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We define ruling invariants for even-valent Legendrian graphs in
standard contact three-space. We prove that rulings exist if and
only if the DGA of the graph, introduced by the first two authors,
has an augmentation. We set up the usual ruling polynomials for
various notions of gradedness and prove that if the graph is four-
valent, then the ungraded ruling polynomial appears in Kauffman–
Vogel’s graph version of the Kauffman polynomial. Our ruling in-
variants are compatible with certain vertex-identifying operations
as well as vertical cuts and gluings of front diagrams. We also show
that Leverson’s definition of a ruling of a Legendrian link in a con-
nected sum of S1 × S2’s can be seen as a special case of ours.
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1. Introduction

Ruling invariants for Legendrian knots and links were introduced by Che-
kanov and Pushkar [21], and independently by Fuchs [8]. The motivation
comes from a generating family, which is a family of functions whose critical
values give the front of a Legendrian knot. Rulings can be used to distin-
guish smoothly isotopic Legendrians even if they share the same Thurston–
Bennequin number and rotation number, such as Chekanov’s famous pair

49
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of Legendrians of knot type 52. For that reason we call ruling invariants
non-classical.

There is another non-classical construction, the so-called Chekanov–
Eliashberg DG-algebra, originating from a relative version of contact homol-
ogy, i.e., holomorphic curve techniques [4]. The homology of the DG-algebra
is invariant under Legendrian isotopy and also distinguishes the above pair
of Legendrians via a method called linearization of DG-algebras.

There is a deep relation between the two approaches: the existence of a
ruling and the linearizability of the DG-algebra, i.e, the existence of a so-
called augmentation, are equivalent. This is established by Fuchs [8], Fuchs–
Ishkhanov [9], and Sabloff [23] and extended by Leverson [16, 17].

On the other hand, the so-called ungraded ruling polynomial, which is
a weighted (by genus) count of all rulings, appears as a certain sequence of
coefficients of the Kauffman polynomial. These are leading coefficients when
the upper bound for the Thurston–Bennequin number given by the Kauff-
man polynomial is sharp, and otherwise all zeros [22]. (Hence the ungraded
ruling polynomial is in fact a classical invariant; to access the full power of
rulings, one has to narrow their counts to only Z-graded ones.)

Legendrian graphs have been studied using classical invariants [20], and
have also drawn attention as singular Legendrians appearing in the study
of Lagrangian skeleta of Weinstein manifolds [10, 18]. The first two authors
developed a DG-algebra invariant for Legendrian graphs via careful consid-
eration of the algebraic issues that arise near the vertices of graphs [1]. More
recently and concretely, it is discussed in [3] that there is a natural surgery
isomorphism between the Chekanov-Eliashberg algebra for a singular Leg-
endrian and the partially wrapped Floer homology of the corresponding
Weinstein manifold.

In this article, we extend the definition of ruling from Legendrian links to
Legendrian graphs. Of course, the main issue will be to analyze the behavior
of each ruling near the vertices. We restrict ourselves to Legendrian graphs
with only even-valent vertices and demand that the ruling at each vertex
be parametrized by the set of perfect matchings of the incident edges. In
other words, we regard a Legendrian graph as a set of Legendrian links
with markings which can be obtained by resolutions of vertices, indexed
by a perfect matching at each vertex. A (ρ-graded) ruling polynomial of the
Legendrian graph is defined as the weighted sum of the rulings of all possible
resolutions as above. Then we have the following invariance result.

Theorem A (Theorem 3.10). Let L = (L, µ) be a bordered Legendrian
graph with a Maslov potential, and (ϕ, ψ) be a pair of ρ-graded matchings
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for the border. Then the set of ρ-graded normal rulings Rρ
L(ϕ, ψ) of type

(ϕ, ψ) transforms bijectively under equivalences of marked bordered Legen-
drian graphs. In particular, the polynomial RρL(ϕ, ψ) is invariant.

With this extension, we show the equivalence between the existence of
(ρ-graded) rulings and of (ρ-graded) augmentations for Legendrian graphs.

Theorem B (Theorem 4.15). Let L = (L, µ) be a bordered Legendrian
graph with a Maslov potential. Then a ρ-graded normal ruling for L exists
if and only if a ρ-graded augmentation for A(L) exists.

Kauffman and Vogel introduced a polynomial invariant for four-valent
graphs embedded in R3 which generalizes the two-variable Kauffman poly-
nomial of links. We also show that the ungraded ruling polynomial can be
realized as a certain sequence of coefficients of this topological graph invari-
ant.

Theorem C (Theorem 4.29). Let L be a regular front projection of a
four-valent Legendrian graph. The ungraded (ρ = 1) ruling polynomial R1

L

for L is the same as the coefficient of a−tb(L)−1 (a−1, resp.) in the shifted
Kauffman–Vogel polynomial z−1FL (unnormalized polynomial z−1[L], resp.)
after replacing A and B with (z − 1) and −1, respectively.

The paper is organized as follows: In Section 2, we introduce basic
concepts of (bordered) Legendrian graphs with Maslov potential. For each
matching datum at the vertex, we assign a corresponding resolution, a bor-
dered smooth Legendrian with marking.

In Section 3, we define ruling invariants for Legendrian graphs by consid-
ering all resolutions of bordered Legendrian graphs respecting the grading
condition. We also discuss the relation between our and Leverson’s ruling
invariant for Legendrian links in #(S1 × S2).

In Section 4, we first recall the DGA associated to a Legendrian graph,
and establish the equivalence between the existence of a ruling for the Legen-
drian graph and the existence of an augmentation of its DGA. In particular,
when the Legendrian graph is four-valent, we show that the ruling polyno-
mial appears as a certain coefficient of the Kauffman–Vogel polynomial of
the underlying graph.

Section 5 is devoted to showing that the resolutions defined in Section 2
are compatible with the Reidemeister moves at the vertex, which implies
the invariance of the ruling invariant.
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2. Bordered Legendrian graphs

We work with the standard tight contact structure ker(dz − y dx) of R3. We
use the front projection to R2

xz. A cusp along a Legendrian curve is a point
where the tangent is parallel to the y-axis.

2.1. Bordered Legendrian graphs

Definition 2.1. A bordered Legendrian graph L of type (ℓ, r) is a Legendrian
graph embedded in [−M,M ]× R2

yz for some M > 0 such that all cusps and
vertices are contained in the interior and L intersects the x = −M and x =
M planes exactly at ℓ and r points, respectively. We also assume these
intersections to be perpendicular, which implies that they occur at points
with y-coordinate equal to 0. In symbols,

#(L ∩ ({−M} × R
2
yz)) = #(L ∩ ({(−M, 0)} × Rz)) = ℓ and

#(L ∩ ({M} × R
2
yz)) = #(L ∩ ({(M, 0)} × Rz)) = r

We say that two bordered Legendrian graphs of the same type are equivalent
if they are isotopic through bordered Legendrian graphs.

We denote the sets of vertices, double points (of the front projection),
left and right cusps by VL,CL,≺L and ≻L, respectively. If VL = ∅, then we
call L a bordered Legendrian link.

Assumption 2.2. We assume that L has a regular front projection, so that

1) there are no triple points;

2) cusps and vertices are not double points;

3) all cusps, vertices, and double points have distinct x-coordinates.

Remark 2.3. If ℓ = r = 0, then L is a usual Legendrian graph.
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Example 2.4. As a special case, one may consider the bordered Legendrian
graphs 0ℓ and ∞r of types (0, ℓ) and (r, 0), respectively, whose underlying
graphs are the ℓ- and r-corollas as follows:

0ℓ := ; ∞r := .

Furthermore, we will consider the bordered Legendrian graph In of type
(n, n) consisting of n parallel (arbitrarily short) arcs:

In := .

Notice that for each Legendrian graph L of type (ℓ, r), there are two
natural inclusions ιL : Iℓ → L and ιR : Ir → L “near the border”:

Iℓ
ιL−→ L

ιR←− Ir.

It is not hard to see that two bordered Legendrian graphs are equivalent
if and only if their front projections are related through a sequence of the
following Reidemeister moves:

2.1.1. Concatenations and closures. Let L1 and L2 be two bordered
Legendrian graphs of types (ℓ, r) and (r, s), respectively. Then there is a
canonical operation, called gluing, which is a concatenation of L1 and L2,
and can also be regarded as a push-out of the following diagram:

Ir L2

L1 L

We will write L = L1
∐

Ir
L2 or simply L = L1 · L2.

Definition 2.5. Let L be a bordered Legendrian graph of type (ℓ, r). The
closure L̂ of L is the Legendrian graph obtained by gluing 0ℓ and ∞r to L

on the left and right, respectively.
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(0a)
←→

(0b)
←→

(0c)
←→

(0d)
←→

(0e)
←→

(0f)
←→

(I)
←→

(II)
←→

(III)
←→

(IV)
←→

(V)
←→ .

Figure 1: Reidemeister moves for Legendrian graphs in the front projection.

Example 2.6. Let L be the following bordered Legendrian graph of type
(4, 8):

L = .

Then its closure looks as follows:

L̂ = 04 · L · ∞8 = .

The closures of 0ℓ and ∞l are equivalent and will be denoted by Θℓ:

0̂ℓ = Θℓ = = Îℓ = ∞̂ℓ.

2.1.2. Maslov potentials and markings. Let R denote either Z or Zm
for some m ≥ 2, generated by 1R.
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Definition 2.7. A Maslov potential µ is an R-valued function on the com-
ponents of L \ (VL∪ ≺L ∪ ≻L) such that

µ(α) = µ(α′) + 1R

whenever α meets α′ at a cusp so that locally, z-values along α exceed those
along α′.

It is easy to see that a Maslov potential µ given on L induces a Maslov
potential µ̂ on L̂. Moreover, a Maslov potential defines a grading for each
double point of the front projection (the set of which will be denoted with
C) by

|c| := µ(α)− µ(α′) ∈ R,(2.1)

where α and α′ are the arcs of L whose projections intersect at c, furthermore
the preimage of c on α has a lower y-coordinate than the preimage on α′.

For each Legendrian graph (L, µ) of type (ℓ, r), with Maslov potential,
we obtain two trivial Legendrian graphs (Iℓ, ι

∗
L(µ)) and (Ir, ι

∗
R(µ)), with po-

tentials, by pulling µ back via the canonical inclusions ιL and ιR. In other
words, we have

ι∗L(L, µ)←− (L, µ) −→ ι∗R(L, µ),

where

ι∗L(L, µ) = (Iℓ, ι
∗
L(µ)) and ι∗R(L, µ) = (Ir, ι

∗
R(µ)).

Let (L1, µ1) and (L2, µ2) be two Legendrian graphs, of respective types
(ℓ, r) and (r, s), with Maslov potentials. Assume furthermore that the two
induced Maslov potentials ι∗R(µ1) and ι

∗
L(µ2) on Ir coincide. In this case we

define the gluing (L, µ) := (L1, µ1) · (L2, µ2) by L := L1 · L2 and µ := µ1 ⨿ µ2.

Definition 2.8 (Marked bordered Legendrian graphs). Let C = C(L)
be the set of crossings of L. For a subset B of C, the pair L = ((L, µ),B) is
called a marked bordered Legendrian graph.

For simplicity we put L = (L, µ) if L has no markings, i.e., when B = ∅.

We will call crossings in B and C \ B marked and regular crossings, re-
spectively, and represent them in our diagrams as follows:

∈ B, ∈ C \ B.
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The canonical inclusions ιL and ιR induce two marked bordered Legen-
drian graphs

ι∗L(L) = (Iℓ, ι
∗
L(µ))←− L −→ ι∗R(L) = (Ir, ι

∗
R(µ)).

Let L1 = ((L1, µ1),B1) and L2 = ((L2, µ2),B2) be marked bordered Leg-
endrian graphs of types (ℓ, r) and (r, s), respectively. If ι∗R(L1) = ι∗L(L2),
then we define their concatenation L := ((L, µ),B) by

(L, µ) := (L1, µ1) · (L2, µ2), B := B1 ⨿ B2.

We will often shorten the notation to L = L1 · L2.
For L of type (ℓ, r), by gluing 0ℓ and ∞∞∞r to the left and right of L, we

obtain the closure L̂ as before:

L̂ := 0ℓ(ι
∗
L(µ)) · L ·∞∞∞r(ι

∗
R(µ)), 0ℓ(−) := (0ℓ,−), ∞∞∞ℓ(−) := (∞ℓ,−).

Definition 2.9 (Equivalence of marked bordered Legendrian
graphs). We say that two marked bordered Legendrian graphs are equiv-
alent if one can be transformed into the other via a sequence of usual Rei-
demeister moves, cf. Figure 1, and marked Reidemeister moves depicted in
Figure 2.

Remark 2.10. The marked Reidemeister move (T) does not imply one can
cancel out two subsequent marked crossings.

̸=

2.2. Resolution of a vertex

For convenience’s sake, let us denote the set of integers {1, . . . , 2n} by [2n].

Definition 2.11 (Matchings). Let X be a finite set. A matching ϕ on X
is an involution which can be expressed as

ϕ = {{x1, ϕ(x1)}, . . . , {xm, ϕ(xm)}},

where xi is not necessarily different from ϕ(xi).
We say that ϕ is perfect if ϕ has no fixed points, and denote the set of

all perfect matchings on X by PX .
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←→ ←→(0)

n {

n { n { n {

n {

(II)

←→ ←→(III)

←→ ←→

←→(S)

←→ ←→(T)

Figure 2: Reidemeister moves for marked Legendrian graphs: In the move
(II), n = 0, 1, 2, . . . .

Let L be a (bordered) Legendrian graph and v ∈ VL be a vertex. We say
that v is of type (ℓ, r) if v looks locally as follows:

(Lv,Bv = ∅) :=
v

1

2

r

r + 1

r + 2

r + ℓ

.
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We note that here, the labels of the incident edges are dictated by consid-
eration of the Lagrangian projection.

We require that ℓ+ r be even, say 2n, but this is not necessary for ℓ
and r. This even valency condition for the vertex is necessary to the perfect
matching for each vertex. Let us denote the set of perfect matchings of half-
edges adjacent to v by Pv. Then the labelling convention described above
induces the bijection

Pv ≃ P[2n].

Next, we describe ways of resolving v, indexed by the set of perfect
matchings. For a given perfect matching ϕ ∈ P[2n], we split [2n] into three
ϕ-invariant subsets, [2n] = L⨿B ⨿R, where

L = L(ϕ) := {i ∈ [2n] | i, ϕ(i) ≥ r + 1};

B = B(ϕ) := {i ∈ [2n] | (i ≥ r + 1 ⇐⇒ r ≥ ϕ(i))};

R = R(ϕ) := {i ∈ [2n] | r ≥ i, ϕ(i)}.

If we define the integers a, b and c as

2a := #(L), 2b := #(B), 2c := #(R),

then it is obvious that ℓ = 2a+ b and r = b+ 2c.
Let us fix an order of the set of matched pairs whose union is L. For

the first pair {i, j} in L, we consider a bordered Legendrian as depicted
in Figure 3(a), which we call a marked right cusp. Here the i-th and j-th
edges are made to form a cusp and the resulting crossings are marked as
in Definition 2.8. The endpoints on the right retain their labels in {r +
1, . . . , r + ℓ} \ {i, j}.

Then, we concatenate another marked right cusp for the next pair in the
order and so on. One can easily show that the resulting Legendrian (L≻v ,B

≻
v )

of type (ℓ, b) is invariant under the changes of the order of pairs in the sense
of Definition 2.9. For example, according to whether two matched pairs are
nested or interlaced, we have the following sequences of marked Reidemeister
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moves:

(0)

(II)

(III)

(0)

(S)

(III)

Symmetrically, by using marked left cusps as depicted in Figure 3(b), we
use the matchings in R to construct the Legendrian (L≺v ,B

≺
v ) of type (b, r).

(a) Marked right cusp (b) Marked left cusp

Figure 3: Marked cusps

Now it remains to construct (L×v ,B
×
v ) of type (b, b) out of the perfect

matching ϕ|B on B. Since ϕ|B is a perfect matching between the left edges
and the right edges, there is a positive braid β, called a permutation braid, on
b strands with a minimal number of crossings which induces ϕ|B. Note that
there is a one-to-one correspondence between permutations and permutation
braids as observed in [7, Lemma 2.3]. Indeed, the characteristic property of
a permutation braid is that each pair of strands crosses at most once. Let
us denote the set of permutation braids on b strands by S+

b .

S+
b = {β | β is a permutation braid on b strands}

Recall that any positive b-braid β can be realized as a bordered Leg-
endrian Lβ of type (b, b) whose arcs have no cusps [13]. In particular, any
permutation braid β can be regarded as a sub-braid of the half-twist ∆b

∆b := ∆b−1
∈ S+

b ,
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which is the permutation braid that every pair of strands crosses exactly
once. For two braids β, γ, we define a partial order β ≤ γ if there exists a
positive braid β′ such that ββ′ = γ. Then β is positive if and only if e ≤ β
for the trivial braid e. Moreover, it is shown in [7, Theorem 2.6] that the set
S+
b of permutation braids is identical to the set of positive braids less than

or equal to the half-twist ∆b.

S+
b

1:1
←→ {β | e ≤ β ≤ ∆b}.

Remark 2.12. In [7], the right-hand side is denoted by [0, 1], which means
the set of braids between e = ∆0

b and ∆b = ∆1
b .

Hence for each permutation braid β, there exists a positive braid βc such
that ββc = ∆b, which is again a permutation braid since each pair of strands
in βc crosses at most once. We call βc the right complement of β. Let β

c

be the mirror of βc which is a positive braid obtained by reversing a word
representing βc.

Let Lβc , Lβc be Legendrian permutation braids realizing βc and βc, re-
spectively, and let all crossings in Lβc and Lβc be marked as in Definition 2.8.
Then we define

L
×
v
:= Lβ · Lβc · Lβc and B

×
v
:= C(Lβc)⨿ C(Lβc),

that is, we leave all crossings in the factor Lβ unmarked (regular).
For concreteness, let us fix standard forms of all permutation braids in

the formula above inductively, as follows:

Lβ =
L′β

; Lβc = L′βc ; Lβc = L′
βc

.

In conclusion, for a given perfect matching ϕ at v, the resulting resolution
(Lϕv ,B

ϕ
v ) of (Lv,∅) is defined by

(Lϕv ,B
ϕ
v ) := (L≻v ,B

≻
v ) · (L

×
v ,B

×
v ) · (L

≺
v ,B

≺
v )

= (L≻v · L
×
v · L

≺
v ,B

≻
v ⨿ B

×
v ⨿ B

≺
v ).

Remark 2.13. If v is of type (ℓ, 0) or (0, r), then β is a 0-braid and hence
empty. Therefore all crossings in all resolutions are marked.
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Example 2.14. Let us consider a vertex v in a Legendrian graph L of type
(5, 3) as follows:

v

1

2

3

4

5

8

6

7

Suppose that a perfect matching ϕ ∈ P[8] is given by

{{1, 6}, {2, 4}, {3, 8}, {5, 7}}.

Then we have L = {5, 7}, B = {1, 2, 3, 4, 6, 8}, and R = ∅. It is straightfor-
ward to check that LR is the trivial braid of type (3, 3) and that (L≻v ,B

≻
v )

becomes the following bordered Legendrian of type (5, 3):

4

5

6

7

8

4

6

8

Since ϕ|B = {{1, 6}, {2, 4}, {3, 8}}, the following claims are easy to check:

Lβ =

3

2

14

6

8

; (Lβc ,C(Lβc)) =

3

2

1

3

2

1

; (Lβc ,C(Lβc)) =

3

2

1

3

2

1

.

Thus the resulting resolution LL · LB · LR = LL · (LβLβcLβc) · LR with mark-
ings becomes

(Lv,∅)
ϕ
7−→ (Lϕv ,B

ϕ
v ) =

3

2

14

5

6

7

8

.

In general, for a marked Legendrian graph (L,B), let ϕ be a perfect
matching on the set of half-edges of a vertex v, which we will call a perfect
matching of v. Then one can define the resolution of (L,B) with respect
to ϕ by the replacement of a small neighborhood of v with the resolution
diagram.

(L,B)
ϕ
−→ (Lϕ,Bϕ), B

ϕ = B⨿ B
ϕ
v .

It is important to note that the result Lϕ of the resolution is not neces-
sarily equipped with a Maslov potential. In the above example, unless the
Maslov potentials of the pairs of arcs comprising L — 1st and 6th, 2nd and
4th, 3rd and 8th — coincide, and the Maslov potentials of the 5th and 7th
arcs have difference 1, a Maslov potential for L will not extend to one for Lϕ.
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Definition 2.15. Let (L, µ) be a Legendrian graph with Maslov potential.
For ρ ∈ Z, a perfect matching ϕ on a vertex v of type (ℓ, r) is ρ-graded with
respect to µ if

1) for {i, ϕ(i)} ∈ ϕ with ϕ(i) < i ≤ r or i > ϕ(i) > r, the difference of
Maslov potentials for the i-th and ϕ(i)-th arcs is 1 modulo ρ:

µ(ei)− µ(eϕ(i)) = 1 ∈ R/ρR.

2) for {i, ϕ(i)} ∈ ϕ with i ≤ r < ϕ(i) or ϕ(i) ≤ r < i, the difference of
Maslov potentials for i-th and ϕ(i)-th arcs is divisible by ρ:

µ(ei)− µ(eϕ(i)) = 0 ∈ R/ρR.

We say that a resolution ϕ is a ρ-graded resolution if ϕ is ρ-graded, and
denote the set of ρ-graded matchings at v by

Pρv := {ϕ ∈ Pv | ϕ is ρ-graded}.

Remark 2.16. If ρ = 1, then the Maslov potential becomes trivial and all
possible perfect matchings are 1-graded.

Lemma 2.17. Let (L, µ) be a Legendrian graph with Maslov potential and
v be a vertex. Any ρ-graded resolution ϕ on v admits an induced Maslov
potential µϕ.

Proof. Since ϕ is ρ-graded, the arcs in each matched pair have Maslov po-
tentials which are either the same or differ by 1 according to whether they
form a smooth arc or a cusp after the resolution. This implies that µ induces
a Maslov potential µϕ on the resolution Lϕ. □

Therefore, a ρ-graded resolution ϕ on a vertex v of a marked bordered
Legendrian graph L = ((L, µ),B) gives us Lϕ defined as follows:

L = ((L, µ),B)
ϕ
−→ Lϕ := ((Lϕ, µϕ),Bϕ).

Let us denote the set of all collections of ρ-graded matchings Φ={ϕv}v∈VL
,

one for each vertex, by PρL. In symbols,

PρL := {Φ = {ϕv}v∈VL
| ∀i ϕvi ∈ P

ρ
vi
} ≃

∏

v∈VL

Pρv .
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Then one can define a simultaneous resolution LΦ of L, via Φ, in a canonical
way as follows:

LΦ := (· · · ((Lϕv1 )ϕv2 ) · · · )ϕvk , where V = {v1, . . . , vk}.

Definition 2.18 (Full resolutions). Let L = ((L, µ),B) be a marked bor-
dered Legendrian graph. We define the set L̃ of all marked ρ-resolutions of
L, simultaneously at all vertices, to consist of the following bordered Leg-
endrians without vertices:

L̃ :=
∐

Φ∈Pρ

L

LΦ.

Example 2.19. There are five types of four-valent vertices, each of which
has three (1-graded) resolutions as follows:

(4, 0) 7−→

(3, 1) 7−→

(2, 2) 7−→

(1, 3) 7−→

(0, 4) 7−→

Example 2.20. For the readers’ convenience, we list local resolutions for
some vertices of valency six. Note that all types (ℓ, r) with ℓ+ r = 6 have 15
possible (1-graded) resolutions which coincide with the number of possible
pairings of six edges. Here is the list of resolutions for the type (0, 6):
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The following is the resolution list for type (3, 3):

We leave it for the reader to check other types, which can be done easily.

3. Rulings for bordered Legendrian links and graphs

3.1. Rulings for marked bordered Legendrian graphs

In this section we will define ρ-graded normal rulings for marked bordered
Legendrian graphs. To this end, we first define normal rulings for bordered
Legendrian links.
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Let Λ be a bordered Legendrian link and r ⊂ C be a subset of its cross-
ings. We denote the 0-resolution of Λ at every crossing c in r by Λr:

Λ =
c

= Λc.

Definition 3.1. Let Λ = ((Λ, µ),B) be a marked bordered Legendrian link
of type (ℓ, r), and (ϕ, ψ) be a pair of matchings in Pρ[ℓ] × P

ρ

[r]. A ρ-graded

normal ruling of L with (ϕ, ψ) is a subset r of C \ B with decomposition Sr

such that

1) |c| ∈ ρR for any c ∈ r;

2) Sr decomposes the 0-resolution Λr into eyes, left half-eyes, right half-
eyes and parallels, which are bordered Legendrian links of type (0, 0),
(0, 2), (2, 0), and (2, 2), respectively, looking as follows:

3) at each c ∈ r, a non-interlacing condition is satisfied. The following
are the only possible decomposition configurations in narrow vertical
regions containing some c ∈ r:

4) ϕ = ι∗L(Sr) and ψ = ι∗R(Sr).

Let us denote the set of such ρ-graded normal rulings by Rρ
Λ(ϕ, ψ), and

simply denote its element (r, Sr) by Sr.

Now we consider marked bordered Legendrian graphs and define ρ-
graded normal rulings as rulings of resolutions of the graph, as follows:

Definition 3.2. Let L be a marked bordered Legendrian graph of type
(ℓ, r), and let (ϕ, ψ) be a pair of matchings in Pρ[ℓ] × P

ρ

[r]. Then we define the
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set of ρ-graded normal rulings of L as follows:

Rρ
L(ϕ, ψ) :=

∐

Λ∈L̃

Rρ
Λ(ϕ, ψ), Rρ

L
:=

∐

(ϕ,ψ)∈Pρ

[ℓ]×Pρ

[r]

Rρ
L(ϕ, ψ).

Now for marked bordered Legendrian graphs L1 and L2 of type (ℓ, r)
and (r, s), respectively, we have the following lemma.

Lemma 3.3. Let L = L1 · L2. Then the set of ρ-graded normal rulings of
L is the following fiber product:

Rρ
L(ϕ, ψ) Rρ

L2
(φ, ψ)

Rρ
L1
(ϕ, φ) P[r]

ι∗L

ι∗R

.

Proof. Let Sr1 and Sr2 be normal rulings for L1 and L2, respectively. Then
they can be glued in an obvious way if and only if the perfect matchings
given by ι∗R(Sr1) and ι

∗
L(Sr2) coincide.

Conversely, the two maps fromRρ
L(ϕ, ψ) are given by the restrictions and

the universal property of the fiber product, which completes the proof. □

Lemma 3.4. Let ℓ and r be even. Then there are canonical bijections

Rρ

ι∗R(0ℓ)
≃ Rρ

0ℓ
and Rρ

ι∗L(∞∞∞r)
≃ Rρ

∞r
.

Proof. Note that ι∗R(0ℓ) is the trivial Legendrian graph of ℓ strands, and it
is easy to see that the set of ρ-graded normal rulings is the same as the set
of ρ-graded matchings on the vertex 0

Rρ

ι∗R(0ℓ)
≃ Pρ0 ≃ P

ρ

[ℓ].

On the other hand, Rρ
0ℓ

is the disjoint union of Rρ

0
ϕ

ℓ

(−, η) over all ϕ ∈ Pρ0

and (−, η) ∈ Pρ[0] × P
ρ

[ℓ]. As seen earlier, all crossings in 0ϕℓ are marked and
there are no other choices for which crossings have switches in the normal
rulings, but r = ∅, so that the 0-resolution on r becomes 0ϕℓ itself. Since 0ϕℓ
is canonically decomposed into ℓ

2 left half-eyes, if r = ∅ then Sr becomes a
normal ruling. Namely, for each ρ-graded matching ϕ, the ruling Rρ

0
ϕ

ℓ

(−, η)
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has a unique element only when ϕ = η. Hence we have

Rρ
0ℓ

=
∐

(−,η)∈Pρ

[0]×Pρ

[ℓ]


 ∐

ϕ∈Pρ
0

Rρ

0
ϕ

ℓ

(−, η)


 =

∐

ϕ∈Pρ
0

Rρ

0
ϕ

ℓ

(−, ϕ) ≃ Pρ0 ≃ Rρ

ι∗R(0ℓ)
.

Essentially the same proof applies for∞∞∞r and we are done. □

Corollary 3.5. Let L be a marked bordered Legendrian graph of type (ℓ, r),
where ℓ and r are even. Then there is a bijection Rρ

L ≃ Rρ

L̂
given by Sr 7→ Sr.

Proof. This is a direct consequence of Lemma 3.3 and Lemma 3.4. □

Definition 3.6. Let Sr ∈ Rρ
L. The weight wt(Sr) of Sr is defined as

wt(Sr) := zn(Sr), where n(Sr) := #(r)−
#(≺Lr

) + #(≻Lr
)

2
∈

1

2
Z

and Lr is a bordered Legendrian link obtained by the 0-resolution on r.

It is obvious that

n(Sr) = #(r)−#({eyes in Sr})−
1

2
#({half-eyes in Sr}).

Definition 3.7. The ρ-graded ruling polynomial RρL(ϕ, ψ) of L is the sum
of weights of ρ-graded normal rulings of type (ϕ, ψ):

RρL(ϕ, ψ) :=
∑

Sr∈R
ρ

L
(ϕ,ψ)

wt(Sr) ∈ Z[z±
1

2 ].

Corollary 3.8. Suppose that L1 and L2 are of types (ℓ, r) and (r, s), re-
spectively and L = L1 · L2. Then

RρL(ϕ, φ) =
∑

ψ∈P[r]

RρL1
(ϕ, ψ)RρL2

(ψ, φ).

Proof. This is obvious by Lemma 3.3. □

Remark 3.9. Evidently, RρL can be regarded as a linear transformation
from Rρ

ι∗L(L)
to Rρ

ι∗R(L), whose (ϕ, ψ)-entry is given precisely by RρL(ϕ, ψ).

The following theorem will be proven later.
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Theorem 3.10 (Invariance theorem). The set of ρ-graded normal rul-
ings Rρ

L(ϕ, ψ) of type (ϕ, ψ) transforms bijectively under equivalences of
marked bordered Legendrian graphs. In particular, the polynomial RρL(ϕ, ψ)
is invariant.

More precisely, there is a weight-preserving bijection between the sets
Rρ

L(ϕ, ψ) and Rρ
L′(ϕ, ψ) of ρ-graded normal rulings for any two equivalent

marked bordered Legendrian graphs L and L′.
By the following corollary, whose proof is obvious, the ρ-graded ruling

polynomial defined above recovers the earlier notion for Legendrian links.

Corollary 3.11. Let L = (L, µ) be a Legendrian link with a Maslov po-
tential. Then the ρ-graded ruling polynomial RρL(∅,∅) is the same as the
ρ-graded ruling polynomial defined by Chekanov [5].

Example 3.12. Let us consider the following front diagram L of a Legen-
drian graph L having one 4-valent vertex. Here the other double point of
the projection is not a vertex but a regular crossing.

L =
1

24

3

The possible resolutions are as follows:

L− = , L0 = , L∞ = .

Since R1(L−) = z−1, R1(L0) = z−2 + 1, and R1(L∞) = 0, we have R1(L) =
z−2 + z−1 + 1.

Let us also consider a different front diagram L′ of L.

L
′ =

The two are indeed equivalent through the following Legendrian isotopy:

.

Here the arcs of like color between consecutive front diagrams indicate arcs
corresponding via Reidemeister moves.
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For L′, the possible resolutions, cf. Example 2.19, are as follows:

L
′
1 = , L

′
2 = , L

′
3 = .

It is straightforward to check thatR1(L′1) = 0, R1(L′2) = z−1, R1(L′3) = z−2 +
1 which imply R1(L−) = R1(L′2), R

1(L0) = R1(L′3), R
1(L∞) = R1(L′1), and

hence R1(L) = R1(L′).

3.2. Ruling invariants for Legendrians in #k(S1
× S

2)

Let n = (n1, . . . , nk) be a finite sequence of positive even integers and put
n = n1 + · · ·+ nk. We denote the product of the sets of perfect matchings
P[ni]’s by

P[n] :=

k∏

i=1

P[ni].

Via the identification

k∐

i=1

[ni] = {1, . . . , n1}
∐
{1, . . . , n2}

∐
· · ·

∐
{1, . . . , nk}

≃ {1, . . . , n1, n1 + 1, . . . , n1 + n2, . . . , n} = [n]

we may regard P[n] as a subset of P[n].
Let (L,n) be a pair of a marked bordered Legendrian graph L of type

(n, n) and a finite sequence of integers n = (ni) with n =
∑
ni. We denote

the set of ρ-graded normal rulings and tensors of type (ϕ, ϕ) for some ϕ ∈ P[n]
as follows:

Rρ
L,n

:=
∐

ϕ∈P[n]

Rρ
L(ϕ, ϕ), RρL,n :=

∑

ϕ∈P[n]

RρL(ϕ, ϕ) · (ϕ⊗ ϕ
∗).

By assigning each (ϕ⊗ ϕ∗) to the unit 1 ∈ Z[z±
1

2 ], we have the ρ-graded
ruling polynomial RρL,n for the pair (L,n)

RρL,n :=
∑

ϕ∈P[n]

RρL(ϕ, ϕ) ∈ Z[z±1].

Corollary 3.13. The set Rρ
L,n of ρ-graded normal rulings transforms bi-

jectively and the polynomial RρL,n is invariant under equivalences.



✐

✐

“2-Bae” — 2022/10/18 — 15:39 — page 70 — #22
✐

✐

✐

✐

✐

✐

70 B. H. An, Y. Bae, and T. Kálmán

Proof. Since each Rρ
L(ϕ, ϕ) is invariant under equivalences by Theorem 3.10,

so is their union Rρ
L,n. □

Let us consider the closure (̂L,n), which is a Legendrian graph that has
2k more vertices {v1, . . . , vk, v

′
1, . . . , v

′
k} than L where each vi and v′i close ni

borders from the left and the right, respectively. See Figure 4. Then the set
of normal rulings Rρ

L,n is the subset of the set of normal rulings in Rρ

(̂L,n)

such that the matchings on the vi and on v′i coincide for each i.

(L,n) = L
̂
−→ (̂L,n) = L

v′1

v′2

v′3v3

v2

v1

Figure 4: The closure of a pair (L,n) with n = (2, 4, 4).

On the other hand, the pair (L,n) can be regarded as a Gompf standard
form of a marked Legendrian link [L,n] defined in [11, Definition 2.1], with a
Maslov potential, in the k-fold connected sumMk := #k(S2 × S1). Here the
contact manifoldMk is the boundary of the four-manifoldWk obtained from
R4 by attaching k 1-handles, or equivalently, Mk is obtained by identifying
pairs of boundary spheres in R3 with 2k balls removed. In this description,
each boundary component plays the role of the co-core of the corresponding
1-handle.

Mk = #k(S2 × S1) ∼= R
3 \

k⋃

i=1

(B̊3
L,i ∪ B̊

3
R,i)

/
S2
L,i ∼ S

2
R,i, S2

∗,i = ∂B3
∗,i

∼= ∂Wk,

Wk := R
4 ∪

k⋃

i=1

I ×D3.

Definition 3.14 (Ruling polynomials for Legendrians in Mk). The
ρ-graded ruling polynomial for a marked Legendrian link in Mk, given by
the Gompf standard form [L,n], is defined as the ρ-graded ruling polynomial
for the pair (L,n):

Rρ[L,n] := RρL,n.
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(L,n) = L
[·]
−→ [L,n] = L

S2
L,1 S2

R,1

S2
R,2

S2
R,kS2

L,k

S2
L,2 ⊂Mk

Figure 5: A Gompf standard form corresponding to a pair (L,n) with n =
(2, 4, 4).

Theorem 3.15. The ruling polynomial Rρ[L,n] is well-defined.

Proof. It suffices to prove that the ruling polynomial Rρ[L,n] is independent
of the choice of a Gompf standard form.

Recall Theorem 2.2 from [11] that two marked Legendrian links [L,n]
and [L′,n′], with Maslov potentials, given in Gompf standard form in Mk

are isotopic if and only if the bordered Legendrian links (L,n) and (L′,n′) in
R3 are related via Reidemeister moves away from the borders corresponding
to co-cores — i.e., Reidemeister moves in the boxed region of Figure 5 —
and Gompf moves, which are depicted in Figure 6.

The invariance under Reidemeister moves is already established in Corol-
lary 3.13, and the invariance of ruling invariants under Gompf moves can be
shown as follows.

For the Gompf move (GI), the invariance essentially comes from the
bijection

P[n] ≃ P[n],{i,i+1} := {ϕ ∈ P[n+2] | {i, i+ 1} ∈ ϕ}

between perfect matchings. Namely, the Gompf move (GI) inserting the cusp
at the i-th position forces the matching to have {i, i+ 1} ∈ ϕ, and the above
bijection induces the bijection between the sets of normal rulings.

For the Gompf move (GII), we use the bijection on P[n]

ϕ ∈ P[n] 7→ ϕ′ ∈ P[n], ϕ′(j) :=





ϕ(j) j ̸= i, i+ 1;

ϕ(i+ 1) j = i;

ϕ(i) j = i+ 1,

which directly induces the bijection between the sets of normal rulings again.
Finally, the Gompf move (GIII) is nothing but the composition of two

Reidemeister (IV) moves and hence we have the invariance. □
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(GI)
←→

(GII)
←→

(GIII)
←→

Figure 6: Gompf moves (GI), (GII) and (GIII).

In the paper [17], Leverson defined ρ-graded normal rulings for Legen-
drian links in Mk by using Gompf standard forms. More precisely, if [L,n]
is a Gompf standard form of a Legendrian link in Mk without markings,
then the ρ-graded normal rulings for [L,n] are those normal rulings of the
bordered Legendrian (L,n) whose matchings at the left and right ends co-
incide.

Notice that this definition is exactly the same as our definition for Rρ
L,n

and therefore we have the following corollary.

Corollary 3.16. Let [L = (L, µ),n] be a Legendrian link in Mk having no
markings. Then the ruling polynomial Rρ[L,n] coincides with the ruling in-

variant defined by Leverson in [17, Definition 2.14].

One way to go from connected Legendrian graphs in R3 to Legendrian
links in Mk is a doubling construction defined as follows: For any marked
non-bordered Legendrian graph L = (L, µ) with k vertices and no markings,
let us consider the double D(L) = (D(L), D(µ)) of L defined as the disjoint
union of two copies, say L1 := (L1, µ1) and L2 := (L2, µ2) of L. By applying
Reidemeister moves, we may pull all vertices of L1 to the left and pull all
vertices of L2 to the right so that the graph looks as follows:

D(L) := (D(L), D(µ)) =

v3

v2

v1

L1 L2

v′1

v′2

v′3

= L1 ⨿ L2.
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Then it is obvious that D(L) can be realized as the closure of a pair (L̃,n)
such that L̃ = L̃1 · L̃2 for two bordered Legendrian graphs L̃1 := (L̃1, µ̃1) and
L̃2 := (L̃2, µ̃2) of types (n, 0) and (0, n), respectively, and n = n1 + · · ·+ nk
where ni is the valency of the vertex vi in L:

D(L) =
̂
(L̃,n); (L̃,n) = L̃1 L̃2 = L̃1 · L̃2.

By treating (L̃,n) as a Gompf standard form, we obtain a Legendrian
link [L̃,n] in Mk. We denote this by [D(L)].

Remark 3.17. For singular Legendrian links, which are Legendrian 4-
valent graphs, the double construction was considered in [2, Section 6.2].

We have the following further corollary:

Corollary 3.18. Let L = (L, µ) be a Legendrian graph without markings.
Then L has a ρ-graded normal ruling if and only if the Legendrian link
[D(L)] in Mk has a ρ-graded normal ruling in the sense of Leverson [17].

Proof. Reidemeister moves do not affect whether L has a normal ruling,
and therefore L has a ρ-graded normal ruling if and only if so does D(L) =
L1 ⨿ L2. Moreover, it is obvious that

Rρ

L̃
= Rρ

D(L) = Rρ
L1
×Rρ

L2
= Rρ

L̃1

×Rρ

L̃2

.

In addition, for each ϕ ∈ P[n], we have

Rρ

L̃
(ϕ, ϕ) = Rρ

L̃1

(ϕ,∅)×Rρ

L̃2

(∅, ϕ).

Since there is a one-to-one correspondence between the sets Rρ

L̃1

(ϕ,∅)

and Rρ

L̃2

(∅, ϕ), we obtain

Rρ

L̃,n
=

∐

ϕ∈P[n]

Rρ

L̃
(ϕ, ϕ) ̸= ∅⇐⇒

∐

ϕ∈P[n]

Rρ

L̃1

(ϕ,∅) ̸= ∅.

However, it is obvious that the right-hand side is the same as Rρ

L̃1

= Rρ
L

and so we have

Rρ

L̃,n
̸= ∅⇐⇒ Rρ

L ̸= ∅.
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With this we are done since the left-hand side is the same as the set of
normal rulings of [D(L)] in the sense of Leverson by Corollary 3.16. □

4. Applications

4.1. Existence of rulings and augmentations

In this section we briefly review the construction of the differential graded
algebra (DGA for short) A(L) for Legendrian graphs L = (L, µ) with Maslov
potential, introduced by the first and second authors in [1], and prove the
equivalence between the existence of a normal ruling of L and an augmenta-
tion ofA(L). This result generalizes and unifies previous work for Legendrian
links in R3 [8, 9, 16, 23] and in Mk = #k(S2 × S1) [17].

4.1.1. DGAs for Legendrian graphs. To a Legendrian link L = (L, µ)
with a Maslov potential, one can associate the Chekanov–Eliashberg DGA
A(L), which is a differential graded algebra generated by crossings in the
Lagrangian projection (a.k.a. Reeb chords) and whose differential comes
from counting immersed polygons satisfying certain boundary conditions.
Recently, the construction of the DGA invariant has been generalized to
arbitrary Legendrian graphs [1].

The main task was

1) to handle algebraic behavior (or a DGA construction) at the vertices
and

2) to show the invariance under new (Lagrangian) Reidemeister moves
which arise from the vertices.

For the first issue, we assigned a DG-subalgebra Iv(L) for each vertex v ∈ VL,
see Remark 4.7. For the second issue, it is needed to extend the notion of
algebraic equivalence of DGAs from stable-tame isomorphisms to general-
ized stable-tame isomorphisms, see [1] for the precise definition. With these
terminologies, we have

Theorem 4.1. [1, Theorem A,B] Let L = (L, µ) be a Legendrian graph
with Maslov potential. Then there is a pair (A(L),P(L)) consisting of a
DGA A(L) and a collection P(L) of DG-subalgebras from vertices VL.

Moreover, the pair (A(L),P(L)) up to generalized stable-tame isomor-
phisms is invariant under the Legendrian Reidemeister moves for L = (L, µ).
In particular the induced homology H∗(A(L), ∂) is an invariant.
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To define the DGA A(L), we use the Lagrangian projection πxy : R
3 →

R2
xy of L. There is a combinatorial way to obtain a Lagrangian projection of

L from a front diagram, due to Ng [19], called resolution.

Definition 4.2. [19, Definition 2.1] Let L be a regular front projection of a
Legendrian graph. Then the resolution Res(L) is a diagram in the xy-plane
obtained by performing on L the operations

7→ , 7→ , 7→ ,

along with, for each vertex v of type (ℓ, r), the following replacement:

v

1

2

r

r + 1

r + 2

r + ℓ

7→
v

1

2

r

r + 1

r + 2

r + ℓ

Note that the replacement at each vertex induces clockwise labelling on
half edges like in Figure 8.

The unital algebra A(L) over Z is generated by the union of the set
C(Res(L)) of crossings of the resolution Res(L) and an infinite set of gener-
ators for each vertex, namely

A(L) := Z⟨C(Res(L))⨿ Ṽ(L)⟩,

where

Ṽ(L) := {vi,ℓ | v ∈ V(L), i ∈ Z/ val(v)Z, ℓ ≥ 1}.(4.1)

We assign so-called Reeb and orientation signs to the four quadrants at each
crossing c of Res(L) as depicted in Figure 7. From now on, shaded regions
indicate quadrants whose orientation sign, depending on the grading of the
crossing, may be negative.

−

−
+ +

(a) Reeb sign

+
ϵ

+ ϵ ϵ := ϵ(c) = (−1)|c|−1

(b) Orientation sign

Figure 7: Reeb signs and orientation signs.
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Here the grading |c| of the crossing c ∈ C(Res(L)) is as given in equation
(2.1). For a generator vi,j belonging to a vertex v of type (ℓ, r), the grading
is defined as

|vi,j | := µ(i)− µ(i+ j) + (n− 1) ∈ R,

where n is the number of intersections between the vertical line passing
through v and the spiral curve γ(v, i, j) that starts from the i-th half-edge,
rotates clockwise around v, and passes exactly j minimal sectors.

γ(v, 1, 3) =

1

2

34

5

6

γ(v, 1, 7) =

1

2

34

5

6

|v1,3| = µ(1)− µ(4) + (1− 1), |v1,7| = µ(1)− µ(2) + (2− 1),

Figure 8: Examples of spiral curves γ(v, i, j).

Let Πt be a (t+ 1)-gon and let us denote its boundary and the set of
its vertices by ∂Πt and VΠt = {x0, . . . ,xt}, respectively. The differential for
each crossing c is given by counting immersed polygons

f : (Πt, ∂Πt, VΠt)→ (R2, L,CL ∪ VL)

which pass only one Reeb-positive quadrant at f(x0) = c and several Reeb-
negative quadrants and vertex corners. When f maps a vertex of Πt to a
crossing then a neighborhood of the vertex is mapped to a single quadrant
(positive for x0, negative otherwise) at the crossing. There is no such lo-
cal convexity requirement for vertices that are mapped to (projections of)
vertices, cf. Figure 9.

Definition 4.3 (Signs of polygons). For an immersed polygon f with
domain Πt having the vertex x ∈ VΠt, the sign sgn(f,x) is defined as follows:

• If f(x) is a crossing c, then sgn(f,x) is the orientation sign of the
quadrant locally covered by the image of f , cf. Figure 7.

• If f(x) is a vertex, then sgn(f,x) is defined to be 1.
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1

4

1

2

34

5

6

1

2

1

2

34

5

6

f

f

Figure 9: Vertex corners of immersed polygons.

Definition 4.4 (Canonical label). Let

f : (Πt, ∂Πt, VΠt)→ (R2, L,CL ∪ VL)

be an orientation preserving immersed polygon as above. Let us label the
nearby edges hv+

, hv−
on a neighborhood Uv of v ∈ VΠt as follows:

v hv+

hv−

Uv

We define a function f̃ : VΠ→ GL, called the canonical label of f , as

f̃(v) :=

{
sgn(f,v)c f(v) = c ∈ CL;

vi,ℓ f(v) = v ∈ VL,

where f(hv−
∩Uv) ⊂ hv,i, and f(Uv) is mapped to ℓ := ℓf (v) sectors near

v, see [1, Definition 4.10] for the details.
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Definition 4.5 (Grading of polygons). The grading of the immersed
(t+ 1)-gon f is defined by

|f | := |f̃(x0)| −

t∑

i=1

|f̃(xi)|.

Definition 4.6 (Differential). For each c ∈ CL, let Mt(c) be the set of
all immersed (t+ 1)-gons f with f̃(x0) = ±c whose degree is 1:

Mt(c) := {f : (Πt, ∂Πt, VΠt)→ (R2, L,CL ∪ VL) | f̃(x0) = ±c, |f | = 1}.

Then, the differential ∂c is defined as

∂c :=
∑

t≥0

∑

f∈Mt(c)

sgn(f,x0)f̃(x1) · · · f̃(xt).

On the other hand, for vi,j , the differential is given by the following
formula.

∂vi,j := δj,val(v) +
∑

j1+j2=j

(−1)|vi,j1 |−1
vi,j1vi+j1,j2 .

Remark 4.7. Notice that ∂vi,j involves only vi′,j′ ’s and therefore, we have
the DG-subalgebra Iv(L) for each vertex v generated by vi,j ’s. Hence we
have a DGA morphism pv : Iv(L)→ A(L), especially a DG-subalgebra.

Furthermore, one can obtain Ekholm-Ng’s DGA invariants for Legen-
drian links with Maslov potentials contained inMk defined in [6]. Recall that
a Legendrian link in Mk can be represented by a pair (L,n) of a bordered
Legendrian graph L = (L, µ) of type (n, n) without markings and a sequence
n = (n1, . . . , nk) of natural numbers with n1 + · · ·+ nk = n. As before, we

denote the set of vertices of the closure (̂L,n) by {vi, v
′
i | 1 ≤ i ≤ k}.

Theorem 4.8. [1, Theorem 7.9] Let [L,n] be a Legendrian link with a

Maslov potential in Mk given as a Gompf standard form and let L := (̂L,n).
The Ekholm-Ng’s DGA AEN([L,n]) can be defined as the homotopy coequal-
izer

k∐

i=1

Ivi(L) A(L) AEN([L,n]),

∐
pi

∐
p′

i
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where pi and p′
i are peripheral structures

pi : Ivi(L)
pvi−→ A(L), p′

i : Ivi(L) ≃ Iv′i
(
L
) pv′

i−→ A(L).

In particular, for any non-bordered Legendrian graph L = (L, µ) with k
vertices {v1, . . . , vk} without markings, the Ekholm-Ng’s DGA AEN([D(L)])
for [D(L)] ⊂Mk can be defined as the quotient of A(D(L)) of the DGA for
the double D(L) = (D(L), D(µ)) in R3. Indeed, we have the following (ho-
motopy) pushout diagram consisting of injective homomorphisms between
DGAs:

k∐

i=1

Ivi(L) A(L)

A(L) A(D(L))
/(∐k

i=1 pi ∼
∐k
i=1 p

′
i

)
AEN([D(L)])

∐
k
i=1 pi

∐
k
i=1 p

′

i

∼

4.1.2. DGAs for bordered Legendrian graphs. Legendrian links in
a bordered manifold and their associated DGAs were first considered in [24]
via combinatorial methods and later in [12] with geometric interpretation.

Now we define a DGA for a bordered Legendrian graph L = (L, µ) of
type (ℓ, r) with a Maslov potential. Let L̂left be the concatenation

L̂left := 0ℓ(ι
∗
L(µ)) · L

called the left closure of L. Then we define the Ng’s resolution Res(L) for a
bordered Legendrian graph L as the resolution of the right-bordered Legen-
drian L̂left, which can be regarded as a subdiagram of the resolution of the
closure L̂. See Figure 10.

Res(L) := Res(L̂left) ⊂ Res(L̂).

Definition 4.9 (DGAs for bordered Legendrian graphs). Let L =
(L, µ) be a bordered Legendrian graph with a Maslov potential. Then A(L)
is defined by the DGA construction for the Lagrangian projection Res(L).

Then, it is easy to see that A(L) is generated by not only crossings
and vertex generators in L, but also infinitely many generators {0i,j | i ∈
Z/ℓZ, j > 0}, where 0 is the vertex coming from the left-closure.
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Res(L) =

Res(L̂) =

·̂left Res

·̂ Res

Figure 10: The closures and their resolutions

The right border of Res(L) gives us an additional datum, a DGA mor-
phism p∞ : I∞(L)→ A(L) of degree 0 defined as follows: The DGA I∞(L)
is the DGA of the trivial bordered Legendrian (Ir, ι

∗
R(µ)), whose generators

will be denoted by ∞i,j ’s

I∞(L) := Z⟨∞i,j | i ∈ Z/rZ, j > 0⟩.

We can identify the generators ∞i,j with the generators from the rightmost

vertex in Res(L̂), so the grading |∞i,j | follows from the one for the vertices.
The image of ∞i,j under p∞ is defined in a similar way to the differen-
tial ∂ so that p∞ counts immersed once-punctured t-gons contained in the
neighborhood of Res(L) as depicted in Figure 11. We regard that the spiral
curves corresponding to ∞i,j are lying on the boundary of this neighbor-
hood and each once-punctured immersed polygon converges to some ∞i,j

near the puncture. Especially in Figure 11 the polygonal map f satisfies
f̃(x∞) =∞3,2, f̃(x1) = b, f̃(x2) = 03,2, and f̃(x3) = c.

Then this disk counting defines a DGA morphism. See [1, Section 6] for
detail.

Lemma 4.10. [1, Lemma 6.10] The map p∞ is a DGA morphism.

4.1.3. Augmentations and rulings.

Definition 4.11 (Augmentation). An augmentation of a DGA A over
Z is a DGA morphism ϵ : A → (Z, | · | ≡ 0, ∂ ≡ 0). We say that ϵ is ρ-graded
if R = Z/ρZ.
We denote the set of all ρ-graded augmentations for A over Z by Augρ(A,Z).
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f
x∞

x1

x2

x3

2

3

1

4

1

2

3

4

0

c

b

Figure 11: A polygon in a Legendrian tangle

Theorem 4.12. Let L be a bordered Legendrian graph. Then A(L) has a
ρ-graded augmentation if and only if so does A(L̂).

Proof. In order to avoid ambiguity, we denote the differential for A(L̂) by
∂̂.

As seen in Figure 10, all crossings and vertices for Res(L) are already
contained in Res(L̂), which indeed induces the canonical DGA morphism

Φ: A(L)→ A(L̂).

It follows directly, by pre-composition with Φ, that Aug(A(L),Z) ̸= ∅ if
Aug(A(L̂),Z) ̸= ∅ .

Suppose that we have an augmentation ϵ : A(L)→ Z. Then it suffices to
extend ϵ to ϵ̂ : A(L̂)→ Z by assigning values for the additional generators—
both crossing {ai,j | 1 ≤ i < j ≤ r} and vertex generators {∞i,j | 1 ≤ i ≤
r, j > 0} — that come from the resolution part of the right closure part
∞r. See Figure 12.

As to the differential of ai,j , two types of disks — indicated as (Ak) and
(Bk) in Figure 12 — contribute as follows:

(Ak) : (−1)
|ai,j |−1

ai,k∞k,j−k;

(Bk) : p∞(∞i,k−i)ak,j .
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Therefore we have

∂̂ai,j = p∞(∞i,j−i) + (−1)|ai,j |−1∞i,j−i

+

j−1∑

k=i+1

(−1)|ai,j |−1
ai,k∞k,j−k + p∞(∞i,k−i)ak,j .

Note that |ai,j | = |∞i,j−i|+ 1.
On the other hand, the differential for ∞i,j is the same as before

∂̂∞i,j = δj,r +
∑

j1+j2=j

(−1)|∞i,j1 |−1∞i,j1∞i+j1,j2

= (−1)|∞i,j |−1δj,r +
∑

j1+j2=j

(−1)|∞i,j1 |−1∞i,j1∞i+j1,j2 .

The last equality holds since δj,r = 1 if and only if j = r and |∞i,r| = 1.
We now extend ϵ to ϵ̂ by assigning values on ai,j and ∞i,j as follows:

ϵ̂(ai,j) := 0, ϵ̂(∞i,j) := (−1)|∞i,j |−1ϵ(p∞(∞i,j)).

To show that ϵ̂ is an augmentation for A(L̂), it suffices to show that ϵ̂
commutes with differential. That is,

ϵ̂ ◦ ∂̂ = 0.

From the direct computation, we have

(ϵ̂ ◦ ∂̂)(∞i,j) = δj,r +
∑

j1+j2=j

(−1)|∞i,j1 |−1ϵ̂(∞i,j1∞i+j1,j2)

= (−1)|∞i,j |−1ϵ(p∞(∂̂∞i,j))

= (−1)|∞i,j |−1ϵ(∂p∞(∞i,j)) = 0.

Here, we used that for j1 + j2 = j,

(−1)|∞i,j |−1 = (−1)|∞i,j1
|−1(−1)|∞i+j1,j2

|−1.

Finally, for ai,j we have

(ϵ̂ ◦ ∂̂)(ai,j) = ϵ(p∞(∞i,j−i)) + (−1)|ai,j |−1ϵ̂(∞i,j−i)

= ϵ(p∞(∞i,j−i)) + (−1)|ai,j |−1+|∞i,j−i|−1ϵ(p∞(∞i,j−i))

= 0
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since |ai,j | = |∞i,j−i|+ 1. Therefore ϵ̂ is a DGA morphism and we are done.
□

1

r

∞ Res

r

1

(Ak)(Bk) ∞

a1,2

a1,3

a1,r

a2,3

a2,r

a3,r

∞i,j

Figure 12: The resolution of ∞r and generators.

As mentioned earlier in this section, the existence of augmentation is
related with the existence of normal rulings as follows:

Theorem 4.13. [8, 9, 16, 17, 23] For a Legendrian link L = (L, µ) in R3 or
Mk, a ρ-graded normal ruling exists if and only if a ρ-graded augmentation
exists for A(L) or AEN(L), respectively.

Lemma 4.14. Let L = (L, µ) be a Legendrian graph in R3 with a Maslov
potential with k vertices. Then A(L) has a ρ-graded augmentation if and
only if so does the DGA A([D(L)]) for [D(L)] ⊂Mk

Proof. This is obvious from the universal property of the pushout diagram.
□

Theorem 4.15. Let L = (L, µ) be a bordered Legendrian graph, equipped
with a Maslov potential. Then a ρ-graded normal ruling for L exists if and
only if a ρ-graded augmentation for A(L) exists.

Proof. The theorem follows from Corollaries 3.5 and 3.18, Theorems 4.12
and 4.13, and Lemma 4.14. □
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Diagrammatically, one can present Theorem 4.15 as follows:

Rρ
L ̸= ∅ Augρ(A(L),Z) ̸= ∅

Rρ

L̂
̸= ∅ Augρ(A(L̂),Z) ̸= ∅

Rρ

[D(L̂)]
̸= ∅ Augρ(AEN([D(L̂)]),Z) ̸= ∅

Cor. 3.5

Thm. 4.15

Thm. 4.12

Cor. 3.18 Lem. 4.14

Thm. 4.13

4.2. Four-valent graphs and the Kauffman polynomial

Now let us focus on four valent Legendrian graphs, which are the same as
Legendrian singular links which have been studied in [2].

Lemma 4.16. The 1-graded normal ruling polynomial R1 satisfies the fol-
lowing skein relation:

R1
( )

= R1
( )

− (z − 1)R1
( )

+R1
( )

Proof. As seen before, the full resolutions for L04
= are

L̃04
=

{
, ,

}

and so

R1
( )

= R1
( )

+R1
( )

+R1
( )

.

For a given crossing c ∈ C, the set of normal rulings can be decomposed into
two sets: the set of normal rulings which have a switch at c and the set of
normal rulings which do not. Thus we have

R1
( )

= R1
( )

+ zR1
( )

and therefore the claim is proved. □

Definition 4.17. [15] Let K = K1 ⊔ · · · ⊔Kn be an unoriented link of n
components. The unnormalized Kauffman polynomial [K] for the link K is a
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polynomial of two variables (a, z) which satisfies the following skein relation:

[ ]
= 1,

[ ]
−
[ ]

= z
([ ]

−
[ ])

,
[ ]

= a [ ] ,
[ ]

= a−1 [ ] .

The (normalized) Kauffman polynomial FK for a link K is defined to be

FK := a−w(K)[K], where w(K) :=

n∑

i=1

w(Ki),

and w(Ki) is the writhe of the component Ki of K.

Usually, the Kauffman polynomial FK is defined only for (unoriented)
knots or oriented links since the notion of total writhe for unoriented links is
ambiguous. However, it is still well-defined that the sum of component-wise
writhes. Therefore it is easy to see that FK is invariant under the ambient
isotopy.

Remark 4.18. The polynomial FK is originally defined by Kauffman but
denoted by UK . See Page 13 in [15].

For Legendrian links, there is a known degree bound of the Kauffman
polynomial with respect to the variable a.

Lemma 4.19. [22] For any Legendrian link K, the degree dega[K] is at
most −1. Equivalently,

dega FK ≤ −1− tb(K).

Remark 4.20. Here, we are using a slightly different convention for the
Kauffman polynomial of Legendrian links from [22] since we consider the
additional kink for each right cusp.

One of the benefit of our convention is that the upper bound of dega[K]
is always −1. Compare this with Lemma 2.2 in [22], where the upper bound
is given as #(≺L)− 1.

Theorem 4.21. [22, Theorem 3.1] For a Legendrian knot K, the ungraded
ruling polynomial is the same as the coefficient of a−1−tb(K) in the shifted
Kauffman polynomial z−1FK.
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Remark 4.22. Note that in [22], the weight convention for each normal
ruling is

z#{switches}−#{eyes}+1

and so there is no need to consider the shifted Kauffman polynomial.

Definition 4.23. [14] The unnormalized Kauffman polynomial [Γ] for a
4-valent spatial graph Γ is a polynomial of three variables (a,A,B) which
satisfies the additional skein relation:

[ ]
=

[ ]
−A

[ ]
−B

[ ]
,(4.2)

where z = A−B.
The unnormalized Kauffman polynomial [L] for a 4-valent Legendrian

graph L is given by the Kauffman polynomial of the Ng’s resolution of L.

Remark 4.24. One can use the following skein relation for Kauffman poly-
nomial for 4-valent graphs instead:

[ ]
=

[ ]
−B

[ ]
−A

[ ]
.

To define the (normalized) Kauffman polynomial for 4-valent graphs, we
first resolve all vertices in a virtual way, that is, all 4-valent vertices will be
regarded as virtual transverse crossings. The result will be a virtual link and
denoted by

L
⊗ = L

⊗
1 ⊔ · · · ⊔ L

⊗
n .

Then the component-wise writhes w(L⊗i ) for the virtual link L⊗ are well-
defined again. In practice, for each component L

⊗
i , w(L

⊗
i ) is the sum of

signed real crossings.

Definition 4.25 (Total writhe for Legendrian 4-valent graphs). Let
L be a Legendrian 4-valent graph and L⊗ = L

⊗
1 ⊔ · · · ⊔ L⊗n be the virtual link

obtained by the virtual resolution. The total writhe is defined as follows:

w(L) :=

n∑

i=1

w(L⊗i ).

Notice that if L is a Legendrian knot, then the writhe of the Ng’s reso-
lution of L is the same as Thurston-Bennequin number tb(L). Therefore we
may regard the total writhe w(L) as the total Thurston-Bennequin number
tb(L).
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Example 4.26. Consider the following 4-valent Legendrian graph and its
virtual resolution which is depicted by the diagram with red circles:

L = L⊗ =

Let us denote the upper and lower component of L⊗ by L
⊗
1 and L

⊗
2 , respec-

tively. Then we have w(L⊗1 ) = 0, w(L⊗2 ) = −1, and hence w(L) = −1.

Definition 4.27 (Kauffman polynomials for spatial 4-valent graphs).
The (normalized) Kauffman polynomial FL for a spatial 4-valent graph L is
defined as

FL := a−w(L)[L].

Then one can see that the Kauffman polynomial is invariant under the
ambient isotopy and the above two results can be generalized to 4-valent
Legendrian graphs as follows:

Lemma 4.28. The following holds: for any Legendrian 4-valent graph L,

dega[L] ≤ −1,

or equivalently,

dega FL ≤ −1− tb(L).

Proof. Due to the skein relation (4.2) for 4-valent graphs, we have

dega

[ ]
= dega

([ ]
−A

[ ]
−B

[ ])

≤ max
{
dega

[ ]
, dega

[ ]
, dega

[ ]}
.

By the induction on the number of vertices and Lemma 4.19, we are done.
□

Theorem 4.29. Let L be a regular front projection of a 4-valent Legen-
drian graph. The ungraded (ρ = 1) ruling polynomial R1

L
for L is the same

as the coefficient of a−tb(L)−1 (a−1, resp.) in the shifted Kauffman polyno-
mial z−1FL (unnormalized polynomial z−1[L], resp.) after replacing A and
B with (z − 1) and −1, respectively.
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Simply speaking, this theorem implies the existence of a topological in-
variant for 4-valent spatial graphs which is a two-variable polynomial of a
and z whose certain coefficient of a coincides with the ruling polynomial.

Proof of Theorem 4.29. As seen in Lemma 4.16 and definition of Kauffman
polynomial for 4-valent graphs, both satisfy the same skein relation after
replacing A and B as above. Therefore by using the induction on the number
of vertices, we only need to consider Legendrian links which has been already
covered by Theorem 4.21. □

Example 4.30. Let us consider the following Legendrian graph L having
a valency 4-vertex with three vertex resolutions as follows:

L =
1

24

3
L− =

L0 = L∞ =

{{1,3},{2,4}}

{{1,2},{3,4}}
{{1,4},{2,3}}

Since R1
L−

= z−1, R1
L0

= z−2 + 1, and R1
L∞

= 0, we have R1
L
= z−2 + z−1 + 1.

On the other hand, the corresponding Lagrangian projection of L with
its resolutions are the following:

K = K− =

K0 = K∞ =

7→

7→
7→

Thus we have

[K] = [K−]−B[K0]−A[K∞]

= a−1 −B(−z−1a−3 − za−3 + a−2 + z−1a−1 + za−1)−Aa−4.

If we regard K as a virtual knot, then it has two positive crossings and two
negative crossings and so w(K) = tb(L) = 0. This implies that the shifted
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Kauffman polynomial z−1FK with A = z − 1 and B = −1 becomes

(z−1 − 1)a−4 + (−z−2 − z−1)a−3 + z−1a−2 + (z−2 + z−1 + 1) a−1.

Here we can check that R1
L
appear in the coefficient of a−tb(L)−1.

Question 4.31. Can Theorem 4.29 be generalized to arbitrary Legendrian
graphs? Namely, does there exist a topological invariant for spatial graphs
which is a two-variable polynomial of a and z whose certain coefficient of a
gives us the ruling polynomial R1?

There is a partial answer to the above question for spatial graphs with
vertices of valency at most six. However, for spatial graphs with a vertex of
valency eight or higher, one should consider hundreds of resolutions and so
it is not easy to determine the coefficients of the skein relation that resolving
vertices, for example, the coefficients A and B in the skein relation (4.2).

5. Proof of the invariance theorem

Recall that the Legendrian half-twist braid ∆b is defined inductively as fol-
lows:

∆b := ∆b−1
.

By adding (2n− b) trivial strands below ∆b, we obtain the bordered Legen-
drian link ∆2n

b of type (2n, 2n).

Lemma 5.1. Let ∆2n
b

:= ((∆2n
b , µ),∅) be a bordered Legendrian link of type

(2n, 2n) with a Maslov potential, where ∆b is the half-twist braid of the upper
b strands among 2n strands. Then

Rρ
∆2n

b

(ϕ, ψ) = 0

if ϕ or ψ matches at least one pair of the first b strands.

Proof. One can prove that if a normal ruling whose boundary matches the
first strand with a strand in ∆b−1, then it implies that the existence of a
normal ruling whose boundary matches two strands in ∆b−1, which is a
contradiction. We omit the detail. □
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Let β be a permutation braid. Then ββ is palindromic, that is the same
as its reverse, and moreover it is pure, meaning that its induced permutation
is the identity. Moreover, τ(β) := ∆bβ∆

−1
b is again a permutation braid and

can be regarded as a braid obtained from β by horizontal reflection.

τ : β = 7−→ τ(β) =

Recall that the complement βc of β is defined as β−1∆. It is easy to
check that

ββcβc = ∆βc = τ(βc)∆ = τ(βc)τ(βc)β.

Indeed, the two Legendrian graphs L and L′ defined as

L := LβLβcβc , and L
′ := Lτ(βc)τ(βc)Lβ

are Legendrian isotopic. Therefore any Maslov potential µ on L induces a
Maslov potential µ′ on L′ and vice versa. Let

L := ((L, µ),C(Lβcβc)), and L′ := ((L′, µ′),C(Lτ(βc)τ(βc))).

Lemma 5.2. For any ϕ, ψ ∈ Pρ[2n] and a permutation braid β, there is a
weight-preserving bijection between the sets of normal rulings of L := LβLβcβc

and L′ := Lτ(βc)τ(βc)Lβ.

RρL(ϕ, ψ) ≃ R
ρ
L′(ϕ, ψ)

Sr 7→ Sr

Proof. It is easy to see

ββcβc = ∆bβc = τ(βc)∆b = τ(βc)τ(βc)β,

and therefore LβLβcβc = Lτ(βc)τ(βc)Lβ as bordered Legendrian links.
For convenience’s sake, let

R := Rρ,(ϕ,ψ)(LβLβcβc ,C(Lβcβc)),

R′ := Rρ,(ϕ,ψ)(Lτ(βc)τ(βc)Lβ ,C(Lτ(βc)τ(βc)))

Then since both L = ∆bLβc and L′ = Lτ(βc)∆b contain ∆b, R and R′ should
be emptyset if ϕ or ψ match two braid strands, and so we assume that both
ϕ and ψ have no {i, j} with 1 ≤ i, j ≤ b.
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For these choices of ϕ and ψ, all crossings of the pure braids βcβc and
τ(βc)τ(βc) are marked and it plays exactly the same role as the identity.
Therefore we have bijections

R ≃ Rρ,(ϕ,ψ)(Lβ ,∅) ≃ R′.
□

The following proposition is equivalent to Theorem 3.10.

Proposition 5.3. Let L′ and L′′ be two bordered Legendrian graphs different
by one of the Reidemeister moves. Then there is a weight-preserving bijection
between Rρ,(ϕ,ψ)(L

′) and Rρ,(ϕ,ψ)(L
′′) for each (ϕ, ψ) ∈ P[ℓ] × P[r].

Since invariance under the usual Reidemeister moves (0a), (0b), (Od),
(I), (II), and (III) in Figure 1 is already established, it suffices to consider
Reidemeister moves involving vertices. that is, (0c), (0e), (0f), (IV), and
(V) in Figure 1. Moreover, since we consider only resolutions of vertices,
it suffices to prove that these Reidemeister moves commute with vertex
resolutions. For example, we need to prove that for each perfect pairing
ϕ ∈ P[2n] with 2n = val(v), the induced move (0c)∗ below yields a bijection
between sets of normal rulings:

vϕ vϕ

(0c)

ϕ ϕ

(0c)∗

From now on, we simply write (L,B) = (L′, B′) if there exists a weight-
preserving bijection between sets of normal rulings.

Lemma 5.4. All marked Reidemeister moves induce a weight-preserving
bijection between sets of normal rulings. In other words, for each move (M)
between (L,B) and (L′, B′), we have

(L,B) = (L′, B′).

Proof. This is easy to check and we omit the proof. □

As seen in Remark 2.10, the diagram with two markings is not the
same as the diagram without any crossings. Indeed, the difference of normal



✐

✐

“2-Bae” — 2022/10/18 — 15:39 — page 92 — #44
✐

✐

✐

✐

✐

✐

92 B. H. An, Y. Bae, and T. Kálmán

rulings between no crossings and two markings is whether the eye involving
two strands is allowed or not.

(O) (X)

One of the direct consequence is that the moves similar to Reidemeister
moves (0) and (II) holds for two consecutive markings in the following sense:

= = =

In general, any positive pure braid β with all marked crossings has the
similar property.

Lemma 5.5. Suppose that β is a positive pure braid, and all the crossing
in β are marked. The following holds.

β
=

β β
=

β
β = β

Proof. This is obvious. □

On the other hand, marked cusps, see Figure 3, have exactly the same
property.

Lemma 5.6. Let n ≥ 0. Then the following holds.

n {
=
n { n {

=
n {

n { =n {

Proof. This is obvious. □

Corollary 5.7. All Reidemeister moves of types (0) and (IV) induce weight-
preserving bijections between sets of normal rulings.

Proof. Any resolution of a vertex in Section 2.2 is a product of marked left
cusps, a normal braid, a pure braid with all crossings marked, and marked
right cusps. These commute with cusps, regular crossings, and long arc pass-
ing over (or under) the vertex by Lemma 5.5 and Lemma 5.6. □
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5.1. Reidemeister move (V)

Now, let us compare the set of normal rulings before and after the Reide-
meister move (V) under any resolution of a vertex introduced in Section 2.2.

(V)
←→

Let v be a vertex of type (ℓ, r) with ℓ+ r = 2n, and ϕ ∈ P[2n] with val v =
2n. We denote the top-left arc by α. Then according to where the top-left
arc α is matched, we have two cases:

1) α is a strand of a braid if it matches with an arc in the right, or

ϕ
−→

L′L LRL′β

L′βc L′
βc

2) α is a marked cusp contained in LL.

ϕ
−→

L′L

Lβ Lβc LRLβc

Suppose that α is a strand of a braid. Then without loss of any general-
ities, we may assume that L′L is trivial, and the proof is as follows:

1) Make a small kink by using (I) on the top-left arc between Lβ and Lβc .

vϕ =
L′L LRL′β

L′βc L′
βc

(I)
−→

L′L LRL′β

L′βc L′
βc

2) Pull-down the kink by using (II).

L′L LRL′β

L′βc L′
βc

(II)
−→

L′L LRL′β

L′βc L′
βc
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3) Move the right long arc to the rightmost position by Lemma 5.5 and
Lemma 5.6.

L′L LRL′β

L′βc L′
βc

(A)
−→

L′L LRL′β
L′βc L′

βc

4) Reduce the left cusp by applying (II) and (0).

L′L LRL′β
L′βc L′

βc

(II)
−→
(0) L′L LRL′β L′βc L′

βc

5) Apply (S) to make a standard form.

L′L LRL′β L′βc L′
βc

(S)
−→

L′L LRL′β L′βc L′
βc

6) Then we can regard the result as a ϕ-resolution v′ϕ of a vertex v′ of
type (ℓ− 1, r + 1), see Section 2.2.

v
′
ϕ =

L′L LRL′β L′βc L′
βc

ϕ
←− .

Now suppose that α is a marked cusp. Then the proof is exactly the
same as the reverse of the above by using Lemma 5.2 as follows:

1) Apply Lemma 5.2 to LβLβcLβc .

vϕ =
L′L

Lβ Lβc LRLβc

(I)
−→

L′L L
τ(βc)

Lτ(βc)

LRLβ
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2) Apply (S) to the cusp.

L′L L
τ(βc)

Lτ(βc)

LRLβ

(I)
−→

L′L L
τ(βc)

Lτ(βc)

LRLβ

3) Push and pull down the cusp via (0) and (II).

L′L L
τ(βc)

Lτ(βc)

LRLβ

(0)
−→
(II)

L′L L
τ(βc)

Lτ(βc)

LRLβ

4) Move the long right arc to the rightmost position by Lemma 5.5 and
Lemma 5.6.

L′L L
τ(βc)

Lτ(βc)

LRLβ

(B)
−→

L′L L
τ(βc)

Lτ(βc)

LRLβ

5) Apply Lemma 5.2 again.

L′L L
τ(βc)

Lτ(βc)

LRLβ

(B)
−→

L′L
LβcLβc LRLβ

6) Regard the result as a ϕ-resolution v′ϕ of a vertex v′ of type (ℓ− 1, r +
1) as before, see Section 2.2 for the resolution.

L′L
LβcLβc LRLβ

ϕ
←− .

References

[1] B. H. An and Y. Bae, A Chekanov-Eliashberg algebra for Legendrian
graphs, J. Topol. 13 (2020), no. 2, 777–869.

[2] B. H. An, Y. Bae, and S. Kim, Legendrian singular links and singular
connected sums, J. Symplectic Geom. 16 (2018), no. 4, 885–930.



✐

✐

“2-Bae” — 2022/10/18 — 15:39 — page 96 — #48
✐

✐

✐

✐

✐

✐

96 B. H. An, Y. Bae, and T. Kálmán
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