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analysis for asymptotically flat almost Kähler (AFAK) structures
by Kronheimer and Mrowka [17]. As an application, we construct
an invariant for smooth foliations without holonomy-invariant
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1. Introduction

1.1. Seiberg-Witten equations

Let (M, g) be an oriented Riemannian 4-manifold possibly with boundary.
The manifold M is allowed to be empty. We say that M is cylindrical, if M
is isometric to (−∞, 0]× Y for a closed, oriented Riemannian 3-manifold Y .
We say that M is endowed with an exact symplectic structure with bounded
geometry (or an ESBG structure), if there is an exact symplectic form ω = dθ
on M , such that the following conditions hold:

1) ω is compatible with g. In other words, ω is a self-dual 2-form with
norm

√
2 under the metric g;

2) ∂M is compact, (M, g) is complete as a metric space;

3) The injectivity radius ofM has a positive lower bound onM −N(∂M),
where N(∂M) is a tubular neighborhood of ∂M with compact closure;

4) Let R be the Riemann curvature tensor ofM , let ∇ be the Levi-Civita
connection, then supM |∇kR| < +∞ for every k ≥ 0;

5) supM |∇kθ| < +∞ for every k ≥ 0.

If M is empty, then by definition, M is both cylindrical and has an (empty)
ESBG structure.

Suppose (M, g) is endowed with an ESBG structure by the symplectic
form ω = dθ, then (ω, g) induces an almost complex structure on M , and
there is a canonical spinc structure over M such that

S+ = T 0,0M ⊕ T 0,2M,

S− = T 0,1M.

We will denote the canonical spinc structure by sM,ω. Let Φ0 be the section
of S+ given by 1 ∈ Γ(M,T 0,0M), let D be the Dirac operator, then there
exists a unique spinc connection A0 on sM,ω such thatDA0

Φ0 = 0. We call A0

the canonical spinc connection on sM,ω. For more details on the canonical
spinc structure and the canonical spinc connection, see, for example, [14,
Sections 4.2-4.3].

Definition 1.1. Suppose X is a complete oriented Riemannian 4-manifold.
We say that X has cylindrical and ESBG ends, if there are two 4-dimensional
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submanifolds with boundary Mc,Ms ⊂ X and an exact symplectic form ω =
dθ on Ms, such that the following holds.

1) Ms and Mc are disjoint closed subsets of X, and the closure of X −
Mc −Ms is compact. Mc and Ms are allowed to be empty.

2) Mc is cylindrical, and ω = dθ is an ESBG structure on Ms.

3) If Ms is nonempty, then the ESBG structure on Ms can be extended
to a neighborhood of Ms.

4) IfMc is nonempty, then the cylindrical structure onMc can be extended
to a neighborhood ofMc. Namely, there exists a neighborhood N(Mc) of
Mc and a closed oriented Riemannian 3-manifold Y , such that N(Mc)
is isometric to (−∞, ϵ]× Y for ϵ > 0, where Mc ⊂ N(Mc) is mapped
to (−∞, 0]× Y .

Definition 1.2. Let X be a Riemannian 4-manifold with cylindrical and
ESBG ends, where Mc is the cylindrical end, and (Ms, ω = dθ) is the ESBG
end. We say that a spinc structure s on X is admissible, if there is an
isomorphism from s|Ms

to the canonical spinc structure sMs,ω.

Remark 1.3. To simplify notation, if s is an admissible spinc structure on
X, we will always assume that there is a fixed isomorphism from s|Ms

to
sMs,ω, and we will identify the positive and negative spinor bundles of s|Ms

with T 0,0Ms ⊕ T 0,2Ms and T 1,1Ms respectively.

Let s be an admissible spinc structure on X, let S = S+ ⊕ S− be the
corresponding spinor bundle, and let ρ be the Clifford multiplications. Let
r > 0 be a constant; later we will require r to be sufficiently large. This
article studies a system of perturbed Seiberg-Witten equations on X given
by

(1.1)

{
DAϕ = η1,

F+
A = (ϕϕ∗)0 + η2,

where (η1, η2) = (0,−irω/4 + F+
A0
) on Ms, and (η1, η2) is given by a tame

perturbation introduced by [18, Section 10] on Mc. The precise definition of
(1.1) will be given in Section 2.

Let A be spinc connection of s, and let ϕ be a section of S+. Recall
that we have chosen a fixed isomorphism from s|Ms

to sMs,ω and use it to
identify their spinor bundles, so we have S+|Ms

= T 0,0Ms ⊕ T 0,2Ms, where
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the almost complex structure on Ms is induced by ω. Decompose ϕ|Ms
as

ϕ|Ms
=

√
r(α+ β),

where α∈T 0,0Ms, β∈T 0,2Ms. Let∇′
A be the projection of∇A|Ms

to T 0,2Ms.
More precisely, ∇′

A is a connection of T 0,2Ms such that for every section s ∈
Γ(Ms, T

0,2Ms), the section ∇′
As is equal to the projection of ∇As to T

0,2Ms.
Let A0 be the canonical spinc connection on s|Ms

, then there exists a unique
function a onMs which takes values in iR such that A|Ms

−A0 = a · idS+⊕S− .
To simplify notation, we will write a = A|Ms

−A0 for the rest of the article.
Notice that a defines a unitary connection on the trivial bundle T 0,0Ms. We
define the energy density function of (A, ϕ) on Ms as:

(1.2) Er(A, ϕ) = |1− |α|2 − |β|2|2 + |β|2 + |∇aα|2 + |∇′
Aβ|2 + |Fa|2.

Define a function d on Ms as follows. For each connected component

M
(k)
s of Ms, if ∂M

(k)
s is nonempty, let d on M

(k)
s be the distance function to

∂M
(k)
s . Otherwise, fix a point x(k) ∈M

(k)
s , and let d onM

(k)
s be the distance

function to x(k). The main analytic result of this article is the following
estimate.

Theorem 1.4. Let X be a Riemannian 4-manifold with cylindrical and
ESBG ends, where Mc is the cylindrical end, and (Ms, ω = dθ) is the ESBG
end. Then there exists a constant r0 > 0 and a constant z, such that for
every admissible spinc structure s and every r > r0, there exists a constant
C depending on r, with the following significance. If (A, ϕ) is a solution to
(1.1) on X such that ∫

Ms

Er(A, ϕ) < +∞,

then

(1.3) Er(A, ϕ) < C e−
√
r·d/z

pointwise on Ms.

Theorem 1.4 will be re-stated and proved in Section 4.7. The theorem is
an extension of the analysis on asymptotically flat almost Kähler (AFAK)
structures by Kronheimer and Mrowka [17, Section 3(iii)]. This estimate
implies that the zero-dimensional component of a relevant moduli space
of solutions to Seiberg-Witten equations on X is compact, therefore one
can define topological invariants for X by counting the solutions of the
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Seiberg-Witten equations. In Section 5, we will follow the strategies of [20]
and construct an invariant for X which takes value in the monopole Floer
homology group.

1.2. Taut foliations

Theorem 1.4 and the construction in Section 5 can be applied to the study
of taut foliations.

Let Y be a smooth, closed, oriented three-manifold, let F be an oriented
foliation on Y . By definition, F is called taut if the following condition is
satisfied: for every point p ∈ Y , there exists an embedded circle in Y that
contains p and is transverse to F .

One of the fundamental problems in the study of taut foliations is their
existence on a given 3-manifold. By the Roussarie-Thurston theorem, if Y
supports a taut foliation, then every embedded sphere in Y is either nullho-
motopic or is isotopic to a leaf. Reeb’s stability theorem then implies that
if Y supports a taut foliation, then Y is either irreducible, or is homeo-
morphic to S2 × S1 with the product foliation. Gabai [12] proved that every
irreducible, closed, oriented three-manifold with b1 ≥ 1 supports a taut folia-
tion. The existence problem for taut foliations on irreducible manifolds with
b1 = 0 is still unsolved. It was proved in [20] that if Y is a rational homol-
ogy sphere supporting a smooth taut foliation, then the reduced monopole
Floer homology group HM •(Y ) must be nontrivial. This implies, for exam-
ple, that the lens spaces do not support any smooth taut foliations except
for S1 × S2. The theorem was generalized to C0-taut foliations by Bowden
[3].

The flexibility of taut foliations has also been studied for years. Eynard-
Bontemps [11] proved that if two taut foliations can be homotoped to each
other via plane fields, then they can be homotoped to each other via fo-
liations. On the other hand, Vogel [28] and Bowden [5] have constructed
examples of taut foliations that are homotopic as plane fields but cannot be
homotoped to each other via taut foliations.

The proofs of the non-vanishing and non-flexibility results above rely on
the following perturbation theorem, which is due to Eliashberg and Thurston
for C2 foliations and is generalized by Bowden to the C0 case:

Theorem (Eliashberg-Thurston [10], Bowden [3]). Let F be an ori-
entable C0 foliation on an oriented 3-manifold Y , and assume (Y,F) is not
homeomorphic to the product foliation on S2 × S1. Then F can be C0 ap-
proximated both by a sequence of positive contact structures and a sequence
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of negative contact structures. If F is taut, then the positive contact approx-
imations are weakly semi-fillable.

If Y supports taut foliations, then the non-vanishing of HM •(Y ) was
proved by the theorem above and the non-vanishing property of semi-fillable
contact structures [20, Section 6.4]. The examples in [5, 28] were proved by
first showing that the perturbed contact structures are unique up to isotopy,
and then showing that the isotopy classes of the corresponding contact struc-
tures are different.

As an application of Theorem 1.4, if F is a smooth foliation on Y that
does not admit holonomy-invariant transverse measures, we will construct
two invariants c+(F) ∈ }HM •(Y ) and c−(F) ∈ }HM •(−Y ) without invoking

the Eliashberg-Thurston perturbation. Here, }HM •(·) is the boundary-stable
version of the monopole Floer homology introduced by [18]. We will then
apply the invariants to the study of the existence and flexibility of taut
foliations.

Notice that F is taut if and only if there exists a closed 2-form ω̂ on
Y , such that ω̂ is everywhere positive on the tangent plane field of F [7,
Proposition 10.4.1]. On the other hand, F has no holonomy-invariant trans-
verse measure if and only if there exists an exact 2-form ω̂ on Y , such that
ω̂ is everywhere positive on the tangent plane field of F [26, Theorem II.2].
Therefore, if Y is a rational homology sphere, then a foliation F is taut if
and only if it has no holonomy-invariant transverse measure.

In Section 6, we will construct the invariants c+(F) and c−(F), and show

that the gradings of c+(F) ∈ }HM (Y ) and c−(F) ∈ }HM (−Y ) are given by
the homotopy classes of F as plane fields on Y and −Y respectively. We
will also show that c±(F) have nonzero images in the reduced monopole
Floer homology groups under the map j∗ defined by [18, Proposition 22.2.1].
Therefore, the existence of c+(F) gives an alternative proof for the nonvan-
ishing theorem of HM [F ](Y ) for smooth taut foliations on rational homology
spheres [20, Theorem 2.1].

The invariants c±(F) can also be used to study the flexibility of folia-
tions. In Section 7, we will construct smooth foliations without holonomy-
invariant transverse measure that are homotopic as plane fields but have
different invariants c+. Since c±(F) are invariant under smooth deforma-
tions, this gives examples of smooth foliations that are homotopic as plane
fields but cannot be smoothly deformed to each other via foliations without
holonomy-invariant transverse measure.
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It should be pointed out that if F is a smooth foliation without holonomy-
invariant transverse measure, then there exist linear deformations of F to
both positive and negative contact structures [10, Theorem 2.1.2]. It is
straightforward to verify that the space of all positive (negative) linear defor-
mations is convex, so the contact structures obtained by linear deformations
are unique up to isotopy. Therefore, the contact elements of the linearly
deformed contact structures also give two invariants for F in the monopole
Floer homology groups. The relation between c±(F) and the corresponding
contact invariants is not clear to the author.
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2. The Seiberg-Witten equations

This section briefly reviews the definition of Seiberg-Witten equations, and
introduces a perturbation on manifolds with cylindrical and ESBG ends. We
will follow the notations from [18]. The reader may refer to [14, 23] for more
details.

2.1. Spinc Structures

For n≥2, let Spin(n) be the connected double cover of SO(n). Let Spinc(n)=(
U(1)× Spin(n)

)
/{±1}, where 1 ∈ U(1)× Spin(n) is the unit element, and

the two coordinates of −1 ∈ U(1)× Spin(n) are given by −1 ∈ U(1) and
the non-trivial element in the preimage of 1 ∈ SO(n). Let X be an oriented
Riemannian 4-manifold. By definition, a spinc structure s on X is a principal
Spinc(4)–bundle which is a lift of the oriented orthonormal frame bundle via
the surjection

Spinc(4) =
(
U(1)× Spin(4)

)
/{±1} → Spin(4)/{±1} ∼= SO(4).
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The group Spinc(4) has a standard unitary representation on C4. Sup-
pose s is a spinc structure on X, then the spinor bundle of s is defined as
S = s×Spinc(4) C

4. There is a Clifford multiplication ρ : T ∗X → Hom(S, S)
which satisfies ρ(v)2 = −∥v∥2 for all v ∈ T ∗X, and the action ρ extends to
∧∗T ∗M . Let dVol be the volume form of X, then ρ(dVol)2 = id|S. Let S+

and S− be the eigenspaces of ρ(dVol) with eigenvalues −1 and 1 respec-
tively, then both S+ and S− have rank 2. Let Λ+(X) be the vector bundle
of self-dual 2-forms on X, and let End0(S

+) be the traceless endomorphisms
of S, then ρ maps Λ+(X)⊗ C isomorphically to End0(S

+).
A unitary connection A on S is called a spinc connection if ∇Aρ = 0,

where ∇A is the coupled connection of A and the Levi-Civita connection on
TX ⊗Hom(S, S). Every spinc connection decomposes as two unitary con-
nections on S+ and S−, and the connection on S+ induces a connection on
det(S+). We use At to denote the connection on det(S+) induced by A, and
use DA to denote the Dirac operator defined by A.

The definition of spinc structures on 3-manifolds is similar. A spinc

structure on an oriented Riemannian 3-manifold Y is a principal Spinc(3)–
bundle which is a lift of the oriented orthonormal frame bundle. Notice
that Spinc(3) = SU(2)×U(1)/{±1} ∼= U(2). If t is a Spinc structure on a
3-manifold Y , then the spinor bundle of t is defined as S = t×U(2) C

2, and
there is a Clifford multiplication ρ : T ∗M → Hom(S, S). A unitary connec-
tion B on the spinor bundle S is called a spinc connection if ∇Bρ = 0.

2.2. Configuration spaces

For a smooth vector bundle V over a smooth manifold M , we say that a
section s of V is locally Lp

k, if for every p ∈M there exists a neighborhood
U of p and a (smooth) trivialization of V |U , such that s|U is Lp

k under this
trivialization. We say that a connection A of V is locally Lp

k, if there exists a

smooth connection Â, such that A− Â is a locally Lp
k section of T ∗M ⊗ V .

We recall the following definitions of configuration spaces from [18].

Definition 2.1. Let t be a spinc structure on a closed 3-manifold Y , let S
be the spinor bundle. Define Ck(Y, t) to be the set of pairs (B,ψ), where B is
a locally L2

k spinc connection of t, and ψ is a locally L2
k section of S. Define

C(Y, t) = ∩k≥1Ck(Y, t).

Definition 2.2. Let s be a spinc structure on a compact 4-manifold X
possibly with boundary, let S = S+ ⊕ S− be the spinor bundle. Define Ck(X, s)
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to be the set of pairs (A, ϕ) such that A is a locally L2
k spinc connection of

s, and ϕ is a locally L2
k section of S+. Define C(X, s) = ∩k≥1Ck(X, s).

Now let X be a Riemannian 4-manifold with cylindrical and ESBG ends
as given by Definition 1.1. Suppose Mc is the cylindrical end, and (Ms, ω =
dθ) is the ESBG end. Let s be an admissible spinc structure on X as in
Definition 1.2. We define the configuration space for (X, s) as follows. Recall
that for an oriented closed 3-manifold Y , the spinc structures on Y are in
one-to-one correspondence with the spinc structures on (−∞, 0]× Y ([18,
Section 4.3]).

Definition 2.3. Let X,Mc,Ms, ω = dθ, s be as above, let r > 0 be a con-
stant. For k ≥ 1, define Ck(X, s) to be the set of pairs (A, ϕ) such that:

1) A is a locally L2
k Spinc-connection of s, and ϕ is a locally L2

k section
of S+;

2)

∫

Ms

Er(A, ϕ) < +∞, where Er(A, ϕ) is defined by (1.2);

3) On the cylindrical end Mc = (−∞, 0]× Y , let t be the spinc structure
on Y induced by s|Mc

. Then the restriction of (A, ϕ) onMc gives a path
(−∞, 0] → Ck−1(Y, t) that is convergent at −∞, in the L2

k−1 topology
of Ck−1(Y, t).

Define C(X, s) = ∩k≥1Ck(X, s).

2.3. Strongly tame perturbations

Let Y be an oriented closed three-manifold, let t be a spinc structure on Y ,
and let B0 be a smooth spinc connection of t. Let L be the Chern-Simons-
Dirac functional on C(Y, t) defined by [18, Definition 4.1.1] with respect
to B0. A Banach space of “tame” perturbations of L was introduced and
studied in [18, Sections 10, 11]. For the purpose of this article, we need to
introduce a stronger condition on the perturbations.

Recall that if q is a perturbation of the Chern-Simons-Dirac functional,
then the formal gradient of q defines a perturbation (q̂0, q̂1) for the Seiberg-
Witten equations on the cylinder [0, 1]× Y [18, Secion 10.1].

Definition 2.4. Let s be the spinc structure on [0, 1]× Y induced by t. A
perturbation q of L is called strongly tame if

1) It is a tame perturbation as defined by [18, Definition 10.5.1].
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2) There is a constant m0 such that

∥q̂0(A, ϕ)∥C0 ≤ m0(∥ϕ∥C0 + 1)

for all (A, ϕ) ∈ C([0, 1]× Y, s).

3) There is a constant m1 such that

∥q̂1(A, ϕ)∥C0 ≤ m1

for all (A, ϕ) ∈ C([0, 1]× Y, s).

Using the calculations in [18, p. 176], it is straight forward to verify that
the cylindrical functions constructed in [18, Section 11.1] are strongly tame.
The proof of [18, Theorem 11.6.1] defined a norm ∥ · ∥P on the linear space
generated by a seqeuence cylindrical functions, and proved that the comple-
tion with respect to ∥ · ∥P gives a Banach space of tame perturbations. We
consider a modified norm defined by

(2.1) ∥q∥P̂ = ∥q∥P + sup
(A,ϕ)∈C([0,1]×Y,s)

(∥q̂0(A, ϕ)∥C0

∥ϕ∥C0 + 1
+ ∥q̂1(A, ϕ)∥C0

)
.

By the same argument as in [18, Theorem 11.6.1], the completion with re-
spect to ∥ · ∥P̂ gives a Banach space of strongly tame perturbations that
contains the given sequence of cylindrical functions. As a consequence, the
transversality property [18, Theorem 15.1.1] still holds with respect to
strongly tame perturbations.

2.4. Perturbed Seiberg-Witten equations

Let X be a Riemannian 4-manifold with cylindrical and ESBG ends, where
the cylindrical end is Mc and the ESBG end is (Ms, ω = dθ). Let s be an
admissible spinc structure on X, let S = S+ ⊕ S− be the spinor bundle. Let
r > 0 be a constant. This section introduces a family of perturbations of
Seiberg-Witten equations on (X, s) parametrized by the constant r. Similar
perturbations were used in [17, 27] and many other related works.

For (A, ϕ) ∈ Ck(X, s) with k ≥ 2, define

F(A, ϕ) = (ρ(F+
At)− (ϕϕ∗)0, DAΦ),

where (ϕϕ∗)0 is the traceless part of ϕϕ∗. By definition, F(A, ϕ) is a section
of isu(S+)⊕ S−.
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By Conditions (3), (4) of Definition 1.1, the cylindrical and ESBG struc-
tures extend to neighborhoods of Mc and Ms. Let M

′
c and (M ′

s, ω
′ = dθ′) be

the respective neighborhoods of Mc and Ms on which the cylindrical and
ESBG structures extend. If Mc = ∅, then we take M ′

c = ∅. By shrinking the
neighborhoods, we may assume that the closures of M ′

c and M
′
s are disjoint.

We also assume that M ′
s deformation retracts to Ms, therefore the isomor-

phism from s|Ms
to sM,ω extends to an isomorphism from s|M ′

s
to sM ′

s,ω
′ .

In the following, we will fix such an isomorphism from s|M ′
s
to sM ′

s,ω̃. To
simplify notation, we will use the fixed isomorphism to identify the spinor
bundles of s|M ′

s
and sM ′

s,ω
′ .

Suppose Mc is isometric to (−∞, 0]× Y , let t be the spinc structure on
Y induced by s|Mc

. Let q be a strongly tame perturbation on (Y, t), then the
flow line equation of the perturbed Chern-Simons-Dirac functional L+ q

can be written as F(A, ϕ) = q̂(A, ϕ), where q̂ is the formal gradient of q.
For the rest of this article, we will assume q is strongly tame in the sense
of Definition 2.4 and is admissible in the sense of [18, Definition 22.1.1].
Moreover, assume that ∥q∥P̂ ≤ 1, where ∥ · ∥P̂ is the norm defined by (2.1).

Recall that we have fixed an isomorphism from s|M ′
s
to sM ′

s,ω
′ and use

it to identify the spinor bundles of s|M ′
s
and sM ′

s,ω
′ . There is a canonical

section Φ0 of S+|M ′
s
given by 1 ∈ Γ(M ′

s, T
0,0M ′

s), and a canonical spinc

connection A0 on s|M ′
s
characterized by DA0

Φ0 = 0. Define a section û ∈
C∞(M ′

s, isu(S
+)⊕ S−) on M ′

s by

û = (−r(Φ0Φ
∗
0)0 + ρ(F+

At
0
), 0)

=
(
− ir

4
ρ(ω′) + ρ(F+

At
0
), 0

)
.(2.2)

Let τ̂ ∈ C∞
0 (Z −Mc

′ −Ms
′, isu(S+)). Let η ≥ 0 be a smooth cut-off

function on X such that supp η ⊂Mc
′ ∪Ms

′, and η = 1 on Mc ∪Ms. Define

(2.3) µ̂ = ηq̂+ ηû+ (τ̂ , 0).

The Seiberg-Witten equation that will be studied in this article is the equa-
tion for (A, ϕ) ∈ Ck(X, s) given by:

(2.4) F(A, ϕ) = µ̂(A, ϕ).

2.5. Convergence on different manifolds

This subsection defines a version of convergence for a sequence of connections
and spinors on different manifolds, and gives a sufficient condition for the
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existence of a convergent subsequence. For a Riemannian manifold X, a
point p ∈ X, and d > 0, we use Bp(d) to denote the set of points x ∈ X such
that the distance from x to p is no greater than d.

Definition 2.5. A sequence of pointed Riemannian manifolds possibly with
boundary

{(Xn, gn, pn)}n≥1

is said to have uniformly bounded geometry, if there exists a sequence of
positive real numbers {rn}n≥1 such that the following conditions hold:

1) lim
n→∞

rn = +∞;

2) The exponential map of Xn at pn is defined on the closed ball of radius
rn for each n;

3) There exists ϵ0 > 0, such that for all n, the injectivity radius of Xn is
greater than ϵ0 for every point in Bpn

(rn);

4) For every integer n ≥ 0, let R(n) be the Riemann curvature tensor of
Xn, then the sequence

{
sup

Bpn (rn)
|∇kR(n)|

}
n≥1

is bounded for each k.

Remark 2.6. Suppose {(Xn, gn, pn)}n≥1 is a sequence of pointed Rieman-
nian manifolds with uniformly bounded geometry, then for eachN > 0, there
exists a constant CN > 0 with the following property. For every n, sup-
pose x ∈ Bpn

(rn), let φx : B(ϵ0) → Xn be the normal coordinate of (Xn, gn)
centered at x with radius ϵ0. Then ∥φ∗

x gn∥CN (B(ϵ0)) ≤ CN . As a conse-
quence, for each k ∈ Z+, α ∈ (0, 1), r > 0, there exists a constant Q such that
∥(Bpn

(rn), gn)∥k+α,r ≤ Q for all n, where ∥ · ∥k+α,r is the norm defined in
[25, Section 2]. This observation will be used in the proof of Proposition 2.9.

Definition 2.7. Suppose {(Xn, gn, pn)}n≥1 is a sequence of oriented pointed
Riemannian 4-manifolds with uniformly bounded geometry. For each n, let
sn be a spinc structure on Xn, let Sn = S+n ⊕ S−n be the corresponding spinor
bundle, and let ρn : T ∗Xn → Hom(Sn, Sn) the Clifford multiplications. Let
An be a locally L2

k spinc connection of sn, let ϕn be a locally L2
k section of S+n .



✐

✐

“5-Zhang” — 2022/10/18 — 16:04 — page 203 — #13
✐

✐

✐

✐

✐

✐

Monopoles and foliations 203

The sequence {(Xn, gn, pn, sn, An, ϕn)}n≥1 is said to be convergent to

(X, g, p, s, A, ϕ)

up to gauge transformations, if there exists a sequence

{(dn, Un, Vn, φn, φ̃n, un)}n≥1

such that the following conditions hold:

1) (X, g) is a connected complete Riemannian 4-manifold, and p ∈ X.
{dn}n≥1 is a sequence of positive real numbers such that limn→∞ dn =
+∞. The element Vn is an open neighborhood of pn in Xn, and Un

is an open neighborhood of p in X. Both Vn and Un have compact
closures in Xn and X respectively.

2) The exponential map of Xn at pn is defined on the closed ball of ra-
dius dn for each n, and Bpn

(dn) ⊂ Vn in Xn, Bp(dn) ⊂ Un in X. The
element φn is a diffeomorphism from Un to Vn mapping p to pn. More-
over, for every compact subset K of X, we have

lim
n→∞

∥φ∗
n(gn)− g∥Cm(K∩Un) = 0, for all m ∈ N.

3) Let S be the spinor bundle of s and let ρ : T ∗X → Hom(S, S) be the
Clifford multiplication. The element φ̃n is a smooth unitary isomor-
phism from Sn|Un

to S|Vn
lifting φn. Let φ̃

∗
n(ρn) : T

∗X → Hom(S, S) be
the pull-back of ρn via φ̃ and the tangent map of φn. For every compact
subset K of X, we have

lim
n→∞

∥φ̃∗
n(ρn)− ρ∥Cm(K∩Un) = 0, for all m ∈ N.

4) The element un is a gauge transformation of sn on Vn, such that for
every compact subset K of X, we have

lim
n→∞

∥φ̃∗
n(un(An, ϕn))− (A, ϕ)∥Cm(K∩Un) = 0, for all m ∈ N.

Remark 2.8. By our definition, when Xn’s are not connected, the conver-
gence of

{(Xn, gn, pn, sn, An, ϕn)}n≥1

only depends on the connected components containing pn.
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Proposition 2.9. Let {(Xn, gn, pn)}n≥1 be a sequence of pointed oriented
Riemannian 4-manifolds with uniformly bounded geometry, let ϵ0, {rn}n≥1 be
the constants given by Definition 2.5. For each n, let sn be a spinc structure
on Xn, let Sn be the spinor bundle, let An be a locally L2

1 Spinc-connection
for sn, and let ϕn be a locally L2

1 section of S+n . Assume that there exists a
constant C > 0 such that for every n and every point x ∈ Bpn

(rn),

∫

Bx(ϵ0)
|FAn

|2 < C,(2.5)

|ϕn(x)| < C,(2.6)

and

(2.7) DAn
(ϕn) = 0.

Moreover, assume that F(An, ϕn) is smooth for each n, and

(2.8) sup
n≥1

∥F(An, ϕn)∥Ck < +∞, for all k ≥ 1.

Then there exists a subsequence of {(Xn, gn, pn, sn, An, ϕn)}n≥1 and a con-
figuration (X, g, p, s, A, ϕ), such that the subsequence converges to (X, g, p, s,
A, ϕ) in the sense of Definition 2.7.

Proof. Since {(Xn, gn, pn)}n≥1 have uniformly bounded geometry, it follows
from [25, Theorem 2.2] and Remark 2.6 that after taking a subsequence,
there exists a complete, connected, pointed Riemannian manifold (X, g, p)
and a sequence {(dn, Un, Vn, φn)}n≥1, such that Conditions (1), (2) of Defi-
nition 2.7 are satisfied. Although [25, Theorem 2.2] requires (Xn, gn, pn) to
be complete, the proof also works for non-complete manifolds as long as
Conditions (1), (2) of Definition 2.5 holds. By taking a further subsequence,
we may assume that Un ⊂ Um ⊂ X for all n ≤ m.

Now we construct a spinc structure s on X. By (2.5), the sequence

∥φ∗
n(FAn

)∥L2(Un∩K)

is bounded for every compact subset K of X. Take an embedded closed
oriented surface Σ in X, let N(Σ) be a tubular neighborhood of Σ. Then

sup
{n|N(Σ)⊂Un}

∫

N(Σ)
|φ∗

n(FAn
)| < +∞,
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As a consequence,

sup
{n|N(Σ)⊂Un}

|⟨φ∗
n(c1(sn)), [Σ]⟩| < +∞

Let Spinc(Un) be the set of isomorphism classes of spinc structures on
Un. Since the first Chern class determines the spinc structure up to tor-
sion, there exists a finite set Λn ⊂ Spinc(Un), such that φ∗

m(sm)|Un
∈ Λn

for all m ≥ n. Therefore, after taking a further subsequence, we may as-
sume that φ∗

m(sm)|Un
is isomorphic to φ∗

n(sn) for all m ≥ n. For each n, let
ζn : φ∗

n(sn) → φ∗
n+1(sn+1)|Un

be an isomorphism of spinc structures on Un,
let ιn : Un → Un+1 be the inclusion map, then {(φ∗

n(sn), Un, ζn, ιn)}n≥1 gen-
erates a direct system. Taking the limit of this direct system yields a spinc

structure s on X and isomorphisms φ̃n : s|Un
→ sn that are lifts of φn.

The only thing remaining to prove is the existence of (A, ϕ) and the gauge
transformations un satisfying Condition (4) of Definition 2.7. Without loss
of generality, we may assume that the closures of Vn ⊂ Xn and Un ⊂ X are
compact manifolds with boundary. For a pair of positive integers n ≥ m, let
Ean(An|Vm

, ϕn|Vm
) be the analytic energy of (An, ϕn) on Vm as defined by

[18, Definition 4.5.4]. We will show that for every m,

sup
n≥m+1

Ean(An|Vm
, ϕn|Vm

) < +∞.

Since the closure of Um in X is compact for every m, by taking a fur-
ther subsequence if necessary, we may assume that Um−1 ⊂ Um for all m.
Moreover, since X is complete, we may take a further subsequence, such
that for each m ≥ 1, there is a cut-off function χm ≥ 0 on X such that
suppχm ⊂ Um+1, χm|Um

= 1, and |∇χm| ≤ 1 for all m.

For n ≥ m+ 1, let ϕ
(m)
n = (χm ◦ φ−1

n ) · ϕn be a spinor on Vn. By (2.6),
(2.8), and Condition (2) of Definition 2.7, we have

∥F(An, ϕ
(m)
n )∥L2(Vm+1) ≤ C1 (∥F(An, ϕn)∥L2(Vm+1) + ∥ϕn∥C0 + ∥ϕn∥2C0)

≤ C2(2.9)

for constants C1, C2 depending on m.

Let E top(An|Vm+1
, ϕ

(m)
n |Vm+1

) be the topological energy of (An, ϕ
(m)
n ) on

Vm+1 as defined by [18, Definition 4.5.4]. Since ϕ
(m)
n is compactly supported

on Vm+1, we have

(2.10) E top(An|Vm+1
, ϕ(m)

n |Vm+1
) =

1

4

∫

Vm+1

FAt
n
∧ FAt

n
,
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which is bounded by a constant depending on m because of (2.5).
By [18, (4.16)],

Ean(An|Vm+1
, ϕ(m)

n |Vm+1
) = E top(An|Vm+1

, ϕ(m)
n |Vm+1

) + ∥F(An, ϕ
(m)
n )∥2L2(Vm+1)

,

therefore by (2.9) and (2.10), Ean(An|Vm+1
, ϕ

(m)
n |Vm+1

) is bounded by a con-
stant depending on m. Since

Ean(An|Vm+1
, ϕ(m)

n |Vm+1
) ≥ Ean(An|Vm

, ϕn|Vm
)− C3,

for a constant C3 depending on m, we conclude that

sup
n≥m+1

Ean(An|Vm
, ϕn|Vm

) < +∞.

By Condition (2) of Definition 2.7, the statement above implies that

{Ean(φ̃∗(An)|Um
, φ̃∗(ϕn)|Um

)}n≥m+1

is bounded for every m. Therefore, by a diagonal argument, the existence
of (A, ϕ) and un satisfying Condition (4) of Definition 2.7 follows from [18,
Theorem 5.2.1]. □

3. Exponential decay of Er(A,φ)

This section proves a weak version of Theorem 1.4, which will be stated as
Proposition 3.3.

Let X be a Riemannian 4-manifold with cylindrical and ESBG ends,
and suppose the cylindrical end is Mc and the ESBG end is (Ms, ω = dθ).
Let s be an admissible spinc structure on X, let S = S+ ⊕ S− be the spinor
bundle of s, let Φ0 be the canonical section of S+|Ms, and let A0 be the
spinc connection on s|Ms

such that DA0
Φ0 = 0.

Let (A, ϕ) ∈ Ck(X, s) be a solution to (2.4). By the standard elliptic
regularity arguments, (A, ϕ) is locally C∞ on X after suitable gauge trans-
formations. Since the perturbation q in (2.3) is assumed to be admissible,
it follows from [18, Proposition 13.4.1] that Condition (3) of Defintion 2.3
implies the C0 convergence of (A, ϕ) on Mc after gauge transformations. As
a consequence,

(3.1) ∥ϕ∥C0(Mc) < +∞.
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Let inj(X) be the injectivity radius of X. By Definition 1.1, inj(X) > 0.
Let

(3.2) ϵ0 = min{ inj(X)

2
, 1}.

The following convention will be adopted for the rest of this article unless
otherwise stated: the notations z or zi will denote positive real numbers that
only depend on X,Ms,Mc, θ, and the terms τ̂ and η in (2.3). The notation
r0 will denote a positive real number that depends only on the same set of
data, and we will assume that r > r0 for the constant r in (2.2). The value
of r0 may increase as the proof proceeds.

3.1. C0 bound

This subsection proves the following C0 estimate. Recall that A0 is the
canonical connection on s|Ms

, and let a = A|Ms
−A0

Proposition 3.1. There exist constants z, r0, such that for all r > r0
and (A, ϕ) ∈ Ck(X, s) satisfying (2.4), we have ∥ϕ∥C0(X) ≤ z · √r, and
∥F+

a ∥C0(X) ≤ z · r.

The proof starts with the following C0 estimate onMs, which is adapted
from [17, Lemma 3.23]. Recall that ϵ0 is the constant defined by (3.2).

Lemma 3.2. Let N(∂Ms) be the ϵ0-neighborhood of ∂Ms. There exist con-
stants z, r0, such that if r > r0 and (A, ϕ) ∈ Ck(X, s) solves (2.4), we have

∥ϕ∥C0(Ms−N(∂Ms)) ≤ z · √r.

Proof. By (2.2) of [27], the following inequality holds on Ms for a constant
z1:

1

2
d∗d|ϕ|2 + |∇Aϕ|2 +

1

4
|ϕ|2(|ϕ|2 − r)− z1 · |ϕ|2 ≤ 0.

Take r0 > 4z1. For r > r0, we have

(3.3)
1

2
d∗d|ϕ|2 + 1

4
|ϕ|2(|ϕ|2 − 2r) ≤ 0.

For x ∈Ms −N(∂Ms), let ρ be the distance function to x on Bx(ϵ0). Let f
be the function on the interior of Bx(ϵ0) defined by f = 1/(ϵ20 − ρ2)2. Since
ϵ0 is less than the injectivity radius of X, let (gij)1≤i,j≤4 be the metric
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matrix of the normal coordinates of Bx(ϵ0) centered at x, and let g be the
determinant of (gij)1≤i,j≤4. We have

d∗df = − 1

ρn−1√g
∂

∂ρ

(
ρn−1√g · ∂f

∂ρ

)
.

Notice that since X has bounded geometry, ∥g∥C0 and ∥∇g∥C0 are both
bounded by constants independent of x, and g is bounded away from 0 on
Bx(ϵ0). A straightforward calculation shows that for some large constant
z2 > 0,

(3.4)
1

2
d∗d

(
(z2)

2rf
)
+

1

4

(
(z2)

2rf
)(
(z2)

2rf − 2r
)
≥ 0.

Let x′ be a point in Bx(ϵ0) where the function (z2)
2rf − |ϕ|2 achieves the

minimum value. Since the limit of f on ∂Bx(ϵ0) is +∞, such a point x′ exists
in the interior of Bx(ϵ0). By (3.3) and (3.4), we have

|ϕ(x′)|2(|ϕ(x′)|2 − 2r) ≤
(
(z2)

2rf(x′)
)(
(z2)

2rf(x′)− 2r
)
,

therefore |ϕ(x′)|2 ≤ max{2r, (z2)2rf(x′)} ≤ 2r + (z2)
2rf(x′). This implies

|ϕ|2 ≤ 2r + (z2)
2rf , hence |ϕ(x)| ≤ z · √r for z =

√
2 + (z2)2. □

Now we prove Proposition 3.1.

Proof of Proposition 3.1. Let r0 be the constant given by Lemma 3.2. In-
crease the value of r0 if necessary such that r0 ≥ 1, and assume r > r0.

By (3.1) and Lemma 3.2, we have supX |ϕ| < +∞. Let x0 ∈ X be a
point such that |ϕ(x0)| ≥ 1

2 supX |ϕ|. Let ϵ < ϵ0 be a positive constant that
will be determined later. Notice that (A, ϕ) satisfies the following equations
on Bx0

(ϵ):

ρ(F+
At) = (ϕϕ∗)0 + µ̂0(A, ϕ),(3.5)

DAϕ = µ̂1(A, ϕ),(3.6)

where µ̂ is given by (2.3). Since the perturbation q is strongly tame and
|ϕ(x0)| ≥ 1

2 supX |ϕ|, there exists a constant z0 such that the following holds
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on Bx0
(ϵ):

∥µ̂0(A, ϕ)∥C0 ≤ z0 (1 + |ϕ(x0)|) + z0 r,(3.7)

∥µ̂1(A, ϕ)∥C0 ≤ z0.(3.8)

In the following, we will write µ̂0(A, ϕ) as µ̂0, and µ̂1(A, ϕ) as µ̂1. Applying
DA to both sides of (3.6) yields

D2
Aϕ = DA(µ̂

1).

By the Weitzenböck formula, this implies

(3.9) ∇∗
A∇Aϕ+

1

2
ρ(F+

At)ϕ+
1

4
sϕ = DA(µ̂

1),

where s is the scalar curvature of X. Plug in (3.5) to (3.9), and take the
inner product with ϕ, we obtain

1

2
d∗d|ϕ|2 + |∇Aϕ|2 +

1

4
|ϕ|4 + 1

4
⟨sϕ, ϕ⟩+ 1

2
⟨µ̂0ϕ, ϕ⟩ = ⟨DA(µ̂

1), ϕ⟩.

Recall that r > r0 ≥ 1, hence by (3.7), there exists a constant z1 such that

1

2
d∗d|ϕ|2 + |∇Aϕ|2 +

1

4
|ϕ|4 ≤ ⟨DA(µ̂

1), ϕ⟩+ z1 r|ϕ|2 + z1|ϕ(x0)| |ϕ|2.

By the arithmetic-geometric mean inequality,

− 1

16
|ϕ|4 − 4 z21 r

2 ≤ −z1 r |ϕ|2,

− 1

16
|ϕ|4 − 4 z21 |ϕ(x0)|2 ≤ −z1 |ϕ(x0)| |ϕ|2.

Adding the above three inequalities, we obtain

1

2
d∗d|ϕ|2 + |∇Aϕ|2 +

1

8
|ϕ|4 − 4z21( r

2 + |ϕ(x0)|2) ≤ ⟨DA(µ̂
1), ϕ⟩.

Let h ≥ 0 be a smooth function on Bx0
(ϵ) such that h = 1 on Bx0

(ϵ/4)
and supph ⊂ Bx0

(ϵ/2). Let χ = h4. Let Gx0
≥ 0 be the Green’s function on
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Bx0
(ϵ) that has a pole at x0 and equals zero on ∂Bx0

(ϵ). Then:

∫

Bx0
(ϵ)

(1
2
d∗d|ϕ|2 + |∇Aϕ|2 +

1

8
|ϕ|4 − 4z21( r

2 + |ϕ(x0)|2)
)
·Gx0

· χ

≤
∫

Bx0
(ϵ)
⟨DA(µ̂

1), ϕ ·Gx0
χ⟩,

which gives

(3.10)

∫

Bx0
(ϵ)

((
− 1

2
∆(|ϕ|2χ) + 1

2
|ϕ|2∆χ+∇|ϕ|2 · ∇χ

)
·Gx0

+ |∇Aϕ|2Gx0
χ+

1

8
|ϕ|4Gx0

χ− 4z21( r
2 + |ϕ(x0)|2)Gx0

χ
)

≤
∫

Bx0
(ϵ)
⟨µ̂1, DA(ϕGx0

χ)⟩.

Therefore

(3.11)
1

2
|ϕ(x0)|2 ≤

∫

Bx0
(ϵ)

(
(−1

2
|ϕ|2∆χ−∇|ϕ|2 · ∇χ) ·Gx0

− |∇Aϕ|2Gx0
χ

− 1

8
|ϕ|4Gx0

χ+ 4z21( r
2 + |ϕ(x0)|2)Gx0

χ+ ⟨µ̂1, DA(ϕGx0
χ)⟩

)
.

Recall that χ = h4, hence |∆χ| ≤ 4h3|∆h|+ 12h2|∇h|2. By the arithmetic-
geometric mean inequality, there exists a constant z2 such that

−1

2
|ϕ|2∆χ ≤|ϕ|2(2h3|∆h|+ 6h2|∇h|2)

≤z2(|∆h|2h2 + |∇h|4) + 1

16
|ϕ|4 h4

=z2(|∆h|2h2 + |∇h|4) + 1

16
|ϕ|4 χ.

Similarly, there exists a constant z3 such that

|∇|ϕ|2| · |∇χ| ≤2|ϕ| · |∇Aϕ| · (4h3|∇h|)

≤32 |ϕ|2h2|∇h|2 + 1

2
|∇Aϕ|2h4

≤z3|∇h|4 +
1

16
|ϕ|4 h4 + 1

2
|∇Aϕ|2h4

=z3|∇h|4 +
1

2
|∇Aϕ|2χ+

1

16
|ϕ|4 χ.
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By (3.8), there exists a constant z4 such that

∫

Bx0
(ϵ)
⟨µ̂1, DAϕ⟩Gx0

χ ≤
∫

Bx0
(ϵ)
z0 |DAϕ|Gx0

χ

≤
∫

Bx0
(ϵ)

1

2
|∇Aϕ|2Gx0

χ+ z4

∫

Bx0
(ϵ)
Gx0

χ.

Therefore (3.11) and the three estimates above yield

1

2
|ϕ(x0)|2 ≤

∫

Bx0
(ϵ)

(
z2(|∆h|2h2 + |∇h|4) + z3|∇h|4

)
Gx0

+ z4

∫

Bx0 (ϵ)
Gx0

χ

+

∫

Bx0 (ϵ)
|µ̂1||ϕ||∇(Gx0

χ)|+ 4z21( r
2 + |ϕ(x0)|2)

∫

Bx0 (ϵ)
Gx0

χ.(3.12)

Recall that |ϕ(x0)| ≥ 1
2 supX |ϕ|, therefore by (3.8),

∫

Bx0
(ϵ)

|µ̂1||ϕ||∇(Gx0
χ)| ≤ 2 |ϕ(x0)|

∫

Bx0
(ϵ)

|µ̂1||∇(Gx0
χ)|

≤ 1

8
|ϕ(x0)|2 + 8

(∫

Bx0
(ϵ)

|µ̂1||∇(Gx0
χ)|

)2

≤ 1

8
|ϕ(x0)|2 + 8 z20

(∫

Bx0
(ϵ)

|∇(Gx0
χ)|

)2
.(3.13)

Notice that the constants zi do not depend on the choice of ϵ, and there
exist constants z5, z6 such that

z5 ϵ
2 ≤

∫

Bx0 (ϵ)
Gx0

≤ z6 ϵ
2.

Take ϵ = 1/(z7
√
r), with z7 sufficiently large such that

(3.14)

∫

Bx0 (ϵ)
Gx0

≤ z6 ϵ
2 ≤ min

{1

r
,

1

32 z21

}
.

Plug in (3.13) and (3.14) to (3.12), and rearrange, we have

1

4
|ϕ(x0)|2 ≤

∫

Bx0
(ϵ)

(
z2(|∆h|2h2 + |∇h|4) + z3|∇h|4

)
Gx0

+ z4

∫

Bx0 (ϵ)
Gx0

χ+ 8 z20

(∫

Bx0 (ϵ)
|∇(Gx0

χ)|
)2

+ 4 z21 r
2

∫

Bx0 (ϵ)
Gx0

χ.
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Since ϵ = 1/(z7
√
r), one can choose the function h such that the right-hand

side of the above inequality is bounded by z8 · r for some constant z8, hence
the estimate on ∥ϕ∥C0(X) is proved. The upper bound on ∥F+

a ∥C0(X) then
follows from (3.5) and (3.7). □

3.2. Exponential decay on Ms

Recall that the spinor ϕ|Ms
decomposes as ϕ =

√
r(α+ β), with α ∈

Γ(Ms, T
0,0Ms), β ∈ Γ(Ms, T

0,2Ms). The spinor bundle S+ has a canonical
section Φ0 on Ms given by 1 ∈ Γ(Ms, T

0,0Ms), and there is a unique spinc

connection A0 on s|Ms
such that DA0

Φ0 = 0. Take a = A|Ms
−A0, and take

∇′
A to be the projection of ∇A|Ms

to T 0,2Ms. The energy density function
Er(A, ϕ) is defined on Ms by (1.2). If (A, ϕ) ∈ Ck(X, s), then we have

∫

Ms

Er(A, ϕ) < +∞.

Recall that the function d onMs is defined as follows. For each connected
componentM

(k)
s ofMs, if ∂M

(k)
s is nonempty, then d is the distance function

to ∂M
(k)
s on M

(k)
s . Otherwise, fix a point x(k) ∈M

(k)
s , and d is the distance

function to x(k) on M
(k)
s . The main result of this section is the following

proposition.

Proposition 3.3. There exist constants z, z′, r0 such that the following
holds. Suppose r > r0 and (A, ϕ) ∈ Ck(X, s) solves (2.4), then there is a con-
stant d0, which may depend on r and (A, ϕ), such that

(3.15) Er(A, ϕ)(x) < ze−
√
r·(d(x)−d0)/z′

for every x ∈Ms with d(x) > d0.

We start the proof with the following lemma, which is adapted from [17,
Lemma 3.21].

Lemma 3.4. Let (A, ϕ) be as in Proposition 3.3, then given δ > 0, there
exists d(δ) > 0 depending on (A, ϕ), r and δ, such that for all x ∈Ms with
d(x) > d(δ), we have

Er(A, ϕ)(x) < δ.

Proof. Assume the contrary, then there is a sequence {xn}n≥1 ⊂Ms and
a constant δ > 0, such that d(xn) → +∞ and Er(A, ϕ)(xn) ≥ δ for all n.
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Let ϵ0 > 0 be given by (3.2). After taking a subsequence of {xn} if nec-
essary, we may assume that the balls Bxn

(ϵ0) are pairwise disjoint and
are all included in Ms. Let g be the metric of X. Consider the sequence
(Ms, g, xn, s, A, ϕ). By Proposition 2.9 and Lemma 3.2, a subsequence con-

verges to a limit (M̃s, g̃, x̃, s̃, Ã, ϕ̃). Recall that ∇kω is bounded for all k. By
a diagonal argument and the Arzelà-Ascoli theorem, after taking a further
subsequence, the symplectic form ω converges to a limit symplectic form ω̃
on M̃s, in the C∞ topology on compact subsets. The symplectic form ω̃ is
compatible with g̃, and hence it defines an energy density function Ẽr(Ã, ϕ̃)

on M̃s. By the assumptions on xn, we have Ẽr(Ã, ϕ̃)(x̃) ≥ δ, thus
∫

Bx̃(ϵ0)
Ẽr(Ã, ϕ̃) > 0.

Therefore, there exists a positive constant δ′ > 0, such that
∫

Bxn (ϵ0)
Er(A, ϕ) > δ′

for sufficiently large n. This contradicts the assumption that
∫

Ms

Er(A, ϕ) < +∞.
□

The following lemma is an extension of [17, Lemma 3.24]. Recall that
for a point p in a complete Riemannian manifoldM , we use Bp(r) to denote
the set of points in M whose distance to p is no greater than r, and r is
allowed to be greater than the injectivity radius of M at p.

Lemma 3.5. Let K, v0, R > 0, r ≥ 1 be constants. Let M be an n-
dimensional complete Riemannian manifold with Ric ≥ −K, let x0 ∈M .
Let s be a C2 function on Bx0

(R). Suppose s satisfies:

1

2
d∗d s+ rV s ≤ h,

where h, V are C0 functions, and V ≥ v0 on Bx0
(R). Then there exists a

positive constant ϵ depending only on n, K, R, and v0, such that the following
inequality holds:

s(x0) ≤
(

sup
Bx0

(R)

∣∣∣ h
rV

∣∣∣
)
+
(

sup
∂Bx0

(R)
|s|

)
e−ϵR

√
r.

If ∂Bx0
(R) = ∅, then sup∂Bx0

(R) |s| in the above inequality is defined to be 0.
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Proof. Let ρ be the distance function to x0, let k =
√
K/(n− 1). By the

distributional Laplacian comparison theorem, the following inequality holds
on X in the sense of distributions:

(3.16) ∆ρ ≤ n− 1

ρ
(1 + k ρ).

In other words, for every non-negative function φ ∈ C∞
0 (X), we have

∫

X
ρ∆φ ≤

∫
n− 1

ρ
(1 + k ρ)φ.

The reader may refer to [22, Corollary 2.12] for the proof of (3.16) (see also
[15] and [6, Theorem 3]).

Let f(u) be a smooth, non-decreasing function on R such that f(u) = 0
when u ≤ R/4 and f(u) = u when u ≥ R/2. Let g = eϵ

√
rf(ρ) be a function

on M , where ϵ is a small positive constant that will be determined later.
Notice that in the sense of distributions,

d∗dg = −∆g = −(ϵ
√
rf ′′(ρ) + ϵ2r(f ′(ρ))2 + ϵ

√
rf ′(ρ)∆ρ) g

≥ −
(
ϵ
√
rf ′′(ρ) + ϵ2r(f ′(ρ))2 + ϵ

√
rf ′(ρ)

(n− 1

ρ
+ k(n− 1)

))
g.

Therefore, there exists a constant ϵ depending only on n, K, R, and v0, such
that

1

2
d∗dg + rV g ≥ 0

in the sense of distributrions. Let

g̃ = sup
Bx0

(R)

∣∣∣ h
rV

∣∣∣+
(

sup
∂Bx0

(R)
|s|

)
· g/eϵ

√
r R,

then 1
2d

∗ds+ rV s ≤ 1
2d

∗dg̃ + rV g̃ in the sense of distributions, and
s|∂Bx0

(R) ≤ g̃|∂Bx0
(R). By the maximum principle for weak solutions [13, The-

orem 8.1], we have s ≤ g on the ball Bx0
(R), hence the lemma is proved. □

Proof of Proposition 3.3. Recall that we use the notation zi to denote con-
stants that only depend on X,Ms,Mc, θ, and the terms τ̂ and η in (2.3). In
the following we will require r0 ≥ 1. The proof follows the strategy of [17,
Section 3], and is divided into 7 steps:
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Step 1. By Lemma 3.4, there exists d1 > 0 depending on (A, ϕ) and r,
such that if x ∈Ms satisfies d(x) > d1 then

(3.17) |α(x)| > 1

2
, Er(A, ϕ)(x) < 1.

Step 2: Pointwise estimates of α and β. By [27, Lemma 2.2], there
exist constants z1, z2, z3 ≥ 1, such that if ζ ∈ (0, r

2z1z2
), r > z1, and δ > z3,

let

(3.18) u = (1− |α|2)− ζ|β|2 + δ

ζr
,

then the following inequality holds:

1

2
d∗du+

r

4
|α|2u ≥ 0.

Notice that the C0 norm of u is bounded by (3.17), hence by Lemma 3.5
and (3.17), there are constants z5, z6 such that

(3.19) u ≥ −z5e−
√
r·(d−d1)/z6 ,

on {x ∈Ms|d(x) > d1 + 1}. Therefore there exists a constant z7 such that

|α|2 ≤ 1 +
z7
r2
,(3.20)

|β|2 ≤ z7
r

(
1− |α|2 + z7

r2
)
,(3.21)

on {x ∈Ms|d(x) > d1 + 1}.
Step 3: Pointwise estimates of Fa. On Ms, the curvature part of (2.4)
can be rewritten as (cf. [16, (8),(9)])

(3.22) F+
a = − i

8
r ·

(
1− |α|2 + |β|2)ω +

r

4
(α∗β − αβ∗).

By (3.20) and (3.21), there exists a constant z11 such that

|F+
a | ≤ r

4
√
2
(1 +

z11
r
)(1− |α|2) + z11.

Now we estimate |F−
a |. By [27, Lemma 2.5], there exist constants z12, z13,

z14, z15 such that if r > z15, then for

q0 =
r

4
√
2
(1 +

z12
r
)(1− |α|2)− z13 · r|β|2 + z14,

s = |F−
a |,
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we have
1

2
d∗d(s− q0) +

r

4
|α|2(s− q0) ≤ |R|s,

where R is a curvature term that is uniformly bounded on Ms.
Therefore, if r > 8 sup |R|, we have

1

2
d∗d(s− q0) +

r

8
|α|2(s− q0) ≤ |R| · |q0|.

By Lemma 3.5 and (3.17), there exists a constant z16 such that on {x ∈
Ms|d(x) > d1 + 1}, we have

|F−
a | ≤ r

4
√
2
(1 +

z16
r
)(1− |α|2) + z16.

In conclusion, there is a constant z17 such that on {x ∈Ms|d(x) > d1 + 1},

|F±
a | ≤ r

4
√
2
(1 +

z17
r
)(1− |α|2) + z17.

Step 4: Pointwise estimates of |∇aα| and |∇′
A
β|. Let

y = |∇aα|2 + r|∇′
Aβ|2.

Recall that the function u is defined by (3.18). By [27, (2.43)], there exists
a constant z18 such that

1

2
d∗d(y − z18 · r · u) +

r

4
|α|2(y − z18 · r · u) ≤ 0.

By (3.20), (3.21), and Lemma 3.5, therer exists a constant z19 such that

|∇aα|2 + r|∇′
Aβ|2 = y ≤ z19 · r · (1− |α|2) + z19.

Step 5: Exponential decay of |∇aα|, |∇′
A
β|, and |β|. Let

y1 = |∇aα|2 +
r

32
|∇′

Aβ|2 +
r2

16 z20
|β|2.

By [27, (4.15)], one can choose z20 sufficiently large, such that there exists
a constant z21, such that1

(3.23)
1

2
d∗dy1 +

r

4
|α|2y1 ≤

(
z21 · r · (1− |α|2) + r

8
)y1.

1The derivation of [27, (4.15)] only used the pointwise estimates of α, β, Fa, ∇aα
and ∇′

A
β from [27, Section 2], and it does not depend on the refined pointwise

estimate of F−

a developed in [27, Section 3d]. Therefore, the inequalities obtained
from Step 2 to Step 4 are sufficient for deriving (3.23).
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By Lemma 3.4, there exists a constant d2 such that on {x ∈Ms|d(x) > d2},

|1− |α|2| < min
{ 1

16 z21
,
1

8

}
.

Then (3.23) implies that on {x ∈Ms|d(x) > d2},

1

2
d∗dy1 +

r

32
y1 ≤ 0.

By Lemma 3.5, there are constants z22, z23 such that on {x ∈Ms|d(x) >
d2 + 1},

(3.24) y1 < z22 · e
√
r·(d−d2)/z23 ,

Step 6: Exponential decay of |1 − |α|2|. By [27, (2.3)],

1

2
d∗d|α|2 + |∇aα|2 +

r

4
|α|2(|α|2 − 1 + |β|2) + α⊠∇′

Aβ + α⊠ β = 0,

where ⊠ are pointwise bilinear operators defined by the metric and the
symplectic form. A straight forward calculation shows

1

4
d∗d|1− |α|2|2 =

(1
2
d∗d(1− |α|2)

)
· (1− |α|2)− 1

2
|∇a|α|2|2

=− r

4
|α|2|1− |α|2|2 + |∇aα|2 · (1− |α|2)

+
r

4
|α|2|β|2(1− |α|2) + (1− |α|2) · (α⊠∇′

Aβ + α⊠ β).

The equation above and (3.24) imply there are constants z24, z25, such that
on {x ∈Ms|d(x) > d2 + 1},

1

4
d∗d|1− |α|2|2 + r

4
|α|2|1− |α|2|2 ≤ z24 · e(d−d2)

√
r/z25 .

By Lemma 3.5, there exist constants z26, z27 such that

(3.25) |1− |α|2|2 < z26 · e(d−d2)
√
r/z27 ,

on {x ∈Ms|d(x) > d2 + 1}.

Step 7: Exponential decay of |Fa|. The exponential decay for |F+
a |

follows from (3.22), (3.24) and (3.25). Recall that s = |F−
a |. By [27, (2.19)],
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there exists a constant z28 such that

1

2
d∗ds+

r

4
(|α|2 + |β|2)s ≤ |R|s+ r

4
√
2
(|∇aα|2 + |∇′

Aβ|2)

+ z28 · r(|α||β|+ |α||∇′
Aβ|+ |β||∇aα|+ |β|2).

Therefore (3.24) shows that there exist constants z29, z30, such that if |α| >
7/8, r > 16 sup |R|, and d(x) > d2 + 1, then

1

2
d∗ds+

r

8
|α|2s ≤ z29 · e(d−d2)

√
r/z30 ,

By Lemma 3.5, this implies there are constants z31, z32, and a positive real
number d3 which may depend on (A, ϕ), such that

(3.26) s < z31 · e(d−d3)
√
r/z32

on {x ∈Ms|d(x) > d3}.
The proposition then follows from (3.24), (3.25), and (3.26). □

4. Uniform exponential decay of Er(A,φ)

This section shows that the constant d0 in Proposition 3.3 can be chosen to
depend only on r, not on the solution (A, ϕ). Let X,Z,Ms,Mc, s, S, ω, θ, A,
ϕ,A0 be as in Section 3. Recall that zi denotes constants that only depend
on X,Ms,Mc, θ, and the terms τ̂ and η in (2.3). The constant r0 is a positive
real number that depends on the same set of data, and the value of r0 may
increase as the proof proceeds. We will require r > r0 in (2.2).

4.1. An energy identity on Ms

Recall that ϕ|Ms
decomposes as ϕ =

√
r(α+ β), and a = A|Ms

−A0. For F ∈
Λ2T ∗Ms ⊗ C, define Fω = 1

2⟨ω, F ⟩ ∈ C. The following lemma is a rescaled
version of [17, Equation (18)].

Lemma 4.1. Let χ be a smooth cut-off function on Ms such that suppχ
is contained in the interior of Ms, and χ = 1 for all x ∈Ms with d(x) > 1.
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Then we have

(4.1)

∫

Ms

(r
2
|∂̄a(χα) + ∂̄∗a(χβ)|2 + 2|iFω

a − r

8
(1− |χα|2 + |χβ|2)|2+

2|F 0,2
a − r

4
(χα)∗(χβ)|2 + r

2
iFω

a − 2|iFω
a |2 − 2|F 0,2

a |2
)

=

∫

Ms

(r
4
|∇a(χα)|2 +

r

4
|∇A1+a(χβ)|2 +

r

2
(iFω

A1
)|χβ|2

+
r2

32
(1− |χα|2 − |χβ|2)2 + r2

8
|χβ|2 − rRe⟨N ◦ ∂a(χα), χβ⟩

)
.

Where A1 is the unique unitary connection on T 0,2Ms such that ∇1,0
A1

= ∂,
and N : T 1,0Ms → T 0,2Ms is the Nijenhuis tensor.

Remark 4.2. If ∂Ms = ∅, we may take χ = 1 on Ms.

Proof. The identity follows from and integration by parts Weitzenböck for-
mulas.

For a constant d0 > 1, let χd0
be a smooth function on Ms such that

χd0
= 1 for all x with d(x) ≤ d0, and χd0

= 0 for all x with d(x) ≥ d0 + 2,
and |∇χd0

| ≤ 1, |χd0
| ≤ 1. Then integration by parts yields

∫

Ms

⟨χd0
∂̄a(χα), ∂̄

∗
a(χβ)⟩ =

∫

Ms

⟨∂̄a
(
χd0

∂̄a(χα)
)
, χβ⟩.

On the other hand, there exists a constant z1 such that

∣∣∣∣∣

∫

Ms

⟨χd0
∂̄a(χα), ∂̄

∗
a(χβ)⟩ −

∫

{x∈Ms|d(x)≤d0+2}
⟨∂̄a(χα), ∂̄∗a(χβ)⟩

∣∣∣∣∣

≤
∫

{x∈Ms|d0≤d(x)≤d0+2}
|∂̄a(χα)| · |∂̄∗a(χβ)|

≤z1
∫

{x∈Ms|d0≤d(x)≤d0+2}
Er(A, ϕ),
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and a constant z2 such that

∣∣∣∣∣

∫

Ms

⟨∂̄a
(
χd0

∂̄a(χα)
)
, χβ⟩ −

∫

{x∈Ms|d(x)≤d0+2}
⟨∂̄a∂̄a(χα), χβ⟩

∣∣∣∣∣

≤
∫

{x∈Ms|d0≤d(x)≤d0+2}
|∇χ| · |∂̄a(χα)| · |χβ|+ ⟨∂̄a∂̄a(χα), χβ⟩

≤z2
∫

{x∈Ms|d0≤d(x)≤d0+2}
Er(A, ϕ) + Er(A, ϕ)

1/2 · |∂̄a∂̄a(χα)|.

Let ϵ0 be the constant defined by (3.2). By elliptic bootstrapping, there
exist constants z3, z4 such that for all x with d(x) > ϵ0,

|∂̄a∂̄a(χα)(x)| ≤ z3

(∫

Bx(ϵ0)
Er(A, ϕ) + r + 1

)z4
.

Let d0 → +∞, and suppose r0 is sufficiently large. It then follows from
Proposition 3.3, the Bishop-Gromov volume comparison theorem, and the
estimates above that

(4.2)

∫

Ms

⟨∂̄a(χα), ∂̄∗a(χβ)⟩ =
∫

Ms

⟨∂̄a∂̄a(χα), χβ⟩.

Similarly, for r0 sufficiently large, we have the following identities:

∫

Ms

⟨∂̄a(χα), ∂̄∗a(χβ)⟩ =
∫

Ms

⟨∂̄a∂̄a(χα), χβ⟩,
∫

Ms

⟨∂̄a(χα), ∂̄a(χα)⟩ =
∫

Ms

⟨∂̄∗a∂̄a(χα), χα⟩,
∫

Ms

⟨∂̄∗a(χβ), ∂̄∗a(χβ)⟩ =
∫

Ms

⟨∂̄a∂̄∗a(χβ), χβ⟩,
∫

Ms

⟨∇a(χα),∇a(χα)⟩ =
∫

Ms

⟨∇∗
a∇a(χα), χα⟩,

∫

Ms

⟨∇A1+a(χβ),∇A1+a(χβ)⟩ =
∫

Ms

⟨∇∗
A1+a∇A1+a(χβ), χβ⟩.

On the other hand, by the Weitzenböck formulas [16, (12), (13)],

∂̄∗a∂̄a(χα) =
1

2
(∇∗

a∇a(χα)− 2iFω
a (χα)),

∂̄a∂̄
∗
a(χβ) =

1

2
(∇∗

A1+a∇A1+a(χβ) + 2iFω
A1+a(χβ)).
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The lemma is then proved by a straightforward computation using the
identities above and ∂̄2a(χα) = F 0,2

a (χα)−N ◦ ∂a(χα). □

4.2. Uniform energy bound

Proposition 4.3. There exists a constant r0, such that for all r > r0, there
exists a constant C which may depend on r with the following property. For
all (A, ϕ) ∈ Ck(X, s) that solves (2.4), we have

(4.3)

∫

Ms

Er(A, ϕ) < C.

Remark 4.4. A similar energy estimate was proved by [17, Lemma 3.17]
for AFAK ends. The last paragraph of the proof of [17, Lemma 3.17] claimed
that ∫

∂K3

a ∧ ω

has a uniform bound without detailed explanation, and the detailed proof
of this estimate was given by [24] after the proof of Lemma 2.2.7. However,
the constant C in the argument of [24] depends on the volume of the com-
plement of the AFAK end. If one applies the same argument from [24] to
Proposition 4.3 above, then the constant C would be given by the volume
of the complement of Ms, which is infinity when Mc ̸= ∅. Therefore, the
arguments in [17] and [24] do not suffice in the context of this article.

If Mc is non-empty, suppose Mc = (−∞, 0]× Y , let t be the function on
X which is equal to the projection to (−∞, 0] on Mc, and is equal to zero
on M −Mc. Let t be the spinc structure on Y induced by s|Mc

.
Suppose a ∈ C(Y, t) is a critical point of the perturbed Chern-Simons-

Dirac functional −L = L+ q on C(Y, t), let γa = (Aa, ϕa) ∈ C([−1, 0]×
Y, s|[−1,0]×Y ) be the configuration on [−1, 0]× Y which is in temporal gauge
and represents the constant path at a. Recall that in Section 2.4, the per-
turbation q on Mc is required to satisfy ∥q∥P̂ ≤ 1, where ∥ · ∥P̂ is defined by
(2.1). By [18, Section 10.7], there is a constant z0 such that

(4.4) ∥FAt
a

∥2L2 < z0

for all critical points a.
Choose a gauge representative of (A, ϕ) that is in temporal gauge on

the cylindrical end Mc. Recall that A0 is the canonical spinc connection on
Ms. Extend A0 to a smooth spinc connection on (X, s), such that A0 is in
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temporal gauge and is translation invariant on Mc. Let a = A−A0, then
Fa = 1

2(FAt − FAt
0
). By (4.4), there exists R0 > 1 depending on (A, ϕ), such

that

(4.5)

∫

t(x)∈[−R0−1,−R0]
|Fa(x)|2 <

1

2

(
z0 +

∫

t(x)∈[−R0−1,−R0]
|FAt

0
|2 + 1

)
.

Lemma 4.5. There are constants z, r0 > 0 and a function T : (R+)2 → R+

which depends on X,Mc,Ms, θ and the terms τ̂ and η in (2.3), with the
following property. Suppose r > r0, and suppose there are constants R >
0, κ > 0 such that

(4.6)

∫

t(x)∈[−R−1,−R]
|Fa|2 ≤ κ,

then the following inequalities hold:

∫

Ms

Er(A, ϕ) < T (κ, r) + z r2 ·R,(4.7)

∫

[−R,0]×Y
|Fa|2 < T (κ, r) + z r2 ·R.(4.8)

Proof. We use Ti to denote the constants that may depend on κ, r but are
independent of (A, ϕ).

Recall that Fω
a = 1

2⟨ω, Fa⟩ ∈ iR. On Ms, equation (2.4) decomposes as

∂̄aα+ ∂̄∗aβ = 0,

Fω
a = − ir

8
(1− |α|2 + |β|2),

F 0,2
a =

r

4
α∗β.

By Proposition 3.1, Lemma 4.1, and the equations above, there exists a
constant T1 depending on r such that

(4.9)

T1 +

∫

Ms

(r
2
iFω

a − 2|iFω
a |2 − 2|F 0,2

a |2
)
≥

∫

Ms

(r
4
|∇aα|2 +

r

4
|∇A1+aβ|2

+
r

2
(iFω

A1
)|β|2 + r2

32
(1− |α|2 − |β|2)2 + r2

8
|β|2 − rRe⟨N ◦ ∂aα, β⟩

)
.
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Suppose r0 is sufficiently large, then for all r > r0, we have

r

8
|∇aα|2 +

r2

32
|β|2 ≥ |rRe⟨N ◦ ∂aα, β⟩|,(4.10)

r

4
|∇A1+aβ|2 +

r2

32
|β|2 ≥ |∇′

Aβ|2 + |r
2
(iFω

A1
)| · |β|2.(4.11)

Therefore by (4.9), for r0 sufficiently large, we have
(4.12)∫

Ms

|1− |α|2 − |β|2|2 + |β|2 + |∇aα|2 + |∇′
Aβ|2 + |F+

a |2 ≤ T1 +

∫

Ms

r

2
iFω

a .

By (4.6), [18, Lemma 5.1.2], and Coulomb gauge fixing, there exists a
unitary connection a′ of the trivial C–bundle on {x|t(x) ∈ [−R− 1,−R]},
such that:

1) ∥a− a′∥L2
1([−R−1,−R]×Y ) < T2, for some constant T2 depending on κ,

2) a′ = a when t ∈ [−R− 1
3 ,−R],

3) Fa′ = 0, when t ∈ [−R− 1,−R− 2
3 ].

Extend a′ to {x|t(x) > −R} by taking a′ = a when t > −R.
Recall that by Lemma 3.4, there exists a constant d0, which may depend

on (A, ϕ), such that |α(x)| ≥ 1
2 when d(x) ≥ d0. Also recall that Φ0 is the

canonical section of S+|Ms
given by 1 ∈ Γ(Ms, T

0,0Ms). Therefore we can
take a gauge representative of (A, ϕ) such that α ∈ R · Φ0 when d(x) ≥ d0.
Without loss of generality, assume (A, ϕ) satisfies the above property. Notice
that |α(x)| ≥ 1

2 and α ∈ R · Φ0 imply |∇aα| ≥ 1
2 |a|. Therefore by Proposi-

tion 3.3, there exist constants z1, z2, d1 > 0, where d1 may depend on (A, ϕ),
such that

(4.13) |a′| = |a| ≤ 2|∇aα| ≤ z1e
−√

r·(d−d1)/z2

for all x ∈Ms with d(x) > d1.
Recall that by Condition (3) of Definition 1.1, the ESBG structure can

be extended to a neighborhood of Ms, therefore we can smoothly extend θ
to a smooth 1-form on X such that θ = 0 outside an open neighborhood of
Ms. Extend ω to X by taking ω = dθ. The extensions of θ and ω do not
depend on r or (A, ϕ).

The region {x|t(x) ≥ −R− 1} is the union of the cylinder [−R− 1, 0]×
Y and X −Mc. For r sufficiently large, (4.13) implies the following identities
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via the same argument as the proof of (4.2).

∫

t≥−R−1
Fa′ ∧ ω =

∫

t≥−R−1
Fa′ ∧ dθ = −

∫

t≥−R−1
dFa′ ∧ θ = 0,(4.14)

∫

t≥−R−1
Fa′ ∧ Fa′ =

∫

t≥−R−1
Fa′ ∧ da′ = −

∫

t≥−R−1
dFa′ ∧ a′ = 0.(4.15)

Let ZR = {x ∈ X|t(x) ≥ −R− 1} −Ms. Then there exists a constant z3
such that

(4.16) Vol(ZR) ≤ z3 +R ·Vol(Y ).

By (4.14), ∫

Ms

Fa′ ∧ ω +

∫

ZR

Fa′ ∧ ω = 0,

by (4.15), ∫

Ms∪ZR

|F+
a′ |2 =

∫

Ms∪ZR

|F−
a′ |2,

and by (4.12),

∫

Ms

(Er(A, ϕ)− |F−
a |2) ≤ T1 +

r

4

∣∣∣
∫

Ms

(iFa) ∧ ω
∣∣∣ = T1 +

r

4

∣∣∣
∫

Ms

(iFa′) ∧ ω
∣∣∣.

Therefore, there exists a constant z4, and constants T3, T4 that may depend
on r, such that

∫

Ms

(Er(A, ϕ)− |F−
a |2) ≤T1 +

r

4

∣∣∣
∫

Ms

Fa′ ∧ ω
∣∣∣

=T1 +
r

4

∣∣∣
∫

ZR

Fa′ ∧ ω
∣∣∣

≤T1 +
r2

16

∫

ZR

|ω|2 + 1

4

∫

ZR

|Fa′ |2

≤T3 +
1

4

∫

ZR

|Fa′ |2

≤T3 +
1

4

∫

ZR∪Ms

|Fa′ |2

=T3 +
1

2

∫

ZR∪Ms

|F+
a′ |2

≤T3 +
1

2

∫

ZR

|F+
a |2 + 1

2

∫

Ms

(Er(A, ϕ)− |F−
a |2)

≤T4 + z4 r
2 ·R+

1

2

∫

Ms

(Er(A, ϕ)− |F−
a |2),
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where the last inequality follows from Proposition 3.1 and (4.16). Hence

(4.17)

∫

Ms

(Er(A, ϕ)− |F−
a |2) ≤ 2T4 + 2 z4r

2R.

Recall that by the definition of a′, we have ∥a− a′∥L2
1
< T2, where T2 is a

constant depending on κ. Therefore, there is a constant z5, and a constant
T5 that depends on r, such that

∫

ZR∪Ms

|Fa|2 ≤ T2 +

∫

ZR∪Ms

|Fa′ |2

= T2 + 2

∫

ZR∪Ms

|F+
a′ |2

≤ T2 + 2

∫

ZR

|F+
a |2 + 2

∫

Ms

(Er(A, ϕ)− |F−
a |2)

≤ T5 + z5r
2 ·R,(4.18)

where the last inequality follows from Proposition 3.1, (4.16), and (4.17).
The lemma then follows immediately from (4.17) and(4.18). □

We also have the following estimate on Mc:

Lemma 4.6. There are constants z1, z2, and a function

R0 : (R
+)2 → {x ∈ R|x > 1}

which depends only on Y , such that the following holds. If A,B,R > 0 satisfy

∫

[−R,0]×Y
|Fa|2 ≤ A+B ·R,(4.19)

|F+
a |2 ≤ B pointwise on [−R, 0]× Y,(4.20)

and

R > R0(A,B),

then

(4.21)

∫

[−R

2
− 1

2
,−R

2
+ 1

2
]×Y

|Fa|2 < z1 ·B + z2.
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Proof. Put a in temporal gauge on [−R, 0]× Y , and write a as a function
a(t) of t which takes value in Γ(Y, iT ∗Y ). Then

|F+
a | =

√
2

2

∣∣ȧ(t) + ∗da(t)
∣∣,(4.22)

|F−
a | =

√
2

2

∣∣ȧ(t)− ∗da(t)
∣∣.(4.23)

Since Y is closed, it follows from standard Hodge theory that the op-
erator ∗d is a closed, self-adjoint operator with a discrete spectrum on
L2(Y, iT ∗Y ). Let

· · · < λ−3 < λ−2 < λ−1 < λ0 = 0 < λ1 < λ2 < λ3 < · · ·

be the eigenvalues of ∗d. Let

(4.24) k0 = max
{ 1

|λ−1|
,

1

|λ1|
, 1
}
.

Decompose a as

a(t) =

+∞∑

n=−∞
an(t),

where ∗dan(t) = λnan(t). Let

(4.25) bn(t) = ȧn(t) + λnan(t).

By (4.20), for all t ∈ [−R, 0] we have
∫

{t}×Y
|F+

a |2 ≤ B ·Vol(Y ),

hence by (4.22),

(4.26)

∞∑

n=−∞
∥bn(t)∥2L2 ≤ 2B ·Vol(Y ).

By (4.19),

∫ 0

−R
∥ ∗ da(t)∥2L2 dt ≤ 1

2

∫ 0

−R

(
∥ȧ(t) + ∗da(t)∥2L2 + ∥ȧ(t)− ∗da(t)∥2L2

)
dt

=

∫

[−R,0]×Y
|Fa|2 ≤ A+B ·R.
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For R > 1, the above inequality implies

∫ −R+1

−R
∥ ∗ da(t)∥2L2 ≤ A+B ·R,

hence there exits t1 ∈ [−R,−R+ 1] such that

(4.27)
∑

n

λ2n ∥an(t1)∥2L2 = ∥ ∗ da(t1)∥2L2 ≤ A+B ·R.

It follows from (4.25) that

eλnt bn(t) =
d

dt
(eλntan(t)),

therefore

λnan(t) = an(t1) · e(t1−t)λn · λn +

∫ t

t1

eλn(s−t) · λn · bn(s) ds.

Recall that k0 is the constant defined by (4.24). If t > k0 + t1, we have

∥λnan(t)∥2L2 ≤ 3
(
X2

n(t) + Y 2
n (t) + Z2

n(t)
)
,

where

Xn(t) = ∥an(t1) e(t1−t)λnλn∥L2(Y ),

Yn(t) = ∥
∫ t−k

t1

bn(s) e
(s−t)λnλn ds∥L2(Y ),

Zn(t) = ∥
∫ t

t−k
bn(s) e

(s−t)λnλn ds∥L2(Y )

= ∥
∫ k

0
bn(t− s) e−sλnλn ds∥L2(Y ).

If n > 0, then λn ≥ 1/k0, hence

Xn(t) ≤ ∥λnan(t1)∥L2 · e(t1−t)/k0 .

If R ≥ 2k0 + 3, then −R/2− 1/2 > k0 + 1, hence (4.27) and the above in-
equality imply

∫ −R

2
+ 1

2

−R

2
− 1

2

∑

n≥1

Xn(t)
2 dt ≤ (A+B ·R) · e−(R−3)/k0 .
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By the Minkowski inequality, when t > k0 + t1,

Yn(t) ≤
∫ t−k0

t1

∥bn(s)∥L2 e(s−t)λnλn ds.

Notice that if t− s > k0, then e
(s−t)λ · λ is decreasing with respect to λ for

all λ ≥ 1/k0, hence

(∑

n≥1

Yn(t)
2
)1/2

≤
(∑

n≥1

( ∫ t−k0

t1

∥bn(s)∥L2 e(s−t)λnλn ds
)2)1/2

≤
(∑

n≥1

( ∫ t−k0

t1

∥bn(s)∥L2 e(s−t)λ1λ1 ds
)2)1/2

.

By the Minkowski inequality again and (4.26), we have

(∑

n≥1

( ∫ t−k0

t1

∥bn(s)∥L2 e(s−t)λ1λ1 ds
)2)1/2

≤
∫ t−k0

t1

(∑

n≥1

∥bn(s)∥2L2

)1/2
e(s−t)λ1λ1 ds

≤
√

2B ·Vol(Y )

∫ t−k0

t1

e(s−t)λ1λ1 ds

≤
√

2B ·Vol(Y )

∫ 0

−∞
esλ1λ1 ds =

√
2B ·Vol(Y ).

Therefore when R > 2k0 + 3, we have

∫ −R

2
+ 1

2

−R

2
− 1

2

∑

n≥1

Yn(t)
2 dt ≤ 2B ·Vol(Y ).
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As for Zn, the Minkowski inequality gives the following estimates when
R > 2k0 + 3:

(∫ −R

2
+ 1

2

−R

2
− 1

2

Zn(t)
2 dt

)1/2
≤

(∫ −R

2
+ 1

2

−R

2
− 1

2

( ∫ k0

0
∥bn(t− s)∥L2 · e−sλnλn ds

)2
dt
)1/2

≤
∫ k0

0

(∫ −R

2
+ 1

2

−R

2
− 1

2

∥bn(t− s)∥2L2 dt
)1/2

e−sλnλn ds

≤
∫ k0

0

(∫ −R

2
+ 1

2

−R

2
− 1

2
−k0

∥bn(t)∥2L2 dt
)1/2

e−sλnλn ds

≤
(∫ −R

2
+ 1

2

−R

2
− 1

2
−k0

∥bn(t)∥2L2 dt
)1/2

∫ +∞

0
e−sλnλn ds

=
(∫ −R

2
+ 1

2

−R

2
− 1

2
−k0

∥bn(t)∥2L2 dt
)1/2

.

Therefore, when R > 2k0 + 3,

∫ −R

2
+ 1

2

−R

2
− 1

2

∑

n≥1

Zn(t)
2 dt ≤

∫ −R

2
+ 1

2

−R

2
− 1

2
−k0

∑

n≥1

∥bn(t)∥2L2 dt

≤ (k0 + 1)2B ·Vol(Y ).

Combining the estimates above, when R > 2k0 + 3, we have

∫ −R

2
+ 1

2

−R

2
− 1

2

∑

n≥1

∥λnan(t)∥2L2 dt ≤
∫ −R

2
+ 1

2

−R

2
− 1

2

∑

n≥1

3
(
X2

n(t) + Y 2
n (t) + Z2

n(t)
)

≤ 6(k0 + 2)B Vol(Y ) + 3(A+B ·R) · e−(R−3)/k0 .

On the other hand, there exists a t2 ∈ [−1, 0] such that

∑

n

λ2n∥an(t2)∥2L2 ≤ A+B ·R.

If n < 0, we have the identity

λnan(t) = an(t2) · e(t−t2)(−λn) · λn −
∫ t2

t
e(−λn)(t−s) · λn · bn(s) ds.
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When R > 2k0 + 3, a similar argument gives

∫ −R

2
+ 1

2

−R

2
− 1

2

∑

n≤−1

∥λnan(t)∥2L2 dt

≤ 6(k0 + 2)B Vol(Y ) + 3(A+B ·R) · e−(R−3)/k0 .

Therefore, when R > 2k0 + 3

∫ −R

2
+ 1

2

−R

2
− 1

2

∥ ∗ da∥2L2 dt =

∫ −R

2
+ 1

2

−R

2
− 1

2

+∞∑

n=−∞
∥λnan(t)∥2L2 dt

≤ 12(k0 + 2)B Vol(Y ) + 6(A+B ·R) · e−(R−3)/k0 .

Notice that by (4.22), (4.23),

∫

[−R

2
− 1

2
,−R

2
+ 1

2
]×Y

∣∣|F−
a | − |F+

a |
∣∣2 dt ≤

∫

[−R

2
− 1

2
,−R

2
+ 1

2
]×Y

2∥ ∗ da(t)∥2L2 dt.

Hence

∫

[−R

2
− 1

2
,−R

2
+ 1

2
]×Y

|Fa|2

≤ 2

∫

[−R

2
− 1

2
,−R

2
+ 1

2
]×Y

|2F+
a |2 + 2

∫

[−R

2
− 1

2
,−R

2
+ 1

2
]×Y

∣∣|F−
a | − |F+

a |
∣∣2

≤ 8BVol(Y ) + 48(k0 + 2)BVol(Y ) + 24(A+B ·R) · e−(R−3)/k0 ,

and the lemma follows from the inequality above by taking R0(A,B) suffi-
ciently large such that R0(A,B) > 2k0 + 3, and

24(A+B ·R) · e−(R0(A,B)−3)/k0 ≤ 1.
□

Proof of Proposition 4.3. Pick r0 sufficiently large such that Lemma 4.5 is
valid for all r > r0. Let the function T : R2 → R+ and the constant z be as
in Lemma 4.5. Let z′ be the right-hand side of (4.5). Let z0 be the constant
z in Proposition 3.1. Let the function R0 and the constants z1, z2 be as in
Lemma 4.6.

Let C1 = max{zr2, z20 r2}, let κ = max{z′, z1 · C1 + z2}.
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Let

Rmin = inf{R ≥ 1|
∫

t∈[−R,−R+1]
|Fa|2 < κ}.

Since κ ≥ z′, it follows from (4.5) that Rmin exists and is finite. By (4.8),

∫

[−R,0]×Y
|Fa|2 < T (κ, r) + zr2 ·R

≤ T (κ, r) + C1 ·R.

By the definitions of z0 and C1, we have the following pointwise estimate

|F+
a |2 ≤ z20 r

2 ≤ C1.

If Rmin > R0(T (κ, r), C1) and Rmin > 1, take R′ = (Rmin + 1)/2, then
Lemma 4.6 gives

∫

t∈[−R′,−R′+1]
|Fa|2 < z1 · C1 + z2 ≤ κ.

Since R′ < R, this contradicts the definition of Rmin. Therefore,

(4.28) Rmin ≤ max{R0(T (κ, r), C1), 1},

hence by (4.7),

∫

Ms

Er(A, ϕ) < T (κ, r) + z r2 ·Rmin

≤ T (κ, r) + z r2 ·max{R0(T (κ, r), C1), 1},

and Proposition 4.3 is proved. □

4.3. Uniform exponential decay of Er(A,φ)

We can now prove the uniform exponential decay of Er(A, ϕ). Recall that
the function d is defined on Ms as follows. For each connected component

M
(k)
s of Ms, if ∂M

(k)
s is nonempty, then d is the distance function to ∂M

(k)
s

on M
(k)
s . Otherwise, fix a point x(k) ∈M

(k)
s , and d is the distance function

to x(k) on M
(k)
s . The following is a re-statement of Theorem 1.4.
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Theorem 4.7. There exist constants r0, z > 0 with the following signifi-
cance. For every r > r0, there is a constant C depending on r, such that if
r > r0 and (A, ϕ) ∈ Ck(X, s) solves (2.4), then the inequality

(4.29) Er(A, ϕ) < C e−
√
r·d/z

holds on Ms. □

Proof. First, we prove that the constant d(δ) given by Lemma 3.4 is uniform
for all (A, ϕ). More precisely, for all r > r0 and δ > 0, there exists a constant
d(δ) depending on r and δ, such that for all x ∈Ms with d(x) > d(δ) and
(A, ϕ) ∈ Ck(X, s) solving (2.4), we have

Er(A, ϕ)(x) ≤ δ.

Assume the contrary, then there exist δ0 > 0, a sequence of solutions
(An, ϕn), and a sequence of points xn ∈Ms with limn→∞ d(xn) = +∞, such
that

Er(An, ϕn)(xn) ≥ δ0

for all n.
Let g be the metric on Ms. By Proposition 2.9 and the C0 bound of |ϕn|

given by Lemma 3.2, a subsequence of {(Ms, g, s, xn, An, ϕn)}n≥1 converges

to a limit (M̃, g̃, s̃, x̃, Ã, ϕ̃). The limit manifold (M̃, g̃) is complete and has
bounded geometry. Since ∇kθ is bounded for all k, by a diagonal argument
and the Arzelà–Ascoli theorem, after taking a further subsequence, we may
assume that θ converges to a 1-form θ̃ on M̃ , in the C∞ topology on compact
subsets. Therefore, ω̃ = dθ̃ is a compatible symplectic structure on M̃ , and
s̃ is the canonical spinc structure on M̃ induced by ω̃. In conclusion, M̃ is
an ESBG end with empty boundary, and (Ã, ϕ̃) is a solution to (2.4) on M̃ .

Let Ẽr(Ã, ϕ̃) be the energy density function of (Ã, ϕ̃) on M̃ . By the
previous assumptions, we have Ẽr(Ã, ϕ̃)(x̃) ≥ δ0. The uniform energy bound
given by Proposition 4.3 implies

(4.30)

∫

M̃
Ẽr(Ã, ϕ̃) < +∞.

Apply Lemma 4.1 to M̃, Ã, ϕ̃. Since M̃ is a symplectic end itself with
empty boundary, we can take χ = 1 on M̃ . Therefore when r0 is sufficiently
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large and r > r0, we have

∫

M̃

(r
2
|∂̄ãα̃+ ∂̄∗ãβ̃|2 + 2|iF ω̃

ã − r

8
(1− |α̃|2 + |β̃|2)|2(4.31)

+ 2|F 0,2
ã − r

4
α̃∗β̃|2 + r

2
iF ω̃

ã − 2|iF ω̃
ã |2 − 2|F 0,2

ã |2
)

=

∫

M̃

(r
4
|∇ãα̃|2 +

r

4
|∇Ã1+ãβ̃|2 +

r

2
(iF ω̃

Ã1
)|β̃|2

+
r2

32
(1− |α̃|2 − |β̃|2)2 + r2

8
|β̃|2 − rRe⟨Ñ ◦ ∂ãα̃, β̃⟩

)
,

where Ã1 is the unique unitary connection on T 0,2M̃ such that ∇1,0

Ã1

= ∂,

and Ñ : T 1,0M̃ → T 0,2M̃ is the Nijenhuis tensor.
Since (Ã, ϕ̃) solves (2.4) on M̃ , we have

∂̄ãα̃+ ∂̄∗ãβ̃ = 0,

F ω̃
ã = − ir

8
(1− |α̃|2 + |β̃|2),

F 0,2
ã =

r

4
α̃∗β̃.

Therefore (4.31) gives

(4.32)

∫

M̃

(r
2
iF ω̃

ã − 2|iF ω̃
ã |2 − 2|F 0,2

ã |2
)
=

∫

M̃

(r
4
|∇ãα̃|2 +

r

4
|∇Ã1+ãβ̃|2

+
r

2
(iF ω̃

Ã1
)|β̃|2 + r2

32
(1− |α̃|2 − |β̃|2)2 + r2

8
|β̃|2 − rRe⟨Ñ ◦ ∂ãα̃, β̃⟩

)
.

When r0 is sufficiently large, by (4.30) and the same proof of (4.2), we have,

∫

M̃
F ω̃
ã =

1

2

∫

M̃
Fã ∧ ω̃ =

1

2

∫

M̃
Fã ∧ dθ̃ = −1

2

∫

M̃
d(Fã) ∧ θ̃ = 0,(4.33)

∫

M̃
|F+

ã |2 −
∫

M̃
|F−

ã |2 =
∫

M̃
Fã ∧ Fã = 0.(4.34)

Therefore equation (4.32) gives

(4.35) 0 =

∫

M̃

(
2|iF ω̃

ã |2 + 2|F 0,2
ã |2 + r

4
|∇ãα̃|2 +

r

4
|∇Ã1+ãβ̃|2 +

r

2
(iF ω̃

Ã1
)|β̃|2

+
r2

32
(1− |α̃|2 − |β̃|2)2 + r2

8
|β̃|2 − rRe⟨Ñ ◦ ∂ãα̃, β̃⟩

)
.
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When r0 is sufficiently large, by (4.9) and (4.11), and (4.35), we have

(4.36) 0 ≥
∫

M̃
|∇ãα̃|2 + |∇′

Ã
β̃|2 + (1− |α̃|2 − |β̃|2)2 + |β̃|2 + |F+

ã |2.

As a consequence, the integrand of the right-hand side of (4.36) is identically

0 on M̃ . By (4.34), |F−
a | is also identically zero on M̃ , hence Ẽr(Ã, ϕ̃) is

identically zero. This contradicts the assumption that Ẽr(Ã, ϕ̃)(x̃) ≥ δ0. In
conclusion, the constant d(δ) given by Lemma 3.4 is uniform for all (A, ϕ).

Now we finish the proof of Theorem 4.7. Since the constant d(δ) given by
Lemma 3.4 is uniform for all (A, ϕ), the constants d1, d2, d3 in the proof of
Proposition 3.3 depend only on r but not on (A, ϕ). Therefore the constant
d0 in the statement of Proposition 3.3 depends only on r but not on (A, ϕ).
This proves (4.29) when d > d0. By standard elliptic bootstrapping, there
exists a constant C0 depending on r such that Er(A, ϕ) < C0 pointwise. This
proves the estimate for (4.29) when d ≤ d0. Hence the theorem is proved. □

4.4. Uniform decay with neck stretching

For i = 1, 2, suppose X(i) is a manifold with cylindrical and ESBG ends,

where the cylindrical end isM
(i)
c , and the ESBG end is given by (M

(i)
s , ω(i) =

dθ(i)). Let Z(i) = X(i) −M
(i)
c −M

(i)
s . Moreover, suppose there exists a non-

empty oriented closed Riemannian 3-manifold Y , such that M
(1)
c is given by

(−∞, 0]× Y , and M
(2)
c is given by (−∞, 0]× (−Y ).

For each constant R > 0, we can define a Riemannian manifold XR as

follows. Let X
(1)
R be the subset of X(1) given by Z(1) ∪M (1)

s ∪ [−R, 0]× Y ,

let X
(2)
R be the subset of X(2) given by Z(2) ∪M (2)

s ∪ [−R, 0]× (−Y ). Let

XR be the manifold obtained from X
(1)
R ⊔X(2)

R by gluing [−R, 0]× Y with
[−R, 0]× (−Y ) via (t, x) ∼ (−R− t, x). Then XR is a manifold with ESBG

endM
(1)
s ∪M (2)

s . This subsection proves that the exponential decay estimate
on XR given by Theorem 4.7 is uniform for all R.

Let Ms =M
(1)
s ∪M (2)

s , let θ be the union of θ(1) and θ(2) on Ms, and
extend θ to a smooth 1-form on XR such that the support of θ is contained
in Ms ∪ Z(1) ∪ Z(2). Let ω = dθ be a 2-form on XR.

Let s be an admissible spinc structure on XR, and let (A, ϕ) ∈ Ck(XR, s)
be a solution to (2.4). Let A0 be the canonical connection of s|Ms

, and extend
A0 to a smooth connection of s that is translation-invariant on the glued

image of [−R, 0]× Y ⊂M
(1)
c and [−R, 0]× (−Y ) ⊂M

(2)
c .
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Let a = A−A0. Decompose ϕ =
√
r(α+ β) on Ms such that α ∈

Γ(Ms, T
0,0Ms), β ∈ Γ(Ms, T

0,2Ms) as before, and let Er(A, ϕ) be defined
by (1.2).

In this subsection, we will use r0 z, and zi to denote the constants that

depend on X(1),M
(1)
c ,M

(1)
s , θ(1), X(2),M

(2)
c ,M

(2)
s , θ(2),s, and the perturba-

tion terms of the Seiberg-Witten equations. We will use Ci to denote the
constants that depend on the same set of data above and also r, but are
independent of R.

Lemma 4.8. There is a constant z, such that |ϕ| < z · √r, |F+
a | < z · r.

Proof. The proof is the same as Proposition 3.1. □

Lemma 4.9. There exist constants r0 and z with the following property.
Suppose r > r0, R ≥ 1, then there is a constant C0 depending on r, such
that

∫

Ms

Er(A, ϕ) < C0 + z r2 ·R,(4.37)

∫

XR−Ms

|Fa|2 < C0 + z r2 ·R.(4.38)

Proof. By the same argument as in (4.12), there is a constant C1 depending
on r, such that

(4.39)

∫

Ms

(Er(A, ϕ)− |F−
a |2) ≤ C1 +

r

2

∫

Ms

iFω
a .

Similar to (4.14) and (4.15), we have

c0 := −
∫

XR

Fa ∧ Fa = −
∫

XR

|F+
a |2 +

∫

XR

|F−
a |2

is a topological invariant that only depends on s, and

∫

XR

Fa ∧ ω = 0.
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Therefore, there exists a constant z1, and C2, C3 depending on r, such that

∫

Ms

(Er(A, ϕ)− |F−
a |2) ≤ C1 +

r

2

∣∣∣
∫

Ms

iFω
a

∣∣∣

= C1 +
r

4

∣∣∣
∫

Ms

Fa ∧ ω
∣∣∣

= C1 +
r

4

∣∣∣
∫

XR−Ms

Fa ∧ ω
∣∣∣

≤ C1 +
r2

16

∫

XR−Ms

|ω|2 + 1

4

∫

XR−Ms

|Fa|2

≤ C2 +
1

4

∫

XR−Ms

|Fa|2

≤ C2 +
1

4

∫

XR

|Fa|2

= C2 +
c0
4

+
1

2

∫

XR

|F+
a |2

= C2 +
c0
4

+
1

2

∫

XR−Ms

|F+
a |2 + 1

2

∫

Ms

|F+
a |2

≤ C3 + z1 r
2 ·R+

1

2

∫

Ms

(Er(A, ϕ)− |F−
a |2),

where the last inequality follows from Lemma 4.8. Therefore

(4.40)

∫

Ms

(Er(A, ϕ)− |F−
a |2) ≤ 2C3 + 2z1 r

2 ·R.

On the other hand, by Lemma 4.8 again and (4.40), there exist a constant
z2, and a constant C4 depending on r, such that

∫

XR

|Fa|2 ≤ |c0|+ 2

∫

XR

|F+
a |2

≤ |c0|+ 2

∫

XR−Ms

|F+
a |2 + 2

∫

Ms

(E − |F−
a |2)

≤ C4 + z2 r
2 ·R.

The lemma is then proved by combining the two inequalities above. □

Lemma 4.10. There exists a constant r0 > 0, such that for every r > r0
there is a constant C > 0 depending on r but independent of R, such that if
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(A, ϕ) ∈ Ck(XR, s) solves (2.4), then we have

(4.41)

∫

Ms

Er(A, ϕ) < C.

Proof. The proof follows from Lemma 4.9 and an argument similar to the
proof of Proposition 4.3.

Let the constants z1, z2 and the function R0 be as in Lemma 4.6. Let C0

and z be the constants in Lemma 4.9. Let z′ be the constant given by Lemma
4.8. Let C1 = max{zr2, z′r2}, let κ = z1C1 + z2 + 1. If R ≤ R0(C0, C1) then
by Lemma 4.9,

∫

Ms

Er(A, ϕ) < C0 + zr2R0(C0, C1),

hence (4.41) holds when C > C0 + zr2R0(C0, C1).

If R > R0(C0, C1), recall that [−R, 0]× Y ⊂M
(1)
c is a subset of XR. By

Lemma 4.9,

∫

[−R,0]×Y
|Fa|2 ≤ C0 + zr2R ≤ C0 + C1 ·R,

by Lemma 4.8,

|F+
a | ≤ z′r2 ≤ C1,

hence Lemma 4.6 gives

(4.42)

∫

[−R/2−1/2,−R/2+1/2]×Y
|Fa|2 ≤ z1C1 + z2 < κ.

Take

Rmin = inf{R̂|R̂ ≥ 0,

∫

[−R̂−1,−R̂]×Y
|Fa|2 < κ},

then (4.42) implies that Rmin exists. Let z(1) > 0 and T (1) : (R+)2 → R+ be
the constant and the function given by Lemma 4.5 when applied to X(1),

let C
(1)
1 = max{z(1)r2, z′r2}. Then by the same proof of (4.28), we have

Rmin ≤ max
{
R0(T

(1)(κ, r), C
(1)
1 ), 1

}
.
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Now apply Lemma 4.5 to X(1), we obtain

∫

M
(1)
s

Er(A, ϕ) < T (1)(κ, r) + z(1)r2 ·Rmin

≤ T (1)(κ, r) + z(1)r2 ·max
{
R0

(
T (1)(κ, r), C

(1)
1

)
, 1
}
,

which yields a uniform upper bound for the integration of Er(A, ϕ) onM
(1)
s .

The upper bound for M
(2)
s follows from a similar argument. □

Theorem 4.11. There exist constants r0, z > 0 with the following signifi-
cance. For every r > r0, there is a constant C > 0 depending on r but inde-
pendent of R, such that if (A, ϕ) ∈ Ck(XR, s) solves (2.4) on XR, then the
followsing inequality holds on Ms:

Er(A, ϕ) < Ce−
√
r·d/z.

Proof. This follows from Lemma 4.10 and the same argument as the proof
of Theorem 4.7. □

5. Floer chains from ESBG structures

Let X be a Riemannian 4-manifold with cylindrical and ESBG ends, such
thatMc

∼= (−∞, 0]× Y is the cylindrical end, and (Ms, ω = dθ) is the ESBG
end. If Ms is compact and b+2 (X) ≥ 2, after removing a small ball from X,
we can view X −B4 as a cobordism from S3 to −Y . By the construction of
[18, Section 25], the cobordism X −B4 induces a map

−−→
HM(X −B4) : yHM (S3) → }HM (−Y ).

The map
−−→
HM(X −B4) is only well-defined up to a sign, which can be fixed

by a choice of the homology orientation of X. The construction above defines
an element

−−→
HM(X −B4)(1̂) ∈ }HM (−Y )/{±1},

where 1̂ ∈ yHM (S3) is the generator of yHM (S3) as a Z[U†]–module. The
condition b+2 (X) ≥ 2 is necessary to gurantee that under a generic perturba-
tion, the solutions of the Seiberg-Witten equations on X are all irreducible,
namely the spinor part is not identically zero.

In this section, we will show that when Ms is not compact, it is still
possible to define an element in }HM (−Y )/{±1} by counting solutions of
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(2.4) on X. This is a straightforward generalization of [20, Section 6.3].
Theorem 4.7 implies that the moduli space analogous to the spaceM(Z+, a)
in [20, Section 6.3] compact. Since Ms is non-compact, Condition (2) of
Definition (2.3) implies that every element in Ck(X, s) is irreducible. The

sign ambiguity of }HM (−Y )/{±1} is essential and cannot be resolved by a
choice of homology orientation. This will be explained in Remark 5.6.

For each spinc structure t on Y , fix a stongly tame perturbation qt that
is admissible in the sense of [18, Definition 22.1.1] and satisfies ∥qt∥P̂ ≤ 1,
where ∥ · ∥P̂ is the norm defined by (2.1). Let q be the set of all qt. Let C

be set of isomorphism classes of critical points of the Chern-Simons-Dirac
functional perturbed by qt in the blown-up configuration space Bσ(−Y, t) as
defined in [20, Section 4.1] for all t (see also [18, Section 6]).

Definition 5.1. Suppose [a] ∈ C, and s is an admissible spinc structure
on X. Let M(X, [a], s) be the moduli space of (A, ϕ) ∈ C(X, s) that solves
(2.4) and is asymptotic to [a] on the cylindrical end Mc after lifting to the
blown-up configuration space.

Remark 5.2. For the definition of asymptoticity in the blown-up configu-
ration space, see [18, Definition 13.1.1] and the paragraph above it.

For a generic choice of τ̂ in (2.3), the moduli space M(X, [a], s) is regular
for all a and s. By the construction of [18, Sections 20, 25.2], there are two
systems of compatible orientations for the moduli spaces M(X, [a], s) that
are different by an overall sign. Let o and −o be the two systems of compat-
ible orientations. Let M0(X, [a], s) be the zero-dimensional components of
M(X, [a], s). By Theorem 4.7 and the compactness results of Seiberg-Witten
equations [18, Lemma 25.3.1], there are only finitely many [a] and s such
that M0(X, [a], s) is nonempty.

Definition 5.3. Let

ψ̌o(X) =
∑

s

∑

[a]∈C
#M0(X, [a], s) · [a] ∈ Z[C],

where the elements of M0(X, [a], s) are counted with signs using the ori-
entation o, and the summation of s goes over the isomorphism classes of
admissible spinc structures over X relative to Ms.

If Ms is non-compact, by Condition (2) of Definition (2.3), all the ele-
ments of M0(X, [a], s) are irreducible. Therefore, in order for M0(X, [a], s)
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to be non-empty, the critical point a has to be either irreducible or boundary-
stable. As a consequence, ψ̌o(X) is an element of the boundary-stable mono-
pole Floer chain group Č∗(−Y ) defined by [18, (22.3)], and we have the
following lemma.

Lemma 5.4. The element ψ̌o(X) ∈ Č∗(−Y ) satisfies ∂̌(ψ̌o(X)) = 0.

Proof. This follows from the same proof as [20, Lemma 6.6]. □

Therefore, the homology class of ψ̌o(X) defines an element in the mono-

pole Floer homology group }HM •(−Y ). Define

(5.1) c(X) = [ψ̌o(X)] ∈ }HM •(−Y )/{±1},

then c(X) does not depend on the choice of the orientation o.

Proposition 5.5. c(X) ∈ }HM •(−Y )/{±1} does not depend on the choices
of r > r0, the perturbations q, τ̂ , η in (2.3), or the metric on X −Ms. More-
over, c(X) is invariant under smooth deformations of the ESBG structures
on Ms with uniformly bounded geometry.

Proof. For i = 1, 2, let gi be a metric on X that is cylindrical onMc, let ωi =
dθi be an exact symplectic form on Ms, suppose (X, gi) is a manifold with
cylindrical end Mc and ESBG end (Ms, ωi = dθi). Assume (X, g0, ω0 = dθ0)
can be smoothly deformed to (X, g1, ω1 = dθ1) via manifolds with cylindri-
cal end Mc and ESBG end Ms, such that the deformation has uniformly
bounded geometry.

For i = 0, 1, let τ̂i, ηi be a choice of perturbation terms in (2.3). Let ri be a
sufficiently large constact such that Theorem 4.7 holds for (g1, ωi = dθi, τ̂ , η̂).
Let gYi be the metric on Y induced by the restriction of gi to Mc. Let qi
be a collection of strongly tame, admissible perturbations on (Y, gYi ) for
all isomorphism classes of spinc structures, and let Č∗(−Y, gYi , qi) be the
corresponding boundary-stable Floer chain.

Let o be a choice of the orientation, let ψ̌o(X)(i) ∈ Č∗(−Y, gYi , qi) be the
element defined by Definition 5.3 with respect to gi, ωi = dθi, qi, τ̂i, ηi, ri. Let
M(X, [a], s)(i) be the moduli space given by Definition 5.1 with respect to
the same choice of geometric data, and let M0(X, [a], s)(i) be the zero-
dimensional components of M(X, [a], s)(i).

Let ĝ be a metric on R× (−Y ), and q̂ be a collection of perturbations of
the Seiberg-Witten equations on (R× (−Y ), ĝ) for all isomorphism classes
of spinc structures, such that
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1) ĝ is the cylindrical metric given by gY1 on (−∞, 1]× (−Y ), and is the
cylindrical metric given by gY2 on [2,+∞)× (−Y );

2) q̂ is given by the formal gradient of q1 with respect to gY1 on (−∞, 1]×
(−Y ), and is given by the formal gradient of q2 with respect to gY2 on
[2,+∞)× (−Y ).

For a generic choice of q̂|[1,2]×(−Y ), the Seiberg-Witten equations on (R×
(−Y ), ĝ) with perturbation q̂ defines a chain map

Č∗
(
R× (−Y ), q̂

)
: Č∗(−Y, gY1 , q1) → Č∗(−Y, gY2 , q2).

We only need to prove that

[Č∗
(
R× (−Y ), q

)(
ψ̌o(X)(1)

)
] = ±[ψ̌o(X)(2)]

in the homology of (Č∗(−Y, gY2 , q2), ∂̌).
For t ≥ 1, consider the Seiberg-Witten equations on X where the metric

and the perturbation are given by g1, ω1, τ̂1, η1, q1 on X −Mc, are given
by gY1 and q1 on [0, t]× (−Y ), are given by gY2 and q2 on [t+ 1,+∞)×
(−Y ), and are given by (ĝ, q̂)|[1,2]×(−Y ) on [t, t+ 1]× (−Y ). Concatenate
this family of equations with a smooth family of equations parametrized by
t ∈ [0, 1], such that at t = 1 the two equations coincide, at t = 0 the equation
coincides with the equation defined by g2, ω2, q2, τ̂2, η2, r2 on X. The family
of equations can be chosen to be independent of t on [2,+∞)× (−Y ) for
t ∈ [0, 1]. Moreover, by the assumptions on the ESBG structures, we may
choose the family such that for each t ∈ [0, 1], the ESBG end of X is Ms,
and the family of metrics on X for t ≥ 0 has uniformly bounded geometry.

For t ≥ 0, let g(t), ω(t), q(t), τ̂(t), η(t), r(t) be the corresponding geo-
metric data as given above. Let C(q1, g

Y
1 ) be the set of critical points in the

blown-up configuration space give by (q1, g
Y
1 ). For a ∈ C and s an admissible

spinc structure on X, define M(X, [a], s)(t) to be the moduli space given by
Definition 5.1 with respect to g(t), ω(t), q(t), τ̂(t), η(t), r(t). Define

M̃(X, [a], s) =
⋃

t≥−1

M(X, [a], s)(t).

For a generic choice of τ̂(t), the moduli space M̃(X, [a], s) is regular. Let

M̃0(X, [a], s) be the zero-dimensional components of M̃(X, [a], s), and let

M̃1(X, [a], s) be the one-dimensional components of M̃(X, [a], s). Then by

increasing r(t) if necessary, we have that M̃0(X, [a], s) is compact, and so
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we can define an element

ho =
∑

s

∑

[a]∈C
#M̃0(X, [a], s) · a ∈ Č∗(−Y, gY1 , q1),

where the elements of M̃0(X, [a], s) are counted with signs using the ori-
entation o, and the summation of s goes over the isomorphism classes of
admissible spinc structures over X relative to Ms.

The boundary of the compactification of M̃1(X, [a], s) consists of three
parts: (i) elements of M0(X, [a], s)(2), (ii) broken trajectories given by an
element of M0(X, [a], s)(1) and a solution of the blown-up Seiberg-Witten
equations on (R× (−Y ), ĝ) with respect to the perturbation q̂, (iii) bro-

ken trajectories given by an element of M̃0(X, [a], s) and a solution of the
blown-up Seiberg-Witten equations on R× (−Y ) with respect to gY2 , q2. This
implies

Č∗
(
R× (−Y ), q

)(
ψ̌o(X)(1)

)
± ψ̌o(X)(2)± ∂̌ho = 0,

and the proposition is proved. □

Remark 5.6. Suppose Y is endowed with a contact structure ξ, let X =
R× Y . Let Ms = [1,+∞)× Y be given by the symplectization of ξ (cf. [17,
(1)]), and letMc = (−∞, 0]× Y be endowed with a cylindrical metric. Then
the invariant

c(X) ∈ }HM (−Y )/{±1}
coincides with the contact element of ξ defined by [20, Section 6.3]. In this
case, it was proved by [21, Theorem H] that it is impossible to lift the contact

class to }HM (−Y ) such that it is still an isotopy invariant.

If Y = ∅, then for each admissible s, counting the elements of zero-
dimensional moduli space of solutions (A, ϕ) ∈ C(X, s) to (2.4) as in [17,
Definition 2.5] gives a numerical invariant SW (X, s) ∈ Z/{±1}. The sign of
SW (X, s) can be fixed by a choice of homology orientation ofX following the
same argument as in [17, Appendix]. By the compactness properties, there
are only finitely many isomorphism classes of s such that SW (X, s) ̸= 0. If
∂Ms is a contact manifold and (Ms, ω) is the symplectization, then SW (X, s)
coincides with the monopole invariant defined by [17].

Lemma 5.7. Suppose (X,ω = dθ) is an ESBG end without boundary2, let
Z ⊂ X be a 4-dimensional compact submanifold with boundary, let Ms =

2In other words, X is a complete manifold without boundary that satisfies all
the conditions in the definition of ESBG ends (with ∂M = ∅).
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X − Z. View X as a manifold with an ESBG end (Ms, ω|Ms
). Then there

exists r0 > 0 with the following property. Suppose r > r0, s is an admissilble
spinc structure relative to Ms, and

(A, ϕ) ∈ C(X, s)

is a solution to (2.4). Then s is isomorhphic to sX,ω, and (A, ϕ) is gauge
equivalent to (A0,

√
rΦ0) over X. Moreover, the moduli space of solutions,

which is a point, is regular.

Proof. Recall that by our convention, not only s is isomorphic to sX,ω on
Ms, but there is also a fixed isomorphism from s|Ms

to sX,ω|Ms
. Therefore,

there is a complex line bundle E over X with a hermitian metric and a fixed
isomorphism from E to C on Ms, such that s = sM,ω ⊗ E. To simplify the
notation, we will identify s with sX,ω over Ms, and identify E with C over
Ms, using the fixed isomorphisms.

There is a unitary connection a on E, which is equal to the trivial connec-
tion of C onMs, such that A is equal to the coupling of A0 and a. Decompose
ϕ as

√
r(α+ β) such that α ∈ T 0,0X ⊗ E, β ∈ T 0,2X ⊗ E, where T ∗,∗X is

defined with respect to the almost complex structure induced by (X,ω). The
same integration by parts as Lemma 4.1 gives

(5.2)

∫

X

(r
2
|∂̄aα+ ∂̄∗aβ|2 + 2|iFω

a − r

8
(1− |α|2 + |β|2)|2 + 2|F 0,2

a − r

4
ᾱβ|2

+
r

2
iFω

a − 2|iFω
a |2 − 2|F 0,2

a |2
)

=

∫

X

(r
4
|∇aα|2 +

r

4
|∇A1+aβ|2 +

r

2
(iFω

A1+a)|β|2

+
r2

32
(1− |α|2 − |β|2)2 + r2

8
|β|2 − rRe⟨N ◦ ∂aα, β⟩

)
.

For r0 sufficiently large, the same argument as in (4.12) then gives

∫

X
|1− |α|2 − |β|2|2 + |β|2 + |∇aα|2 + |∇′

Aβ|2 + |F+
a |2 ≤

∫

X

r

2
iFω

a .

On the other hand, by the same argument that leads to (4.2),

∫

X
Fω
a =

1

2

∫

X
Fa ∧ ω =

∫

X
Fa ∧ dθ = −

∫

X
dFa ∧ θ = 0.
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Therefore

|1− |α|2 − |β|2|2 + |β|2 + |∇aα|2 + |∇′
Aβ|2 + |F+

a |2 = 0

on X, hence E is the trivial bundle, a is the trivial connection, and (A, ϕ) is
gauge equivalent to (A0,

√
rΦ0) over X. The regularity of the moduli space

follows from a straightforward generalization of [17, Lemma 3.11]. □

Corollary 5.8. Suppose (X,ω = dθ) is an ESBG end without boundary,
let Z ⊂ X be a 4-dimensional compact submanifold with boundary, let Ms =
X − Z. View X as a manifold with an ESBG end (Ms, ω|Ms

). Then

∑

s

SW (X, s) = ±1,

where the summation of s goes over the isomorphism classes of admissible
spinc structures over X relative to Ms. □

Now let (X(1), Z(1),M
(1)
c ,M

(1)
s , θ(1)) and (X(2), Z(2),M

(2)
c ,M

(2)
s , θ(2)) be

as in Section 4.4. Assume that both M
(1)
s and M

(2)
s are non-compact, and

that M
(1)
c is given by (−∞, 0]× Y , and M

(2)
c is given by (−∞, 0]× (−Y ).

For each constant R > 0, define XR as in Section 4.4. Let

c(X(1)) ∈ }HM •(−Y )/{±1}, c(X(2)) ∈ }HM •(Y )/{±1}

be given by (5.1). Then we have the following gluing result.

Proposition 5.9. Let j∗ : }HM •(Y ) → yHM •(Y ) be the map defined by [18,

Proposition 22.2.1], let ⟨·, ·⟩ be the pairing of yHM •(−Y ) and yHM •(Y ) as
given by [18, Corollary 22.5.11]. Then

⟨c(X(1)), j∗c(X
(2))⟩ = ±

∑

s

SW (XR, s),

where the summation of s goes over the isomorphism classes of admissible

spinc structures over XR relative to M
(1)
s ∪M (2)

s .

Proof. The proposition follows from Theorem 4.11 and the gluing argument
of [18, Section 27]. □
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6. Monopoles Floer invariants of foliations

This section defines the invariants c±(F) for a smooth oriented foliation F on
a closed oriented 3-manifold Y , where F does not admit holonomy-invariant
transverse measure.

6.1. Symplectizations of smooth taut foliations

Let Y be a smooth closed oriented 3-manifold, let F be a smooth oriented
foliation on Y . The orientations of Y and F induce a co-orientation of F .
Take a smooth non-zero 1-form λ such that F = ker λ̂ and λ̂ is positive
on the positive side of F . By Frobenius theorem, λ̂ ∧ dλ̂ = 0. Since F has
no holonomy-invariant transverse measure, by Sullivan [26], there exists an
exact 2-form ω̂ such that ω̂ ∧ λ̂ > 0 everywhere on Y . Take a smooth 1-form
θ̂ such that dθ̂ = ω̂.

Consider the cylinder R× Y , let t be the coordinate of the R-component.
Let πY : R× Y → Y be the projection onto Y . Let ω = π∗Y (ω̂) + d(tπ∗Y (λ̂)),
let θ = π∗Y (θ̂) + tπ∗Y (λ̂), then ω is a symplectic form on R× Y , and ω = dθ.

Let λ = π∗Y (λ̂).
Fix a metric g0 on Y such that |λ̂|g0 = 1 and λ̂ = ∗ω̂. Locally ω̂ can be

written as ω̂ = e1 ∧ e2 where e1 and e2 are orthonormal cotangent vector
fields on Y . Since λ̂ ∧ dλ̂ = 0, there is a unique 1-form µ1 such that dλ̂ =
µ1 ∧ λ̂ and ⟨µ1, λ̂⟩g0 = 0.

We have dµ1 ∧ λ̂ = d(µ1 ∧ λ̂) = d(dλ̂) = 0, hence there is a unique 1-form
µ2 such that dµ1 = µ2 ∧ λ̂ and ⟨µ2, λ̂⟩g0 = 0.

Now we define a Riemannian metric on R× Y that is compatible with
ω as follows. Notice that locally ω = e1 ∧ e2 + dt ∧ λ+ tµ1 ∧ λ. Take
(6.1)

g = e1 ⊗ e1 + e2 ⊗ e2 + (1 + t2)λ⊗ λ+
1

1 + t2
(dt+ tµ1)⊗ (dt+ tµ1).

It is easy to verify that g does not depend on the choice of e1 and e2, and
that it is compatible with ω. Denote R× Y by X.

Lemma 6.1. The manifold (X, g, ω = dθ) has the following properties:

1) X is complete.

2) The injectivity radius of X is bounded from below by a positive number.

3) Let R be the curvature tensor of X, and ∇ be the Levi-Civita connec-
tion, then supX |∇kR| < +∞ for each k.
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4) supX |∇kθ| < +∞ for each k.

Proof. Suppose x is a real number and u is a vector tangent to the Y com-
ponent of X, let v = x · ∂

∂t + u be a tangent vector of X. By the definition
of g and Cauchy’s inequality:

|v| ·
√
t2|µ1|2 + t2 + 1

≥
√

|u|2 + 1

1 + t2
(
x+ t · µ1(u)

)2 ·
√
t2|µ1|2 + (1 + t2)

≥|t||µ1||u|+ |x+ t · µ1(u)|
≥|x|.

Therefore |v| ≥ |x|/
√
1 + z · t2, where z = sup |µ1|2 + 1. The length of a

curve from the slice t = −T to t = T is therefore at least

∫ T

−T
1/
√

1 + z · t2 dt.

Since ∫ ∞

−∞
1/
√

1 + z · t2 dt = +∞,

this implies the completeness of X.
To prove the boundedness of |∇kR| and |∇kθ|, we use the moving frame

method. Take an arbitrary point q on Y , choose local chart Uq of q, and fix
a choice of e1 and e2 on Uq. Let

e3 =
√

1 + t2 · λ,

e4 =
1√

1 + t2
(dt+ t · µ1).

Then {e1, e2, e3, e4} form an orthonormal basis of the cotangent bundle on
Uq × R. There exist smooth functions νi on Uq (i = 1, 2, ..., 10), such that

d e1 = ν1 e
1 ∧ e2 + ν2 e

1 ∧ λ+ ν3 e
2 ∧ λ,

d e2 = ν4 e
1 ∧ e2 + ν5 e

1 ∧ λ+ ν6 e
2 ∧ λ,

µ1 = ν7 e
1 + ν8 e

2,

µ2 = ν9 e
1 + ν10 e

2.
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By shrinking Uq if necessary and identifying Uq with a subset of R3, we have
∥νi∥Cm(Uq) < +∞ for all m. A straightforward calculation shows:





d e1 = ν1 e
1 ∧ e2 + ν2√

1+t2
e1 ∧ e3 + ν3√

1+t2
e2 ∧ e3,

d e2 = ν4 e
1 ∧ e2 + ν5√

1+t2
e1 ∧ e3 + ν6√

1+t2
e2 ∧ e3,

d e3 = t√
1+t2

e4 ∧ e3 + ν7

1+t2 e
1 ∧ e3 + ν8

1+t2 e
2 ∧ e3,

d e4 = 1
1+t2 e

4 ∧ (ν7 e
1 + ν8 e

2)− t
1+t2 e

3 ∧ (ν9 e
1 + ν10 e

2).

(6.2)

Write

dei =
∑

j ̸=k

aijk e
j ∧ ek,

such that aijk = −aijk, then the equations above imply that ∥aijk∥Cm(R×Uq) <
+∞ for each m.

Suppose ∇ei = ωi
j ⊗ ej , where ∇ is the Levi-Civita connection. Then the

connection matrix {ωj
i } can be calculated from {aijk} by the formula

ωi
j =

∑

k

(−akji + aikj + ajik)e
k,

and the curvature matrix under the basis {ei} is given by dωj
i − ωk

i ∧ ωj
k.

Since aijk and their exterior derivatives are bounded, it follows that under

the basis {ei}, every component of ∇mR is bounded on R× Uq for allm ≥ 1.
This proves the boundedness of |∇mR| on R× Uq. Since Y is compact, it
can be covered by finitely many such Uq’s, therefore |∇mR| is bounded on
X = R× Uq for every m.

For the estimates on θ, write θ as

θ = ν11e
1 + ν12e

2 + ν13λ,

then

θ = ν11e
1 + ν12e

2 +
t+ ν13√
1 + t2

e3,

and the same calculation proves the boundedness of |∇mθ|.
For the lower bound on injectivity radius, we need the following theorem:

Theorem ([8, Theorem 4.7(i)]). Let (Mn, g) be a complete Riemannian
manifold, let R be the Riemannian curvature tensor, let K > 0 be a constant
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such that |R| ≤ K on M . Let 0 < r < π
4
√
K
. Then the injectivity radius at

each point p ∈M satisfies the following inequality:

(6.3) inj(p) ≥ r

2
· 1

1 + V −K
2r /Vol(Bp(r))

,

where V −K
2r is the volume of a geodesic ball of radius 2r on the hyperbolic

n–space with constant curvature −K.

Proof. This is a special case of [8, Theorem 4.7(i)] with H = −K, x = p,
and r0 = s = r. □

Back to the proof of Lemma 6.1. Let p = (t, q) ∈ X. The following argu-
ment will show that Vol(Bp(r)) is bounded from below by a positive constant
independent of p. Without loss of generality, assume |t| > 1.

Let K > 0 be an upper bound of |R|. For each point q ∈ Y , let Lq be
the leaf of F through q, the metric on Lq is taken to be the restriction
from g0. Let ϵ = infq∈Y inj(Lq). Since Y is compact, ϵ is positive. Let r =
1
2 min{ π

4
√
K
, ϵ}.

Let D(q, r/3) be the open disk of radius r/3 on Lq centered at q, Let

U = {x ∈ Y |distg0(x,D(q, r/3)) <
r

3
√
1 + t2

}.

Then the distance from each point in U toD(q, r/3) under the metric g|Y×{t}
is less than r/3, thus the distance from each point of U to q is less than 2r/3.
Therefore,

Bp(r) ⊇ (e−r/3 t, er/3 t)× U.

The volume of U under the metric g0 is bounded from below by a constant
multiple of r/(3

√
1 + t2), where the constant depends only on g0 and F .

Therefore the volume of U × (e−r/3 t, er/3 t) under the product metric R×
(Y, g0) is bounded from below by a positive constant. Notice that the volume
form of the product metric on R× (Y, g0) is the same as the volume form of
g. Therefore

(6.4) Vol(Bp(r)) >
1

z2

for some positive constant z2 depending on F and g0. The lower bound of
injectivity radius of X then follows immediately from (6.3). □
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Remark 6.2. The fact that the injectivity radius of X is bounded from
below could be counter intuitive because of the factor 1

1+t2 in the definition
of g. In fact, by the proof of Lemma 6.1, one can visualize the geometry of
X as follows. First consider the three manifold Y with the metric g0. For
any x ∈ Y , r, ϵ > 0, let Lx be the leaf of F containing x with the induced
metric from g0, let Dr be the r-neighborhood of x in Lx, and let Dr(ϵ) be
the ϵ neighborhood of Dr in Y . When r is fixed and ϵ is small, Dr(ϵ) is a
thin slice near Dr. Now let r0 > 0 be a lower bound of the injectivity radius,
then a normal neighborhood of X centering at (t, q) with radius r0 contains
the set Dr0/3

(
r0

3
√
1+t2

)
× (e−r0/3t, er0/3t). When t is large, this is (a much

thinner slice near Dr0/3) × (a long interval).

6.2. The definition of c±(F)

This subsection defines the monopole Floer invariants c±(F) for the smooth
foliation F .

Let X = R× Y , and let g be the metric on X defined by (6.1). Let
ω = dθ be the compatible symplectic form on X as defined in Section 6.1.

Let g+ be a Riemannian metric onX that is equal to g on (−∞,−1]× Y ,
and is cylindrical on [1,+∞)× Y . Let g− be a Riemannian metric on X
that is equal to g on [1,+∞)× Y , and is cylindrical on (−∞,−1]× Y . Let
Xg+ be the Riemannian manifold (X, g+), and let Xg− be the Riemannian
manifold (X, g−). By Lemma 6.1, Xg+ is a manifold with cylindrical and
ESBG ends, where the ESBG structure is given by ω = dθ on (−∞,−1]× Y .
Similarly, Xg− is a manifold with cylindrical and ESBG ends, where the
ESBG structure is given by ω = dθ on [1,+∞)× Y .

Definition 6.3. Define

c+(F) = c(Xg+) ∈ }HM •(Y )/{±1},
c−(F) = c(Xg−) ∈ }HM •(−Y )/{±1},

where c(·) is given by (5.1).

By Proposition 5.5, c(Xg±) are invariant under deformations of the
ESBG structures, it follows that c±(F) are independent of the choice of
g0 and λ̂, and are invariant under smooth deformations of F via foliations
without holonomy-invariant transverse measure.
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Let j∗ : }HM •(Y ) → yHM •(Y ) be the map in the long exact sequence of
monopole Floer homologies introduced by [18, Proposition 22.2.1]. The next
theorem proves the nonvanishing of j∗c±(F).

Theorem 6.4. Let F be a smooth foliation on Y with no holonomy-invariant
transverse measure, then

j∗c+(F) ̸= 0 ∈ yHM •(Y )/{±1},
j∗c−(F) ̸= 0 ∈ yHM •(−Y )/{±1}.

Proof. By Proposition 5.9 and Corollary 5.8, we have

(6.5) ⟨c∓(F), j∗c±(F)⟩ = ±
∑

s

SW (X, s) = ±1.

Hence j∗c±(F) ̸= 0. □

Theorem 6.5. The grading of c±(F) ∈ }HM •(±Y ) is represented by the
homotopy class of the tangent plane field of F .

Proof. The grading of c+(F) is represented by a nowhere vanishing section
ψ ∈ Γ(Y × {0}, S+) such that it extends to a nowhere vanishing section of
S+|(−∞,0]×Y that is asymptotic to the canonical section Ψ0 at t→ −∞.
Therefore, we can take ψ to be Φ0|Y×{0}. A straightforward calculation
then shows that the plane field corresponding to (S+, ψ) is homotopic to
kerα = F . □

7. Topological applications

Corollary 7.1 ([20, Theorem 2.1], [18, Theorem 41.4.1]). Let Y be an
oriented three-manifold. If F is a smooth foliation on Y without holonomy-
invariant transverse measure, let [F ] be the homotopy class of the tangent
plane field of F , let HM [F ](Y ) be the reduced monopole Floer homology at
the degree represented by [F ]. Then HM [F ](Y ) ̸= 0.

Proof. This is an immediate consequence of Theorem 6.4 and Theorem 6.5.
□

Corollary 7.2 ([17, Corollary 1.5]). There are only finitely many ho-
motopy classes of plane fields on Y that can be realized by the tangent plane
field of a smooth foliation without holonomy-invariant transverse measure.
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Proof. By [18, Proposition 22.2.3], HM •(Y ) has finite rank, hence the result
follows from Corollary 7.1. □

Since every foliation without holonomy-invariant transverse measure is
a taut foliation, the corollaries above are special cases of the non-vanishing
and finiteness results in [17, 20]. On the other hand, by the discussions in
Section 1.2, on a rational homology sphere every foliation without holonomy-
invariant transverse measure is a taut foliation. Therefore, Corollary 7.1 and
Corollary 7.2 yield alternative proofs for the non-vanishing and finiteness re-
sults of smooth taut foliations on rational homology spheres, without making
reference to the Eliashberg-Thurston perturbation.

We can improve Corollary 7.1 to a more general class of three-manifolds.
The following lemma shows that in many cases, smooth folaitions without
holonomy-invariant transverse measure are “generic” among smooth taut
foliations. The result was explained to the author by Jonathan Bowden.

Lemma 7.3 ([4]). Let Y be an atoroidal manifold and F a smooth taut
foliation on Y . Then either F can be C0 isotoped to smooth folaition F ′

without holonomy-invariant transverse measure, or Y is diffeomorphic to a
surface bundle over S1.

Proof. By [2], the foliation F can be C0 approximated by a smooth taut
folaition F1, such that every closed leaf of F1 has genus 0 or 1. If Y ∼=
S2 × S1, then F is homeomorphic to the product foliation, and the statement
of the lemma is verified. If Y ≇ S2 × S1, by Reeb’s stability theorem the
foliation F1 has no closed leaf with genus 0. Since every closed leaf of a taut
foliation is incompressible and Y is assumed to be atoroidal, the foliation
F1 has no torus leaf. This proves that F1 has no closed leaf.

If F1 has a holonomy-invariant transverse measure µ, let A be a mini-
mal set contained in the support of µ. The existence of A follows from [7,
Corollary 4.1.13]. Since F1 has no closed leaf, the minimal set A is either
equal to Y or is exceptional as defined in [7, Definition 4.1.4]. If A is excep-
tional, by Sacksteder’s theorem [7, Theorem 8.2.1], there exists a leaf L in A
containing a curve of contracting linear holonomy. Since L is in the support
of µ, on a neighborhood of L the measure µ has to be a constant multiple
of the delta measure of L. This implies that L is a closed leaf, which is a
contradiction. Therefore A = Y . By [7, Proposition 9.5.8], in this case Y is
diffeomorphic to a surface bundle over S1. □

Corollary 7.4 ([20, Theorem 2.1]). Suppose Y ̸= S1 × S2, Y is atoroidal,
and Y supports a smooth taut foliation, then HM •(Y ) ̸= 0.
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Proof. If F can be C0 approximated by a smooth taut folaition F ′ such that
F ′ has no holonomy-invariant transverse measure, then the result follows
from Corollary 7.1. Otherwise, by Lemma 7.3, F can be C0 approximated
by a smooth taut folaition F ′ such that (Y,F ′) is homeomorphic to a surface
bundle over S1 foliated by the fibers. Since Y is atoroidal and Y ̸= S1 × S2,
the genus of the fiber is at least 2. In this case, the desired result follows
from [19, Theorem 3.1] and [19, Lemma 2.2]. □

Recall that by Theorem 6.4 and Theorem 6.5, c±(F) are non-zero and
are graded by the homotopy class of F . It turns out that the invariants
c±(F) are stronger than the homotopy class itself. The rest of this section
constructs examples of foliations F1 and F2 such that they are homotopic
as plane fields but c+(F1) ̸= c+(F2), c+(F1) ̸= c+(F2). Since c±(F) are in-
variant under smooth deformations, this gives examples of smooth foliations
without holonomy-invariant transverse measure that are homotopic as plane
fields, but cannot be smoothly deformed to each other via foliations without
holonomy-invariant transverse measure.

Proposition 7.5. SupposeM is a compact oriented 4-manifold with bound-
ary, and let Y = ∂M , where Y is oriented such that there is an orientation-
preserving diffeomorphim from [0, 1)× Y to a neighborhood of Y in M . Let
F be a smooth co-oriented foliation on Y that has no holonomy-invariant
transverse measure. Assume there is an exact symplectic form ω on M such
that ω|Y is positive on F . Assume further that 2 c1(ω) ̸= 0. Let −F be the
same foliation as F but with reversed orientation. Then c+(F) and c+(−F)

are linearly independent in }HM •(Y )⊗Q, and c−(F) and c−(−F) are lin-

early independent in }HM •(−Y )⊗Q.

Proof. Remove a small ball inM , the remaining part ofM forms a cobordism
from Y to S3. For any Spinc structure s on M , it induces a map yHM (M −
B3, s) : yHM ∗(S3) → yHM ∗(Y ). Let 1̂ ∈ yHM ∗(S3) ∼= Z[U†] be a generator as

Z[U†] module, then yHM (M −B3, s)(1̂) ∈ yHM •(−Y ).

Write F = ker λ̂, where λ̂ is a 1-form on Y such that λ̂ is positive on the
positive side ot F . Let λ be the pull-back of λ̂ to R× Y .

Let M̃ = (−∞, 0]× Y ∪∂M M . We can define an exact symplectic form

on M̃ as follows. Let LetM1 = [−1, 0]× Y ∪∂M M . Let η : (−∞, 0] → [−1, 0]
be a smooth non-decreasing function such that η(t) = −1 when t ≤ −1,
η(t) = t when t ≥ −1/2. Let χ : (−∞, 0] → (−∞, 0] be a non-decreasing
function such that χ(t) = t when t ≤ −1/2, and χ(t) = 0 when t ≥ −1/4.

Let π : M̃ →M1 be the map defined by π = η × idY on (−∞, 0]× Y , and
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π = idM on M . Let φ :M1 →M be a diffeomorphism that is maps (−1, x)
to (0, x) for all x ∈ Y on the boundary. Let ϵ > 0 be a constant. Define
ω̃ = (φ ◦ π1)∗ω + d(χ(ϵλ)), where χ(ϵλ) is defined to be zero on M . It is
straightforward to verify that when ϵ is sufficiently small, ω̃ is symplectic
on M̃ . If we endow M̃ with a compatible metric such that it is equal to
the metric given by (6.1) on (−∞,−1], then M̃ is a ESBG end without
boundary.

By the gluing property and Lemma 5.7,

⟨yHM (M −B3, s)(1̂), c+(F)⟩ =
{
±1 if s ∼= sM,ω,

0 otherwise.

If we change F to −F and change the symplectic form on M from ω to
−ω, the canonical Spinc structure is then changed to the conjugation of s0,
hence we have,

⟨yHM (M −B3, s)(1̂), c+(−F)⟩ =
{
±1 if s ∼= sM,−ω,

0 otherwise.

Since 2 c1(ω) ̸= 0, the Spinc structures sM,ω and sM,−ω are not isomorh-
pic, therefore c+(F) and c+(−F) are linearly independent. The proof for c−
follows from a similar argument. □

The next lemma provides examples that satisfy the conditions of Propo-
sition 7.5. The result was explained to the author by Cheuk-Yu Mak. Recall
that a contact form α on Y is said to have a strong symplectic filling if Y
bounds a compact symplectic 4-manifold (M,ω), such that there is a vector
field v near ∂M with (ιvω)|Y = α.

Lemma 7.6. Let Y be an S1 bundle over a compact surface of genus g
with Euler number e < 0 and e ̸= 2− 2g. Then there exists a contact form α
on Y , such that α has an exact strong symplectic filling with a non-torsion
first Chern class, and such that the Reeb vector field of α is the positive unit
tangent vector field of the S1-fibers.

Proof. Let E be a holomorphic line bundle with Euler number e over a
Riemann surface of genus g, and let J be the complex structure on E. Let h
be an Hermittian metric on E such that its Chern connection has negative
curvature. Let E1 be the unit disk bundle of E with respect to the metric h,
then E1 is a complex manifold with a J-convex boundary as defined in [9,
Section 2.3]. The circle bundle ∂E1 is a principal U(1)-bundle and the Chern
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connection of E induces a connection on ∂E1. Let α0 be the connection form
on ∂E1, then kerα0 = T∂E1 ∩ J(T∂E1) is a contact structure on ∂E1, and
the Reeb vector field of α0 is the positive unit tangent vector field of the
S1-fibers. For more details of this computation, the reader may refer to [9,
Section 2.5]

By [1, Theorem (2’)], there exists a smooth family of integrable almost
complex structures Jt, t ∈ (0, 1) on E1, such that J0 = J and (E1, Jt) is Stein
when t > 0.

Let f be a J0-convex function defined near ∂E1, such that ∂E1 = f−1(1),
the value 1 is a regular value of f , and that f < 1 in the interiori of E1. Then
there exists ϵ0 > 0, such that for all 0 < δ < ϵ0, the function f is Jδ-convex.
Let αδ := df ◦ Jδ be a 1-form on f−1(1) = ∂E1, then α1−δ is a contact form
on ∂E1.

For sufficiently small δ, the contact structure kerαδ is C
∞ close to kerα0,

hence by Gray’s stability theorem there exists a diffeomorphism ι : ∂E1 →
∂E1 which is isotopic to the identity, and a positive function u on ∂E1,
such that ι∗(u · αδ) = α0. The Reeb vector field of ι∗(u · αδ) is therefore
the positive unit tangent vector field of the S1-fibers. Notice that for a
sufficiently large constant C, there exists a strong symplectic cobordism from
(∂E1, u · αδ) to (∂E1, αδ/C). Since (∂E1, αδ) is Stein fillable, this implies
that the contact form u · αδ is has a strong exact filling, therefore ι∗(u · αδ)
has a strong exact filling. The first Chern class of the filling is equal to the
first Chern class of the complex manifold (E, J), which is not torsion when
e ̸= 2− 2g. Since Y ∼= ∂E1, this proves the lemma. □

Let Y be an S1 bundle over a compact surface of genus g > 1 with Euler
number e, such that 2− 2g < e < 0. By [29], there exists an oriented smooth
foliation F on Y which is transverse to the S1 fibers. Let −F be the same
foliation as F but with the opposite orientation.

Proposition 7.7. Let Y , e, F , and −F be as above, and assume e|2g − 2.
Then F , −F are foliations without holonomy-invariant transverse measure,
then F and −F are homotopic as oriented plane fields, but c+(F) ̸= c+(−F),
and c−(F) ̸= c−(−F).

Proof. By Lemma 7.6, there exists a contact form α on Y with a strong
exact symplectic filling (M,ω), such that c1(ω) is not torsion on M , and
the Reeb vector field of α is positively transverse to F . Notice that the
Reeb vector field being positively transverse to F is equivalent to the form
ω being positive on F . Since ω is exact, this implies that F and −F have
no holonomy-invariant transverse measure. Moreover, by Proposition 7.5,
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c+(F) and c+(−F) are linearly independent, c−(F) and c−(−F) are linearly
independent.

It remains to prove that F and −F are homotopic as plane fields. Let
S1 → Y

π→ Σ be the bundle structure of Y , let e(Y ) ∈ H2(Σ) be the Euler
class of the bundle. By the Gysin exact equence,

H0(Σ)
∪e(Y )−→ H2(Σ)

π∗

−→ H2(Y )

is exact. Notice that F is isomorphic to π∗(TΣ) as a plane bundle, therefore
the assumption e|2g − 2 implies that the Euler class of F is zero, hence F has
a global basis {e1, e2}. Let e3 be the positively oriented normal vector field
of F , then for t ∈ [0, 1] the family of plane fields Ft = span

{
e1, cos(πt) e2 +

sin(πt) e3
}
defines a homotopy from F to −F . □
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