 5.10. Suppose K Ă Y is a null-homologous knot and S is a
minimal genus Seifert surface of L. Then, the direct system stabilizes: For
any i P Z, if n ą gpSq ´ i, then we have an isomorphism

φn´,n`1 : SHMp´Y pKq,´Γn, S
τ
n, iqrσs–SHMp´Y pKq,´Γn`1, S

τ
n`1, iqrσs.

Proof. We have the following exact triangle:

SHMp´Y pKq,´Γn`1q
ψn`1

´,8 // SHMp´Y pKq,´Γ8q

ψ8
´,ntt

SHMp´Y pKq,´Γnq

ψn
´,n`1

jj

We prove the proposition under the assumption that n “ 2k is even.
The other case, when n is odd, is similar. When n is even, we know from
Proposition 5.5 that

φn´,n`1pSHMp´Y pKq,´Γn, S
´
n , jqq Ă SHMp´Y pKq,´Γn`1, Sn`1, jq.

By a similar argument, we have

φn`1
´,8pSHMp´Y pKq,´Γn`1, Sn`1, jqq Ă SHMp´Y pKq,´Γ8, S

`n
8 , jq

where S8 is a Seifert surface of K that intersects the suture Γ8 twice.
Proposition 4.9 then implies that (recall n “ 2k)

SHMp´Y pKq,´Γ8, S
`2k
8 , jq “ SHMp´Y pKq,´Γ8, S8, j ` kq.
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However, the adjunction inequality in Lemma 2.7 implies that if j ` k ą
gpSq, then

SHMp´Y pKq,´Γ8, S8, j ` kq “ 0.

Thus, for j P Z so that j ` k ą gpSq, we have

φn´,n`1 : SHMp´Y pKq,´Γn, S
´
n , jq Ñ SHMpY pKq,Γn`1, Sn`1, jq

is an isomorphism. From the way we perform the grading shifting in Propo-
sition 5.6, we know that, for any j P Z,

SHMp´Y pKq,´Γn, S
τ
n, jqrσs “ SHMp´Y pKq,´Γn, S

τ
n, j ` kq.

Thus, for the fixed grading i P Z as in the hypothesis of the proposition,
when n ą gpSq ´ i, we have pi` kq ` k ą gpSq and this implies that the
map

φn´,n`1|SHMp´Y pKq,´Γn,Sτ
n,iqrσs “ φn´,n`1|SHMp´Y pKq,´Γn,Sτ

n,i`kq

is an isomorphism. ˝

Corollary 5.11. Under the above conditions, there exists an integer N0 so
that, for any i ă N0, the U map induces an isomorphism:

KHM´p´Y,K, p, S, iq – KHM´p´Y,K, p, S, i´ 1q,

Proof. The proof is similar to that of the above proposition. ˝

Corollary 5.12. For a knot K Ă Y , a Seifert surface S of K, and a fixed
point p P K, we have

KHM´p´Y,K, p, S, iq “ 0

for i ą g, and

KHM´p´Y,K, p, S, gq – KHMp´Y,K, p, S, gq.

Here, g is the genus of the Seifert surface S, and KHMp´Y,K, p, S, gq is
defined in Definition 5.3.

Proof. The first statement that

KHM´p´Y,K, p, S, iq “ 0

for i ą g follows from the adjunction inequality in Lemma 2.7.
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For the second part of the statement, we prove the case where n “ 2k ` 1
is odd. The other case is similar.

Suppose pM 1, γ1q is obtained from pY pKq,Γnq by a sutured manifold
decomposition of Sn Ă Y pKq. It is straight forward to check that if we de-
compose pY pKq,Γ8q along S8, then we will get exactly the same balanced
sutured manifold pM 1, γ1q. Hence, from Lemma 4.2 in [21], we know that

SHMp´Y pKq,´Γn, Sn`1, gpSq ` k ` 1q – SHMpM 1, γ1q

– KHMp´Y,K, p, S8, gpSqq.

Then, the corollary follows from Proposition 5.10 and the grading shifting
we performed in Proposition 5.6. ˝

Suppose K Ă Y is a fibred knot with fibre S of genus g. Suppose pS, hq is
an open book corresponding to the fibration of K Ă Y . It supports a contact
structure ξ on Y . We call h not right-veering if there is an arc α Ă S and
one end point p P Bα so that near p Ă S, hpαq is to the left of α. See Figure
14. See Baldwin and Sivek [5] for more details.

hpαq
α

p

Figure 14: Not right-veering

Corollary 5.13. Under the above setting, if h is not right-veering, we have

KHM´p´Y,K, p, S, gq – R,

and the generator is in the kernel of the U map.

Proof. This result is the main result in Baldwin and Sivek [5]. The only
difference is that we translate it into our language involving KHM´. ˝
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Proposition 5.14. We have an exact triangle:

KHM´p´Y,K, pq
U // KHM´p´Y,K, pq

ψuu

KHMp´Y,K, pq

ψ1

ii

Proof. We will use the by-pass exact triangle

(20)

SHMp´Y pKq,´Γnq
ψn`1

`,n // SHMp´Y pKq,´Γn`1q

ψn`1

`,8tt

SHMp´Y pKq,´Γ8q

ψ8
`,n

jj

The maps tφn`,n`1unPZ`
induce the U map. By a similar argument, the maps

tφn`1
`,8uunPZ`

and tφ8
`,nunPZ`

induce the maps ψ and ψ1 in the statement of
the proposition. Then, it is formal to check that the by-pass exact triangles
(20) for all n P Z` induce the desired one as stated in the proposition. ˝

5.3. Knots representing torsion classes

In this subsection, we extend the definition of KHM´ to the case where K
is not necessarily null-homologous, but represents a torsion class in H1pY q.
Suppose Y is a closed connected oriented 3-manifold. Suppose further that
K Ă Y is an oriented knot that represents a torsion class in H1pY q. It is a
basic fact that the map

i˚ : H1pBY pKq;Qq Ñ H1pY pKq;Qq,

which is induced by the inclusion map i : BY pKq Ñ Y pKq, has a kernel of
dimension one. Thus, we can find a curve α Ă BY pKq so that α bounds
a properly embedded surface S Ă Y pKq. We always give S an orientation
so that BS “ α is oriented in a coherent way as K. This surface is usually
called a Rational Seifert surface of K. For more details, readers are referred
to Ni and Vafaee [29]. We still look at the knot complement Y pKq. On
BY pKq – T 2, there is a preferred class µ which is the meridian of K. There
is no preferred longitude class, but we can pick any oriented non-separating
simple closed curve λ on BY pKq so that rµs and rλs is an oriented basis
of H1pBY pKqq. Then, on Y pKq, we can still define the sutures Γn and Γ8,
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and there are by-pass exact triangles as in (5). Note the same formula as
in (5) holds with our new definitions of Γn and Γ8. Furthermore, Corollary
2.21 continues to hold for a similar reason, so we can make the following
definition.

Definition 5.15. Suppose K Ă Y is a knot representing a torsion class in
H1pY q and p P K is a base point. Then, define theminus version of monopole
knot Floer homology, which is denoted by KHM´p´Y,K, pq, to be the direct
limit of the direct system

. . . Ñ SHMp´Y pKq,Γnq
ψn

´,n`1

ÝÝÝÝÑ SHMp´Y pKq,Γn`1q Ñ . . .

Here, the maps ψn´,n`1 are defined in the exact triangle (5). By Corollary
2.21, the maps tψn`,n`1unPZ`

induce a map on KHM´, which we call U :

U : KHM´p´Y,K, pq Ñ KHM´p´Y,K, pq.

It is clear that Definition 5.15 is independent of the choice of the lon-
gitude λ on BY pKq. Next, we want to use the rational Seifert surface S of
K Ă Y to construct a grading on KHM´p´Y,K, pq. As in Proposition 5.6, we
need to perform a grading shifting. Instead of directly writing down the value
of the shift, we define the shift in an indirect way. Suppose, for any n P Z`,
Sn is a rational Seifert surface of K, which has the minimal possible inter-
section with the suture Γn. Suppose S

τ
n is exactly the surface Sn if |Sn X Γn|

is of the form 4k ` 2, and Sτn is obtained from Sn by performing a negative
stabilization if else. We define a grading shifting, SHMp´Y pKq,´Γn, S

τ
nqrσs,

of SHMp´Y pKq,´Γn, S
τ
nq, so that

SHMp´Y pKq,´Γn, S
τ
n, iqrσs “ SHMp´Y pKq,´Γn, S

τ
n, i` σpnqq.

Here, the value σpnq P Z is determined by the following property: The top
non-vanishing grading of SHMp´Y pKq,´Γn, S

τ
nqrσs equals g(S), the genus

of S.

Remark 5.16. Note the grading shifting we performed in Proposition 5.6
can also be described in the above way.



✐

✐

“2-Li” — 2022/5/27 — 1:30 — page 1408 — #70
✐

✐

✐

✐

✐

✐

1408 Zhenkun Li

Proposition 5.17. If S is a ration Seifert surface of K Ă Y , then S in-
duces a Z-grading on KHM´p´Y,K, pq, which we write as

KHM´p´Y,K, p, S, iq.

Under this grading, the map U is of degree l, where l is an integer depending
on the knot K Ă Y .

As we did in Subsection 5.2, we can prove that the direct system in
Definition 5.15 stabilizes.

Proposition 5.18. Suppose K Ă Y is a knot representing a torsion class
in H1pY q, and S is a rational Seifert surface of L. Then, the direct system
stabilizes: For any i P Z, there exists N so that if n ą N , then we have an
isomorphism

φn´,n`1 : SHMp´Y pKq,´Γn, S
τ
n, iqrσs–SHMp´Y pKq,´Γn`1, S

τ
n`1, iqrσs.

The most common cases we might encounter a knot which represents
a torsion first homology class is when performing Dehn surgeries. Suppose
K Ă Y is a null-homologous knot, and S is a Seifert surface of K. Let Y pKq
be the knot complement. Let λ and µ represent the longitude and meridian
on BY pKq, respectively, according to the framing induced S. We can perform
a Dehn surgery along the knot K and obtain a surgery manifold

Yφ “ Y pKq Y
φ
S1 ˆD2.

Suppose µφ “ φpt1u ˆ BD2q “ q0λ´ p0µ and λφ “ φpS1 ˆ t1uq “ r0λ´ s0µ.
This results in a surgery of slope ´p0

q0
. Now λφ and µφ form another fram-

ing on BY pKq, so that µφ is the meridian of the knot Kφ “ S1 ˆ t0u Ă Yφ.
Note Y pKq is also a knot complement of Kφ Ă Yφ and Kφ is a knot in-
side Yφ which represents a torsion class in H1pYφq. Hence, we can use the
new framing to construct a minus version of monopole knot Floer homology
KHM´p´Yφ,Kφq of pYφ,Kφq. Here, we omit the choice of base points, since
the discussion will be carried out on a fixed knot complement. We have the
following property.

Proposition 5.19. For any fixed i0 P Z, there exists N so that for any
surgery slope ´p0

q0
ă ´N , we have

KHM´p´Y,K, S, i0q – KHM´p´Yφ,Kφ, S, i0q.
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Proof. We use the framing pλ, µq intricately and write both the curve qλ´
pµ or the slope ´p

q
as pq,´pq. We use γpqλ´pµq or γpq,´pq to denote the suture

consisting of two curves of slope pq,´pq. Note, γp1,´nq “ Γn, for the notation
Γn as used in Subsection 5.1.

From the stabilization properties in Propositions 5.10 and 5.18, we know
that there exists N1 ą gpSq ´ i0 such that for any n ą N1, we have

(21) KHM´p´Y,K, S, i0q – SHMp´Y pKq,´γp1,´nq, S
τ , i0qrσs,

and

(22) KHM´p´Yφ,Kφ, S, i0q – SHMp´Y pKq,´γpλφ´nµφq, S
τ , i0qrσs.

Hence to prove the theorem, it is suffice to prove that for large enough
n and large enough surgery slope, we have

SHMp´Y pKq,´γp1,´nq, S
τ , i0qrσs(23)

– SHMp´Y pKq,´γpλφ´nµφq, S
τ , i0qrσs.

Fix an n2 ą N2, and write λφ ´ n2µφ “ qλ´ pµ. From the proof of
Proposition 4.10, we can construct two sequences of slopes tpq1

j ,´p
1
jqu and

tpq2
j ,´p

2
j qu inductively as follows: Let pq1

0,´p
1
0q “ pq,´pq, and, for any j ě 1,

suppose we have the continued fraction of pq1
j´1,´p

1
j´1q to be

pq1
j´1,´p

1
j´1q “ rr1, . . . , rk´j , rk´j`1s,

then define

pq2
j ,´p

2
j q “ rr1, . . . , rk´j , rk´j`1 ` 1s, pq1

j ,´p
1
jq “ rr1, . . . , rk´js.

Note we identify rr1, . . . , rl,´1s as rr1, . . . , rl´1, rl ` 1s.We end the sequence
when

(24) pq1
k´1,´p

1
k´1q “ rr1s “ p1, r1q.

Here r1 ď ´2 is the first term in the continued fraction of pq,´pq “ pλφ ´
n2µφq.

Remark 5.20. Note pq0,´p0q is the slope of the surgery that gives rise
to pYφ,Kφq, while pq1

0,´p
1
0q “ pq,´pq “ λφ ´ n2µφ. Also we can pick n2 as

large as we want.
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To proceed, we only carry out the proof in the case where n is odd,
and for any j, p1

j is odd and p2
j is even. Other cases are similar. Under

this assumption, we can un-package the grading shifting we performed in
Propositions 5.6 and 5.17, and to prove (23) is equivalent to proving (we
omit the surface S from the notation):

SHMp´Y pKq,´γp1,´nq, i0 `
n´ 1

2
q(25)

– SHMp´Y pKq,´γpq1
0
,´p1

0
q, i0 `

p1
0 ´ 1

2
q.

For l “ 0, . . . , k ´ 1, write

i1l “ i0 `
p1
l ´ 1

2

Claim 1. There exists an N ą 0 so that if the surgery slope ´p0
q0

ă ´N ,
then, for any l P t0, . . . , k ´ 2u, there is an isomorphism:

SHMp´Y pKq,´γpq1
l,´p

1
lq
, S, i1lq – SHMp´Y pKq,´γpq1

l`1
,´p1

l`1
q, S, i

1
l`1q.

Claim 2. There exists an N ą 0 so that if the surgery slope ´p0
q0

ă ´N ,
then we have r1 ą gpSq ´ i0.

Assuming Claim 1 and 2, we now prove the proposition. By Claim 1,
Claim 2, and Proposition 5.10, we have (note we have assumed that r1 “
´p1

k´1 is odd)

SHMp´Y pKq,´γp1,´nq, S
τ , i0qrσs

– SHMp´Y pKq,´γp1,r1q, S
τ , i0qrσs

“ SHMp´Y pKq,´γp1,´r1q, S, i0 `
´r1 ´ 1

2
q

“ SHMp´Y pKq,´γpq1
k´1

,´p1
k´1

q, S, i
1
k´1q

– SHMp´Y pKq,´γpq1
0
,´p1

0
q, S, i

1
0q

“ SHMp´Y pKq,´γpq1
0
,´p1

0
q, i0 `

p1
0 ´ 1

2
q.

Thus (25) is proved, and Proposition 5.19 follows.
To prove Claim 2, by definition, we have

(26) r1 “ ´pt
p

q
u ` 1q and

p

q
“
s0 ` n2p0

r0 ` n2q0
.
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If we choose large enough n2 (we can freely make n2 larger), then we know
that

(27) t
p

q
u ě t

p0

q0
u ´ 1.

Hence, for any surgery slope ´p0
q0

ă N “ ´pgpSq ´ i0q, Claim 2 holds.
It remains to prove Claim 1. As in Subsection 4.4, the sutures of slopes

pq1
l,´p

1
lq and pq2

l ,´p
2
l q fit into a by-pass exact triangle:

(28)

SHMp´Y pKq,´γpq1
l´1

,p1
l´1

qq
ψl,2

**

SHMp´Y pKq,´γpq2
l ,p

2
l qq

ψl,1

44

SHMp´Y pKq,´γpq1
l,p

1
lq

q
ψl,0

oo

If Y “ S3 and K is the unknot, then ψj,k “ ψ´,k for k “ 0, 1, 2 in the pre-
vious exact triangle (14). As in Subsection 4.4, for all l P t1, . . . , k ´ 1u and
j P Z, we have

ψl,0 : pSHMp´Y pKq,´γpq1
l,´p

1
lq
, S´p2

l , jq Ñ SHMp´Y pKq,´γpq2
l ,´p

2
l q, S

`p1
l , jq,

ψl,1 : SHMp´Y pKq,´γpq2
l ,´p

2
l q, S

`p1
l , jq Ñ SHMp´Y pKq,´γpq1

l´1
,´p1

l´1
q, S, jq,

ψl,2 : SHMp´Y pKq,´γpq1
l´1

,´p1
l´1

q, S, jq Ñ pSHMp´Y pKq,´γpq1
l,´p

1
lq
, S´p2

l , jq.

Note, in above formulae, we have assume that p2
l´1 is odd for all l. From

them, Claim 1 is equivalent to the fact that ψl2 is an isomorphism at the
grading

j “ i1l´1 “ i0 `
p1
l´1 ´ 1

2
,

which is further equivalent to that

(29) SHMp´Y pKq,´γpq2
l ,´p

2
l q, S

`p1
l , i1l´1q “ 0.

Note, by assumption, p2
l “ p1

l´1 ´ p1
l is even. From the grading shifting

property, Proposition 4.9, we know that (29) is equivalent to

(30) SHMp´Y pKq,´γpq2
l ,´p

2
l q, S

`, i1l´1 `
p1
l ´ 1

2
q “ 0.
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Note we have |BS` X γpq2
l ,´p

2
l q| “ 2p2

l ` 2. From (the vanishing statement
of) Lemma 4.2, we know that (30) happens if

(31) i1l´1 `
p1
l ´ 1

2
ą gpSq `

p2
l

2
.

Recall that

i1l´1 “ i0 `
p1
l´1 ´ 1

2
,

so we know that

i1l´1 `
p1
l ´ 1

2
ą gpSq `

p2
l

2

ôi0 `
p1
l´1 ´ 1

2
`
p1
l ´ 1

2
ą gpSq `

p2
l

2
ôp1

l ą gpSq ´ i0 ` 1.

Since, by (26) and (27), we have

p1
l ě p1

k´1 “ ´r1 ě t
p0

q0
u ą N.

Thus, if we pick N “ ´pgpSq ´ i0q, then (31) holds and Claim 1 follows.
This concludes the proof of Proposition 5.19. ˝

6. Instantons and knot Floer homology

6.1. Instanton Floer homology and generalized eigenspace
decompositions

Suppose Y is a closed connected oriented 3-manifold, and ω is a fixed Her-
mitian line bundle whose first Chern class c1pωq has an odd pairing with the
fundamental class of some surface. Suppose further that E is an Up2q-bundle
whose determinant line bundle Λ2E is isomorphic to ω. Let gE be the bundle
of traceless skew-hermitian endomorphisms of E, and let AE be the space
of SOp3q-connections on gE . Let GE be the group of determinant-one gauge
transformations and let BE “ AE{GE . Then, we can use the Chern-Simons
functional to construct a well defined SOp3q instanton Floer homology over
C, which we denote by IωpY q.

If x P Y is a point, then there is an action µpxq on IωpY q. The action µpxq
has eigenvalues 2 and ´2. By slightly abusing the notations, from now on we
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use IωpY q to denote only the generalized eigenspace of µpxq corresponding
to eigenvalue 2.

Suppose Σ Ă Y is a closed oriented embedded surface inside Y . Then,
there is also an action µpΣq on IωpY q. We have the following result about
the eigenvalues:

Proposition 6.1 (Kronheimer, Mrowka, [21]). If c1pωq and Σ has an
odd pairing, then the eigenvalues of the action µpKq on IωpY q belongs to the
set of even integers ranged from 2 ´ 2gpΣq to 2gpΣq ´ 2.

If Σ and Σ1 are two such embedded surfaces, then the action µpΣq
and µpΣ1q commute. Then, we can look at the simultaneous generalized
eigenspace. Similar to [21, Corollary 7.6], we can make the following defini-
tion.

Definition 6.2. Suppose we have a linear function λ : H2pY ;Zq Ñ 2Z, then
we can define

IωpY qλ “
č

σPH2pY ;Zq

ď

Ně0

kerpµpσq ´ λpσqqN .

Such a function λ is a called an eigenvalue function.

If the embedded surface Σ represents a zero class in H2pY ;Qq, then the
action µpΣq is trivial. This means that if IωpY qλ ‰ 0 then we can lift λ to a
linear map (which we will use the same notation to denote)

λ : H2pY ;Qq Ñ Q.

Thus, from now on, we regard λ as an element in H2pY ;Qq. We then have
a decomposition

IωpY q “
à

λPH2pY ;Qq

IωpY qλ.

Suppose R Ă Y is a closed oriented embedded surface inside Y , then as
we did in Definition 2.4, we can define the following.

Definition 6.3. Suppose the pair pY,Rq is as above. Then, we can define
the set

H˚pY |Rq “ tλ P H2pY ;Qq|λprRsq “ 2gpRq ´ 2, IωpY qλ ‰ 0u,

The elements λ P H˚pY |Rq are called supporting eigenspace functions.
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The following lemma is an instanton correspondence to the fact that
monopole cobordism maps decompose along spinc structures

Lemma 6.4. Suppose pW, νq is a cobordism between pY, ωq and pY 1, ω1q.
Suppose further that λ P H2pY ;Qq and λ1 P H2pY 1;Qq are two eigenvalue
functions. Let i : Y Ñ W and i1 : Y 1 Ñ W are the inclusion map. If

IpW, νqpIωpY qλq X Iω
1

pY 1qλ1 ‰ t0u,

then there must be an element τ P H2pW ;Qq so that i˚pτq “ λ and pi1q˚pτq “
λ1.

Proof. For a second homology class σ and a rational number r P Q we can
define

IωpY, σ, rq “
ď

Ně0

kerpµpσq ´ rqN .

By definition, we know that

IωpY qλ “
č

σPH2pY ;Qq

IωpY, σ, λpσqq.

Similarly, we can define Iω
1

pY 1, σ1, r1q.
Note we can regard an element τ P H2pW ;Qq as a map

τ : H2pW ;Qq Ñ Q.

Suppose there are no such τ as in the statement of the lemma, then there
is a class σ0 P H2pY ;Qq and a class σ1

0 P H2pY 1;Qq so that

i˚pσ0q “ i1˚pσ1
0q P H2pW q,

while

λpσ0q ‰ λ1pσ1
0q.

Thus, we know that

IpW, νqpIωpY qλq Ă IpW, νqpIωpY, σ0, λpσ0qqq Ă Iω
1

pY 1, σ1
0, λpσ0qq.

The last inclusion follows from [5, Lemma 2.6]. However, λpσq ‰ λ1pσ1q so

Iω
1

pY 1, σ1
0, λpσ0qq X Iω

1

pY 1, σ1
0, λ

1pσ1
0qq “ t0u.
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Hence, we conclude

IpW, νqpIωpY qλq X Iω
1

pY 1qλ1 “ t0u,

which is a contradiction. Thus Lemma 6.4 follows. ˝

6.2. Sutured instanton Floer homology

Suppose pM,γq is a balanced sutured manifold, then, as we did for monopole
theory, we can construct a closure of pM,γq and apply the construction
of instanton Floer homology in the previous subsection. Pick a connected
auxiliary surface T of large enough genus, then we can get a pre-closure

ĂM “ M Y T ˆ r´1, 1s, with B ĂM “ R` \R´.

For the construction in instanton theory, we also need to pick a point p P T
so that there are corresponding points p˘ P R˘. When choosing the gluing
diffeomorphism h : R` Ñ R´, we also require that hpp`q “ p´. Thus, we
know that, inside the closure pY,Rq, there is a closed curve pˆ S1 Ă Y . Let
ω be a complex line bundle over Y whose first Chern class is dual to the
curve pˆ S1. Then, we can make the following definition.

Definition 6.5 (Kronheimer, Mrowka [21]). Define the sutured instan-
ton Floer homology of pM,γq to be

SHIpM,γq “ IωpY |Rq “
à

λPH˚pY |Rq

IωpY qλ.

Baldwin and Sivek [1] also made refinements of closures and constructed
canonical maps for the sutured instanton Floer homology.

Definition 6.6. A marked odd closure D “ pY,R, r,m, η, αq of pM,γq is a
tuple so that pY,R, r,m, ηq is a marked closure of pM,γq as in definition 2.9,
the simple closed curve α is disjoint from impmq, and α X rpR ˆ r´1, 1sq is
of the form rppˆ r´1, 1sq.

We can pick a complex line bundle ω whose first Chern class is dual to
α \ η. Then we can define

SHIpDq “ IωpY |rpR ˆ t0uqq.
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Theorem 6.7 (Baldwin, Sivek [1]). Suppose pM,γq is a balanced sutured
manifold, and D and D1 are two marked odd closures of pM,γq. Then, there
is a canonical map

ΦD,D1 : SHIpDq Ñ SHMpD1q,

which is an isomorphism well defined up to multiplication by a non-zero
element in C. Furthermore, the canonical map satisfies the same functori-
ality properties as those of the canonical maps for sutured monopole Floer
homology in Theorem 2.10.

Hence, we have a well defined projective transitive system

SHIpM,γq

associated to pM,γq. For a knot, there is a similar discussion as in Subsec-
tion 2.2 and we have a well defined projective transitive system

KHI´pY,K, pq

associates to a triple pY,K, pq for a knot K Ă Y and a base point p P K.
There are similar results for the contact gluing maps and by-pass exact

triangles.

Theorem 6.8 (Li [26]). There is a gluing map for sutured instanton Floer
homology, satisfying the same properties as in Theorem 2.15.

Theorem 6.9 (Baldwin and Sivek [5]). Suppose pM,γ1q, pM,γ2q and
pM,γ3q are three balanced sutured manifolds which are related in the same
way as in Theorem 2.16. Then there is a by-pass exact triangle

SHIp´M,´γ1q
ψ12 // SHIp´M,´γ2q

ψ23vv

SHIp´M,´γ3q

ψ31

hh

where the maps ψij comes from the gluing maps in sutured instanton Floer
homology, just as the monopole case in Subsection 2.3.
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6.3. Statement of results

With Theorem 6.9 in place of Theorem 2.16 and with the help of Lemma 6.4,
we can recover all results we obtained in this paper for sutured monopole
Floer homology. We present those results without further proofs.

Proposition 6.10. Suppose pM,γq is a balanced sutured manifold and D,
and D1 are two marked odd closures of the same genus. Then, the canonical
map ΦD,D1 in sutured instanton Floer theory can be interpreted in terms of
the Floer excision cobordism, in a similar way as in Proposition 3.8.

Theorem 6.11. Suppose pM,γq is a balanced sutured manifold, and S is a
properly embedded surface inside M so that BS is connected and |BS X γ| “
2n with n odd. Then, S induces a grading on SHIpM,γq which we denote by

SHIpM,γ, S, iq.

Proposition 6.12. Suppose pM,γq is a balanced sutured manifold so that
M is the complement of a null-homologous knot K Ă X and γ has two com-
ponents. Suppose further that S is a Seifert surface of K, viewed as a properly
embedded surface in M , so that |BS X γ| “ 2n. Then, for any p, l, k P Z such
that n` p is odd, we have

SHIp´M,´γ, Sp, lq “ SHIp´M,´γ, Sp`2k, l ´ kq.

Proposition 6.13. Suppose V is a solid torus and γ is a suture on BV
with 2n components and slope p

q
, then

SHIp´V,´γq – Cp2n´1¨|p|q.

Theorem 6.14. Suppose K is a null-homologous knot inside an closed
connected oriented 3-manifold Y and p P K is a base point. Then, there is
a projective C-vector space KHI´pY,K, pq, whose elements are well defined
up to multiplication by a non-zero element in C, associated to the triple
pY,K, pq. Also, there is a homomorphism

U : KHI´pY,K, pq Ñ KHI´pY,K, pq.

If S is a Seifert surface of K, then S induces a Z grading on KHI´pY,K, pq
so that U is of degree ´1. Furthermore, analogous results to Proposition
5.9, Proposition 5.10, Corollary 5.11, Corollary 5.12, Proposition 5.14, and
Proposition 5.19 all hold for KHI´pY,K, pq.
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