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We apply a local systolic-diastolic inequality for contact forms and
odd-symplectic forms on three-manifolds to bound the magnetic
length of closed curves with prescribed geodesic curvature (also
known as magnetic geodesics) on an oriented closed surface. Our
results hold when the prescribed curvature is either close to a Zoll
one or large enough.
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1. Introduction

In this paper, we apply the systolic-diastolic inequality established in [6, 7]
for contact forms and odd-symplectic forms on three-manifolds, respectively,
to the study of immersed closed curves with prescribed geodesic curvature
on a connected oriented closed surface (M, oM ) endowed with a Riemannian
metric g. The Riemannian metric g and the orientation oM yield a well-
defined way of measuring angles in each tangent plane and an area form µ
on M . If c : I →M is a smooth curve parametrised by arc-length on some
interval I, we define its geodesic curvature κc : I → R to be the unique
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function satisfying the relation

∇ċċ = κcċ
⊥,

where ∇ is the Levi-Civita connection, and ċ⊥ is the unit vector with the
property that the angle from ċ to ċ⊥ is π

2 .
Let f :M → R be a smooth function. A curve c : R →M is said to be

a magnetic geodesic, or an f-magnetic geodesics when we want to
mention the function f explicitly, if it is parametrised by arc-length and
satisfies the equation

(1.1) κc(t) = −f(c(t)), ∀ t ∈ R.

The magnetic geodesics of f and of −f are in one-to-one correspondence
through time reversal. This means that t 7→ c(t) is an f -magnetic geodesic if
and only if t 7→ c(−t) is a −f -magnetic geodesic. The study of periodic solu-
tions of (1.1), which we refer to as closed f -magnetic geodesics, is by now a
problem with a rich history and we refer the reader to [3, 4, 11, 14, 22] and
the references therein for an account of the most remarkable developments
and a generalization to higher dimensional manifolds M .

A crucial ingredient in our work will be to use that the tangent lifts (c, ċ)
of f -magnetic geodesics are the integral curves of a vector field Xf defined
on the unit tangent bundle T1M , whose elements are the tangent vectors of
unit norm. The foot-point projection

p∞ : T1M →M

is an orientable S1-bundle, whose fibres we orient by the oM -negative direc-
tion. If e ∈ H2

dR(M) is minus the real Euler class of p∞, then

(1.2) ⟨e, [M ]⟩ = χ(M),

where χ(M) is the Euler characteristic of M . We write h∞ ∈ [S1,T1M ] for
the free-homotopy class of p∞-fibres. Throughout the paper T1M will be
given the orientation

(1.3) oT1M = oM ⊕ op∞

obtained combining the orientation of M with the orientation of the p∞-
fibres given above.
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Definition 1.1. We say that a function f :M → R is Zoll with respect to
a given metric g if there exists an oriented S1-bundle

pf : T1M →Mf

such that the integral curves of Xf are fibres of pf . We write ef for minus
the Euler class of pf , and hf for the free-homotopy class of the pf -fibres,
and opf

for the orientation of the fibres. We endow Mf with the unique
orientation oMf

such that oT1M = oMf
⊕ opf

.

If we take f ≡ 0, we recover the notion of Zoll Riemannian metric andM
must be the two-sphere. We refer the reader to [9] for a thorough discussion
of such metrics. A classical example of a Zoll function f∗ :M → R can be
given when g = g∗ is a metric of constant Gaussian curvature K∗. We take
f∗ to be any constant function satisfying

(1.4) f2∗ +K∗ > 0.

If c is a prime closed magnetic geodesic, its lift c̃ to the universal cover M̃
of M parametrises the boundary of a geodesic ball of radius

R =





1√
K∗

arctan
(√

K∗

|f∗|

)
, if K∗ > 0;

1
|f∗| , if K∗ = 0;

1√
−K∗

arctanh
(√

−K∗

|f∗|

)
, if K∗ < 0.

According to our sign convention, the curve rotates clockwise, if f∗ > 0.
Therefore, all f∗-magnetic geodesics are closed, and actually f∗ is Zoll. Here
the map pf∗ : T1M →Mf∗ =M in Definition 1.1 associates to a tangent

vector the projection on M of the center of the corresponding ball in M̃ .
In general, it is unknown whether every Riemannian metric admits a Zoll
function.

Remark 1.2. If we take f∗ = 0 and K∗ = 0 for the two-torus or f2∗ +K∗ <
0 for higher genus surfaces, all the closed magnetic geodesics are not con-
tractible. If we take f2∗ +K∗ = 0 on higher genus surfaces, then there are no
closed magnetic geodesics at all.
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Let us go back to the case of an arbitrary function f :M → R and attach
two quantities to it. The former is the average of f :

favg :=
1

area(M)

∫

M
fµ , area(M) :=

∫

M
µ .

The latter is the average curvature of f , which generalises the left-hand
side of (1.4):

Kf := (favg)
2 +

2πχ(M)

area(M)
.

Indeed, by the Gauss-Bonnet theorem,

2πχ(M)

area(M)
=

1

area(M)

∫

M
Kµ,

where K is the Gaussian curvature of g. The average curvature of f is always
positive for the two-sphere M = S2. For the two-torus M = T

2, it is always
non-negative and equality holds exactly when favg = 0.

In the next proposition, we collect the first properties of Zoll functions
and their closed magnetic geodesics.

Proposition 1.3. If f :M → R is a Zoll function, the following statements
hold:

(a) The surface Mf is diffeomorphic to M and there is a path of oriented
S1-bundles {pr}r∈[0,1] with total space T1M and a sign ϵ(f) ∈ {−1,+1}
such that

p0 = ϵ(f)p∞, p1 = pf

where −p∞ is the bundle p∞ with opposite orientation. In particular,

hf = ϵ(f)h∞, ⟨ef , [Mf ]⟩ = χ(M)

and there exists a commutative diagram

(1.5) T1M
F

//

p∞

��

T1M

pf

��

M
F̄

//Mf

,

where F is a diffeomorphism isotopic to the identity and F̄ :M →Mf is
a diffeomorphism which preserves the orientation if and only if ϵ(f) = 1.
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(b) If M is not the two-sphere, then favg ̸= 0 and ϵ(f) = sign(favg).

(c) The average curvature is positive, namely Kf > 0.

Remark 1.4. IfM is the two-sphere, the oriented bundle p∞ is homotopic
to its opposite −p∞. Therefore, both ϵ(f) = −1 and ϵ(f) = +1 are good in
this case.

In view of this proposition, given a function f :M → R which is not
necessarily Zoll, we are motivated to look for closed f -magnetic geodesics
whose tangent lift belongs either to the free-homotopy class h∞ or to −h∞.
Up to substituting f with −f , we focus on f -magnetic geodesics in the
former class of curves, namely in the set
(1.6)

Λ(M ; h∞) :=
{
c : R/TZ →M for some T > 0

∣∣∣ |ċ| ≡ 1, [(c, ċ)] = h∞
}
.

Lemma 2.3 and Lemma 2.6 explain in more detail which curves belong to
Λ(M ; h∞). We denote by Λ(f ; h∞) the subset of closed f -magnetic geodesics
in Λ(M ; h∞).

We now describe a function ℓf : Λ(M ; h∞) → R called f-magnetic
length functional, whose critical set is exactly Λ(f ; h∞). To this pur-
pose, let c ∈ Λ(M ; h∞). There exists a cylinder Γ : [0, 1]× S1 → T1M such
that Γ(0, ·) is an oriented p∞-fibre and Γ(1, ·) coincides with (c, ċ), up to
reparametrisation. We regard the projection p∞ ◦ Γ as a disc C : D2 →M
bounding c. Any disc arising in this way is called an admissible capping
disc for c. We set

ℓf : Λ(M ; h∞) → R, ℓf (c) := ℓ(c) +

∫

D2

C∗(fµ),

where ℓ(c) is the Riemannian length of c, and C is an admissible capping
disc for c. As will be shown in Section 2.1, the value of ℓ(c) is independent
of the choice of C. The systolic-diastolic inequality will give bounds for the
quantities

ℓmin(f) := inf
c∈Λ(f ;h∞)

c prime

ℓf (c), ℓmax(f) := sup
c∈Λ(f ;h∞)

c prime

ℓf (c),

in terms of the average length of f which is defined by

(1.7) ℓ̄(f) :=
2π

favg +
√
Kf

.
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Remark 1.5. For M = S2, we automatically have ℓ̄(f) > 0. If M = T
2,

then ℓ̄(f) is a real number if and only if favg > 0 and in this case ℓ̄(f) =
π/favg > 0. If M has higher genus, ℓ̄(f) is a real number, if and only if
Kf ≥ 0. In this case, favg and ℓ̄(f) are both non-zero and have the same
sign.

Definition 1.6. We say that f :M → R satisfies the magnetic systolic-
diastolic inequality if ℓ̄(f) is a well-defined real number and

ℓmin(f) ≤ ℓ̄(f) ≤ ℓmax(f),

with any of the two equalities holding if and only if f is a Zoll function,
whose magnetic geodesics lie in Λ(M ; h∞).

Remark 1.7. According to Proposition 1.3, if M ̸= S2, the magnetic
geodesics of a Zoll function f lie in Λ(M ; h∞) if and only if favg > 0. In
this case Kf and ℓ̄(f) are also positive.

Remark 1.8. One could define mutatis mutandis the analogous space
Λ(M ;−h∞) and give a corresponding variational principle and a systolic-
diastolic inequality for closed f -magnetic geodesics contained therein. The
only difference is that one has to substitute ℓ̄(f) with ℓ̄′(f) := 2π(−favg +√
Kf )

−1.

We prove the inequality in two cases. First, we show it for functions close
to a Zoll one.

Theorem 1.9. Let M be a connected oriented closed surface endowed with
a Riemannian metric, and let f∗ :M → R be a Zoll function, whose mag-
netic geodesics lie in Λ(f ; h∞). Then there exists a C2-neighbourhood F of
f∗ in the space of functions such that every f in F satisfies the magnetic
systolic-diastolic inequality.

Next, we establish the magnetic systolic-diastolic inequality for positive
functions with large average. To make this concept precise, we need a defi-
nition.
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Definition 1.10. For every k ∈ N and every f :M → (0,∞), we set

⟨f⟩k :=
∥f∥Ck

min f
∈ [1,∞).

For a constant C > 0, we say that f :M → (0,∞) is C-strong, if there
holds

favg >
(
⟨f⟩43 + ⟨f⟩62

)
eC⟨f⟩21 .

Theorem 1.11. LetM be a connected oriented closed surface endowed with
a Riemannian metric g. There exists a constant Cg > 0 with the property
that, if f :M → R is Cg-strong, then the function f satisfies the magnetic
systolic-diastolic inequality.

Remark 1.12. It is plausible that Theorem 1.9 still holds if we let the
metric g also vary. To be precise, if f∗ is Zoll with respect to a metric g∗,
then there should exist a C3-neighbourhood G of g∗ and a C2-neighbourhood
F of f∗ such that for every (g, f) ∈ G × F , f satisfies the magnetic systolic-
diastolic inequality with respect to g. Actually, in the purely Riemannian
case (namely, when f = 0), the systolic-diastolic inequality holds true for
metrics g on S2, whose curvature is suitably pinched, see [1] and also [2,
Corollary 4]. We also expect Theorem 1.11 to be true if we let g vary in a
C3-bounded set.

For all positive real numbers s, we have

(1.8) (sf)avg = s(favg), ⟨sf⟩k = ⟨f⟩k, ∀ k ∈ N.

Thus Theorem 1.11 applies to large rescalings of any positive function.

Corollary 1.13. Let M be a connected oriented closed surface endowed
with a Riemannian metric g. For every f :M → (0,∞), there exists a posi-
tive number s(g, f) > 0 such that if s > s(g, f), then the function sf satisfies
the magnetic systolic-diastolic inequality. □

Theorem 1.9 and Theorem 1.11 are consequences of the contact systolic-
diastolic inequality established in [7] whenM is different from the two-torus,
as in this case the tangent lifts of magnetic geodesics are the trajectory of
a Reeb flow on the unit tangent bundle, up to reparametrisation. If M
is the two-torus, its unit tangent bundle is trivial, and results in [7] are
not applicable. Instead, in this case, the theorems follow from the systolic-
diastolic inequality for odd-symplectic forms explored in [6].
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2. Preliminaries

2.1. The unit tangent bundle

As mentioned in the introduction, f -magnetic geodesics c yield trajectories
(c, ċ) of a flow ΦXf on the unit tangent bundle T1M . The generating vector
field Xf can be explicitly written as

Xf = X +
1

2π
(f ◦ p∞)V,

where X is the geodesic vector field of g, and V is the vector field whose flow
rotates the fibres of the map p∞ in the oM -negative direction with constant
angular speed 1

2π . Thus the vector field V generates a free S1-action on T1M
(our convention is S1 = R/Z) and we denote by h∞ ∈ [S1,T1M ] the free-
homotopy class of the orbits of V , namely of the oriented p∞-fibres. The
Levi-Civita one-form η ∈ Ω1(T1M) is the connection for p∞ satisfying

(2.1) η(V ) = 1, dη =
1

2π
p∗∞(Kµ),

whereK is the Gaussian curvature of g. This implies that e = 1
2π [Kµ], where

e is minus the real Euler class of p∞.
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Let αcan be the canonical one-form on T1M given by

(αcan)v · Y := g(v, dvp∞ · Y ), ∀Y ∈ Tv(T
1M).

It is a contact form and its Reeb vector field coincides with the geodesic
vector field X. There holds (see [8, V.2.5 and (5.2.12)])

(2.2) αcan ∧ dαcan = 2πη ∧ p∗∞µ

so that αcan ∧ dαcan is a positive form with respect to the orientation oT1M

given in (1.3).

Definition 2.1. We call a two-form Ω on T1M odd-symplectic if it is
closed and maximally non-degenerate. An odd-symplectic form is called Zoll
if there exists an oriented S1-bundle pΩ : T1M →MΩ such that the oriented
leaves of the distribution kerΩ are fibres of pΩ. In this case, Ω descends to a
symplectic form ω on MΩ, i.e. p

∗
Ωω = Ω. We endow MΩ with the orientation

induced by T1M and pΩ, or, equivalently, the orientation given by ω.

Remark 2.2. The two-form

Ω∞ := p∗∞µ

is an example of a Zoll odd-symplectic form. Its associated oriented bundle
is p∞.

The two-form

Ωf := dαcan + p∗∞(fµ),

is odd-symplectic, and the vector field Xf is a nowhere vanishing section of
the characteristic distribution kerΩf . Indeed, from the equations above, we
have Ωf = ιXf

(αcan ∧ dαcan). This also shows that

(2.3) oT1M = oXf
⊕ oΩf

,

where oΩf
is the co-orientation of the characteristic distribution of Ωf . We

readily see that f is Zoll in the sense of Definition 1.1 if and only if Ωf is
Zoll in the sense of Definition 2.1.

To determine the cohomology class [Ωf ] = favg[Ω∞] ∈ H2
dR(T

1M), we
observe that the map p∗∞ : H2

dR(M) → H2
dR(T

1M) is zero if M ̸= T
2 and is
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injective if M = T
2. This follows from the Gysin sequence

H0
dR(M)

∪e
−→ H2

dR(M)
p∗

∞−→ H2
dR(T

1M)

and (1.2). Therefore, Ω∞ is exact if and only if M ̸= T
2.

Let us now write the f -magnetic length of some c ∈ Λ(M ; h∞) in term
of Ωf . The Riemannian length of c can be expressed as

ℓ(c) =

∫

R/TZ

(c, ċ)∗αcan.

If Γ : [0, 1]× S1 → T1M is the cylinder lifting an admissible capping disc C,
we have

(2.4) ℓf (c) = ℓ(c) +

∫

D2

C∗(fµ) =
∫

[0,1]×S1

Γ∗Ωf ,

due to
∫ 1
0 Γ(0, ·)∗αcan = 0 and Stokes’ Theorem. From this formula, we de-

duce that the value of ℓf (c) does not depend on the choice of the admissible
disc C. Let C ′ be another admissible capping disc for c, which is the projec-
tion of another cylinder Γ′ in T1M such that Γ′(0, ·) is an oriented p∞-fibre
and Γ′(1, ·) coincides with (c, ċ), up to reparametrisation. The cylinder Γ′′ ob-
tained concatenating s 7→ Γ′(s, ·) with the reversed cylinder s 7→ Γ(1− s, ·)
projects to a sphere σ : S2 →M . The value of ℓf (c) obtained using C is
the same as the one obtained using C ′ if and only if the following integral
vanishes

∫

[0,1]×S1

(Γ′′)∗Ωf =

∫

[0,1]×S1

(Γ′′)∗
(
p∗∞(fµ)

)
= ⟨[fµ], [σ]⟩.

Therefore, it is enough to show that [σ] = 0. If M ̸= S2, this is clear since
π2(M) vanishes. If M = S2, then [σ] = 0 if and only if ⟨e, [σ]⟩ = 0. By (2.1)
and Stokes’ Theorem, we get

⟨e, [σ]⟩ = ⟨[ 1
2πKµ], [σ]⟩ =

∫

[0,1]×S1

(Γ′′)∗η =

∫

S1

(γ′0)
∗η −

∫

S1

γ∗0η = 1− 1 = 0.

2.2. Proof of Proposition 1.3

Case M = T
2. Since p∞ is a trivial bundle, [6, Proposition 1.11] implies

that ef = 0 and that Ωf is not exact. Moreover, by [6, Lemma 4.5], if p :
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T1
T
2 →Mp is an oriented S1-bundle over a closed surface Mp, for any c ∈

H2
dR(Mp) and pt ∈Mp there holds

PD(p∗c) = ⟨c, [Mp]⟩ · [p
−1(pt)] ∈ H1(T

1
T
2;R)

where PD denotes Poincaré duality. Applying this identity for p = p∞, we
get

PD([Ωf ]) = PD([p∗∞(fµ)]) = area(T2) · favg · [p
−1
∞ (pt)] ∈ H1(T

1
T
2;R),

which implies favg ̸= 0 and, as a consequence, Kf > 0. Applying again the
identity for p = pf , we deduce

PD([Ωf ]) = ⟨[ωf ], [T
2
f ]⟩ · [p

−1
f (pt)],

where ⟨[ωf ], [T
2
f ]⟩ > 0, as ωf is a positive symplectic form. By comparing

the two formulae for PD([Ωf ]), we derive [p−1
f (pt)] = sign(favg) · [p

−1
∞ (pt)],

as the homology classes of the fibres of p∞ and of pf are both primitive. Since
T1

T
2 is diffeomorphic to the three-torus, we have an isomorphism between

the set of free-homotopy classes and the set of first homology classes, so that
hf = sign(favg)h∞ holds, as well. Finally, as [Ωf ] = favg[Ω∞], the existence
of a path {pr} connecting sign(favg)p∞ to pf and of the commuting diagram
(1.5) follows from [6, Proposition 1.11, Remark 1.12]. □

Case M ̸= T
2. The existence of a path {pr} connecting ±p∞ to pf and

of the commuting diagram (1.5) is a consequence of [7, Proposition 1.2]
and [6, Proposition 1.11, Remark 1.12]. It implies at once that hf = ±h∞,
and by continuity also that ⟨ef , [Mf ]⟩ = χ(M), since (1.2) holds. Notice
indeed that the Euler number of p∞ is also equal to χ(M), since the Euler
class of −p∞ is minus the Euler class of p∞ and −p∞ induces the opposite
orientation on M , so the two minus signs cancel out when computing the
Euler number. WhenM = S2, there is nothing else to prove, so let us assume
for the rest of the proof that χ(M) < 0. In this case, the inequality Kf > 0
is proven in Corollary 2.13 and we are left to establish (b). We will show,
namely, that favg > 0, provided the magnetic geodesics of f lie in Λ(M ; h∞).
We assume by contradiction that favg < 0. Thanks to Remark 1.5, this is
equivalent to assuming that ℓ̄(f) < 0. By Theorem 1.9, we have ℓf (c) = ℓ̄(f)
for every prime closed f -magnetic geodesic c. Notice that we are allowed
to use Theorem 1.9, since, when M ̸= T

2, such a result depends only on
part (a) and (c) of Proposition 1.3. Let L0 : TM → R be the energy density
L0(q, v) =

1
2gq(v, v) and let Λ0(M) be the set of contractible loops onM with



✐

✐

“3-Kang” — 2022/10/12 — 18:43 — page 110 — #12
✐

✐

✐

✐

✐

✐

110 G. Benedetti and J. Kang

arbitrary period. We define the Lagrangian free-period action functional
SL0

k : Λ0(M) → R with parameter k ∈ R by

SL0

k (c) :=

∫ T

0

[
L0 + k

]
(c(t), ċ(t))dt+

∫

D2

C∗(fµ), ∀ c ∈ Λ0(M),

where C : D2 →M is a capping disc for c ∈ Λ0(M). The definition does not
depend on C since π2(M) = 0. Moreover, observe that if cm : R/mTZ →M
is the m-th iteration of c, we have

(2.5) SL0

k (cm) = mSL0

k (c).

Let LL0 : TM → T∗M be the Legendre transform associated with the
Lagrangian L0 and let H0 : T

∗M → R be the kinetic energy function with
respect to the dual metric. The function H0 is Legendre dual to L0, namely

L0(q, v) = LL0(q, v) · v −H0

(
LL0(q, v)

)
, ∀ (q, v) ∈ TM.

Let Ω̂f be the twisted symplectic form on T∗M , which is defined by

Ω̂f := dα̂can + p̂∗∞(fµ),

where α̂can is the canonical one-form on T∗M and p̂∞ : T∗M →M is the
foot-point projection. We also define the Hamiltonian free-period action
functional AH0

k : Λ0(T
∗M) → R on the set of contractible loops in T∗M by

AH0

k (q, p) :=

∫

D2

(Q,P )∗Ω̂f

+

∫ T

0

[
k −H0

]
(q(t), p(t))dt, ∀ (q, p) ∈ Λ0(T

∗M),

where (Q,P ) : D2 → T∗M is any capping disc for (q, p) ∈ Λ0(T
∗M). Since

π2(T
∗M) = 0, the definition does not depend on (Q,P ). For all c ∈ Λ0(M),

there holds

SL0

k (c) = AH0

k

(
LL0(c, ċ)

)
.

It is a classical result that the Hamiltonian flow lines ofH0 with respect to Ω̂f

on the energy hypersurface {H0 =
1
2} are exactly the curves LL0(c, ċ), where

c is an f -magnetic geodesic. Therefore, if c is a prime closed f -magnetic
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geodesic, we have

(2.6) 0 > ℓf (c) = SL0
1

2

(c) = AH0
1

2

(LL0(c, ċ)) =

∫

D2

(QL0

c , PL0

c )∗Ω̂f ,

where (QL0

c , PL0

c ) is a capping disc for LL0(c, ċ).
The two-form Ωf on T1M is exact since it is Zoll and pf is non-trivial.

Thus there exists a contact form λf on T1M such that dλf = Ωf . This

implies that {H0 = 1/2} is a stable hypersurface inside (T∗M, Ω̂f ) in the
sense of [17, Section 4.3] and [10, Section 2]. By [18, Lemma 2.1], there
exist k∗ ∈ R, an open interval I containing k∗, a function h : I → (0,∞), a
Tonelli Hamiltonian H : T∗M → R and a diffeomorphism Ψ : {H = k∗} ×
I → {H ∈ I} such that the following identities hold

(i) {H0 ≤ 1/2} = {H ≤ k∗},

(ii) H ◦Ψ(p, r) = r, ∀ (p, r) ∈ {H = k∗} × I,

(iii) Ψ
(
Φ
h(r)t
H (p), r

)
= Φt

H(Ψ(p, r)), ∀ t ∈ R, (p, r) ∈ {H = k∗} × I,

where ΦH is the Hamiltonian flow of H. Actually, the result in [18] is stated
for Hamiltonians on the standard cotangent bundle (T ∗M, Ω̂0) but a careful
inspection of the proof reveals that the statement holds also on the twisted
cotangent bundle (T ∗M, Ω̂f ). Finally, let L : TM → R be the Legendre dual
of H. From (i), it follows that ΦH and ΦH0

have the same oriented orbits
on {H0 = 1/2} = {H = k∗}. Therefore, if c1 is a prime periodic solution of
the Euler-Lagrange flow of L with energy k∗, we have that

(2.7)

∫

D2

(QL0

c , PL0

c )∗Ω̂f =

∫

D2

(QL
c1 , P

L
c1)

∗Ω̂f ,

where (QL
c1 , P

L
c1) is a capping disc for LL(c1, ċ1). The left-hand side of (2.7)

is negative by (2.6). Moreover, using the last two passages in (2.6) back-
wards with k∗, c1, H and L instead of 1

2 , c, H0 and L0, we see that the
right-hand side of (2.7) is equal to SL

k∗

(c1). Summing up, we have shown

that SL
k∗

(c1) < 0. By (ii),(iii) and (2.5), we see that, up to shrinking the
interval I, we can assume that all periodic solutions (prime and iterated)
of the Euler-Lagrange flow of L with energy k ∈ I have negative action SL

k .
However, since p∞ : {H = k∗} →M is an S1-bundle and there exist con-
tractible curves with negative SL

k action for all k ∈ I, we conclude that
I ⊂ (c∗(L), cu(L)), where c∗(L) = −minq∈M L(q, 0) and cu(L) ∈ R is the
Mañé critical value of the universal cover. However, by [19, Theorem 1.1(2)]
or [3, Theorem 1.3], there exists for almost every k ∈ (c∗(L), cu(L)) a period
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orbit of the Euler-Lagrange flow of L with energy k and positive SL
k -action.

This contradiction shows that ℓ̄(f) > 0 and finishes the proof. □

2.3. The space of curves Λ(M ; h∞)

In this subsection, we will study the set Λ(M ; h∞) in more detail. We start
with a characterisation of this space by means of the turning number of an
immersed curve b : R/TZ → R

2 that is the winding number of its velocity
curve ḃ : R/TZ → R

2 with respect to 0 ∈ R
2.

Lemma 2.3. Let c be an immersed closed curve in M that is contractible.
The curve c belongs to Λ(M ; h∞) if and only if the following condition holds.

• Case M = S2.: The turning number of ψ ◦ c is odd, where ψ : S2 \
{q} → R

2 is a diffeomorphism and q ∈M lies outside the support of
c.

• Case M ̸= S2.: The turning number of c̃ is equal to −1, where c̃ :
R/TZ → M̃ ⊂ R

2 is a lift of c to the universal cover of M . In this
case, the curve c is prime. □

A somewhat more geometrical sufficient condition for a curve to be in
Λ(M ; h∞) is given by the notion of Alexandrov embeddedness.

Definition 2.4. A closed and arc-length parametrised curve c in M is
called negatively Alexandrov embedded if it admits a negatively im-
mersed capping disc C : D2 →M .

Remark 2.5. By the Schönflies Theorem, a closed curve c in M is nega-
tively Alexandrov embedded, if:

• M = S2 and c is embedded;

• M ̸= S2 and the lift c̃ to the universal cover M̃ bounds a compact
region in the clock-wise direction.

Lemma 2.6. If a closed curve c in M is negatively Alexandrov embedded,
c ∈ Λ(M ; h∞) and any of its immersed capping discs is admissible. In par-
ticular, the curves from Remark 2.5 belong to Λ(M ; h∞).
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Proof. Let C : D2 →M be a negatively immersed capping disc for c. Then
we can define

(0, 1]× S1 ∋ (s, t) 7−→

(
C(se2πit),

∂tC(se
2πit)

|∂tC(se2πit)|

)
∈ T1M.

Since C is a local embedding around 0 ∈ D2, this map extends to s = 0 and
yields a cylinder Γ : [0, 1]× S1 → T1M such that

(i) p∞(Γ(s, t)) = C(se2πit), ∀ (s, t) ∈ [0, 1]× S1,

(ii) Γ(0, t) = ΦV
a(t)(z), Γ(1, t) =

(
c(tT ), ċ(tT )

)
, ∀ t ∈ S1,

for some orientation-preserving diffeomorphism a : S1 → S1 and element z ∈
T1M . This shows that C is admissible. □

We finish this subsection by providing a partial answer to the following
natural question. If all the f -magnetic geodesics are closed, is the function
f (or, equivalently, the odd-symplectic two-form Ωf ) Zoll? We collect the
result in a lemma, which is a magnetic counterpart of the Gromoll-Grove
Theorem [15].

Lemma 2.7. Suppose that every f -magnetic geodesic is closed. The func-
tion f is Zoll in the following two cases:

(i) There holds M ̸= S2 and all the prime geodesics lie in Λ(M ; h∞).

(ii) There holds M = S2 and either all prime closed magnetic geodesics are
embedded or the function f is positive and all prime closed magnetic
geodesics are negatively Alexandrov embedded.

Proof. A theorem of Epstein [12] yields an S1-action Φt : T
1M → T1M ,

t ∈ S1, whose orbits coincide with the tangent lifts of magnetic geodesics
(up to reparametrisation) and such that the set

N :=
{
z ∈ T1M | Φt(z) ̸= z, ∀ t ∈ S1 \ 0

}

is non-empty. The lemma follows once we show that N = T1M . The set N is
open, so that, by the connectedness of T1M , we just have to prove that N is
also closed. Let (zm) ⊂ N be a sequence such that zm → z ∈ T1M . Let (cm)
be the corresponding sequence of magnetic geodesics and c the magnetic
geodesic corresponding to z. Since zm → z, there exists k ∈ N

∗ such that
(cm) converges in the C∞-topology to the k-th iteration of c. It suffices to
show that k = 1. This would give that z ∈ N , and hence, that N is closed.
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Let us suppose that M ̸= S2. The lifts (c̃m) and c̃ to M̃ are such that
(c̃m) converges to the k-th iteration of c̃. From Lemma 2.3, we conclude that
k-times the turning number of c̃ is equal to −1, which forces k = 1.

Let us suppose that M = S2. If all prime closed magnetic geodesics are
embedded, then all the curves cm are embedded. Since S2 is an oriented
surface, it follows that c is also embedded, which forces k = 1. If f is ev-
erywhere positive and the curves cm are negatively Alexandrov embedded,
then by [21, Lemma 3.2], c is also negatively Alexandrov embedded. From
[21, Lemma 3.1], it follows that c is prime, i.e. k = 1. □

Remark 2.8. In the previous lemma, we need extra conditions when M =
S2 since there exists a sequence of prime Alexandrov embedded curves (cm)
which converges in the C∞-topology to a curve c, which is not prime. In
particular, the set {c ∈ Λ(S2; h∞) | c is prime } is not closed in the C∞-
topology. Furthermore, there are examples of positive magnetic functions
on the two-sphere all of whose magnetic geodesics are closed but their lifts
to the unit tangent bundle are the orbits of a non-free S1-action [5].

2.4. Strong magnetic functions

When f :M → (0,∞) is large, then f -magnetic geodesics stay close to the
fibres of p∞. In this case, we expect Ωf to approximate the Zoll form Ω∞ =
p∗∞µ. Using the notion of C-strong function given in Definition 1.10, we make
this observation precise in the next lemma. This result will be employed
in Section 3.2 to establish the magnetic systolic-diastolic inequality for C-
strong functions.

Lemma 2.9. Let U be a C2-neighbourhood of Ω∞ in the space of two-
forms on T1M . There exists a constant CU > 0 with the following property:
For every CU -strong f :M → (0,∞), there is a diffeomorphism Ψ : T1M →
T1M isotopic to the identity such that 1

favg
Ψ∗Ωf ∈ U .

Proof. We define

fnorm :=
f

favg
and observe that there holds

min fnorm ≤ 1 ≤ max fnorm.

The two-form (fnorm − 1)µ is exact. By standard elliptic arguments (see for
instance [20, Chapter 10]), we can choose a primitive one-form ζ ∈ Ω1(M)
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of (fnorm − 1)µ such that

(2.8) ∥ζ∥Ck ≤ Ck∥fnorm − 1∥Ck ≤ Ck∥fnorm∥Ck , ∀ k ∈ N

for some constant Ck > 0 depending solely on g and k ∈ N. For s ∈ [0, 1], let
µs be the two-form given by µs := q(f, s)µ, where q(f, s) := sfnorm + (1− s),
and Ys be the time-dependent vector field defined through

ιYs
µs = −ζ.

If ψ :M →M is the time-one map of Ys, an application of Moser’s trick
yields

(2.9) ψ∗(fnormµ) = µ.

If ♯ : T∗M → TM is the metric duality and ∗ : T∗M → T∗M the Hodge star
operator, we can write Ys explicitly as

Ys =
♯ ∗ ζ

q(f, s)
.

Since ∗ and ♯ are smooth bundle maps, we have (possibly with bigger Ck > 0)

(2.10) ∥Ys∥Ck ≤ Ck max
s∈[0,1]

∥∥∥ ζ

q(f, s)

∥∥∥
Ck
, ∀ k ∈ N.

We claim that the following bound holds (possibly with bigger Ck > 0):

(2.11) max
s∈[0,1]

∥∥∥ ζ

q(f, s)

∥∥∥
Ck

≤ Ck⟨fnorm⟩
k+1
k = Ck⟨f⟩

k+1
k , ∀ k ∈ N.

where the last equality is due to (1.8). We prove the claim by induction
and observe preliminarily that q(f, s) ≥ min fnorm. For k = 0, the estimate
follows directly from (2.8). Suppose now that the estimate holds for all
k′ ≤ k − 1. Since

∥∥∥ ζ

q(f, s)

∥∥∥
Ck

=
∥∥∥ ζ

q(f, s)

∥∥∥
Ck−1

+
∥∥∥∇k ζ

q(f, s)

∥∥∥
C0
,

we just have to bound the second term. We apply the Leibniz rule to the
k-th derivative of the product q(f, s) · ζ

q(f,s) = ζ and obtain

∇k
( ζ

q(f, s)

)
=

1

q(f, s)

[
∇kζ − s

k−1∑

k′=0

(
k

k′

)
∇k−k′

fnorm · ∇k′ ζ

q(f, s)

]
,
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where we have used that ∇k−k′

q(f, s) = s∇k−k′

fnorm, since k − k′ ≥ 1. Con-
sequently, we estimate using (2.8) and (2.11)

∥∥∥∇k ζ

q(f, s)

∥∥∥
C0

≤
1

min fnorm

[
Ck∥fnorm∥Ck

+

k−1∑

k′=0

(
k

k′

)
∥fnorm∥CkCk−1⟨fnorm⟩

k
k−1

]

≤
1

min fnorm
C ′
k

(
∥fnorm∥Ck +

∥fnorm∥
k+1
Ck

(min fnorm)k

)

≤ C ′
k

∥fnorm∥Ck

min fnorm
+ C ′

k

(
∥fnorm∥Ck

min fnorm

)k+1

≤ (C ′
k + 1)

(
∥fnorm∥Ck

min fnorm

)k+1

with some C ′
k > 0 depending only on g and k. The claim is therefore estab-

lished.
Using the Levi-Civita connection for p∞, we lift Ys horizontally to Zs on

T1M , so that dp∞(Zs) = Ys. Since the lifting map Ys 7→ Zs is smooth and
depends only on g, but not on f , there is a constant C ′′

k > 0 depending on
k and g such that

(2.12) ∥Zs∥Ck ≤ C ′′
k∥Ys∥Ck , ∀ k ∈ N.

The time-one map Ψ : T1M → T1M of Zs lifts the time-one map ψ of Ys,
so that

Ψ∗(p∗∞(fnormµ)) = p∗∞µ,

by (2.9). Putting together (2.10), (2.11), (2.12), and Lemma A.1, we get

B2,2

(
∥dΨ∥

)
≤

(
⟨f⟩43 + ⟨f⟩62

)
eC3⟨f⟩21 ,

for a (possibly bigger) constant C3 > 0. Hence, using (A.1) we estimate

∥Ψ∗(dαcan)∥C2 ≤ C ′′′
3 B2,2

(
∥dΨ∥

)
∥dαcan∥C2 ≤

(
⟨f⟩43 + ⟨f⟩62

)
eC3⟨f⟩21 ,

where C ′′′
3 > 0 depends only on g and where we take a bigger constant C3 > 0

if necessary to incorporate ∥dαcan∥C2 and it is possible to bring the constant
to the exponent since ⟨f⟩21 ≥ 1.
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Let us suppose now that f is C-strong for some positive number C > 0.
We compute

1
favg

Ψ∗Ωf − Ω∞ = 1
favg

Ψ∗(dαcan) + Ψ∗(p∗∞(fnormµ))− p∗∞µ = 1
favg

Ψ∗(dαcan).

Combining this identity with the bound for ∥Ψ∗(dα)∥C2 found above, we
arrive at

∥∥∥ 1
favg

Ψ∗Ωf − Ω∞
∥∥∥
C2

= 1
favg

∥Ψ∗(dαcan)∥C2

≤

(
⟨f⟩43 + ⟨f⟩62

)
eC3⟨f⟩21

(
⟨f⟩43 + ⟨f⟩62

)
eC⟨f⟩21

= e(C3−C)⟨f⟩21 ≤ eC3−C ,

which can be made arbitrarily small, if C is arbitrarily large. In particular,
1

favg
Ψ∗Ωf belongs to the given C2-neighbourhood U . □

2.5. A systolic-diastolic inequality for odd-symplectic forms

The aim of this subsection is twofold. First we give definitions and properties
of the volume and the action of odd-symplectic forms. Then we recall a
local systolic-diastolic inequality for odd-symplectic forms on closed three-
manifolds established in [6].

Weakly Zoll pairs. Consider the space of all oriented S1-bundles p :
T1M →Mp with total space T1M , where Mp is some closed oriented sur-
face (diffeomorphic to M). Let P0(T1M) be the connected component of
such a space containing p∞ : T1M →M . A pair (p, c), where p ∈ P0(T1M)
and c ∈ H2

dR(Mp) is called a weakly Zoll pair. A closed two-form Ω on T1M
is said to be associated with (p, c), if Ω = p∗ω for some closed two-form ω
on Mp satisfying [ω] = c. As discussed above, every Zoll form Ω canonically
defines a weakly Zoll pair (pΩ, [ω]). For example, the Zoll form Ω∞ = p∗∞µ
is associated with the weakly Zoll pair (p∞, [µ]).

Let Z0
[Ω∞](T

1M) be the set of all weakly Zoll pairs (p, c) such that

p ∈ P0(T1M), p∗c = [Ω∞] ∈ H2
dR(T

1M).

Below, we define and compute volume, action, and Zoll polynomial with
respect to some fixed reference weakly Zoll pair

(p∞, c0) ∈ Z0
[Ω∞](T

1M).
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As we specify in the next subsection, we take different reference pairs for
M ̸= T

2 and forM = T
2. This will enable us to simplify computations. How-

ever, as observed in [6, Remark 1.19], a different choice results in different
volume, action, and Zoll polynomial but in an equivalent systolic-diastolic
inequality.

Volume. We pick any closed form ω0 on M with [ω0] = c0 and set

Ω0 = p∗∞ω0.

Let Ω be a closed two-form on T1M with the same cohomology class as Ω0.
We choose a one-form α on T1M such that Ω = Ω0 + dα. The volume of α
is defined by

Vol(α) =
1

2

∫

T1M
α ∧ dα+

∫

T1M
α ∧ Ω0

and depends only on c0 and not on the chosen ω0 by [6, Lemma 5.2.(iii)]. As
seen in Section 2.1, p∗∞ : H2

dR(M) → H2
dR(T

1M) vanishes whenM ̸= T
2, and

thus [Ω0] = 0. In this case Vol(α′) = Vol(α) for any α′ satisfying dα′ = dα.
Therefore, we define the volume by

Vol(Ω) = Vol(α).

By [6, Proposition 2.8], if Ψ is a diffeomorphism on T1M isotopic to the
identity, then

(2.13) Vol(Ψ∗Ω) = Vol(Ω).

If M = T
2, then it can happen that dα′ = dα but Vol(α′) ̸= Vol(α). In this

case, we can choose α such that Vol(α) = 0. Such a one-form is called nor-
malised and we declare

Vol(Ω) = 0.

Action. We define the action on the space Λh∞
(T1M) of one-periodic

curves in the free homotopy class h∞ ∈ [S1,T1M ] of p∞-fibres by

Aα : Λh∞
(T1M) → R, γ 7→

∫

S1

γ∗0α+

∫

[0,1]×S1

Γ∗Ω.

where Γ : [0, 1]× S1 → T1M is any cylinder such that Γ(1, ·) = γ and
Γ(0, ·) = γ0 is any oriented p∞-fibre. This action does not depend on the
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choice of ω0 nor of Γ. Moreover, a critical point of Aα is a closed character-
istic of Ω, i.e. a closed curve tangent to the distribution kerΩ. We denote
by X (Ω) the set of embedded closed characteristics of Ω.

In order to define the action with respect to Ω, we observe that if α′ is
another one-form on T1M such that Ω = Ω0 + dα′, then

Aα′ = Aα +

∫

p
−1
∞ (pt)

(α′ − α)

where p−1
∞ (pt) is any fibre of p∞. When M ̸= T

2, the homology class of
p−1
∞ (pt) is zero, and therefore we can simply set

AΩ := Aα.

If M = T
2, the actions Aα and Aα′ might be different. Nevertheless it turns

out that if α and α′ have the same volume, they have the same action. In
this case, we choose a normalised one-form α, i.e. Vol(α) = 0 and set

AΩ := Aα.

In both cases, by [6, Proposition 6.10], if Ψ is a diffeomorphism on T1M
isotopic to the identity, then

(2.14) AΨ∗Ω(γ) = AΩ(Ψ(γ)).

Zoll polynomial. The Zoll polynomial P : R → R is defined by

(2.15) P (A) = ⟨e, [M ]⟩
A2

2
+ ⟨c0, [M ]⟩A.

For (p, c) ∈ Z0
[Ω∞](T

1M), we choose any closed two-form ω on Mp with

[ω] = c and define the volume and the action of (p, c) by

(2.16) Vol(p, c) = Vol(p∗ω), A(p, c) = Ap∗ω(p
−1(pt)).

Note that since A(p∞, c0) = 0, there holds dP
dA (A(p∞, c0)) = ⟨c0, [M ]⟩. More

generally it is shown in [6, Proposition 6.18] that for any weakly Zoll pair
(p, c) ∈ Z0

[Ω∞](T
1M)

(2.17)
dP

dA
(A(p, c)) = ⟨c, [Mp]⟩.

The following result relates the action and the volume of a weakly Zoll
pair through the Zoll polynomial. It can be thought as the equality case of
the local systolic-diastolic inequality presented below.
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Theorem 2.10. [6, Theorem 1.16] There holds

P (A(p, c)) = Vol(p, c), ∀ (p, c) ∈ Z0
[Ω∞](T

1M).

When M = T
2, this is equivalent to A(p, c) = 0, ∀ (p, c) ∈ Z0

[Ω∞](T
1M).

The general inequality. Let Ω∗ be a Zoll form, which is associated with a
weakly Zoll pair (p1, c1) ∈ Z0

[Ω∞](T
1M). In our applications Ω∗ will be either

Ωf∗ for some Zoll function f∗ or Ω∞. We fix a finite open covering {Bi}
of M1 by balls so that all their pairwise intersections are contractible. Let
Λ(p1) be the space of curves γ ∈ Λh∞

(T1M) such that p1(γ) is contained in
some Bi. Abbreviating X (Ω; p1) := X (Ω) ∩ Λ(p1), we define

Amin(Ω) := inf
γ∈X (Ω;p1)

AΩ(γ), Amax(Ω) := sup
γ∈X (Ω;p1)

AΩ(γ).

By [13, Section III], if an odd-symplectic form Ω is such that Ω− Ω∗ is an
exact C1-close two-form, the set X (Ω) ∩ Λ(p1) is compact and non-empty.
Therefore, the numbers Amin(Ω) and Amax(Ω) are finite and they can be
shown to vary C1-continuously with Ω. We finally state the local systolic-
diastolic inequality for odd-symplectic forms.

Theorem 2.11. [6, Corollary 1.23] There exists a C2-neighbourhood U of
Ω∗ in the set of odd-symplectic forms on T1M with cohomology class [Ω∗]
such that

P (Amin(Ω)) ≤ Vol(Ω) ≤ P (Amax(Ω)), ∀Ω ∈ U .

Moreover the equality holds in any of the two inequalities exactly when Ω is
Zoll. When M = T

2, the inequality simplifies to

Amin(Ω) ≤ 0 ≤ Amax(Ω).

2.6. Volume and action of magnetic functions

Case M ̸= T
2. As observed in Section 2.1, the two-forms Ω∞ and Ωf ,

where f :M → R is any function, are exact. Explicit primitives are given by

α∞ :=
area(M)

χ(M)
(η + p∗∞ζ∞), αf := αcan +

area(M)

χ(M)
(favgη + p∗∞ζ),
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where ζ and ζ∞ are one-forms on M with differential

dζ∞ =
( χ(M)

area(M)
−
K

2π

)
µ, dζ =

( χ(M)

area(M)
f −

favg ·K

2π

)
µ.

We choose as reference weakly Zoll pair

(p∞, c0) = (p∞, 0) ∈ Z0
[Ω∞](T

1M).

From formula (2.15) and identity (1.2), we have the Zoll polynomial

(2.18) P (A) =
χ(M)

2
A2.

Let Ω be an exact two-form on T1M , and let α be an arbitrary primitive
one-form of Ω. In this case the volume of Ω is reduced to

Vol(Ω) =
1

2

∫

T1M
α ∧ Ω.

and the action of Ω is given by

AΩ(γ) =

∫

S1

γ∗α, ∀ γ ∈ Λh∞
(T1M).

Therefore, if α is a contact form, Vol(Ω) is (up to a sign given by the
orientation) half of the contact volume and AΩ is the contact action which
coincides with the period on Reeb orbits (see also [6, Remark 1.20])

We note that the volume is two-homogeneous while the action is one-
homogeneous. Namely,

(2.19) Vol(sΩ) = s2Vol(Ω), AsΩ = sAΩ, ∀ s ∈ R.

Lemma 2.12. If M ̸= T
2 and f :M → R is a function, we have

Vol(Ω∞) =
area(M)2

2χ(M)
, Vol(Ωf ) =

area(M)2

2χ(M)
Kf .

If γ0 : S
1 → T1M is an oriented fibre of p∞ and c ∈ Λ(M ; h∞), then

AΩ∞
(γ0) =

area(M)

χ(M)
, AΩf

(c, ċ) = ℓf (c) +
area(M) · favg

χ(M)
.
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Proof. We compute the volume of Ω∞ as

Vol(Ω∞) =
1

2

∫

T1M
α∞ ∧ Ω∞ =

area(M)

2χ(M)

∫

T1M
η ∧ p∗∞µ

=
area(M)

2χ(M)

∫

M
((p∞)∗η)µ =

area(M)2

2χ(M)
.

To determine the volume of Ωf , we perform first the preliminary computa-
tion

αf ∧ Ωf = αcan ∧ dαcan +
area(M)

χ(M)

(
favgη ∧ p∗∞(fµ) + p∗∞ζ ∧ dαcan

)
,

using the fact that X annihilates η ∧ dα and V annihilates α ∧ p∗∞(fµ).
Then

2Vol(Ωf ) =

∫

T1M
αf ∧ Ωf

=

∫

T1M
αcan ∧ dαcan

+
area(M)

χ(M)

[∫

T1M
favgη ∧ p∗∞(fµ) +

∫

T1M
p∗∞ζ ∧ dαcan

]

= 2π

∫

T1M
η ∧ p∗∞µ

+
area(M)

χ(M)

[
favg

∫

M
fµ+

∫

T1M
p∗∞(dζ) ∧ αcan

]

= 2π · area(M) +

(
area(M) · favg

)2

χ(M)

=
area(M)2

χ(M)
Kf ,

where we used (2.2) and the fact that V annihilates p∗∞(dζ) ∧ αcan.
Next we compute the actions. For the Ω∞-action of γ0 we find

AΩ∞
(γ0) =

∫

S1

γ∗0α∞ =
area(M)

χ(M)

(∫

S1

γ∗0(η + p∗∞ζ∞)

)
=

area(M)

χ(M)
.

To compute the Ωf -action of (c, ċ), let Γ : [0, 1]× S1 → T1M be a cylin-
der connecting an oriented p∞-fibre to (c, ċ) and recall the formula for the
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magnetic length (2.4). Using Stokes’ theorem we compute

AΩf
(c, ċ) =

∫

R/TZ

(c, ċ)∗αf =

∫

[0,1]×S1

Γ∗Ωf +

∫

S1

Γ(0, ·)∗αf

= ℓf (c) +
area(M) · favg

χ(M)
,

where in the last passage we used that
∫
S1 Γ(0, ·)

∗αcan = 0. □

Let f∗ :M → R be a Zoll function, whose magnetic geodesics lie in Λ(M ; h∞),
and let (pf∗ , [ωf∗ ]) be the weakly Zoll pair associated with the Zoll odd-
symplectic form Ωf∗ . Due to Proposition 1.3.(a), there holds

(2.20) (pf∗ , [ωf∗ ]) ∈ Z0
[Ω∞](T

1M).

Therefore, from (2.17) and Theorem 2.10, we have

(2.21) 0 < ⟨[ωf∗ ], [Mf∗ ]⟩ =
dP

dA
(A(Ωf∗)), P (A(Ωf∗)) = Vol(Ωf∗),

where A(Ωf∗) := A(pf∗ , [ωf∗ ]) and Vol(Ωf∗) := Vol(pf∗ , [ωf∗ ]) are the action
and the volume defined in (2.16). In our case, it reads

A(Ωf∗) =

∫

S1

(cf∗ , ċf∗)
∗αf∗ ,

where cf∗ is a prime closed f∗-magnetic geodesic.

Corollary 2.13. If f∗ :M → R is a Zoll function and M ̸= T
2, then

A(Ωf∗) =
⟨[ωf∗ ], [Mf∗ ]⟩

χ(M)
, Kf∗ =

(
χ(M)A(Ωf∗)

area(M)

)2

=

(
⟨[ωf∗ ], [Mf∗ ]⟩

area(M)

)2

.

In particular, A(Ωf∗) and Vol(Ωf∗) have the same sign as χ(M), and Kf∗

is positive.

Proof. From (2.18) we get dP
dA (A(Ωf∗)) = χ(M)A(Ωf∗), which together with

the first relation in (2.21) yields the statement about A(Ωf∗). Putting the
second relation in (2.21), equation (2.18), and Lemma 2.12 together, we have

χ(M)

2
A(Ωf∗)

2 = P (A(Ωf∗)) = Vol(Ωf∗) =
area(M)2

2χ(M)
Kf∗ .

This proves the rest of the corollary. □
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Case M = T
2. We work with the reference weakly Zoll pair

(p∞, c0) = (p∞, [µ]) ∈ Z0
[Ω∞](T

1
T
2),

so that Ω0 = p∗∞µ = Ω∞. This form is not exact by the discussion in Sec-
tion 2.1. Let f : T2 → R be an arbitrary function with favg > 0, so that

ℓ̄(f) =
π

favg
> 0.

We consider the normalised form

Ω̄f :=
1

favg
Ωf

so that Ω̄f and Ω∞ are cohomologous. More precisely,

Ω̄f = Ω∞ + d
(

1
favg

αf

)
, αf := αcan + p∗∞ζ − ℓ̄(f)dϕ,

where ζ is a one-form on T
2 is such that dζ = (f − favg)µ and ϕ : T1

T
2 → S1

is a global angular function for the bundle p∞, namely dϕ(V ) ≡ 1. As we see
in the next lemma, the term −ℓ̄(f)dϕ is added in order to normalise 1

favg
αf .

Lemma 2.14. Let f : T2 → R be a function with favg > 0. Then the one-
form 1

favg
αf is normalised, i.e. Vol( 1

favg
αf ) = 0.

Proof. Using (2.2), we compute

(favg)
2Vol( 1

favg
αf ) = favg

∫

T1T2

αf ∧
(
Ω∞ +

1

2
d
(

1
favg

αf

))

=

∫

T1T2

(
αcan + p∗∞ζ − ℓ̄(f)dϕ

)

∧
(
favg p

∗
∞µ+

1

2

(
dαcan + p∗∞(dζ)

))

=
1

2

∫

T1T2

αcan ∧ dαcan − ℓ̄(f)favg · area(T
2)

= π

∫

T1T2

η ∧ p∗∞µ− π · area(T2)

= 0.

□



✐

✐

“3-Kang” — 2022/10/12 — 18:43 — page 125 — #27
✐

✐

✐

✐

✐

✐

On a systolic inequality for closed magnetic geodesics 125

By Lemma 2.14, we can use the one-form 1
favg

αf to compute the Ω̄f -action
of loops:

(2.22) AΩ̄f
(γ) =

1

favg

∫

S1

Γ(0, ·)∗αf +
1

favg

∫

[0,1]×S1

Γ∗Ωf ,

where Γ : [0, 1]× S1 → T1
T
2 is a homotopy between an oriented p∞-fibre

and γ ∈ Λh∞
(T1

T
2).

Lemma 2.15. Let f : T2 → R be a function with favg > 0. There holds

AΩ̄f
(c, ċ) =

1

favg

(
ℓf (c)− ℓ̄(f)

)
, ∀ c ∈ Λ(T2; h∞).

Proof. The claim follows from substituting identity (2.4) in (2.22) and the
computation

∫

S1

Γ(0, ·)∗αf =

∫

S1

Γ(0, ·)∗
(
α+ p∗∞ζ − ℓ̄(f)dϕ

)
= −ℓ̄(f).

□

Finally, we observe that if f∗ : T2 → R is a Zoll function whose magnetic
geodesics lie in Λ(T2; h∞), then, by Proposition 1.3.(b), we have

(2.23) (f∗)avg > 0

and, setting ω̄f∗ := 1
favg

ωf∗ , we see that (pf∗ , [ω̄f∗ ]) is the weakly Zoll pair

associated with the Zoll odd-symplectic form Ω̄f∗ . By Proposition 1.3.(a),
there holds

(2.24) (pf∗ , [ω̄f∗ ]) ∈ Z0
[Ω∞](T

1
T
2).

3. The proof of the magnetic systolic-diastolic inequality

3.1. The inequality in a neighbourhood of a Zoll function

In this subsection we give a proof of Theorem 1.9, which states that the
magnetic systolic-diastolic inequality holds in a C2-neighbourhood F of a
Zoll function f∗ :M → R. As before we deal with the cases M ̸= T

2 and
M = T

2 separately.
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Proof of Theorem 1.9 for M ̸= T
2. In view of (2.20) and Theorem 2.11,

there exist a C1-neighbourhood W of the set Λ(f∗; h∞) in Λ(M ; h∞) and a
C2-neighbourhood F of the function f∗ in C∞(M) such that

Amin(Ωf ) = min
c∈W∩Λ(f ;h∞)

c prime

AΩf
(c, ċ), Amax(Ωf ) = max

c∈W∩Λ(f ;h∞)
c prime

AΩf
(c, ċ).

and

(3.1) P (Amin(Ωf )) ≤ Vol(Ωf ) ≤ P (Amax(Ωf )), ∀ f ∈ F

with equality signs if and only if Ωf is Zoll. Since Amin(Ωf ) and Amax(Ωf )
vary continuously in f ∈ F , shrinking F if necessary, we deduce from Corol-
lary 2.13 that for all f ∈ F :

(3.2) Kf > 0, sign
(
Amin(Ωf )

)
= sign

(
χ(M)

)
= sign

(
Amax(Ωf )

)
.

We show that the magnetic systolic-diastolic inequality holds on F .
Let f :M → R be a function in F . According to Lemma 2.12 and equa-
tion (2.18), formula (3.1) becomes

χ(M)
Amin(Ωf )

2

2
≤

area(M)2

2χ(M)
Kf ≤ χ(M)

Amax(Ωf )
2

2
.

The identities in (3.2) simplify this inequality to

Amin(Ωf ) ≤
area(M)

χ(M)

√
Kf ≤ Amax(Ωf ).

The formula for the action in Lemma 2.12 and the definition of ℓmin(f),
ℓmax(f) yield

Amin(Ωf ) ≥ ℓmin(f) +
area(M) · favg

χ(M)
,

Amax(Ωf ) ≤ ℓmax(f) +
area(M) · favg

χ(M)
,

where the equalities hold when f is Zoll. Combining the inequalities above,
we get

ℓmin(f) ≤
area(M)

χ(M)

(√
Kf − favg

)
≤ ℓmax(f),
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and using the definition of the average curvature, we rewrite the term in the
middle as

area(M)

χ(M)

(√
Kf − favg

)
=

area(M)

χ(M)

Kf − (favg)
2

√
Kf + favg

=
2π√

Kf + favg
= ℓ̄(f).

This shows the magnetic systolic-diastolic inequality ℓmin(f) ≤ ℓ̄(f) ≤
ℓmax(f). Moreover, if f is Zoll, we actually have equalities. Conversely, if
one of the two inequalities is an equality, we also have an equality in (3.1).
This implies that Ωf , and thus f , is Zoll. □

Proof of Theorem 1.9 for M = T
2. Thanks to (2.23), (2.24) and Theo-

rem 2.11, there exists a C1-neighbourhood W of Λ(f∗; h∞) inside Λ(T2; h∞)
and a C2-neighbourhood F of f∗ in C∞(T2) with the following properties.
If f ∈ F , then favg > 0 and

(3.3) Amin(Ω̄f ) ≤ 0 ≤ Amax(Ω̄f ), ∀ f ∈ F ,

where any of the two equalities holds if and only if Ω̄f is Zoll. Since Ωf and
Ω̄f have the same closed characteristics, we have

Amin(Ω̄f ) := min
c∈W∩Λ(f ;h∞)

c prime

AΩ̄f
(c, ċ), Amax(Ω̄f ) := max

c∈W∩Λ(f ;h∞)
c prime

AΩ̄f
(c, ċ).

From the definition of ℓmin(f) and ℓmax(f) and Lemma 2.15, we get

Amin(Ω̄f ) ≥
1

favg

(
ℓmin(f)− ℓ̄(f)

)
, Amax(Ω̄f ) ≤

1

favg

(
ℓmax(f)− ℓ̄(f)

)

where any of the two equalities holds, if f is Zoll. Plugging these relations
into (3.3), and using that favg is positive, we derive the desired inequality:

ℓmin(f) ≤ ℓ̄(f) ≤ ℓmax(f),

If any of the equalities holds, then there is an equality also in (3.3) and f is
Zoll. The converse is also readily seen to be true. □

3.2. The inequality for strong magnetic functions

In this subsection we prove Theorem 1.11, which states that the mag-
netic systolic-diastolic inequality holds for Cg-strong functions (see Defi-
nition 1.10), where Cg > 0 is a constant depending only on g that we will
determine.
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Proof of Theorem 1.11 for M ̸= T
2. By Theorem 2.11, there ex-

ists a C0-neighbourhood Λ(p∞) ⊂ Λh∞
(T1M) of the p∞-fibres and a C2-

neighbourhood U of Ω∞ in the space of exact odd-symplectic forms on T1M
such that

(3.4) P (Amin(Ω)) ≤ Vol(Ω) ≤ P (Amax(Ω)), ∀Ω ∈ U

with equality signs if and only if Ω is Zoll. Here, Amin(Ω) and Amax(Ω) are
the minimal and maximal action among the closed characteristics in the set
X (Ω; p∞). Since AΩ∞

(γ0) and χ(M) have the same sign by Lemma 2.12,
and Amin, Amax vary continuously in U , we have, up to shrinking U ,

sign(Amin(Ω)) = sign(χ(M)) = sign(Amax(Ω)), ∀Ω ∈ U .

In particular, from (3.4) and the formula for P , we also have

(3.5) sign(Vol(Ω)) = sign(χ(M)).

We prove the theorem with Cg := CU , the constant given by Lemma 2.9.
Let us consider a Cg-strong function f :M → (0,∞), and let Ψ : T1M →
T1M be a diffeomorphism isotopic to the identity such that 1

favg
Ψ∗Ωf ∈ U ,

whose existence is ensured by Lemma 2.9. From the homogeneity (2.19) of
the volume and its invariance property (2.13), we have

Vol
(

1
favg

Ψ∗Ωf

)
=

(
1

favg

)2
Vol(Ωf ).

From the formula for the volume in Lemma 2.12 and the relation (3.5), we
see that Kf > 0. Using the homogeneity of the action and formula (2.18) for
P , we can rewrite (3.4) as

Amin(Ψ
∗Ωf ) ≤

area(M)

χ(M)

√
Kf ≤ Amax(Ψ

∗Ωf ).

Since Ψ is isotopic to idT1M , we also see that

cγ := p∞(Ψ(γ)) ∈ Λ(f ; h∞), ∀ γ ∈ X (Ψ∗Ωf ; p∞).

From Lemma 2.12 and the invariance property (2.14), we conclude that

AΨ∗Ωf
(γ) = AΩf

(cγ , ċγ) = ℓf (cγ) +
area(M) · favg

χ(M)
, ∀ γ ∈ X (Ψ∗Ωf ; p∞).
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From the definition of ℓmin(f) and ℓmax(f), we have

ℓmin(f) +
area(M) · favg

χ(M)
≤ Amin(Ψ

∗Ωf ),

Amax(Ψ
∗Ωf ) ≤ ℓmax(f) +

area(M) · favg
χ(M)

and equalities hold if f is Zoll. The rest of the proof goes along the same
line as in the proof of Theorem 1.9 for M ̸= T

2 in Section 3.1 above. □

Proof of Theorem 1.11 for M = T
2. Theorem 2.11 yields a C0-

neighbourhood Λ(p∞) of the p∞-fibres and a C2-neighbourhood U of Ω∞ in
the space of odd-symplectic forms cohomologous to Ω∞ such that

(3.6) Amin(Ω) ≤ 0 ≤ Amax(Ω), ∀Ω ∈ U ,

and any of the equalities holds if and only if Ω is Zoll. We prove the theorem
with Cg := CU , the constant in Lemma 2.9. Let f : T2 → (0,∞) be a Cg-
strong function. In particular we have favg > 0. Let Ψ be the diffeomorphism
isotopic to the identity constructed in Lemma 2.9 with the property that
Ψ∗Ω̄f ∈ U . Since Ψ is isotopic to the identity, we see that cγ := p∞(Ψ(γ)) ∈
Λ(f ; h∞) for all γ ∈ X (Ψ∗Ω̄f ; p∞). From (2.14) and Lemma 2.15, we get

AΨ∗Ω̄f
(γ) = AΩ̄f

(cγ , ċγ) =
1

favg
(ℓf (cγ)− ℓ̄(f)), ∀ γ ∈ X (Ψ∗Ω̄f ; p∞).

This relation together with (3.6) yields

ℓmin(f)− ℓ̄(f) ≤ favg · Amin(Ψ
∗Ω̄f ) ≤ 0

≤ favg · Amax(Ψ
∗Ω̄f ) ≤ ℓmax(f)− ℓ̄(f)

which in turn implies

ℓmin(f) ≤ ℓ̄(f) ≤ ℓmax(f).

If f is Zoll, the equalities hold. Conversely if ℓmin(f) or ℓmax(f) are equal
to ℓ̄(f), then there is an equality also in (3.6), which yields that Ψ∗Ω̄f , and
hence f , is Zoll. □
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Appendix A. C
k-estimate on the time-one map of a flow

For h, k ∈ N, we define the polynomial

Bh,k : Rk+1 → R, Bh,k(x) =
∑

a∈Ih,k

xa,

where x = (x0, · · · , xk), x
a := xa0

0 · . . . · xak

k , and Ih,k is the following set of
multi-indices

Ih,k :=
{
a = (a0, · · · , ak) ∈ N

k+1
∣∣∣ 0 <

k∑

j=0

(j + 1)aj ≤ h+ k
}
.

If Ψ : M1 → M2 is a map between two Riemannian manifolds, we use the
short-hand

Bh,k

(
∥dΨ∥

)
:= Bh,k

(
∥dΨ∥C0 , · · · , ∥dΨ∥Ck

)
.

A straightforward computation shows that there is a constant Ck > 0 (de-
pending only on M1 and M2) such that for an h-form η on M2,

(A.1) ∥Ψ∗η∥Ck ≤ CkBh,k(∥dΨ∥)∥η∥Ck .

Let Ψ = Φ1 be the time-one map of the flow of a (time-dependent)
vector field. Then using Gronwall’s Lemma inductively, one can estimate
Bh,k(∥dΦ1∥) in terms of the vector field. Here, we give only the bound for
(h, k) = (2, 2) which is what is needed in Lemma 2.9.

Lemma A.1. For every compact manifold M, there exists a constant Ck >
0 with the following property. For every time-dependent vector field X =
{Xs}s∈[0,1] on M such that the corresponding flow {Φs} is defined up to
time 1, there holds

B2,2

(
∥dΦ1∥

)
≤

(
⟨∇X⟩C2 + ⟨∇X⟩2C1

)
eC⟨∇X⟩C0 ,

where we have set ⟨∇X⟩Ck := 1 + max
s∈[0,1]

∥∇Xs∥Ck , ∀ k ∈ N.

Proof. We preliminarily observe that if V is a finite-dimensional vector space
endowed with a norm coming from a scalar product, then for every s 7→
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v(s) ∈ V , there holds

d|v|

ds
≤

∣∣∣dv
ds

∣∣∣.

By the compactness of M, we just need to prove the lemma in local coordi-
nates. Recalling that ∂sΦs = Xs ◦ Φs by definition, we compute

∂s
∣∣dΦs

∣∣ ≤
∣∣d(Xs ◦ Φs)

∣∣ ≤
∣∣∇Xs

∣∣ ·
∣∣dΦs

∣∣,
∂s
∣∣∇dΦs

∣∣ ≤
∣∣∣∇

((
∇dΦs

Xs

)
Φs

)∣∣∣ ≤
∣∣∇2Xs

∣∣ ·
∣∣dΦs

∣∣2 +
∣∣∇Xs

∣∣ ·
∣∣∇dΦs

∣∣,

∂s
∣∣∇2dΦs

∣∣ ≤
∣∣∣∇

((
∇dΦs

∇dΦs
Xs

)
Φs

+
(
∇∇dΦs

Xs

)
Φs

)∣∣∣

≤
∣∣∇3Xs

∣∣ ·
∣∣dΦs

∣∣3 + 3
∣∣∇2Xs

∣∣ ·
∣∣∇dΦs

∣∣ ·
∣∣dΦs

∣∣+
∣∣∇Xs

∣∣ ·
∣∣∇2dΦs

∣∣.

We now apply Gronwall’s Lemma [16] and indicate with C > 0 a constant
depending on M but not on X. Below, we can always bring the constant to
the exponent because, by definition, ⟨∇X⟩C0 ≥ 1. Thus we find that

∥max
s

dΦs∥ ≤ eC⟨∇X⟩C0 ,

∥max
s

∇dΦs∥ ≤ ⟨∇X⟩C1∥max
s

dΦs∥
2
C0eC⟨∇X⟩C0 ≤ ⟨∇X⟩C1eC⟨∇X⟩C0 ,

∥max
s

∇2dΦs∥ ≤
(
⟨∇X⟩C2∥max

s
dΦs∥

3
C0

+ ⟨∇X⟩C1∥max
s

∇dΦs∥C0∥max
s

dΦs∥C0

)
eC⟨∇X⟩C0

≤
(
⟨∇X⟩C2 + ⟨∇X⟩2C1

)
eC⟨∇X⟩C0 .

Finally, from the definition of B2,2, we get

B2,2

(
∥dΦ1∥

)
≤

[ ∑

a1+2a2+3a3≤4

⟨∇X⟩a2

C1

(
⟨∇X⟩C2 + ⟨∇X⟩2C1

)a3

]
eC⟨∇X⟩C0

≤
(
⟨∇X⟩C2 + ⟨∇X⟩2C1

)
eC⟨∇X⟩C0 .

□
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