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We prove a version of Sandon’s conjecture on the number of trans-
lated points of contactomorphisms for the case of prequantization
bundles over certain closed monotone symplectic toric manifolds.
Namely we show that any contactomorphism of such a prequanti-
zation bundle lying in the identity component of the contactomor-
phism group possesses at least N translated points, where N is
the minimal Chern number of the symplectic toric manifold. The
proof relies on the theory of generating functions coupled with
equivariant cohomology, whereby we adapt Givental’s approach to
the Arnold conjecture for integral symplectic toric manifolds to the
context of prequantization bundles.
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1422 Brian Tervil

1. Introduction and result

1.1. The main result

A major driving force in symplectic topology is the celebrated Arnold con-
jecture [Arn65]:

The number of fixed points of a Hamiltonian symplectomorphism of a
closed symplectic manifold is at least the minimal number of critical points

of a smooth function.

While in general diffeomorphisms and even symplectomorphisms have far
fewer fixed points, it has been proved in full generality in a homological ver-
sion using Floer homology (see for instance [Flo89], [HS95], [Ono95], [LT98],
[FO99]): on any closed symplectic manifold (M,ω), non-degenerate Hamil-
tonian symplectomorphisms have at least dimH∗(M ;Q) fixed points.1 For
general, not necessarily non-degenerate Hamiltonian symplectomorphisms,
several estimates have been obtained, by Oh [Ono95], Schwarz [Sch98], and
Givental [Giv95]. The present paper is closer in spirit to the latter results.

The analogue of the Arnold conjecture in contact topology was intro-
duced by S. Sandon [San13], through the notion of translated points. Re-
call that a cooriented contact manifold 2 is a pair (V, ξ), where V is an
odd-dimensional manifold, and ξ is a maximally non-integrable cooriented
hyperplane field, called a contact structure. A contactomorphism of
(V, ξ) is a diffeomorphism preserving ξ and its coorientation. In order to
define the notion of translated points, fix a contact form α for ξ, that is
a 1-form such that ξ = kerα. Note that the maximal non-integrability of ξ
is equivalent to the non-degeneracy of the restriction dα|ξ of dα to ξ. The
Reeb vector field Rα of α is defined by

α(Rα) = 1 and ιRα
dα = 0,

and its flow is denoted by {ϕt
α}t∈R. Given a contactomorphism ϕ, a point

x ∈ V is called an α-translated point of ϕ if x and ϕ(x) belong to the

1A fixed point x ∈ M of a symplectomorphism ϕ is called non-degenerate if
det(dxϕ− IdM ) ̸= 0, or equivalently if the graph of ϕ is transversal to the diag-
onal in M ×M at the point x. A symplectomorphism is called non-degenerate if it
is non-degenerate at all its fixed points.

2In this paper we will simply say contact manifold.
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Translated points for contactomorphisms 1423

same Reeb orbit and if moreover ϕ preserves the contact form α at x:

∃ s ∈ R such that ϕ(x) = ϕs
α(x) and (ϕ∗α)x = αx.

The equations defining the Reeb vector field can be generalized: given a
contact manifold (V, ξ) and a contact form α, any contact Hamiltonian
h : V × [0, 1] → R, that is a time-dependent function on V , gives rise to a
unique time-dependent vector field Xt

h satisfying

α(Xt
h) = ht and dα(Xt

h, .) = −dht + dht(Rα)α, ht := h(., t).

The vector field {Xt
h}t∈[0,1] preserves ξ and, at least when V is compact, its

flow is defined for all t ∈ [0, 1], and gives rise to a contact isotopy {ϕt
h}t∈[0,1].

This procedure defines a bijection, depending on the contact form α, between
contact Hamiltonians and contact isotopies of V .3 One motivation for the
introduction of translated points as a contact analogue of fixed points of
Hamiltonian symplectomorphisms is that contactomorphisms, even those
obtained as time-1 maps of contact isotopies, may not have any fixed points.
For instance, the Reeb flow {ϕt

α}t∈R is an example of contact isotopy (with
constant contact Hamiltonian equal to 1), and since Rα never vanishes, the
latter does not have any fixed points for small times.4

We let Cont(V, ξ) be the group of contactomorphisms of (V, ξ) and
Cont0(V, ξ) its identity component. Sandon’s conjecture is as follows:

Conjecture ([San13], Conjecture 1.2). Let (V, ξ) be a closed contact
manifold, and ϕ ∈ Cont0(V, ξ). For any choice of contact form α for ξ, the
number of α-translated points of ϕ is at least the minimum number of critical
points of a function on V .

For any manifold M , we denote by H2
b (M ;Z) ⊂ H2(M ;R) the image of

the natural homomorphism ρ : H2(M ;Z) → H2(M ;R). A symplectic man-
ifold (M,ω) is called monotone if the cohomology class of its symplectic
form is positively proportional to ρ(c1), where c1 is the first Chern class of
(M,ω).5 We denote by NM the minimal Chern number of (M,ω), that

3This is sharp in contrast to the symplectic setting: here the group of ”Hamilto-
nian” contactomorphisms is the whole identity component of the group of contac-
tomorphisms.

4Fixed and translated points are in fact two particular instances of a broader
notion, called leafwise intersection (see for instance [San11]).

5Recall that given a symplectic manifold (M,ω), the set of almost complex struc-
tures J on the tangent bundle TM that are compatible with ω, that is such that
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1424 Brian Tervil

is the positive generator of ⟨c1, H2(M ;Z)⟩ ⊂ Z. A prequantization space
over a symplectic manifold (M,ω) is a contact manifold (V, ξ := kerα) along
with a principal S1-bundle π : (V, α) → (M,ω), such that π∗ω = dα and the
Reeb vector field Rα induces the free S1-action on V , where S1 = R/ℏZ,
ℏ > 0 being the minimal period of a closed Reeb orbit. Note that a symplec-
tic manifold (M,ω) is the base of a prequantization space if and only if there
exists r > 0 such that ω/r is integral, that is [ω/r] ∈ H2

b (M ;Z), in which
case the image ρ(eu(π)) of the Euler class eu(π) of π is given by − 1

ℏ
[ω/r] (see

for instance [Mor01, section 6.2 (d)] and then [BW58]). We call a symplectic
manifold (M,ω) integral if its symplectic form ω is integral, and we call the
latter primitive if ⟨[ω], H2(M ;Z)⟩ = Z. Note that the symplectic form of
a monotone symplectic manifold can always be rescaled so that it becomes
integral, and that an integral symplectic form can always be rescaled so that
it becomes primitive. A symplectic toric manifold (M2d, ω,T) is a symplec-
tic manifold endowed with an effective Hamiltonian action of a torus T of
dimension d. The second cohomology group of a symplectic toric manifold
being torsion-free, ρ : H2(M ;Z) → H2(M ;R) is injective and, for any ℏ > 0,
if it exists, the prequantization space (V, ξ := kerα) over (M,ω) with Euler
class − 1

ℏ
[ω] is unique, up to R/ℏZ-bundle isomorphism.6 Furthermore, ω is

primitive if and only if ℏ = 1.

Example 1.1. The complex projective space CPn−1 endowed with the
Fubini-Study ωFS form is naturally an integral symplectic toric manifold
for the standard action of Tn/S1, where Tn := Rn/Zn, and S1 ⊂ Tn is
the subtorus consisting of diagonal elements. Examples of prequantization
spaces over (CPn−1, ωFS) include the standard (2n− 1)-dimensional contact
sphere S2n−1 and real projective space RP 2n−1. Note that ωFS is monotone
and primitive.

Our main result is the following.

the 2-form ω(., J.) is a Riemannian metric, is non-empty and contractible, so that
the first Chern class c1 := c1(TM, J) is independent of the choice of compatible
almost complex structure used to define it (see for instance [MS17]).

6The image of the Euler class in H2
b (M ;Z) determines a prequantization space

over (M,ω), seen as a line bundle with connection 1-form, only up to its tensor
product with a line bundle admitting a flat connection 1-form, which corresponds
to a torsion class in H2(M ;Z). We refer the reader, for instance, to [Woo97, section
8] for further details.
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Translated points for contactomorphisms 1425

Theorem 1.1.1. Let (M,ω,T) be a closed monotone symplectic toric mani-
fold with primitive symplectic form. Assume that it is different from
(CPn−1, ωFS,T

n/S1), and let (V, ξ := kerα) be the prequantization space
over (M,ω) with Euler class −[ω]. Then any ϕ ∈ Cont0(V, ξ) has at least
NM α-translated points.

Some Morse and cuplength estimates in direction of Sandon’s conjec-
ture were previously established for the standard contact forms of prequan-
tization spaces over (CPn−1, ωFS): for the standard contact sphere S2n−1

and real projective space RP 2n−1 in [San13], and later for lens spaces in
[GKPS17]. We will see that in this setting our arguments do not apply.
The existence of translated points was also obtained in other contexts, for
instance in [AM13], [She17], and [MN18]. All the aforementioned works, ex-
cept [San13] and [GKPS17], are based on Floer-type constructions which
rely among others on a non-degeneracy assumption for the contactomor-
phisms, analoguous to that of the symplectic framework (see [San13]). In
[San13] and [GKPS17], and here as well, the technique used is that of gen-
erating functions, which allows to tackle the conjecture in a more general
setting. Namely, our result holds for any contactomorphism of the identity
component Cont0(V, ξ) of the group of contactomorphisms. Note also that it
happens very often that NM ≥ 2 (for instance if M = CP 1 × CP 1 endowed
with the sum of the Fubini-Study forms, NM = 2). This is in sharp contrast
to Floer-type constructions, with which one can in general prove the exis-
tence of only one translated point without the non-degeneracy assumption.
On the other hand, our theorem holds in the case where the symplectic form
ω of the monotone symplectic toric manifold (M,ω,T) is primitive. Let k ≥ 1
be an integer. Then the principal R/ 1

k
Z-bundle with Euler class −k[ω] is of

the form πk : V/Zk → M , where Zk ⊂ R/Z denotes the subgroup of R/Z of
k-th roots of unity, and πk is defined by πk ◦ pr = π, where pr : V → V/Zk

is the canonical projection. The contact form α on V induces a well-defined
contact form αk on V/Zk, defined by pr∗αk = α, satisfying dαk = π∗

kω, and
pulling back contact Hamiltonians through the projection pr, it is then
easy to see that, given a contact Hamiltonian ϕh ∈ Cont0(V/Zk, ξk), an α-
translated point of ϕpr∗h ∈ Cont0(V, ξ) projects to an αk-translated point
of ϕh. Note however that nothing prevents two geometrically different α-
translated points of ϕpr∗h to lie on the same Zk-orbit. With the notations of
the discussion above, we thus have the following.

Corollary 1.1.1. For any integer k ≥ 1, the prequantization space
(V/Zk, ξk := kerαk) over (M,ω,T) with Euler class −k[ω] is such that any
ϕ ∈ Cont0(V/Zk, ξk) has at least one αk-translated point.
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Remark 1.1.1. The minimal Chern number NM of a monotone symplectic
toric manifold (M,ω,T) is always strictly smaller than its cuplength cl(M) =
dimCM + 1, unless (M,ω) = (CPn−1, ωSF), in which case both quantities
equal n.7 Moreover, it is straightforward from the definition of the cuplength
that cl(M) ≤ cl(V ). By Lusternik-Schnirelmann theory [Cor03], we have
cl(V ) ≤ Crit(V ), where Crit(V ) is the minimal number of critical points of
a function on V . Therefore, our lower bound in Theorem 1.1.1 is stricly
smaller than expected from Sandon’s conjecture. As in the symplectic set-
ting, Sandon’s conjecture could be rephrased in a homological version, in
which the minimal number of critical points of a function would be replaced
with the sum dimH∗(V ;Q) of the Betti numbers of V when the contacto-
morphism is non-degenerate, and with cl(V ) in the general case. Still, our
lower bound NM is smaller than cl(V ). It is perhaps not surprising that our
result is weaker than expected, even in the homological version. This dis-
crepancy can already be observed in the symplectic setting: it first appeared
in Y.-G. Oh’s paper [Oh90] on the symplectic product T2k × CPn−1 of the
torus and the complex projective space with standard symplectic structure,
where the lower bound was found to be max(2k + 1, n), whereas the cu-
plength is equal to 2k + n. Givental’s theorem [Giv95] applied to monotone
symplectic toric manifolds gives another example of this kind: in this case
it is equal to the minimal Chern number of the symplectic manifold as well.

Our approach to Theorem 1.1.1 is based on the theory of generating
functions and equivariant cohomology, as developed by A. Givental [Giv95].
In the next section, we will give an overview the constructions and of the
proof of Theorem 1.1.1.

1.2. Overview of the paper and proof of the theorem

We describe here the main steps of our constructions, and give a proof of
Theorem 1.1.1, assuming several results which will be discussed in the sequel.
Our purpose here is to provide a recipe of the paper, so that the reader can
have a general insight of the presented arguments. The technical details are
treated in the following sections.

Generating functions were extensively used in the eighties and nineties
by numerous authors (see for instance [Cha84], [LS85], [Giv90], [Vit92],

7The cuplength of a manifold M is the smallest positive integer k such that the
cup product of any k cohomology classes a1, . . . , ak ∈ H∗(M ;Z) of positive degrees
vanishes: a1 ∪ . . . ∪ ak = 0.
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[Giv95], [Thé95], [Thé98]). They provide a powerful tool when the mani-
fold can be obtained somehow from a symplectic vector space. In [Giv95],
Givental used this approach along with equivariant cohomology to establish
a version of the Arnold conjecture for integral symplectic toric manifolds.

Below are the main lines of our construction. The reader shall notice
that although Theorem 1.1.1 is proved over monotone symplectic toric man-
ifolds with primitive symplectic form, our constructions hold for any closed
integral symplectic toric manifold. The monotonicity and the primitivity
assumptions are only required for the proofs of Proposition 1.2.3 and The-
orem 1.1.1.

The generating functions and the cohomology groups. The main
construction of this paper is adapted from [Giv95] to the contact setting.
Given a closed integral symplectic toric manifold (M,ω,T), we first construct
a natural prequantization space over it, mainly following a procedure of
Borman and Zapolsky [BZ15]. Let Tn := Rn/Zn denote the maximal torus
acting on the standard symplectic Euclidean space (Cn, ωstd), where ωstd :=
n∑

j=1
dxj ∧ dyj , by rotation on each coordinate:

Tn × Cn → Cn, ((λ1, . . . , λn), (z1, . . . , zn)) 7→ (e2iπλ1z1, . . . , e
2iπλnzn).

A very convenient way of viewing (M,ω,T) comes from Delzant’s theorem
[Del88], which states that it can be obtained as a symplectic reduction of
(Cn, ωstd), for some n ∈ N, by the action of a subtorus K ⊂ Tn. This identi-
fication provides in particular isomorphisms

(1)

k
∗ H2(M ;R) k H2(M ;R)

k
∗
Z

H2(M ;Z) kZ H2(M ;Z),

∼ ∼

∼ ∼

where k := Lie(K) denotes the Lie algebra of K, kZ := ker(exp : k → K) is
the kernel of the exponential map, and k

∗, k∗
Z
are their respective duals.

The vertical homomorphisms are the natural ones, and are injections since
symplectic toric manifolds have no torsion elements (we refer to [Aud12,
chapter 7.3] for more details). One can then identify [ω] ∈ H2(M ;R) with
an element p ∈ k

∗. Along with the momentum map PK : Cn → k
∗ associated

with the K-action, symplectic reduction yields an identification

(M,ω) ≃ (P−1
K

(p)/K, ωstd|P−1
K

(p)),
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where ωstd|P−1
K

(p) is the symplectic form induced by the restriction of ωstd

to P−1
K

(p). The integrality assumption implies that p ∈ k
∗
Z
. In particular, its

kernel is spanned by the intersection kZ ∩ ker p. Hence, applying the expo-
nential map to ker p yields a codimension 1 subtorus K0 ⊂ K, having Lie
algebra k0 := ker p. We will see that P−1

K
(p) is in fact a subset of a contact

sphere (Sp, ξSp
:= kerαstd|Sp

) ⊂ Cn, where αstd = 1
2

n∑
j=1

(xjdyj − yjdxj), and

that it is moreover the zero level set of the contact momentum map associ-
ated with the K0-action on Sp. By contact reduction, this yields a contact
manifold

(V, ξ := kerα) ≃ (P−1
K

(p)/K0, ξ := kerαstd|Sp
),

where αstd|Sp
is the contact form induced by the restriction of αstd to Sp.

Under the above identifications, we obtain a natural prequantization bundle

π : (V, α)
S1

−→ (M,ω),

with fiber given by S1 := K/K0. This procedure is carried out in section 3.1.
The second step is a lifting procedure, which allows us to translate

the search for α-translated points on V to that of fixed points on Cn.
We begin with a contact Hamiltonian h : V × [0, 1] → R. Lifting it to the
contact sphere (Sp, ξSp

= kerαstd|Sp
), and then to its symplectization (Cn \

{0}, ωstd|Cn\{0}), we obtain a Hamiltonian H : Cn × [0, 1] → R, which is ho-
mogeneous of degree 2 with respect to the standard R>0-action on Cn, and
K0-invariant. Let us denote by ϕh := ϕ1

h the time-1 map of the contact iso-
topy {ϕt

h}t∈[0,1] of V , and by ϕH := ϕ1
H the time-1 map of the Hamiltonian

isotopy {ϕt
H}t∈[0,1] of C

n generated by H. Note that ϕH is K0-equivariant.
The key observation is that α-translated points of ϕh correspond to certain
fixed points of the following family of Hamiltonian symplectomorphisms:

exp(λ) ◦ ϕH ,

where λ ∈ k varies in the Lie algebra of K.8 This is carried out in section 3.2.

8The reader shall notice the following crucial difference between our set-
ting and that of Givental: in [Giv95], a Hamiltonian symplectomorphism of
(P−1

K
(p)/K, ωstd|P−1

K
(p)) is lifted up to a Hamiltonian symplectomorphism ϕH of

Cn which is K-equivariant, and thus Givental looks for fixed points of the ϕH up to
the K-action on Cn, that is fixed points of compositions exp(λ) ◦ ΦH , but there the
latter are K-equivariant. In our setting, the Hamiltonian symplectomorphism ϕH ,
and therefore the compositions exp(λ) ◦ ϕH , are K0-equivariant. However, instead
of looking for fixed points of ϕH up to the K0-action on Cn (by making λ vary
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The third step is the construction of a generating family. In section 3.3,
following [Giv95], we decompose the Hamiltonian isotopies {ϕt

H}t∈[0,1] and
{exp(tλ)}t∈[0,1] into 2N1 and 2N2 Hamiltonian symplectomorphisms respec-
tively

ϕH = ϕ2N1
◦ · · · ◦ ϕ1 and exp(λ) = exp(

λ

2N2
) · · · exp(

λ

2N2
)

︸ ︷︷ ︸
2N2−times

,

such that the graph of each symplectomorphism ϕj and exp( λ
2N2

) projects
diffeomorphically to the diagonal in Cn × Cn. This allows us to define a
family of generating functions

FN : C2nN × ΛN → R, F
(N)
λ := FN (·, λ), N = N1 +N2,

parametrized by compact subsets ΛN ⊂ k with boundary ∂ΛN , such that

the critical points of F
(N)
λ are in one-to-one correspondence with the fixed

points of the Hamiltonian symplectomorphism

−IdCn ◦ exp(λ) ◦ ϕH .9

The generating functions F
(N)
λ are homogeneous of degree 2 with respect

to the standard R>0-action on C2nN , and K0-invariant. This implies that

critical points of F
(N)
λ appear as R>0-lines of K0-orbits, and moreover they

all have critical value 0. Throughout this text, we will use the term (R>0 ×
K0)-families to denote R>0-lines of K0-orbits, and the product action of
R>0 ×K0 on any invariant subspace of C2nN will be the action induced by
the linear multiplication of R>0 and the rotation of K0 on each factor Cn.

The key observation now is that certain (R>0 ×K0)-familes of critical

points of the functions F
(N)
λ correspond to α-translated points of the compo-

sition g ◦ ϕh, where g ∈ Cont0(V, ξ) is the contactomorphism of V induced
by the restriction −Id

Cn|P−1
K

(p). Since any estimate for the number of α-
translated points of all the compositions of g with contactomorphisms of

in k0), we must still look for fixed points up to the K-action. The reason is that
the K-action projects to K/K0 on V , that is to the fiber of the prequantization
bundle π, which is generated by the Reeb vector field of α. In other words, we
keep track of the fact that we are looking for α-translated points of ϕh, rather than
fixed points. We are thus brought to considering the same family of Hamiltonian
symplectomorphisms as in [Giv95], but with a different symmetry group.

9The twist by −IdCn is technical, and will ensure the non-degeneracy of a certain
quadratic form which will appear in the sequel.
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Cont0(V, ξ) will give rise to the same estimate for the contactomorphisms
themselves, we are reduced to the search for critical points of the functions

F
(N)
λ . However, not all critical points will correspond to points on V . There-

fore, the sublevel sets to consider are not the zero sublevel sets {F
(N)
λ ≤ 0},

but rather must enclose the data defining the prequantization space, namely

the cohomology class of ω, that is p. Restricting the functions F
(N)
λ to the

unit sphere SN ⊂ C2nN in order to take into account the R>0-invariance,
the relevant subsets to investigate are of the form

(2) F−
N (ν) :=

⋃

λ∈ΛN∩p−1(ν)

{F
(N)
λ ≤ 0} ∩ S4nN−1, ν ∈ R.

These sets are K0-invariant, and one can study the following relative K0-
equivariant cohomology groups, with complex coefficients:

H∗
K0
(F−

N (ν), ∂F−
N (ν)),

where ∂F−
N (ν) denotes the restriction of F−

N (ν) to the boundary ∂ΛN of ΛN .
The final step in our construction is a limit process in N → ∞. A large

part of this paper (sections 3.4 to 3.6) is devoted to finding a natural way
of building a homomorphism

H∗+2nN
K0

(F−
N (ν), ∂F−

N (ν)) → H∗+2nN ′

K0
(F−

N ′(ν), ∂F
−
N ′(ν)),

when N ≤ N ′. Note that a shift in the degree of the cohomology groups
emerges naturally in this map. Under a genericity assumption on the real
number ν, we can apply a direct limit, and come to the definition of the
following cohomology group:

H∗
K0
(F−(ν)) := lim

N→∞
H∗+2nN

K0
(F−

N (ν), ∂F−
N (ν)).

We call this limit the cohomology of H of level ν. It is the main character
of this paper, and the remaining parts of the latter are devoted to its study.

Algebraic structures on the cohomology groups. The limit
H∗

K0
(F−(ν)) is naturally associated with the Hamiltonian lift H of h, and

comes along with certain structures. First, note that the sets F−
N (ν) from

equation (2) were defined by restricting the zero sublevel sets of the generat-

ing functions F
(N)
λ to the unit sphere S4nN−1 ⊂ C2nN , which takes account

of the fact that critical points come in R>0-lines. Yet, the same limit process
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can be performed without this restriction. The sets

F−
N (ν) :=

⋃

λ∈ΛN∩p−1(ν)

{F
(N)
λ ≤ 0}, ν ∈ R,

contract onto ΛN ∩ p−1(ν), and their restrictions ∂F−
N (ν) onto the boundary

∂ΛN of ΛN contract to ∂ΛN ∩ p−1(ν). Therefore, in the limit N → ∞, we
obtain a cohomology group which is independent of H. We will denote it by
H∗

K0
(ν).10 The inclusion (F−

N (ν), ∂F−
N (ν)) ⊂ (F−

N (ν), ∂F−
N (ν)) of pairs yields

a natural homomorphism

H∗
K0
(ν) → H∗

K0
(F−(ν)),

called the augmentation map. Both groups are endowed with the struc-
ture of modules over the K0-equivariant cohomology of a point H∗

K0
(pt),

hence over the Tn-equivariant cohomology of a point H∗
Tn(pt) as well, via

the natural homomorphism H∗
Tn(pt) → H∗

K0
(pt) induced by the inclusion

K0 ⊂ Tn. The augmentation map is a module homomorphism. Moreover,
the Chern-Weil isomorphism (see [BT13])

H∗
Tn(pt) ≃ C[u1, . . . , un]

identifies the group H∗
Tn(pt) with the ring of polynomials in n variables ui

of degree 2, and H∗
K0
(pt) with the quotient

H∗
K0
(pt) ≃ C[u1, . . . , un]/I0,

where I0 is the ideal generated by polynomials vanishing on the complexified
Lie algebra k0 ⊗ C. Equivalently, H∗

Tn(pt) is the ring of regular functions on
Rn ⊗ C, where Rn is the Lie algebra of Tn, and H∗

K0
(pt) is that of regular

functions on k0 ⊗ C.

The Gysin sequence and the algebraic results. A key novelty in this
paper is the use of a so-called Gysin-type long exact sequence for equivariant
cohomology (section 4), relating our cohomology group H∗

K0
(F−(ν)) to the

10The cohomology group H∗
K0
(ν) is in fact also independent of ν: indeed, the

torus K0 acts trivially on the pair (p−1(ν) ∩ ΛN , ∂ΛN ∩ p−1(ν)) and therefore
H∗

K0
(ΛN ∩ p−1(ν), ∂ΛN ∩ p−1(ν)) is a free H∗

K0
(pt)-module of rank 1 generated by

the fundamental cocyle of the sphere (ΛN ∩ p−1(ν))/(∂ΛN ∩ p−1(ν)), whose dimen-
sion equals to dim k0, which is independent of ν. We will also see another proof of
this fact in section 4.
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one constructed by Givental in [Giv95], which is, contrary to our limit of
K0-equivariant cohomology groups, obtained as a limit of K-equivariant co-
homology groups. Using this sequence, we will see that the cohomology group
H∗

K0
(ν) can in fact be viewed as the ring of regular functions on the inter-

section (k0 ⊗ C) ∩ (C×)n, where (C×)n denotes the complex n-dimensional
torus. If we denote this ring by R0, and by C[u, u−1] the ring of Laurent
polynomials in n-variables u = (u1, ..., un), or equivalently the ring of regular
functions on (C×)n, we will prove that

H∗
K0
(ν) ≃ R0 ≃ C[u, u−1]/I0C[u, u

−1].

In addition to this interpretation of H∗
K0
(ν) and the aforementioned mod-

ule structure, a natural isomorphism arises from the toric manifold. More
precisely, for any m ∈ H2(M ;Z) ≃ kZ, we have

H∗
K0
(F−(ν)) ≃ H

∗+2c1(m)
K0

(F−(ν + p(m))),

where c1 is the first Chern class of (M,ω), identified with an element of
k
∗
Z
. The shifts by 2c1(m) and p(m) in the degree and the ”level” of the

cohomology group H∗
K0
(F−(ν)) respectively, are the main ingredients in the

proof of our theorem. Throughout this text, we will think of this isomorphism
as a Novikov action of H2(M ;Z), in analogy with filtered Floer homology
(even though it is not a genuine action here). Similarly, H2(M ;Z) acts on
the ring R0, which we recall is obtained through the same limit process
as for the groups H∗

K0
(F−(ν)), without restricting the sublevel sets of the

generating functions to the unit sphere. Let m = (m1, ...,mn) denote the
coordinates of m through the inclusion kZ ⊂ Rn. Then

c1(m) =

n∑

j=1

mj .

We can interpret the Novikov action on the kernel

J ∗
K0
(F−(ν)) := ker(R0 → H∗

K0
(F−(ν)))

of the augmentation map. Of course, we first need to ensure that R0 is
non-trivial, otherwise J ∗

K0
(F−(ν)) = {0}. This is the case precisely when

k0 ̸= {0}, that is when the symplectic toric manifold (M,ω,T) is differ-
ent from (CPn−1, ωFS,T

n/S1), where ωFS is the Fubini-Study form, which
we will assume from now on in this section. We will see that, for any
m = (m1, ...,mn) ∈ kZ ⊂ Rn, the action of m on J ∗

K0
(F−(ν)) is simply the
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multiplication by the image of the monomial um1

1 ...umn

n through the quotient
map C[u, u−1] → R0:

11

(3) um1

1 ...umn

n J ∗
K0
(F−(ν)) ≃ J

∗+2c1(m)
K0

(F−(ν + p(m))).

We now turn to two important properties of the augmentation map.
Recall that given a contact manifold (V, ξ), a contact form α and a con-
tactomorphism ϕ, the translated spectrum of ϕ with respect to α is the
set

Spec(ϕ) := {s ∈ R | ∃ x ∈ V, x is an α-translated point of(4)

ϕ with ϕ(x) = ϕs
α(x)}

of Reeb shifts (or Reeb time-shifts) of α-translated points of ϕ.12 Note that
on a prequantization space, the translated spectrum of a contactomorphism
is always periodic of period ℏ. Further in the paper, we will assume that
ℏ = 1, which is equivalent to p being a primitive integral vector in k

∗
Z
. A

key ingredient in our construction is that the generating functions F
(N)
λ are

monotone in a certain direction in k. More precisely, they are decreasing in
all directions on which p is positive. In particular, if ν0 ≤ ν1 are two generic
numbers, we have a natural homomorphism

H∗
K0
(F−(ν1)) → H∗

K0
(F−(ν0)),

which commutes with the augmentation map. Recall that we have denoted
by g ∈ Cont0(V, ξ) the contactomorphism of V induced by the restriction
−Id

Cn|P−1
K

(p). The translated spectrum of g ◦ ϕh is related to the groups

H∗
K0
(F−(ν)) by the two following analogues of [Giv95, Propositions 6.2

and 6.3]:

Proposition 1.2.1. Suppose that [ν0, ν1] ∩ Spec(g ◦ ϕh) = ∅. Then the ho-
momorphism above is an isomorphism

H∗
K0
(F−(ν1)) ≃ H∗

K0
(F−(ν0)).

Proposition 1.2.2. Suppose that the segment [ν0, ν1] contains only one
value ν ∈ Spec(g ◦ ϕ), which corresponds to a finite number of α-translated

11Throughout this paper, we will identify a monomial of C[u, u−1] with its image
under the projection C[u, u−1] → R0, for the sake of clarity in the notations.

12In this paper, we will simply say translated spectrum of ϕ, since the contact
form α will be fixed.
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points. Let v ∈ H∗
K0
(pt) be an element of positive degree, and q ∈ R0. Sup-

pose that q ∈ J ∗
K0
(F−(ν0)). Then vq ∈ J ∗

K0
(F−(ν1)).

Proposition 1.2.1 holds in the limit N → ∞, however, we will see that,
even if N is big, it is not true that given any two generic numbers ν0 ≤ ν1
such that [ν0, ν1] ∩ Spec(g ◦ ϕh) = ∅, the groups H∗

K0
(F−

N (ν1), ∂F
−
N (ν1)) and

H∗
K0
(F−

N (ν0), ∂F
−
N (ν0)) are isomorphic. Similar statements as Proposition

1.2.2 (in finite dimensional settings) are used for instance in [Thé98, Propo-
sition 5.2 (c)], [Giv90, section 8], and [GKPS17, Proposition 4.8]. The second
statement can be rephrased in terms of the following commutative diagram:

q ∈ R0 H∗
K0
(F−(ν1)) ∋ q1

H∗
K0
(F−(ν0)) ∋ q0.

Here, q1 and q0 are the images of an element q ∈ R0 by the augmentation
maps R0 → H∗

K0
(F−(ν1)) and R0 → H∗

K0
(F−(ν0)) respectively. The above

proposition states the following:

q0 = 0 =⇒ vq1 = 0 for all v ∈ H∗
K0
(pt), deg(v) > 0.

In other words, there cannot be a non-zero element in H∗
K0
(F−(ν1)) which

was trivial in H∗
K0
(F−(ν0)), and is still non-zero when multiplied by a posi-

tive degree element of H∗
K0
(pt).

We now assume that (M,ω) is monotone and ω is primitive. We have

p =
c1
NM

.

In this situation, the kernel J ∗
K0
(F−(ν)) admits in some sense elements of

minimal degree:

Proposition 1.2.3. There exists q ∈ R0, such that q /∈ J ∗
K0
(F−(ν)), but

uiq ∈ J ∗
K0
(F−(ν)) for all i = 1, ..., n.

In contrast to the symplectic case [Giv95, Corollary 1.3], where elements
of minimal degree always exist, the monotonicity assumption cannot be lifted
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here, since in general, one might have

J ∗
K0
(F−(ν)) = R0.

This happens for instance when (M,ω,T) = (CPn−1, ωFS,T
n/S1), in which

case R0 = {0}. We will see another less trivial example of such an event in
section 5.

Proof of the main theorem. The above discussion allows us to prove
our main result, Theorem 1.1.1.

Proof. We adapt the proof of [Giv95] to the contact setting. We work with
the prequantization space (V, ξ := kerα) constructed by the procedure de-
scribed above, and a contactomorphism ϕh ∈ Cont0(V, ξ). For any generic
ν ∈ R, we have a cohomology groupH∗

K0
(F−(ν)), and the kernel J ∗

K0
(F−(ν))

of the augmentation map, which satisfies Proposition 1.2.3. Suppose that
ν /∈ Spec(g ◦ ϕh). Since Spec(g ◦ ϕh) is periodic of period 1, it is enough to
count the number of elements of Spec(g ◦ ϕh) between ν and ν + 1. To ev-
ery such element there corresponds at least one α-translated point of g ◦ ϕh

on V . Therefore, to one α-translated point of g ◦ ϕh there correspond l ele-
ments of the spectrum between ν and ν + l, where l ∈ N. Assume that g ◦ ϕh

has a finite number of α-translated points. Let m ∈ kZ \ {0} be such that
ι(m) = (m1, ...,mn) ∈ Rn

≥0. We will see that p(m) > 0. Suppose that the
number # of elements in Spec(g ◦ ϕh) between ν and ν + p(m) is strictly

less than c1(m) =
n∑

j=1
mj . Let q ∈ R0 be such that q /∈ J ∗

K0
(F−(ν)), but

uiq ∈ J ∗
K0
(F−(ν)) for all i = 1, ..., n. Since # < c1(m), Propositions 1.2.1

and 1.2.2 imply that um1

1 ...umn

n q ∈ J
∗+2c1(m)
K0

(F−(ν + p(m))). This is pre-
cisely the Novikov action of m (equation (3)), which is an isomorphism

J ∗
K0
(F−(ν))

u
m1
1 ...umn

n
∼

−→ J
∗+2c1(m)
K0

(F−(ν + p(m))).

In particular, um1

1 ...umn

n q /∈ J
∗+2c1(m)
K0

(F−(ν + p(m))), which is a contradic-
tion. This means that the number # of elements of Spec(g ◦ ϕh) between ν
and ν + p(m) is not less than c1(m), and thus the number of α-translated
points of g ◦ ϕh is not less than NM .

To summarize, we have proved that for any ϕh ∈ Cont0(V, ξ), if the num-
ber of α-translated points of g ◦ ϕh is finite, then it is at least NM . Therefore,
we have shown that for any ϕh ∈ Cont0(V, ξ) the number of α-translated
points of g ◦ ϕh is either infinite or at least NM . Since this holds for any
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contactomorphism of Cont0(V, ξ), it holds also for g−1 ◦ ϕh, for any contact
Hamiltonian h. Thus, the number of α-translated points of ϕh is at least
NM . □

Discussion. In [Giv95], Givental constructed the generating functions as
a finite dimensional approximation of action functionals defined on the free
loop space of Cn (see [Giv95, section 2]). Following such an analogy, one
could think of the limit H∗

K0
(F−(ν)) as a kind of R-filtered Floer cohomol-

ogy group associated with the contactomorphism ϕh. There exist several
Floer-type constructions that pertain to translated points, see for instance
[AM13], [MU17]. Moreover, there are at least two ongoing projects, by Al-
bers, Shelukhin and Zapolsky, and Leclercq and Sandon, concerned with
comparable constructions and applications. Note that, even in the symplec-
tic setting of [Giv95], building a precise relation between Floer homology
and the limit of equivariant cohomology groups seems highly complicated,
for Floer’s construction is of much different nature than Givental’s. Still,
we observe a similar behavior, at least in the study of translated points.
In addition, our limit has the very convenient property of being defined
for any contactomorphism of Cont0(V, ξ), and our result holds in this level
of generality. Another remark is that we currently don’t know if the limit
H∗

K0
(F−(ν)) is non-trivial over a non-monotone base. If it is trivial, the

above analogy raises the question of the existence of Floer homology groups
for prequantization spaces over non-monotone symplectic manifolds.
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2. Preliminaries

2.1. Fronts and deformation of sublevel sets

The main symplectic ingredient of our construction is a family of generating
functions associated with the lift of a contactomorphism (section 3.3). We
will study suitable sublevel sets of these functions, and more particularly
how they behave under certain deformations. We describe here the general
setting and relevant results. This section is added only for the sake of com-
pleteness; we mainly follow [Giv95, section 3], except for some notations and
statements that are adapted to this paper. Let F : X × Λ → R be a family of
functions Fλ on a compact manifold X, where Λ is a compact parametrizing
manifold with boundary ∂Λ. Suppose that F ∈ C1,1, that is F is differen-
tiable with Lipschitz derivatives (so that gradient flow deformations apply),
and F is smooth at all points (x, λ) such that x is a critical point of Fλ with
critical value zero. We consider restrictions of F to submanifolds Γ ⊂ Λ with
boundary ∂Γ = Γ ∩ ∂Λ, and look at the sublevel sets

(5)
F−
Γ := {(x, λ) ∈ X × Λ | λ ∈ Γ, F (x, λ) ≤ 0},

F−
∂Γ := {(x, λ) ∈ X × Λ | λ ∈ ∂Γ, F (x, λ) ≤ 0}.

We assume moreover that 0 is a regular value of F . The front of F is defined
as

L := {λ ∈ Λ | 0 is a singular value of Fλ}.

It is the singular locus of the projection

F−1(0) → Λ,

and since F is smooth at all critical points (x, λ) such that x is a critical
point of Fλ with critical value zero, it is of zero-measure, due to Sard’s
lemma. To understand its structure, it is convenient to view it as a singular
hypersurface in Λ, provided at every point with tangent hyperplanes (there
can be more than one hyperplane at each point). The construction goes as
follows: let N be a smooth neighborhood in X × Λ of the set of critical
points of F with critical value 0. The zero set F−1

|N (0) ⊂ X × Λ gives rise
naturally to a Legendrian submanifold

L := {(x, λ, T(x,λ)F
−1
|N (0)) | (x, λ) ∈ N} ⊂ PT ∗(X × Λ)

of the space PT ∗(X × Λ) of contact elements of X × Λ. Let P denote the
space of vertical contact elements (also called the mixed space, see [AN01]):
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a hyperplane H(x,λ) is in P if and only if TxX × {λ} ⊂ H(x,λ). Then the

intersection L̂ := L ∩ P projects to a singular Legendrian submanifold L̂ ⊂
PT ∗(Λ) in the space of contact elements PT ∗(Λ) of Λ. The front L is then
defined as the projection of L̂ to the base Λ, whereas a tangent hyperplane
at a point λ ∈ L is an element of L̂ ∩ PT ∗

λ (Λ).
13

Proposition 2.1.1 ([Giv95] Proposition 3.1). A submanifold Γ ⊂ Λ is
transversal to L if and only if the hypersurface F−1(0) is transversal to
X × Γ.

Proof. X × Γ is tangent to F−1(0) at a point (x, λ) ∈ X × Λ if and only if
T(x,λ)(X × Γ) ⊂ T(x,λ)F

−1(0), if and only if T(x,λ)(X × Γ) ⊂ L̂, if and only

if TλΓ ⊂ L̂ ∩ PT ∗
λ (Λ). □

Corollary 2.1.1 ([Giv95] Corollary 3.2). Let Γt := ρ−1(t) be non-singular
levels of some smooth function ρ : Λ → R. Then almost all Γt are transversal
to L. □

The two following propositions can be proved using standard gradient
flow deformations.

Proposition 2.1.2. Let F : X × Λ× [0, 1] → R be a C1,1 family of func-
tions Fs : X × Λ → R such that for any s ∈ [0, 1], 0 is a regular value of Fs,
and Fs is smooth at all critical points (x, λ) such that x is a critical point of
Fs,λ with critical value 0. Let Γ ⊂ Λ be a compact submanifold with boundary
∂Γ = Γ ∩ ∂Λ, and suppose that for any s ∈ [0, 1], Γ and ∂Γ are transversal
to Ls. Then there exists a Lipschitz isotopy I : X × Λ× [0, 1] → X × Λ such

13The term front comes from the study of wave fronts in geometrical optics.
Given a Legendrian submanifold L of a Legendrian fibration E → B, the front of L
is defined as the projection of L to the base B (see [AN01, chapter 5]). If L projects
injectively onto its front, the latter is also called the generating hypersurface of
L. In our case E = PT ∗(Λ), and the (singular) Legendrian submanifold L̂ is the
projection of the (singular) intersection L ∩ P ⊂ PT ∗(X × Λ) to PT ∗(Λ). The zero
set F−1(0) ⊂ X × Λ is called a family of generating hypersurfaces for L̂. Note that
if L was transversal to P, L̂ would be an immersed Legendrian submanifold in
PT ∗(Λ). In fact, one can show that any immersed Legendrian submanifold of a
space of contact elements can be obtained via such a procedure.
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that

Is(F
−
0,Γ, F

−
0,∂Γ) = (F−

s,Γ, F
−
s,∂Γ),

where we have denoted by F−
s,Γ, F

−
s,∂Γ the sublevel sets defined for Fs as in

equation (5). If moreover each Fs is invariant under the action of a compact
Lie group G on X, the isotopy can be made G-equivariant.

Proposition 2.1.3. Let {Γs}s∈[0,1] be a smooth family of regular levels Γs =
ρ−1(s) ⊂ Λ of some smooth fuction ρ : Λ → R. Suppose that for any s ∈
[0, 1], Γs and ∂Γs are transversal to L, and that F is smooth at all critical
points (x, λ) such that x is a critical point of Fλ with critical value 0. Then
there exists a Lipschitz isotopy I : X × Λ× [0, 1] → X × Λ such that

Is(F
−
Γ0
, F−

∂Γ0
) = (F−

Γs
, F−

∂Γs
).

If moreover F is invariant under the action of a compact Lie group G on
X, the isotopy can be made G-equivariant.

Remark 2.1.1. In the sequel Λ and Γ will be a stratified manifolds. In
this setting, one must improve the notion of transversality: Γ is transversal
to L if each of its strata is. The results above remain valid when replacing
manifolds by stratified manifolds, for this adapted notion of transversality
(we refer to [GM88] for a detailed treatment of stratified Morse theory).

2.2. Equivariant cohomology and conical spaces

In the sequel we will study the equivariant homotopy type of conical sublevel
sets of generating families. This section is meant to recall several facts from
equivariant cohomology, fix some notations, and describe a simple identifi-
cation in equivariant cohomology which holds for conical spaces. The latter
will be convenient for defining homomorphisms of equivariant cohomology
groups (see section 3.6). We refer to [BGS13] for a complete treatment of
equivariant cohomology theory. Let X be a topological space provided with
the action of a compact Lie group G. Equivariant cohomology H∗

G(X;C)
with complex coefficients is defined as the singular cohomology H∗(XG;C)
of the quotient

XG := (X × EG)/G,

where EG → BG is the universal principal G-bundle over the classifying
space BG of G. The canonical projection

(X × EG)/G → EG/G
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provides H∗
G(X;C) with the structure of a module over H∗(BG;C), which

plays the role of the coefficient ring H∗
G(pt;C) in equivariant cohomology

theory. If G is the n-dimensional torus Tn = Rn/Zn, the coefficient ring
H∗

Tn(pt;C) is naturally isomorphic to a polynomial algebra in n variables
u = (u1, . . . , un) of degree 2. More precisely, there is a natural algebra iso-
morphism, called the Chern-Weil isomorphism

χ : H∗
Tn(pt;C) ≃ C[Rn∗],

between the cohomology of the classifying space BTn and the polynomial
algebra on Rn∗ over C.

Throughout this paper we will mainly deal with singular cohomology
with complex coefficients, and will therefore use the notation H∗(Y ) :=
H∗(Y ;C). If (u1, . . . , un) denotes the standard basis of Rn∗, the Chern-Weil
isomorphism writes

H∗
Tn(pt) ≃ C[u1, . . . , un].

Let now A ⊂ X be a G-invariant subspace of X, and pr : X × EG → XG

denote the canonical projection. We introduce the following notations for G-
equivariant cochain complexes:

• C∗
G(X) := C∗(XG) and C∗

G(A) := C∗(AG);

• C∗
G(X,A) := ker(C∗

G(X) → C∗
G(A)), where the map is induced by the

inclusion A ⊂ X;

• C∗
G,c(X) := {σ ∈ C∗

G(X) : ∃K ⊂ X compact such that pr∗σ vanishes
on (X \K)× EG}, the complex of equivariant cocycles with compact
support;

• C∗
G,c(A) :={σ∈C∗

G(A) : ∃K⊂A compact such that pr∗|A×EG
σ vanishes

on (A \K)× EG};

• C∗
G,c(X,A) := ker(C∗

G,c(X) → C∗
G,c(A));

• ifX→M is a fiber bundle ofG-spaces, C∗
G,cv(X), C∗

G,cv(A), C∗
G,cv(X,A),

the complexes of equivariant (relative) cocycles with vertical compact
support, that is we replace the term compact above by compact in the
fibers direction. We will denote byH∗

G,cv the corresponding equivariant
cohomology groups.

Suppose that X and A are closed conical subspaces of the standard Eu-
clidean space R2m = Cm, that is tX ⊂ X and tA ⊂ A for all t > 0, and that
G is a subtorus of the maximal torus Tm := (S1)m, acting on Cm by rotation
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on each coordinate. Then the natural retraction of R2m onto the closure B
of its unit ball B induces a G-equivariant retraction of X (resp. A) onto
X ∩B (resp. A ∩B), and of X \ (X ∩B) (resp. A \ (A ∩B)) onto X ∩ S
(resp. A ∩ S), where S = ∂B. Moreover, the inclusion C∗

G(X,X \X ∩B) →֒
C∗
G,c(X) induces an isomorphism in equivariant cohomology, since any com-

pact subset K ⊂ X is included in an intersection X ∩ B̃, where B̃ is a ball
centered at 0, and X ∩ B̃ is G-equivariantly homotopic to X ∩B (X is coni-
cal and G commutes with R>0). The same argument applies when replacing
X with A. Putting all these simple facts together yields a natural isomor-
phism of cohomology groups

H∗(C∗
G(X ∩ S,A ∩ S)) ≃ H∗(C∗

G(X,A)/C∗
G,c(X,A)). □

3. The constructions

3.1. The prequantization space

In this section, we describe a natural construction of a prequantization
space over an integral symplectic toric manifold (M2d, ω,T), mainly fol-
lowing [BZ15]. The action of T is induced by a momentum map M → t

∗,
where t∗ is the dual to the Lie algebra t of T. The image ∆ of the momentum
map is called the moment polytope. If ∆ has n facets, it is given by

∆ = {x ∈ t
∗ | ⟨x, vj⟩+ aj ≥ 0 for j = 1, . . . , n},

where the conormals vj are primitive vectors in the integer lattice tZ :=
ker(exp : t → T), and a := (a1, . . . , an) ∈ Rn∗

≥0 \ {0}. The polytope ∆ is com-
pact and smooth, that is each k-codimensional face of ∆ is the intersection
of exactly k facets and the k associated conormals {vl1 , . . . , vlk} can be ex-
tended to an integer basis for the lattice tZ.

3.1.1. Delzant’s construction of symplectic toric manifolds. Let
us first recall Delzant’s construction of symplectic toric manifolds [Del88].
The standard Hamiltonian action of the torus Tn := Rn/Zn on (Cn, ωstd :=
n∑

j=1
dxj ∧ dyj) by rotation in each coordinate is induced by the momentum

map

P : Cn → Rn∗, where ⟨P (z), λ⟩ = π

n∑

j=1

λj |zj |
2,(6)

and λ = (λ1, . . . , λn) ∈ Rn.



✐

✐

“3-Tervil” — 2022/5/18 — 1:55 — page 1442 — #22
✐

✐

✐

✐

✐

✐

1442 Brian Tervil

Consider the following surjective linear map:

β∆ : Rn → t, ϵj 7→ vj , for all j = 1, . . . , n,

where (ϵ1, . . . , ϵn) is the standard basis of Rn, and vj ∈ tZ are the conor-
mals. Since ∆ is compact and smooth, the map β∆ satisfies β∆(Z

n) = tZ,
and therefore it induces a homomorphism [β∆] : T

n → T. We define the con-
nected subtorus

K ⊂ Tn

as the kernel of [β∆]. It has Lie algebra

k := ker(β∆ : Rn → t),

and if ι : k →֒ Rn denotes the inclusion, the momentum map for the action
of K on Cn is given by

PK := ι∗ ◦ P : Cn → k
∗.

The torus K acts freely on the regular level set

P−1
K

(p), where p := ι∗(a) ∈ k
∗ \ {0}, 14

and if Xλ(z) = 2iπ(λ1z1, . . . , λnzn) ∈ Cn = TzC
n denotes the Hamiltonian

vector field for the function ⟨P, λ⟩ : Cn → R, and αstd = 1
2

n∑
j=1

(xjdyj − yjdxj)

is the standard 1-form on Cn so that dαstd = ωstd, we have

(7) αstd(Xλ) = ⟨P, λ⟩ and ιXλ
dαstd = ιXλ

ωstd = −d⟨P, λ⟩.

In particular, (LXλ
ωstd)|P−1

K
(p) = 0. Therefore, symplectic reduction gives

rise to a symplectic manifold (M∆, ω∆), where

M∆ := P−1
K

(p)/K, and the symplectic form ω∆ is induced by ωstd|P−1
K

(p).

Finally, Delzant’s theorem [Del88] shows that (M∆, ω∆,T
n/K) and (M,ω,T)

are equivariantly symplectomorphic as symplectic toric manifolds.

14We will see below that compactness of M is equivalent to ker ι∗ ∩ Rn∗
≥0 = {0}.

If p = 0, then a ∈ ker ι∗. This cannot happen, since ker ι∗ ∩ Rn∗
≥0 = {0}, and a ∈

Rn∗
≥0 \ {0}.
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3.1.2. The contact sphere. The generating families of our paper differ
from those defined in [Giv95] for they are related to a contactomorphism of
a prequantization space over M , rather than to a symplectomorphism of M .
Yet, we will see now that the regular level set P−1

K
(p) lies in a contact sphere

in Cn \ {0} (in fact it lies in many). Since the latter is the symplectization of
the former, this will allow us to lift the contactomorphism of the prequanti-
zation space to a symplectomorphism of (Cn, ωstd), (see section 3.2.2), and
thus we will be able to define the generating families as in the aforemen-
tioned paper. The existence of such a sphere is ensured by compactness of
the toric manifold (M,ω,T). There is no canonical way of choosing it, how-
ever the prequantization space won’t depend on such a choice (in fact it does
not depend on the sphere at all, see Remark 3.1.1).

The image of the momentum map P from equation (6) is the first orthant
Rn∗
≥0, and the polytope ∆ can be identified with

(ι∗)−1(p) ∩ Rn∗
≥0.

Indeed, there is a commutative diagram

Cn Rn∗
k
∗

P−1
K

(p) t
∗

0,

P ι∗

µ̃

β∗
∆

where µ̃ is the composition µ ◦ π of the momentum map of the T-action on
M ≃ P−1

K
(p)/K with the natural projection π : P−1

K
(p) → P−1

K
(p)/K. The

image of µ̃ is the moment polytope ∆, so that

∆ ≃ β∗
∆(∆) = β∗

∆ ◦ µ̃(P−1
K

(p)) = P (P−1
K

(p))

= (ι∗)−1(p) ∩ P (Cn) = (ι∗)−1(p) ∩ Rn∗
≥0.

Moreover, compactness of M∆ is equivalent to that of ∆, which is ensured
by the condition

ker ι∗ ∩ Rn∗
≥0 = {0}.

Note that ker ι∗ is equal to the annihilator ι(k)⊥ of ι(k) in Rn∗. We claim
that ι(k) ∩ Rn

>0 ̸= ∅. In such a case, the contact sphere can be defined as
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follows: for any b ∈ k such that ι(b) = (b1, . . . , bn) ∈ Rn
>0, we have

p(b) = ⟨ι∗(a), b⟩ = ⟨a, ι(b)⟩ > 0,

since a ∈ Rn∗
≥0 \ {0}. Then the following contact sphere obviously contains

P−1
K

(p):

(8) Sp := {z ∈ Cn |
n∑

j=1

bjπ|zj |
2 = p(b)} with contact form αp := αstd|Sp

.

We are thus led to prove that

ι(k) ∩ Rn
>0 ̸= ∅.

This is a consequence of the hyperplane separation theorem (see for instance
[BV04]): if ι(k) ∩ Rn

>0 = ∅, there exists a non-zero vector v and a real number
c ∈ R such that

⟨v, ι(λ)⟩ ≤ c and ⟨v, y⟩ ≥ c,

for all λ ∈ k, and y ∈ Rn
>0. Since ι(k) is a vector space, we have necessarily

⟨v, ι(λ)⟩ = 0, for all λ ∈ k. In particular, c ≥ 0, whence ⟨v, y⟩ ≥ 0, for all
y ∈ Rn

>0. For any ϵ, we then have

⟨v, (1, ϵ, . . . , ϵ)⟩ ≥ 0.

In the limit ϵ → 0, this yields v1 ≥ 0. Arguing similarly for the other coor-
dinates of v, we obtain that v ∈ ι(k)⊥ ∩ Rn∗

≥0, which is a contradiction with
M∆ being compact. This proves that ι(k) ∩ Rn

>0 ̸= ∅, as well as the existence
of the above contact sphere.

3.1.3. The prequantization space. We now construct our prequanti-
zation space. From now on we assume that the symplectic toric manifold
(M,T, ω) is integral. Notice that since β∆(Z

n) = tZ, the inclusion ι satisfies

ι(kZ) ⊂ Zn.

Thus, the integrality assumption is equivalent to

p ∈ k
∗
Z.

Let k0 denote the kernel of p : k → R. Then k0,Z := ker(p : kZ → Z) ⊂ k0 is a
sublattice of kZ. This means that K0 := exp(k0) ⊂ K is a subtorus of codi-
mension 1 of K which, in particular, acts freely on the regular level set
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P−1
K

(p). Let j : k0 →֒ k denote the inclusion of Lie algebras. Then P−1
K

(p) is
the zero level of the contact momentum map

µ : Sp → k
∗
0, µ(z) := j∗ ◦ PK(z)

associated with the action of K0 on the contact sphere (Sp, αp). Therefore,
contact reduction yields a contact manifold

(V := P−1
K

(p)/K0, ξ := kerα), ρ∗α = αp|P−1
K

(p),

where ρ : P−1
K

(p) → V denotes the canonical projection (see [Gei08] for more
on contact reductions). For the circle S1 := K/K0, the projection

π : (V, α) → (M∆, ω∆)

defines a principal S1-bundle, and satisfies π∗ω∆ = dα, since ωstd = dαstd.
Finally, one can choose an equivariant symplectomorphism (M∆, ω∆,T

n/K)
≃ (M,ω,T), and obtain a prequantization space over the symplectic toric
manifold (M,ω,T).

Remark 3.1.1. In [BZ15], the construction of V does not involve a contact
sphere. Here as well, it is enough to remark that the infinitesimal action of
K0 is tangent to kerαstd along P−1

K
(p), which follows from (7). This implies

that the contact form α is well-defined. We view V as the quotient of the
Sp only for the lifting procedure of the following section.

3.2. Lifting contact isotopies

In this section we explain the procedure for lifting a contact isotopy of V to
a Hamiltonian isotopy of Cn. Recall that for any contact manifold (V, ξ) and
any choice of contact form α, any contact Hamiltonian h : V × [0, 1] → R

gives rise to a unique time-dependent vector field Xh satisfying

α(Xt
h) = ht and dα(Xt

h, .) = −dht + dht(Rα)α, ht := h(., t).

The vector field {Xt
h}t∈[0,1] preserves ξ and, if V is compact, it integrates into

a contact isotopy defined for all t ∈ [0, 1], and denoted by {ϕt
h}t∈[0,1]. This

establishes a bijection, depending on the contact form α, between smooth
time-dependent functions h : V × [0, 1] → R and contact isotopies of V .
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3.2.1. Lift to the contact sphere. Following [BZ15, Definition 1.6], we
say that a closed submanifold Y ⊂ V transverse to ξ is strictly coisotropic
with respect to α if it is coisotropic, that is the subbundle TY ∩ ξ of the
symplectic vector bundle (ξ, dα|ξ) is coisotropic:

{X ∈ ξy | ιXdα = 0 on TyY ∩ ξy} ⊂ TyY ∩ ξy, for all y ∈ Y,

and additionally Rα ∈ TyY for all y ∈ Y , that is the Reeb vector field is
tangent to Y .

Consider the setting

(Sp, αp) ⊃ (P−1
K

(p), αp|P−1
K

(p))
ρ
→ (V, α).

Then P−1
K

(p) is strictly coisotropic with respect to αp, since it is the zero level
of the contact momentum map µ : Sp → k

∗
0 associated with the action of K0

on the contact sphere (Sp, αp) (see for instance [Gei08, Lemma 7.7.4]). Let
h : V × [0, 1] → R be a time-dependent contact Hamiltonian of V , and let
ϕh := ϕ1

h denote the time-1 map of the contact isotopy {ϕt
h}t∈[0,1] generated

by h. We first lift ht := h(., t) to a K0-invariant function

h̃t : P
−1
K

(p) → R, h̃t := ρ∗ht,

and then extend h̃ to a K0-invariant contact Hamiltonian h : Sp × [0, 1] → R,
so that ht|P−1

K
(p) = h̃t. By [BZ15, Lemma 3.1 and 3.2], the contact isotopy

{ϕt
h
}t∈[0,1] generated by h and the Reeb flow {ϕt

αp
}t∈R of αp preserve P

−1
K

(p),

and project to the contact isotopy {ϕt
h}t∈[0,1] and the Reeb flow {ϕt

α}t∈R of
α respectively. More precisely, the following equalities hold:

ρ ◦ ϕt
αp|P

−1
K

(p)
= ϕt

α ◦ ρ : P−1
K

(p) → V for all t ∈ R;

ρ ◦ ϕt
h|P−1

K
(p)

= ϕt
h ◦ ρ : P−1

K
(p) → V for all t ∈ [0, 1].

Let q ∈ V be an α-translated point of ϕh, that is

ϕh(q) = ϕs
α(q) for some s ∈ R, and (ϕ∗

hα)q = αq.

Then q is a discriminant point of ϕ−s
α ◦ ϕh, that is an α-translated point

which is also a fixed point of ϕ−s
α ◦ ϕh. For any z ∈ P−1

K
(p) such that ρ(z) = q,
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the equations above show moreover that

ρ(ϕ−s
αp

◦ ϕh(z)) = ρ(z).

In other words, ϕ−s
αp

◦ ϕh(z) and z lie in the same K0-orbit in P−1
K

(p). Since
the Reeb orbits of α generate the circle K/K0, there exists λ ∈ k such that
p(λ) = −s and exp(λ) ◦ ϕh(z) = z. Moreover,

(ϕ∗
h|P−1

K
(p)

ρ∗α)z = ((ρ ◦ ϕh|P−1
K

(p))
∗α)z = ((ϕh ◦ ρ)

∗α)z = (ρ∗ϕ∗
hα)z = (ρ∗α)z.

On the other hand, ϕh is a contactomorphism, so that ϕ∗
h
αp = egαp, for a

function g : Sp → R. Therefore, we have

(ϕ∗
h|P−1

K
(p)

ρ∗α)z = ((ϕ∗
h
αp)|P−1

K
(p))z = e

g
|P

−1
K

(p)
(z)

(αp|P−1
K

(p))z = eg(z)(ρ∗α)z.

In particular, g(z) = 0, and therefore (ϕ∗
h
αp)z = αp,z. Finally, recall that K

acts by αp-preserving transformations (see equation (7)). Putting everything
together, we have shown that z is a discriminant point of exp(λ) ◦ ϕh.

3.2.2. Lift to a symplectic vector space. A convenient way to pass
from the contact to the symplectic setting consists of associating to a contact
manifold its symplectization. We briefly recall this procedure, and apply it
to lift contactomorphisms of the contact sphere (Sp, αp) to symplectomor-
phisms of Cn.

Let (N, ξ = kerα) be a contact manifold. Its symplectization is the
symplectic manifold

SN := N × R with symplectic form d(erα),

where r is a coordinate on R. Let ϕ be a contactomorphism of N . Then ϕ
lifts up to a symplectomorphism

Φ : SN → SN
(x, r) → (ϕ(x), r − g(x)),

where g : N → R is the function satisfying ϕ∗α = egα. In particular, a dis-
criminant point q of ϕ corresponds to an R-line {(q, r) ∈ SN | r ∈ R} of fixed
points of Φ. If ϕ := ϕh is the time-1 map of a contact isotopy {ϕt

h}t∈[0,1] gen-
erated by a contact Hamiltonian h : N × [0, 1] → R, Φ is the time-1 map
Φ = ΦH := Φ1

H of the Hamiltonian isotopy {Φt
H}t∈[0,1] generated by the
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Hamiltonian

Ht(x, r) := erht(x), t ∈ [0, 1].

Suppose now that N ⊂ Cn is a star-shaped hypersurface, that is the
image of a map

S2n−1 → Cn

z → f(z)z,

where f is a smooth positive function on S2n−1. One can show that the
standard Liouville form αstd on Cn restricts to a contact form on N , and
the symplectization (SN, d(erαstd|N )) of (N,αstd|N ) is symplectomorphic to
(Cn \ {0}, ωstd|Cn\{0}), via the symplectomorphism

Ψ : N × R → Cn \ {0}.
(x, r) → e

r

2x

We then have

ΨΦΨ−1 : Cn \ {0} → Cn \ {0},

z → |z|

|pr(z)|e
1
2
g(pr(z))

ϕ(pr(z))

where
pr : Cn \ {0} → N

z → f( z
|z|)

z
|z|

is the radial projection, and |z| :=

√
n∑

j=1
|zj |2. For the time-1 map ϕh of

a contact isotopy {ϕt
h}t∈[0,1], the Hamiltonian of Cn \ {0} generating the

Hamiltonian isotopy {ΨΦt
HΨ−1}t∈[0,1] is of the form

H̃t(z) :=
|z|2

|pr(z)|2
ht(pr(z)).

It is homogeneous of degree 2 with respect to the R>0-action on Cn \ {0},
that is

H̃t(rz) = r2H̃t(z), for all r > 0.

The Hamiltonian isotopy {Φt

H̃
}t∈[0,1] = {ΨΦt

HΨ−1}t∈[0,1] is therefore R>0-

equivariant, and we can extend H̃t and Φt

H̃
continuously to Cn by

H̃t(0) = 0
Φt

H̃
(0) = 0.
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Back to our setting, the contact sphere (Sp, αp) is a star-shaped hyper-
surface of Cn, with

f(z) :=

√√√√√
p(b)

n∑
j=1

πbj |zj |2
.

The action of K on Sp lifts to the linear action of K on Cn, and pr is
K-equivariant. Consider a contact Hamiltonian h : V × [0, 1] → R, and its
K0-invariant lift h : Sp × [0, 1] → R. The Hamiltonian H̃ extending h to Cn

is K0-invariant, and therefore the Hamiltonian isotopy {Φt

H̃
}t∈[0,1] is K0-

equivariant. We call H̃ a Hamiltonian lift of h.
Let q ∈ V be an α-translated point of ϕh. Any z ∈ P−1

K
(p) such that

ρ(z) = q is a discriminant point of exp(λ) ◦ ϕh, for some λ ∈ k. On Cn, the
latter becomes an R>0-line of fixed points of exp(λ) ◦ Φ

H̃
:

exp(λ) ◦ Φ
H̃
(rz) = rz, for all r > 0.

Remark 3.2.1. Notice that λ is not unique, since exp(λ+ λ0) = exp(λ),
for all λ0 ∈ kZ.

Conversely, let z ∈ Cn be a fixed point of exp(λ) ◦ Φ
H̃
such that rz ∈ P−1

K
(p),

for some r > 0. Then rz ∈ Sp is a discriminant point of exp(λ) ◦ ϕh, and
therefore ρ(rz) is a discriminant point of

ϕp(λ)
α ◦ ϕh.

In other words, ρ(pr(z)) is an α-translated point of ϕh (see figure 1).

3.3. The generating families

In this section, we introduce the generating families from which we will
derive our cohomology groups. We first recall the general construction of a
generating function from a Hamiltonian symplectomorphism of Cn, following
[Giv95]. We then apply it to the lifts of the previous section. Finally, we add
the torus action to this construction and come to the notion of generating
family. In contrast to the aforementioned paper, our generating functions
are K0-invariant, and critical points are related to α-translated points on V ,
rather than fixed points on M .

3.3.1. General construction. Let H : Cn × [0, 1] → R be a time-
dependent Hamiltonian, and {ϕt

H}t∈[0,1] be the Hamiltonian isotopy gen-
erated by H. Dividing the interval [0, 1] into an even number of parts, say
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V
ρ(pr(z))

ϕh(ρ(pr(z)))

ϕt
h(ρ(pr(z)))

Φt

H̃
(pr(z))

0

Cn

P−1
K

(p)

Φ
H̃
(pr(z))

z

pr(z)exp(tλ)−1(pr(z))

ϕt
α(ρ(pr(z)))

Figure 1. The translated point ρ(pr(z)) of ϕh corresponds to an (R>0 ×K0)-
family of fixed points of exp(λ) ◦ Φ

H̃
- in blue. The Hamiltonian trajectory

Φt

H̃
(pr(z)) lifting the contact trajectory ϕt

h((ρ(pr(z))) does not necessarily

preserve the level set P−1
K

(p), but rather lies in the cone of P−1
K

(p) - in black.
The Reeb flow of α lifts to the K-action on P−1

K
(p) - in gray.

2N , we decompose the time-1 map ϕH := ϕ1
H as follows:

ϕH = ϕ2N ◦ · · · ◦ ϕ1,

where ϕj := ϕ
j

2N

H ◦ (ϕ
j−1

2N

H )−1. If N is big enough so that, for any z, −1 is not
an eigenvalue of dzϕj , the graph

Grϕj
:= {(z, ϕj(z)) | z ∈ Cn} ⊂ Cn × Cn,

projects diffeomorphically onto the diagonal

∆ := {(z, z) | z ∈ Cn} ⊂ Cn × Cn,
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where Cn denotes the symplectic vector space (Cn,−ωstd). The linear sym-
plectomorphism

Ψ : Cn × Cn → (T ∗Cn,−d(pdq))
(z, w) 7→ ( z+w

2 , i(z − w))

sends the diagonal ∆ to the zero-section 0Cn ⊂ T ∗Cn, and therefore Ψ(Grϕj
)

is the graph of a closed 1-form. This form is exact (either because H1(Cn;R)
= {0} or because ϕj is Hamiltonian):

Ψ(Grϕj
) = GrdHj

.

The function Hj is a generating function for the Lagrangian submanifold
Ψ(Grϕj

). In particular, the critical points of Hj are, through Ψ, in one-to-
one correspondence with the points of the intersection Grϕj

∩∆, that is with
the fixed points of ϕj .

Consider now the Lagrangian product

Grϕ1
× · · · ×Grϕ2N

⊂ (Cn × Cn)2N .

Applying the above to each component and the identification (T ∗Cn)2N =
T ∗C2nN , we can write

2N∏

j=1

Ψ(Grϕj
) := Ψ(Grϕ1

)× · · · ×Ψ(Grϕ2N
) = GrdH,

were
H : C2nN → R

(x1, . . . , x2N ) 7→
2N∑
j=1

Hj(xj).

The critical points of H are in one-to-one correspondence with the fixed
points of the product

2N∏

j=1

ϕj := ϕ1 × · · · × ϕ2N : (Cn)2N → (Cn)2N .

Yet, they do not correspond to fixed points of ϕH , which are rather in one-
to-one correspondence with the solutions of the equation

(z2, . . . , z2N , z1) = (ϕ1(z1), . . . , ϕ2N (z2N )).
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The graph Grq ⊂ (Cn)2N × (Cn)2N ≃ (Cn × Cn)2N of the ”twisted” cyclic
shift 15

q : (Cn)2N → (Cn)2N

(z1, . . . , z2N ) 7→ (z2, . . . , z2N ,−z1)

corresponds, through
2N∏
j=1

Ψ, to a Lagrangian subvector space of T ∗C2nN ,

which has a generating quadratic form. Since we have decomposed ϕH into
an even number of parts and have a factor −1 in the map q above, the graph
Grq intersects both the multi-diagonal and multi-antidiagonal

(±∆)2N := {(z1,±z1, . . . , z2N ,±z2N ) | zj ∈ Cn}

only at the origin. The latter are sent, through
2N∏
j=1

Ψ, to the zero-section

0C2nN and the fiber {0}×C2nN ⊂T ∗C2nN respectively. Therefore, in T ∗C2nN ,
we can write

2N∏

j=1

Ψ(Grq) = GrdQ,

where Q : C2nN → R is a non-degenerate quadratic form. The intersection

points of Grq with
2N∏
j=1

Grϕj
are in one-to-one correspondence with the fixed

points of the Hamiltonian symplectomorphism

−IdCn ◦ ϕH .

Consider the function

F (N) : C2nN → R, F (N) := Q−H.

The critical points of F (N) are in one-to-one correspondence with the fixed
points of −IdCn ◦ ϕH . The function F (N) is called the generating function
associated with the decomposition ϕH = ϕ2N ◦ · · · ◦ ϕ1.

3.3.2. Generating functions for the Hamiltonian lifts. Let h : V ×
[0, 1] → R be a contact Hamiltonian, and H̃ : Cn × [0, 1] → R a Hamiltonian

15This twist will be convenient in the sequel in order to ensure the non-degeneracy
of a certain quadratic form.
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lift of h. We apply the construction of the previous section to the Hamilto-
nian symplectomorphism

exp(λ) ◦ Φ
H̃
, λ ∈ k

from section 3.2.2. Consider a decomposition

Φ
H̃

= Φ2N1
◦ · · · ◦ Φ1

of the Hamiltonian symplectomorphism Φ
H̃

into 2N1 small parts Φj :=

Φ
j

2N1

H̃
◦ (Φ

j−1

2N1

H̃
)−1, and similarly, a decomposition

exp(λ) = exp(
λ

2N2
) ◦ · · · ◦ exp(

λ

2N2
)

︸ ︷︷ ︸
2N2−times

of the Hamiltonian symplectomorphism exp(λ). We denote by

F
(N)
λ := Q−Hλ : C2nN → R, N = N1 +N2,

the generating function associated with the decomposition

exp(λ) ◦ Φ
H̃

= exp(
λ

2N2
) ◦ · · · ◦ exp(

λ

2N2
)

︸ ︷︷ ︸
2N2−times

◦Φ2N1
◦ · · · ◦ Φ1.

The function Hλ is of the form

Hλ(x1, . . . , x2N ) :=

2N1∑

j=1

Hj(xj) +

2N∑

j=2N1+1

Tλ(xj), xj ∈ Cn,

where Hj and Tλ are the generating functions of Φj and exp( λ
2N2

) respec-
tively. Moreover, a direct computation shows that

Tλ(xj) =
n∑

k=1

tan(
πλk

2N2
)|qkj |

2, where xj = (q1j , . . . , q
n
j ) ∈ Cn

and ι(λ) = (λ1, . . . , λn) ∈ Rn.

Let us list several properties of the function F
(N)
λ :
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1) the Hamiltonian lift H̃ is smooth on Cn \ {0}, and is C2 at 0 only if
it is quadratic. However, it is homogeneous of degree 2, and therefore
it is C1 on Cn with Lipschitz derivative near 0. Hence, for any λ ∈ k,

F
(N)
λ is C1,1 on C2nN , and smooth on (Cn \ {0})2N ;

2) for any λ ∈ k, F
(N)
λ is homogeneous of degree 2 and K0-invariant. In

particular, the critical points of F
(N)
λ appear as R>0-lines of K0-orbits

(or (R>0 ×K0)-families) in C2nN , and have critical value 0;

3) the function F
(N)
λ is well-defined as long as ι(λ) ∈ (−N2, N2)

n ⊂ Rn;

4) the family λ 7→ F
(N)
λ decreases in positive directions: for any s ∈ k such

that ι(λ+ s) ∈ (−N2, N2)
n and ι(s) ∈ Rn

>0, we have

F
(N)
λ+s ≤ F

(N)
λ ;

5) for any λ ∈ k, the critical points of F
(N)
λ are in one-to-one correspon-

dence with the fixed points of the Hamiltonian symplectomorphism

−IdCn ◦ exp(λ) ◦ Φ
H̃
.

The symplectomorphism −IdCn is Hamiltonian and K-equivariant. It pre-
serves the sphere Sp and the contact form αp, as well as the level set P

−1
K

(p).
Therefore, it projects to a contactomorphism g ∈ Cont0(V, ξ). In particular,
any estimate for the number of α-translated points of all the compositions
of g with contactomorphisms in Cont0(V, ξ) will give rise to the same esti-
mate for the contactomorphisms in Cont0(V, ξ) themselves. In other words,
the twist by −IdCn , added so that the quadratic form Q becomes non-
degenerate, won’t affect the estimation on the number of α-translated points.

3.3.3. Adding the torus action. We are looking to count the number
of α-translated points of the time 1-map ϕh on V . By the discussions of
sections 3.2.2 and 3.3.2, we can look for fixed points of the composition

−IdCn ◦ exp(λ) ◦ Φ
H̃
,

for all values of λ. To that aim, we shall consider k as the space of Lagrange
multipliers. For any subset ΛN ⊂ k such that ι(ΛN ) ⊂ (−N2, N2)

n, we can
consider the following function

FN : C2nN × ΛN → R, FN (x, λ) := F
(N)
λ (x).
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Let SN denote the unit sphere S4nN−1 ⊂ C2nN , and FN be the restric-
tion of FN to SN × ΛN . We call FN (resp. FN ) the generating family
(resp. homogeneous generating family) associated with the decomposi-
tion Φ

H̃
= Φ2N1

◦ · · · ◦ Φ1. In the sequel, we fix this decomposition, and for
any N > N1, we take ΛN to be a cube in k with boundary ∂ΛN , centered at
the origin, of fixed size growing linearly with N , and such that

∪
N
ΛN = k.

Remark 3.3.1. In the sequel we will study the equivariant homotopy type
of sublevel sets of the generating family relatively to the boundary ∂ΛN .
When studying the regularity of FN and the critical point sets of the func-

tions F
(N)
λ , we will keep in mind that they are actually defined for all λ ∈ k

such that ι(λ) ∈ (−N2, N2)
n.

We are looking for critical points of the functions F
(N)
λ that lie in R>0-

lines that, through Ψ, intersect the level set P−1
K

(p). By homogeneity, any

critical point of F
(N)
λ has critical value 0, and moreover the zero-set F−1

N (0) ⊂
SN × ΛN is K0-invariant. Consider the function

p̂N : F−1
N (0) → R.
(x, λ) 7→ p(λ)

It is K0-invariant. Recall that we have denoted by g the contactomorphism
of Cont0(V, ξ) induced by the restriction −Id

Cn|P−1
K

(p). We have the following

contact analogue of [Giv95, Proposition 4.3].

Proposition 3.3.1. 0 is a regular value of FN , and to any critical K0-orbit
of p̂N , there corresponds an α-translated point of g ◦ ϕh.

Proof. Notice first that by homogeneity of FN , we have dxF
(N)
λ = dxF

(N)
λ

for all x ∈ (F
(N)
λ )−1(0). Let (x, λ) ∈ F−1

N (0) be a critical point of FN . Then

x ∈ SN is a critical point of F
(N)
λ . On Cn, it corresponds to a fixed point z

of the decomposition

−IdCn ◦ exp(
λ

2N2
) ◦ · · · ◦ exp(

λ

2N2
)

︸ ︷︷ ︸
2N2 times

◦Φ2N1
◦ · · · ◦ Φ1.

Let us denote by (z1, . . . , z2N = −z1) the corresponding discrete trajectory
in C2nN , that is z1 = z, and zj is obtained by applying the (j − 1)-th sym-
plectomorphism of the above decomposition to zj−1. Choose coordinates on
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k ≃ Rk, and write λ = (λ1, . . . , λk). By the Hamilton-Jacobi equation, the
derivative of FN in λ is given by minus the Hamiltonian associated with the
infinitesimal action of exp(λ) on the 2N2 last coordinates of x. Through Ψ,
this means that

∂FN

∂λj
(x, λ) = −P j

K
(z2N1+1)− · · · − P j

K
(z2N ),

where PK = (P 1
K
, . . . , P k

K
) : Cn → Rk∗. On the other hand, we have z2N1+i =

exp( λ
2N2

)z2N1+i−1, for all i = 1, . . . , 2N2. Since P j
K
is K-invariant, we obtain

∂FN

∂λj
(x, λ) = −NP j

K
(z2N1+1).

If (x, λ) is a critical point of FN , then P j
K
(z2N1+1) = 0, for all j = 1, . . . , k.

In particular, this means that P (z2N1+1) ∈ ker ι∗, and by compactness of the
toric manifold (M,ω,T), this is possible only if z2N1+1 = 0. By homogeneity
of the symplectomorphisms in the decomposition above, this implies that
z = 0, and thus x = 0, which is impossible on SN . Thus 0 is a regular value
of FN .

By the method of Lagrange multipliers, the critical points of p̂N are those

points (x, λ) ∈ F−1
N (0) such that x is a critical point of F

(N)
λ and ∂FN

∂λj
(x, λ)

is proportional to pj , where p = (p1, . . . , pk) ∈ Rk∗. By the discussion above,
this means that x corresponds to a discrete trajectory (z1, . . . , z2N = −z1)
satisfying

P j
K
(z2N1+1) ∼ pj , for all j = 1, . . . , k.

But then, P j
K
(z2N ) = P j

K
(z) ∼ pj , that is z lies in an R>0-line that intersects

P−1
K

(p). □

3.4. From a decomposition to another

Our cohomology group is defined as a limit in N → ∞ of equivariant co-
homology groups associated with the generating families FN . Therefore we
must describe how FN changes when N grows. The key ingredient is that
we can deform the generating functions in a controllable way, as long as
the front of the associated generating family remains unchanged during the
deformation. Recall that the front of FN is given by:

LN := {λ ∈ ΛN | 0 is a singular value of F
(N)
λ }.
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Translated points for contactomorphisms 1457

By construction of FN , it will remain unchanged as long as the time-1 map
Φ
H̃

remains unchanged as well. We closely follow [Giv95], and begin with
an observation. Let ΦH = Φ2N ′ ◦ . . . ◦ Φ1 be the decomposition of a Hamil-
tonian isotopy {Φt

H}t∈[0,1], such that the first 2(N ′ −N) parts consist of a
loop

IdCn = Φ2(N ′−N) ◦ · · · ◦ Φ1.

We relate the generating function F (N ′) associated with the whole decom-
position

ΦH = Φ2N ′ ◦ · · · ◦ Φ1,

to the generating functions F (N) and G(N ′−N) associated with the parts

Φ2N ′ ◦ · · · ◦ Φ2(N ′−N)+1 and Φ2(N ′−N) ◦ · · · ◦ Φ1

respectively. Consider the following deformation of the graph Grq from sec-
tion 3.3.1:

Qϵ :=

{
(z1, w1, . . . , z2N ′ , w2N ′) | (zj , wj) ∈ Cn × Cn,

wj = zj+1 for j /∈ {2(N ′ −N), 2N ′}

w2(N ′−N) = ϵ(z2(N ′−N)+1 − w2N ′)− z1

w2N ′ = ϵ(w2(N ′−N) − z1)− z2(N ′−N)+1

}
,

where ϵ ∈ [0, 1]. Then Qϵ is a Lagrangian subspace of (Cn × Cn)2N
′

, which
is transversal both to the multi-diagonal ∆2N ′

and the multi-antidiagonal
(−∆)2N

′

. Thus, it corresponds in T ∗C2N ′

to the graph of a non-degenerate
quadratic form Qϵ. Consider the generating function

F (N ′)
ϵ := Qϵ −H.

Its critical points are in one-to-one correspondence with the points of the
intersection

2N ′∏

j=1

Ψ(Grϕj
) ∩Qϵ.

For ϵ = 0, Qϵ is the product Q1 ×Q2, where Q1 and Q2 correspond to the
twisted cyclic shifts in (Cn)2N and (Cn)2(N

′−N) respectively. Since H is the
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direct sum of the generating functions associated with the small Hamiltonian
symplectomorphisms Φj for j = 1, . . . , 2N ′, we get

F
(N ′)
0 = F (N) ⊕ G(N ′−N) : C2nN × C2n(N ′−N) → R.

Moreover, F
(N ′)
0 admits a critical point if and only if F (N) does, if and only

if F (N ′) does. For ϵ = 1, we have Qϵ = Grq, so that

F
(N ′)
1 = F (N ′).

Finally, for ϵ ∈ (0, 1), notice that

(z1, w1, . . . , z2N ′ , w2N ′) ∈
2N ′∏

j=1

Ψ(Grϕj
) ∩Qϵ ⇐⇒

(1
ϵ
z1,

1

ϵ
w1, . . . ,

1

ϵ
z2(N ′−N),

1

ϵ
w2(N ′−N), z2(N ′−N)+1,

w2(N ′−N)+1, . . . , z2N ′ , w2N ′

)
∈

2N ′∏

j=1

Ψ(Grϕj
) ∩Grq,

where q is the twisted cyclic shift in C2nN ′

. In other words, the critical points

of F
(N ′)
ϵ are in one-to-one correspondence with the critical points of F (N ′),

for all ϵ ∈ [0, 1].
Observe now that given two decompositions

Φ1
H = Φ2N ◦ · · · ◦ Φ1,

= Φ′
2N ′ ◦ · · · ◦ Φ′

1

of the same Hamiltonian isotopy {Φt
H}t∈[0,1] of C

n with, say, N ′ > N , one
can always use a reparametrization Hs

t of Ht, so that H0
t = Ht, and H1

t

generates the Hamiltonian symplectomorphism

Φ1
H1 = Φ2N ◦ · · · ◦ Φ1 ◦ IdCn ◦ · · · ◦ IdCn︸ ︷︷ ︸

2(N ′−N)−times

.

In particular, consider the homogeneous generating family FN associated
with the decomposition

Φ
H̃

= Φ2N1
◦ · · · ◦ Φ1,
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Translated points for contactomorphisms 1459

where H̃ is a Hamiltonian lift of the contact Hamiltonian h. We will denote
by

G
(K)
λ : C2nK → R

the generating function associated with the decomposition

exp(
λ

2K
) ◦ · · · ◦ exp(

λ

2K
)

︸ ︷︷ ︸
2K−times

,

as defined in section 3.3.1. Let us also denote by FN+K|ΛN
(resp. FN+K|ΛN

)
the restriction of the generating family FN+K : SN+K × ΛN+K → R (resp.
the homogeneous generating family FN+K : C2n(N+K) × ΛN+K → R) to
SN+K × ΛN (resp. C2n(N+K) × ΛN ). Note that the front of FN+K|ΛN

is equal
to the front of FN , that is we have LN+K ∩ ΛN = LN .

Proposition 3.4.1. There exists a homogeneous of degree 2 and K0-invariant
fiberwise C1,1 homotopy between the restricted homogeneous family

FN+K|ΛN

and the fiberwise direct sum

FN ⊕ΛN
G
(K)
0 : C2n(N+K) × ΛN → R,

in a way that the front of the corresponding generating families on SN+K ×
ΛN remains unchanged during the deformation.

Proof. For any λ ∈ ΛN , the generating functions F
(N+K)
λ and F

(N)
λ are as-

sociated respectively with the decompositions

exp(λ) ◦ Φ
H̃

= exp(
λ

2(N2 +K)
) ◦ · · · ◦ exp(

λ

2(N2 +K)
)

︸ ︷︷ ︸
2(N2+K)−times

◦Φ2N1
◦ · · · ◦ Φ1

and

exp(λ) ◦ Φ
H̃

= exp(
λ

2N2
) ◦ · · · ◦ exp(

λ

2N2
)

︸ ︷︷ ︸
2N2−times

◦Φ2N1
◦ · · · ◦ Φ1.
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Up to a reparametrization of the 2(N2 +K) last factors, the first decompo-
sition becomes

exp(λ) ◦ Φ
H̃

= exp(
λ

2N2
) ◦ · · · ◦ exp(

λ

2N2
)

︸ ︷︷ ︸
2N2−times

◦ IdCn ◦ · · · ◦ IdCn︸ ︷︷ ︸
2K−times

◦Φ2N1
◦ · · · ◦ Φ1

= exp(
λ

2N2
) ◦ · · · ◦ exp(

λ

2N2
)

︸ ︷︷ ︸
2N2−times

◦Φ2N1
◦ · · · ◦ Φ1 ◦ IdCn ◦ · · · ◦ IdCn︸ ︷︷ ︸

2K−times

.

By the discussion above, the generating function associated with this

last decomposition is K0-invariantly homotopic to F
(N)
λ ⊕ G

(K)
0 , and this

homotopy does not change the front of the family. Thus, we obtain a homo-

geneous of degree 2 and K0-invariant C
1,1 homotopy between F

(N+K)
λ and

F
(N)
λ ⊕ G

(K)
0 . Since the time-1 map exp(λ) ◦ Φ

H̃
remains unchanged dur-

ing the reparametrization, the front remains unchanged during the whole
process. □

Remark 3.4.1. Notice that the result above is independent of the reparam-
etrization, since any two such reparametrizations are always homotopic.
Moreover, one can show by a similar argument that the front of the generat-
ing family FN remains unchanged if one modifies the decomposition of Φ

H̃

into 2N1 parts.

3.5. Sublevel sets and transversality

In this section, we introduce the sublevel sets which will be used to define the
cohomology groups. Similarly as with the generating families, we describe
how they behave when N grows, using the results from section 2.1. In partic-
ular, we define a basis of C2nN in which the quadratic generating functions
associated with the torus action are diagonal, so that we have a canonical
(independent of the given element of the torus) identification between their
non-positive sublevel sets and their non-positive eigenspaces. Consider the
following sublevel sets

F−
N := {FN ≤ 0}, F−

N := {FN ≤ 0}.
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For any ν ∈ R, we denote by ΓN (ν) the intersection ΛN ∩ p−1(ν), and define
the sets

F−
N (ν) := F−

N ∩ (C2nN × ΓN (ν)), ∂F−
N (ν) := F−

N (ν) ∩ (C2nN × ∂ΓN (ν)),

F−
N (ν) := F−

N ∩ (SN × ΓN (ν)), ∂F−
N (ν) := F−

N (ν) ∩ (SN × ∂ΓN (ν)),

where

∂ΓN (ν) := ΓN (ν) ∩ ∂ΛN .

Recall that the generating function F
(N)
λ is smooth on (Cn \ {0})2N . If x is a

critical point of F
(N)
λ , it corresponds, through the linear symplectomorphism

Ψ of section 3.3.1, to a solution of the equation

(z2, . . . , z2N ,−z1) = (γ1(z1), . . . , γ2N (z2N )),

where γj = Φj if j ≤ 2N1, and γj = exp( λ
2N2

) otherwise. If x lies on the
coordinate cross, there exists j such that γj(zj) = −zj . Since γj is close
to IdCn , this can happen only if zj = 0. Moreover, γj(0) = 0 for all j, and

therefore x = 0. Thus F
(N)
λ is smooth at any non-zero critical points. In

particular, the front LN is of zero-measure.
Recall that the spectrum of a contactomorphism is the set of Reeb shifts

of all its α-translated points (equation (4)). The relation between the front
LN and the spectrum Spec(g ◦ ϕh) of g ◦ ϕh shall be understood as follows:
the front LN is made of all the elements λ ∈ ΛN such that the Hamiltonian
diffeomorphism

−IdCn ◦ exp(λ) ◦ Φ
H̃

: Cn → Cn

admits a fixed point. However, this fixed point might not correspond to a
point on V (if it does not lie in an R>0-line that intersects P−1

K
(p)), and

therefore in particular to an α-translated point of g ◦ ϕh. In contrast, the
spectrum of g ◦ ϕh is made of real numbers ν ∈ R for which an α-translated
point with Reeb shift ν appears on V . By Propositions 2.1.1 and 3.3.1, this
happens if and only if there exist N and λ ∈ LN such that p(λ) = ν and
ΓN (ν) is tangent to LN at λ. In other words, elements of LN correspond
to fixed points on Cn, whereas non-transverse intersections between ΓN (ν)
and LN correspond to α-translated points of ϕh with Reeb shift ν.

Note however that ν /∈ Spec(g ◦ ϕh) does not mean that the boundary
∂ΓN (ν) is transversal to LN . By Corollary 2.1.1, the set of ν such that ΓN (ν)
and ∂ΓN (ν) are transversal to the front LN is of full measure. We will say
that ν ∈ R is generic if ΓN (ν) and ∂ΓN (ν) are transversal to LN for all
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N (we use here that a countable intersection of sets of full measure is of
full measure). Note that this notion depends on Φ

H̃
and the family of cubes

{ΛN}N .
We have the following ”homogeneous” version of [Giv95, Proposition 5.1].

Proposition 3.5.1. Let F : CM → R be a homogeneous of degree 2 func-
tion, and F̂ : CM+1 → R be its suspension

F̂(x, z) := F(x) + |z|2.

We denote by F± and F̂± the sets

F± := {x ∈ CM | F(x) ≥ 0 (resp. ≤ 0)},

F̂± := {(x, z) ∈ CM+1 | F̂(x) ≥ 0 (resp. ≤ 0)}.

Then there exist natural R>0-equivariant homotopy equivalences

F̂− ≃ F−, F̂+ ≃ F+ × C.

Moreover, if F is invariant relatively to an S1-action on CM , then the above
homotopy equivalences can be made equivariant with respect to the product
of the diagonal S1-action on CM with the standard S1-action on C. If F
depends continuously on additional parameters, then the homotopy equiva-
lences depend continuously on them.

Proof. Let us first consider the function

F̂ : CM × R≥0 → R, (x, r) 7→ F(x) + r2

and prove an analogue of the above statement in this setting, that is there
exist natural R>0-equivariant homotopy equivalences

F̂− ≃ F− and F̂+ ≃ F+ × R≥0.

The meridional contraction from the North pole P = (0, 1) of the unit sphere
S2M+1 preserves F̂− ∩ (S2M−1 × {0}), and therefore F̂− ∩ S2M+1 retracts
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onto F̂− ∩ (S2M−1 × {0}). Extending this contraction homogeneously pro-
vides a deformation retraction from F̂− to F− as well:

F̂− ≃ F−.

Moreover, each meridional arc from the North pole to F+ ∩ S2M−1 lies in
F̂+ ∩ S2M+1, and therefore the same contraction provides a homotopy equiv-
alence of pairs:

(F̂+,F+) ≃ (CM × R≥0,F
+).

Now, the pairs (CM × R≥0,F
+) and (F+ × R≥0,F

+) are naturally homo-
topy equivalent, and therefore we have

(F̂+,F+) ≃ (F+ × R≥0,F
+).

Figure 2 illustrates this deformation.
For the general case z ∈ C, we view CM × C as the quotient CM × R≥0 ×

S1/ ∼, with the identification CM × {0} × S1 ∼ CM . Then F± and F̂± are
simply given by their restrictions to CM × R≥0 multiplied by S1, with the
relevant identifications. We obtain

F̂− ≃ F−, F̂+ ≃ F+ × C.

Since all the homotopies from above are carried out in a canonical way, they
respect group actions and parametric dependence. □

Recall that G
(N)
λ denotes the generating function of the decomposition

exp(
λ

2N
) ◦ · · · ◦ exp(

λ

2N
)

︸ ︷︷ ︸
2N−times

,

as defined in section 3.3.1. It is a quadratic form. Let us denote by G
(N)−
λ

its non-negative eigenspace, after the following diagonalization.

Lemma 3.5.1. There exist vectors vkj in C2nN , and a linear isomorphism

C2nN ≃
⊕

j,k

Cvkj , j = 1, . . . , n, k = −N, . . . , N − 1,

such that:
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z

P

S2M+1

F− ∩ S2M−1

F+ ∩ S2M−1

S2M−1

F̂+ ∩ S2M+1

F̂− ∩ S2M+1

(F+ × R≥0) ∩ S2M+1

Figure 2. The meridional contraction from the North pole P - in blue.

1) the isomorphism is equivariant with respect to the diagonal action of
the maximal torus Tn = Rn/Zn on Cn × · · · × Cn

︸ ︷︷ ︸
2N−times

(acting linearly on

each factor Cn) and the Tn-action on
⊕
j,k

Cvkj defined as follows: for any

k, Tn acts on the complex line generated by vkj via its standard char-

acter χj : (e
iθ1 , . . . , eiθn) 7→ eiθj . In particular, the direct sum ⊕

k
Cvkj is

Tn-invariant;

2) for any λ, the quadratic form G
(N)
λ is diagonal in the basis (vkj )j,k, and

we have

dim(G
(N)−
λ ) =

n∑

j=1

2(N + ⌊λj +
1

2
⌋), where ι(λ) = (λ1, . . . , λn) ∈ ΛN ,

where ⌊.⌋ denotes the integer part.

Proof. Recall that for any λ ∈ k ⊂ Rn, the quadratic form G
(N)
λ is of the form

G
(N)
λ = Q−Hλ,
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where Hλ =
2N⊕
j=1

Tλ, and Tλ is the generating function of exp( λ
2N ). We have

Hλ(q) =

n∑

i=1

tan(
πλi

2N
)(|qi1|

2 + · · ·+ |qi2N |2),

where q = (q11, . . . , q
n
1 , . . . , q

1
2N , . . . , qn2N ) ∈ C2nN , and moreover, a direct cal-

culation shows that the non-degenerate quadratic form Q writes Q(q) =
⟨Cq, q⟩, where

C = i(Id−A)(Id+A)−1, A =




0 1
. .

. .
. .

. .
. 1

−1 0




∈ M2N×2N (Cn).

For any k = −N, . . . , N − 1, and j = 1, . . . , n, we define the following vector:

Xk
j = (ej , e

i
(2k+1)π

2N ej , . . . , e
i(2N−1) (2k+1)π

2N ej) ∈ (Cn)2N ,

where ej = (0, . . . , 0, 1, 0, . . . , 0) is the j-th standard vector in Cn. The reader
may check that the following points hold:

• we have i(Id−A)Xk
j = tan( (2k+1)π

4N )(Id+A)Xk
j , and therefore the fam-

ily {vkj := (Id+A)(Xk
j )}j,k is a C-basis of C2nN made of eigenvectors

of C, with eigenvalues tan( (2k+1)π
4N );

• the maximal torus Tn acts on the complex line Cvkj via the character

χj . In particular, Cvkj is Tn-invariant;

Put Vj =
N−1
⊕

k=−N
Cvkj . Since Q is Tn-invariant, each two lines Cvki and Cvlj are

orthogonal whenever i ̸= j. It remains to diagonalize the restrictions Q|Vj
.

The action of Tn on the basis (v−N
j , . . . , vN−1

j ) is given by χj . Since it is diag-

onal and linear, one can find a new basis (still denoted by (v−N
j , . . . , vN−1

j ))
of Vj , on which Tn acts via the character χj , and such that C|Vj

is diagonal.
It remains to concatenate these bases for j = 1, . . . , n.
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For the second point, the spectrum of Q is given by

Spec(Q) = {tan(
π(2k + 1)

4N
) | −N ≤ k ≤ N − 1},

and therefore the spectrum of G
(N)
λ is given by

Spec(G
(N)
λ ) = {tan(

π(2k + 1)

4N
)− tan(

πλj

2N
) | −N≤k≤N − 1, j=1, . . . , n}.

We have

tan(
π(2k + 1)

4N
)− tan(

πλj

2N
) ≤ 0 ⇐⇒ k ≤ λj −

1

2
.

There are N + ⌊λj +
1
2⌋ such k’s, and therefore the real dimension of G−

λ,N

is:

dim(G
(N)−
λ ) =

n∑

j=1

2(N + ⌊λj +
1

2
⌋),

as claimed. □

This change of basis is canonical, that is it depends only on N and the

non-degenerate quadratic form Q. Consider the direct sum FN ⊕ G
(K)
0 . The

non-degenerate quadratic form G
(K)
0 has 2nK negative eigenvalues, and is

diagonal in the basis of the above proposition (note here the importance of
the non-degeneracy of Q). Applying Proposition 3.5.1 multiple times, we get

Corollary 3.5.1. There exists an (R>0 ×K0)-equivariant homotopy equiv-
alence

{FN ⊕ G
(K)
0 ≤ 0} ≃ F−

N × G
(K)−
0 ≃ F−

N × CnK .

Applying Proposition 3.4.1 along with Proposition 2.1.2, we get

Proposition 3.5.2. If ν is generic, there exists an (R>0 ×K0)-equivariant
fiberwise homotopy equivalence

(F−
N+K|ΓN (ν),F

−
N+K|∂ΓN (ν)) ≃ (F−

N (ν)× CnK , ∂F−
N (ν)× CnK),

where we have denoted by F−
N+K|ΓN (ν) and F−

N+K|∂ΓN (ν) the restrictions of

F−
N+K to C2n(N+K) × ΓN (ν) and C2n(N+K) × ∂ΓN (ν) respectively.
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3.6. The cohomology groups

In this section we study the equivariant cohomology of the sublevel sets
introduced in the previous section, and come to the definition of our co-
homology group by taking a limit in N → ∞. In a first step we use the
identification of section 2.2 for conical spaces in order to define a natural
homomorphism from which we derive our limit. The latter comes along with
a natural so-called augmentation map, as well as with several algebraic struc-
tures, namely the action of coefficient rings in equivariant cohomology, as
well as a Novikov action of H2(M ;Z). We interpret the latter on the kernel
of the augmentation map.

As above, we consider the homogeneous generating family

FN : C2nN × ΛN → R,

associated with a decomposition of the Hamiltonian symplectomorphism
Φ
H̃
, where H̃ is a Hamiltonian lift of a contact Hamiltonian h of V , and we

fix a generic ν ∈ R. We look at the K0-equivariant cohomology groups

H∗
K0
(F−

N (ν), ∂F−
N (ν)).

Using the notations from section 2.2, we work with the following short exact
sequence

0 −→ C∗
K0,c(F

−
N (ν), ∂F−

N (ν)) −→ C∗
K0
(F−

N (ν), ∂F−
N (ν))

−→
C∗

K0
(F−

N (ν), ∂F−
N (ν))

C∗
K0,c

(F−
N (ν), ∂F−

N (ν))
−→ 0,

and identify the cohomology of the third term with that of the complex
C∗

K0
(F−

N (ν), ∂F−
N (ν)), that is with H∗

K0
(F−

N (ν), ∂F−
N (ν)). Consider the CnK-

bundle

(F−
N (ν)× CnK)K0

→ F−
N (ν)K0

.

In relative cohomology, the Thom isomorphism of this bundle

H∗
K0
(F−

N (ν), ∂F−
N (ν)) ≃ H∗+2nK

K0,cv
(F−

N (ν)× CnK , ∂F−
N (ν)× CnK),

and the natural homomorphism

H∗+2nK
K0,cv

(F−
N (ν)× CnK , ∂F−

N (ν)× CnK)

→ H∗+2nK
K0

(F−
N (ν)× CnK , ∂F−

N (ν)× CnK)
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preserve compact supports, and therefore they induce a homomorphism

H∗
K0
(F−

N (ν), ∂F−
N (ν)) → H∗+2nK

K0
(F−

N (ν)× CnK , ∂F−
N (ν)× CnK).

Along with Proposition 3.5.2, we obtain a homomorphism

H∗
K0
(F−

N (ν), ∂F−
N (ν)) → H∗+2nK

K0
(F−

N+K|ΓN (ν), F
−
N+K|∂ΓN (ν)),

where we have denoted by F−
N+K|ΓN (ν) and F−

N+K|∂ΓN (ν) the restrictions of

F−
N+K to SN+K × ΓN (ν) and SN+K × ∂ΓN (ν) respectively. We now apply

the equivariant version of the excision formula to the triple

(F−
N+K(ν),F−

N+K|ΓN+K(ν)\Γ̊N (ν)
,F−

N+K|ΓN+K(ν)\ΓN (ν)),

where Γ̊N (ν) denotes the interior of ΓN (ν) (the reader shall note here the
importance of the fact that transversality is an open condition). It induces
an isomorphism

H∗
K0
(F−

N+K|ΓN (ν),F
−
N+K|∂ΓN (ν)) ≃ H∗

K0
(F−

N+K(ν),F−

N+K|ΓN+K(ν)\Γ̊N (ν)
),

which preserves compact supports. Moreover, there is an inclusion of pairs

(F−
N+K(ν), ∂F−

N+K(ν)) ⊂ (F−
N+K(ν),F−

N+K|ΓN+K(ν)\Γ̊N (ν)
).

Putting all these maps together, we obtain a homomorphism

H∗
K0
(F−

N (ν), ∂F−
N (ν)) → H∗+2nK

K0
(F−

N+K(ν), ∂F−
N+K(ν)).

We will take a limit in N → ∞, and therefore it will be convenient to shift
the grading by 2nN . Thus we have built a homomorphism

fN+K
N : H∗+2nN

K0
(F−

N (ν), ∂F−
N (ν)) → H

∗+2n(N+K)
K0

(F−
N+K(ν), ∂F−

N+K(ν)).

Notice that all the maps involved in the construction of fN+K
N are natural

in cohomology: they involve topological inclusions, the excision formula, the
Thom isomorphism, and the deformation of Proposition 3.5.2. In particular,
we have the following cocycle condition

fN+K+K′

N+K ◦ fN+K
N = fN+K+K′

N .
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Definition 3.6.1. We define the cohomology of H̃ of level ν as the
limit

H∗
K0
(F−(ν)) := lim

N→∞
H∗+2nN

K0
(F−

N (ν), ∂F−
N (ν)).

Remark 3.6.1. This definition is independent of the choice of a sequence
{ΛN}N . Indeed, for any other sequence of cubes {Λ′

N}N , and for any N ,
there exists N ′ such that ΛN ⊂ Λ′

N ′ . Applying the Thom isomorphism and
the excision formula, one can then build a homomorphism from one limit
to the other, and similarly in the other direction which, by naturality, are
inverse of one another.

The above limit comes along with certain structures. First, note that
there is an inclusion of pairs (F−

N (ν), ∂F−
N (ν)) ⊂ (F−

N (ν), ∂F−
N (ν)), and the

latter is equivariantly homotopic to the pair (ΓN (ν), ∂ΓN (ν)). In particular,
there is a natural homomorphism

H∗
K0
(ΓN (ν), ∂ΓN (ν)) → H∗

K0
(F−

N (ν), ∂F−
N (ν)).

We denote by H∗
K0
(ν) the limit

H∗
K0
(ν) := lim

N→∞
H∗+2nN

K0
(ΓN (ν), ∂ΓN (ν)),

and call the induced homomorphism

H∗
K0
(ν) → H∗

K0
(F−(ν))

the augmentation map. Note that the groups H∗
K0
(ν) and H∗

K0
(F−(ν))

inherit from their finite parts the structure of H∗
K0
(pt)-modules, and that the

augmentation map is a module homomorphism. We denote by J ∗
K0
(F−(ν))

its kernel:

J ∗
K0
(F−(ν)) := ker(H∗

K0
(ν) → H∗

K0
(F−(ν))).

Recall that under the isomorphism H2(M,Z) ≃ k
∗
Z
from equation (1), the

first Chern class c1 of (M,ω) writes

c1(m) =

n∑

j=1

mj , for all m ∈ kZ, ι(m) = (m1, . . . ,mn).

Notice moreover that since ν is generic and the front LN of FN is kZ-invariant
(see Remark 3.2.1), all translations ΓN (ν) +m and ∂ΓN (ν) +m by elements
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m ∈ kZ are transversal to LN , for any N . In particular, we can apply Propo-
sition 3.4.1 replacing ΛN with ΛN +m, where m ∈ kZ (see figure 3). This
yields a homogeneous of degree 2 and K0-invariant fiberwise C1,1 homo-
topy between the restricted homogeneous family FN+K|ΛN+m and the fiber-

wise direct sum FN ⊕ΛN
G
(K)
m . Applying Lemma 3.5.1, Corollary 3.5.1, and

Proposition 3.5.2, we then obtain an (R>0 ×K0)-equivariant fiberwise ho-
motopy equivalence

(F−
N+K|ΓN (ν)+m

,F−
N+K|∂ΓN (ν)+m

)

≃ (F−
N (ν)× CnK+2c1(m), ∂F−

N (ν)× CnK+2c1(m)).

By the Thom isomorphism and the excision formula, we get a homomor-
phism in equivariant cohomology

H∗+2nN
K0

(F−
N (ν), ∂F−

N (ν))

→ H
∗+2n(N+K)+2c1(m)
K0

(F−
N+K(ν + p(m)), ∂F−

N+K(ν + p(m))).

In the limit N → ∞, the latter becomes

H∗
K0
(F−(ν)) → H

∗+2c1(m)
K0

(F−(ν + p(m))).

It is an isomorphism (with inverse given by applying Proposition 3.4.1 re-
placing 0 with −m), which reflects the Novikov action of H2(M ;Z). The
latter induces an isomorphism between the kernels

(9) J ∗
K0
(F−(ν)) ≃ J

∗+2c1(m)
K0

(F−(ν + p(m))).

Notice that the torus K0 acts trivially on the pair (ΓN (ν), ∂ΓN (ν)), and
therefore the cohomology group H∗

K0
(ΓN (ν), ∂ΓN (ν)) is a free H∗

K0
(pt)-

module of rank 1 generated by the fundamental cocycle of the sphere
ΓN (ν)/∂ΓN (ν). If K is big enough so that nK + c(m) > 0, the homomor-
phism

H∗+2nN
K0

(ΓN (ν), ∂ΓN (ν))

→ H
∗+2n(N+K)+2c1(m)
K0

(ΓN+K(ν + p(m)), ∂ΓN+K(ν + p(m)))

can thus be written

H∗+2nN
K0

(pt) → H
∗+2n(N+K)+2c1(m)
K0

(pt).
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Under this identification, the only map involved in the construction of the
above homomorphism is the Thom isomorphism, which reduces to the mul-
tiplication by the Euler class of the bundle

(CnK+c1(m))K0
→ BK0.

Recall the Chern-Weil isomorphism

H∗
Tn(pt) ≃ C[u1, . . . , un].

The Euler class of the above bundle is then given by the image of the product
uK+m1

1 · · ·uK+mn

n under the surjective ring homomorphism

H∗
Tn(pt) → H∗

K0
(pt).

This will serve us in section 4, where we will be able to compute the isomor-
phism (9).

ΛN+K

ΛN

ΛN +m

m

Figure 3. Moving the cube in the direction of m ∈ kZ. Proposition 3.4.1
can then be applied to the homogeneous generating family FN+K|ΛN+m,

which becomes homotopic to FN ⊕ΛN
G
(K)
m . It remains to observe that

dim(G
(K)−
m ) = 2nK + 2c1(m), by Lemma 3.5.1.

4. The Gysin sequence

In this section, we describe in more detail the domain H∗
K0
(ν) and the kernel

J ∗
K0
(F−(ν)) of the augmentation map H∗

K0
(ν) → H∗

K0
(F−(ν)). We begin by
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showing, by means of a Gysin-type long exact sequence relating our construc-
tion to that of [Giv95], that H∗

K0
(ν) can be identified with the ring of regular

functions on the intersection (k0 ⊗ C) ∩ (C×)n, where (C×)n is the complex
torus. We then explicit J ∗

K0
(F−(ν)) in the case where the homogeneous gen-

erating family FN is associated with a decomposition of the Hamiltonian
symplectomorphism Φ0 = IdCn , 0 being a Hamiltonian lift of the trivial
contact Hamiltonian 0 on V . We will see in section 5 that this suffices for
the proof of Proposition 1.2.3. We also include the proofs of Propositions
1.2.1 and 1.2.2 at the end of this section. Consider the aforementioned set-
ting for the homogeneous generating family FN . Up to a reparametrization

of the decomposition, the function F
(N)
λ is simply the generating function

G
(N)
λ associated with the decomposition

exp(
λ

2N
) ◦ · · · ◦ exp(

λ

2N
)

︸ ︷︷ ︸
2N−times

,

as defined in section 3.3.1, so we shall use the notations GN := FN andGN :=

FN . Note that for any λ ∈ ΛN , G
(N)
λ is K-invariant, so that one can consider

either the K0-equivariant cohomology groups H∗
K0
(G−

N (ν), ∂G−
N (ν)), or the

K-equivariant cohomology groups H∗
K
(G−

N (ν), ∂G−
N (ν)). In this last case, the

functions fN+K
N from section 3.6 can still be constructed in the exact same

way as above, and one can define limits of K-equivariant cohomology groups:

H∗
K
(G−(ν)) := lim

N→∞
H∗+2nN

K
(G−

N (ν), ∂G−
N (ν))

H∗
K
(ν) := lim

N→∞
H∗+2nN

K
(ΓN (ν), ∂ΓN (ν)).

The latter inherit the structure ofH∗
K
(pt)-modules, and therefore ofH∗

Tn(pt)-
modules as well, through the surjective homomorphism

H∗
Tn(pt) → H∗

K(pt).

In [Giv95], Givental showed that the augmentation map

H∗
K(ν) → H∗

K(G
−(ν))

has trivial cokernel, and he described its kernel in terms of Newton diagrams
associated with the level p−1(ν). We will see now that there is a Gysin-type
long exact sequence relating the cohomology groups H∗

K(G
−(ν)) of Given-

tal [Giv95] to our cohomology groups H∗
K0
(G−(ν)). Gysin sequences were



✐

✐

“3-Tervil” — 2022/5/18 — 1:55 — page 1473 — #53
✐

✐

✐

✐

✐

✐

Translated points for contactomorphisms 1473

already used in symplectic topology to relate different kinds of Floer-type
homologies, for instance in [Per08], [BO13], [BK13]. We give here another
example of such a use, and by further analyzing the maps involved, we will be
able to describe the kernel of the augmentation map H∗

K0
(ν) → H∗

K0
(G−(ν)).

Recall that given any oriented S1-bundle π : V → M , the cohomology groups
of V and M are related by the Gysin long exact sequence

· · · −→ H∗(M)
∪eu
−→ H∗+2(M)

π∗

−→ H∗+2(V )
π∗−→ H∗+1(M) −→ · · · ,

where eu ∈ H2(M) is the Euler class of the bundle π, ∪ denotes the cup-
product, π∗ is the pull-back and π∗ the push-forward. If A ⊂ V , the above
sequence gives rise naturally to a long exact sequence in relative cohomology

· · · −→ H∗(M,π(A))
∪eu
−→ H∗+2(M,π(A))
π∗

−→ H∗+2(V,A)
π∗−→ H∗+1(M,π(A)) −→ · · · ,

where we have used, for the sake of clarity, the same notation for the maps
induced in cohomology and in relative cohomology. We will also use the
notation H∗

Tn(pt) ≃ C[u], where u = (u1, . . . , un). Let I (resp. I0) denote
the ideal of C[u] generated by polynomials vanishing on the complexified Lie
algebra k⊗ C ⊂ Cn (resp. k0 ⊗ C ⊂ Cn). There are natural isomorphisms

H∗
K(pt) ≃ C[u]/I and H∗

K0
(pt) ≃ C[u]/I0.

In other words, H∗
K
(pt) (resp. H∗

K0
(pt)) is the ring of regular (or polynomial)

functions on k⊗ C (resp. k0 ⊗ C). Recall that the ring of regular functions
on the complex torus (C×)n is given by C[u, u−1]. Let us denote by R and
R0 the rings of regular functions on the intersections (k⊗ C) ∩ (C×)n and
(k0 ⊗ C) ∩ (C×)n respectively. We have

R = C[u]/I ⊗ C[u, u−1] ≃ C[u, u−1]/IC[u, u−1]
and

R0 = C[u]/I0 ⊗ C[u, u−1] ≃ C[u, u−1]/I0C[u, u
−1].

Let J∗(ν) denote the C[u]-submodule of C[u, u−1] generated by monomials
whose degrees lie in kZ above the level p−1(ν):

(10) J∗(ν) := ⟨uι(m) | m ∈ kZ, p(m) ≥ ν⟩,

and let J ∗
K
(ν) denote its projection to R. Givental proved the following
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Proposition 4.1 ([Giv95] Propositions 5.3, 5.4, Corollary 5.5). There
are isomorphisms of H∗

K
(pt)-modules

H∗
K(ν) ≃ R and H∗

K(G
−(ν)) ≃ R/J ∗

K(ν).

In particular, we have J ∗
K
(G−(ν)) ≃ J ∗

K
(ν). We denote by J ∗

K0
(ν) the

projection of J∗(ν) to R0. We claim that the kernel J ∗
K0
(G−(ν)) of the

augmentation map

H∗
K0
(ν) → H∗

K0
(G−(ν))

can be identified with J ∗
K0
(ν). Note that if EG → BG denotes the universal

bundle associated with a Lie group G, then EK0 may be thought of as EK,
since the latter is contractible, and K0 acts freely on it. Therefore, one can
define the homotopy quotient (G−

N (ν))K0
by

(G−
N (ν))K0

:= (G−
N (ν)× EK)/K0,

and construct the following principal S1 := K/K0-bundle:

πN : (G−
N (ν))K0

→ (G−
N (ν))K.

In relative cohomology, one can then relate the K-equivariant and K0-
equivariant cohomology groups above by the Gysin sequence

· · · −→ H∗+2nN
K

(G−
N (ν), ∂G−

N (ν))
∪eu
−→ H∗+2nN+2

K
(G−

N (ν), ∂G−
N (ν))

π∗
N−→ H∗+2nN+2

K0
(G−

N (ν), ∂G−
N (ν))

πN∗−→ H∗+2nN+1
K

(G−
N (ν), ∂G−

N (ν)) −→ · · · .

Let us interpret the Euler class eu in this sequence. The classifying map

lN : (G−
N (ν))K → B(K/K0)

of the bundle πN gives rise to a homomorphism

l∗N : H∗(B(K/K0)) → H∗
K(G

−
N (ν)).

It restricts on (∂G−
N (ν))K to the classifying map of the principal K/K0-

bundle (∂G−
N (ν))K0

→ (∂G−
N (ν))K, which yields a homomorphism (still de-

noted by l∗N )

l∗N : H∗(B(K/K0)) → H∗
K(∂G

−
N (ν)).
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Moreover, by the Chern-Weil isomorphism, the group H∗(B(K/K0)) can be
identified with the polynomial algebra C[(k/k0)

∗] ≃ C[p] (here p is assigned
the degree 2, and is viewed as a C-valued functional on k⊗ C). The long
exact sequence of relative K-equivariant cohomology writes

· · · −→ H∗−1
K

(G−
N (ν)) −→ H∗−1

K
(∂G−

N (ν))

−→ H∗
K(G

−
N (ν), ∂G−

N (ν)) −→ · · · .

Along with the homomorphisms above, we obtain a diagram

· · · H∗−1
K

(G−
N (ν)) H∗−1

K
(∂G−

N (ν)) H∗
K
(G−

N (ν), ∂G−
N (ν)) · · ·

· · · C[p] C[p] C[p] · · · .
Id
=

l∗N
Id
=

l∗N

Therefore, we obtain a map in relative equivariant cohomology

l∗N : C[p] → H∗
K(G

−
N (ν), ∂G−

N (ν)).

Now, recall that any characteristic class of a principal bundle is given by
the pull-back by its classifying map of a universal characteristic class of the
associated universal principal bundle. In our case, we have the universal
principal S1-bundle E(K/K0) → B(K/K0), and by definition, the universal
characteristic classes are the cohomology classes of H∗(B(K/K0)), which is
isomorphic to C[p]. Moreover, since it is an S1-bundle, the universal Euler
class agrees with the first Chern class of the associated complex line bun-
dle, which is, by definition, the generator of H2(B(K/K0)), that is p. This
implies that the Euler class in the above Gysin sequence is given by the
pull-back l∗N (p) of p by the map lN . The other two maps involved are the
pull-back π∗

N and the push-forward πN∗ (in relative cohomology). The latter
are canonical, and therefore they commute with the limit N → ∞. Moreover,
the cup product by the Euler class is functorial. Since directs limits of ex-
act sequences are exact sequences, we obtain a Gysin sequence in the limit
N → ∞:

· · · −→ H∗
K(G

−(ν)) −→ H∗+2
K

(G−(ν))

−→ H∗+2
K0

(G−(ν)) −→ H∗+1
K

(G−(ν)) −→ · · · .

The same applies for the equivariant cohomology groups of the pair (ΓN (ν),
∂ΓN (ν)), for which the Gysin sequence in the limit is given by

(11) · · · −→ H∗
K(ν) −→ H∗+2

K
(ν) −→ H∗+2

K0
(ν) −→ H∗+1

K
(ν) −→ · · · .
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Proposition 4.2. There is a natural isomorphism of H∗
K0
(pt)-modules

H∗
K0
(ν) ≃ R0.

Proof. By Proposition 4.1, H∗
K(ν) is the ring R of regular functions on the

intersection (k⊗ C) ∩ (C×)n. The latter is an irreducible variety, and thus
there are no zero divisors in H∗

K(ν). In particular, the map induced in the
limit by the cup product with the Euler class is injective. This reduces the
Gysin sequence (11) to the following short exact sequence

0 −→ H∗
K(ν) −→ H∗+2

K
(ν) −→ H∗+2

K0
(ν) −→ 0.

Now, for any N , recall that the torus K acts trivially on the pair (ΓN (ν),
∂ΓN (ν)). This makes H∗

K
(ΓN (ν), ∂ΓN (ν)) into a free H∗

K
(pt)-module of rank

1, generated by the fundamental cocycle of the sphere ΓN (ν)/∂ΓN (ν) (see
section 3.6). The same applies for the action of K0, and therefore the prin-
cipal S1-bundle to be considered here reduces to

BK0 → BK.

Through the Chern-Weil isomorphism, in cohomology, this map becomes
C[k∗] → C[k∗0]. For the map l∗ : C[p] → C[k∗] induced in cohomology by the
classifying map in this case, the Euler class l∗(p) is simply the generator of
the kernel of k∗ → k

∗
0, that is p. Thus in H∗

K(ν), the map induced by the cup
product with the Euler class is simply the multiplication by p. By the very
definition of I0 and I, one gets

H∗
K0
(ν) ≃ R/pR ≃ R0.

□

Remark 4.1. Notice that if M = CPn−1, then k = R, and k0 = {0}. There-
fore I0 = C[u, u−1], and R0 = {0}. Moreover, the Euler class p in this case
is the generator v of R ≃ C[v, v−1], and thus it is invertible. Therefore the
Gysin sequence in the limit N → ∞ gives H∗

K0
(ν) = {0}.



✐

✐

“3-Tervil” — 2022/5/18 — 1:55 — page 1477 — #57
✐

✐

✐

✐

✐

✐

Translated points for contactomorphisms 1477

By the above discussion, we have the following commutative diagram

...

0 0 H∗+1
K0

(G−(ν))

0 J ∗
K
(ν) H∗

K(ν) H∗
K(G

−(ν)) 0

0 J ∗+2
K

(ν) H∗+2
K

(ν) H∗+2
K

(G−(ν)) 0

0 J ∗+2
K0

(G−(ν)) H∗+2
K0

(ν) H∗+2
K0

(G−(ν))

0 0 H∗+1
K

(G−(ν)).

...

p p

f g h

The vertical right and middle sequences are Gysin sequences, and the hori-
zontal sequences are induced by the augmentation maps. Note that the left
vertical sequence is a priori not necessarily exact at the middle term. The
diagram is clear from the discussion above, except for the surjectivity of the
map f . From the two bottom rows of the diagram and the snake lemma, we
have the following short exact sequence:

0 −→ ker f −→ ker g −→ kerh −→ cokerf −→ 0.

The homomorphism ker g → kerh is simply the surjection ∪l∗(p)(H∗
K(ν)) →

∪l∗(p)(H∗
K(G

−(ν))), where ∪l∗(p) denotes the map induced in the limit N →
∞ by the cup product with the Euler class (on H∗

K0
(ν), as we’ve seen above,

it is the multiplication by p). We conclude that f is onto. In particular, the
kernel J ∗

K0
(G−(ν)) is the image of J ∗

K
(ν) ⊂ H∗

K(ν) under the map g. In other
words, it is the projection to R0 of the module J∗(ν):

J ∗
K0
(G−(ν)) ≃ J ∗

K0
(ν).
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Let us go back to the general case, where the homogeneous generating
family FN is associated with a decomposition of a Hamiltonian lift of a
contact Hamiltonian h : V × [0, 1] → R. In this setting, we cannot compute
the kernel J ∗

K0
(F−(ν)) of the augmentation map

H∗
K0
(ν) → H∗

K0
(F−(ν)).

However, we can now compute the isomorphism (9):

J ∗
K0
(F−(ν)) ≃ J

∗+2c1(m)
K0

(F−(ν + p(m))).

Recall from section 3.6 that the homomorphism

H∗+2nN
K0

(ΓN (ν), ∂ΓN (ν))

→ H
∗+2n(N+K)+2c1(m)
K0

(ΓN+K(ν + p(m)), ∂ΓN+K(ν + p(m)))

is given by the multiplication by the image of the product uK+m1

1 · · ·uK+mn

n

through the natural projection

C[u] → C[u]/I0.

In the limit N → ∞, this implies that the isomorphism (9) is given by the
multiplication by um1

1 · · ·umn

n :

J
∗+2c1(m)
K0

(F−(ν + p(m))) ≃ um1

1 · · ·umn

n J ∗
K0
(F−(ν)).

To close this section, we now prove Propositions 1.2.1 and 1.2.2. They
are included here only for the sake of completeness, for they are similar to
the proofs of [Giv95, Propositions 6.2, 6.3]. Notice that since the generating

functions F
(N)
λ decrease in positive directions (see section 3.3.2 property 4),

for any generic ν0 ≤ ν1, if N is big enough so that ΓN (ν0) and ΓN (ν1) are not
empy, there is an injection of pairs (F−

N (ν0), ∂F
−
N (ν0)) →֒ (F−

N (ν1), ∂F
−
N (ν1)),

which induces a natural homomorphism

H∗
K0
(F−(ν1)) → H∗

K0
(F−(ν0)).

Proposition 1.2.1. Suppose that [ν0, ν1] ∩ Spec(g ◦ ϕh) = ∅. Then the ho-
momorphism above is an isomorphism

H∗
K0
(F−(ν1)) ≃ H∗

K0
(F−(ν0)).
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Proof. Assume that [ν0, ν1] ∩ Spec(g ◦ ϕh) = ∅. For any ν ∈ [ν0, ν1] and any
N , ΓN (ν) is transversal to the front LN . Moreover, the set of generic ν
is of full measure. Let ν ∈ [ν0, ν1] be in this set. Since transversality is an
open condition, by Proposition 2.1.3, there exists ϵ > 0 and a K0-equivariant
homotopy equivalence

(F−
N (ν + ϵ), ∂F−

N (ν + ϵ)) ≃ (F−
N (ν − ϵ), ∂F−

N (ν − ϵ)).

In the limit N → ∞ of K0-equivariant cohomology groups, this yields an
isomorphism

H∗
K0
(F−(ν + ϵ)) ≃ H∗

K0
(F−(ν − ϵ)).

Choosing a finite subcovering of [ν0, ν1] by such segments [ν − ϵ, ν + ϵ] yields
an isomorphism

H∗
K0
(F−(ν1)) ≃ H∗

K0
(F−(ν0)),

as claimed. □

Remark 4.2. Note that the inclusion

(F−
N (ν0), ∂F

−
N (ν0)) →֒ (F−

N (ν1), ∂F
−
N (ν1))

is not necessarily a homotopy equivalence, even N is big: even if ν0 and ν1
are chosen generically (which is not the case), nothing forces the front LN to
stay transversal to ∂ΓN (ν) for all ν ∈ (ν0, ν1). Therefore, the isomorphism
can only be obtained in the limit N → ∞, which is why we perform a limit
process.

Proposition 1.2.2. Suppose that the segment [ν0, ν1] contains only one
value ν ∈ Spec(g ◦ ϕh), which corresponds to a finite number of translated
points. Let v ∈ H∗

K0
(pt) be an element of positive degree, and q ∈ R0. Sup-

pose that q ∈ J ∗
K0
(F−(ν0)). Then vq ∈ J ∗

K0
(F−(ν1)).

Proof. We rephrase the statement as follows: suppose that q1 ∈ H∗
K0
(F−(ν1))

and q0 ∈ H∗
K0
(F−(ν0)) are the images of q under the augmentation maps

q ∈ R0 H∗
K0
(F−(ν1)) ∋ q1

H∗
K0
(F−(ν0)) ∋ q0.

Then q0 = 0 implies vq1 = 0.
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Without loss of generality, we can assume that ν0 = ν − ϵ, ν1 = ν + ϵ
(using the argument of Proposition 1.2.1), and that there is only one K0-
orbit of fixed points associated with ν. Using the deformations from Propo-
sition 2.1.3, for N big enough, the pair (F−

N (ν0), ∂F
−
N (ν0)) is embedded

into (F−
N (ν1), ∂F−

N (ν1)) as the complement of a neighborhood to the pair
(F−

N (ν), ∂F−
N (ν)) which contains a K0-orbit of critical points of p̂N (since

avoiding critical K0-orbits of p̂N is equivalent to staying transversal to the
front LN ). There exists a non-zero representative q̂ ∈ H∗

K0
(F−

N (ν1), F
−
N (ν1))

of q1 (otherwise q1 = 0 and the statement is trivial) which vanishes when re-
stricted to (F−

N (ν0), ∂F
−
N (ν0)). In particular, q̂ is the image of some element

α ∈ H∗
K0
(F−

N (ν1), F
−
N (ν0)) under the long exact sequence

· · · −→ H∗
K0
(F−

N (ν1), F
−
N (ν0))

f
−→ H∗

K0
(F−

N (ν1), ∂F
−
N (ν1))

−→ H∗
K0
(F−

N (ν0), ∂F
−
N (ν0)) −→ H∗+1

K0
(F−

N (ν1), F
−
N (ν0)) −→ · · · .

The torus K0 acts freely in a neighborhood of the K0-orbit of critical points
of p̂N (since M is compact), hence the equivariant cohomology H∗

K0
(F−

N (ν1),
F−
N (ν0)) is simply the singular cohomology H∗(F−

N (ν1)/K0, F
−
N (ν0)/K0).

Moreover, the action of the coefficient ring H∗
K0
(pt) on the latter is triv-

ial, since the principal bundle associated with the free K0-action on the
neighborhood of the critical K0-orbit of p̂N can be trivialized. Thus,

vα = 0 and vq̂ = f(vα) = 0.
□

5. Elements of minimal degree in the monotone case

The proof of Theorem 1.1.1 relies on a strong algebraic property of the ker-
nel J ∗

K0
(F−(ν)). In the K-equivariant case, Givental showed that the kernel

J ∗
K
(F−(ν)) of the augmentation map

R ≃ H∗
K(ν) → H∗

K(F
−(ν))

admits, in some sense, elements of minimal degree ([Giv95, Corollary 1.3]). It
appears that this is not always true for theK0-equivariant kernel J

∗
K0
(F−(ν))

when the manifold is a prequantization space over a toric manifold which is
not necessarily monotone. For instance, consider, for any a, b ∈ Z \ {0}, the
symplectic toric manifold (CP 1 × CP 1, ωa,b,T

2/S1 × T2/S1), where ωa,b :=
aωFS ⊕ bωFS, ωFS being the Fubini-Study form. Recall that it is obtained by
symplectic reduction of C2 × C2 by the diagonal S1-action on each factor.
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The associated momentum map is given by

PT2 : C2 × C2 → R2∗, (z1, z2, w1, w2) 7→ π(|z1|
2 + |z2|

2, |w1|
2 + |w2|

2),

and therefore, k ≃ R2 embeds into R4 via

ι : R2 →֒ R4, m = (m1,m2) 7→ (m1,m1,m2,m2).

Under the identification H2(M ;Z) ≃ k
∗
Z
≃ Z2∗, the cohomology class [ωa,b]

of ωa,b is simply given by the regular value p = (a, b) ∈ Z2∗ of the momentum
map PT2 , and for any m = (m1,m2) ∈ H2(M ;Z) ≃ Z2, we have

[ωa,b](m) = am1 + bm2 and c1(m) = 2m1 + 2m2.

In particular, (CP 1 × CP 1, ωa,b) is monotone if and only if a = b. Let us
compute the kernel J ∗

K0
(G−(ν)) ≃ J ∗

K0
(ν) for the generating family GN as-

sociated with the decomposition

exp(
λ

2N
) ◦ · · · ◦ exp(

λ

2N
)

︸ ︷︷ ︸
2N−times

.

The C[u1, u2, u3, u4]-module

J∗(ν) = ⟨uι(m) | m ∈ kZ, p(m) ≥ ν⟩

from equation (10) can thus be written as

J∗(ν) = ⟨um1

1 um1

2 um2

3 um2

4 | m ∈ kZ, am1 + bm2 ≥ ν⟩.

The ideal I0 provides identifications u1 = u2 = v1, u3 = u4 = v2, and imposes
that av1 + bv2 = 0. Hence, putting v2 = v, the quotient J ∗

K0
(ν) ⊂ H∗

K0
(ν) is

given by

J ∗
K0
(ν) = ⟨−

b

a
v2(m1+m2) | am1 + bm2 ≥ ν⟩.

We see here that the submodule J ∗
K0
(ν) is different from H∗

K0
(ν) ≃ C[v, v−1]

if and only if a = b, that is if we are in the monotone case. Indeed, suppose
that a = b = k with, say k > 0 (the same argument applies if k < 0). Then
k(m1 +m2) ≥ ν implies that 2(m1 +m2) ≥

2
k
ν. Therefore, the monomials

of the C[v]-module J ∗
K0
(ν) are all of the form vl+l′ , with l ≥ 2

k
ν and l′ ≥ 0,

which in particular implies that J ∗
K0
(ν) is different from H∗

K0
(ν) ≃ C[v, v−1].

On the other hand, if a ̸= b, then the expression m1 +m2 can take all values
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in Z, even if am1 + bm2 ≥ ν. Therefore, the monomials of the C[v]-module
J ∗
K0
(ν) are all of the form v2l+l′ , where l ∈ Z, and l′ ≥ 0, that is they are of

the form vl, l ∈ Z. Hence, J ∗
K0
(ν) = H∗

K0
(ν).

Remark 5.1. Note that if we project J ∗(ν) to H∗
K(ν) ≃ C[u1, u2, u3, u4]/I,

as it is done in [Giv95], we have the identifications u1 = u2 = v1, u3 = u4 =
v2, hence

J ∗
K(ν) = ⟨v2m1

1 v2m2

2 | am1 + bm2 ≥ ν⟩.

This module is different from the whole ringH∗
K(ν) ≃ C[v1, v2, v

−1
1 , v−1

2 ], and
always admits elements of minimal degree, in the sense of Proposition 1.2.3:
there exists q ∈ R such that q /∈ J ∗

K
(ν), but uiq ∈ J ∗

K
(ν), for all i = 1, ..., n.

(see figure 4).

p−1(1)

k

0

u2

u1

Figure 4. The kernel of a K-equivariant augmentation map. For the
toric manifold (CP 1 × CP 1, ω1,2,T

2/S1 × T2/S1) (K = T2), we show the
exponents of the monomials generating J ∗

K
(1) - in blue -, and of elements

q ∈ R such that q /∈ J ∗
K
(1), but uiq ∈ J ∗

K
(1) for all i = 1, 2 - in red.

In this section, we prove that a statement similar to [Giv95, Corol-
lary 1.3] holds for J ∗

K0
(F−(ν)), provided that the symplectic toric manifold

(M,ω,T) is monotone. To that aim, we start by bounding J ∗
K0
(F−(ν)) from

below and above with the projections to R0 of two modules of a form sim-
ilar to that from equation (10). This simplifies the analysis of J ∗

K0
(F−(ν))

to that of much explicit modules. The proof of Proposition 1.2.3 is then a
careful analysis of the degrees of the polynomials of these submodules.
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Assume that (M,ω) is monotone. Recall that through the isomorphism
H2(M ;R) ≃ k

∗ of equation (1), the regular value p represents the cohomol-
ogy class of ω. Suppose that p is integral and primitive, and let NM denote
the minimal Chern number of (M,ω). We have

p =
c1
NM

.

Let (V, ξ := kerα) be the prequantization space over (M,ω) constructed in
section 3.1.3, h be a contact Hamiltonian of V , and h a lift of h to the
sphere Sp from equation (8). Let c−, c+ ∈ R be two constants such that for
any (z, t) ∈ Sp × [0, 1], we have

and c− <

min
z∈Sp

|z|2

2max
z∈Sp

|z|2
ht(z) and c+ >

2max
z∈Sp

|z|2

min
z∈Sp

|z|2
ht(z).

We will denote by H− and H+ the quadratic Hamiltonians on Cn generating
respectively the Hamiltonian symplectomorphisms

ΦH−
(z) = exp(c−

b

p(b)
)z and ΦH+

(z) = exp(c+
b

p(b)
)z.

Provided that N1 is big enough, we wish to compare the generating families
F−,N , FN , F+,N associated respectively with the decompositions

ΦH−
= exp(c−

b

2N1p(b)
) ◦ · · · ◦ exp(c−

b

2N1p(b)
)

︸ ︷︷ ︸
2N1−times

,

Φ
H̃

= Φ2N1
◦ · · · ◦ Φ1,

and

ΦH+
= exp(c+

b

2N1p(b)
) ◦ · · · ◦ exp(c+

b

2N1p(b)
)

︸ ︷︷ ︸
2N1−times

,

where H̃ is the Hamiltonian lift of h obtained by extending h to Cn. Recall
also that we have denoted by SN := S4nN−1 the unit sphere in C2nN .
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Proposition 5.1. There exists N1 such that for any N > N1, and any
(x, λ) ∈ SN × ΛN , we have

F
(N)
−,λ ≤ F

(N)
λ ≤ F

(N)
+,λ ,

where F
(N)
−,λ := F−,N (., λ), F

(N)
λ := FN (., λ), and F

(N)
+,λ := FN,+(., λ) denote

respectively the generating functions associated with the decompositions of
ΦH−

, Φ
H̃
, and ΦH+

into 2N1 parts.

Proof. First, recall from Remark 3.4.1 that the front of FN , and therefore the
cohomology of H̃ at a generic level ν is independent of the chosen decompo-
sition of the Hamiltonian symplectomorphism Φ

H̃
into 2N1 parts. Therefore,

we shall assume that the decomposition of Φ
H̃

is of the form

Φ
H̃

= Φ
1

2N1

H̃
◦ · · · ◦ Φ

1

2N1

H̃︸ ︷︷ ︸
2N1−times

.

This way, from section 3.2.2, the Hamiltonians associated respectively with

Φ
1

2N1

H̃
and exp(c±

b
2N1p(b)

) are given, for any (z, t) ∈ Cn \ {0} × [0, 1], by

1

2N1
H̃ t

2N1

(z) =
1

2N1

|z|2

|pr(z)|2
h t

2N1

(pr(z))

and
1

2N1
H±, t

2N1

(z) =
1

2N1

|z|2

|pr(z)|2
c±,

where pr : Cn \ {0} → Sp is the radial projection to the sphere Sp from equa-
tion (8). Moreover, the homogeneous generating functions H and Tc± as-

sociated respectively with the Hamiltonian symplectomorphisms Φ
1

2N1

H̃
and

Φ
1

2N1

H±
= exp(c±

b
2N1p(b)

) are independent of j = 1, . . . , 2N1, and therefore we
can write

F
(N)
λ (x) = Q(x)−

2N1∑
j=1

H(xj)−
2N∑

j=2N1+1

Tλ(xj),

F
(N)
±,λ (x) = Q(x)−

2N1∑
j=1

Tc±(xj)−
2N∑

j=2N1+1

Tλ(xj),

where x = (x1, . . . , x2N ) with xj ∈ Cn, and Tλ is the generating function
associated with exp( λ

2N2
). Therefore, it suffices to show that there exists N1
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such that, if B(0, 1) denotes the closed ball centered at 0 and of radius 1 in
Cn (recall that we wish to compare the generating families, rather than the
homogeneous generating families, and therefore we restrict the functions to
the sphere SN ), then for any j = 1, . . . , 2N1, and any x ∈ B(0, 1), we have

(12) T−(x) ≥ H(x) ≥ T+(x).

Recall that we have identified (Cn × Cn,−ω ⊕ ω) with (T ∗Cn,−d(pdq)) by
means of the linear symplectomorphism Ψ(z, w) = ( z+w

2 , i(z − w)). Through

Ψ, the Hamiltonians H̃t and H±,t become respectively

(0⊕ H̃t) ◦Ψ
−1 and (0⊕H±,t) ◦Ψ

−1, t ∈ [0, 1],

and their asscociated Hamiltonian isotopies {Φt

H̃
}t∈[0,1] and {Φt

H±
}t∈[0,1]

write respectively

Φt

(0⊕H̃)◦Ψ−1
= Ψ ◦ Φt

H̃
◦Ψ−1

and

Φt
(0⊕H±)◦Ψ−1 = Ψ ◦ Φt

H±
◦Ψ−1.

In particular, since Ψ−1 sends the zero-section 0Cn to the diagonal in Cn ×
Cn, notice that for any (x, t) ∈ Cn × [0, 1], we have

(0⊕ H̃t) ◦Ψ
−1(Φt

(0⊕H̃)◦Ψ−1
(x, 0)) = H̃t(Φ

t

H̃
(x))

and

(0⊕H±,t) ◦Ψ
−1(Φt

(0⊕H±)◦Ψ−1(x, 0)) = H±,t(Φ
t
H±

(x)).

Now, if Ht and Tt,± denote the homogeneous generating functions associated

respectively with Φ
t

2N1

H̃
and Φ

t

2N1

H±
, the Hamilton-Jacobi equation and the

discussion above yield, for any (x, t) ∈ Cn × [0, 1],

∂

∂t
Ht(x) = −

1

2N1
H̃ t

2N1

(Φ
t

2N1

H̃
(x))

and
∂

∂t
Tt,±(x) = −

1

2N1
H±, t

2N1

(Φ
t

2N1

H±
(x)),
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since H̃t(0) = Tt,±(0) = 0 for all t ∈ [0, 1], and the inequality (12) holds for

x = 0 (note that H̃ = H̃1 and T± = T1,±). Assume now that N1 is big enough
so that for any (x, t) ∈ (B(0, 1) \ {0})× [0, 1], we have

1

2
|Φ

t

2N1

H−
(x)|2 ≤ |Φ

t

2N1

H̃
(x)|2 ≤ 2|Φ

t

2N1

H+
(x)|2.

In this case, we have on the one hand:

H−, t

2N1

(Φ
t

2N1

H−
(x)) =

|Φ
t

2N1

H−
(x)|2

|pr(Φ
t

2N1

H−
(x))|2

c− ≤
|Φ

t

2N1

H−
(x)|2

min
x∈Sp

|x|2
c−

≤
|Φ

t

2N1

H−
(x)|2

2max
x∈Sp

|x|2
h t

2N1

(Φ
t

2N1

H̃
(x))

≤
|Φ

t

2N1

H̃
(x)|2

max
x∈Sp

|x|2
h t

2N1

(Φ
t

2N1

H̃
(x))

≤
|Φ

t

2N1

H̃
(x)|2

|pr(Φ
t

2N1

H̃
(x))|2

h t

2N1

(Φ
t

2N1

H̃
(x)) = H̃ t

2N1

(Φ
t

2N1

H̃
(x)),

and one the other hand:

H+, t

2N1

(Φ
t

2N1

H+
(x)) =

|Φ
t

2N1

H+
(x)|2

|pr(Φ
t

2N1

H+
(x))|2

c+ ≥
|Φ

t

2N1

H+
(x)|2

max
x∈Sp

|x|2
c+

≥
2|Φ

t

2N1

H+
(x)|2

min
x∈Sp

|x|2
h t

2N1

(Φ
t

2N1

H̃
(x))

≥
|Φ

t

2N1

H̃
(x)|2

min
x∈Sp

|x|2
h t

2N1

(Φ
t

2N1

H̃
(x))

≥
|Φ

t

2N1

H̃
(x)|2

|pr(Φ
t

2N1

H̃
(x))|2

h t

2N1

(Φ
t

2N1

H̃
(x)) = H̃ t

2N1

(Φ
t

2N1

H̃
(x)).
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As a consequence, the Hamilton-Jacobi equation shows that, for any (x, t) ∈
B(0, 1) \ {0} × [0, 1],

∂

∂t
Tt,−(x) ≥

∂

∂t
Ht(x) ≥

∂

∂t
Tt,+(x).

It remains to notice that the homogeneous generating function associated
with the identity is constant equal to 0. Therefore, equation (12) holds, and
the proposition follows. □

Kipping the same notations as in the above proposition, we conclude
that, for any ν ∈ R we have inclusions of pairs

(F−
+,N (ν), ∂F−

+,N (ν)) ⊂ (F−
N (ν), ∂F−

N (ν)) ⊂ (F−
−,N (ν), ∂F−

−,N (ν)),

and thus homomorphisms

H∗
K0
(F−

−,N (ν), ∂F−
−,N (ν)) → H∗

K0
(F−

N (ν), ∂F−
N (ν))

→ H∗
K0
(F−

+,N (ν), ∂F−
+,N (ν)).

Moreover, notice that, up to a reparametrization, for any λ ∈ ΛN , the homo-

geneous generating functions F
(N)
±,λ are nothing else that the homogeneous

generating functions Gλ+c±
b

p(b)
associated with the decompositions

exp(
λ+ c±

b
p(b)

2N
) ◦ · · · ◦ exp(

λ+ c±
b

p(b)

2N
)

︸ ︷︷ ︸
2N−times

.

Thus, the above homomorphisms become

H∗
K0
(G−

N (ν−), ∂G
−
N (ν−)) → H∗

K0
(F−

N (ν), ∂F−
N (ν))

→ H∗
K0
(G−

N (ν+), ∂G
−
N (ν+)).

where ν± := ν + c±. If ν± and ν are generic, we obtain homomorphisms in
the limit N → ∞:

H∗
K0
(G−(ν−)) → H∗

K0
(F−(ν)) → H∗

K0
(G−(ν+)),

leading to inclusions of kernels

J ∗
K0
(G−(ν−)) ⊂ J ∗

K0
(F−(ν)) ⊂ J ∗

K0
(G−(ν+)).
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Note that for any ν ∈ R, the C[u]-module J∗(ν) from equation (10) lies
between two modules of the form

Jr := ⟨uι(m) | m ∈ kZ, p(m) ≥ r⟩.

More precisely, one can find r− < r+ such that we have inclusions

Jr+ ⊂ J∗(ν−) ⊂ J∗(ν+) ⊂ Jr− .

From the isomorphisms

J ∗
K0
(G−(ν−)) ≃ J ∗

K0
(ν−) and J ∗

K0
(G−(ν+)) ≃ J ∗

K0
(ν+),

we deduce embeddings

J 0
r+ ⊂ J ∗

K0
(F−(ν)) ⊂ J 0

r− ,

where J 0
r± denote the images of Jr± by the quotient map

C[u, u−1] → C[u, u−1]/I0C[u, u
−1] ≃ R0.

Proposition 1.2.3. There exists q ∈ R0, such that q /∈ J ∗
K0
(F−(ν)), but

uiq ∈ J ∗
K0
(F−(ν)) for all i = 1, ..., n.

Proof. Step 1: By the end of our demonstration, we will use a dimensionality
result from [Giv95], which holds for the ideal C[u] ∩ Jr + I. In our case, we
will deal with the ideal C[u] ∩ Jr + I0, which we now relate to the module
J 0
r . Consider the projection

pr : C[u] ⊂ C[u, u−1] → C[u, u−1]/I0C[u, u
−1] ≃ R0.

For r ∈ R, the preimage pr−1(J 0
r ) is the intersection of C[u] with the preim-

age of J 0
r by the quotient map C[u, u−1] → R0, which equals Jr+I0C[u, u

−1].
Therefore, we have

pr−1(J 0
r ) = C[u] ∩ (Jr + C[u, u−1]I0) ⊃ C[u] ∩ Jr + I0.

Step 2. Here we show that all the polynomials in Jr have minimal degree

rNM . Form ∈ kZ, we saw that p(m) = 1
NM

n∑
i=1

mi, where ι(m) = (m1, . . . ,mn).

Then Jr consists of polynomials whose monomials are of the form uι(m)+m′

,
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where m ∈ kZ is such that p(m) ≥ r, and m′ = (m′
1, . . . ,m

′
n) ∈ Zn

≥0. In par-
ticular, we have

n∑

i=1

mi +

n∑

i=1

m′
i ≥

n∑

i=1

mi = p(m)NM ≥ rNM .

Therefore, letting C[u, u−1]≥d denote the submodule generated by monomi-
als of total degree at least d, we obtain

Jr ⊂ C[u, u−1]≥rNM .

Step 3. Here we show that, for the notion of degree induced on R0 by that
on C[u, u−1], the elements of the module J 0

r have minimal degree rNM . The
quotient map C[u, u−1] → C[u, u−1]/I0C[u, u

−1] is the restriction map from
the ring of regular functions on the complex torus (C×)n to the ring of regular
functions on the intersection (k0 ⊗ C) ∩ (C×)n. If f is a homogeneous regular
function of degree d on (C×)n, then for any z ∈ (C×)n, and any µ ∈ C×, we
have f(µz) = µdf(z). This characterizes entirely the degree of f . Moreover,
C× acts on the ring of regular functions on (k0 ⊗ C) ∩ (C×)n in the same
way, and the restriction is equivariant with respect to this action. This means
that f restricts to a regular function on (k0 ⊗ C) ∩ (C×)n which is of same
degree, or equals 0. Thus, if R≥d

0 denotes the ring of regular functions of
degree at least d on (k0 ⊗ C) ∩ (C×)n, we have

J 0
r ⊂ R≥rNM

0 .

Step 4. It is clear from the definition of Jr that for any m ∈ kZ, we have
uι(m)Jr = Jr+r0 , where r0 = p(m). In particular

uι(m)J 0
r = J 0

r+r0 .

Therefore we can ”move J 0
r above a certain minimal degree”. This will serve

us in Step 5. Pick any m ∈ kZ such that (r− + r0)NM ≥ 1. Then

uι(m)J 0
r− = J 0

r−+r0 ⊂ R
≥(r−+r0)NM

0 ⊂ R≥1
0 .

In particular 1 /∈ uι(m)J 0
r− , which means that 1 ∈ C[u] is not mapped to

uι(m)J 0
r− by the projection pr : C[u] → R0, and thus is also not mapped to

uι(m)J ∗
K0
(F−(ν)) ⊂ uι(m)J 0

r− .
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Step 5. Let

A := {ua ∈ C[u] | pr(ua) /∈ uι(m)J ∗
K0
(F−(ν))}.

In the previous step we saw that 1 = u0 ∈ A, so A ̸= ∅. We claim that the

maximal degree
n∑

i=1
ai of any element of A is bounded from above. Since

uι(m)J 0
r+ ⊂ uι(m)J ∗

K0
(F−(ν)), we see that pr(ua) /∈ uι(m)J ∗

K0
(F−(ν)) implies

pr(ua) /∈ uι(m)J 0
r+ = J 0

r , where r = r+ + r0. Thus

ua /∈ pr−1(J 0
r ) ⊃ C[u] ∩ Jr + I0 hence ua /∈ C[u] ∩ Jr + I0.

Therefore, A lies in the complement in C[u] of the ideal C[u] ∩ Jr + I0. By
(the proof of) [Giv95, Proposition 1.2], the zero set Z(C[u] ∩ Jr + I) of the
ideal C[u] ∩ Jr + I has at most one point, the origin. Since I0 ⊃ I, we have

Z(C[u] ∩ Jr + I0) ⊂ Z(C[u] ∩ Jr + I) ⊂ {0}.

By the Nullstellensatz, this implies that for every i, there exists mi ≥ 0 such
that umi

i ∈ C[u] ∩ Jr + I0, and it is easy to see that every monomial of to-

tal degree ≥
n∑

i=1
mi must then also belong to the ideal. The conclusion is

that C[u] ∩ Jr + I0 contains all monomials of sufficiently high degree, and
as a result the maximal degree of a monomial ua ∈ A is bounded from above.

Conclusion. Let ua ∈ A have maximal degree. Then uiu
a /∈ A for all

i = 1, . . . , n. This means that ua /∈ uι(m)J ∗
K0
(F−(ν)), while uiu

a ∈

uι(m)J ∗
K0
(F−(ν)). Therefore q = ua−ι(m) ∈ R0 \ J

∗
K0
(F−(ν)), but uiq ∈

J ∗
K0
(F−(ν)) for all i = 1, . . . , n, as claimed. □
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