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Let g be a complex semisimple Lie algebra with adjoint group
G. An sl2-triple τ = (ξ, h, η) ∈ g⊕3 and a Poisson Hamiltonian G-
variety X together yield a distinguished Poisson transversal Xτ :=
ν−1(Sτ ), where ν : X −→ g is the moment map and Sτ := ξ + gη
is the Slodowy slice associated to τ . We refer to Xτ as the Pois-
son slice determined by X and τ . Prominent examples include the
universal centralizer Zτ

g
and hyperkähler slice G× Sτ . These have

natural log symplectic completions Zτ
g

and G× Sτ arising from

the wonderful compactification G. The variety Zτ
g
partially com-

pactifies Zτ

g
, while G× Sτ partially compactifies G× Sτ if τ is a

principal sl2-triple.
Our paper develops a theory of Poisson slices and a uniform ap-

proach to their partial compactifications. The theory in question
is loosely comparable to that of symplectic cross-sections in real
symplectic geometry. To address the partial compactification as-
pect, we associate to each Hamiltonian G-varietyX and sl2-triple τ
the Hamiltonian reduction Xτ := (X × (G× Sτ )) �G. Assuming
that Xτ exists as a geometric quotient, we establish its Poisson-
geometric features. We also show Xτ to have an open log symplec-
tic stratum if X is symplectic and Xτ is irreducible. If τ is a princi-
pal sl2-triple and the geometric quotient X/G exists, we realize Xτ

as a partial compactification of Xτ over X/G. Our constructions
specialize to yield Zτ

g
and G× Sτ as partial compactifications of

Zτ

g
and G× Sτ , respectively.
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1. Introduction

1.1. Motivation and context

The Poisson slice construction yields a number of varieties relevant to ge-
ometric representation theory and symplectic geometry. One begins with a
complex semisimple linear algebraic group with Lie algebra g. Let us also
consider a Hamiltonian G-variety X, i.e. a smooth Poisson variety with
a Hamiltonian action of G and moment map ν : X −→ g. Each sl2-triple
τ = (ξ, h, η) ∈ g⊕3 determines a Slodowy slice

Sτ := ξ + gη ⊆ g,

and the preimage

Xτ := ν−1(Sτ )

is a Poisson transversal in X. The variety Xτ is thereby Poisson, and we
call it the Poisson slice determined by X and τ . To a certain extent, Pois-
son slices are complex Poisson-geometric counterparts of symplectic cross-
sections [26, 27, 30, 37] in real symplectic geometry.

Noteworthy examples of Poisson slices include the product G× Sτ , a
hyperkähler and Hamiltonian G-variety studied by Bielawski [5, 6], Moore–
Tachikawa [40], and several others [1, 11, 13–15]. A second example is a
Coulomb branch [7] called the universal centralizer

Zτ
g
:= {(g, y) ∈ G× Sτ : Adg(y) = y},

where τ is a fixed principal sl2-triple in g. This hyperkähler variety has
received considerable attention in the literature [4, 7, 12, 39, 49, 53, 54],
and it features prominently in Bălibanu’s recent paper [2]. Bălibanu as-
sumes G to be of adjoint type. She harnesses the geometry of the wonderful
compactification G and constructs a fibrewise compactification Zτ

g
−→ Sτ

of Zτ
g
−→ Sτ , where the latter map is projection onto the Sτ -factor. She

subsequently endows Zτ
g
with a log symplectic structure.

The preceding discussion gives rise to the following rough questions.
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• Is there a coherent and systematic approach to the partial compacti-
fication of Poisson slices that is related to G and specializes to yield
Zτ

g
−→ Sτ as a fibrewise compactification of Zτ

g
−→ Sτ?

• If the previous question has an affirmative answer and Xτ is sym-
plectic, does the partial compactification of Xτ carry a log symplectic
structure?

Our inquiry stands to benefit from two observations. One first notes the
universal or atomic nature of G× Sτ as a Poisson slice, i.e. the existence of
a canonical Poisson variety isomorphism

Xτ
∼= (X × (G× Sτ )) �G

for each Hamiltonian G-varietyX and sl2-triple τ in g. These atomic Poisson
slices have counterparts in the theories of symplectic cross-sections [30],
symplectic implosion [26], symplectic contraction [33], hyperkähler implosion
[16, 17], and Kronheimer’s hyperkähler quotient with momentum [36]. A
second observation is thatG× Sτ sits inside of a larger log symplectic variety
G× Sτ as the unique open dense symplectic leaf; the construction of G× Sτ
assumes G to be of adjoint type and exploits the geometry of G.

The preceding considerations motivate us to define

Xτ := (X × (G× Sτ )) �G

and conjecture that Xτ is the desired partial compactification of Xτ . While
this naive conjecture needs to be refined and made more precise, it inspires
many of the results in our paper.

1.2. Summary of results

Our paper develops a detailed theory of Poisson slices and addresses the
questions posed above. The following is a summary of our results. We work
exclusively over C and take all Poisson varieties to be smooth. We use the
Killing form to freely identify g∗ with g, as well as the left trivialization and
Killing form to freely identify T ∗G with G× g.

Suppose that X is a Poisson Hamiltonian G-variety with moment map
ν : X −→ g. Let τ be an sl2-triple in g and consider the Poisson transversal

Xτ := ν−1(Sτ ) ⊆ X.
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The following are some first properties of the Poisson slice Xτ . Such prop-
erties are well-known in the case of a symplectic variety X (see [5]).

Proposition 1.1. Let X be a Poisson variety endowed with a Hamiltonian
G-action and moment map ν : X −→ g. Suppose that τ = (ξ, h, η) is an sl2-
triple in g. The following statements hold.

(i) The Poisson slice Xτ is transverse to the G-orbits in X.

(ii) There are canonical Poisson variety isomorphisms

(X × (G× Sτ )) �G ∼= Xτ
∼= X �ξ Uτ .

The Hamiltonian G-variety structure on G× Sτ and meaning of the
unipotent subgroup Uτ ⊆ G are given in Subsection 3.2.

We also consider some special cases of the Poisson slice construction,
including the following well-known result in the symplectic category.

Observation 1.2. Let X be a symplectic variety endowed with a Hamil-
tonian action of G and a moment map ν : X −→ g. Suppose that τ is an
sl2-triple in g. The Poisson structure on Xτ makes it a symplectic subvariety
of X.

Now suppose that the above-mentioned Poisson variety X is log symplec-
tic [22, 24, 45, 48], by which the following is meant: X has a unique open
dense symplectic leaf, and the degeneracy locus of the Poisson bivector is a
reduced normal crossing divisor. We establish the following log symplectic
counterpart of Observation 1.2.

Proposition 1.3. Let X be a log symplectic variety endowed with a Hamil-
tonian G-action and moment map ν : X −→ g. Suppose that τ is any sl2-
triple in g. Each irreducible component of Xτ is then a Poisson subvariety
of Xτ . The resulting Poisson structure on each component makes the com-
ponent a log symplectic subvariety of X.

Now assume G to be of adjoint type. One may consider the De Concini–
Procesi wonderful compactification G of G [18], along with the divisor D :=
G \G. The data (G,D) determine a log cotangent bundle T ∗G(log(D)),
which is known to have a canonical log symplectic structure. Its unique open
dense symplectic leaf is T ∗G, and the canonical Hamiltonian (G×G)-action
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on T ∗G extends to such an action on T ∗G(log(D)). The moment maps

ρ = (ρL, ρR) : T
∗G −→ g⊕ g and ρ = (ρL, ρR) : T

∗G(log(D)) −→ g⊕ g

can be written in explicit terms. This leads to the following straightforward
observations, whose proofs use Observation 1.2 and Proposition 1.3. To this
end, recall that a principal sl2-triple is an sl2-triple consisting of regular
elements.

Observation 1.4. Let τ = (ξ, h, η) be a principal sl2-triple in g, and con-
sider the principal sl2-triple (τ, τ) := ((ξ, ξ), (h, h), (η, η)) in g⊕ g. One then
has

(T ∗G)(τ,τ) = ρ−1(Sτ × Sτ ) = Z
τ
g
,

and (T ∗G(logD))(τ,τ) = ρ−1(Sτ × Sτ ) = Zτ
g
.

The first Poisson slice is symplectic, while the second is log symplectic.

Observation 1.5. Consider the Hamiltonian action of G = {e} ×G ⊆ G×
G on T ∗G. If τ is an sl2-triple in g, then

(T ∗G)τ = ρ−1
R (Sτ ) = G× Sτ .

This Poisson slice is symplectic.

In light of these observations, it is natural to consider the Poisson slice

G× Sτ := ρ−1
R (Sτ ) ⊆ T

∗G(logD).

One has an inclusionG× Sτ ⊆ G× Sτ , whileG× Sτ andG× Sτ carry resid-
ual Hamiltonian actions of G = G× {e} ⊆ G×G. The respective moment
maps are

ρτ := ρL
∣

∣

G×Sτ
and ρτ := ρL

∣

∣

G×Sτ
,

and they feature in the following result.

Theorem 1.6. Let τ be an sl2-triple in g.

(i) The Poisson slice G× Sτ is irreducible and log symplectic.

(ii) The inclusion G× Sτ −→ G× Sτ is a G-equivariant symplectomor-
phism onto the unique open dense symplectic leaf in G× Sτ .
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(iii) The diagram

(1.1)

G× Sτ G× Sτ

g
ρτ ρτ

commutes.

(iv) If τ is a principal sl2-triple, then (1.1) realizes ρτ as a fibrewise com-
pactification of ρτ .

Our paper subsequently discusses the relation of (1.1) to Bălibanu’s
fibrewise compactification

(1.2)

Zτ
g

Zτ
g

Sτ

.

We next study Hamiltonian reductions of the form

Xτ := (X × (G× Sτ )) �G,

where X is a Hamiltonian G-variety and τ is an sl2-triple in g. The special
case τ = 0 features prominently in our analysis, and we write X for Xτ if
τ = 0. This amounts to setting

X := (X × T ∗G(logD)) �G,

with G acting as G = G× {e} ⊆ G×G on T ∗G(logD).
The variety Xτ enjoys certain Poisson-geometric features. A first step

in this direction is to set

X
◦

τ := (X × (G× Sτ ))
◦ �G,

where (X ×G× Sτ )
◦ is the open set of points in (X × (G× Sτ ))

◦ with triv-
ial G-stabilizers. The variety X

◦

τ exists as a geometric quotient if Xτ exists
as a geometric quotient, in which case one has inclusions

Xτ ⊆ X
◦

τ ⊆ Xτ
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Theorem 1.7. Let X be a Hamiltonian G-variety, and suppose that τ is
an sl2-triple in g. Assume that Xτ exists as a geometric quotient.

(i) The coordinate ring C[Xτ ] carries a natural Poisson bracket for which
restriction C[Xτ ] −→ C[Xτ ] is a Poisson algebra morphism.

(ii) The variety X
◦

τ is smooth and Poisson, and it contains Xτ as an open
Poisson subvariety.

(iii) If X is symplectic, then each irreducible component of X
◦

τ is log sym-
plectic.

(iv) If X is symplectic and Xτ is irreducible, then Xτ is the open dense
symplectic leaf in a unique irreducible component of X

◦

τ .

Our final main result addresses the extent to which Xτ partially com-
pactifies Xτ . We begin by assuming that both Xτ and X/G exist as geo-
metric quotients. This allows us to construct canonical maps

πτ : Xτ −→ X/G and πτ : Xτ −→ X/G.

It is then straightforward to deduce that

(1.3)

Xτ Xτ

X/G

πτ πτ

commutes, where the horizontal arrow is inclusion. This leads to the follow-
ing theorem.

Theorem 1.8. Let X be a Hamiltonian G-variety, and suppose that τ is a
principal sl2-triple in g. If Xτ and X/G exist as geometric quotients, then
(4.10) realizes πτ as a fibrewise compactification of πτ .

In the case of a principal sl2-triple τ , we realize the fibrewise compacti-
fications (1.1) and (1.2) as special instances of Theorem 1.8.

1.3. Organization

In Section 2, we introduce the concepts from Lie theory and Poisson geom-
etry that form the foundation for our work. Section 3 details the theory of
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Poisson slices and provides complete proofs of Propositions 1.1 and 1.3. Sec-
tion 4 subsequently considers the Poisson slice enlargements Xτ mentioned
above, and it contains the proofs of Theorems 1.6, 1.7 and 1.8. This sec-
tion concludes with a few illustrative examples. A list of recurring notation
appears after Section 4.
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2. Preliminaries

This section provides some of the notation, conventions, and basic results
used throughout our paper.

2.1. Fundamental conventions

We work exclusively over C and understand all group actions as being left
group actions. We also write OX for the structure sheaf of an algebraic
variety X, as well as C[X] for the coordinate ring OX(X). The dimension
of X is understood to be the supremum of the dimensions of the irreducible
components. We understand X to be smooth if dim(TxX) = dim(X) for
all x ∈ X. Note that this convention forces a smooth variety to be pure-
dimensional.

2.2. Quotients of K-varieties

Let K be a linear algebraic group. We adopt the term K-variety in reference
to a variety X endowed with an algebraic K-action.

Definition 2.1. Suppose that X is a K-variety. A variety morphism π :
X −→ Y is called a categorical quotient of X if the following conditions are
satisfied:

(i) π is K-invariant;
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(ii) if θ : X −→ Z is a K-invariant variety morphism, then there exists a
unique morphism φ : Y −→ Z for which

X

Y Z

π θ

ϕ

commutes.

Definition 2.2. Suppose that X is a K-variety. A variety morphism π :
X −→ Y is called a good quotient of X if the following conditions are satis-
fied:

(i) π is surjective, affine, and K-invariant;

(ii) if U ⊆ Y is open, then the comorphism π∗ : OY (U) −→ OX(π−1(U))
is an isomorphism onto OX(π−1(U))K ;

(iii) if Z ⊆ X is closed and K-invariant, then π(Z) is closed in Y ;

(iv) if Z1, Z2 ⊆ X are closed, K-invariant, and disjoint, then π(Z1) and
π(Z2) are disjoint.

One calls π : X −→ Y a geometric quotient of X if π is a good quotient and
π−1(y) is a K-orbit for each y ∈ Y .

Remark 2.3. A good quotient is necessarily categorical, e.g. by [50, Lemma
1.4.1.1].

Let X be a K-variety admitting a geometric quotient π : X −→ Y , and
write X/K for the set of K-orbits in X. One then has a canonical bijec-
tion Y ∼= X/K, through which X/K inherits a variety structure. Any two
geometric quotients π : X −→ Y and π′ : X −→ Y ′ induce the same variety
structure on X/K, and this structure makes the set-theoretic quotient map
X −→ X/K a geometric quotient. With this in mind, we shall sometimes
write “X/K exists” or “the geometric quotient X −→ X/K exists” to mean
that X admits a geometric quotient.

We will need the following algebro-geometric notion of a principal bundle
appearing in [8, Definition 2.3.1].

Definition 2.4. Suppose that X is aK-variety. AK-invariant variety mor-
phism π : X −→ Y is called a principal K-bundle if the following conditions
hold:
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(i) π is faithfully flat, i.e. flat and surjective;

(ii) the natural map

σ : K ×X −→ X ×Y X, σ(k, x) = (x, k · x)

is an isomorphism.

A principal K-bundle is necessarily a geometric quotient (e.g. by [8,
Proposition 2.3.3]). We understand “X is a principal K-bundle” as meaning
thatX admits a geometric quotient π : X −→ X/K, and that π is a principal
K-bundle.

2.3. Poisson varieties

Let X be a smooth variety. Suppose that P is a global section of Λ2(TX),
and consider the bracket operation defined by

{f1, f2} := P (df1 ∧ df2) ∈ OX

for all f1, f2 ∈ OX . One calls P a Poisson bivector if this bracket renders OX

a sheaf of Poisson algebras. We use the term Poisson variety in reference to
a smooth variety X equipped with a Poisson bivector P . In this case, {·, ·}
is called the Poisson bracket. Let us also recall that a variety morphism
ϕ : X1 −→ X2 between Poisson varieties (X1, P1) and (X2, P2) is called a
Poisson morphism if

dϕ(P1(ϕ
∗α)) = P2(α)

for all one-forms α defined on any open subset of X2. Our convention is to
have (X1 ×X2, P1 ⊕ (−P2)) be the Poisson variety product of (X1, P1) and
(X2, P2).

Let (X,P ) be a Poisson variety. Contracting the bivector with cotangent
vectors allows one to view P as a bundle morphism

P : T ∗X −→ TX,

whose image is a holomorphic distribution on X. One refers to the maximal
integral submanifolds of this distribution as the symplectic leaves of X. The
symplectic form ωL on a symplectic leaf L ⊆ X is constructed as follows. One



✐

✐

“4-Crooks” — 2022/10/10 — 18:25 — page 145 — #11
✐

✐

✐

✐

✐

✐

The log symplectic geometry of Poisson slices 145

defines the Hamiltonian vector field of a locally defined function f ∈ OX by

(2.1) Hf := −P (df).

This gives rise to the tangent space description

TxL = {(Hf )x : f ∈ OX}

for all x ∈ L, and one has

(ωL)x((Hf1)x, (Hf2)x) = {f1, f2}(x)

for all x ∈ L and f1, f2 ∈ OX defined near x.
We conclude by discussing log symplectic varieties, which have received

considerable attention in recent years (e.g. [2, 10, 22–25, 28, 29, 31, 41, 42,
45, 47, 48]). To this end, one calls a Poisson variety (X,P ) log symplectic if
the following conditions hold:

(i) (X,P ) has a unique open dense symplectic leaf X0 ⊆ X;

(ii) the vanishing locus of Pn is a reduced normal crossing divisor D ⊆ X,
where 2n = dim(X0) and Pn ∈ H0(X,Λ2n(TX)) is the top exterior
power of P .

In this case, we call D the divisor of (X,P ). One immediate observation is
that D = X \X0.

Remark 2.5. Since symplectic leaves are connected, Condition (i) implies
that log symplectic varieties are irreducible.

2.4. Hamiltonian reduction

We now review the salient aspects of Hamiltonian actions in the Poisson
category. To this end, let K be a linear algebraic group with Lie algebra
k. Let (X,P ) be a Poisson variety, and assume that X is also a K-variety.
Each y ∈ k then determines a fundamental vector field Vy on X via

(Vy)x =
d

dt

∣

∣

∣

∣

t=0

(exp(ty) · x) ∈ TxX
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for all x ∈ X. The K-action on X is called Hamiltonian if P is K-invariant
and there exists a K-equivariant morphism ν : X −→ k∗ satisfying the fol-
lowing condition:

(2.2) Hνy = −Vy

for all y ∈ k, where νy ∈ C[X] is defined by

(2.3) νy(x) = ν(x)(y), x ∈ X.

One then refers to ν as a moment map and calls (X,P, ν) a Hamiltonian
K-variety. The moment map ν is known to be a Poisson morphism with
respect to the Lie–Poisson structure on k∗ (e.g. [9, Proposition 7.1]).

We now briefly recall the process of Hamiltonian reduction for a Hamil-
tonian K-variety (X,P, ν). One begins by observing that ν−1(0) is a K-
invariant closed subvariety of X. Let us assume X �K exists, by which we
mean that the geometric quotient

(2.4) π : ν−1(0) −→ ν−1(0)/K

exists. Write

X �K := ν−1(0)/K,

and note that the comorphism π∗ : C[X �K] −→ C[ν−1(0)] induces an al-
gebra isomorphism

(2.5) C[X �K]
∼=
−→ C[ν−1(0)]K .

At the same time, the canonical surjection C[X] −→ C[ν−1(0)] restricts to
a surjection

(2.6) C[X]K −→ C[ν−1(0)]K

if K is connected and reductive. One also knows that C[X]K is a Poisson
subalgebra of C[X], and that the kernel of (2.6) is a Poisson ideal I ⊆
C[X]K . It follows that C[ν−1(0)]K inherits the structure of a Poisson algebra.
One may therefore endow C[X �K] with the unique Poisson bracket for
which (2.5) is an isomorphism of Poisson algebras. We refer to the data of
the variety X �K and the Poisson algebra C[X �K] as the Hamiltonian
reduction of (X,P, ν) if (2.4) exists and K is connected and reductive.

The Hamiltonian reduction process will yield a richer geometric object in
the presence of certain assumptions about the K-action on X. To this end,
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letK be a linear algebraic group and suppose that (X,P, ν) is a Hamiltonian
K-variety. Assume that the geometric quotient (2.4) exists, that K acts
freely on ν−1(0), and that X �K is a smooth variety. One may define a
Poisson bivector PX�K on X �K as follows. Suppose that x ∈ ν−1(0) and
let

dπ∗x : T ∗
π(x)(X �K) −→ T ∗

x (ν
−1(0))

be the dual of the differential dπx : Tx(ν
−1(0)) −→ Tπ(x)(X �K). Set

Pπ(x)(α) := dπx(Px(α̃))

for all α ∈ T ∗
π(x)(X �K), where α̃ ∈ T ∗

xX is any element that annihilates

Tx(Kx) and coincides with dπ∗x(α) on Tx(ν
−1(0)). The bivector PX�K ren-

ders OX�K a sheaf of Poisson algebras, recovering the above-described Pois-
son bracket on C[X �K]. We call the Poisson variety (X �K,PX�K) the
Hamiltonian reduction of (X,P, ν) at level 0, provided that (2.4) exists, K
acts freely on ν−1(ζ), and X �K is a smooth variety.

The preceding construction generalizes to allow for Hamiltonian reduc-
tion at an arbitrary level ζ ∈ k∗. To this end, let Kζ denote the K-stabilizer
of ζ with respect to the coadjoint action. One simply sets

X �ζ K := ν−1(ζ)/Kζ .

The definitions of the Poisson bracket on C[X �ζ K] and Poisson bivector
PX�ζK are analogous to their counterparts above.

2.5. Lie-theoretic conventions

Let G be a connected semisimple linear algebraic group with Lie algebra g.
Note that g is a G-module via the adjoint representation

Ad : G −→ GL(g), g −→ Adg,

and a g-module via the other adjoint representation

ad : g −→ gl(g), y −→ ady = [y, ·].

One obtains an induced action of G on the coordinate ring C[g] = Sym(g∗),
and we write C[g]G ⊆ C[g] for the subalgebra of all functions fixed by G.
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The inclusion C[g]G ⊆ C[g] then determines a morphism of affine varieties

χ : g −→ Spec(C[g]G),

often called the adjoint quotient.
Define the centralizer subalgebra

gy := {z ∈ g : [y, z] = 0} ⊆ g

for each y ∈ g. An element y ∈ g is called regular if the dimension of gy
coincides with the rank of g. The set of all regular elements is a G-invariant
open dense subvariety of g that we denote by gr.

Recall that (ξ, h, η) ∈ g⊕3 is an sl2-triple if the identities

[ξ, η] = h, [h, ξ] = 2ξ, and [h, η] = −2η

hold in g, and that the associated Slodowy slice is defined by

Sτ := ξ + gη ⊆ g.

Now assume that τ is a principal sl2-triple, i.e. an sl2-triple for which ξ, h, η ∈
gr. The slice Sτ then lies in gr and is a fundamental domain for the G-action
on gr [34, Theorem 8]. This slice is also known to be a section of the adjoint
quotient, meaning that the restriction

χ
∣

∣

Sτ
: Sτ −→ Spec(C[g]G)

is a variety isomorphism [34, Theorem 7]. Let us write

yτ := (χ
∣

∣

Sτ
)−1(χ(y)) ∈ Sτ

for each y ∈ g. In other words, yτ is the unique point at which Sτ meets
χ−1(χ(y)).

Let ⟨·, ·⟩ : g⊗C g −→ C denote the Killing form on g. This bilinear form
is non-degenerate and G-invariant, i.e. the map

(2.7) g −→ g∗, y −→ ⟨y, ·⟩

is a G-module isomorphism. The canonical Poisson structure on g∗ thereby
corresponds to a Poisson structure on g, determined by the following condi-
tion:

{f1, f2}(y) = ⟨y, [(df1)y, (df2)y]⟩
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for all f1, f2 ∈ C[g] and y ∈ g, where the right-hand side uses (2.7) to regard
(df1)y, (df2)y ∈ g∗ as elements of g. By means of (2.7), we shall make no
further distinction between g and g∗. One also has the (G×G)-module
isomorphism

g⊕ g −→ (g⊕ g)∗, (x1, x2) −→ (⟨x1, ·⟩,−⟨x2, ·⟩),

through which we shall identify g⊕ g with (g⊕ g)∗.

2.6. The wonderful compactification

In this subsection, we assume that G is the adjoint group of g. Let n = dim g

and write Gr(n, g⊕ g) for the Grassmannian of all n-dimensional subspaces
in g⊕ g. Note that G×G acts on Gr(n, g⊕ g) by

(g1, g2) · γ := {(Adg1(y1),Adg2(y2)) : (y1, y2) ∈ γ},

and on G itself by

(g1, g2) · h := g1hg
−1
2 .

Let g∆ ⊆ g⊕ g denote the diagonally embedded copy of g in g⊕ g, and
consider the (G×G)-equivariant locally closed immersion

(2.8) φ : G −→ Gr(n, g⊕ g), g −→ (g, e) · g∆.

We thereby view G as a subvariety of Gr(n, g⊕ g) and write G for its closure
in Gr(n, g⊕ g). The closed subvariety G is (G×G)-invariant, smooth, and
called the wonderful compactification of G [18]. The complement D := G \G
is known to be a normal crossing divisor in G.

The pair (G,D) determines a so-called log cotangent bundle T ∗G(logD)
−→ G. One may realize this vector bundle as the pullback of the tautolog-
ical bundle T −→ Gr(n, g⊕ g) along the inclusion G →֒ Gr(n, g⊕ g). This
amounts to setting

T ∗G(logD) := {(γ, (y1, y2)) ∈ G× (g⊕ g) : (y1, y2) ∈ γ}

and defining the bundle projection to be

T ∗G(logD) −→ G, (γ, (y1, y2)) −→ γ.
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The action of (G×G) on G then lifts to the following (G×G)-action on
T ∗G(logD):

(2.9) (g1, g2) · (γ, (y1, y2)) := ((g1, g2) · γ, (Adg1(y1),Adg2(y2))).

2.7. Poisson geometry on T
∗
G and T

∗
G(logD)

Let all objects and notation be as set in 2.5. Note that the left trivialization
and Killing form combine to yield a variety isomorphism

T ∗G ∼= G× g.

We shall thereby make no further distinction between T ∗G and G× g. The
canonical symplectic form ω on T ∗G is then defined as follows on each
tangent space T(g,x)(G× g) = TgG⊕ g:

ω(g,x)

(

(

(dLg)e(y1), z1
)

,
(

(dLg)e(y2), z2
)

)

= ⟨y1, z2⟩ − ⟨y2, z1⟩+ ⟨x, [y1, y2]⟩

for all y1, y2, z1, z2 ∈ g, where Lg : G −→ G denotes left translation by g and
(dLg)e : g −→ TgG is the differential of Lg at e ∈ G [38, Section 5, Equa-
tion (14L)].

Now consider the identifications

T(e,x)(G× g) = g⊕ g and T ∗
(e,x)(G× g) = (g⊕ g)∗ = g∗ ⊕ g∗

for each x ∈ g. Write Pω for the Poisson bivector on T ∗G determined by ω,
noting that (Pω)(e,x) is a vector space isomorphism

(Pω)(e,x) : g
∗ ⊕ g∗

∼=
−→ g⊕ g

for each x ∈ g. To compute (Pω)(e,x), let

κ : g∗
∼=
−→ g

denote the inverse of (2.7). This leads to the following lemma, which will be
needed later.

Lemma 2.6. If x ∈ g, then

(Pω)(e,x)(α, β) = (κ(β), [x, κ(β)]− κ(α))

for all (α, β) ∈ g∗ ⊕ g∗.
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Proof. Write Pω(α, β) = (y, z) ∈ g⊕ g and note that

α(v) + β(w) = ω(e,x)((Pω)(e,x)(α, β), (v, w))

= ω(e,x)((y, z), (v, w))

= ⟨y, w⟩ − ⟨z, v⟩+ ⟨x, [y, v]⟩

= ⟨y, w⟩+ ⟨[x, y]− z, v⟩.

for all v, w ∈ g. It follows that κ(α) = [x, y]− z and κ(β) = y, or equivalently

y = κ(β) and z = [x, κ(β)]− κ(α).

□

Now assume that G is the adjoint group of g. The variety T ∗G(logD)
admits a distinguished log symplectic structure (e.g. [2]), some aspects of
which we now describe. We begin by noting that

(2.10) φ̃ : T ∗G −→ T ∗G(logD), (g, x) −→ ((g, e) · g∆, (Adg(x), x)).

is a symplectomorphism onto the unique open dense symplectic leaf in
T ∗G(logD). This yields the commutative diagram

T ∗G T ∗G(logD)

G G

ϕ̃

ϕ

,

where φ : G −→ G is the map (2.8). One also observes φ̃ to be equivariant
with respect to (2.9) and the following (G×G)-action on T ∗G:

(2.11) (g1, g2) · (h, y) := (g1hg
−1
2 ,Adg(y)).

The (G×G)-actions (2.9) and (2.11) are Hamiltonian with respective mo-
ment maps

(2.12) ρ = (ρL, ρR) : T
∗G(logD) −→ g⊕ g, (γ, (y1, y2)) −→ (y1, y2)

and

(2.13) ρ = (ρL, ρR) : T
∗G −→ g⊕ g, (g, y) −→ (Adg(y), y).
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Now suppose that (X,P, ν) is a Hamiltonian G-variety. Endow X with
the Hamiltonian (G×G)-variety structure for which

GR := {e} ×G

acts trivially and

GL := G× {e}

acts via the original Hamiltonian G-action and the identification G = GL.
It follows that the product Poisson varieties X × T ∗G and X × T ∗G(logD)
are Hamiltonian (G×G)-varieties with respective moment maps

µ = (µL, µR) : X × T
∗G −→ g⊕ g,(2.14)

(x, (g, y)) −→ (ν(x)−Adg(y),−y)

and

µ = (µL, µR) : X × T
∗G(logD) −→ g⊕ g,(2.15)

(x, (γ, (y1, y2))) −→ (ν(x)− y1,−y2).

We also have a commutative diagram

(2.16)

X × T ∗G X × T ∗G(logD)

g⊕ g

i

µ µ

,

where

i : X × T ∗G −→ X × T ∗G(logD),(2.17)

(x, (g, y)) −→ (x, ((g, e) · g∆, (Adg(y), y))).

is the (G×G)-equivariant open Poisson embedding given by the product of
(2.10) with the identity map X −→ X.

The Hamiltonian (G×G)-variety X × T ∗G warrants some further dis-
cussion. One knows that the geometric quotient

µ−1
L (0) −→ (X × T ∗G) �GL

exists, and that the action of GR on µ−1
L (0) descends to a Hamiltonian

action of G on (X × T ∗G) �GL. An associated moment map is obtained by
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descending

−µR
∣

∣

µ−1
L (0)

: µ−1
L (0) −→ g

to the quotient variety (X × T ∗G) �GL. It is then not difficult to verify that

(2.18) ψ : X
∼=
−→ (X × T ∗G) �GL, x −→ [x : (e, ν(x))], x ∈ X

is an isomorphism of Hamiltonian G-varieties.

3. Poisson slices

This section develops the general theory of Poisson slices. Some emphasis is
placed on properties of the Poisson slice G× Sτ and a larger log symplectic
variety G× Sτ .

3.1. Poisson transversals and Poisson slices

Let (X,P ) be a Poisson variety. Given x ∈ X and a subspace V ⊆ TxX,
we write V † for the annihilator of V in T ∗

xX. Our notation suppresses the
dependence of V † on TxX, as the ambient tangent space will always be clear
from context. We will use an analogous notation for vector subbundles of
TX.

Recall that a smooth locally closed subvariety Y ⊆ X is called a Poisson
transversal (or cosymplectic subvariety) if

(3.1) TX|Y = TY ⊕ P (TY †).

This has the following straightforward implication for every symplectic leaf
L ⊆ X: L and Y have a transverse intersection in X, and L ∩ Y is a sym-
plectic submanifold of L.

The Poisson transversal Y inherits a Poisson bivector PY from (X,P ).
To define it, note that the decomposition (3.1) gives rise to an inclusion
T ∗Y ⊆ T ∗X. One can verify that

P (T ∗Y ) ⊆ TY,

and PY is then defined to be the restriction

PY := P
∣

∣

T ∗Y
: T ∗Y −→ TY.

Note that Y need not be a Poisson subvariety of X in the usual sense;
restricting functions need not define a morphism OX −→ j∗OY of sheaves
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of Poisson algebras, where j : Y →֒ X is the inclusion. This is particularly
apparent if X is symplectic; the Poisson transversals are the symplectic
subvarieties, while the Poisson subvarieties are the open subvarieties.

We record the following well-known fact for future reference (cf. [20,
Example 4]).

Proposition 3.1. Let X be a symplectic variety. If Y ⊆ X is a Poisson
transversal, then Y is a symplectic subvariety of X. The resulting symplectic
structure on Y coincides with the Poisson structure Y inherits as a transver-
sal.

We need the following refinement in the case of log symplectic varieties.

Proposition 3.2. Suppose that (X,P ) is a log symplectic variety with di-
visor Z. Let Y ⊆ X be an irreducible Poisson transversal, and write PY for
the resulting Poisson bivector on Y . The following statements hold.

(i) The Poisson variety (Y, PY ) is log symplectic with divisor Z ∩ Y .

(ii) If one equips Y \ Z and X \ Z with the symplectic structures inherited
as symplectic leaves of (Y, PY ) and (X,P ), respectively, then Y \ Z is
a symplectic subvariety of X \ Z.

Proof. We begin by proving that Y is a log symplectic subvariety of X in the
sense of [24, Definition 7.16]. To this end, consider the unique open dense
symplectic leaf X0 := X \ Z ⊆ X. Since Y is a Poisson transversal in X,
Proposition 3.1 forces Y0 := Y ∩X0 to be a symplectic subvariety of X0.

Now let Z1, . . . , Zk be the irreducible components of Z, and set

ZI :=
⋂

i∈I

Zi

for each subset I ⊆ {1, . . . , k}. Each irreducible component of Z is a union
of symplectic leaves in X (cf. [46, Exercise 5.2]), implying that ZI is a union
of symplectic leaves for each I ⊆ {1, . . . , k}. On the other hand, the Poisson
transversal Y is necessarily transverse to the symplectic leaves in X. These
last two sentences imply that Y is transverse to ZI for all I ⊆ {1, . . . , k}.

The previous two paragraphs show Y to be a log symplectic subvariety
of X, and we let Plog denote the resulting Poisson bivector on Y . It follows
that Y0 is the unique open dense symplectic leaf of (Y, Plog), and that its
symplectic form is the pullback of the symplectic form on X0. We also know
that PY is non-degenerate on Y0, and that it coincides with the pullback of
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the symplectic structure from X0 to Y0 (see Proposition 3.1). One concludes
that Plog and PY coincide on Y0. Since Y0 is dense in Y , it follows that
Plog = PY . This establishes (i) and (ii). □

The following well-known result concerns the behaviour of Poisson
transversals with respect to Poisson morphisms (cf. [20, Lemma 7]).

Proposition 3.3. Let ϕ : X1 −→ X2 be a Poisson morphism between Pois-
son varieties X1 and X2. If Y ⊆ X2 is a Poisson transversal, then ϕ−1(Y )
is a Poisson transversal in X1. The codimension of ϕ−1(Y ) in X1 is equal
to the codimension of Y in X2.

We now consider a concrete application of Proposition 3.3. To this end,
recall the Lie-theoretic notation and setup established in 2.5.

Corollary 3.4. Suppose that (X,P, ν) is a Hamiltonian G-variety. If τ =
(ξ, h, η) is an sl2-triple in g, then ν−1(Sτ ) is a Poisson transversal in X.
This transversal has codimension dim g− dim(gη) in X.

Proof. The moment map ν : X −→ g is necessarily a morphism of Poisson
varieties (e.g. [9, Proposition 7.1]). At the same time, [21, Section 3.1] ex-
plains that Sτ is a Poisson transversal in g. The desired now result now
follows immediately from Proposition 3.3. □

A consequence of Corollary 3.4 is that ν−1(Sτ ) inherits a Poisson bivector
Pτ from (X,P ). This gives rise to our notion of a Poisson slice.

Definition 3.5. Suppose that (X,P, ν) is a Hamiltonian G-variety, and
let τ be an sl2-triple in g. We call Xτ := (ν−1(Sτ ), Pτ ) the Poisson slice of
(X,P, ν) with respect to τ .

This next proposition explains why we call Xτ a Poisson slice; it is a
slice for the G-action on X in the following sense.

Proposition 3.6. Let (X,P, ν) be a Hamiltonian G-variety. If τ is an sl2-
triple in g, then Xτ is transverse to the G-orbits in X.

Proof. Fix x ∈ ν−1(Sτ ) and set y := ν(x) ∈ Sτ . Consider the differential
dνx : TxX −→ g and its dual dν∗x : g∗ −→ T ∗

xX, and let Pg be the Poisson
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bivector on g. Since ν is a morphism of Poisson varieties, we have

(Pg)y = dνx ◦ Px ◦ dν
∗
x.

We also know Sτ ⊆ g to be a Poisson transversal (e.g. by Corollary 3.4), so
that

g = TySτ ⊕ (Pg)y((TySτ )
†) = TySτ ⊕ dνx(Px(dν

∗
x((TySτ )

†))).

One immediate conclusion is that ν is transverse to Sτ . We also conclude
that

Tx(ν
−1(Sτ )) = ker

(

pr2 ◦ dνx : TxX −→ (Pg)y((TySτ )
†)

)

,

where

pr2 : g = TySτ ⊕ (Pg)y((TySτ )
†) −→ (Pg)y((TySτ )

†)

is the natural projection. It follows that

Tx(ν
−1(Sτ ))

† = image

(

dν∗x ◦ pr
∗
2 : (Pg)y((TySτ )

†)∗ −→ T ∗
xX

)

,

where

pr∗2 : (Pg)y((TySτ )
†)∗ −→ g∗

is the dual of pr2. This amounts to the statement that

Tx(ν
−1(Sτ ))

† = dν∗x(g
†
η),

because we know that the Killing form identifies g†η ⊆ g∗ with g⊥η = [g, η] ⊆
g. We conclude that

Tx(ν
−1(Sτ ))

† = span{(dν[η,b])x : b ∈ g},

where ν[η,b] : X −→ C is defined by

ν [η,b](z) = ⟨ν(z), [η, b]⟩.

Equations (2.1) and (2.2) now imply that

Px(Tx(ν
−1(Sτ ))

†) = span{Px((dν
[η,b])x) : b ∈ g}

= span{V [η,b]
x : b ∈ g} ⊆ Tx(Gx).



✐

✐

“4-Crooks” — 2022/10/10 — 18:25 — page 157 — #23
✐

✐

✐

✐

✐

✐

The log symplectic geometry of Poisson slices 157

This combines with ν−1(Sτ ) being a Poisson transversal to yield

TxX = Tx(ν
−1(Sτ ))⊕ Px(Tx(ν

−1(Sτ ))
†) = Tx(ν

−1(Sτ )) + Tx(Gx),

completing the proof. □

Let Y be an irreducible component of Xτ . The bivector Pτ then restricts
to a Poisson bivector PY,τ on Y . This leads to the following observation.

Corollary 3.7. Suppose that (X,P, ν) is a Hamiltonian G-variety. Assume
that (X,P ) is log symplectic with divisor Z, and let τ be an sl2-triple in g.
Let Y be an irreducible component of the Poisson slice Xτ .

(i) The Poisson variety (Y, PY,τ ) is log symplectic with divisor Y ∩ Z.

(ii) If one equips Y \ Z and X \ Z with the symplectic structures inherited
as symplectic leaves of (Y, PY,τ ) and (X,P ), respectively, then Y \ Z
is a symplectic subvariety of X \ Z.

(iii) If (X,P ) is symplectic, then (Xτ , Pτ ) is symplectic and the symplectic
form on (X,P ) pulls back to the symplectic form on (Xτ , Pτ ).

Proof. This follows immediately from Proposition 3.1, Proposition 3.2, and
Corollary 3.4. □

The following immediate consequence is used extensively in later sec-
tions.

Corollary 3.8. If τ is an sl2-triple in g, then G× Sτ is a symplectic sub-
variety of T ∗G = G× g.

Proof. Apply Corollary 3.7(iii) to X = T ∗G with the Hamiltonian action of
GR = {e} ×G ⊆ G×G. □

3.2. Poisson slices via Hamiltonian reduction

Recall the Hamiltonian action of G×G on T ∗G = G× g discussed in Sub-
section 2.7. The symplectic subvariety G× Sτ is invariant under GL = G×
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{e} ⊆ G×G, and

(3.2) ρτ := ρL
∣

∣

G×Sτ
: G× Sτ −→ g, (g, x) −→ Adg(x)

is a corresponding moment map. Now let (X,P, ν) be a Hamiltonian G-
variety, and consider the product Poisson variety X × (G× Sτ ). The diago-
nal action of G on X × (G× Sτ ) is then Hamiltonian with moment map

µτ : X × (G× Sτ ) −→ g, (x, (g, y)) −→ ν(x)−Adg(y).

These considerations allow us to realize Poisson slices via Hamiltonian re-
duction.

Proposition 3.9. Let (X,P, ν) be a Hamiltonian G-variety, and let τ be
an sl2-triple in g. If we endow X × (G× Sτ ) with the Poisson structure
and Hamiltonian G-action described above, then there is a Poisson variety
isomorphism

(3.3) ψτ : Xτ

∼=
−→ (X × (G× Sτ )) �G, x −→ [x : (e, ν(x))].

Proof. We begin by noting that

µ−1
τ (0) = {(x, (g, y)) ∈ X × (G× Sτ ) : ν(x) = Adg(y)}

= {(x, (g, y)) ∈ X × (G× Sτ ) : ν(g
−1 · x) = y}.

It follows that the G-invariant map

J : X × (G× Sτ ) −→ X, (x, (g, y)) −→ g−1 · x

satisfies J(µ−1
τ (0)) ⊆ ν−1(Sτ ) = Xτ , thereby inducing a map

π := J
∣

∣

µ−1
τ (0)

: µ−1
τ (0) −→ Xτ .

One then verifies that

π−1(x) = G · (x, e, ν(x)) ⊆ X × (G× Sτ )

for all x ∈ Xτ , where G · (x, e, ν(x)) is the G-orbit of (x, e, ν(x)) in X × (G×
Sτ ). This forces π to be the geometric quotient of µ−1

τ (0) by G (e.g. by [52,
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Proposition 25.3.5]), i.e.

(X × (G× Sτ )) �G = Xτ .

We now have two Poisson structures on Xτ : the Poisson structure Pred

from Hamiltonian reduction, and the structure Ptr obtained from Xτ being a
Poisson slice in X. It suffices to show that these Poisson structures coincide.

Fix x ∈ Xτ and α ∈ T ∗
xXτ . Since Xτ is a Poisson transversal in X, there

is a unique extension of α to an element

α̃ ∈

(

Px

(

(TxXτ )
†
)

)†

⊆ T ∗
xX.

The discussion of Poisson transversals in Subsection 3.1 then implies that

(3.4) (Ptr)x(α) = Px(α̃).

We also have

(3.5) (Pred)x(α) = dπz((Pτ )z(α̃
′)),

where z = (x, e, ν(x)),

α̃′ ∈ Tz(Gz)
† ⊆ T ∗

z (X × (G× Sτ ))

is an extension of dπ∗z(α), and

dπ∗z : T ∗
xXτ −→ T ∗

z (µ
−1
τ (0))

is the dual of

dπz : Tz(µ
−1
τ (0)) −→ TxXτ .

Since J is G-invariant, we may take

α̃′ := dJ∗
z (α̃).

We also observe that

dJz(a, b, c) = a− (V b)x

for all (a, b, c) ∈ Tz(X × (G× Sτ )) = TxX ⊕ g⊕ gη, where V
b is the funda-

mental vector field on X associated to b ∈ g. It follows that

(dJ∗
z (α̃))(a, b, c) = α̃(a)− α̃((V b)x)

= α̃(a)− α̃(Px((dν
b)x)) = α̃(a) + (dνb)x(Px(α̃)),
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yielding

α̃′ = (α̃, dνx(Px(α̃)), 0) ∈ T
∗
z (X × (G× Sτ ))(3.6)

= T ∗
xX ⊕ g∗ ⊕ g∗η = T ∗

xX ⊕ g⊕ gξ,

where we have made the identifications g∗η = (g/[g, ξ])∗ = [g, ξ]⊥ = gξ. Now
set w = (e, ν(x)) ∈ G× Sτ and let Qτ be the Poisson bivector on G× Sτ .
Lemma 2.6 then gives

(Qτ )w(dνx(Px(α̃)), 0) = (0,−dνx(Px(α̃))).

This combines with (3.4), (3.5), and (3.6) to yield

(Pred)x(α) = dπz(Px(α̃),−(Qτ )w(dνx(Px(α̃)), 0))

= dπz(Px(α̃), 0, dνx(Px(α̃)))

= Px(α̃)

= (Ptr)x(α),

as desired. □

Remark 3.10. In the special case τ = 0, we have Sτ = g and G× Sτ =
G× g = T ∗G. Proposition 3.9 is then seen to recover the isomorphism (2.18).

Our next result is that Poisson slices can be realized via Hamiltonian
reduction with respect to unipotent radicals of parabolic subgroups. To for-
mulate this result, let τ = (ξ, h, η) be an sl2-triple in g and write gλ ⊆ g for
the eigenspace of adh with eigenvalue λ ∈ Z. The parabolic subalgebra

pτ :=
⊕

λ≤0

gλ

then has

uτ :=
⊕

λ<0

gλ

as its nilradical. Now consider the identifications

u∗τ
∼= g/u⊥τ = g/pτ ∼= u−τ :=

⊕

λ>0

gλ,

and thereby regard ξ ∈ u−τ as an element of u∗τ . Write Uτ ⊆ G for the unipo-
tent subgroup with Lie algebra uτ , and let (Uτ )ξ be the Uτ -stabilizer of ξ
under the coadjoint action.
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Remark 3.11. The Lie algebra of (Uτ )ξ is given by

(uτ )ξ =
⊕

λ≤−2

gλ.

It follows that (Uτ )ξ = Uτ if and only if τ is an even sl2-triple, i.e. g−1 =
{0}. If τ is a principal triple, then τ is even and (Uτ )ξ = Uτ is a maximal
unipotent subgroup of G.

Let (X,P, ν) be a Hamiltonian G-variety. The action of Uτ is also Hamil-
tonian with moment map ντ := pτ ◦ µ, where

g = pτ ⊕ u−τ
pτ

−→ u−τ = u∗τ

is the projection. One has

ν−1
τ (ξ) = ν−1(ξ + pτ ),

while the proof of [5, Lemma 3.2] shows the stabilizer (Uτ )ξ to act freely on
ξ + pτ . It follows that (Uτ )ξ acts freely on ν−1

τ (ξ). This leads us to prove
Proposition 3.13, i.e. that the geometric quotient

(3.7) X �ξ Uτ = ν−1
τ (ξ)/(Uτ )ξ

exists and is Poisson-isomorphic to Xτ .

Remark 3.12. The type of Hamiltonian reduction performed in (3.7) is
particularly well-studied in the case of a principal triple τ . In this case,
one sometimes calls the Poisson variety X �ξ Uτ a Whittaker reduction (e.g.
[3, 19]). The nomenclature reflects Kostant’s result [35, Theorem 1.2].

Proposition 3.13. Let (X,P, ν) be a Hamiltonian G-variety. If τ = (ξ, h, η)
is an sl2-triple in g, then there is a canonical isomorphism

X �ξ Uτ
∼= Xτ

of Poisson varieties.
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Proof. We begin by exhibiting Xτ as the geometric quotient of ν−1
τ (ξ) by

(Uτ )ξ. To this end, the proof of [5, Lemma 3.2] explains that

(Uτ )ξ × Sτ −→ ξ + pτ , (u, x) −→ Adu(x)

defines a variety isomorphism. Composing the inverse of this isomorphism
with the projection

(Uτ )ξ × Sτ −→ (Uτ )ξ

then yields a map

ϕ : ξ + pτ −→ (Uτ )ξ.

Note that for y ∈ ξ + pτ , ϕ(y) is the unique element of (Uτ )ξ satisfying

Adφ(y)−1(y) ∈ Sτ .

We may therefore define the map

ν−1
τ (ξ) = ν−1(ξ + pτ )

θ
−→ Xτ , x −→ (ϕ(ν(x)))−1 · x.

One has

θ−1(x) = (Uτ )ξ · x

for all x ∈ ν−1
τ (ξ), and we deduce that θ is the geometric quotient of ν−1

τ (ξ)
by (Uτ )ξ (e.g. by [52, Proposition 25.3.5]).

The previous paragraph establishes the following fact: Hamiltonian re-
ductions of HamiltonianG-varieties by Uτ at level ξ always exist as geometric
quotients. We implicitly use this observation in several places below.

To see that the Poisson structures on Xτ and X �ξ Uτ coincide, we argue
as follows. One has a canonical isomorphism

(3.8) T ∗G �ξ Uτ
∼= G× Sτ

of symplectic varieties, where Uτ acts on T ∗G via (2.11) as the subgroup
Uτ = {e} × Uτ ⊆ G×G (see [5, Lemma 3.2]). Note also that T ∗G �ξ Uτ

and G× Sτ come with Hamiltonian actions of G induced by the action
of GL = G× {e} on T ∗G ∼= G× g. One then readily verifies that (3.8) is an
isomorphism of Hamiltonian G-varieties.
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Proposition 3.9 gives a canonical isomorphism of Poisson varieties

Xτ
∼= (X × (G× Sτ )) �G.

The previous paragraph allows us to write this isomorphism as

Xτ
∼= (X × (T ∗G �ξ Uτ )) �G = ((X × T ∗G) �ξ Uτ ) �G,

where Uτ acts trivially on X. Since the actions of G and Uτ on X × T ∗G
commute with one another, it follows that

Xτ
∼= ((X × T ∗G) �G) �ξ Uτ .

An application of Remark 3.10 then yields

Xτ
∼= X �ξ Uτ ,

completing the proof. □

3.3. Poisson slices in the log cotangent bundle of G

Fix an sl2-triple τ in g and recall the notation in Subsection 2.7. Let G be
the adjoint group of g. In what follows, we study the Poisson slice

G× Sτ := ρ−1
R (Sτ ) ⊆ T

∗G(logD)

and its properties. We begin by observing that

(3.9) G× Sτ = {(γ, (x, y)) ∈ G× (g⊕ g) : (x, y) ∈ γ and y ∈ Sτ}.

A few simplifications arise if τ is a principal sl2-triple. To this end, recall
the adjoint quotient

χ : g −→ Spec(C[g]G)

and the associated concepts and notation discussed in Subsection 2.5. The
image of ρ : T ∗G(logD) −→ g⊕ g is known to be

(3.10) image(ρ) = {(x, y) ∈ g⊕ g : χ(x) = χ(y)}

(see [2, Proposition 3.4]). One consequence is that x, y ∈ g lie in the same
fibre of χ whenever (x, y) ∈ γ for some γ ∈ G. Since Sτ is a section of χ, this
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fact combines with (3.9) to yield

(3.11) G× Sτ = {(γ, (x, xτ )) : γ ∈ G, x ∈ g, and (x, xτ ) ∈ γ}.

We now develop some more manifestly geometric properties of G× Sτ ,
beginning with the following result.

Theorem 3.14. If τ is an sl2-triple in g, then G× Sτ is irreducible.

Proof. Consider the closed subvariety

Y := {(x, y) ∈ g× Sτ : χ(x) = χτ (y)} ⊆ g⊕ g,

where χτ : Sτ −→ Spec(C[g]G) denotes the restriction of χ to Sτ . It follows
from (3.9) and (3.10) that

(3.12) G× Sτ −→ Y, (γ, (x, y)) −→ (x, y)

is the pullback of ρ : T ∗G(logD) −→ g⊕ g along the inclusion Y →֒ g⊕ g,
and that (3.12) is surjective. One also knows that ρ is proper, as it results
from restricting the natural projection G× (g⊕ g) −→ g⊕ g to T ∗G(logD)
⊆ G× (g⊕ g). The surjection (3.12) is therefore proper, while the proof
of [2, Proposition 3.11] shows (3.12) to have connected fibres. If Y were
connected, then the previous sentence would force G× Sτ to be connected
as well. This would in turn force G× Sτ to be irreducible, as Poisson slices
are smooth.

In light of the previous paragraph, it suffices to prove that Y is irre-
ducible. We begin by decomposing g into its simple factors, i.e.

g = g1 ⊕ · · · ⊕ gN

with each gi a simple Lie algebra. Our sl2-triple τ then amounts to having
an sl2-triple τi in gi for each i = 1, . . . , N , yielding

Sτ = Sτ1 × · · · × SτN ⊆ g1 ⊕ · · · ⊕ gN .

It also follows that χτ decomposes as a product

χτ = (χ1)τ1 × · · · × (χN )τN ,

where χi is the adjoint quotient map on gi and (χi)τi is its restriction
to Sτi . The results [51, Corollary 7.4.1] and [44, Theorem 5.4] then im-
ply that each (χi)τi is faithfully flat with irreducible fibres of dimension
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dim(Sτi)− rank(gi). These last two sentences imply that χτ is faithfully
flat with irreducible, equidimensional fibres, and the same argument forces
χ to be faithfully flat with irreducible, equidimensional fibres. Since fibred
products of faithfully flat morphisms are faithfully flat, we conclude that

χ̃ : Y −→ Spec(C[g]G), (x, y) 7→ χ(x)

is faithfully flat. We also conclude that

χ̃−1(t) = χ−1(t)× χ−1
τ (t)

must be irreducible for all t ∈ Spec(C[g]G), and that its dimension must
be independent of t. In other words, χ̃ is a faithfully flat morphism with
irreducible, equidimensional fibres. This combines with the irreducibility of
Spec(C[g]G) and [32, Corollary 9.6] to imply that Y is pure-dimensional.
We may now apply the result in [43] and deduce that Y is irreducible. This
completes the proof. □

Corollary 3.15. If τ is an sl2-triple in g, then G× Sτ is log symplectic.

Proof. This is an immediate consequence of Corollary 3.7(i) and Theo-
rem 3.14. □

Now observe that the Hamiltonian action of GL = G× {e} ⊆ G×G on
T ∗G(logD) restricts to a Hamiltonian action of G on G× Sτ . An associated
moment map is given by

ρτ := ρL

∣

∣

∣

∣

G×Sτ

: G× Sτ −→ g, (γ, (x, y)) 7→ x.

At the same time, recall the Hamiltonian G-variety structure on G× Sτ and
the moment map ρτ : G× Sτ −→ g discussed in Subsection 3.2. Let us also
recall the map φ̃ : T ∗G −→ T ∗G(logD) from (2.10).

Proposition 3.16. Let τ be an sl2-triple in g.

(i) The map φ̃ : T ∗G −→ T ∗G(logD) restricts to a G-equivariant sym-
plectomorphism from G× Sτ to the unique open dense symplectic leaf
in G× Sτ .
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(ii) The diagram

(3.13)

G× Sτ G× Sτ

g

ϕ̃
∣

∣

∣

G×Sτ

ρτ ρτ

commutes.

Proof. By Corollary 3.7, the open dense symplectic leaf inG× Sτ is obtained
by intersecting G× Sτ with the open dense symplectic leaf in T ∗G(logD).
The latter leaf is φ̃(T ∗G), as is explained in Subsection 2.7. It is also straight-
forward to establish that

φ̃(G× Sτ ) = G× Sτ ∩ φ̃(T
∗G).

These last two sentences show φ̃(G× Sτ ) to be the unique open dense sym-
plectic leaf in G× Sτ . We also know that φ̃ restricts to a symplectomorphism
from G× Sτ to φ̃(G× Sτ ), where the symplectic form on φ̃(G× Sτ ) is the
pullback of the symplectic form on the leaf in T ∗G(logD) (see Corollary 3.8).
It now follows from Corollary 3.7(ii) that

φ̃
∣

∣

G×Sτ
: G× Sτ −→ φ̃(G× Sτ )

is a symplectomorphism with respect to this symplectic structure φ̃(G× Sτ )
inherits as a leaf in G× Sτ . This symplectomorphism is G-equivariant, as
φ̃ : T ∗G −→ T ∗G(logD) is (G×G)-equivariant. The proof of (i) is therefore
complete, while a straightforward calculation yields (ii). □

Remark 3.17. Let τ be a principal sl2-triple in g. The description (3.11)
allows one to define a closed embedding

G× Sτ −→ G× g, (γ, (x, xτ )) −→ (γ, x).

We thereby obtain a commutative diagram

G× Sτ G× g

g ,
ρτ
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where G× g −→ g is projection to the second factor. One immediate conse-
quence is that ρτ has projective fibres, so that (3.13) realizes ρτ as a fibrewise
compactification of ρτ . It also follows that

ρ−1
τ (x) −→ {γ ∈ G : (x, xτ ) ∈ γ}, (γ, (x, xτ )) −→ γ

is a variety isomorphism for each x ∈ g.

3.4. Relation to the universal centralizer and its fibrewise
compactification

Let G be the adjoint group of g, and let τ be a principal sl2-triple in g.
It is instructive to examine the relationship between G× Sτ and G× Sτ in
the context of Balibănu’s paper [2]. We begin by recalling that the universal
centralizer of g is the closed subvariety of T ∗G = G× g defined by

Zτ
g
:= {(g, x) ∈ G× g : x ∈ Sτ and g ∈ Gx},

where Gx is the G-stabilizer of x ∈ g. At the same time, recall the Hamilto-
nian action of G×G on T ∗G and moment map ρ : T ∗G −→ g⊕ g discussed
in Subsection 2.7. Consider the product Sτ × Sτ ⊆ g⊕ g and observe that

Zτ
g
= ρ−1(Sτ × Sτ ).

Note also that Sτ × Sτ is the Slodowy slice associated to the sl2-triple
((ξ, ξ), (h, h), (η, η)). It follows that Zτ

g
is a Poisson slice in T ∗G. Corol-

lary 3.7(iii) then forces this Poisson slice to be a symplectic subvariety of
T ∗G.

Remark 3.18. Some papers realize the symplectic structure on Zτ
g
via a

Whittaker reduction of T ∗G (e.g. [2]). To this end, let u be the nilpotent
radical of the unique Borel subalgebra of g containing η. Let us also write
U ⊆ G for the unipotent subgroup with Lie algebra u. Proposition 3.13 then
gives a canonical isomorphism

Zτ
g
= ρ−1(Sτ × Sτ ) ∼= T ∗G �(ξ,ξ) U × U

of symplectic varieties, where the symplectic structure on Zτ
g
is as defined

in the previous paragraph.
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One may replace ρ : T ∗G −→ g⊕ g with ρ : T ∗G(logD) −→ g⊕ g and
proceeed analogously. In the interest of being more precise, consider the
Poisson slice

Zτ
g
:= ρ−1(Sτ × Sτ ) = {(γ, (x, x)) : γ ∈ G, x ∈ Sτ , and (x, x) ∈ γ}

in T ∗G(logD).

Remark 3.19. A counterpart of Remark 3.18 is that Proposition 3.13 gives
a canonical isomorphism

Zτ
g
= ρ−1(Sτ × Sτ ) ∼= T ∗G(logD) �(ξ,ξ) U × U

of Poisson varieties. This realization of Zτ
g
via Whittaker reduction is used

to great effect in [2].

Now recall the embedding φ̃ : T ∗G −→ T ∗G(logD) discussed in Subsec-
tion 2.7. Balibănu [2] shows Zτ

g
to be log symplectic (cf. Corollary 3.7), and

that φ̃ restricts to a symplectomorphism from Zτ
g
to the unique open dense

symplectic leaf in Zτ
g
. One also has a commutative diagram

(3.14)

Zτ
g

Zτ
g

Sτ

ϕ̃
∣

∣

∣

Zτ
g

qτ qτ

,

where

qτ (g, x) = x and qτ (γ, (x, x)) = x.

This diagram is seen to be the pullback of (3.13) along the inclusion Sτ →֒ g,
and it thereby exhibits qτ as a fibrewise compactification of qτ (see Re-
mark 3.17 and cf. [2, Section 3]). This amounts to (3.14) being the restriction
of (3.13) to a morphism between the Poisson slices

Zτ
g
= ρ−1(Sτ × Sτ ) = ρ−1

τ (Sτ ) and Zτ
g
= ρ−1(Sτ × Sτ ) = ρ−1

τ (Sτ ).

This present section combines with Subsection 3.3 to yield the following
informal comparisons between (Zτ

g
,Zτ

g
) and (G× Sτ , G× Sτ ):

• qτ (resp. ρτ ) is a fibrewise compactification of πτ (resp. qτ );
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• (3.14) is obtained by pulling (3.13) back along the inclusion Sτ →֒ g;

• Zτ
g
and G× Sτ are symplectic;

• Zτ
g
and G× Sτ are log symplectic;

• φ̃ restricts to a symplectomorphism from Zτ
g

(resp. G× Sτ ) to the

unique open dense symplectic leaf in Zτ
g
(resp. G× Sτ ).

4. The geometries of X and Xτ

This section is concerned with constructing partial compactifications of Pois-
son slices, an issue motivated in the introduction of our paper. Our approach
is to replace a Poisson slice Xτ with a slightly larger variety Xτ , provided
that the latter makes sense. If Xτ is well-defined, we show it to enjoy cer-
tain Poisson-geometric features and discuss the extent to which it partially
compactifies Xτ .

Throughout Section 4, we require G to be the adjoint group of g.

4.1. Definitions and first properties

Fix a Hamiltonian G-variety (X,P, ν) and an sl2-triple τ in g. The product
Hamiltonian G-varieties X × (G× Sτ ) and X × (G× Sτ ) then have respec-
tive moment maps

µτ : X × (G× Sτ ) −→ g, (x, (g, y)) −→ ν(x)−Adg(y)

and

µτ : X × (G× Sτ ) −→ g, (x, (γ, (y1, y2))) −→ ν(x)− y1.

Note also that taking the product of

φ̃
∣

∣

G×Sτ
: G× Sτ −→ G× Sτ

with the identity X −→ X produces a G-equivariant open Poisson embed-
ding

iτ : X × (G× Sτ ) −→ X × (G× Sτ )(4.1)

(x, (g, y)) −→ (x, ((g, e) · g∆, (Adg(y), y))).
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(see Proposition 3.16). One readily verifies that the diagram

(4.2)

X × (G× Sτ ) X × (G× Sτ )

g

iτ

µτ µτ

commutes.
Now recall the Hamiltonian (G×G)-variety X × T ∗G(logD) and mo-

ment map

µ = (µL, µR) : X × T
∗G(logD) −→ g⊕ g

from Subsection 2.7. Let us write

X := (X × T ∗G(logD)) �GL and Xτ := (X × (G× Sτ )) �G,

and understand “X exists” (resp. “Xτ exists”) to mean that

(X × T ∗G(logD)) �GL (resp. (X × (G× Sτ )) �G)

exists as a geometric quotient.

Remark 4.1. If τ = 0, then X × (G× Sτ ) = X × T ∗G(logD), µτ = µL,
and the G-action on X × (G× Sτ ) is the GL-action X × T

∗G(logD). One
immediate consequence is that X = X0.

Remark 4.2. The action of GR on X × T ∗G(logD) induces a residual G-
action on X, provided that X exists. This G-action features prominently in
what follows.

Assume that Xτ exists and recall the map

i : X × T ∗G −→ X × T ∗G(logD)

from (2.17). This map restricts to a G-equivariant open embedding

(4.3) i
∣

∣

µ−1
τ (0)

: µ−1
τ (0) →֒ µ−1

τ (0),

which in turn descends to a morphism

(4.4) jτ : (X × (G× Sτ )) �G −→ Xτ .



✐

✐

“4-Crooks” — 2022/10/10 — 18:25 — page 171 — #37
✐

✐

✐

✐

✐

✐

The log symplectic geometry of Poisson slices 171

Let us consider the composition

(4.5) kτ := jτ ◦ ψτ : Xτ −→ Xτ ,

where ψτ : Xτ −→ (X × (G× Sτ )) �G is the Poisson variety isomorphism
from (3.3). It is straightforward to verify that

(4.6) kτ (x) = [x : (g∆, (ν(x), ν(x)))]

for all x ∈ Xτ

Proposition 4.3. Let τ be an sl2-triple in g. If Xτ exists, then kτ : Xτ −→
Xτ is an open embedding.

Proof. Since ψτ is a variety isomorphism, it suffices to prove that jτ is
an open embedding. We achieve this by first considering the commutative
square

(4.7)

µ−1
τ (0) µ−1

τ (0)

(X × (G× Sτ )) �G Xτ

i
∣

∣

∣

µ
−1
τ (0)

jτ

.

The vertical morphisms are open maps by virtue of being geometric quotients
[52, Lemma 25.3.2], and we have explained that the upper horizontal map is
open. It follows that jτ is also an open map. Together with the observation
that jτ is injective, this implies that jτ is an open embedding. Our proof is
complete. □

The inclusion Xτ −→ X composes with the quotient map X −→ X/G
to yield

(4.8) πτ : Xτ −→ X/G,

provided that X/G exists. We may also consider the morphism

(4.9) πτ : Xτ −→ X/G, [x : (γ, (y1, y2))] −→ [x]

if both Xτ and X/G exist. The following is then an immediate consequence
of (4.6).
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Proposition 4.4. Let τ be an sl2-triple in g. If Xτ and X/G exist, then
the diagram

(4.10)

Xτ Xτ

X/G

kτ

πτ πτ

commutes.

This diagram is particularly noteworthy if τ is a principal sl2-triple.

Theorem 4.5. Let τ be a principal sl2-triple in g. If Xτ and X/G exist,
then the diagram (4.10) realizes πτ as a fibrewise compactification of πτ .

Proof. Our objective is to prove that πτ has projective fibres. Let us begin
by fixing a point x ∈ X. We then have

(4.11) π−1
τ ([x]) = {[x : (γ, (ν(x), y))] : γ ∈ G, y ∈ Sτ , and (ν(x), y) ∈ γ}.

On the other hand, it is known that y1, y2 ∈ g belong to the same fibre of
the adjoint quotient χ : g −→ Spec(C[g]G) whenever (y1, y2) ∈ γ for some
γ ∈ G (see Subsection 3.3). The discussion and notation in Subsection 2.5
associated with principal sl2-triples then imply the following: if y1 ∈ g and
y2 ∈ Sτ are such that (y1, y2) ∈ γ for some γ ∈ G, then y2 = (y1)τ . We may
therefore present (4.11) as the statement

π−1
τ ([x]) = {[x : (γ, (ν(x), ν(x)τ ))] : γ ∈ G and (ν(x), ν(x)τ ) ∈ γ}.

In other words, π−1
τ ([x]) is the image of the closed subvariety

{γ ∈ G : (ν(x), ν(x)τ ) ∈ γ} ⊆ G

under the morphism

G −→ Xτ , γ −→ [x : (γ, (ν(x), ν(x)τ ))].

This subvariety is projective by virtue of being closed in G, and we conclude
that π−1

τ ([x]) is projective. This completes the proof. □
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Let us also examine the case τ = 0 in some detail. To this end, assume
that X0 = X exists and consider the geometric quotient map

πL : µ−1
L (0) −→ X.

The GR-action on µ−1
L (0) then descends under πL to a G-action X. On the

other hand, note that the restriction of

−µR : X × T ∗G(logD) −→ g, (x, (γ, (y1, y2))) −→ y2

to µ−1
L (0) is GR-equivariant and GL-invariant. This restriction therefore de-

scends under πL to the G-equivariant morphism

(4.12) ν : X −→ g, [x : (γ, (ν(x), y))] −→ y.

Let us write k : X −→ X, π : X −→ X/G, and π : X −→ X/G for (4.5),
(4.8), and (4.9), respectively, in the case τ = 0.

Proposition 4.6. If X exists, then k : X −→ X is a G-equivariant open
embedding and

(4.13)
X X

g

k

ν ν

commutes. If X/G also exists, then

(4.14)

X X

X/G

k

π π

commutes.

Proof. The commutativity of (4.13) follows immediately from (4.12) and
(4.6), while Proposition 4.4 forces (4.14) to commute. Proposition 4.3 implies
that k is an open embedding. Our equivariance claim follows from (4.6), the
above-given definition of the G-action on X, and a direct calculation. This
completes the proof. □
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4.2. The Poisson geometries of X and Xτ

Let (X,P, ν) be a Hamiltonian G-variety and suppose that τ is an sl2-triple
in g. In what follows, we show that the Poisson slice Xτ endows Xτ with
certain Poisson-geometric qualities. The most basic such feature is as follows.

Proposition 4.7. Let τ be an sl2-triple in g. If Xτ exists, then C[Xτ ] car-
ries a natural Poisson bracket for which k∗τ : C[Xτ ] −→ C[Xτ ] is a Poisson
algebra morphism.

Proof. The definition

Xτ := (X × (G× Sτ )) �G

combines with the discussion in Subsection 2.4 to yield a Poisson bracket on
C[Xτ ], as well as the following facts:

(i) C[X × (G× Sτ )]
G is a Poisson subalgebra of C[X × (G× Sτ )];

(ii) C[µ−1
τ (0)]G has a unique Poisson bracket for which restriction

β : C[X × (G× Sτ )]
G −→ C[µ−1

τ (0)]G

is a Poisson algebra morphism;

(iii) the geometric quotient map µ−1
τ (0) −→ Xτ induces a Poisson algebra

isomorphism

δ : C[Xτ ]
∼=
−→ C[µ−1

τ (0)]G.

We have a row of Poisson algebra morphisms

C[X × (G× Sτ )]
α
←− C[X × (G× Sτ )]

G β
−→ C[µ−1

τ (0)]G
δ
←− C[Xτ ],

where α is the inclusion. An analogous procedure yields a second row

C[X × (G× Sτ )]
α′

←− C[X × (G× Sτ )]
G β′

−→ C[µ−1
τ (0)]G

δ′
←− C[Xτ ]

of Poisson algebra morphisms. Now recall the G-equivariant open Poisson
embedding

iτ : X × (G× Sτ ) −→ X × (G× Sτ )
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from (4.1), as well as the commutative diagram (4.2). It follows that iτ
induces the first three vertical arrows in the commutative diagram

C[X × (G× Sτ )] C[X × (G× Sτ )]
G C[µ−1

τ (0)]G C[Xτ ]

C[X × (G× Sτ )] C[X × (G× Sτ )]
G C[µ−1

τ (0)]G C[Xτ ]

α′′

α

β′′

β

δ′′ k∗

τ

δ

α′ β′
δ′

.

Observe that α′′ is a Poisson algebra morphism, as follows from iτ being
a Poisson morphism. One deduces that β′′ must also be a Poisson algebra
morphism. This combines with the commutativity of the middle square and
the fact that β′ and β′′ are surjective Poisson algebra morphisms to imply
that δ′′ is a Poisson algebra morphism. Since δ and δ′ are Poisson algebra
isomorphisms, this forces k∗τ to be a Poisson algebra morphism. □

Some more manifestly geometric features of Xτ may be developed as
follows. Write (X × (G× Sτ ))

◦ for the G-invariant open subvariety of points
in X × (G× Sτ ) whose G-stabilizers are trivial.

The G-action on (X ×G× Sτ )
◦ is Hamiltonian with respect to the Pois-

son structure that (X ×G× Sτ )
◦ inherits from (X × (G× Sτ )), and

(4.15) µ◦τ := µτ

∣

∣

∣

∣

(X×(G×Sτ ))◦
: (X × (G× Sτ ))

◦ −→ g

is a moment map.
Now assume that Xτ exists and consider the geometric quotient map

θτ : µ−1
τ (0) −→ Xτ .

The variety (µ◦τ )
−1(0) is G-invariant and open in µ−1

τ (0), and we set

X◦
τ := θτ ((µ

◦
τ )

−1(0)) ⊆ Xτ .

We also let

θ
◦

τ : (µ◦τ )
−1(0) −→ X

◦

τ

denote the restriction of θτ to (µ◦τ )
−1(0).

Lemma 4.8. Let τ be an sl2-triple in g. If Xτ exists, then X
◦

τ is an open
subvariety of Xτ and θ

◦

τ : (µ◦τ )
−1(0) −→ X

◦

τ is the geometric quotient of
(µ◦τ )

−1(0) by G.
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Proof. The geometric quotient map θτ : µ−1
τ (0) −→ Xτ is open [52, Lemma

25.3.2]. It follows that X
◦

τ = θτ ((µ
◦
τ )

−1(0)) is an open subvariety of Xτ . At
the same time, θ

◦

τ is obtained by restricting the geometric quotient map θτ
to the open, G-invariant subvariety (µ◦τ )

−1(0) ⊆ µ−1
τ (0). This implies that

θ
◦

τ is itself a geometric quotient map. □

Proposition 4.9. Let τ be an sl2-triple in g. If Xτ exists, then X
◦

τ is
smooth and Poisson.

Proof. Recall that (X × (G× Sτ ))
◦ is a Hamiltonian G-variety with moment

map (4.15). Lemma 4.8 then implies that X
◦

τ is the Hamiltonian reduction of
(X × (G× Sτ ))

◦ at level zero. The proposition now follows from generalities
about Hamiltonian reductions by free actions, the relevant parts of which
are discussed in Subsection 2.4. □

Now recall the open embedding kτ : Xτ −→ Xτ defined in (4.5).

Proposition 4.10. Let τ be an sl2-triple in g, and assume that Xτ ex-
ists. The image of kτ : Xτ −→ Xτ then lies in X

◦

τ , and kτ defines an open
embedding of Poisson varieties Xτ −→ X

◦

τ .

Proof. Recall that kτ = jτ ◦ ψτ , and that ψτ is a Poisson variety isomor-
phism. It therefore suffices to prove the following:

(i) the image of jτ : (X × (G× Sτ )) �G −→ Xτ lies in X
◦

τ ;

(ii) jτ defines an open embedding of Poisson varieties (X × (G× Sτ )) �
G −→ X

◦

τ .

Since G acts freely on X × (G× Sτ ), the image of (4.1) lies in (X ×
(G× Sτ ))

◦. We may therefore interpret (4.1) as a G-equivariant open Pois-
son embedding

iτ : X × (G× Sτ ) −→ (X × (G× Sτ ))
◦

and (4.2) as a commutative diagram

X × (G× Sτ ) (X × (G× Sτ ))
◦

g

iτ

µτ µ◦

τ

.
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Such considerations allow one to regard (4.3) and (4.4) as maps

(4.16) iτ
∣

∣

µ−1
τ (0)

: µ−1
τ (0) →֒ (µ◦τ )

−1(0)

and

(4.17) jτ : (X × (G× Sτ )) �G −→ X
◦

τ ,

respectively. This verifies (i) and yields the commutative square

(4.18)

µ−1
τ (0) (µ◦τ )

−1(0)

(X × (G× Sτ )) �G X
◦

τ

iτ

∣

∣

∣

µ
−1
τ (0)

jτ

.

By combining this square with the description of the Poisson structure on a
Hamiltonian reduction, we deduce that (4.17) is a Poisson morphism. This
morphism is also an open embedding, as follows easily from Proposition 4.3.
Our proof is therefore complete. □

Let us write X
◦
for X

◦

τ if τ = 0. This variety turns out to enjoy some
Poisson geometric features beyond those of a general X

◦

τ . To develop these
features, assume that X exists and let

πL : µ−1
L (0) −→ X

be the geometric quotient map. Write (X × T ∗G(logD))◦ for the (G×G)-
invariant open subvariety of points in X × T ∗G(logD) whose GL-stabilizers
are trivial. The (G×G)-action on (X × T ∗G(logD))◦ is Hamiltonian with
respect to the Poisson structure that (X × T ∗G(logD))◦ inherits from X ×
T ∗G(logD), and

(4.19) (µ◦L, µ
◦
R) := (µL

∣

∣

∣

∣

(X×T ∗G(logD))◦
, µR

∣

∣

∣

∣

(X×T ∗G(logD))◦
) :

(X × T ∗G(logD))◦ −→ g⊕ g

is a moment map.
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Now consider the (G×G)-invariant open subvariety of (µ◦L)
−1(0) of

µ−1
L (0), and observe that

X
◦
:= πL((µ

◦
L)

−1(0)).

Let

π◦L : (µ◦L)
−1(0) −→ X

◦

denote the restriction of πL to (µ◦L)
−1(0). At the same time, recall the defi-

nition of the G-action on X.

Lemma 4.11. Assume that X exists. The subset X
◦
is then a G-invariant

open subvariety of X, and π◦L : (µ◦L)
−1(0) −→ X

◦
is the geometric quotient

of (µ◦L)
−1(0) by GL.

Proof. Observe that πL is equivariant with respect to the action of GR

on µ−1
L (0) and the above-discussed G-action on X. Since (µ◦L)

−1(0) is GR-
invariant in µ−1

L (0), this implies that X
◦
= πL((µ

◦
L)

−1(0)) is G-invariant in
X. The rest of this lemma is an immediate consequence of Lemma 4.8. □

The G-action that X
◦
inherits from X is compatible with the Poisson

variety structure referenced in Proposition 4.9. To formulate this more pre-
cisely, recall the map ν : X −→ g in (4.12) and set

ν◦ := ν
∣

∣

X
◦ : X

◦
−→ g.

Proposition 4.12. If X exists, then the action of G on X
◦
is Hamiltonian

with moment map ν◦ : X
◦
−→ g.

Proof. Recall that (X × T ∗G(logD))◦ is a Hamiltonian (G×G)-variety with
moment map (4.19). One deduces thatX

◦
= (µ◦L)

−1(0)/GL is a Hamiltonian
G-variety, and that the corresponding moment map is obtained by letting

−µ◦R

∣

∣

∣

∣

(µ◦

L)
−1(0)

: (µ◦L)
−1(0) −→ g

descend to X
◦
. It remains only to observe that this descended moment map

and the G-action on X
◦
are restrictions of ν : X −→ g and the G-action on

X, respectively. □

Proposition 4.13. Assume that X exists. The image of k : X −→ X then
lies in X

◦
, and k defines an open embedding of Hamiltonian G-varieties

X −→ X
◦
.



✐

✐

“4-Crooks” — 2022/10/10 — 18:25 — page 179 — #45
✐

✐

✐

✐

✐

✐

The log symplectic geometry of Poisson slices 179

Proof. This is a direct consequence of Propositions 4.6 and Proposition 4.10.
□

4.3. The log symplectic geometries of X and Xτ

We now examine the Poisson geometries of X and Xτ in the special case
of a symplectic Hamiltonian G-variety (X,P, ν). These Poisson geometries
essentially become log symplectic geometries, as is consistent with the fol-
lowing result. Recall the map iτ : X × (G× Sτ ) −→ X × (G× Sτ ) defined
in (4.1).

Lemma 4.14. Let (X,P, ν) be an irreducible symplectic Hamiltonian G-
variety. If τ is an sl2-triple in g, then the following statements then hold:

(i) X × (G× Sτ ) is log symplectic;

(ii) iτ is a G-equivariant symplectomorphism onto the unique open dense
symplectic leaf in X × (G× Sτ ).

Proof. Proposition 3.16 tells us that

φ̃
∣

∣

G×Sτ
: G× Sτ −→ G× Sτ

is a G-equivariant symplectomorphism onto the open dense symplectic leaf
in the log symplectic variety G× Sτ . We also recall that iτ is the prod-
uct of φ̃

∣

∣

G×Sτ
with the identity X −→ X. These last two sentences imply

that iτ is a G-equivariant symplectomorphism onto the complement of the
degeneracy locus in X × (G× Sτ ). Since X × (G× Sτ ) and X × (G× Sτ )
are irreducible, this implies that the image of iτ is the unique open dense
symplectic leaf in X × (G× Sτ ).

Now consider the closed subvariety

(4.20) Dτ := (X × (G× Sτ )) \ iτ (X × (G× Sτ ))

of X × (G× Sτ ) It remains only to prove the following things:

(a) Dτ is a normal crossing divisor;

(b) the top exterior power of the Poisson bivector on X × (G× Sτ ) has a
reduced vanishing locus;

(c) the vanishing locus in (b) coincides with Dτ .
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To this end, we note that

Dτ = X × (G× Sτ \ φ̃(G× Sτ )).

We also observe that G× Sτ \ φ̃(G× Sτ ) is a normal crossing divisor in
G× Sτ , as φ̃(G× Sτ ) is the unique open dense symplectic leaf in the log
symplectic varietyG× Sτ (see Proposition 3.16). The previous two sentences
then force Dτ to be a normal crossing divisor in G× Sτ , i.e. (a) holds.
The assertion (b) follows immediately from X being symplectic and G× Sτ
being log symplectic. The assertion (c) follows from our description of the
degeneracy locus in X × (G× Sτ ), as provided in the first paragraph of the
proof. Our proof is therefore complete. □

Now recall the open embedding kτ : Xτ −→ Xτ in (4.5), as well as the
fact that kτ (Xτ ) ⊆ X

◦

τ (see Proposition 4.10). If Xτ is irreducible, then
kτ (Xτ ) lies in a unique irreducible component (X

◦

τ )irr of the Poisson variety
X

◦

τ . The log symplectic nature ofXτ is then captured by the following result,
which relies heavily on the notation of Subsection 4.2.

Theorem 4.15. Let (X,P, ν) be an irreducible symplectic Hamiltonian G-
variety. Suppose that τ is an sl2-triple in g, and that Xτ is irreducible. If
Xτ exists, then the following statements hold.

(i) The Poisson variety (X
◦

τ )irr is log symplectic.

(ii) The morphism kτ : Xτ −→ Xτ is a symplectomorphism onto the unique
open dense symplectic leaf in (X

◦

τ )irr.

Proof. Since G acts freely on (X × (G× Sτ ))
◦, the variety (µ◦τ )

−1(0) is
smooth. The irreducible components of (µ◦τ )

−1(0) are therefore pairwise
disjoint, while the connectedness of G forces these components to be G-
invariant. It follows that the irreducible components of X

◦

τ are precisely the
images of the irreducible components of (µ◦τ )

−1(0) under the quotient map

θ
◦

τ : (µ◦L)
−1(0) −→ X

◦

τ .

This implies that (X
◦

τ )irr = θ
◦

τ (Y ) for some unique irreducible component
Y ⊆ (µ◦τ )

−1(0).
Now note that the image of (4.3) lies in a unique irreducible component

Z of the smooth variety (µ◦L)
−1(0), asXτ and µ−1

τ (0) are irreducible. We also
note that θ

◦

τ (Z) contains the image of kτ , as follows from the commutativity
of (4.7). We conclude that θ

◦

τ (Z) = (X
◦

τ )irr, and the previous paragraph then
implies that Z = Y .
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In light of the above, (4.3) may be interpreted as an open embedding

(4.21) i
∣

∣

µ−1
τ (0)

: µ−1
τ (0) −→ Y.

The irreducibility of Y forces the complement of the image to have positive
codimension in Y . This complement is easily checked to be Y ∩Dτ , where
Dτ ⊆ X × (G× Sτ ) is defined in (4.20). We also observe that Y ∩Dτ has
codimension at most one in Y , as Dτ is a divisor in X × (G× Sτ ). These
last three sentences imply that Y ∩Dτ is a divisor in Y . By [2, Proposi-
tion 3.6], the Poisson structure on θ

◦

τ (Y ) = (X
◦

τ )irr is log symplectic with
divisor θ

◦

τ (Y ∩Dτ ). This completes the proof of (i).
Now consider the commutative diagram

µ−1
τ (0) Y

Xτ (X
◦

τ )irr

i
∣

∣

∣

µ
−1
τ (0)

kτ

,

where the right vertical map is the restriction of θ
◦

τ . Since Y ∩Dτ is the
complement of the image of (4.21), we deduce that the image of kτ has
a complement of θ

◦

τ (Y ∩Dτ ). This amounts to the image of kτ being the
unique open dense symplectic leaf in X

◦

irr. Proposition 4.10 then implies that
kτ is a symplectomorphism onto this leaf. This establishes (ii), completing
the proof. □

It is worth examining this result in the case τ = 0. To this end, recall
the open embedding k : X −→ X

◦
from Subsection 4.1 and the fact that

k(X) ⊆ X
◦
(see Proposition 4.13). If X is irreducible, then k(X) lies in a

unique irreducible component X
◦

irr of X
◦
. On the other hand, recall the G-

actions on X and X
◦
discussed in Subsection 4.2. Let us also recall the map

ν : X −→ g from (4.12).

Corollary 4.16. Let (X,P, ν) be an irreducible symplectic Hamiltonian G-
variety. If X exists, then the following statements hold.

(i) The Poisson variety X
◦

irr is log symplectic.

(ii) The G-action on X restricts to a Hamiltonian G-action on X
◦

irr with
moment map

ν

∣

∣

∣

∣

X
◦

irr

: X
◦

irr −→ g.
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(iii) The morphism k : X −→ X is a G-equivariant symplectomorphism
onto the unique open dense symplectic leaf in X

◦

irr.

(iv) The symplectomorphism in (iii) is a embedding of Hamiltonian G-
varieties.

Proof. Note that µτ = µL if τ = 0, where µL : X × T ∗G −→ g is the moment
map for the Hamiltonian action of GL = G× {e} ⊆ G×G on T ∗G. We also
observe that the map

X ×G −→ µ−1
L (0), (x, g) −→ (x, (g,Adg−1(ν(x)))), (x, g) ∈ X ×G

is a variety isomorphism. It follows that µ−1
τ (0) is irreducible if τ = 0. The-

orem 4.15 now implies that X
◦

irr is log symplectic, and that k : X −→ X is
a symplectomorphism onto the unique open dense symplectic leaf in X

◦

irr.
One also knows that k defines an embedding of Hamiltonian G-varieties
X −→ X

◦
(see Proposition 4.13), and that theG-action onX

◦
must preserve

the component X
◦

irr. These last two sentences serve to verify (i)–(iv). □

4.4. The main examples

We now discuss some of the examples that motivate and best exhibit the
results in this paper.

Example 4.17. Suppose that G is endowed with the G-action defined by

g · h := hg−1, g, h ∈ G.

The induced Hamiltonian G-action on X = T ∗G then satisfies

Xτ
∼= G× Sτ and Xτ = (T ∗G× (G× Sτ )) �G ∼= G× Sτ

for any sl2-triple τ in g. The fibrewise compactification in Theorem 4.5
becomes the one mentioned in Remark 3.17.

Example 4.18. Let τ be a principal sl2-triple in g and recall the notation
used in Subsection 3.3. Consider the Hamiltonian G-varieties X = G× Sτ
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and G× Sτ , as well as the moment maps

ρτ : G× Sτ −→ g and ρτ : G× Sτ −→ g.

The discussion of Zτ
g
and Zτ

g
in Subsection 3.4 combines with Proposition 3.9

to imply that

Xτ = ρ−1
τ (Sτ ) = Z

τ
g

and

Xτ = ((G× Sτ )× (G× Sτ )) �G ∼= ρ−1
τ (Sτ ) = Zτ

g
.

The fibrewise compactification in Theorem 4.5 becomes Bălibanu’s fibrewise
compactification (3.14).

Notation

• OY — structure sheaf of an algebraic variety Y

• C[Y ] — coordinate ring of an algebraic variety Y

• G — complex semisimple linear algebraic group

• GL — the subgroup G× {e} ⊆ G×G

• GR — the subgroup {e} ×G ⊆ G×G

• g — Lie algebra of G

• Ad : G −→ GL(g) — adjoint representation

• g∆ — diagonal in g⊕ g

• n — dimension of g

• ⟨·, ·⟩ — Killing form on g

• τ — sl2-triple in g

• Sτ — Slodowy slice associated to τ .

• χ : g −→ Spec(C[g]G) — adjoint quotient

• yτ — unique point at which Sτ meets χ−1(χ(y)), if τ is a principal
sl2-triple

• ρ = (ρL, ρR) : T
∗G −→ g⊕ g — moment map for the (G×G)-action

on T ∗G

• ρτ : G× Sτ −→ g — moment map for the G-action on G× Sτ
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• X — Hamiltonian G-variety

• ν : X −→ g — moment map for the G-action on X

• Xτ — the Poisson slice ν−1(Sτ )

• X/G — geometric quotient of X by G

• µ = (µL, µR) : X × T
∗G −→ g⊕ g — moment map for the (G×G)-

action on X × T ∗G

• µτ : X × (G× Sτ ) −→ g moment map for the G-action on X × (G×
Sτ )

• ψτ : Xτ −→ (X × (G× Sτ )) �G — canonical Poisson variety isomor-
phism

• G — De Concini–Procesi wonderful compactification of G

• D — the divisor G \G

• T ∗G(log(D)) — log cotangent bundle of (G,D)

• ρ = (ρL, ρR) : T
∗G(log(D)) −→ g⊕ g — moment map for the (G×

G)-action on T ∗G(log(D))

• G× Sτ — the Poisson slice ρ−1
R (Sτ )

• Zτ
g
— universal centralizer of g

• Zτ
g
— Bălibanu’s partial compactification of Zτ

g

• ρτ : G× Sτ −→ g — moment map for the G-action on G× Sτ

• µ = (µL, µR) : X × T
∗G(logD) −→ g⊕ g—moment map for the (G×

G)-action on X × T ∗G(logD)

• µτ : X × (G× Sτ ) −→ g — moment map for the G-action on X ×
(G× Sτ )

• X — the Hamiltonian reduction (X × T ∗G(logD)) �GL

• k : X −→ X — canonical G-equivariant open embedding

• ν : X −→ g — equivariant extension of ν to X

• Xτ — the Hamiltonian reduction (X × (G× Sτ )) �G

• kτ : Xτ −→ Xτ — canonical open embedding

• (X × (G× Sτ ))
◦ — set of points inX × (G× Sτ ) with trivialG-stabilizers
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• X
◦

τ — the Hamiltonian reduction (X × (G× Sτ ))
◦ �G
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[41] I. Mărcuţ and B. Osorno Torres, Deformations of log-symplectic struc-
tures, J. Lond. Math. Soc. (2) 90 (2014), no. 1, 197–212.

[42] ———, On cohomological obstructions for the existence of log-
symplectic structures, J. Symplectic Geom. 12 (2014), no. 4, 863–866.
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