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Augmentations are sheaves for
Legendrian graphs

Byunc HEE AN, YOUNGJIN BAE, AND TAO SuU

In this article, associated to a (bordered) Legendrian graph, we
study and show the equivalence between two categorical Legen-
drian isotopy invariants: the augmentation category, a unital A..-
category, which lifts the set of augmentations of the associated
Chekanov-Eliashberg DGA, and a DG category of constructible
sheaves on the front plane, with micro-support at contact infin-
ity controlled by the (bordered) Legendrian graph. In other words,
generalizing [21], we prove “augmentations are sheaves” in the sin-

gular case.
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1. Introduction

Nowadays, it has been an increasingly rich subject, to study the microlocal
sheaf theoretic aspects of symplectic topology, or vice versa. This has already
been of interest in the case of a cotangent bundle T*M. Along this direc-
tion, one fundamental result is the microlocalization equivalence [19, 20],
between the DG category of constructible sheaves on the base M and the
infinitesimally wrapped Fukaya category of the cotangent bundle 7% M:

NZ : Sh(M;K) = Fuk®(T*M;K).

A more refined version of the correspondence involves introducing a Leg-
endrian A contained in T°°M, the co-sphere bundle (equivalently, the set
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of points at contact infinity) of M. By replacing Sh(M;K) with a full sub-
category Sha(M;K) of constructible sheaves with micro-support at infinity
contained in A, and replacing Fuk®(T*M;K) with a full subcategory of La-
grangian branes asymptotic to A at infinity, the refined equivalence from the
Nadler-Zaslow correspondence becomes as follows:

NZ : Sha(M;K) = Fuky (T*M;K),

Here, both sides are categorical Legendrian isotopy invariants for A C T° M.
More recently, a correspondence [12-14] has also been established, between
the DG category Sha(M)¢ of compact objects in the larger category of
(weakly) constructible sheaves on M, with micro-support contained in A,
and a wrapped Fukaya category Perf W(T*M,A)°P of T*M, whose La-
grangians are disjoint from A at infinity:

GPS : Shy(M)¢ ~ Perf W(T* M, A)°P.

Notice that the latter is of central interest in Homological Mirror Symmetry.

On the other hand, there is another powerful modern Legendrian iso-
topy invariant for a Legendrian submanifold A in any contact manifold V.
It is called the Legendrian contact homology DGA A®E(V, A), obtained by
counting of holomorphic disks. More specifically, the generators of this al-
gebra are the Reeb chords of A, and the differential counts holomorphic
disks with punctures on the boundary, in the symplectization R; x V', with
boundary living on the Lagrangian R; x A and approaching the Reeb chords
at the punctures. The DGA ACE(V7 A) is a Legendrian isotopy invariant up
to homotopy equivalence.

Motivated by the Nadler-Zaslow correspondence, it is expected that cer-
tain representation category of A“E(A) is equivalent to the sheaf category
Sha(N x R;;K), when V = JIN 2 T~ (N x R,) is a one-jet bundle nat-
urally identified with an open contact submanifold of 7°°(M = N x R,).

In this article, the case of the major interest to us is when N = R,
in which there is a rich interaction with Legendrian knot theory. That is,
AcCJR, = Rgtd with a Maslov potential p is now a Legendrian knot in
the standard contact three space. In this case, “augmentations are sheaves”
holds.

Theorem 1.1 ([21]). There is an A -equivalence:

NRSSZ : Aug (A, 1; K) = Ci(A, 11;K)
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Here, Aug, (A, 11;K) is a unital A.-category whose objects are the set
of augmentations of the DGA AE(A, i), a representation category of rank
1 representations of AE(A, u), and Cy(A, u;K) is the full subcategory of
Sh A(Riz; K) whose objects are microlocal rank 1 sheaves with acyclic stalks
when z < 0. Concerning “representations are sheaves”, or the correspon-
dence between higher rank representations and higher microlocal rank
sheaves, an equivalence in the cohomological level [8] was shown for (2,m)-
torus knots. In the case when M is of higher dimension, the correspondence
in question is widely open. However, see [6l [7, 23] 24] and [12], Sec.6.4] for
related results along this direction.

Our input originates from the following speculation in the perspective
of microlocal sheaf theory: given a constructible sheaf 7 on M = Rg,z, the
micro-support of F at infinity is in general a singular Legendrian, typically
a Legendrian graph in T°° M. So it is natural to seek a contact-geometric in-
terpretation of the sheaf category Sha(M;K) when A is a Legendrian graph.
More generally, it is natural to ask the same question with essentially no
more difficulty, when N = I, C R, is an open interval, and 7' C J!N is a
bordered Legendrian graph. Our main result gives a positive answer to this
question.

Theorem 1.2 (Theorems |4.19} [4.21| and [6.31]). Let (T, p) be a bor-
dered Legendrian graph T = (T, — T + TRr) in J'I, = T°~ (I, x R,) with
a Maslov potential = (p, , ur). There is a well-defined diagram of unital
Ao-categories:

Aug (T, 1K) == (Aug (TL, p1; K) + Aug (T, i1, K) — Aug (TR, pr; K)),

where the objects of Aug, (T, u; K) are the augmentations of the LCH DGA
ACE(T, 1) defined as in [1]. The diagram is invariant under Legendrian iso-
topy and basepoint moves up to Aso-equivalence. Moreover, there is an Axo-
equivalence between two diagrams of unital Aso-categories:

Aug (T, 1K) = Cu(T, 1 K),
where
Co(T, s K) = (C1(TL, p; K) = G (T 15 K) = Ci(Tk, pr; K))
is a digram of DG categories of constructible sheaves.

The DG category Ci (T, p; K) is the full subcategory of Shy (I, x R,;K)
whose objects are microlocal rank 1 sheaves with acyclic stalks for z < 0. In
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particular, when T'= A C TOO’*R%Z is a Legendrian graph, we get an Aso-
equivalence Aug, (A, p1; K) = Ci(A, 1K), ie. “augmentations are sheaves”
holds in the singular case.

As a consequence of Theorem up to a normalization, the point-
counting of sheaves in Ci(T, p; K) (with boundary conditions) over a fi-
nite field K = [y, is equivalent to that of augmentations in Aug (7' u; K)
(with boundary conditions), called augmentation number and denoted by
aug (7T, p; pL, pr; Fy). Generalizing the results in [16, 27], our preceding pa-
per [3] solves this counting problem. More precisely, augmentation numbers
are computed by ruling polynomials of T, defined via the combinatorics of
decompositions of the front projection 7'

Theorem 1.3. [3] Let (T,p) be as above. Let p. € NR(TL, pu) and pr €
NR(TRr, pr) be two boundary conditions (i.e. normal rulings). Then the fol-
lowing two Legendrian isotopy invariants are the same:

_a+B B
aug (T, i pL, pr; Fg) = a2 25 (pL|R(T, pi ¢, 2)|pr)

Here, (pL|R(T, p;q,2)|pr) € Z[qié,zﬂ] is the ruling polynomial for (T, p)
with boundary conditions (pL,pRQ, d = maxdeg, (p|R(T, u; 22, 2)|pr). In

the formula, we take z = q% —q 2, and

counts the number of “generalized” basepoints in T .

Moreover, the ruling polynomials satisfy the gluing property: If (T, pu) =
(T, ut) o (T2, u?) is a composition of two bordered Legendrian graphs, that
is, (TI%’/J%) = (TEMUE)i then

(LI R(T, 1 q, 2)|pr)

= Y {plR(TY 150, 2)lpn) (pr| R(T?, 1% 4, 2) og).
p1ENR(TH )

Organization

The article is organized as follows. In Section [2, we review the basic back-
grounds from [3] on Legendrian graphs and bordered Legendrian graphs
(T, i) with a Maslov potential. The main ingredients include the Legendrian
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contact homology (LCH) DGAs AE(T, u) = (A“E(TL, ) — AE(T, ) +
ACE(TR, uR)) for bordered Legendrian graphs.

In Section |3} we give the algebraic preliminaries before defining augmen-
tation categories. In particular, we introduce two categories of consistent
sequences: consistent sequences of bordered Legendrian graphs, and consis-
tent sequences of DGAs. In Section [ we define augmentation categories for
bordered Legendrian graphs, and then show their unitarity and invariance.

In Section 5 we firstly give the preliminaries on the microlocal theory
of sheaves. Then we construct the necessary combinatorial tools, which we
call legible models for Sh(7;K) = (8h(T;K) « Sh(T;K) — Sh(7Tk;K)), the
diagram of sheaf categories for a bordered Legendrian graph 7 in 7°%~ (I, X
R.). As an application, we prove the invariance of Sh(7;K) via combina-
torics, hence the invariance of Cy (7, p; K), the diagram of full-subcategories
of 8h(T;K) whose objects are microlocal rank 1 objects with acyclic stalks
for z < 0.

In Section [6] we prove our main result “augmentations are sheaves” for
bordered Legendrian graphs. The basic idea is as follows: By the invariance
results in Section [4] and Section [5], we can assume the vertices in the front
projection 7" are all of type (0,7) for some 7, all the left cusps and vertices
are to the left of the crossings of T', and all the right cusps are to the right
of the crossings of T'. Moreover, we can assume all right cusps are marked.
Then both of the two diagrams of A..-categories satisfy the sheaf property
over I,. Hence, by decomposing the front diagram T into the composition of
elementary pieces, it suffices to show the theorem for each elementary piece.
By the results for Legendrian knots in [21], it suffices to show the case of an
elementary bordered Legendrian graph (V, ) involving only a vertex. This
is done by an explicit description for both of the two diagrams Aug, (V, pu; K)
and C1(V, u; K). The augmentation side is done in Lemma [6.17} The sheaf
side is a direct application of the legible model in Section for C1 (V, p; K).
Then we are done.
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2. Setup

Notation 2.1. For each m >0, we denote the set {1,...,m} equipped
with the natural order by [m].

2.1. Bordered Legendrian graphs

In this section, we briefly review the definition of bordered Legendrian graphs
defined in [3] §2]. A graph is a finite regular one dimensional CW complex,
whose 0-cells and closed 1-cells are called vertices and edges. For each vertex
v, a half-edge at v is a small enough restriction of an edge adjacent to v.
Then as usual, the valency of v is the number of half-edges at v and denoted
by val(v).

A (based) bordered graph T' = (V, V|, VR, B,E) of type (n_,nR) consists of
the following data:

e the pair (VII V| II Vg II B,E) defines a graph |T'|,
e each b € B of |I'| is bivalent, and

e two disjoint subsets V| and Vg consist of 7| and ng univalent vertices
of |I'|.

Elements in V,V|,Vg,B and E will be called vertices, left borders, right
borders, basepoints and edges, respectively. The interior I' of I' is define to
be the complement of V| I Vg.

Notation 2.2. In order to emphasize the border structures, we will denote
the bordered graph I' as

=T, —>T+«TIgr),

where 'L and I'g are defined by V_ and VR, respectively, and both arrows
are inclusions.
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From now on, we mean by a graph a bordered graph with empty borders
(& — I' + @), which will be denoted simply by I'.

For a closed interval U = [z, x2r] C Ry, let the bordered one-jet space
JYU = (J'UL — J'U « J'UR) be the one-jet space J'U = (U x Ry, dz —
ydz) C J'R, = (Riyz, dz — ydx) together with two contact submanifolds

JWU = ({zL} xR,,dz) and JWUg = ({zr} x R;,dz).

Definition 2.3 (bordered Legendrian graphs). A bordered Legendrian
graph T = (T — T < Tgr) of a bordered graph I = (I'L — I" +- I'r) of type
(nL,nR) in J'U where T : T’ — J'U is an embedding such that

1) T is transverse to the boundary 0.J'U = 9U x R, and the restrictions
on the interior I" and both borders I'| and I'g are contained in J'U,
J'UL and J'UR, respectively.

ThoJ'U, TL:=T(@) CJ'UL, Tri=T(Rr) C J'Ug, T:=T()c J'U.

2) T on edges are smooth Legendrian with boundary and pairwise non-
tangent to each other at all vertices, and two edges adjacent to each
basepoint form a smooth arc.

By labeling borders in T and Tg in top-to-bottom ways with respect
to z-coordinates, we identify the left and right borders T and Tr with the
set [n ] ={1,...,n } and [ng] ={1,...,nRr}.

There are two projections for J'R, = Riyz, called the front and La-
grangian projections g : ]Riyz — R2, and 74 : Riyz — ]R%y, respectively.
Definition 2.4 (Regular projections). For a bordered Legendrian graph
T =(TL = T « TRr), the front and Lagrangian projections T = (T — T +
TR) = 7 (T) and Tiag = (TlagL = Tlag < TlagR) = TLag(T) are said to be
reqular if in their interiors,

1) there are only finitely many transverse double points, called crossings,
and

2) no vertices, basepoints or xz-extreme points are crossings,

3) each edge containing a z-maximal point must involve at least one
vertex or a basepoint,
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where a point in the interior T is said to be z-mazimal or x-minimal if it is
maximal or minimal with respect to the z-coordinate, and z-extreme if it is
either z-maximal or z-minimal[T]

A bordered Legendrian graph of type (0,0) is called a Legendrian graph
and we denote the sets of regular front and Lagrangian projections of non-
bordered and bordered Legendrian graphs by £G, LS, and BLG, BLSG| 44,
respectively.

Remark 2.5. Due to the Legendrian property, there are no vertical tan-
gencies and no non-transverse double points in the front projection. Instead,
it contains cusps, which is obviously, x-extreme.

Notation 2.6. The front and Lagrangian projection of T = T(I') with
I'=(V,V,Vgr,B,E) will be denoted by T = (V,V{,VR,B,E) and T,z =
(Viag: Viag,L, Viag R, Blag, Elag), respectively.

For examples of regular and non-regular projections, see Figure [1| To
avoid any confusion, we denote vertices and basepoints by small dots and
bars, respectively.

Definition 2.7 (Types and orientations). For a vertex v or a basepoint
b of a bordered Legendrian graph, we say that it is of type (¢,r) if there are
¢ and r half-edges adjacent to v or b on the left and right, respectively. We
label the set Hy == {hy 1,...,hyn} of (small enough) half-edges in front and
Lagrangian projections as follows:

hv,l hv,ZJrl hv,é hv,f+1

h'u,2 v . v h
) : - : hip1 b,2
: p v,2 ;

hv,ﬁ hv,é—i—r hv,l hv,Z—H"

In particular, each basepoint b € B is assumed to be oriented from the
half-edge hy1 to hy 2 in the above convention.

Example/Definition 2.8 (The trivial and vertex bordered Legen-
drian graphs). Let n > 1. The front projections of the trivial bordered
Legendrian graph 7, = (T, — T, <~ T),r) of type (n,n) and the vertex
bordered graphs 0, = (& — 0, < 0, r) and oo, = (00, | — 00, < &) of

In the front projection, an z-extreme point is either a cusp or a vertex of type
(0,n) or (n,0).
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Nk > <5k A o-
/ /o /o /) .
(a) Non-regular local front projec- (b) Non-regular local Lagrangian projec-
tions tions

x|

(¢) Regular front projections

>

(d) Non-regular front projections

Figure 1: Regular and non-regular projections of bordered Legendrian
graphs.

type (0,n) and (n,0) as depicted in Figure[I(c)| whose left and right borders
are points lying on the red lines at the left and right, respectively.
For convenience’s sake, we define 7o = 0g = oog = (& — & + ).

Definition 2.9 (Equivalences and isomorphisms). We say that two
bordered Legendrian graphs T and T’ are equivalent if there exists a family
of bordered Legendrian graphs

T, : T x [0,1] = J'U, € J'R,, To=7, T1=T7.

Two regular front (or Lagrangian) projections 7 (or Ti,g) and 7' (or
|_’ag) of bordered Legendrian graphs T and J” are said to be isomorphic if
there is a family of Legendrians T, ¢t € [0,1] such that T (or 7i.g) and T’
(or L’ag) are Lagrangian (or front) projections of Ty and J; and Lagrangian
(or front) projections Ty := g (T¢) (or Tlagt = TLag(T¢)) are regular for all

t.

Remark 2.10. It is important to note that during the isotopy between two
bordered Legendrian graphs, the ambient manifold J'U; may changes. For
example, any translation along the x-axis will give us an equivalence.
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Lemma 2.11. Up to isomorphism, every pair of equivalent front or La-
grangian projections can be connected by a zig-zag sequence of front or La-
grangian Reidemeister moves depicted in Figures or[2(b)l, respectively.

This is well-known and we omit the proof. One may refer [5, Proposi-
tion 4.2] or [2, Proposition 2.1]. Notice also that these moves are not optimal.
Namely, the move (IV) is a special case of (VI).

Notation 2.12. The sets of Lagrangian and front Reidemeister moves will
be denoted as follows:

RM = {(I)v (”)7 (”I)v (V)’ (VI)} )
RM_ag == {(0a), (Ob), (Oc), (ii), (iiia), (iiip), (iv) } .

RN DR e
22 Ol N St

) Front Reldemelster moves

%= Sk S

L
(b) Lagrangian Reidemeister moves

Figure 2: Front and Lagrangian Reidemeister moves: Reflections are possi-
ble, the valency of vertex is arbitrary and the vertex can be replaced with a
basepoint if it is bivalent.

On the other hand, one can consider the weaker equivalence given by
the Legendrian isotopy up to basepoints. In other words, two bordered Leg-
endrian graphs are Legendrian isotopic after forgetting basepoints.
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Lemma 2.13. Two regular front or Lagrangian projections of bordered Leg-
endrian graphs are equivalent up to basepoints if and only if they can be
connected by a zig-zag sequence of front or Lagrangian Reidemeister moves
together with basepoint splittings depicted in Figure[3

Proof. This is obvious. O

Ao e A R GO Ao e Abe
\ I \ I \ I I v [ \ by I \ v |
\ 7 \ /7

(a) Basepoint moves in front projection

b RS . N ARERN . . RS
v’ /\ | ﬂ) v/ /\ | v/ l? \v (bQ) '/ q b\ \v L ) (b3> ,\)(\v
\/ ! \/ b ! \\ I /l’ \\ I I /’ \ ) / \ ) !

(b) Basepoint moves in Lagrangian projection

Figure 3: Operations on basepoints.

Remark 2.14. Note that the operations (B;1) and (b;) that move a base-
point through a crossing below or above can be realized as sequences of front
and Lagrangian Reidemeister moves, respectively.

Remark 2.15. The operations (B3) and (b3) may happen only near ver-
tices. Indeed, these moves are not to forget the base point but to let the
vertex absorb the base point.

Definition 2.16 (Categories of bordered Legendrian graphs). We
regard BLG and BLG,, of regular front and Lagrangian projections of
isomorphic classes of bordered Legendrian graphs as categories, whose mor-
phisms are freely generated by front and Lagrangian Reidemeister moves.

Therefore, projections up to zig-zags of morphisms are the same as those
up to Reidemeister moves. Or equivalently, the isomorphism classes in the
localized category of BLG or BLG| 54 by all Reidemeister moves are the same
as the usual equivalent classes of bordered Legendrian graphs.

Example/Definition 2.17. A bordered Legendrian graph 7 € BLS is
said to be in a normal form if

1) every vertex is of type (val(v),0)
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2) every vertex is located near J'UR, and has the larger z-coordinate than
any point in the right border Tg.

3) every non-vertex r-maximum is a basepoint and wvice versa so that
each r-maximum or a basepoint looks as follows:

See Figure 4] for the example of the normal form.

il

T = € BLS

Figure 4: A bordered Legendrian graph in a normal form.

Lemma 2.18. Let T € BLG be a bordered Legendrian graph. Then there
exists a sequence of front Reidemeister moves consisting of (V), (VI) together
with (Byx)’s which transforms a (non-unique) bordered Legendrian graph in
a normal form to T .

Proof. We first use (B.) to make each z-maximum to be a basepoint and
vice versa.

For each vertex v € V of type (¢,r) with r > 0, we apply (VI) several
times to make v of type (£ +r,0) in the reverse direction and we move a
small neighborhood U, of each vertex v to the right upward position by
applying only front Reidemeister moves (V) in the reverse direction and we
are done. g

2.1.1. Maslov potentials for bordered Legendrian graphs. Let 7 €
BLG and S = S(T) C T be the set of z-extreme points in its interior. An
Z-valued Maslov potential of T is a function p: R — Z from the set R =
mo (T'\ (V US)) of connected components of the complement of vertices and
cusps such that for all s € S\ V,

(2.1) st —p(s) = 1€,

where s* (resp. s7) is the upper (resp. lower) strand near s.
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For Ti.g € BLS o, let Siag = S(Tlag) C i]_ag be the set of z-extreme
points. As before we define the set Ri.g := mo(Tlag \ (Viag U SLag)) of con-
nected components of the complement of vertices and z-extreme points.
Then an Z-valued Maslov potential of T} 5 is a function u : R g — Z satis-
fying the following condition: for each s € Siag \ Viag,

1 s is z-minimal;

(2.2) u(st) = p(s™) = {

—1 s is z-maximal.

Diagrammatically, the above definition is depicted in Figures and

) Y ° L
< >—< > O—C >
- ‘-1 -1 ?f
(a) In front projections (b) In Lagrangian projections

Figure 5: Defining diagrams for Maslov potentials.

Moreover, one can define p == p|7; : [nL] — Z and pr = plz, : [nRr] — Z
as the restrictions of p to the connected components containing 7} and TR,
respectively, under the canonical identifications 7} = [n|] and Tr = [nR].

Definition 2.19 (Maslov potentials for bordered Legendrian graphs).
A Maslov potential for a bordered Legendrian graph 7 is a triple (u, i, ur)
denoted simply by .

We denote Legendrian graphs with Maslov potentials by using the su-
perscript “u” such as BLGH.

Example 2.20. Recall the bordered Legendrian graphs 7T,, 0, and oo,
defined in Example/Definition Since they have no z-extreme points
except for a vertex, there are no conditions for Maslov potentials. That is,
any function p : [n] = {1,...,n} — Z can be realized as a Maslov potential
for 7,, 0, or co,.

Then each Lagrangian Reidemeister move induces a unique isotopy be-
tween bordered Legendrian graphs with Maslov potentials.

Lemma 2.21. Let (M): 7" =T and (m):T,, = Tiag be front and La-
grangian Reidemeister moves. Then they lift uniquely to (M) : (T',u') —
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(T, p) and (m): (T, 1) = (Tiag, ). Namely, for given p', there is a
unique Maslov potential p on each T or Tiag such that

(M)up' = and  (m).p' = p.

Proof. This is an extension of Theorem 2.21 in [I] for Lagrangian Reide-
meister moves. The proof is straightforward and we omit the proof. O

Definition 2.22 (Restrictions of Maslov potentials on vertices). For
each vertex v of type (¢,r) with ¢+ r =n, the set H, of half-edges can
be identified with Z/nZ by Definition and we denote the restriction
pla, : Z/nZ — 7 of a Maslov potential to Hy, by fi,.

2.1.2. Concatenations of bordered Legendrian graphs. For:=1,2,
let 7% € BLS be a bordered Legendrian graph of type (n{’_,nﬁ) Suppose
that an = nf Then we can naturally define the concatenation T =T -
T2 = (T — T <+ TR) such that T is obtained simply by concatenating and
identifying TI% and TL2 up to small isotopy near borders if necessary, and two
borders T} = T|_1 and TR = TF% come naturally from 7! and 72, respectively.

Remark 2.23. It is important to note that we will not regard the points
of concatenations as vertices of T'. Therefore T has n-less edges than the
disjoint union of Tt and T2.

Definition 2.24 (Closure). For 7 € BLS of type (n.,nRr), the closure T
is defined by the Legendrian graph obtained by the concatenation

~

T =0y, -T 00, €£§

as depicted in Figure [0

T T 7>0.T.§O%T &3

Figure 6: The closure of the front projection 7.

I
)

Lemma 2.25. The closure~: BLG? — LG is a functor.
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Proof. Tt is obvious that there is a unique way to extend g on 7 to g on T
by definition of the closure, which is well-defined since any function on [n]
can be realized as a Maslov potential of 0, or oo, as seen in Example

Each Reidemeister move (M) : 7’ — T between bordered Legendrian
graphs induces the exactly same move (M) : 7' — T between closures. There-
fore it becomes a functor preserving homotopy. O

We introduce a combinatorial way, called the Ng’s resolution to obtain
a regular Lagrangian projection T} .5 € £G4 for given front projection T' €
LG defining the equivalent Legendrian graphs.

Remark 2.26. This is an extension of the original Ng’s resolution for Leg-
endrian knots to Legendrian graphs.

Definition 2.27 (INg’s resolution). [22, Definition 2.1] For T' € £, the

Ng’s resolution ResN&(T) is a Lagrangian projection obtained by (combina-
torially) replacing the local pieces as follows:

<~C > . X X

and for a vertex v of type (¢,r) and a basepoint b, we take a replacement as

follows:
Ry Ry hy Py
hvé v v, b+1 hvé v M, 41
hy e P 0 SOX h

s hv,Z—H" v, 0+r

7

S =R &

b b

Notice that if we have two equivalent front projections, then the Ng’s
resolution induces equivalences between resolutions. Indeed, for each front
Reidemeister move (M), we have a sequence of Lagrangian Reidemeister
move(s) ResNg(M).

One candidate for the choice of ResN8(M) for each (M) € RM is given in
[3, Figure 6].

Lemma 2.28. The Ng’s resolution ResNe . LG+ — Lgfag is a functor.
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Proof. The well-definedness is well-known and as observed above, each mor-
phism corresponding to front Reidemeister move (M) will be mapped to the
morphism corresponding to the chosen sequence ResN&(M) of Lagrangian
Reidemeister moves. Therefore it is functorial. O

2.2. Bordered Chekanov-Eliashberg DGAs

In this section, we recall from [II [3] some results about Chekanov-Eliashberg
algebra for bordered Legendrian graphs which can be seen as a generalization
of A bordered Chekanov-Eliashberg algebra in [26].

Throughout this paper, we mean by a differential graded algebra (DGA)
a pair A = (A, 0) of a unital associative graded algebra A over a field K with
the unit 1 € K. A DGA A = (A, 0) is said to be semi-free and generated by
S if its underlying algebra A is a tensor algebra of a graded vector space

K(S)

A =T(K(S)) = PK(S))*",

>0
for a (possibly infinite) generating set S with a grading |-|:S — Z.

Remark 2.29. This is the usual notion of the semi-freeness while it is used
differently in [21].

We denote the category of semi-free DGAs by DGA.

Assumption 2.30. From now on, we mean by a DGA a semi-free DGA
unless mentioned otherwise.

Example/Definition 2.31 (Border DGAs and internal DGAs).
There are two important examples of DGAs, called the border DGA A, (u) =
(A, 0y) and the internal DGA I,(n) = (I, 05) which are edge-graded over
E, = [n] and defined as follows:

e For a function yx : [n] — Z, the algebras A, and |,, are generated by
two sets K, and V,,

K, ={kw|1l<a<b<n}, V= {€ailaeZ/nZ,i>1}.

e The edge-gradings on generator kg, and &,; are given as (a,b) and
(a,a + 1), where all indices are modulo n.
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e The homological gradings are

i = (@) = p(8) ~ 1, [€ail = pla) — pula+ 1) + N(n,a,i) — 1,
where

0 a#mn;

2.3 N(n,a,i) N(n,a+j3,1) and N(n,a,l):=
(2.3) = J (n,a,1) {2 -

j<i

e The differentials for k,, and &, ; are defined as follows:

(2.4) On(kap) = > (=D)Fecl " ko,
a<c<b
(25) (5(1 Z) = (57, n]-a, + Z ‘ga lll ga,ilga‘i‘ilﬂé'
11+i2=1

Then it is obvious that there is a canonical inclusion kqp — &4 p—q from
An(p) = In().

Remark 2.32. We have Ag(p) = Io(pn) =K.

Especially, when a vertex v of n =2, of (1,1)-type and p is constant,
say m, then the internal DGA Iy(m) = (la(m), 02) is given as

(2.6) la(m) = K(&14,&, | 1> 1),

where |§1 ;| = |£2,4| = ¢ — 1. Hence, it is independent to the constant m and
denoted by I> and moreover, we have the DGA morphism

t a=14=1;
(2.7) L — (K[t,t71,0=0) |t|=t"' =0, Lot a=20=1;
0 > 1.

Definition 2.33 (Tame isomorphisms). We say that a DGA morphism
oAl = (N =T(K(S)),8) — A = (A= T(K(S)),0)

is called an elementary isomorphism if for some g € S,

_Jgtu ith=g
f(h)_{h if h # g,
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where u € T(K(S\ {g})), and called a tame isomorphism if f is a composi-
tion of countably many (possibly finite) elementary isomorphisms.

We consider a stabilization in the sense of [10, Definition 2.16] and a
generalized stabilization defined in [1] as follows:

Definition 2.34 (Stabilizations). A stabilization of A = (A = T'(K(S)), 0)
€ DG A is a DGA which is tame isomorphic to a DGA SA = (SA, ) obtained
from A by adding a countably many (possibly finite) number of canceling
pairs of edge-graded generators {¢,e’ | i € I} for some index set I so that
¢' and e’ have the same edge-grading and

SA=T (K(SII{e",¢' |i e I})), [e'|=]e'|+1, () =¢e" d(e')=0.

Then the canonical forgetful map 7 : SA — A sending both € and €’ to zero
induces the isomorphism on homology groups, whose homotopy inverse is
precisely the canonical embedding ¢ : A — SA.

Definition 2.35 (Generalized stabilizations). For A = (A = T'(K(S)), 9)
€ DGA and ¢ : I,(iu) — A for some p : Z/nZ — 7, the d-th positive or neg-
ative stabilization of A with respect to ¢ is the DGA SgiA = <S$,A,5i),
where for v, ; == ¢(£a,i) € A,

e the graded algebra SZA is given as

SOA =T (K(SII{e',...,e"})), e’ =0+ (lvaa| + 1),
a<b

. . =t .
e the differentials 9~ for e’ are given as
—+ al__ —
9 e = Z(_l)‘e | 1eava,bfaa 9 e = Zvnﬁlfb,bfaea-
a<b a<b

As observed in [I, Remark 3.8] and proved in [3, Appendix A], the gen-
eralized stabilization is a composition of stabilizations and destabilizations.

Proposition 2.36. [3, Appendiz A] There exists a semi-free edge-graded
DGA SgiA which is a common stabilization of both A and SgiA.

2.2.1. Bordered DGAs. We consider DGAs together with additional
structures, called bordered DGAs.
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Definition 2.37 (Bordered DGAs). A bordered DGA
A= (AL a8 ag)

of type (nL,nR) consists of DGAs A, A| and Ag, and two DGA morphisms
oL : AL — A and ¢ : AR — A such that
1) ¢ is injective, and

2) for some py : [n] — Z and ug : [nr] — Z,
AL = Ap () and AR = Ap (pR).

A bordered morphism £ : A" — Aisatriple (f, f, fr) of DGA morphisms
such that they fit into the following commutative diagram

T
A AL — P s A A

We say that A is a cofibrant if ¢R is also injective.

Definition 2.38 (Stabilizations). We say that A’ = (4] — A"+ Af) is
a (weak) stabilization of A= (AL — A + Ag) if A’ is a stabilization of A
and there exists a canonical projection

T = (IdL,W,IdR) I.A, — .A,

and is a strong stabilization if it is a weak stabilization and there exists the
canonical embedding i: A — A’ as well.

Definition 2.39 (Category of bordered DGAs). The category of bor-
dered DGAs will be denoted by BDSGA, and the full subcategory of BDGA
consisting of cofibrants by BDGAC. Then the category DGA is the full sub-
category of BDGA® consisting of bordered DGAs of type (0,0).
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Deﬁnition 2 40 (Coﬁbrant replacements of bordered DGAs). Let

A= ( RNy AR> € BDGA be a bordered DGA. The cofibrant re-
placement of A

A= (AL P A4 ) € BDGAC

is defined by the mapping cylinder construction as follows: if A= (A=
T(K(S)),0),

e the DGA A = (3\, ) and its graded algebra A is defined as

A= T(K<RHKRHI?R>> . Rpo= {Ea,, ‘ kp € KR}, — lka| + 1.

e The differential 9 for each kqp is the same as Og(kqp) and for Eab it is
defined as

(28) 5(7{:\01)) = kab - ¢R(kab) + Z (_1)‘Eaclilk\ac¢R(kcb) + kack\cb-

a<c<b

e The morphism ggL is the composition of ¢ and the canonical inclusion
A — A, and ¢R is defined by ¢r(kap) = kap € A.

Let 7# = (Id,7,1d) : A — A be the bordered morphism which fixes both
border DGAs and sends all kg, to zero and each kg to or(kap)-

Lemma 2.41. The bordered DGA ./Zl\ 1s a weak stabilization.

Proof. Notice that in each differential (9( ab) there is one and only one gen-
erator kqp. Therefore one may find a tame automorphism ¢ on A that
sends 8( ab) to k: ob S0 that the DGA (A 34)) with the twisted differential
8@ — ®0dod ! becomes a stabilization of A. O

Remark 2.42. The cofibrant replacement Ais not a strong stabilization.
Indeed, the canonical inclusion i may involve the DGA homotopy. How-
ever it still satisfies the good property, for example, induces an A-quasi-
equivalence between augmentation categories. We will see this in Section[4.1}

2.2.2. Bordered Chekanov-Eliashberg DGAs. Let (T,u) € BLS" be
a front projection of a bordered Legendrian graph of type (nL,nR) with a
Maslov potential. We consider the Ng’s resolution 7T_ag = ResNg(T) of the
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1 : IR
ReSNg(%) =0 ResNe (T) 0N/ » o0

______

Figure 7: The Ng’s resolution of the closure of T.

closure of 7, which has two distinguished vertices 0 and oo of valency n
and ng, respectively. See Figure [7]
Then it is known that the Chekanov-Eliashberg DGA A“E (TLag, 1) has
the following generating sets:
1) Crossings C(ﬁag);
2) Vertex generators V(ﬁag) = {vgi | v € V(ﬁag),a € Z/val(v)Z,i > 1};
3) Basepoint generators E(ﬁag) = {bge | b€ B(ﬁag), a=1,2,0>1}.

Especially, C(ﬁag) has the subset Kg of (T;R) crossings coming from the
right border by k£

[?R::{Eab‘lga<b§nR}y

which are in the dashed box in Figure |7l Similarly, two distinguished vertices
0 and oo have the subsets of vertex generators

K= {kayy =00 p_a | 1 <a' <V <nL},
Kr = {kop = 0gp—a | 1 <a<b<ngr}.

Then it is known that the differential for Eab is given as

o~

6(k’ab) ( )‘kabl 1kab + Gap + Z ‘kab| 1kcnt:kcly + gackcb7
a<c<b

for some g € ACE(T w) which is essentlally the same as the equation (|2
by replacing kqp, and gqp with (— )‘kab| Uoas and (— )|kab| Jab, Tespectively. In

particular, the assignment kgp — (— )|kab\ gap defines a DGA morphism.
We define a bordered DGA

AE(T, p) = (ACE(TL, p) 2y AE(T, ) & ACE(TRNUR)>
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associated to (7T, p) as follows: two border DGAs are as before and the
DGA ACE(T, ) = (A 8) is the DG-subalgebra of AE (7T_ag, i) generated by
all crossings in 7T_ag, vertex generators for all but 0 and co and two sets K|
and KR.

The bordered Chekanov-Eliashberg DGA (CE DGA) or Legendrian con-
tact homology DGA (LCH DGA) for T* is given as

AT ) = (AE(TL ) 25 AT, ) £ A% (T, ) )

where

1) two DGAs A®E(Ty, ) and A®E(Tk,uRr) are isomorphic to border
DGAs A, (uL) and A, (uR), respectively, whose generating sets K|
and KR are identified with

K| = {ka’b’ = Oa’,b’fa' 1< a <t < TLL},
Kg = {kap = ap—a | 1 < a <b<ngr},

2) the DGA AE(T, ) is the DG-subalgebra generated by crossings, ver-
tex and basepoint generators contained only in ResN&(T') together with
K, and

3) the DGA morphism ¢ is an obvious inclusion while ¢g is defined as
kap — (—1)|k"'b|gab as above.

Theorem 2.43. [3, Corollary 3.3.7] Let (T, ) € BLG”. The bordered DGA
ACE(T, w) is well-defined and invariant under Legendrian isotopy up to sta-
bilizations.

Indeed, for each front Reidemeister move (M) : (T', ') — (T, ), there
exists a zig-zag

AT ) «F AT ) = Ay ot - 5 Ay = AT ) o AT )
of stabilizations of bordered DGAs between ACE(T! p') and AE(T ), where
the bordered DGAs A“E(T", u') and ACE(T, u) are well-defined and the cofi-

brant replacements of AE(T", u') and AE(T, ), respectively, and all but
the left- and rightmost are strong stabilizations.

We explain briefly the reason why the DG-subalgebra AE(ResN8(T, 1))
is well-defined. Since two vertex 0 and oo face the unbounded region in R?
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especially between two half-edges ho,, and hg 1, and hoo pn, and heo 1, there
are no crossing generators involving vertex generators at 0 or oo which pass
these unbounded regions in their differentials.

In other words, the bordered DGA AE(T, ) is the same as the LCH
DGA of the Legendrian graph (7, u) together with two DG-subalgebras
AE(TL, ) and AE(TR, uR) of the distinguished internal DG-subalgebras
Iy and I,. This data is obviously invariant under any front Reidemeister
moves fixing two vertices 0 and oo.

Remark 2.44. The exactly same statement holds for Lagrangian projec-
tions. That is, for each (m) : ( L’ag, ') = (Tlag, 1), there is a zig-zag of stabi-

lizations between two bordered LCH DGAs A“E( Lag: M) and AE(Tlag, ).

More precisely, (Il1), is an isomorphism and (M), is a canonical projec-

tion of a stabilization for (M) € {(I), (I1), (VI)}. However, we have a zig-zag
of stabilization for (VI)

ACE(T, ) A _ AT AE(T, ).

Similarly, for Lagrangian Reidemeister moves (m), we have an isomor-
phism (m), for (m) € {(0.), (iiix)}, a canonical projection of a stabilization
for (ii) and a zig-zag of stabilizations for (iv).

Example 2.45 (DGAs for bordered Legendrian graphs in a normal
form). Recall a bordered Legendrian graph (7, u) € BLSG” in a normal
form in Definition Let (Tiag, i) be the Ng’s resolution of (7, u). Then
the set of vertex generators at each v can be decomposed into two subsets
as follows:

XZJJ_ = {va,j eV, |a +i< Val(v)}, V,o= {’Ua,j eV,

a+j> Val(v)}

and we denote their unions by VL and 17@

=] Vo 7= Vn
veV veV
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Notice that the elements in 17“_ correspond to the vertex generators
which are lying on the left hand side of the vertex v:

€3 €3 ~
v 7 v e
V12 = €2 >’ € VoL V22 = €2 % €Vo
€1 €1

Since all vertices are in the upper right position, there are no immersed
polygons for differentials involving generators in V- except for infinitesimal
ones. That is, due to this geometric reason, no generators in XN/O appears in
differentials for any crossing generator and in the image of the right border
generators kqp’s under ¢R.

Before closing this section, we remark the following. The LCH DGA
ACE(T, ) has infinitely many generators by ¢ for each basepoint b € B while
it usually contributes two generator inverses to each other such as ¢, and
tb_l. However, as observed in [11, Proposition 14], the internal DGA for each
basepoint I, is quasi-isomorphic to the Laurent polynomial ring K¢, tb_l].
Therefore one can regard I, as the free resolution of K[t,,#, !].

Indeed, K[tp, tb_l] can be obtained by taking a quotient by all b, ¢’s with
£ > 1, whose degrees are not zero. Due to this observation, we can get one
another consequence such that any DGA morphism from AE(T, u) to a
field K = (K, 9 = 0) factors through the quotient DGA. Therefore there is
an isomorphism between setsﬂ of DGA morphisms.

Now let us consider the effects of operations on basepoints to LCH
DGAs. As seen earlier, there are three more moves on basepoints. As men-
tioned earlier, the operation (b1) : (7/,g, #) = (Tiag, 1) can be viewed as a
sequence of front Reidemeister moves. Hence we have a zig-zag of stabiliza-
tions which is not easy to describe directly.

On the other hand, two operations (by) and (bz) can be regarded as
tangle replacements so that they induce DGA morphisms (b2)., (b3)« :
AE(T, ') — ACE(T, p). Indeed, each generator b, 4 or v, ¢ will be mapped
to elements obtained by counting certain polygons in the support of (by) or

2Indeed, we have an isomorphism between augmentation varieties. See [3)].
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(b3) in 7. For example, by 1 or vy2 will be mapped to bll 11 and b 1vg .
See [II, §6.5] for detail.

£ N o), o, e \ (bs) N -
b1 =" L —— by b = Py V4o = >é — byiva2 = >év ,
\ / \ ’

However, when we consider the quotient DGA by all generators b, ¢’s
with ¢ > 1, then the move (b;) induces a DGA isomorphism (bj), which
sends c to tb_lc. The induced map (by), sends t;, to tyty and (bz). sends vg ¢
to either v ¢, v ¢ty OT tb_lvmg according to where the basepoint b is lying on.

Conversely, one can find DGA morphisms (b 1), : AE(Tiag, p) —
ACE(T! Lag> #') for i = 2,3 which are left inverses of (bj). and defined as

1 (=1;
0 ¢>1,

1 /=1,
0 ¢>1.

(b2 )*(ba,f) = { (b;l)*a)a’g) = {

In summary, we have the following:
Lemma 2.46. Let (bi) : (7,5 #') = (TLag: 1) be a basepoint move. Then
either

1) fori =1, there exists a zig-zag of stabilizations between ACE( Lag,u "
and ACE(ﬁag,u), or

2) fori =2 or 3, there exists a pair of DGA morphisms

(bi).
ACE( Lag’p’/) (ﬁ AC (ﬁag, ),

where (b; 1), is a left inverse of the DGA morphism (b;), induced from
the tangle replacement.

Remark 2.47. For i =2 or 3, there is no issue on the commutativity of
(bi_l)*with the structure morphisms ¢ and ¢R.

3. Consistent sequences
In this section, we first briefly review the definition of a consistent sequence

of DGAs and the construction of the A..-category associated to the con-
sistent sequence of DGAs and we will basically follow the definition and
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construction described in [2I, §3.3] but may use the different notations or
conventions.
Let us start with the category Ay of all finite ordinals

[ ={1}, 2] = {1,2}, 8] = {1,2,3}, e

whose morphisms are order-preserving inclusions.
Let @ be a category, together with a sequence of functors €™ — @ for
all m > 1, satisfying the following conditions:

1) For any h : [m] — [n] in Ay, we have a functor rj, : (") — (™),

2) For any other h’: [{] — [m] in A4, we have a natural isomorphism:
Th' O Th = Tholy-

In the above setup, €™ will be called the category of m-component
objects in €, and an object of €™ will be called an m-component object
in €. For each h : [m] — [n] and object C™ € €™, we denote 71,(C"™) =
CO (g

We then define the category of consistent sequences of objects in € as
follows:

Definition 3.1 (Category of consistent sequences). A consistent se-
quence in @ is a sequence of m-component objects C(™ in @ for all m > 1,
denoted by C(®) = (C(™)),,,>1, satisfying the followings: let h : [m] — [n] and
h': €] — [m] in AL.

1) We have an isomorphism C(h) : C(”)\h([m}) =~ glm),

2) For U = R'([{]), we have a composition C'(h)Y of isomorphisms

i (C(R))

C iy —— (C™ )l cmly,

where the first isomorphism comes from the natural isomorphism

Thot' = T 0 73y, such that C (k') o C(h)Y = C(hoW).

A consistent morphism, denoted by f(®) = (f (m))mzl, between two con-
sistent sequences C'(*) and D(®) is defined to satisfy the following conditions:

1) For each m > 1, we have an m-component morphism f (m) . ¢(m) _,
D),
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2) Forany h : [m] — [n]in AL, we have 7, (™) : C(”)]h([m]) — D(”)\h([m])
together with the following commutative diagram:

n Th f(”) n
COampy —Ls DO

C’(h)l lD(h)

Co(m) ™ pm)

The category of all consistent sequences and consistent morphisms will
be denoted by C(®) and called the category of consistent sequences in C.

Notation 3.2. For each h: [m| — [n], U C [m] and i € [m], we may denote
Chy, C™|y and C™| ¢y by C(h)Y, CV and C°, respectively. We further
denote C™M and fO simply by C and f.

Lemma 3.3. Let C*) € C(®) be a consistent sequence in C. Then for each
m > 1 and i € [m], we have

c'=cm|,=cW| =

Proof. This is obvious from the definition by considering h; : [1] — [m] with
i=hi(1). O

3.1. Consistent sequences of bordered Legendrian graphs

We define categories of consistent sequences of bordered Legendrian graphs
given in terms of both Lagrangian and front projections, which are related
via Ng’s resolution as usual.

For a bordered graph T' = (I'L — I" + I'r), an m-component bordered
graph T(™ is a bordered graph defined as

T = (1™ - 10 M),
where the inclusions preserve the label. Then for each U C [m] and i € [m],

let the restriction T := (I'f — I + I't) and TV :=[],.,, IV, where I' =
{i} x Ty for x = L,R or empty.
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For each m-component bordered graph I'™) | its Legendrian embedding
defines an m-component bordered Legendrian graph

g(m) — <T(Lm) — T T&m)> = (I‘(m) — JlU) )

whose restriction TV on U C [m] is obviously defined as T(™)|po.
We can naturally consider the front and Lagrangian projections of m-
component bordered Legendrian graphs which will be denoted by

T = (1™ — T TE) = 7 (T

and T = (T80 = Ty Tge) = mag(T™)

and their restrictions on U C [m] are denoted by 7V and 7'ng as before.
One can equip a Maslov potential ,u(m) on 7™ or 71(;? so that the

restriction pV is the restriction of u(™ on 7V or ﬁgg.

Notation 3.4. We denote the categories of all regular front and Lagrangian

projections of m-component bordered Legendrian graphs with Maslov poten-

tials by BL G (M) and BLG! ’(m), whose morphisms are Reidemeister moves

Lag
preserving m-component structures, respectively.

For a sequence (T(m), M(m))mZI of m-component front projections
(T, pu(m)y € BLGH(™) | the consistency is as follows: for each (h : [m] —
[n]) € Ay and U C [m], there is an isomorphism between two front projec-
tions in the sense of Definition 2.9

(T, w(r)Y) : (T, @Oy Z5 (7Y, W),

Definition 3.5 (Consistent moves). A consistent front (or Lagrangian)
Reidemeister move or basepoint move (M)®) 1 (T7(®) p/(®)) — (T(®) ()
between two consistent sequences of front (or Lagrangian) projections is
a sequence of sequences of front (or Lagrangian) Reidemeister moves or
basepoint moves satisfying the following conditions:

1) for each m > 1, (M) (770 /)y — (707 (M) s a sequence
of front (or Lagrangian) Reidemeister moves or basepoint moves and
in particular, (M) = (M) € RM is a (possibly empty) front (or La-
grangian) Reidemeister move or a basepoint move;

2) it is compatible with restrictions, i.e., for each U C [m], we have a
sequence of front (or Lagrangian) Reidemeister moves or basepoint
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moves
(MY (T, ) = (T, u?);
3) it satisfies the consistency, i.e., for each (h : [m] — [n]) € AL and U C
[m], the following diagram is commutative:

T/ U’ ’ U
(Th0) | /h()y (T ()7 (h)7) (T, WV

(M)h% l(M)U

T(R)Y ,pu(h)Y
(T, ) TR (T, ),

We furthermore say that a consistent move (M)(®) is elementary if it
consists of Reidemeister moves or basepoint moves of only one type.

Two consistent sequences of front or Lagrangian projections are said to
be (consistently) equivalent if and only if they are connected by a zig-zag
sequence of consistent front or Lagrangian Reidemeister moves.

Notation 3.6. From now on, we will denote the elementary consistent
Reidemeister move or basepoint move by the double arrow “=" such as

(M)©®) T = T.

Example 3.7 (Elementary consistent Reidemeister moves). One
example for elementary consistent Reidemeister move is a consistent La-
grangian Reidemeister move as follows: for each m > 1,

ST LT
= m?(iv) =
— ! : !
(. // ~ //
(&) H H
-, R
5,,,' \ m(iv) 5,, d \ m(iv) TI’L(IV)\ = \
1y ! — u 1 4 4 1
~y // ~ // ~ //

Definition 3.8 (Categories of consistent sequences of bordered Leg-
endrian graphs). The categories of consistent sequences and Reidemeister
moves of regular front and Lagrangian projections of bordered Legendrian
graphs with Maslov potentials will be denoted by BLG(®) and BL llf;(g.)7
and two full subcategories consisting of consistent sequences of non-bordered

Legendrian graphs will be denoted by £5*(*) and LSf;(g').



Augmentations are sheaves for Legendrian graphs 289

Recall the Ng’s resolution ResN8 : BLGH — BLS’L‘ag which is a functor
as seen earlier and therefore it preserves isomorphisms. In other words, each
isomorphic pair of front projections will be mapped to an isomorphic pair
of Lagrangian projections. It is obvious that ResN& sends each component
to the corresponding component, it induces a functor between consistent
sequences of front and Lagrangian projections.

Lemma 3.9. The Ng’s resolution induces a functor

(*)

ResNe™ - BLgn(®) 5 Bogh®)

which preserves the homotopy relation.
Proof. This is nothing but the Lemma [2.28 O

3.1.1. Canonical front and Lagrangian parallel copies. We intro-
duce a canonical way to obtain a consistent sequence for a bordered Legen-
drian graph in terms of front projections or Lagrangian projections.

Definition 3.10 (Canonical consistent sequences). Let (7, u) € BLGH
and (Tlag, 1) € BLS’ﬁag be regular front and Lagrangian projections. Then

the canom’cal consistent sequences (T®), u(®) € BLG*®) and (71(;;,”(')) €

BL 9Lag are given by the z- and y-translations as depicted in Figures a and
[ respectively.

7 T o~ Ve
/ | \ /
/ T /
— — | (= ——c
\ / \,
\ / \

c ) Basepoint Crossmg

(a) Left border (b) Right border

<= > e %%

(e ) Left cusp (f) nght cusp (g ) Vertex N

Figure 8: Canonical front parallel copies.
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d — w\\ //H—)\\——u/ H///\

(c ) Basepoint d) Crossing
(a) Left border (b) Right border

| CH C D m; >§ %%
(€) z-minimum (f) Z-maximum ( ) VerteX '

Figure 9: Canonical Lagrangian parallel copies.

Remark 3.11. For Lagrangian projections, the y-translation comes from
a strict contactomorphism

(x,y,2) = (x,y — €,z + xe),

whose Lagrangian projection is the desired y-translation.

Notice that it is not obvious if 7™ or TL(:? is regular again. Indeed, we
need to check the regularity holds near each vertex.

There are many ways to achieve the regularity but in this paper, we fix
the convention as follows: let Uy be a ne1ghborhood of the vertex v. If we take
a parallel copy and make 73 or ’T by the small enough translation, then
all additional crossings are Contamed in a small neighborhood Us. Now we
take the third copy such that the newly appeared crossings avoid the region
U, and are contained in a larger neighborhood U3 and so on. See Figure
The shaded region represents neighborhoods U;. Then it is obvious that for
each T or T, the sequence 7(* or 7[_(; ; of canonical projections becomes
a consistent sequence of m-component Lagrangian projections.

Remark 3.12. In the canonical m-copies near a vertex v of type (¢,r),

there are exactly () (g) + (") (5) many additional crossings.
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:>< T

(a) Canonical Front parallel copies near a vertex

Tiog = > 7 - S 7 - S

(b) Canonical Lagrangian parallel copies near a vertex

T@) — TH —

X
X

X

y
N
y
N

TW

Lag —

\
l
\

)
)
]

Figure 10: Canonical copies near a vertex.

One can choose (zig-zag) sequences of consistent front and Lagrangian
Reidemeister moves as follows:

52 : 2N %@

s
5o l | Lo
gy o L gy

e ey

l (m) ( )om J(( (m) J((.)W

e
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-G - (EJerr

where ¢ and r are the numbers of half-edges on the left and right, respectively.
In addition, one can choose the consistent morphisms corresponding to
the operations (B.) on basepoints as depicted in Figure
The one important observation is that all parallel copies are consistent

and all arrows are elementary. Therefore in summary, we have the following
proposition.

Proposition 3.13. The canonical consistent sequences
BLG" — BLG ™) and  BLG, — BLGLY

are well-defined and preserves the equivalences.
In particular, each consistent Reidemeister move and basepoint move

can be mapped to a zig-zag of elementary consistent Reidemeister moves or
basepoint mowves.
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>< >< —— %
J{( (m) (m) (.)(m) l(.)(m)

% % T m(By)
—t T

/ \ (Bs) / \

-

Figure 11: Consistent basepoint moves on the canonical front copies.

Example 3.14. Due to the definition of the bordered Legendrian graph in
a normal form, the canonical consistent sequence of a bordered Legendrian
graph in a normal form is a sequence of bordered Legendrian graphs in a
normal form.

On the other hand as seen in Lemma [2.18] for each consistent sequence
(T, 1(*) € BLG*®) of canonical front parallel copies, one can find a rep-
resentative in a normal form up to consistent front Reidemeister moves. In
other words, there is a consistent sequence (7"(*), 1/(¥)) € BLG*(*) of canon-
ical front parallel copies in a normal form and a sequence of consistent front
Reidemeister moves between (77(%), 1/(*)) and (T(*), pu(*))

M, )(® M,)(®)
(T, ey M T e (@),

Moreover, since the transformation from 7’ to 7() only needs (V), (VI)
and (B,), so does the sequence of consistent Reidemeister moves (M;)(®)
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That is, for each i,
(M) & LW, (v)®, (B1)), (B2), (B3) }

Remark 3.15. It is easy to see that the Ng’s resolution does not map
canonical parallel copies in front projections onto those in Lagrangian pro-
jections. Indeed, if 7 contains a right cusp or a vertex of type (¢,7) with
£ > 2, then the resolution of the canonical front m-copies is not the same as
the canonical Lagrangian m-copies of the resolution.

However, we can always find a consistent Lagrangian Reidemeister move
consisting only of (ii)’s and (iiia)’s between the canonical Lagrangian copy
of Ng’s resolution and Ng’s resolutions of the canonical front copy. See Fig-
ure

ResNe (>)(m) ResNe <>(m)>

-

Figure 12: Ng’s resolutions of front canonical copies.
3.2. Consistent sequences of bordered Chekanov-Eliashberg

DGAs

In this section, we will consider consistent sequences of bordered Chekanov-
Eliashberg DGAs.
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For each m > 1, we define the ring K™ as

K = @ K,

1€[m]

where K is the copy of K with the unit 1¢. Then K(™) has the unit 1™ :=
Zie[m] 1% and for each subset U C [m], there exists a unique ring homomor-
phism
m) N KU @ K.
€U
Therefore K™ becomes an m-component object and furthermore it is ob-
viously consistent.

3.2.1. Link-grading and composable DGAs. We first introduce an
m-component link-grading on DGAs as described in [21] §3.2].

Definition 3.16 (Link-graded and composable DGAs). Let A =
(At 9(m)) be a DGA which is not necessarily semi-free. We say that A is m-
component link-graded for some m > 1 if there exist functions r, ¢ : A(™ —
[m] such that for each g € A(™) and any word g; . .. gi in J(g) different from
nl for any n € Z is composable in the sense that

r(g9) =r(g1), c(g) = c(gx), 7(g:) = c(gi+1)

for each 1 <i < k. We say that a composable word ¢; ... gy is said to be of

type (i,7) if r(g1) = i and ¢(gr) = j-
An m-component link-graded DGA A(™) = (A(™) 9(™)) is composable
over [m] if A(™) is decomposed as

A= @ ATL)
(i,5)€lm]?
such that it satisfies the following:

e for each i, j, k,1 € [m], the multiplication on A(™ (i, j) @ AU (k, 1) does
not vanish only if j = k. In this case, the result is contained in A(™) (3, 1).
e for each (4, j), the restriction A™ (i, ) = (A(™) (4, 5), o™ |G (i 5)) 1s &
subchain complex. In particular, A (i, i) becomes the DG-subalgebra.

One equivalent definition of composable DGAs is as follows: a DGA
A = (Al 9(m)) is composable over [m] if and only if it is a subalgebra
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of the matrix algebra so that

Al = Mat, (A(m)(i, j)) _ {(am) ‘ ail € A (G, j)}, 9 = (9|5 1)
and also it is a K(™)-module.

Definition 3.17 (Semi-free composable DGAs). We say that a com-
posable DGA A(™) = (A(™) 9(M)) is semi-free if it is tensor-algebra-like as
follows: there exists a graded set S(™)

g(m) — H G
i,j€[m]?
and the underlying graded algebra A is the direct sum

A Z T M0 o () (M<m>)£,

£>0

where M(™) = (M%)  Al™ is a K(™)-module and each M¥ is a free (K?, K)-
bimodule generated by S%

MY =K' ® Z(SY) @ K,

and (l\/l(m))Z is the ¢-fold product of M(™) with respect to the matrix mul-
tiplication so that (M(m))o = Km),

A DGA morphism f : A" — A hetween semi-free composable DGAs
is said to be an composable morphism if there exists (h: [m] — [n]) € Ay
such that for each i/, j' € [n], f(A'™(i,4")) is either contained in A(i, j) for
h(i,7) = (i',7') or 0 otherwise.

Let i = (ig, .. .,ix) be a sequence in [m]. We denote M! by the submodule
defined as

Mi = M’ioil Miliz Mlk—llk

Then it is easy to see that
AM (i, 5) = P M,

where i ranges over all sequences starting and ending at ¢ and j, respectively.



Augmentations are sheaves for Legendrian graphs 299

Notation 3.18. For simplicity, we will use the notation M) = (K(™) (S(m)))
and so

A = T (KM (S,

Definition 3.19 (Category of composable DGAs). We denote the cat-
egory of all semi-free composable DGAs and morphisms by DGA,. In par-
ticular, the full subcategory of m-components semi-free composable DGAs
is denoted by DSAQ).

Remark 3.20. It is obvious that each morphism f € DSAEZL) preserves
the link-grading. Especially, the subcategory DSA&,) is equivalent to DGA.

Let A™ € DGAL . Then for each h : [m] — [n] in Ay, there exists a m-
component semi-free composable DGA AMIm]) ¢ DgAﬁZ‘) which is the image
of the quotient map

resh s A _y gh(m)

defined by 17 0 for each i € h([m]). Then the map res” plays the role of
the functor 7, and moreover, for b’ : [¢] — [m], we have

/ ’
res” ores = resh .

Example 3.21 (Composable DGAs from link-graded semi-free
DGAs). For each m-component link-graded semi-free DGA A =
(A0 = T(K(S(™)),0(™), one can associate an m-component composable
DGA A% as described in [211, §3.2]. We will briefly review the construction
as follows:

1) Add idempotent elements 1° for i € [m] and declare 1°17 = §;;.
2) For each element g of type (4,7), declare 1°g = g = g17.

3) For each element g of type (i,47) having nl in 9(g), replace nl with
nlt.

4) The unit 1 is replaced with 3., 1%,

Then it is easy to check that
AG) = (T (KM (S0)),00)

and therefore it is semi-free composable.
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Definition 3.22 (Consistent sequences of composable DGAs?. The
category of consistent sequences in DGA., will be denoted by DSACZ).

More precisely, a sequence A(®) of m-component composable DGAs is
consistent if and only if for each (h : [m] — [n]) € A4 and U C [m], we have
an isomorphism

Ay g(m)
which identify 179 with 17 for each i in [m)].
Example/Definition 3.23 (Consistent sequences of composable bor-
der DGAs). Let p: [n] — Z be a function. Recall the border DGA A,,(u) €
DGA = DQA&). For each m > 1, we will define the m-component border
DGA AU (1) € DGALY such that ALY (1) = An(p).

Let AL™ (1) = (A&m),aﬁlm)) be an m-component link graded DGA de-
fined as follows:

1) The algebra A%m) is the algebra T.oM(™ over the ring K™
Al = T o (KK 1Y YY), K= {k" |1<a<b<n},
Vil {yd la€n]} i<y
" %) i> 7.
2) The link-grading for each kfl]b and 37 is defined as (i, ) and the (ho-
mological) grading of each is defined as
|l<:2jb = |ke| and |y¥| = —1.
3) The differential 8™ is defined as

O (ki) = > (1)l LR+ ()Rl iy > "yl

a<e<h 0<j i<t
1<t<m
m 7\ . il, lj
oM (i) =Y yilyd.
i<t<j

Geometrically, generators k:ZJb and yéj correspond to the Reeb chord from
the b-th edge in the j-th copy T? to the a-th edge in the i-th copy T! and
the Reeb chord from the a-th edge of T to a-th edge of T}, respectively.

For each U C [m], the restriction AY(u) will be defined as the image

of the quotient map sending all £!’s and yZ’s to zero unless i,j € U. This

implies that A™ (p) satisfies all axioms for m-component objects.
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(

Moreover, the sequence (Anm) (1))m>1 satisfies the consistency as fol-
lows: for each h : [m] — [m/] and U j= [m], there is an 0bv10us 1somorph1sm
AP (1) = AY(p) sending each k:a and 357 to k% and yi if ' = h(i) and
j' = h(j). Therefore we have a consistent sequence of composable DGAs

AR (1) € DAL

Corollary 3.24. The composable DGA Aﬁf”) (1) can be obtained from the
semi-free border DGA Ay, (u\™) via the standard recipe described in Er-

ample where (™ : [mn) = [m] x [n] — Z is defined to be
ut™ (i, a) = p(a).
Proof. This follows directly from the definition and we are done. g

Now we consider consistent sequences of bordered DGAs.

Definition 3.25 (m-component bordered DGAs). An m-component
bordered DGA of type (ni, nRr)

A(m) _ (A(Lm) ¢E_m; A(m) R A( )>

is a bordered DGA satisfying the following conditions:
1) All DGAs A&m) for * = L, R or empty are in DSAET),

2) two DGAs A(Lm) and A(Rm) are isomorphic to Agf) (u) and A;’Z}) (LR)
for some p and pg,

3) two structure morphisms gb(l_m) and qﬁgn) are composable morphisms.

For each U C [m], the restriction AY for U C [m] is defined by the image
of the quotient map sending all elements in A (4, j) to zero unless 7, j € U

AU — (AU o P qU SR o AU>

where gb(L] and gb(R] are the induced maps by qS(Lm) and gbgﬂ), respectively.

A bordered composable morphism A’ — A™) hetween n and m-
components bordered composable DGAs is a collection of bordered DGA
morphisms {AY) — AV | U C [m]} for a uniquely determined (h : [m] —
[n]) € AL, which is compatible with the restriction map A — AY.

We denote the category of all bordered composable DGAs by BDGA,
and its full subcategory of m-components by BDSA&”).
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By definition, the categories DGA., and DSA((-_T) are full subcategory of
BDGA, and BDSA((_-ZL) of type (0, 0), respectively.

Let A ¢ BDSAQ:) be a sequence of m-components bordered DGAs.
Then it is consistent if and only if for each (h : [m] — [n]) € A and U C [m],
we have an isomorphism A(h)Y : A*U) — AV between composable bordered
DGAs.

Similarly, a sequence f(®) : A(®) — A(®) between consistent sequences
of bordered DGAs is consistent if and only if for each m > 1, f(™) is a
bordered morphism between m-component bordered DGAs A'(™) and A(™)
and it satisfies the consistency, i.e., for each h : [m] — [n] and U C [m], the
following diagram is commutative:

) AW o

fh,(U)l lfU

Anwy AW o

Definition 3.26 (Consistent sequences of composable bordered
DGAs). We denote the category of consistent sequences of composable
bordered DGAs by B@QA&;).

In terms of generators, we have the following observation. Let A =
(A(m) = Teo(KM)(S(M)Y), 8(m)) be a composable m-component DGA. Then
the restriction on U is now given by the image of the map 1% + 0 for all
e € E unless i € U. Moreover, the consistency implies that for each (h :
[m] = [n]) € Ay, the DGA A is isomorphic to the DGA generated by
S¥3"s for i, j' € h([m]). Therefore we may identify

Siesl and  SU 2

by considering h; : [1] = [m] and h;; : [2] — [m] with h;(1) =i and k(1) =
i,hij(2) = j.

Finally, the differential 9™ is the same as the push-forward of 9™ on
A(h) : A — A In other words, for each generator a”/ € S¥,

where i’ = h(i),j’ = h(j) and a"7" is regarded as an element of S¥7" = S,

In other words, the differential in A™) can be obtained from the differential
in A" by removing generators not coming from A,
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The following is the direct consequence of Lemma [3.3] and summarizes
the above discussion.

Corollary 3.27. [21, Lemma 3.15] Let A®) ¢ BDGAL) be a consistent
sequence of bordered DGAs. Then for each h; : [1] — [m] with i = h;(1) and
hij : [2] = [m] with i = h;j(1) < j = hij(2), we have isomorphisms between
DGAs

At AT and AV = AP

Definition 3.28 (Consistent stabilizations). A consistent sequence of
bordered DGAs A'(®) ¢ BDSAE:,) is a (weak) consistent stabilization of A ¢
B@S.Ag)) if there exists a consistent morphism w®)  A®) — A® of canoni-
cal projections of stabilization, and is a strong consistent stabilization if it is a
weak stabilization and there exists a consistent morphism i(®) : A®) — A/(®)
of canonical embeddings.

Let A'(®) = (A'(®) = T, (K*)(S/(®))), 9™)) be a consistent stabilization
of A = (AL =T, (K®)(S(*))),80™). Then in terms of generating sets,
for each m > 1, there exists an index set I(™) = (1) such that

§" =S 1l{e], & | k€ I},
[l =lef | +1, dM@E) =¢l, d() =0
Then for each U C AL, the restriction A’V is generated by
SV =sUI{el, & | kel ijecU}
which is the image of the quotient map sending all e?’s and ’éfcj’s to zero

unless both 4, j € U. Finally, for each (h : [m| — [n]) € A4, the consistency
implies that we have an isomorphism

A/h(U) — A/U

sending each generator er " and ’él,;j "to e?cj and éfcj, respectively, for h(i, j) =
(7', 7"). Therefore it is necessary and sufficient to have the following condi-
tions

I9 = 8 and \eﬁj\ = |e}!
for (k,1) = (1,1),(1,2) or (2,1) according to whether i = j, i < j or i > j.
As before, the one important example of a consistent stabilization is the

cofibrant replacement of a consistent sequence of bordered DGAs defined as
follows:
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Example/Definition 3.29 (Consistent cofibrant replacement). Let
Al ¢ BDSA&;) be a consistent sequence of bordered composable DGAs.
For each m > 1, we consider the cofibrant replacement A of AM) defined
in Definition 2.40

For each U C [m], the restriction AV will be given as the cofibrant re-
placement of AY and therefore A™) g an m-component bordered DGA as
desired.

Finally, the consistency of A comes easily from the consistency of
A as follows: for each h:[m] — [n] and U C [m], the bordered DGA
AMU) is the cofibrant replacement of A"Y) as above which is isomorphic to
AV due to the consistency of A(®). Since the cofibrant replacement remains
the same under isomorphism, we have a desired isomorphism

AMU) 2= 4V
Lemma 3.30. For each A®) e B@SA&;), its cofibrant replacement A ¢
BDGAL) is well-defined.

Proof. This is a summary of discussion above and we omit the proof. O

3.2.2. Consistent sequences of LCH DGAs. Let (7, u®) e
BLG*(®) be a consistent sequence of front projections of bordered Legen-
drian graphs with Maslov potentials. Then for each m > 1, we have the
bordered LCH DGA ACE(T(m) 1,(m))

ACE(TOm, o)
m m ¢|(_M) m m |(am’) m m
= (ACET. ) 2 A, ) B AT ).
It is obvious that the DGA ACE(T*(m), p”(km)) for each x = L, R or empty
is m-component link-graded but is not composable. However, by using the

standard recipe described in Example|3.21} we obtain an m-component com-
posable bordered DGA ASE(T(™) 1,(m))

ACCOE(T(m), H(m))
m m ¢|(_m) m m ¢|(am) m m
= (ASOE(TE )7/’6(|_ )) — ASOE(T( ),M( )) A ASOE(Té )7ME{ ))> .
Then it is obvious that two induced morphisms qb(l_m) and (bgn) are compos-

able morphisms but it is not yet known to satisfy the axiom for m-component
objects.
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Proposition 3.31. The bordered composable DGA ASE(T(™) p(m)y ¢
BDSA&?) is an m-component bordered composable DGA. Moreover, if
(T®), u®) e BLGH(®) s aq consistent sequence, then the corresponding se-
quence

ASE(T®) 1) = ( ACE(Tm), “(m)))m>1

of bordered DGAs is consistent.

Proof. We know that two border DGAs ASE(T, Em) , u(l_m) ) and ASE(T; Fgm), ,uém))
are isomorphic to the m-component border DGAs

AGE@™, ™) = AL () and - AS (T 1y = AT (ug)

by Corollary

For each U C [m)], we define the restriction ASE(T™), ™)V as the im-
age of the quotient map sending all generators of type (i, ;) to zero unless
i,j € U. Hence ASE(T(™) n(™)) admits an m-component object structure.

Moreover, we have an isomorphism

(3.2) AG (T, pm)Y = AE(TY, 1Y)

since we only consider generators and immersed disks lying on TV in the
left hand side.

Now assume that (7(*), u(*)) is consistent and let ASE(7(®) 11(*)) be the
sequence of bordered LCH DGAs of (7, u(*)) € BLG*®). Then for each
(h:[m] — [n]) € AL and U C [m], we have isomorphisms between bordered
composable DGAs

ACET) W) ACE(THO) i)
and  AG (T, ptm)Y 2= AZ(TY, 1¥)
by the observation (3.2). Since two restrictions (7)), uMU)) and (TY, u?)

are isomorphic due to the consistency of (T('),u(‘)), we have a desired
isomorphism

ACE(T), )0 2 ACE(Tm), )y
which means the consistency of ASE(T(®), u(*)). O

Let (M)(®) : (770 1/(®)) — (T(®), 11(*)) be an elementary consistent front
Reidemeister move and let us denote their bordered composable LCH DGAs
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by A and A(®)
/() /(o)
A1) = (10 4 ) s AT, ),
(o) o)
A®) = <A(L') S, 4@ & Agy) — ASE(T() @),

Then as before, we will pass through the cofibrant replacement as follows.
By Lemma [3.30] the cofibrant replacements

. o) (e
A — (A;_(') N qre) Pr Ag-))
N 2 5
and .A(.) _ <A|(_.) éL A(o) R AI(:;)>

are also consistent and furthermore stabilizations of A’(®) and A(®), respec-
tively. That is, there are consistent morphisms 7(®) and 7(®) of canonical
projections

7O A® = A0 and 70 A =5 4G,

On the other hand, (M)(®) gives us an elementary consistent Reidemeister
move

(M)©®) - (T @@y = (7@, 4®).
Then by the condition (2) of consistent Reidemeister moves in Deﬁnition

and as observed in the discussion after Theorem for each m > 1 it
induces a zig-zag of stabilizations

FOm Mo a0m
ACCOE(T,(m)aMI(.)) (m) A(m) %) Alm) #» ACCOE(T(m)au(m)),
CE(qt(m) , /(o)) 7™ A/(m)(mum)qm) A0m) CE(r(m) . (m)
Aco (T y ) A T A e Aco (T » )
for (M) € {(1), (1), (VD)}, or
SAm)
7/(m) F0m)
Ty )
ACC(;E(zT/(m)7 u/(m)) 7/ A\l(m) T ﬁ“”) i AEE(T("’”)7 u(m))

between m-component bordered composable LCH DGAs. Moreover, the
condition (3) in Definition implies the consistency of all arrows above
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and therefore we have a zig-zag of consistent stabilizations corresponding to
(M)(®).

Similarly, one can observe the same property for elementary consistent
Lagrangian Reidemeister moves as well and we omit the detail.

In summary, we have the following theorem.

Theorem 3.32. For (T®), u(®) e BLGH®) and (71(;;,“(‘)) € BLS@?,
the assignments

(T, 1)) = A (T('),u(')> € BDGAL

and (T30, n®) = AL (750, 1) € BDGAL
are well-defined and each elementary consistent front or Lagrangian Reide-
meister move induces a zig-zag of consistent stabilizations.

Now let us consider the consistent basepoint move. For an elementary
consistent basepoint move (B1)(®) or (b1)(®), we already know that it in-
duces a zig-zag of consistent stabilizations since it is indeed a sequence of
elementary consistent Reidemeister moves.

For the moves (B;)(®) or (b;)(*) with i =2 or 3, it is obvious that there
is a consistent morphisms

(B (b))t

ACE(TO) !y = ACE(TO) ) ACE(TS) ) o AT ).
(B7H (CapB

Then as mentioned in Remark both bordered consistent morphisms

(Bi_l)i') and (b;” 1)5:) are well-defined and left inverses of consistent mor-

phisms (Bi)S:) and (bi)5k°), respectively.
3.2.3. Legendrian graphs in a normal form. Recall the definition of
Legendrian graphs or bordered Legendrian graphs in a normal form defined
in Definition

Let (T,p) € BLSffag be a bordered Legendrian graph of type (n.,ng)
in a normal form and (7(.g, ) € ‘BLSffag be its image of Ng’s resolution.

Let us consider the canonical Lagrangian m-copies 71(;?. One of the ben-

efit of being in a normal form is indeed that the DGA ASE (71(;;), (m)) can

be easily described in terms of the data of 7ag and the DGA ASE(Tiog, pb).

Recall that the z-maximal points in T are basepoints and their Ng’s
resolutions look as depicted in Definition Therefore the canonical La-
grangian m-copy near each basepoint b € 7, (or equivalently, a 2-maximum)
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looks like

I AV m
> CT%DCT%L%/\ CTL(ag)

Let us consider the set of z-minimal points in 7| ,5. Then it has one-to-
one correspondence with the set of connected components of the complement
of V' II B, which is the set of edges. N N

The set of generators for ACE(TLag, ) is the union of C, K|, V and B

C = {c | cis a double point},
Ko={ka|1<a<b<n_},
17:{1)&75\veV,lSagval(v),EZI},
B={bys|beBa=1,2,(>1}.

As seen in Definition and Example we define the sets ‘N/L and
(m)

XN/O. Then the generating set for ACE (TE;Z), is the union of the follow-
ing sets:
co k™ m ™ mvi o pem mxm my e,
where
O = {0 | ce Cyi,j € [m]}, [ = lel,
K™ :{ki@‘1§a<b§m}, k| = Kanl
v = {vfzjz ‘ vag EVLi< € [m]}, vi{f = [vadl,
T i {ofhy [ vus € Vi i}, el = Pl
B = {4, | boy € Bri e [m]}. b1 ] = 1Bl
X :{xzj‘beB,i<j€[M]}, 7| =0,
Y =Ly | y. e B,i<j€[m]}, e/ | = —1.

Geometrically, these generating sets corresponding to the crossings and
vertex generators of T(™) as follows:
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2_many copies ¢ in C(™)

e Crossing: for each ¢ € C, there are m

m)

')

e Left border: for each k,, € K| with a < b, there is the set kl(_m) of

m? generators kz), and for each 7 < j and 1 <a </, there are (ZL)

ij
generators vy, ,

yi T
L (yem i
(3.5) Kab O kS

y ﬁ) AN , bll \
— / ; \
I \ (.)(m) | b \
(3.6) ‘\\ ba 1 /J ‘\\ b}‘% /J



310 B. H. An, Y. Bae, and T. Su

e r-maximum: for each b € B, we have the set of (”21) generators xf)j for
1<

e r-minimum: for each e € F, we have the subset of (g‘) generators yéj
fori < j

Note that for each v, € \7L, the generator ’UZLJ ;, corresponds to a crossing
generator between a-th and (a + ¢)-th edges in the i-th and j-th component,
respectively, if ¢ < j. If 4 = j, then it is the corresponding vertex generator
on the ¢-th component. B

On the other hand, for v, ¢ € V5, the generator ’UZZ is the corresponding

vertex generator as well but there are no generators v, if i # j.

Let us consider matrices as follows: for each ¢ € C, kg, € K, Em), Var € VL,
Wae € Vo, bay € B, b€ Band e € E,
11 12 1m 11 12 1m
Do m Ry Fep Mgl
m m
¢ ¢ T ¢ kab kab e kab
d(c) = , Dkap) = .
le cm2 e cmm ]{727)1 kz)}f . Crlrém
11 12 1m 11
Ua,f U%,ZZ N ,0627,75 wa,f gz e O
m
0 Va,t Va,e 0 Wy e 0
(I)('Ua,é) = . s (I)(wa,é) = .

mm mm
0 0 - UM 0 0 W
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bé,lg 0 A 0 1 [L‘;Q oo x;m
0 b2 0 0 1 "
A(ba,g) = : ) Xb _ ’
0 0 by 0 0 1
0 y? v
0 0 ye
Y= . ;
0 0 0

We also define
@(6171) = A(bLl)Xb and ‘13(1)271) p— Xb_lA(bzl).

The differential ™) can be given as follows:

e for each ¢ € C™) with upper and lower edges e, ¢ € E,

o(m) (cij) = (0 1] + Z c\ lczkyfj + Zyzk kj

k<j i<k

e for each kZ]b € Kfm) with two edges e and €’ containing left borders
corresponding a and b,

k<j z<k

e for each v, € ‘N/L with two half-edges h, o C e € E and hy 410 C € €
E,

o(m) (Uije) = B(Da))iy + 3 (1)L gk ik k]

Y
i<k<j

e for each b € B with two edges (e, €’) adjacent to b,

om) (ﬁg) o Z xzkyéw +yzk kj
i<k<j
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e foreachec F, b,y € B and We e € ‘70,

00 (b)) = B(Dbae))is = bz + Y (~1)lemnrl =1, pii
Li+Ly=L
8(m) ('wtzzz,f) = (p(a(wa,Z)) 6@ ,val(w + Z |wa al- lwaf wéz+£17£2’
L1 +Lo=L

O (yi) = (Yo)3y = > yikyl

i<k<j

Now consider the structure morphisms (;Sl(_m) : Agzl) — A and ¢(Rm) :
Ag:) — A™)_ Since ¢(Lm) is obvious, we need to consider ¢gn). Then due to
the geometric definition for (b(Rm) which counts immersed polygons with the
positive end at each generator for Ag{g), we have the similar description to
the differential 8™ so that

(3.9) 6" (K,) = D(dr(ka))ij. o (yd) = yi,

where 1 < a’ <¥ < ng, ¢ € [ng] and e is the edge whose one end point is
c.

Here we are using implicitly the fact that any generator in ‘7@ never
appear in a differential of other types of generators or an image of ¢r as

observed in Example [2.45]
4. Augmentation categories

In this section, we review the construction of the augmentation categories
which are Aso-categories obtained from consistent sequences of DGAs.

4.1. Augmentation categories for consistent sequences of

bordered DGAs

For the notational simplicity, let K = (K, dx = 0) be a DGA consisting of
the base field K with the trivial differential. An augmentation for A = (A =
TM, 0) € DGA is a DGA morphism

e: A—- K.

One can extend naturally the definition of augmentations to m-
component DGAs. Let K™ := Mat,,(K). Then it satisfies the axiom of m-
component DGAs.
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Definition 4.1 (Augmentations for m-component DGAs). For A™) =
(Al = 7M™ §m)) ¢ DALY with M) = (M%), an augmentation of A™)
is a morphism

(M) . Am) _y g(m).

where
(M — (e(m)(i,j)) L Mgy A S K, €™M0 (1) =1 € K.

We denote the restriction of €™ to the graded submodule M¥ by €7 :=
elm) (i,j)|Mij :M% — K, and we say that €*) is diagonal if €7 =0 for i #
j. Conversely, for a sequence e = (ey,...,€,) of augmentations of A, the
diagonal augmentation e = (€4 of Al™) is defined as

€l MU S K, €9 =0, Vi#j.
The DGA Af;") = (A,(am), 0ém)) is defined as

-1
AL = A and O™ = gl 0 0 o (9™

where ¢ém) S Alm) A,(em) is an algebra tame isomorphism such that for each
generator s € R(™),

(ﬁém)(s) =5+ e.(em)(s).

Lemma 4.2. The 0-th differential 8((:8) of the length filtration 8&”2) van-
ishes.
Proof. The proof follows from the direct computation. O

Let A® e @9%[5;;) and e = (&,) be a sequence of augmentations of A.
Then by Lemma it is obvious that for any i < j € [m], there is an iso-
morphism between (K&, K%)—modules

MZ] — Azej ~ A12

(€ir65)"

Let I\/Iz.vj = (Mij)* [~1] be the dual space of M¥ with grading shift by
—1. That is, both M¥ and M;/j are decomposed into graded pieces

M7 = (M) My = @MY, My = Home ((MY)” K.
deZ dez
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For each increasing sequence i := (i1, -+ ,ix+1) in [m] and a sequence of
integers d = (dy,--- ,di) € 7ZF, let us denote the spaces

Mi — Milig ® M1225 ® - ® Mikik+1’
M:/ = chik+1 ® M;::—lik Q& M;/liZ’

(Mi)d = (Mi1i2)d1 X (Mizis)dz R ® (Mikilwrl)dk ’
My = MYd o MYt g g MY

Tplgt1 Tp—11k 1420

whose elements will be denoted as

al — a1122 ® aZQZg ® - ® alklk+1 G ,\/Il7 al] e M’L]’
vV _ V \Y . \Y Vv \Y% Vv
ai = aikikJrl X aikilik ® X ailiz € Mi s aij S MU

We equip a grading on My ® M so that for homogeneous elements ay €
MY and o' € M!
@ "] = Jaf | — |a"].
Consider the natural pairing (—, —); : MY ® Mi — K between MY and
M which is nonvanishing only on

yd+1 i d)
E@(M ®<M) :

where d +1 = (dy +1,d2 +1,...,d + 1). Since each evaluation (—,—);; :
MZ-V]-Clel ® (I\/Iij)d — K is of degree —1, the pairing (—, —); is of grading —k.

Now let us define a composition map m; : MY — MZ\/ﬂ»k+1 as follows: for
each ay € MY, we require that m; (ay) satisfies that for each a2+ € Mh+1,

(A1) (i) @), = ()7 (@ A (@)

11%k4+1 i
where 8ém) is the twisted differential on AEJ”).

Definition 4.3. For any k> 1, and any sequence (z1,x2,...,z;) with
grading |z;| € Z, define

k(k—1 .
(4.2) op(T1, 29, ..., TL) = (2) + Z ||| | + Z (7 —1)]x;]
i<j 1<j<k

In particular, o7 = 0 and oo(z1,22) = 1 + |x1||z2| + |22|.
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Then o in (4.1)) is given as

\Y \Y
klk+1) ? 112

o= oy (a
and m; (@) is completely determined by this equation.
The degree of m; can be computed as follows: since the degrees of pair-
ings on the left and right are —1 and —k, respectively, we have

[mi (@) @ a4 | 4 [(=, =i | =0 = |af @A™ (a+) | + (=, =)l
This is equivalent to
ms ()| = |a | = 1= k4 a1 = o) (a") | = 2k,

which implies that the composition map m; is of degree 2 — k.

Definition 4.4. The augmentation category Aug, (A(');K) is an Ao-
category defined as follows:

e The objects are augmentations € : A = A" — K;

e The morphisms are graded vector spaces

Homyg, (€1, €2) = <A12 ))v ~ K<512>V;

(1,2
e For k > 1, the composition map
my, - Homqug, (€ks 1) ® -+ ® Hom g, (e1,€2) — Hom g, (€1, €xt1)

is defined as m; with the sequence i = (1,2,--- ,k +1).

Proposition 4.5 (Functoriality of Aug_ [21]). The assignment A®)
Aug (A('); K) defines a contravariant functor from the category of consis-
tent sequences of DGAs onto the category Alg., of Aso-categories.

Proof. This is just a combination of Propositions 3.17 and 3.20 in [21] and
so we omit the proof. O
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We briefly review the construction of the Ay.-functor

Fo) — (?Uf))m : Aug, (A<‘>;K) — Aug, (A’(°>;K>

induced from the consistent morphism f(*) : A/(®) — A(®)

F©: 0b (Aug,) — Ob (Aug,),
gk . Hom g, (€k,€x+1) ® -+ @ Homayg, (€1, €2)

— Hom qug), (?(0) (1), FO (€k+1)) :

where e = (€1, -+ ,€x11) is a sequence of augmentations for A, and
Aug, = Aug, (A('); K) : Aug, = Aug, (A’('>;K) ,

Let FO) (¢;) == elf be the pull-back for each i by ¢;, which is an augmen-
tation for A.

of = (o). (@) = ei(f (@),
Recall the DGAs

Agk+1) _ (A((ak—&-l)’aék-i-l)) and A/e(k—i-l) _ <A/(k+1) 8/(k+1))

ef )y Yef

twisted by the algebra automorphisms d)ékﬂ) and (égffl) on A®+D and
A1) respectively. Then the composition

-1
fékJrl) _ ¢£k+1) Of(k+1) ° ((ﬁgjﬂ)) :A;(erl) _)A‘(ak+1)

becomes a DGA morphism since

D 8e(fk+1 <¢ek+1 ) ( (k+1) ) > Pas)
= oD pltD) o k) <¢(k+1> -1
(E+1) o glk+1) o FlE+1) <¢ k+1))

1
_ gt ( (D) pl) <¢(k+1 ) >
_ gl o D),

e
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D{ota)tion 4.6. The (-th length filtration of fékﬂ) will be denoted by
k+1
f el

The Aoo-functor F*) will be defined by dualizing the composition fékﬂ).
More precisely,

gk . HomAug+(ek, €ht1) @+ ® Hom4ug, (e1,€2) — Hom gug, (6{, 6£+1>

v
is defined as follows: for each @y :=a);  ,®---® af y witha},;, ; € (A%f €‘+1)) ,

!/

= (-1)° <a¥,fék+1) (all,k+1)>' ’

<3r(k) (a}/) ’al17k+1>1 k1

where o is the same as (4.2]) in Definition

Example 4.7 (Augmentation category for border DGAs). Let p:

[n] = Z be a function and AgL')(,u) be the consistent sequence of border

DGAs defined in Section For simplicity, we denote Aug +(A£;)(u); K) by
Aug, .
For each m > 1, the algebra A%.) has the generating sets

Kn={k} |a<b1<ij<m}

and Y, = {yz] ‘ 1<a<nl1<i<j<m},
where the grading is given as

k| = p(a) — p(b) — 1, el | = —1.

The differential for each generator is given as follows:

m) (1.4 wel—17.i0 105 wb|—17.i0 4] 005
oM (k) = > (=)l R 4 (=) Fe T Sy Y ik,

a<c<b l<j i<l
1<t<m
m) (g . i, 0
oM (i) = >yl
i<l<j

The set of objects of Aug_ is the augmentation variety for A, (u):

(4.3) Ob (Aug, ) = Aug(An(p);K) = {e: Ap(n) — K},
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and for any €1, €2 € Aug,, the set Homuyg, (€1, €2) of morphisms is
(4.4) Hompuyg, (€1,€2) = M2 =K (k3" ye? |1<a<b<n,celn]).

The composition map my is given as follows:

e For €1, 62 € Aug,, the map
my HomAug+(61, €2) — Homﬂug+(61, €2)

is defined as

(k12v> _ _Z Ca klzv Z 12V|k12v (kbd),

c<a b<d

12vy _ 12V
(yc ) - Z e)kq Z
a<c c<d

e For €1, €2, €3 € Aug,, the map
my : Homayg, (e2,€3) ® HOmAug+(€1, €) — Hom/{ug+(61, €3)

is defined as

o (k12 ®k:12v) Spe(—1) Fesllheal Hkan kol 12V
ma(y, 12V ) = —6bcki%§v,
ma(k2Y @ 12\/) _ _5ack(1;d2va
i 12) = 5o

e For my with k > 3, the higher composition mj, vanishes.

In particular, the Ay-category Aug+(A,(1m)(u); K) is in fact a DG cate-
gory.

Notice that for each € € Aug, (A%') (1); K), the element defined as

(4.5) Z Y2V ¢ Hom g, (€, €)
c€n]
becomes a cocycle since

mi(—y) = Z (Z ki — Zkﬁve ) =0.

c€[n] \a<c c<d
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Corollary 4.8. For each €€ Aug+(A£;)(u);K), the element —y €
HomAug+(e,e) defined in (4.5) becomes the unit of the augmentation cat-

egory Aug , (A (1) K).
Proof. This is a direct consequence of the above computation. O

Proposition 4.9. The augmentation category Aug, (A’(’);K) of a stabi-
lization A'®) of A®) is Ao -quasi-equivalent to the augmentation category
Aug (A('); K) of A,

Proof. We first identify A’™ with a stabilization of A(™ for each m > 1
and denote generators for stabilizations by e’s and €’s. For simplicity, we
will denote augmentation categories of A®) and A®) by Aug, and Aug/,,
respectively.

Let us consider two consistent morphisms ¢(*) and (%)

L&) AC) 5 A0 7 40 5 A

where (™) is the canonical inclusion of A — A'(M) and 7(™) sends each e
and € in A" to zero. Then it is obvious that they are homotopy-inverses
to each other so that

7)o, (¢ = Idi;), J(*) o 7(®) Hz(.) IdEL;,),

where the sequence H(®) of homotopies is given by

s seAcC A,
(4.6) H™(s) =S¢ s=ec A,
0 s=ceA.

It is well-known that an As-functor is an As-(quasi-)equivalence if it
satisfies two condition, (i) essentially (quasi-)surjective, and (ii) (quasi-)fully
faithful. In other words, we need to show the following: let 3*) be the Aqc-
functor induced from ¢(*).

e for each € € Aug,, there exists ¢’ € Aug/, such that IO (¢') := .*¢ and
€ are isomorphic up to homotopy,
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o for €, €, € Aug/,, the induced chain map
I : Hom aug, (¢}, €h) — Homag, (10(€),50(e}))

is a quasi-isomorphism, i.e., an isomorphism between their cohomology
groups.

The essential quasi-surjectivity is obvious. Indeed, for any € € Aug,,
there is an augmentation ¢ € Aug, extended from € as

, e(s) se AC A
€(s) = ]
0 otherwise,

such that the pull-back of ¢ is precisely e
O =€ oL =c¢,

and therefore it is indeed surjective.
Let €},€, € Aug/, be two augmentations. Then by the identification of
A’, we have

(4.7)

HOH?kAqur (6/13 6,2) = Hom/lug+ (3(0)(6,1)a j(0)(6/2)> 3] (@ Ka <ell\év/éll\é> am/1> s
eIt

for some index set I'2, where

(4.8) mi(ey) =€y and  mi(ey) =0.

Then the induced chain map I is the projection onto
Homuug, (70(c1),70(e5))
which is surjective with the kernel
her (917 = (69 K (el ) m) .
7;6[12

Since the kernel is acyclic as seen in (4.8]), I is a quasi-isomorphism, which
implies the quasi-fully faithfulness, and we are done. O

Corollary 4.10. If Aug/, is homologically unital, then so is Aug,.
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Proof. Since the induced Ao functor J(*) is surjective, Aug - is homologically
unital if so is Aug/, . O

Remark 4.11. One may expect that the A functor II(®) : Aug, — Aug’,
induced from 7(*) is again an A.,-quasi-equivalence but the essential quasi-
surjectivity is not obvious unless Aug, is unital.

Corollary 4.12. If Aug, is homologically unital, I(® is an Aoo-quasi-
equivalence and so Aug', is homologically unital.

Proof. Let us consider the essential quasi-surjectivity first. For each aug-
mentation € € Aug/_, one can find an augmentation e € Aug, such that €
and €™ agree with each other on A but may have different values for some €.

Similar to (4.7), the chain complex Hom Aug, (€', €™) is obviously a direct
sum

Hom g/, (ef’ew) = Homuyg, (€,€) @ (@ Ka <€§\§7€§\§> ’m/1> .
ie[lQ

As before, the second summand is acyclic and therefore the existence of the
unit in Aug, implies the existence of an isomorphism in Hom Aug!, (€,€m).

For two augmentations €1, €2 € Aug,, the induced chain map M sends
all aY, to themselves

1 . Homuug, (€1,€2) — Homaug, (€7,€3), ™ (aYs) = as.

Therefore it is injective and its cokernel Coker IIV) is isomorphic to the chain

complex
Coker (H(l)) = (@ KA <€7i\évgb1\é> vm/1>
Z‘e[lZ
which is acyclic and so it is quasi-fully faithful as desired. O

In summary, we have the following proposition:

Proposition 4.13. Suppose that there is a zig-zag of stabilizations

’

v [ ln—
A(') - A(') L L A(') %’ A(')
0 «— 1 —> —» An-1 ——» 4in
B T Tp—1 n—1

and Aug, <A[()°); K) is homologically unital. Then Aug <A§°);K> for each
i 1s homologically unital and A -quasi-equivalent to Aug (A((;);K).
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Now we consider the bordered version of augmentation categories.

Definition 4.14 (Augmentations for bordered DGAs). An augmen-
tation for A = (AL — A < AR) is a bordered DGA morphism

e=(eL,6€r) A= K:=(K=K=K),

which makes the following diagram commutative:

A AL A Ar
EJ = eLJ Jﬁ JeR
K K K K

Definition 4.15. A bordered A-category (AL < A — AR) of type (n., nR)
consists of A,.-categories, AL, A and Ag and two As.-functors A — A and
A — Agr such that both A_ and Ar are A, -equivalent to augmentation
categories

AL = Aug(AL) (u);K)  and  Ag = Aug(AL) (uR); K)

for some p : [n ] = Z and pg : [nr] — Z, respectively.
The morphism F(®) between two bordered A.o-categories is a triple
<EF|(_'), 9’(‘),3"&)) of Ay -functors making the following diagram commuta-

tive:
.AL A AR
f(.) = :}‘E.)J J?(.) lgjéo)
Al Al Al

We say that F(*) is an A..-(quasi)-equivalence if so are fﬂ(_'), F(*) and ?I(;).
We denote the category of bordered A,-categories by BAlg.

¢L') (o)

Y QR L A@) of

Indeed, for each consistent sequence A(®) = (A(L')
bordered DGAs, we have an associated bordered augmentation A..-category

. Au I(..) Au »(2.) .
Aug+(¢4(');K) = ( Aug+(A(L);K) ﬂ>ﬂug+(A(‘);K) %>Aug+(A(R);K) > .

Corollary 4.16. The contravariant functor Aug,(—;K): BDSA&;) —
BAlg,, is well-defined.
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Proof. This is a corollary of Proposition [4.5 g

Proposition 4.17. Let A®) be a stabilization of A®). Then two bordered
augmentation categories Aug, (A'*);K) and Aug, (A®);K) are Aoo-quasi-
equivalent.

Proof. Let TI*) := Aug, (7(*)) : Aug, (A®);K) — Aug_ (A'®);K) be the in-
duced Ao functor from the canonical projection 7 : A'(®) — A(®). Since A'(*)
is a stabilization, two induced functors Aug, () and Aug, (7r) on borders
are equivalences. Hence it suffices to prove the A..-quasi-equivalence for
Aug, (7).

Due to Proposition it is obvious that the A, functor J(*) :
Aug, (A K) — Aug, (A®);K) induced from «(*): A — A®) is an
Aso-quasi-equivalence whose quasi-inverse is precisely Aug +(77(’)) :
Aug, (A®);K) — Aug, (A'®);K) and is also an A.-quasi-equivalence as de-
sired. 0

4.2. Augmentation categories for bordered Legendrian graphs

Let (7'('), pn®) e BLG®) be a consistent sequence of bordered Legendrian
graphs. Then by taking ASE, we have a consistent sequence of DGAs

Cco )

ASE (T(’), ,u(’)) as seen in Theorem @

Definition 4.18 (Augmentation categories for consistent sequences
of bordered Legendrian graphs). Let (7(*), u(®) ¢ BDGAL® . The
bordered augmentation category for (T(*), u(®) is the composition

Aug., (T('),u(‘);K> ~ (Aug, <TIE.)’/“L(L.);K> « Aug, (T(‘),u(');K)

— Aug (TF(;),MS);K))
= Aug, (A (T, ) K),

where for * = L, R or empty,

Aug, (T ), ui');K) = Aug, (AT, 1) K).

In particular, if 7(*) is the consistent sequence of canonical front copies
of T, then we denote simply by

Augy (T, 1;K) = (Augy (Ti, p; K) < Augy (T, 1K) = Aug (Tr, pr; K)) -
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For an example of computing the augmentation category, see Section[6.4

Theorem 4.19 (Invariance theorem). The assignment (T,p) —
Aug, (T, w; K) is well-defined and invariant under Legendrian isotopy and
basepoint moves up to zig-zags of Aoo-quasi-equivalences.

Proof. The well-definedness is obvious. Indeed, the canonical front copy is
well-defined and every morphism is a zig-zag of elementary morphisms by
Proposition [3.13] it induces a well-defined consistent sequence of bordered
LCH DGAs and elementary morphisms correspond to stabilizations by The-
orem

Now as always, we pass through the bordered augmentation categories of
cofibrant replacements. Then we have a zig-zag of stabilizations of consistent
bordered DGAs

. s/(®)
(o) ln:1

A EE = Al Al = 4 E,

w7 )

where A’ = ACE(T"(®) /() and A = ASE(T(®) pu(®) and A’ and A are cofi-
brant replacements, respectively.

Due to Corollary the bordered augmentation categories for these
zig-zags are well-defined and by Proposition every stabilization gives
us an As.-quasi-equivalences.

We assume that (77, ') and (T, ) are related by a basepoint move
(B;). For (By), we are done since (B1)(®) induces a zig-zag of stabilizations
as seen already in Section [3.2.2

For (B;) with ¢ = 2 or 3, the induced consistent basepoint move on the
canonical front copies is a sequence of an elementary basepoint move and
a Reidemeister move as seen in Figure [II] Now suppose that two consis-
tent sequences (77(*), 1/®)) and (T(®), u(*)) are related with an elementary
consistent basepoint change move (B;)(®).

Due to the discussion after Theorem [3.32] we have the induced consistent
morphism (Bi)Sf) and its left inverse (B;"*),*. Therefore we have a surjective
A-functor

Aug ((BN®) : Aug, (T®, u®; K) — Aug (T'®), /™) K).

For any pair of augmentation €1,es € Aug+(T(°),u(');K), we have a
chain map

Aug ((B)®) : Hom (€1, €2) — Homy (€}, ),
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where € € Aug, (T"®), 1/*); K) is an induced augmentation via (B;).. Notice
that the basepoint move (B;) for i =2 or 3 does not alter the crossings,
especially crossings between the 1st and 2nd copies of 7(2). Therefore the
above chain map is an isomorphism between graded vector spaces which
implies the fully faithfulness of Aug. ((B;)(*)) and we are done. O

The following theorem is a generalization of Proposition 3.25 in [21].

Theorem 4.20. Let (T,u) € BLSG" be a bordered Legendrian graph in
a normal form. Then its augmentation category Aug, (T, p;K) is strictly
unital. That is, the As category Aug, (T, pus; K) for each * =L,R and
empty is strictly unital and two Aso-functors flug+(¢(|_')),flug+(¢g)) are
unit-preserving.

Proof. Let € € Aug (T, p; K). We need to show that there exists an element
in Homayg, (€, €) which plays the role of the identity.

Recall the generating sets for ASE(T(*), u(*)) described in Section
We define an element —yy, € Homaug, (€, €) as follows:

_yYQ = Z _y%/ € Homﬂug+ (€,€),
)

where 3¢y is the dual of y!2.
Due to the formula of the differential 9(™) given in Section the

only possibility for s'3 containing y!? or y/?? in its differential is either

(S oy,
respectively. Note that when s'® = yé?’ for some e, then these two terms
coincide. Moreover, the situation is essentially the same as the augmentation
category for border DGAs as computed in Example

Therefore, one and only one generator appears in both ms (—ylvg ® 812)
and my (s ® —y),) which is precisely s'? itself

ma (—yty ® 8'%) = ' =my (s ® —yis) .

Finally, the absence of terms of length at least 3 in any differential
containing y implies that the higher composition mj will vanish whenever
it contains —y 5.

Now we prove that two A functors Aug, (gzﬁg)) s Aug (T, 1 K) —
Aug, (T, p1+; K) for * = L and R are unit-preserving. Due to the definition of



326 B. H. An, Y. Bae, and T. Su

the induced A.o-functor briefly reviewed in Section [4] after Proposition [4.5
we have for each augmentation e € Aug, (7' u; K)

Aug, (617) (i) = D2 (=17 (o, (")) s

sl2c R12

where o1 = 0 as seen in Definition and ¢>§3,Z is a twisted DGA morphism

by using the diagonal augmentation e = (e, €).
More precisely, since d>(L2) identifies each generators in AE?,) =

ACE (TEZ), ,u(LQ)) with the corresponding generator in AEOE(T@), M(Q)),
oCLk) =kl and  oL(4l%) =yl

and therefore the image of ¢(L2) has a nontrivial pairing only for y}2. In other
words,

Aug, (07) (=uo) = D (vt 020l ) v
c€ln]
= Z (_yf\2/) € Homflugﬂ_ (oL (€); pL(e)),

c€ln]

which is the unit as desired.
On the other hand, for the right border, we recall the map ¢|(2m) described
in (3.9). That is, for m = 2, we have

49) R (k2) = B(dr(kaw))i2, 89 (yl?) = 2.

Then qbg)(k‘;?b,) does not involve any y!%’s as observed before and therefore

12
C/

Aug., <¢§§)) (—y) = Y <—y1V2,¢§<2,L(y§?)>yf2V

c'€[ng]

= > (—5y) € Homayg, ,(dk(c), i(e)).

¢’ €[ng]

the pairing survives only for y_7’s. In that case d)g)e(yi?) = yt? and we have

which is the unit as well. This completes the proof. O

Theorem 4.21 (Unitality). For any bordered Legendrian graph (T, p) €
BLG", the augmentation category Aug, (T, p; K) is homologically unital.
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Proof. Due to Lemma one can obtain 7 from a Legendrian graph T’
in a normal form up to Legendrian isotopy and basepoint moves. Then by
Theorem the augmentation category Aug, (77, p'; K) is strictly unital.

As seen in the proof of Theorem for each Legendrian isotopy, we
have a zig-zag of stabilizations between consistent sequences of DGAs for
(7", ') and (T, ). By Proposition we have the homological unitality
for Aug, (T, u; K) which implies that so is Aug (T, u; K) as desired.

For each basepoint move, we have either a zig-zag of stabilizations for
(B1) where the above argument is applicable, or an A.-equivalence for (Bj)
with i = 2 or 3 by the proof of Theorem [4.19]again, which preserves of course
the (homological) unitality. O

Proposition 4.22. Let (T, p) € BLS and (Tiag, 1) = ResN&(T). Suppose

that (T®), u(®)) and (71(;;, u(*)) are consistent sequences of canonical front
and Lagrangian copies, respectively. Then two augmentation categories
Aug (T, 1*):K) and .Aug+(71(;g), p1(®):K) are Ao -quasi-equivalent.

Proof. As seen in Section and Figure there exists a zig-zag of ele-
mentary Lagrangian Reidemeister moves between ResNg(’T(‘)) and 71(; g). By
Theorem we have a zig-zag of consistent stabilizations between

ACE(T®), 1)) = AE(ResMe(T()), u(®)  amd  AE(T(), u®).
Finally, Proposition completes the proof. O
5. Sheaf categories for Legendrian graphs

In this section we give the preliminaries on the microlocal theory of sheaves,
the main reference is [I7]. We also establish the necessary combinatorial tools
for constructible sheaves, which will be used in the proof of the augmentation-
sheaf correspondence in the next section.

5.1. Micro-support and constructible sheaves

For the moment, let M be any smooth manifold, and K be a base field. We
use the same notations as in [25]. Let Sh(M; K) to be the abelian category of
sheaves of K-modules. Let Shpaive(M; K) to be the triangulated DG category
of complexes of sheaves of K-modules on M whose cohomology sheaves are
constructible (that is, locally constant with perfect stalks on each stratum)
with respect to some nice stratification (e.g. Whitney stratification). Let
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Sh(M;K) be the DG quotient [9] of the DG category Shpaive(M;K) with
respect to acyclic complexes. Given a Whitney stratification S of M, define
Shs(M;K) to be the full subcategory of Sh(M; K) consisting of objects whose
cohomology sheaves are constructible with respect to S.

We firstly recall the notion of micro-support introduced by Kashiwara
and Schapira:

Proposition/Definition 5.1 (Micro-support). [17, Prop.5.1.1, Def.5.1.2]
Let F be a sheafﬂ on M, and p = (x0,&) € T*M. We sayp ¢ SS(F) if one

of the following equivalent conditions holds:

1) There exists a neighborhood U of p, such that for any x1 € M and any
Cl-function ¢ on a neighborhood of x1 satisfying (z1,dp(x1)) € U and
o(r1) = 0, we have

RT {4 (2)20} (F )2y = 0.
Equivalently, by the distinguished triangle
+1
R {p(@)>03(F) = F = Rl {p(a)<0p (F) —,
we get a quasi-tsomorphism

Fa, = Rr{go(m)<0}("r)xl

2) Up to taking an open chart near xo, we can assume M is an open
subset in a vector space E. Then there exists a neighborhood U of x,
an € > 0, and a proper closed convex cone v in E with 0 € vy, satisfying
Y\ {0} C {v | (v,&) < 0}, such that if we set

H:={z|{(x—x0,&) > —€} and L:={z|(x—x0,&)=—¢€},
then HN (U +v) C M and we have the natural isomorphism:
RU(H N (z+7);F) = RO(LN (x+7); F)
for all x € U. Recall that a cone is called proper if it contains no lines.
The set SS(F) is called the micro-support (or singular support) of F.

The micro-support satisfies the following properties:

3Whenever we say a sheaf, we mean a complex of sheaves of K-modules.
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1) SS(F) N0y = Supp(F) is the support of F, where 0,/ the zero section
of T*M.

2) For any sheaf F, SS(F) is a conical (i.e. invariant under the action of
R which scales the cotangent fibers) and closed co-isotropic subset of
T*M.

3) If F is a constructible sheaf with respect to a Whitney stratification
S, then SS(F) is a conical Lagrangian (i.e. Lagrangian wherever it is
smooth) subset of T*M with SS(F) C U;cs T, M.

4) (Triangular inequality) If F; — Fo — F3 T is an exact triangle in
Sh(M;K), then SS(F;) C SS(F;)USS(F) for all distinct 4,7,k €
{1,2,3}.

5) (Microlocal Morse lemma) If f: M — R is a smooth function such
that (z,df(z)) ¢ SS(F) for all z € f~'([a,b]), and f is proper on the
support of F. Then the restriction map is a quasi-isomorphism:

RT(f~(—00,b); F) = RI(f~'(—00,a); F)

From now on, let M = I, x R, be the base manifold, where I,, = (x|, 2Rr)
with —oo < 2| < g < o0 is an open interval in R,. Let T = (1L < T — TRr)
be a bordered Legendrian graph in J'I, = T°~ M.

Definition 5.2. Given a possibly singular Legendrian T' C T°>~ M, we de-
fine 8h(T;K) = Shp(M;K) to be the full subcategory of 8h(M;K) consist-
ing of those objects F, whose micro-support at infinity is contained in T
(i.e. SS(F) C 0pr UR5T). Furthermore, let Sh(T; K)o = Shy(M : K)o be
the full subcategory of Shr(M;K) whose objects are those F with acyclic
stalks for z < 0.

In particular, given a bordered Legendrian graph 7 = (1L — T <+ 1Rr)
in J'I,, by the obvious restriction of sheaves, we obtain a diagram of con-
structible sheaf categories

Sh(TK) == (Sh(TL; K) + Sh(T;K) — Sh(Tk: K))

and define Sh(7T;K)q similarly.

As in [25, §2.2.1], let 7T be the extended Legendrian in T°~ M as
follows: For each crossing ¢ of T, T meets the semicircle 7.~ M in exactly
two points, connected by a unique arc in T~ M. Then 7" is the union of

T with all these arcs induced by the crossings. One can similarly define the
sheaf categories Sh(7+;K) and 8h(71;K)o.
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Theorem 5.3. The diagram of DG categories
Sh(T;K) = (8h(T1; K) < 8h(T; K) — Sh(T; K))

is a Legendrian isotopy invariant, up to DG equivalence. That is, for any
Legendrian isotopy between two bordered Legendrian graphs T,T’, there is
an equivalence between two diagrams of DG categories taking the form:

Sh(T;K) +———— 8h(T;K) —=—— 8h(Tg; K)

1d b R\LN bR

Id

where the arrow K in the middle is an equivalence of DG categories which,
under restrictions, commutes with the identity functor 1d : Sh(Ty;K) =
Sh(T{; K) (resp. Id : 8h(Tr; K) = 8h(T§;K)) up to specified natural isomor-
phism b i1 => 1| 0 R (resp. hr : TR = 1R 0 &). Also, the same holds for
Sh(T7 K)o.

Proof. The first proof is a direct consequence of the results of Guillermou-
Kashiwara-Schapira [I5]. For the more related details, see [25, Thm.4.1,
Rmk.4.2,4.3]. O

In the rest of this section, we will give a combinatorial description of
the sheaf categories. In particular, we will use this description to give an
alternative proof of the invariance theorem. The combinatorial description
will also be needed in proving our main result “augmentations are sheaves”.

5.2. Combinatorial description for constructible sheaves

As before, let M = I, x R, be the base manifold, and 7 be a bordered
Legendrian graph in J'I, = T~ M.

We can always assume the front projection T is regular so that the
only singularities of T are crossings, cusps, and vertices. This induces a
Whitney stratification St of M whose 0-dimensional strata are the sin-
gularities, 1-dimensional strata are the arcs—the connected components
of T'\ {singularities}, and 2-dimensional strata are the regions—connected
components of M \ T. By definition, 8h(T;K) C S8h(T*;K) are full subcat-
egories of Shg, (M;K).

Given a stratification S, the star of a stratum S € S is the union of strata
whose closure contains S, denoted by Star(S). Given 2 strata S and S’, we
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denote by S < S’ and define an arrow S — S’ if S C S/, or equivalently,
Star(S) D Star(S’). This defines S as a poset category. We say that S is a
reqular cell complex if every stratum is contractible as well as the star of each
stratum is contractible. As in [25], we can choose a regular cell complex S
refining the stratification St with the additional 1-dimensional strata away
from the crossings of T' if necessary.

Assumption 5.4. For the regular cell complex & refining the stratifica-
tion St induced by T', we assume that each additional 1-dimensional strata
contains no vertical tangent and

1) it is tangent to the existing arcs at the singularity if it has an end at
a cusp or a vertex, or

2) it is transverse to the boundary if it has an end at the boundary
OM ={(z,z) | x =z, xR}

The assumption can always be satisfied by choosing S appropriately.

Definition 5.5. For any regular cell complex & of an oriented manifold M
and any stratum S € S, let us define a co-standard object wg of Shg(M; K)
as

ws = Kg[dim S] = R(js)(K[dim S]) € Shs(M;K),

where jg : S — M is the inclusion and K is regarded as the constant sheaf
on S.

Lemma 5.6 ([19, Lem.2.3.2]). The triangulated DG category Shs(M;K)
18 the triangulated envelope of the co-standard objects.

An immediate corollary is as follows:

Corollary 5.7. For any F € Shs(M;K) and x € w € S, we have natural
quasi-isomorphisms

Fr — (RT(F))y +—=— RI(Star(w);F).
Here, Fy =lim _ T(U; F), (RT(F))e :=lim _ RU(U; F).
To avoid any confusion, let’s firstly explain the terminology in the corol-

lary: F, means that, we firstly take the ordinary stalks of the cochain com-
plex of sheaves F degreewise and then form the cochain complex, the point
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is that this cochain complex only changes by a quasi-isomorphism if we
change F by a quasi-isomorphism. It’s in this sense that we can talk about
the first quasi-isomorphism in the corollary. As for (RI'(F)),, we use the
notations in [I7, §2.6, p.109], hence RI'(F) = RI'y(F) is a cochain complex
of sheaves defined by U +— RI'(U; F). In particular, RI'(F) is not the same
as RI'(M;F), the latter being a cochain complex of K-modules, obtained
from the right derived functor of the global sections functor F — I'(M; F).

Proof. A direct computation shows that this holds for all the co-standard
objects. Moreover, the above property of F is preserved under taking quasi-
isomorphisms, shifts, and cones. Hence by the lemma above, we are done. [

Now we come back to our setting where M = I, x R,. By definition,
8hs(M;K) contains 8hs,.(M;K), hence Sh(T; K) and S8h(T;K) as full sub-
categories as well. For an open subinterval J, of I, we denote M]|;, =
Jz X R, and define S|, to be the stratification of M|;, induced by S, whose
strata are the connected components of SN (M]|;,) for all S € S. Then S|,
is a Whitney stratification of M]|;, refining the stratification induced by
T, and we obtain a natural dg functor r : Shs(M;K) — Shg|, (M],,;K)
coming from the restriction.

Given a regular cell complex S of M, there is a combinatorial description
of 8hg(M;K) as follows: Denote the induced poset category by S again and
denote the category of cochain complexes of K-modules with cochain maps
by Ch(K).

Definition 5.8. For any poset category S, let Funpaive(S,K) be the DG
category of functors from S to Ch(K), which are valued on perfect complexes,
that is, complexes which are quasi-isomorphic to a bounded complex of finite
projective K-modules. We define Fun(S,K) to be the DG quotient (see [9])
of Funpaive(S,K) with respect to the thick subcategory of objects taking
values in acyclic complexes.

Notation 5.9. We denote the abelian category of functors from S to the
abelian category K — Mod of K-modules by Fun(S, K).

We denote by Chpaive(S,K) and Chgg(S,K) the DG category of cochain
complexes of objects in the abelian category Fun(S,K) with morphisms
the usual complexes of maps between complexes and its DG quotient of
Chpaive (S, K) by the full subcategory of acyclic objects, respectively. Then
Funpaive(S,K) and Fun(S,K) are full subcategories of Chpaive(S,K) and
Chqg (S, K) respectively.
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Observe that we obtain a functor of poset categories i : S|;, — S by in-
clusion of strata, which then induces a natural DG functor i* : Fun(S,K) —
Fun(S],,; K).

Proposition/Definition 5.10. There is a functor is: Fun(S,K) —
Sh(M;K) defined as follows: let F € Fun(S,K) and w € S.

1) The stalk is(F')|y is F(w) viewed as a constant sheaf. In particular,
is(F) is constructible with respect to S.

2) Let Uy, be any contractible open subset of Star(w) such that S|u, is
a regular cell complex and the map S|y, — Slstar(w) of partially or-
dered sets of strata is a bijection. Then I'(Uy;is(F)) = F(w) and the
restriction map I'(Star(w);is(F)) — I'(Uw; is(F)) is the identity. In
particular, (is(F))gy = F(w) for all x € w and it follows that is is ex-
act.

3) The restriction map I'(Star(wi);is(F)) — I'(Star(ws);is(F)) s
F(wy — wy) for all arrows wy — wy in S.

Let vs : Sh(M;K) — Fun(S,K) be a functor defined as
F — [S — I(Star(S); F)].

Then s ois = Id and (is,7s) is an adjoint pair and so s is left exact. As
a consequence, we obtain an adjoint pair (is,Ts) in the DG lifting:

(5.1) is : Fun(S,K) = Sh(M;K) : I's = Rns

and in fact the essential image of is is contained in Shs(M;K). More ex-
plicitly, T's = Rys is given by F* — [w+— RI'(Star(w); F*)], and for any
F* € Fun(S,K) and G* € 8h(M;K), we have a natural quasi-isomorphism.:

(5.2) RHom®(is(F*),G*) ~ RHom®*(F*,T's(G*))
Moreover, we get a natural isomorphism :1d = I's o is.

Proof. Firstly, let us show that for any F' € Fun(S,K), is(F) indeed defines
a sheaf on M. By [28, Thm.2.7.1], it suffices to define is(F') as a sheaf on a
base of M.

We take a base B = {B;} for the topology of M such that each B; is of
the form U, as in (2). Let FP™ be a presheaf on B defined as follows: for each
B, = U, with w € S, FP®(B;) := F(w) and for each inclusion B; = V,,, —
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B; = Uy, , we require that Star(wy) C Star(w;). In other words, if w1 — wo
is an arrow in S, then the restriction map I'(Uy,; FP®) — ['(Vy,; FP®) is
defined to be F(w; — wg). Clearly, this is a well-defined presheaf on B.
Then is(F') := F is defined to be the sheafification of FP". Recall that for
any open subset U in M, we have

L(U; F) = {(fp € F§")pev | For any p, there exists a pair (Vs, s) such that
Vs C U is a neighborhood of p and Vg € B
for some S € S, and s € FP¢(Vg) = F(95)
with s; = f; on Vs.}

Also, for all S € § with SNU # @, each p € SN U has a system of neigh-
borhoods in B of the form Ug. Then by definition, we have I'(Ug; FP'¢) =
F(S) = F5". Hence, it follows that any section of I'(U; F) is locally constant
on SN U with values in F(S). In particular, for any connected component w
in SNU, we have I'(w; F) = F(S). Thus Flg is F(S) viewed as a (locally)
constant sheaf. This shows (1), hence F € 8hs(M;K).

Moreover, we can rewrite the definition as follows. Let us denote by S|y
the stratification of U consisting of the connected components of S NU for
all S € S and let 7y : S|y — S be the map of partially ordered sets induced
by inclusion of strata. Then the previous definition can be translated into

(5.3) U, F) = Jim (Fomy)(w).
weS|u

In other words,

T(U; F) = {(f(w))w e [[ Feorm(w) ‘

weS|y

wy < wy = (Fory)(wy — wa)(f(wr)) = f(wz)}-

Besides, for any inclusion V < U, there is an induced map of partially or-
dered sets Ty : S|y — S|y via inclusions of strata. Then 7 = 7y oy,
and the restriction map is just 777, : T(U; F) — I'(V; F) via the pullback
of functions. That is, for any f € T(U; F) C [[,es), (F © 7v)(w), we have
(ov ) (w) = f(ru,v(w)) for all w € Sy

Now, let U = U, (including Star(w)) as in (2). We obtain I'(U; F) =
F(r(wnU)) = F(w) aswNU is the unique minimum in S|¢;. For any inclu-
sion V,,, < Uy, of two open subsets as in (2) with wy,ws € S, we also know
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we < wyp and TUvsy Vo (wg N Vw2> =wy NUy, <wpNUy, in S‘le . Then the
restriction map I'(Uy,; F) = F(w1) = T'(Vi,; F) = F(ws) is identified with
F(w; — wy) as follows:

fEfwnl) =, v, f=00, v, wenV)
—f(wgﬂU) = (w1 —>w2)(f(wlﬁU)).

This shows (2) and (3) and in fact FP™® = F is already a sheaf on B.

The functoriality of is follows directly from the definition of F above.
By (1), the essential image of is is contained in 8hg(M;K) and it follows
immediately from (2) that vs ois = Id.

By [28, Ex.2.7.C], morphisms of sheaves correspond to morphisms of
sheaves on a base. By a direct computation, we have an adjunction of (is,7s)
which yields the following: In , taken an injective resolution of G®, say
G® = I°*, then by adjunction of (is,~s), we have an injective object vs(Z*®)
and it follows that

RHom*®(is(F*),G*) ~ Hom®(is(F*),Z°)
~ Hom* (F*, 4(Z*))
~ RHom*(F*,T's(G*)).
where the last quasi-isomorphism follows from the fact that I's(G®) =
I's(Z®) = vs(Z°) is a quasi-isomorphism.
Finally, for any F'* € Fun(S,K) and z € w € S, by (2) and Corollary|[5.7]
we have a natural quasi-isomorphism
F*(w) = I'(Star(w); is(F*)) — RI'(Star(w); is(F*))
= Rys(is(F*))(w) = (is(F*))a-
Hence, we get a natural isomorphism 3 : Id = I's o is. This completes the
proof. O
We recall the following lemma:

Lemma 5.11. [25, Prop.3.9], [19, Lem.2.53.2] Let S be a regular cell com-
plex for M. Then the functor

Is: Shs(M;K) — Fun(S,K), F s [S — RI(Star(S); F)]

s a quasi-equivalence with a quasi-inverse is. Moreover, is commutes with
the functors induced by restriction to J,.
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Proof. The last statement follows directly from the definition of is and it
suffices to show the quasi-equivalence.

For any S € S, we define a functor ds € Fun(S,K) by ds(w) =0 if w #
S, and dg(S) = K[dim S], and sends all arrows w; — wy to zero. Clearly,
Fun(S,K) is the triangulated envelope of dg’s. Moreover by Proposition/
Definition we have is(ds) ~ Kg[dim S] = wg. Hence, is is essentially
surjective by Lemma [5.6/and so is I's by the natural isomorphism 3 : Id =
I's o is in Proposition/Definition

It suffices to show that is is fully faithful. In fact, for any F,G €
Fun(S,K), by the adjunction (is,I's) in Proposition/Definition we

have
RHom*®(isF,isG) ~ RHom®(F,'s(isG)) ~ RHom®(F, G)
where the last quasi-isomorphism follows from the natural isomorphism

B :1d = T's oig, which then implies the quasi-isomorphism G ~ I's 0 is(G).
This finishes the proof. U

Remark 5.12. For the last part of the proof above, we can also finish the
argument by showing that I's is fully faithful in a different way as follows:
For all S;W € S, a direct computation shows

Fs(KS[dim S])(W) = RI‘(Star(W);KS[dim S]) ~ (Ks)p[dim S]
for any p € W. That is, I's(Kg[dim S])(W) is acyclic unless W = S when
I's(Kg[dim S])(S) ~ K[dim S]. In other words, I's(Kg[dim S]) ~ dg. Now,
forany S € S, we take F'* = I's(Kg[dim S]) ~ dg. Then is(F*) ~ Kg[dim S].
We apply the adjunction (5.2)) to obtain
RHom*®(Kg[dim S],G*) ~ RHom®(I's(Kg[dim S]),T's(G*)).

By an argument of taking shifts, exact triangles, and quasi-isomorphisms
in the place of Kg[dim S], we then obtain

RHom*®(F*,G*) ~ RHom*(I's(F*),Ts(G*))

for any F*,G*® € Shg(M;K). This shows the fully faithfulness of I's by a
different argument.
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Remark 5.13. By [19, Lem.2.3.2], we also know that for all S, W € S, the
morphism complex is given as

K S<W,

RHomgy, _ 7x) (Ks[dim S], Ky [dim W) ~ i
Sy 0 otherwise.

Hence so is RHom% s 1y (ds, 0w ).

Definition 5.14. [25 Def.3.11] Let 7 = (1. — T + Tr) € BLS be a bor-
dered Legendrian graph in J'I, = T°~M and S be a regular cell com-
plex refining the stratification Sy induced by T'. Let Funp+(S,K) (resp.
Funp+(S,K)p) be the full subcategory of Fun(S,K) of objects F satisfying
(1) and (2) (resp. (1)—(3)) as follows:

1) Every arrow from a O-dimensional stratum which is not a crossing,
a cusp, or a vertex, or from a l-dimensional stratum which is not
contained in an arc of 7', is sent to a quasi-isomorphism. In other
words, every arrow from a zero- or one-dimensional stratum contained
in S but not in Sy, is sent to a quasi-isomorphism.

2) If 5,5 € S, with S’ bounds S from above, then S’ — S is sent to a
quasi-isomorphism. In other words, every downward arrow is sent to a
quasi-isomorphism.

3) If S € S is contained in the bottom region of T' (i.e. the region contains
the points with z <« 0), then F'(S) is acyclic.

4) (Crossing condition) At each crossing ¢ of 7T, which is also a 0-
dimensional stratum in &S, there is an induced subcategory of S as
follows:

nw ne
W < » B
sw se




338 B. H. An, Y. Bae, and T. Su

All triangles in the diagram are commutative and the total complex
of the bicomplex F(c) — F(nw) @ F(ne) — F(N) is acyclic.

We also define Funy(S;K) and Funy(S;K)g to be the full subcategories
of Funp+(S;K) and Funp+(S;K)g, respectively, consisting of functors F
satisfying the extra crossing condition (4).

Then we have the following result similar to [25, Thm.3.12].

Lemma 5.15 (Combinatorial model). Let T € BLG. For a regular cell
compler S for M = I, x R, obtained by refining the stratification S, the
functor T's induces a quasi-equivalence T's : Sh(T;K) = Funp(S;K) with
quasi-inverse is, and is commutes with restriction to J,. So is

I's : 8h(T;K)y = Funy(S; K)o.

The results also hold when T is replaced by T™.

Proof. The proof is entirely similar to that of [25, Thm.3.12]. Both the micro-
support condition of a sheaf and the properties in Definition [5.14] of functors
in Fun(S,K) can be checked locally. This reduces the proof to match the
micro-support condition with the corresponding property in Definition
near an arc, a cusp, a crossing, and a vertex. The first three cases have
been already covered by [25, Thm.3.12] and the only new ingredient is what
happens at a vertex.

Local combinatorial model near a vertex. Let v €T be a vertex of
type (¢,r). At first we assume that there are no additional 1-dimensional
strata in S ending at v and that y(v) =0 and T, M N (Rso-T) =R~y -
(—dz).

Let p=adz+ pdz € Ty M \Rsg-T. Then either a« # 0 or a« =0 and
B > 0. Near v, we label the region below the arc ¢ by I; for 1 <i < /{47,
and label the regions above v and below v by N and S, respectively. Then
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Iy =8 = Iy, and the poset subcategory of S near v looks as

I {----1 N 04+1 --- Tipq
2 042
| |
~ v
12 IZ+2
T v T
3 043
|
v v
I3 Ioys
| |
| |
| |
Lpy ——0------ >y S 4----- l+r —— Logpra

Observe that the downward arrow v — S is the same as the compositions
v—=>L+r—Sand v — ¢ — S. Thus the lemma in this case is equivalent to
the following claim.

Claim 5.16. Let B,(v) be an r-neighborhood of v for small enough r <
L. Then for any F € Shs(M;K), the restriction F|p, () is contained in
Shr(By(v); K) if and only if the arrows

{i=L|1<i<tl+r}IO{v—=Lliv—=L+T}

which are the dotted arrows in the diagram above, are sent to quasi-
isomorphisms under I's(F).

Proof. For simplicity, we may assume that v is at the origin (0,0) and up to a
local C'-diffeomorphism near v, we can assume the half-edges 1,2,...,¢ are
modelled on the graphs of the decreasing functions z = ;2% on (-1, 0] with
a; =1— %, and the half-edges ¢ + 1,...,¢ + r are modelled on the graphs of
the increasing functions z = b;2? on [0,1) with b; = 1 — @.

If F|p, () € Shr(B;(v); K), then by the local model near an arc in the
smooth case, we have already known that I's(F)(i — I;) is a quasi-
isomorphism for all 1 <i < £+ r.

We take a linear Morse function ¢ = ax + Sz with a # 0, and then
@(v) = 0,dp(v) = adz + Sdz ¢ SS(F). By definition, F, = RT {4 (z)<03(F)o
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is a quasi-isomorphism, which is equivalent to
RT(B,(v) N ¢ (00, €); F) = RT(B,(v) N ¢~ (—00, —€); F)

for a small enough 0 < e. We set Y := B,.(v) N ¢~ ! (—oc0, £e).
Then Yy and Y_ are the regions which are to the left of the red and blue
lines or to the right of those lines according to the sign of a:

l+1

l+r

Hence, we have quasi-isomorphisms

RI(Y,; F) ~Ts(F)(v) and

¢ -1
RT'(Y-; F) ~ Cone (@ Ts(F)(i) % @M(ﬂ(h)) [—1],
=1

i=1

where the i-th component of d is the difference of the restriction maps in-
duced by ¢ —» I, and i + 1 — I;, for 1 <+¢ <[ — 1. Under this identification,
the restriction map RI'(Yy;F) — RI'(Y_;F) is induced by the morphisms
{v—=1]1<1i<I}and is a quasi-isomorphism if and only if the total com-
plex of

¢ -1
Ts(F)(v) = @ Ts(F) @) — @PTs(F)
i=1 i=1

is acyclic. As T's(F)(i — I;) is a quasi-isomorphism for all 1 < i < ¢ — 1, this
happens if and only if I's(F)(v — £) is a quasi-isomorphism as well.

Conversely, let F € Shg(M;K) be a sheaf such that I's(F)(i — I;) for
1<i</?and I's(F)(v—¥),Ts(F)(v—L+r) are all quasi-isomorphisms.
In order to prove that F|pg (,) € Shr(B,(v);K), it suffices to show that
SS(F)N(T;rM — {0}) C Rsg - (—dz) similar to the smooth case.

For any p = adz + fdz in T M with « # 0, the same argument as above
applies to any C'-function ¢ with dp(v) sufficiently close to p, rather than
ax + Bz. Hence, p ¢ SS(F).
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Suppose that p = (v, 8dz) € T,y M with 5 > 0. We use (2) in Proposi-
tion/Definition [5.1| to show that p ¢ SS(F). As seen in the picture below

we can take a smaller open ball U around v and a small € > 0 defining a
line L := {x | (x — v, Bdz) = —e}, and take a proper closed convex cone 7 in
E =R2, with 0 € v so that

Y\{0} € {w | (w, Bdz) < 0},

which is just the lower half-plane. For example, let v, v2 be the two down-
ward unit vectors generating the two green rays as shown above then v =
{tvy + svy : t,s > 0}. Let H :={x : (x — v, Bdz) > —€} be the region above
L and then we clearly have H N (U + ) C By (v). It suffices to show that
for all x € U, we have the natural quasi-isomorphism

(5.4) r: RU(H N (x+7); F) = RT(LN (z+7); F)

Recall [I7, Rmk.2.6.9] that for any compact subset Z of B,(v), there exist
a a quasi-isomorphism

lim RT(U; F) = RI(Z; F),
usz

where U runs over the open neighborhoods of Z.

As illustrated above, H N (z 4 «) is the region bounded by a triangle A,
whose sides are parallel to 3 lines R - v1, R - vg and L, where L N (z + ) is the
bottom edge of A, contained in the region S. Hence, RT'(L N (x 4+ v); F) ~
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Is(F)(S) = RI(S; F). Referring the picture above and according to the
choice of x, we have the following four cases:

1) If x =1 so that H N (21 + ) has empty intersection with 7', then
RI'(HN(x+7);F) ~I's(F)(S) and so we have the natural isomor-

phism r in ((5.4)).

2) If x=m9 so that ve H N (za+7), then RT'(H N (z+7); F) ~T's(F)(v)
and the map r is the composition I's(F)({ +r — 5) o T's(F)(v — £+
r). By the hypothesis of F, each component in the composition is a
quasi-isomorphism, hence so is the composition.

3) If = x3 so that H N (x3 + ) has non-empty intersection with 7" ex-
actly along half-edges 7,7+ 1,...,£ for some 1 < < ¢, then we have

l /—1
RT(H N (x +7); F) ~ Cone (@ Ts(F)(k) % &P I‘g(]-')([k)> [—1],
k=i

k=i

where the k-th component of d is the difference of the restriction maps
induced by k — I, and k + 1 — I as before. Under this identification,
the map is induced by the morphism ¢ — S. Then by the nine
lemma (or the 3 x 3-lemma) for triangulated categories [18] Lem.2.6],
we obtain a diagram in which all squares commute except for the non-
displayed one on the bottom right that anti-commutes, and all rows
and columns are exact triangles:

RU(HN (z+7)F) —— @ Ts(F)(k) —L— @i Ts(F) (L) ——

T T’

Ts(F)(S) —4—— Ts(F)(S) 0 +

Cone(r) ————— @ Ts(F)(k)[1] —L @i Ts(F)(I)[1] —

+1 +1 +1

where the map 1’ is induced by ¢ — S and the k-th component of d’ is
the difference of restriction maps induced by k — I and k+1 — I
if i <k <f£—1 and is the restriction map induced by ¢ — 1 — I, _; if
k = ¢ — 1. By the hypothesis of F, the map I's(F)(k — Ii) is a quasi-
isomorphism for k =¢— 1,/ —2,...,4, and so is d’. The exactness of
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the third row implies that Cone(r) is acyclic and therefore r is a quasi-
isomorphism.

4) If x = x4 so that H N (z + ) has non-empty intersection with 7" ex-
actly along half-edges j,j+1,...,¢+r, for some £+ 1< j< /{4,
then the same argument as in the third case holds and we conclude
that the map r in is a quasi-isomorphism.

This completes the proof of the claim. O

Finally, suppose that there are some additional 1-dimensional strata end-
ing at v. By our assumption on S at the beginning of Section we can
regard the extra 1-dimensional strata near v as additional half-edges at v
and obtain a new vertex v’ with ¢ left half-edges and r’ right half-edges for
some ¢ > ¢ and 7' > r.

We label the half-edges and regions near v’ as before. Then exactly the
same argument as above holds and proves the lemma for this case. Equiva-
lently, for all F € 8hs(M;K), we have F € Shp(B,(v); K) if and only if all
arrows {i — L |1 <i <V +7"} I {v/ = ;v — ¢+ '} are sent to quasi-
isomorphisms under I's(F). O

5.3. A legible model for constructible sheaves

Let T = (IL — T < Tr) € BLY be a bordered Legendrian graph in J'I, =
T~ M as before and S be a stratification refining Sp. We can simplify the
combinatorial model further under the following stronger assumption:

Assumption 5.17. The stratification § is the induced stratification Sz of
a bordered Legendrian graph 7 = (T — T < TR) which extends 7 so that
T contains no cusps and no vertices with only left or right half-edges.

In particular, this implies that S is a regular cell complex and satisfies
Assumption [5.4]

For a stratification S satisfying the above assumption, we denote by
Gs the finite set of functions f on (z,zRr) such that f is either +o00 or a
continuous function whose graph is contained in a union of zero- and one-
dimensional strata in S.

We observe the following: suppose that S satisfies Assumption[5.17] Then
any region S in S is an open disk in M bounded by the graphs of 2 functions
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Figure 13: An example of stratifications satisfying Assumption [5.1

fr < fu in Gs. That is, S = {(z,2)|z € (z,2R), fr(z) < 2 < fu(z)}[] We
call (fr, fu) a bounding pair for S. The choice of the pair (fz, fiy) might not
be unique. However, since S is contractible, there exist x| < 219 < 225 <
xR depending only on S such that f;, < fy on (z1,5,225) but fr, = fr on
(xL,z1,5] I [z2,5, xR). In other words, the graphs of f;, and fir on (21,5, z2.5)
are the lower and upper boundaries of S, which will be denoted by Bg and
Ag, respectively.

For any two bounding pairs (fr, fu) and (f7, f{;) for S, we denote
by (fr.fv) < (fr,fl) if fo <f; and fu < f{;. In addition, the pair
(max{ fr, f7.}, max{ fu, f{;}) becomes also a bounding pair for S which is
a common upper bound. It follows that there is a unique mazimal bounding
pair for S, which will be denoted by (Ig, us).

Definition 5.18. Let S = S(T) be a regular cell complex as above. A poset
category or a finite (acyclic) quiver with relations, denoted by R(S), is de-
fined as follows:

e The objects are the 2-dimensional cells of S;

e For any two objects R and S separated by the 1-dimensional stratum s
with S below and R above, we assign an arrow ez : S — R that impose
S < R and generates the partial order on R(S).

e For any crossing or vertex v of f, there are unique regions N and
S immediately above and below v and exactly two directed paths
M (v) : S — N and vr(v) : S — N which are compositions of arrows,
such that ~(v) and yr(v) pass through objects corresponding to the
regions in Starg(v) and go around v from the left and right hand side,
respectively. Then we impose the relation v (v) ~ Yr(v).

4A function fr or fy may be constant at oo and in this case the region is
unbounded.
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Moreover, we say that an arrow e: S — R is simple if there are no
regions between them. We say that a directed path v : S — R is simple if it
is a composition of simple arrows.

We denote by A(R(S)) the quotient of the path algebra K(R(S)) of the
acyclic quiver R(S) by the ideal generated by (y.(v) —1r(v))’s

A(R(S)) = K(R(S))/(n(v) = (V) : v € V(S)).
Here, V(S) is the set of 0-dimensional strata of S.

We remark that while the path algebra of an acyclic quiver is of global
cohomological dimension 1, our algebra A(R(S)) is of global cohomological
dimension 2 in general.

Proposition 5.19. The poset category R(S) is well-defined.

Proof. To show that the definition indeed gives a partial order, we need to
check the antisymmetric property, that is, for any two 2-dimensional cells
R, S, both R < S and S < R implies that R = S. This follows immediately
from the last statement in the lemma below. ]

Lemma 5.20. For any two 2-dimensional cells R, S in S, the following are
all equivalent:

1) up <lg.
2) S is above the graph of ug.
3) R<S.

Moreover, R < S if and only if g <lg.

Proof. (1) = (2) is clear.
(2) = (1): If S is above the graph of ug, then lg > ug on [z g, z2 g]. Suppose
that lg(z) < ur(z) for some x, say « > x2 g. Then

Iy = {z € (x2,5,2r)|ls(z) < ug(z)}

is non-empty. Let z¢ := inf(Iy) > 22 g, then lg > up on [z1,5, zo], us(zo) =
ls(zo) = ur(xo), and the graph of up is strictly above that of lg on a
small open interval (z,zo + €). Define a pair (I, uly), which coincides with
(Is,ug) on (zr,zo), and ly = vy = max{lg = ug,ur} on [rg,zr). This de-
fines a bounding pair for S, and (Ig,us) < (I, u}), contradicting to the
maximality of (Ig,us). Hence, lg(s) > ug(z) for all x € (x|, zR).
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(3) = (2) : It suffices to show: If R and S are separated by an 1-dimensional
stratum s, with R below and S above. Then S is above the graph of ug.
In fact, as a 1-dimensional stratum, s is the graph of the function ug = Ig
over some open interval (z1,x2) C (1, zR). Then, S contains points which
are above the graph of ug, hence, the whole disk .S is above the graph of up.

(2) = (3): S# R is clear. It suffices to show R < S. If the lower bound-
ary of Sy =S is not contained in the graph of ug, then it contains a 1-
dimensional stratum s;, which is strictly above the graph of ugr. Let S
be the 2-dimensional cell below s, then S] is above the graph of ugr as
well. Also by (3) = (2), Sp is above the graph of ug,. By (2) = (1), we
then have ur <lg, <ug, <lg, <ug, in Gs, with lg, # ug,,ls, # us,. If
the lower boundary of 57 is not contained in the graph of up, we repeat the
procedure above to obtain s9, S5. In particular, Ss is above the graph of up,
S is above the graph of ug,, and up <lg, <ug, <lg, <wug, <lg, <ug, in
Gs, with lg, # ug, for i =0,1,2. Since Gg is finite, after repeat the pre-
vious procedure finitely many times, we obtain a finite sequence s;, S; for
1 <¢ < N for some N > 0, such that, s; separates the 2-dimensional cells
Si—1,5; with S;_1 above and S; below, ug, <lg, ,, ur <lg,, and the lower
boundary of Sy is contained in the graph of ur. The last condition just says
that lg, = ur on [x1 gy, %2.9y]-

Let us show that there is a 1-dimensional cell syt separating R, Sy
with R below and Sy above. Otherwise, the open intervals (z1 g, 2 r) and
(1,55, T2,5y) have empty intersection. Say, x2 r < z1,5,. Then by defini-
tion w9 g, have lgp = ug = lg, on [z1g,,%2,s,]. Define a pair (I'5,u) such
that it coincides with (Ir,ugr) outside [z1g,,225,], and Iy = v = ug,
on [x1,8y,%2,5y]. This defines a new bounding pair for R with (lg,ugr) <
(U, uy), contradiction. Now, we have shown that S = Sp > S; > ... > Sy >
R, hence S > R.
The last statement of the lemma: “=" follows from (3) = (1).
<: If R =S5, we are done. Otherwise, assume [r < lg and R # S. In partic-
ular, S is above the graph of [g. Then S is above the graph of ugr as well,
as R # S is the only 2-dimensional cell bounded by the graphs of I < ug.
Now (2) = (3) implies R < S.

This finishes the proof of the lemma. O

For a region R € R(S), we define an open subset of M to be the upper
half-space of [gr(x)

Mp = {(z,2)|lzL < x < 2R,z > lg(x)}.

Then Mp C Mg if and only if R’ > R.
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Lemma 5.21. Let R € R(S) be fized. Then for any R' > R in R(S) with
lower boundary B/, the intersection Br/(R) := Br N Mg is non-empty and
contractible.

Proof. Br/(R) is non-empty: Since R’ > R, by definition, there is a 1-
dimensional cell s separating R’ and another region S, with R’ above and S
below, such that S > R. In particular, S is above the graph of [y. It follows
that s is contained in Mg, hence contained in Br/(R) = Br' N Mg.
Bpr/(R) is contractible. We use the notations at the beginning of Section[5.3]
Recall that B is simply the graph of lp over (z1 g, :U’2 r)- Moreover, g <
upr on (x1,g, %2 r) and [gr = up outside (z1 g, 22 ). Also, by Lemma
we have up < lIg.

If Br/(R) is not contractible, then Bg has a 1-dimensional cell s con-
tained in the graph of [g, such that, Br contains points both on the left
and right of s. As R’ is above the graph of ug, s has no points in the lower
boundary of R. In other words, s is contained in the graph of I = ug over
(xL,21,R] or [T2 R, ZR), say, the latter. Assume s lives over some open inter-
val (z1,22) C (xL,xR), that is, s is the graph of [pr = ur = lg over (z1, z2).
Then x5 g < 1. Moreover, I # [ as functions on [z2, ZR), as Brs contains
points living over (r2,zR).

Now, can define a pair (Ir, ug) of continuous functions in Gs such that, it
coincides with (Ig,ugr) on (wL, 2], and Igr = up = max{lr,lr = ur} = lp'
on [z2,7Rr). Then (Ig,ur) is a new bounding pair for R, with (Ir,ur) <
(Ir,uR), contradicting to the maximality of (Ig, ug). This finishes the proof.

O

Now there is an induced functor of poset categories p : S — R(S), which
sends w to p(w), the unique 2-dimensional cell below w. More precisely,
we define p(w) to be w if w is a 2-dimensional stratum, or to be the 2-
dimensional cell immediately below w otherwise. Then for each region R €
R(S), the upper half-space Mg is the union of the strata

MR: U w

p(w)>R

by Lemma, [5.20]
As usual, we define the abelian category Fun(R(S),K), the DG category
Fun(R(S);K), and the restriction functors Fun(R;K) — Fun(R(S|,,); K)

for an open sub-interval J, of I,. By pre-composition, we get a functor

p* i Fun(R(S);K) — Fun(S;K),
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which is clearly exact. We can then use the same letter p* for its DG lifting
p*: Fun(R(S); K) — Fun(S; K).

Proposition/Definition 5.22. Let us define a functor between two abelian
categories

px @ Fun(S,K) — Fun(R(S),K), F— [R— I'(Mg;is(F))].
Then py o p* =1d and (p*, p«) is an adjoint pair
p* : Fun(R(S),K) 2 Fun(S,K) : p..
As a consequence, we obtain an adjoint pair (p*, Rps) in the DG liftings
p" Fun(R(S),K) = Fun(S,K) : Rp,

where Rpy is given by F +— [R — RI'(Mpg;is(F))]. Moreover, we have a nat-
ural isomorphism B : Id = Rp, o p*.

Proof. We firstly show that p, o p* = Id. By definition and formula (5.3)), for
any F' € Fun(R(S),K) and R € R(S), we have

(s 0 p*)(F)(R) = T'(Mpg;is(p"F)) = lim  (p"F) (7, (w))-

wWES| My

Since S|y, = {w € S|p(w) > R} and 73y, is just the inclusion map,
(p*F)(Tar,(w)) = F(p(w)) for all w € S|y, and it follows that

(pr 0P )(F)(R) = lim F(p(w)) = F(R).
p(w)>R

Therefore p, o p* = Id.

Next, we show that (p*, p«) is an adjoint pair. For any F' € Fun(R(S), K)
and G € Fun(S,K), a morphism f € Hom(p*F,G) is a collection of maps
{fw | w e S} with f, : (p*F)(w) = F(p(w)) — G(w) such that for any arrow
w; — w2, we get a commutative diagram



Augmentations are sheaves for Legendrian graphs 349

Equivalently, we get a collection of maps {fr. | p(w) > R}
* Juw
frRw : F(R) = F(p(w)) = (p"F)(w) = G(w)

for any fixed region R in R(S) and w € S|y, i.e., p(w) > R such that we
get a commutative diagram

F(Ry) 2 Gy

| |

F(Re) 7% G(ws)

for any Ry < Ry in R(S) and wy < wsg in S with p(w;) > R;. This is again
equivalent to have a collection of maps {fr | R € R(S)} with

fr=lm frw:F([R)— lm Gw),
p(w)>R p(w)>R

such that for any arrow Ry — Ro in R(S), there is a commutative diagram

F(R) 5 6w

p(wi) >Ry
I 7
2,

Since (p«G)(R) =T'(Mp;is(G)) = y%lp(w)ZR G(w) by formula (5.3), the
above data is identical to a morphism f in Hom(F, p,G). That is, we have
a natural isomorphism Hom(p*F, G) ~ Hom(F, p.G).

Finally, we show the natural isomorphism 3 : Id = Rp, o p*. Indeed, for
any F* € Fun(R(S),K) and any region R in R(S), we have a natural mor-
phism

(5.5) Br+(R) : F*(R) — (Rp. 0 p"F*)(R)
defined by
F*(R) = (p« 0 p"F*)(R) = I'(Mp;isp"F*) = RI(Mpg;isp"F*).

We want to show that Spe(R) is a quasi-isomorphism.
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For any region R’ in R(S), let 0%, € Fun(R(S),K) be a functor defined
by 0% (W) = 0if W # R, and ¢%, (R') = K such that ¢, sends all the arrows
in R(S) to zero. As seen in the proof of Lemma Fun(R(S),K) is the
triangulated envelope of the objects of the form 0%,. Observe that for fixed
R, the property of Sre(R) in being a quasi-isomorphism is preserved
under taking quasi-isomorphisms, shifts, and cones in the place of F'*. Thus,
it suffices to show that Sp«(R) is a quasi-isomorphism only when F'® = df,
for R' € R(S).

By definition, we see that isp*d = Kg,,, where Eg/ is the union of R’
and its upper boundary Ag. It suffices to show that

K R =R,

5.6 RT(Mp:Kp ) ~
(5:6) (Mp: Kp,) {0 otherwise.

If R’ is not contained in Mg, then neither is Er ans we have
RT'(Mpg;Kg,,) ~ 0. Otherwise, if R’ C Mg, then so is Er. If R' # R, by
Lemma we have R/(R):= R'N Mg = Er 1 Br/(R), where both of
R'(R) and Br/(R) are non-empty contractible closed subsets of Mp. We
then obtain the following exact triangle:

RD(Mg; Kg,,) — RD(Mp; Kgrp)) — B (Mg K, (r)

where the second arrow is the same as the quasi-isomorphism RI'(R/(R); K) ~
K — RI'(Br/(R);K) ~ K. Therefore, RI'(Mg;Kg,,) is acyclic. Finally, if
R' = R, then Eg is a contractible closed subset of Mg and it follows that
RT'(Mg;KEg,) ~ RI'(ER; K) ~ K as desired. O

Definition 5.23. Let Funp(R(S),K) and Funp(R(S),K)q be full subcat-
egories of Fun(R(S),K) consisting of functors F' satisfying the conditions
(1)-(2) and (1)—(3) described below:

1) For any additional 1-dimensional stratum s of S separating two 2-
dimensional cells R; below and Ry above, the morphism F'(ey) :
F(R1) = F(Ry) is a quasi-isomorphism.
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2) Around any crossing c of T', we label the 4 regions by N, S, W and F as
in Definition and there exists the following commutative diagram

N

F(N)

/ \
F(W) F(E)
\ /

F(S)

such that the total complex of F(S)— F(W)® F(E) — F(N) is
acyclic.

3) If R is the bottom region in S, then F'(R) is acyclic.

Proposition 5.24 (Legible model). Let S be a regular cell complex re-
fining the stratification induced by T and satisfying Assumption[5.17. Then

(5.7) P Fun(R(S),K) = Funz, (S, K)

1 a quasi-equivalence with a quasi-inverse Rp,, and p* is compatible with
restriction to an open sub-interval. Moreover, the similar statement holds
for p* : Funp(R(S),K) ) — Funr(S,K)0)-

For the proof of the proposition, we need the following lemma.
Lemma 5.25. For any F € Shz, (M;K), there exists a filtration
O=Fn—=>Fn1— - —=>Fo=F
such that each of the associated graded pieces Gr; Fo is contained in
8hz, (M;K) and supported on a single region R; of S.
More precisely, for each E; which is the union of R; and its upper bound-

ary, we have Gr; Fo ~ (A;) g, for some perfect complex of K-modules A; re-
garded as a constant sheaf on M.

Proof. We use the notations at the beginning of Section [5.3] For each func-
tion f in Gg, we define an open subset of M

My = {(x,z2) e M |z € (xL,2r), 2 > f(x)}.
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Consider the maximal bounding pair (lg,,ug,) for the bottom region
R; in 8. Then fy:=1Ir, = —o0 and f; = up, is the unique minimum in
Gs \ {fo}. In particular, My, = M.

If My, is non-empty, then R(S|as,,) is a finite non-empty partially or-
dered subset of R(S) which contains a minimum, say Ry. In other words,
Ry is a minimum among those regions of & which are above the graph of f;.
Then the lower boundary of Rs is contained in the graph of f;. Otherwise,
the lower boundary contains a 1-dimensional stratum s which is strictly
above the graph of fi. The region S = p(s) below s is less than R and this
is a contradiction to the minimality of Rs.

Now we take fo € Ggs so that (fi, f2) is a bounding pair of Ry. Then
by induction, we can repeat the procedure above to obtain a sequence (f;)
in Gs such that for each 4, the graphs of f;_1 and f; bound a single region
R;. Since Gg is finite, there exists a m € N such that f,, = oo is the unique
maximum in Gs. Hence, My, = & and the procedure stops. In fact, m is
the number of regions in S.

Let M; := My,. We obtain a sequence of open inclusions

=M, CMyu_1C---CMy=M

and F; == Fpp, = R(jMi)gj]Tﬁ}", where jys, : M; — M is the open inclusion.
By [I7, Prop.5.4.8.(ii)], we have F; € Shy+ (s)(M;K) and obtain a filtration

O0=Fn—=>Fn-1— - —>Fo=7F,
whose associated i-th graded piece is Gr; Fo = F),_,\n, and induced by the
exact triangle
.FMi — ‘/_'.MF1 — fM'ifl\Mi +—1>

By definition, Gr; F, is supported in a single region R;. More precisely,
it has possibly non-zero stalks only at points in the region R; and its upper
boundary. Moreover, by the triangular inequality for micro-supports, we
have Gr; Fo € Shz, (M;K). In fact,

Gr; Fo =~ Fur,_\M, =~ (F(Ri))Mi,I\Mia

where the complex F(R;) = RI'(R;; F) is regarded as a constant sheaf on
M. O

Proof of Proposition[5.24] The proof is similar to that of [25, Prop.3.22],
the only nontrivial part is to show the quasi-equivalence ([5.7)).
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At first, let us show that p* is fully faithful. For any F, G € Fun(R(S), K),
by the adjunction (p*, Rp,) in Proposition/Definition we have

RHom®(p*F, p*G) ~ RHom®(F, Rp.p*G) ~ RHom*(F, G),

where the last quasi-isomorphism follows from the natural isomorphism
B:1d = Rp, o p* in Proposition/Definition which then implies the
quasi-isomorphism G ~ Rp, o p*(G). Thus, p* is fully faithful. The natu-
ral isomorphism also shows that Rp, is essentially surjective.

Now, it suffices to show that p* is essentially surjective. For any functor
F € Fun(S;K), let F :=is(F). Then by Proposition/Definition and
Corollary we have

RI(Star(w); F) ~ Fp = F(w) = I'(Star(w); F)

for all z € w € S. The adjunction (p*, Rp.) gives us an adjunction map
er : p*Rp.FF — F, where for any w € S,

p*Rp F(w) = Rp. F(p(w)) = RT(M(u); F),
and by definition of M, we have Star(w) C M, and therefore
er(w) : p*RpsF(w) = RT'(M,(y); F) — RI(Star(w); F) ~ F(w)

defined by the restriction of sections.
Hence it suffices to show that e : p* Rp, F' = F is a quasi-isomorphism
for all F' € Funp+(S;K), or equivalently, the restriction

(5.8) RD(M

p(w); F) = RI'(Star(w); F)

is a quasi-isomorphism for any w € S.

Now we apply Lemma to F to reduce the proof of the quasi-
isomorphism to the case when m = 1, that is, when the sheaf F is
supported on a single region R’ and F ~ Ag,, for some perfect complex of
K-modules A with Eg/ the union of R’ and its upper boundary.

However, for F ~ Ap,_,, we see that RI'(Star(w); F) ~ F, ~ F, for all
w e S and z € w,y € p(w) by Corollary Therefore

A R = p(w),

0 otherwise.
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Finally, the same holds for RI'(M,(,; Ag,,) as seen in (5.6) after replac-
ing K with A in the same argument. This completes the proof of Proposi-
tion [5.24l ([

We can further simplify the legible model for sheaf categories by tak-
ing resolutions from the knowledge of quiver representations [4]. Indeed,
the category Fun(R(S),K) is nothing but a representation category of the
quiver with relations R(S), i.e., the representation category of A(R(S))
with values on perfect complexes (i.e. complexes which are quasi-isomorphic
to a bounded complex of finite projective K-modules). Now, for any F €
Fun(R(S),K), we can replace F' by either a projective or injective resolu-
tion.

Let us review a key fact about A(R(S)) which we will use later on.
Recall some terminology in quiver representation theory. Let us denote by
R(S)o and R(S); the sets of objects and arrows respectively. For any object
a € R(S)o, the path of length 0 at a will be denote by A,. Then A(R(S)) is
a free K-module with the basis the set of all paths (of lengths > 0) in R(S)
modulo the relation in Definition (.18

Proposition 5.26. Let S be a reqular cell complex refining the stratification
induced by T and satisfying Assumption . Then for A == A(R(S)), we
have the following characterizations for indecomposable (left) projective and
injective modules:

1) The indecomposable (left) projective modules of A are P, .= A\, with
a € R(S)o. In particular, P,(s) is injective for all arrows s in R(S)1.

2) The indecomposable (left) injective modules of A are I, :=
Homg (AA, K) with a € R(S)o. In particular, 1,(s) is surjective for
all arrows s in R(S)1.

3) The (left) simple modules of A are S, with a € R(S)o, where S, con-
sists of K at the object a and 0 otherwise, and S, sends all the arrows
in R(S)1 to zero.

Proof. This is a standard fact in quiver representation theory. See [4, I1.2.
Lem.2.4, IT1.2.Lem.2.1]. O
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5.4. A combinatorial proof of invariance of sheaf categories

We can now give an alternative proof of Theorem [5.3] via the combinatorial

descriptions of sheaf categories, i.e. Lemmas and [5.15] Propositions|5.24]
and

Proof of Theorem[5.3. It suffices to show the invariance of S8h(7;K) under
the 6 types of Legendrian Reidemeister moves in the front projection. First
observe that the diagram Sh(7;K) is unchanged if we regard each cusp
in m,(T) as a 2-valency vertex. Then the Legendrian Reidemeister moves
(I) and (IV) are special cases of move (VI), and move (Il) is a special case
of move (V). So it suffices to show the invariance under moves (Ill), (V),
and (VI). Let T, T’ be any pair of bordered Legendrian graphs in 7°%~ M,
which differ by any one of the above three moves. We can take a pair of
regular cell complexes S,S’ refining the stratifications of M induced by
T, T’ respectively, such that:

1) 8,8’ satisfy Assumption for T, T' respectively.

2) 8,8’ coincide outside the local bordered Legendrian graphs involving
the Legendrian Reidemeister move.

Denote by S| = S|, Sg = S the induced stratifications of S (equivalently,
&’) near the left and right boundary of M = I, X R, respectively. In other
words, say T\ (resp. Tr) lives in over the interval I| = (x, 2z + €) C I, (resp.
Ir = (xr — €,2R) C 1), then S| = S|y, (resp. Sg = S|1,) is the stratification
with strata the connected components of S NI x R, (resp. SN Ig x R,) for
all S € S, as defined at the beginning of Section [5.2]

Apply Lemmas and [5.15] and Proposition it suffices to show,
for each of three moves above, the equivalence between the 2 diagrams of

DG categories:

Funr(R(S),K) == (Fung (R(SL), K) « Funp(R(S),K
— ff"unTR (R(SR), K)),

and

Funr (R(S),K) = (Fungy (R(S]), K)  Fung: (R(S), K)
— ?UnTé(R<S{:{), K))

This can essentially be shown by the diagrams in Figures and
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5.4.1. Move (Ill). If 7,7’ differ by a move (lll), can take a pair of regular
cell complexes S, S’ as above so that, the local bordered Legendrian graphs
involving the move (Ill) are as in Figures [14[(1) and (4), respectively. In
the figure, denote by T;,S; the induced bordered Legendrian graphs and
regular cell complexes refining St, in (i), for 1 <7 < 4. In particular, we
have T = T, T, = T/,TQ = T3, and «51 = 8,84 = S/,SQ = 83, and all the
(T3, S;)’s coincide outside the local bordered Legendrian graphs in the figure.
The letters in each picture label the regions.

Figure 14: Invariance of sheaf categories: Legendrian Reidemeister move

(1t).
Proposition/Definition 5.27. There is an adjunction (i,7) of functors
between two abelian categories

i: Fun(R(81),K) 2 Fun(R(S2),K) : 7

defined as follows:
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1) i(Fy) forgets F1(C) in (1);
2) w(Fy) keeps the same data as Fy on other regions, and w(F3)(C) =
+7_
F2<X1) X Fy(2) FQ(XQ) = ker(FQ(Xl) D FQ(XQ) u> FQ(Z)) Then the

map w(F2)(A — C) is uniquely determined by the universal property
of m(F»)(C) as a kernel.

Moreover, both of i and w are exact, and iom =id. As a consequence,
we obtain an adjunction (i,7) of DG functors in the DG lifting

i: Fun(R(S1),K) 2 Fun(R(S2),K) : 7

and we get a natural isomorphism 3 :ion = 1d, and 7 : Fun(R(Sz),K) —
Fun(R(81),K) is fully faithful.

Proof. Everything is done by a direct check except the last statement,
that is, m is fully faithful, which can be shown as follows. For any F,G €
Fun(R(S2),K), by the adjunction (i,7), we have

RHom®(7(F), n(G)) ~ RHom®(i o w(F),G) ~ RHom*(F, G)

where the last quasi-isomorphism follows from the natural isomorphism 5 :
i o = Id, which gives the quasi-isomorphism B : i o m(F) = F. O

Lemma 5.28. Let D; := Funp, (R(S1),K) be the DG category in (1), and
Dy be the DG full subcategory of Fung,(R(S2),K) whose objects are func-
tors Fy such that two additional crossing conditions induced by the two red

squares in (2) hold, i.e. both of the total complexes Tot(Fy(A) — Fo(B1) &

Fo(X1) 2 By(2)) and Tot(Fa(A) = Fa(Bo) @ Fo(Xo) 22 Fy(2)) are

acyclic. Then the adjunction (i,7) of DG functors in Proposition/Definition
induces equivalences

1: D1 2Dy 7

which are quasi-inverses to each other.

Proof. Firstly, the adjunction of DG functors (i, 7r) in Proposition/Definition
induces an adjunction of DG functors i : D1 &= Dy : 7.

To show this, it suffices to show that the essential image of D; un-
der 7 is contained in Dy, and the essential image of Dy under 7 is con-
tained in Dy. The former is clear, as for example, for any F; € Dy, the
crossing conditions for F} at the crossing above and the crossing to the
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left of C' in (1) implies the first crossing condition for i(F3), i.e. the total

complex Tot(Fy(A) — Fy(By) ® Fo(X1) = Fy(Z)) is acyclic. The latter
P y

essentially follows from Proposition More precisely, for any Fs € Dy C
Funt, (R(S),K), by the proposition, F» is quasi-isomorphic to an object
in which all the arrows are sent to surjections. So, we can assume Fj it-
self has this property. Now, the crossing condition for 7(F,) at the cross-
ing above C' is automatic, and the crossing conditions for F5 is equivalent

to the natural cochain maps Fy(A) = ker(Fy(B1) @ Fa(X1) SEN Fy(2)),

and 5 (A) = ker(F(Bs) @ Fa(X>) o), F5(Z)) being quasi-isomorphisms,
which are equivalent to the crossing conditions for 7 (F3) at the crossings to
the left and to the right of C. Hence, 7(F3) € Ds.

Now, the natural isomorphism f:io0m = Id : Dy — Dy implies that i :
Dy — Dy is essentially surjective. By Proposition/Definition m: Dy —
D; is fully faithful. It then suffices to show 7 is essentially surjective.

For any F; € Fun(R(S1),K), by Proposition[5.26] F} is quasi-isomorphic
to an object in which all arrows are sent to surjections. We can then assume
F itself has this property. Now, the crossing conditions for F} in the local
bordered Legendrian graph are equivalent to the natural quasi-isomorphisms

FL(C) = ker(FL(X) B F1(X2) S50 7(2)), FL(A) 5 ker(F1(B) @ F (C)

57 B (X)), and Fi(A) S ker(F1(By) @ Fi(C) 27 Fi(X1)), equiva-
lently, F1(C) = 7oi(F1)(C), and the two crossing conditions induced by
the two red squares in (2) defining i(F}) € Ds. Hence, we get a natural quasi-
isomorphism ap, : F} — 7o i(F}). In particular, 7 : Dy — Dy is essentially
surjective. ([

Similar to Ds, let D3 be the corresponding DG category defined by (3).
Then (2) and (3) are identical, that is, D3 = Da. We just have changed the
letters labelling the regions from “X” to “X"”, to make it convenient for us
to compare with (4).

Let Dy := Fung, (R(S4),K) be the DG category in (4). By a dual argu-
ment to that in proving the equivalence between D; and D3, we immediately
obtain equivalences

p:D3 2Dy

which are quasi-inverses to each other. Here j is induced from the forget-
ful functor j : Fun(R(S4),K) — Fun(R(Ss),K) with j(Fy) forgets Fy(Y'),
and p is induced from the functor p : Fun(R(S3),K) — Fun(R(S4), K) with

p(F3)(Y') = Coker(Fy(4') =5 my(BY) @ Fy(BY)).
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Now, by composition, we then get an equivalence Funp(R(S),K) ~
Funy (R(S),K). Notice that the composition sends the object F|z, F' re-
stricted to T, to F’ 1y which is quasi-isomorphic to Fry—7;. Hence, the
equivalence commutes with Id : Fung (R(SL), K) = Fungy (R(S]), K) up to
a specified natural isomorphism. The same holds for Tg = T§. Therefore,
we get an equivalence of diagrams of DG categories: Funy(R(S),K) ~
Fun (R(S),K), as desired.

5.4.2. Move (V). The proof proceeds similarly as above. If T, 7" differ
by a move (V), can take the pair of regular cell complexes S, S’ so that the
local bordered Legendrian graphs involving the move are as in Figures (1)
and (4), respectively. In the picture, 7" and 7" both have [ left and r right
half-edges at the vertex, labelled by 1,...,l and [+ 1,...,l+r from top
to bottom respectively. In addition, the bordered Legendrian graph T'(S)
(resp. T(S')) underlying S (resp. S’) is T' (resp. T”) plus the additional
dashed arcs. We have added the dashed arcs to ensure that S,S’ satisfy
Assumption As before, let T;,S; be the induced bordered Legendrian
graphs and corresponding regular cell complexes in (i), for 1 <i <4. In
particular, (Tl,Sl) = (T, 8), (T4,S4) = (T’,84), and (TQ,SQ) = (Tg,Sg).

Similar to Proposition/Definition we have the following proposi-
tion.

Proposition/Definition 5.29. There is an adjunction (i,7) of functors
between two abelian categories

i: Fun(R(81),K) 2 Fun(R(S2),K) : 7
defined as follows:

1) i(Fy) forgets Fi(Jg)’s in (1) for 1 <k <lI;

2) m(Fy) keeps the same data as Fy on other regions, and w(Fs)(Jy) =

FQ(Ik) X Fy(Ny) FQ(NQ) = ker(Fg(Ik) (&) FQ(NQ) m) FQ(Nl)) for 1<

k <. Then all the additional maps for w(F») are uniquely determined
by the universal properties of w(F3)(Ji)’s as kernels.

Moreover, both of i and w are exact, and iom = id. As a consequence,
we obtain an adjunction (i,7) of DG functors in the DG lifting

it Fun(R(S1),K) 2 Fun(R(S2),K) : 7

and we get a natural isomorphism B :ion = Id, and 7 : Fun(R(Sz),K) —
Fun(R(S1),K) is fully faithful.
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Figure 15: Invariance of sheaf categories: Legendrian Reidemeister move

(V).

Proof. The proof is identical to that of Proposition/Definition O

Similar to Lemma [5.28, we have the following lemma.

Lemma 5.30. Let Dy := Funp, (R(S1),K) be the DG category in (1), and
Dy be the DG full subcategory of Fung,(R(S2),K) whose objects are func-
tors Fo such that the additional crossing condition induced by the red square

in (2) holds, i.e. the total complex Tot(F5(S1) — F2(S2) @ Fa(Na) SER
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F5(Ny)) is acyclic. Then the adjunction (i,7) of DG functors in Propo-
sition/Definition induces equivalences

1: D1 2Dy 7
which are quasi-inverses to each other.

Proof. The proof is similar to that of Lemma [5.28 O

Similar to the case of move III, let D3 be the DG category defined by
(3). Then D3 = Dy. Let Dy := Fung, (R(S4),K) be the DG category in (4).
By a dual argument to that in proving the equivalence between D; and Da,
we immediately obtain equivalences

p:’Dgﬁ'Dzlij

which are quasi-inverses to each other. Here j is induced from the forgetful
functor i : Fun(R(Ss),K) — Fun(R(S3),K) with i(Fy) forgets Fy(J},)’s for
l+1<k<Il+r, and p is induced from the functor p: Fun(R(S3),K) —
Fun(R(S4), K) with p(Fy)(J}) = Coker(Fy(S}) =5 my(1p) & Py(sy)).

Again by composition, we get an equivalence of diagrams of DG cate-
gories: Funy(R(S),K) ~ Funy(R(S),K), as desired.

5.4.3. Move (VI). If 7,7’ differ by a move (VI), can take the pair of
regular cell complexes S,S" so that the local bordered Legendrian graphs
involving the move are as in Figures [161) and (2), respectively. In the
picture, T has [ left and r > 1 right half-edges, labelled by 1,...,] and
l+1,...,1+r from top to bottom respectively. 7" has [ + 1 left and r — 1
right half-edges at the vertex, with the labelling inherited from that of T'.
In addition, the bordered Legendrian graph T'(S) (resp. T'(S’)) underlying
S (resp. &) is T (resp. T") plus the additional dashed arcs. We have added
the dashed arcs to ensure that S, S’ satisfy Assumption

Proposition/Definition 5.31. There is an adjunction (i,7) of functors
between two abelian categories

i: Fun(R(S'),K) 2 Fun(R(S),K) :

defined as follows:
1) i(F") forgets F'(Jx)’s in (2) for 1 <k <1I;
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241 1

241

242

L7 ’ o4

Figure 16: Invariance of sheaf categories: Legendrian Reidemeister move
(VI).

2) w(F) keeps the same data as F on other regions, and w(F)(Jy) =

F(I) x vy F(Ii1) = ker(F(Iy) & F(Iyy) 225 F(N)) for 1 < k <

. Then all the additional maps for w(F) are uniquely determined by
the universal properties of w(F)(Jg)’s as kernels.

Moreover, both of i and w are exact, and i ow = id. As a consequence,
we obtain an adjunction (i,7) of DG functors in the DG lifting

i: Fun(R(S'),K) 2 Fun(R(S),K) : 7

and we get a natural isomorphism 3 :iom = Id, and 7 : Fun(R(S),K) —
Fun(R(S),K) is fully faithful.

Proof. The proof is identical to that of Proposition/Definition 0

We also have the following lemma.

Lemma 5.32. Let D = Funp(R(S),K) and D' := Funp (R(S’),K) be the
DG categories in (1) and (2) respectively. Then the adjunction (i,7) of DG
functors in Proposition/Definition induces equivalences

which are quasi-inverses to each other.
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Proof. The proof is similar to that of Lemma [5.28 g

Again as before, we get an equivalence of diagrams of DG categories:
Funy(R(S),K) ~ Funy (R(S),K), as desired. Now, We have finished the
proof of Theorem O

5.5. Microlocal monodromy

Given a bordered Legendrian graph 7 = (1Tp — T < Tgr), equipped with a
Z-valued Maslov potential p, let S be a regular cell complex refining the
stratification S induced by 7. Denote by Loc(T' \ V) the category of local
systems of cochain complexes of K-modules on the set of edges, which is the
complement 7"\ Vr of vertices.

As in [25] Def.5.4], we define the microlocal monodromy.

Definition 5.33 (Microlocal monodromy). There is a natural functor
pmon : Sh(T;K) — Loc(T' \ Vr), called microlocal monodromy, such that for
each edge A of T, we define

pmon(F)(A) := Cone(F(Star(a)) — F(Star(N)))[—u(a)],

where a € § is an arc contained in the edge A, N is the region above a so
that the arrow ¢ — N is in S.

Remark 5.34. The above definition is well-defined, i.e., it is independent of
the choice of a as observed already in [25, Prop.5.5]. In addition, for any sheaf
F € 8h(T;K) and any point p € T \ V7 which is a smooth Legendrian point
of T, by Proposition 7.5.3 in [I7], the microlocal monodromy pmon(F), at
p is nothing but the microlocal stalk of F at p, up to a degree shift. The
latter can be used as an alternative (and intrinsic) definition for microlocal
monodromy.

Proposition 5.35. Then the microlocal monodromy pmon s invariant un-
der Legendrian isotopy of T .

Proof. The combinatorial proof is entirely the same as that in [25, §5.1]. In
another perspective, one can use an intrinsic characterization of microlocal
monodromy: microlocal stalks. See the remark above. O

Definition 5.36 (Subcategory of microlocal rank 1). We define
C1(T, u; K) to be the full DG subcategory of Sh(T’; K) whose objects are F
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such that pmon(F) is a local system of rank 1 K-modules in cohomological
degree 0, and define the induced diagram of constructible sheaf categories

Co(T, ;K) == (C1(TL, p; K) = Co(T, s K) = Ci(Tk, pir; K)).

This DG category C; (T, p; K) will be the sheaf side of the augmentation-
sheaf correspondence in the next section. As a consequence of Theorem
we obtain

Corollary 5.37. The category C1(T, pu; K) is a Legendrian isotopy invari-
ant up to DG equivalence.

Proof. This follows from Theorem and the fact that the notion of the
microlocal monodromy is intrinsic as seen in Proposition [5.35 U

Let S be a regular cell complex which refines Sy and satisfies Assump-
tion We use the notations in Definitions [5.18 and [5.23]

Definition 5.38. We define Fun(z ) 1 (R(S),K) to be the full DG subcat-
egory of Funy(R(S), K)o consisting of functors F' such that

Cone(F(es))[—p(s)] ~ K

for all arcs s contained in 7.
By restriction, we then obtain a diagram of DG categories

Fun(r 1) 1(R(S),K) = (Fun(g; 1) 1(R(S|1), K) < Fun(z,,) 1(R(S),K)
— ?un(TR,MR)71(R(S|TR)7 K))

Corollary 5.39. There is an Ax-equivalence:
Fun(r 1)1 (R(S), K) = C1i(T, 1; K).
Proof. This is a direct corollary of Lemma and Proposition O
6. Augmentations are sheaves for Legendrian graphs
6.1. Local calculation for augmentation categories
In this section, we will compute the A,o-structures completely for the trivial

bordered Legendrian graphs and the bordered Legendrian graphs containing
a vertex of type (0,nR).
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6.1.1. Augmentation category for a trivial bordered Legendrian
graph. Let (T, p) = (T,, =T,, = T),, u = p = p) be a trivial bordered Leg-
endrian graph of n parallel strands, equipped with a Z-valued Maslov poten-
tial . We will describe the augmentation category Aug, (T, p; K), which
has been already seen in Corollary [£.8| for the unitality.

Notation 6.1. In this section, we denote Aug, (T}, u; K) by Aug, for sim-
plicity.

Asseen in Example the Chekanov-Eliashberg DGA ACE (T ,(Lm) ) u(m)>
= A%m)(,u,) is generated by the set

¥ a<vr<ij<mfI[{wf [1<a<n1<i<j<m}),
where the grading is given as
kgl = p(a) = p(b) = 1, el | = —1.

Assumption 6.2. From now on, we denote yéj by k.. We regard k;]b as
zero unless it is well-defined.

Then under the above assumption, the differential (™) is simply given
as

ij kit|—17.i6 1.0
8(m)kfljb: Z (—1)lecl Kk
a<c<b
1<0<m

Recall from Example Aug, is a DG category such that:

1) The objects are the augmentations for A, (u):
(6.1) Ob (Aug,) = Aug(An(p); K).
2) In A®(T},), we have
M2 =K (ki | 1<a<b<n).
Then, for any two objects €1, €2, the set of morphisms is

(6.2) Homug, (€1,62) = My = K(ki;" | 1<a<b<n).
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3) For €1, e, € Aug,, the map
my HomAug+(61, €2) — Homﬂug+(61, €2)

is defined as

63)  ma (ki) = = erlkea) k2 + D (~ )R K12 65 (pg)

c<a b<d

4) For €1, €, €3 € Aug, , the map
my : Homayg, (e2,€3) ® HomAung(el, €) — Homﬂug+(61, €3)
is defined as

(kIQV ® k12\/) — 5bc(_1)02(_ )‘kwv‘k;z\/
(64) _ 5 ( 1)|k12v|\k12v‘+1k53\/’

where

02:1+’k12V||k12V‘+’k12V.

Definition 6.3 (Morse complex). Consider a free graded K-module C =
C(Tn, 1),

@ Keg, lea| = —p(a).

1<a<n

equipped with a decreasing filtration F'® via

FiC ::@K-ek,

k>t

for 0 <7 < n.

We define the set MC = MC(T}, 1; K) of Morse complexes of (C, F*®),
each of which is a complex (C,d) with a K-linear filtration-preserving dif-
ferential d of degree 1.
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Lemma 6.4 (|27, Def.4.4]). There is a canonical identification

= : Aug(An(p); K) = MC
e d=d(e),

where

de; ==Y (=1)"De(a)e;.

j>i

The set of Morse complexes MC can be lifted to an obvious DG category
MC = MC(T,, p; K):

1) The set of objects is MC.
2) The morphism space (Homqc(dy,d2), D) is

Hom e (d1, dg) == End(C, F'*),

the complex of endomorphisms of (C, F'*) whose differential is given
by
Df :=dyo f—(—1)/lfod.

3) The composition - is the usual composition of endomorphisms of C'.

Notation 6.5. We use the identification End(C) = C' ® C* and so for (e ®
), (e @ f*) € End(C),

(e® f*)(g) = (f"g9)e € C,
(e® f*) - (¢® f) = (f"€)e® f) € End(C).

Lemma 6.6 (|21, Theorem 7.25]). There is a (strict) isomorphism of
DG categories

b Aug (Ty, p; K) — MC
which is given on objects by
e d(e) = ((~)elhar) ) (e 9 €),
a<b

as in Lemmal|6.4}, and on morphisms Hom aug, (€1, €2) — Homaqc(d(e1), d(e2))
by

kap ! (1" (e @ €7),
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where the sign s(a,b) is given by
$(a,b) 1= u(a) (u(b) + 1) + 1.

Remark 6.7. Notice that the sign convention for s(a,b) here is different
from the original one, due to the fact that our definition for d(e) differs by
a sign from h(e) in [2I, Theorem 7.25].

Proof of Lemma[6.6. For completeness, we give the proof. By Lemma
it suffices to show that h commutes with the differential and composition,
that is, pomi = Dob,and homys =h - h.

At first, let us show homy = D oh. For two objects €1, €2 € Aug,, let
x € Homy (€1, €2) be a homogeneous element of the form

12v
x = Z Tapkgh s

1<a<b<n

whose all nontrivial summand have the same degree. In other words, x4, # 0
implies that |z| = [k!2V| = u(a) — p(b) since x is homogeneous.
By definition of h, we have

hz)= Y (1) Pay(e, @ e},

1<a<b<n

On the other hand, apply the formula (6.3]) for m;, we have

(6.5)
homi(z) = — Z e1(kea)zaph (k") + Z (=) ket pea (Kpa)b (KE2Y)
c<a<b a<b<d
== > (1) Dey (kea)ran(es @ €)
c<a<b
+ ) (- #OF@D) g per (kv (ea @ €F)
a<b<d
=— Y (-p) ( 1#O¢, (k, )> ((—1)S(a’b)l'ab) (es®e?) - (eq ® €F)
c<a<b
£ (0 aa) (1 Verlkn) (ea® ) - (e @ e3)
a<b<d

— (=)l (x) 0 d(er) + d(e2) 0 h(z)
= Dob(x)
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as desired. Here, the fourth equality follows directly from the formulas for
h(x) and d(e;) above.

The only nontrivial part is the third equality involving two sign manipu-
lations, which we check as follows: for the first sign manipulation, it suffices
to show that, if €1 (keq)xap # 0, then

s(c,b) = |z| + p(c) + s(a,b) mod 2.
In fact, the condition implies that
[cal = pu(c) = pla) =1=0, o] = [kg"| = p(a) — p(b) = p(c) =1 = p(b)
and therefore

s(cb) s(a,b) — p(c) — ||
p(0) +1 = pfc) = (u(c) =1 = p(b)) =0 mod 2

as desired.
Similarly, for the second one, it suffices to show that

Tavea(lnd) # 0 = (a) — u(b) + s(a,d) = s(a,b) + u(b) mod 2,
or equivalently,

s(a,d) — s(a,b) + p(a) =0 mod 2.
Then as before, we have

|kpa| = p(b) = p(d) =1 =0 and
2] = [kipY| = p(a) — u(b) = pla) — p(d) — 1

which implies the desired identity
s(a,d) — s(a,b) + pu(a) = —p(a) + u(a) =0 mod 2.

It remains to show h o mo = b - h. For any objects €1, €2, €3 in Aug_ (T},; K),
let

T = Z Tavkg, € Hom, (ez,€3), yi= Z Yavkay € Hom (€1, €2)
a<b a<b



370 B. H. An, Y. Bae, and T. Su

be two homogeneous elements. We want to show h o ma(x,y) = h(z) - h(y).
By definition of b, we have

h(2)-b) = D (D Paafe, @ en)) - (1) yuclec @ €)))

a<c<b

_ Z (_1)s(c,b)+s(a,c)yacmcb(eb ® 62)'

a<c<b

On the other hand, we have the following by applying the formula (6.4))

homao(z,y) =h Z TepYacma (kip” @ ki)
a<c<b

= Z YaeTep(—1) TR IR (_1)s(@b) (¢ & ¥)
a<c<b

=h(z) - h(y)

as desired. Here, the last equality follows from the previous formula for
h(x) - b(y), and the following sign manipulation:

Lt lkge Il | + s(a, b)
=1+ (u(a) — p(c))(u(c) — u(b)) + pla)(pu(b) +1) + 1
= pa)u(c) + p(c)p(d) + p(c) + pla) + 2
= s(a,c) + s(c,b) mod 2

This finishes the proof of the lemma. O

6.1.2. Augmentation category for a vertex. Let (V,u) € BLSG be a
bordered Legendrian graph of type (n_,ng) in J'U, which looks as the
left picture in Figure In particular, V contains a vertex v of type (0,7)
right, whose half-edges are labelled from top to bottom by 1,2,...,7. Then
nrR=nL +r.

As usual, we label the left (resp. right) ends from top to bottom by
1,2,...,n (resp. 1,2,...,nR). We assume the half-edges {hy1,...,hy,} of
v connect the right ends {a,,a, +1,...,a, + 7 — 1} from top to bottom. In
other words, the half-edge h, ; is connected to the right end a; + 1 — 1. For
simplicity, we denote

a =aforl<a<a,andb :=b+rfora, <b<ng.
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We would like to compute the augmentation category

Aug, (V, 1K) = (Aug, (W, ps K) = Augy (V115 K) — Aug (Vr, pr; K)) -

a a=a’ a a=a’ a a=a’
Ay Ay Ay
v v v
a,+r—1 a,+r—1 v? a,+r—1
b b+r=bb b+r=>bb bt+r=b’
(a) V (b) V@ (c) V®

Figure 17: Front projection m-copy near a vertex.

For m > 1, let V0™ = (V™ = v « V™) € BLG™ be the canon-

ical front projection m-copy of V. For examples, V(™)’s for m = 1,2, 3 are
shown as in Figure [17] from left to right.

Remark 6.8. Here we are using the convention of the canonical front par-
allel copies described in Section [3.1.1

Notation 6.9. For simplicity, let us denote
AL = ACE (VI W) and Aug,, = Aug, (Vi i K),
for * = L, R or empty.

As usual, for each copy V' in V(™) we label the left ends and right ends
from top to bottom by 1,2,...,n_ and 1,2,...,nR respectively, label the
vertex by v’ and the right half-edges from top to bottom by 1,2,...,r €
Z]rZ.
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In the bordered Legendrian graph V(™) 1abel the Reeb chords of VL(m)
and VRgm) corresponding to the pairs of strands by

KLfZ{kff; 1§a<b§nL,1§i,j§m0r1§a=b§nL,1§i<j§m}
and
KR::{ng 1§a<b§nR,1gi,jgmorlga:bgnR,1§i<jSm},

each of which is a Reeb chord (or line segment) of Vl_(m) and Vém) going from
the b-th strand of the jth copy to the a-th strand of the ith copy.

Label the Reeb chords of V* at the vertex v’ by either ¢ if 1 <a <b<r
or UZZ;Z otherwise. In other words, cfjb or vf;;g is the “Reeb chord” starting
from the initial half-edge a + ¢ € Z/rZ, traveling around the vertex v’ coun-
terclockwise and covering ¢ minimal sectors, hence ending at the half-edge
a € Z)rZ of v'.

Remark 6.10. This is the same as the construction for Legendrian graphs
in a normal form described in Section B.2.3] but the reflected manner. In
other words, the generators c!;, correspond to vertex generators lying on the
right side of v.

i v! ! i V! !
C13 = — 2 Ugg = 2
~

3

There are additional Reeb chords of V(™) corresponding to the crossings
of the right half-edges of the vertices. Label the Reeb chord going from the
b-th right half-edge of v/ in V7 to the a-th right half-edge of v* in V* by czjb
for 1<b<a<rand 1<i<j<m. See Figure for an example when
r=3and m = 4. S

We denote the set of Reeb chords by RY = {k;ﬁ],vz o cffb} starting at
the j-th copy V7 and ending at the i-th copy V. Then the LCH DGA A(™) =
(A0 9lm)y .= ACE(y(m) ()Y is the free associative algebra generated by
the Reeb chord in V(™)

A =7 (R |1<i<j<m).
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/U4

Figure 18: The crossings in the front projection m-copy near a vertex when
r =3 and m = 4.

The grading for each generator is defined as follows: let p := p|y;. Then

k3| = pua) = e (6) — 1,
vael = [vael = p(a) — pla+ ) + N(n,a,£) — 1
i Jmwa) —pd)—1 =7
‘Cab - . .
wla)—plh) i<,
where N(n,a, /) is the same as described in
The differentials of k Jb and vg , are given by the differentials of border

DGAs and internal DGAs defined in Example/Definition [2.31] “ Indeed, under
Assumption we have

g i p
(6.6) 6<m>k23b= Y (YRR,
a<c<b
1<t<m
(6.7) 6(m)véi,e:5e,r+ Z (—1) “’1| ! Zzzl ffwl,zzg
O4l=t

The differential of ci]; is obtained by counting certain admissible disks
of degree 1 in (J'U, V(maj).

For simplicity, we denote @ := (—1)%/~1q for any Reeb chord a. Then for
i <7,

(6.8) o™l =N "(—1)7d,

a,i
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where for sequences a = (a1,...,ap41) and i = (i1,...,49p41) with £ >1

i . dide i2is Telot1
Ca = Ca1a2 a20a3 """ TapQpqn
and the summation is over all possible sequences a and i in [r] and [m] such

that

a; = a, ag+1 =, i1 =1, 1 = Js
and either
(6.9) ap < ag>--->apyq, i =g < -+ <lpyq, n =0,
or
(6.10) y
ar>ag <agz>--->apqy, i1 <ipg=i3<---<ipp1, n=|lc2 |1

In Figure two shaded regions labelled by A and B correspond to

differentials of two types in and (|6.10)), respectively.
In fact, we have a bordered DGA

m m L m¢R
Al ):<A(L) Byoatm & Aé’),

where qS(Lm) is the inclusion of the sub-DGA A(Lm) generated by K. The

algebra, Aém) is generated by Kgr with the differential similar to ﬁl(_m) as in

, that is,

m) /i K/ +1 .00l 1,105
a( )kab - Z (_l)l | kackcb'
a<c<b
1<l<m

Notice that in the case when m = 1, we have the identification
oM =g AV = AL 5 AD = A ALY = Ag: ) = ¢,
with kg = kab,qu = qu and k:’b = k’u

In addition, the DGA map qu is defined via counting certain admissible
disks of index 0 in (J'U, V™). More precisely, we have the following:
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DIf1<a<b<r and 1<i,j7 <m such that ijJra_la 4y 18 well-
defined, then
(m) (105
(611) (Z)R (kaerafl a1+b71)
_ tej iej
Z Ua ai—a gfaz .. ;Zb + Z C%o ;10121 o 211252 cee Ca‘;b,

where the summation is over all possible such composable words so
that the summand is well-defined. In particular, this implies that

(m) , 1i Vha 1=
¢R (ka]+a 1,a,+b— 1) {0 Z;éj

2) If 1<a<b<mn,1<i,j<msuch that k(%, is well-defined, in par-
ticular, 1 <o’ < ¥ <ng and o, ¢ {ay,a, +1,...,a, + 7 — 1}, then
¢(m)<k/ij ) _ kij
R a’b’) T Vab*

3) Otherwise, that is, if 1 <a <b < ng,1 <4,j <m such that exactly
one of a and b belongs to {a,,a, +1,...,a, +r — 1} and k;lg is well-
defined, then

or" (k) = 0.
For example, in the case when r = 3 and m = 4 as in Figure[I8] we have

(4) /1.114 11 12,22 24 | 13.33 34 | 14 44
ik (kg t1,a,41) = V2, Ly + C31V1.2C32 + C3 V1 2C39 + Co V7 -

Notice that when m = 1, we have

¢R( a,+a—1,a,+b— 1):Ua,b—a I1<a<b<r;
(612) ¢R( a/b’) = kap 1<a<b<n;
or(K,) =0 otherwise.

To describe the augmentation category Aug, (V, u;K), firstly observe
that A is the push-out of A(m) and A(m), where A(m) is the sub-DGA
of A(™ generated by {va o ab} That is, for m > 1, we have the following
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push-out diagram of DGAs:

7z —— Al

|

(m)
A(Lm) o A(m)

Also, the DGA A{™ is nothing but the LCH DGA AE(v(™ ™) for the
front m-copy of v, viewed as a bordered Legendrian graph, obtained from
V' by removing the extra parallel strands. Here, p,, is the restriction of the
Maslov potential p to the set of half-edges of v. It follows that

Aug (V. 1K) = Aug  (VL, ) x Aug (v;K)

is a strict product of two A-categories. By Section [6.1.1] we have already
seen the identification b : Aug, (V1;K) = MC(VL; K). It suffices to describe
Aug (v; K).

At first, we introduce a Morse complex for a vertex as follows:

Definition 6.11. [3 Def.4.3.1] Let K[Z] be the graded polynomial ring in
one variable Z with |Z| = 1. We define a free graded left K[Z]-module

C(v) = K[Z){er, . er), leal == ()
and a decreasing filtration
C(w) D> F'C(v)D> - D F'C(v) > Z* F''C(v) = Z*- F'C(v)
of C'(v) by free graded left K-submodules such that for each a € Z/rZ,

FC(v) = K(e,) ® @ K(ZN@aie, ).

>0

We define MC(v; K) to be the set of all K[Z]-superlinear endomorphisms
d of C(v) of degree 1 which preserves F'® and satisfies d? + Z2 = 0.

Lemma 6.12. [3, Lem.4.53.3] There is a canonical identification

=y @ Aug(v; K) 5 MC(v; K);
e d=d(e),
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where

(—l)u(i)dei = Z E(Ui7j)ZN(v’i’j)ei+j.
7>0

From now on, we will always use the identification above.

Lemma 6.13. [3, Lem. 4.3.6] Let v be a vertex as above. There are decom-
positions of Aug(v;K) and MC(v; K) over the finite set NR(v)

MC(v;K)= [] BwK)-d,
pENR(v)

In particular, MC(v; K) = @ if val(v) is odd.
Now we can describe Aug, (v;K).

Objects. Notice that Al(,l) = [, with v, = v;}e, where I, = I,(uy) is the
internal DGA of v defined in Example/Definition Hence, the set of
objects of Aug, (v;K) is the variety of augmentations for I,

Ob Aug, (v;K) = Aug(v; K).
Notice also that by Lemma Aug(v;K) = @ if r is odd.
Assumption 6.14. From now on, we will assume r is even.

Morphisms. As in Section define M!? to be the free K-module gen-
erated by {c'?} in IQ(,2). Then, for any two augmentations €1, €s, the set of
morphisms in Aug, (v; K) is

Hom (e1,€2) = M{y =K(cf,, 1 <b<a<r)

as a free K-module, where MY, = (M'2)*[—1], and 2 = (2!2)V = (212)*[-1].
In particular, || = |c}2] + 1.

Compositions mg. Forany K > 1, and objects ey, e€a, ..., €x41, the com-
position map

my : Homy (ex, €x4+1) ® ... ® Homy (€2, €3) @ Hom (€1, €2)
— Homy (€1, €x41)

is defined as before.
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e Let K =1 and e = (€1, €2). Then by , we compute

ab—z¢e aACAb+ZC e(ch)

A>a B<b

where 1 < a < b < r. It follows that

.
(6.13) mi(chp) = Y alvanaciy+ (DAl Y e(vpp-p)ch,

B<a<A B<b<A
where 1 < B < A<r.

e Let K >2 and e = (e1,€2,...,€x+1) be given. We need to compute
mK(c;;, cee c;g, CZ), where C:: €{c!,} is a generator for Hom (€;, €41).
To do that, we need to calculate 8(K+1)cl K+1 and look at the the
K-coefficient of the monomial clll2 ?j’ G in the result. By the

formula . for 0 K+1)Cl K+l ,with 1 <b < a<r, wehave

(6.14) AL (K1 Z¢e il alaz.--cKK“

aKb
Z 23 KK+1 |
+ caa1 a1a2 Cazag te caKb +

in which only the first two terms contribute to mg. In addition, the
first summation is over all 1 < aq,...,ax < r such that a < a; > ag >
. > ag > b, and the second summation isover all 1 < aq,...,ax <7
such that @ > a1 <as >a3z > ...>ag > b.
We can then divide the computation of mK(c;; ® - ®ch ®c )
into 4 cases:
1) If K > r+ 1, then both of the two summations above are empty.
Hence, we have

mrg=0 VK >r+1.

2) For 2< K <r and any 1<a=ag,ai,as,...,ax,ax+1 =b<r
such that ap > a; <ag2 >a3 > >ax >agy1 and ag > axy1,
we have

4 -+ + _ oK+ Ca a +
mK(CaKaK+1 ® Ca}( 10K ® U ® CG,QCL:; ® Caoal) - (71) ‘ 0 1|62(/Ua17a2 al)cab'

3) For 2< K <r—1and any 1 <a < aj,a,...,ax+1 =b <r such
that a; > a2 > ... > ax41, we have

mK<CzJ1rKaK+1 K& cz;ag ® C;;ag) = (_I)UK Z €1 (Ua,al—a)C:aKH-
ax1<a<a;
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4) For 2< K <r and (c¢,c; ...,c;’;{) which is not of the form

17 Tig)

(CfarCh e cf )in (2) or (¢f 4 ¢t oseinycd ) in (3)

apa1’? ~a2a3? ) TAKAK 41 a1a2? ~a20a3? AKAK 41
above, then

mi(c; @@t @cf)=0.

ik

Here, we use ox = ox(ct e ., ... cF ) as in Definition

aopa1’ ~a2a3? VYA AR 41

and this gives the description of Aug, (v; K).

Now we want to compute the whole diagram of augmentation categories
Aug, (V, 1; K) = (Aug, (VL p; K) < Aug, (V, 11 K) = Aug (Vr, ur; K)).
The functor t| is clear under the identification

Augy (V, 1K) = Aug, (VL, p; K) x Augy (v;K),
which is the obvious restriction functor
Aug (VL p;s K) x Aug (v; K) — Aug (VL p; K).
It suffices to describe tg.

tr on objects. Given any object € in Aug, (V;K), denote e :=e€oy,
€R ‘= €0 (R, and €, := €0 1y, where ¢, : [, — A is the natural inclusion of
DGAs. Then by definition, tgr(e) = €g.

tr on objects also admits an alternative description. We will use the
identification of objects

h* : Aug—}—(w:M*vK) = MC(V;MJ'*?K) fOI' * = L7 R
and
bo : Aug (v;K) = MC(v; K)

by Lemmas and Then € = (d.,dy), where (Cy = C(Vy, py), dy =
d(e)) for x = L,R and (C, :== C(v), d, = d(€,)) are Morse complexes defined
as in Lemmas [6.4) and respectively.
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Now, under the identification, tg is in fact a quotient of cochain com-
plexes

tr: (CL,dL) & (Cy,dy) = (CL,dL) & (Cug, dyy) = (Cr, dr)

as follows: By definition, we have

nL NnRr T
CL — @KC%L, CR e @Kea,R and C»U — @K[Z]ea,v
a=1 a=1 a=1

with the basis elements e, |, eqr and e, , corresponding to the a-th strand
of VI and VR, and the a-th right half-edge h, , of v, respectively.
We define ¢y : C| & Cy — CRr by

@V(ea,L) = €¢' Ry @V(ea,v) = €q,+a—1,R) and @V(Znea,v) =0 Vn>0.
Then by the formula (6.12)) for ¢r,
R = v : (CL,dL) © (Cy,dy) = (CL,dL) © (Cug dug) = (Cr, dr)

is indeed a quotient of complexes, where (C.,d,,;) is the subcomplex of
(CR,dRr) with Cy, = ®1§a§r Keq,+a—1,R-

Remark 6.15. Similar to the definition of MC(T,,, u; K), one can define
the DG-category MC(v;K) as the canonical lift of MC(v; K). Observe that
vy in fact defines naturally a DG functor

MC(W, p; K) x MC(v; K)
— MC(W, ;s K) X MC(vR, pr; K) = MC(VR, pr; K)

of DG categories. The second (but not the first) functor will be used below.

tr on morphisms. By definition, the A, -functor tg on morphisms are
given by a collection of assignments (t,(QK)) Kk>1. That is, for any K > 1 and
K +1 objects €1,€2,...,ex41 in Aug, (V,u; K), we have a map of degree
1-K

t(RK) : Homy (e, €x41) ® - - @ Homy (€2, €3) @ Homy (€1, €2)

— Homy (€1 R, €K+1,R)s

where €; g = tr(€;). It suffices to determine tg{)(c;; ® - ®cf @c) for any

collection of generators c;-t for a free K-module Hom (¢, €41) = K(kf, |1 <
a<b<n)oK(,|[1<b<a<r).
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As in Section [6.1.1] “ the sequences e := (ej,€,...,€x41) and eg :=
(€1,R, €2R; - - -, €x+1,R) define diagonal augmentations for A(K+1) and A(KH)
respectively. We define

¢((;(R+1) = e O (K+1 ¢eR ‘ K+1) _y AE+L)

Recall that we have

(6.15) (¢t @@t @)

1K
- 07 SR 2 S,

,11 7‘2”.11{

K+1 .
where <¢g R+ )kll KH, 1112 2223... fiKH) denotes the K-coefficient of the
12 23 K,K+1 (K+1) 2.1, K+1 + .+ +
monomial ¢;’ LG inger (ky ), and ok =ok(c, .00 )

as in Deﬁm‘mon Observe that by the formula for qb( 1) , the As-functor
tR is simply the composition

R+ Aug (Vi pi; K) x Aug (v;K)
Id xt, 5
RN Aug, (VL p; K) x Aug, (vr, pr; K) = Aug, (Vr, pr; K)

Here, the functor v, r = tR|aug, (v:k) : Aug4 (v;K) — Aug, (vRr, ur; K) is the
right restriction functor for the bordered Legendrian graph v obtained by

removing the extra parallel strands of V' as before. The second arrow in the
composition is the natural inclusion of DG categories

MC(VL, pu; K) x MC(vR, pr; K) < MC(VRr, ur; K)

in Remark [6.15] under the obvious identification. Therefore it suffices to
describe t, r

Let K =1 and e = (€1, €2). Apply the formula for1<a<b<r
to compute

(2) 7.12
borFara—1,a,4b-1) Z% aA o)y + ZC UBb B)

A>b B<a
Then by (6.15)), for 1 < B < A <r, we have
1
(6.16) E; F){(CAB> Z €1 (Ua,A—a)ngra—l,aerB—l
a<B

.
+ (—1)leas] Z 62(UB,b*B)k:zt—i-A—l,a,,—i-b—l'
b>A
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In general, let K > 2 and e = (€1, ¢€2,...,€x+1). We apply the formula
(6.11)) again for 1 < a < b < r to obtain

¢(K+1 ( 11, K+1 Z‘b cKK-i—l
a,+a—1,a,+b— 1 € aa1 a alaz"' axb

2 : 23 KK+1 .
+ Ca(ll a17az al)c(12(13 e CaKb +

in which only the first two terms contribute to (v, r)x. In addition, the
first summation isover all 1 < aq,...,ax <rsuchthata <ay; >as >...>
ax > b, and the second summation is over all 1 < ay,...,ax < r such that
a>a1<ag>ag>...>ax > b

Remark 6.16. Notice that this formula is exactly the same as (6.14)) for
the computation of mg.

Similar to mg, we can divide the computation of tz(f;)(c;; R ® c;; &
+ b

c;”) into 4 cases:
1

1) If K >r+1, then both of the two summations above are empty.

Hence, we have

(6.17) =0 vE >4l

2) For 2< K <r and any 1 <a = ag,a;,a2,...,ax,ax+1 = b <1 such
that ag > a1 < ags > a3 > - - >ax > a1 and ag < ax41, we have

K
(618) Rt 0 @ @ D)

AKAOK+1
:(_1)0K+|Caoa1|€2(vaha2 al)k:z++a Laptbo1-

3) For2< K <r—1landanyl<a<ajas,...,ax+1 =b <rsuchthat
a; >ag > --- > ag41, we have

(6.19) v, g (ct ® - ®cha,)

AKAOK+1
= (_1)UK Z el(va7al_a)ka++a 1 e +GK+1—1

alak i1

4) For 2 < K <r and (cx,cfF c't{) which is not of the form (¢

127 [ aogay’?
el et )in (2) or (¢f ., ¢t cr ) in (3) above, then

a20a3? " " ") TAKAK 41 a1az2? ~a2a37 " " ") VAKGK 41

(6.20) R @ e od) =0
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Here we use 0k = 0k (C4 0,5 Caags -+ 5 Carearc o) @ in Definition |4.3|as always,
and this finishes the description of v, r : Aug, (v;K) — Aug, (vRr, ur; K),
hence that of tg.

Furthermore, the following gives a simpler description of Aug, (V, p; K):
Lemma 6.17. The Ao -functor
tR Aug (v;K) = Aug (vr, 1r; K)

18 an Aso-equivalence. As a consequence, we obtain a commutative diagram
of Axo-categories:

Aug, (Vi pu; K) = Aug (V, 1K) = Aug, (Vr, ir; K)

‘ :\le X Ty R

Aug, (VL s K) 2 Aug, (W, s K) x Aug, (vr, pri K) ———— Aug (Vr, ir; K)

: y |

MC(VL, p; K) +——— MC(VL, s K) x MC(vg, pr; K) ———— MC(Vk, pr; K)

Here pq’s are the projections to the first factors, i’s are the natural inclusions
and the functor Id xtr is defined via

Aug, (V;K) =2 Aug, (V:K) x Aug, (v; K)

Id X Ty R

— Aug, (V;K) x Aug, (vRr, pr; K).

Therefore we have equivalences between all the three rows with each
row viewed as bordered A,.-categories. In particular, the result implies that
Aug, (V, p; K) is equivalent to the third row of Morse complex categories,
which involves only DG categories and DG functors. This will be one key
step in showing our main result “augmentations are sheave”.

An algebraic proof of Lemma[6.17 Notice that the equivalence between the
second and third row is just a direct consequence of Lemma The only
nontrivial part is to show t, g is an A-equivalence. For simplicity, we as-
sume that V = v, that is, there are no parallel strands and so (n_,ngr) =
(0,7), ay =1, and t, g = tR.

Remember that on objects tg is just the map of augmentation varieties
rr : Aug(V, 11; K) — Aug(VR, pr; K), which is surjective. Therefore it suffices
to show that tg is fully faithful, i.e., for any two augmentations €1, € in
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Aug, (V, 1; K), the cochain map
(6.21) tl(?l) : Homy (€1, €2) — Homy (€1 R, €2.R)

is a quasi-isomorphism. Here Homp(—, —) := Hom Aung(T;K)(—, —) for any
bordered Legendrian graph T'.
Equivalently, it suffices to show that the cone of —t

definition, the cone of —t(Rl) is the cochain complex

g) is acyclic. By

Cone(—tg)) = (Homy (€1 R, €2,r) @ Homy (€1, €2)[1],0)

5= LR _t(Rl)
0 —mq

Let End*(Cr) be the free Z-graded K-module of K-linear endomor-
phisms of Cr = @, ,«, Ke, without filtration. For i = 1, 2, remember that
d(e; r) is the image of ¢; g under the DG equivalence bg : Aug, (Vr, pr; K) =
MC(VR, pr; K) in Lemma for Vk. Then we define a cochain complex
(€,D) = (End*(CRr), D) with differential

with differential

D(f) = d(eaR) o f — (=) f o d(er g).

Notice that we have

Homv(el, 62)[1] = @ KC(—;I;“L HOIIlVR (61,R, GQ’R) = @ Kk:jb_
1<b<a<r 1<a<b<lr
In particular, |} [1]| = |¢f,| — 1 = p(a) — p(b) as before. Let o : Cone(—tp 1)

— & be a K-linear map defined as

(k) = (=1)* ey @ €f), 1<a<b<r
ol [1) = (~1)@D ey & ), l<b<a<r

where s(a,b) = p(a)(u(b) + 1) + 1.
Claim 6.18. The map « : Cone(—tg)) — & is an isomorphism of cochain
complezes.

Proof. Clearly, the map « is a K-linear isomorphism of degree 0 and it

suffices to show that « is a cochain map. Firstly observe that a]Hova(q,R@,R)
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is just the composition

by
Homy (€1,r, €2r) — Hom e (v ey (d(€1,R), d(€2R)) = &,

where f)g) is induced from the DG equivalence hr : Aug, (VRr,pr;K) =
MC(VR, pr; K) and the second arrow is the inclusion of complexes. Hence,
it follows by Lemma that a|H0mVR(5],R,€2,R) is a cochain map and it re-
mains to show that aod(z) = D o a(z) for any homogeneous element = €
Homv(el, 62)[1].

Let © =3 1. poac, TaBChp[l] and denote 2™ := z[—1]. In particular,
xap # 0 implies that

2| = |ehip[1]] = n(A) — u(B).

Hence we have

alz) = Z (—1)* @Bz p(ep @ ef)

B<A

d(eir) = Z(—l)”(a)eLR(kg’A)(eA ®el)
a<A

d(ear) = Y (—1)"Pleyr(kp ;) (er ® €p).
B<b

On the other hand, by definition, 6(z) = —tg)(ﬁ) —my(z1)[1]. We ap-
ply the formula (6.13)) to obtain

a(mq(z7)[1])
= > alaaazasa(clpl) + > (—DI%4sloaper(vppp)alch,1)

B<a<A B<b<A
= Y arkh)raalchl) + > (-Dwrlaaperky,)a(chl])
b<a<A B<b<a
= Y (—1) ey gk 4)man(er @ €})
b<a<A
+ Y (D)l pes r (K (e © €).

B<b<a
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Similarly, by the formula (6.16)), we have the following.

oty (=)
— I+ _1)lehsl -
= Z €1(Va,aA—a)TaBa(k ) + Z (=1)'aslz gpea(vpp—B)o(ky,)
a<B<A B<A<b
_ _Netsl / jas
= > arlEp)zmal) + > (~D)rlrpes r(kpy)a(k)))
a<b<A B<a<b
= > (1) Ve gk a)zas(er ® €])
a<b<A
+ Y ()b pe g (K (er © €F).
B<a<b

By combining the two computations above, we then obtain

aod(a)
== > (1) “Yerr(kpa)zan(er @ €})
a,b<A
= 3 (D e j() (e @ )
B<a,b
= Z 1) ey g (K, 4) T a5(ep @ €])
a,b<A
3 (g, ey y(kiy) e @ €)
B<a,b
= — > ()P ey r(kG)) (1) M Pza) (e @ €5) © (€4 @ €})
a,b<A
+ ) ()P aap) (1) Perr(Kpy)) (er @ ej) 0 (ep ® €;)
B<a,b
= _(_1)‘96'04(35) od(e1r) + d(eaRr) 0 ()
=Doa(x)
as desired.

In the computation above, the third equality follows directly from the
formulas for a(z) and d(e; r) above. The only nontrivial part is the second
equality involving two sign manipulations, which are of the same form as
those in . Hence it follows by exactly the same argument and finishes
the proof. O
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Now, by the claim, it suffices to show that (£, D) is acyclic, which is
purely a homological algebra problem. In fact, we can prove a stronger state-
ment as follows, which finishes the proof of the lemma. O

Claim 6.19. Let C:=@,_Ke, be a free Z-graded K-module and
(C,d1),(C,dy) € MC(C;K) be two Morse complezes as in Definition
such that either (C,d1) or (C,d2) is acyclic. Let (£,D) := (End*(C), D)
be the complex of K-linear endomorphisms of C' with differential given by
D(f) =dyo f—(~1)/If ody. Then (€, D) is chain homotopic to zero.

To prove the claim, we firstly make some preparation.

Definition 6.20. Let GNR(C) be the set of all involutions p possibly with
fized points on I(C) = {1,2,...,n} such that

leil = lej| =1

for all i < j = p(i), and let NR(C') be the subset of GNR(C') consisting of

fixed-point-free involutions.

Let B(C;K) be the automorphism group of (C, F'*), where F'*® is a fil-
tration described in Definition Then B(C;K) acts on MC(C;K) via
conjugation such that for any g € B(C;K) and d € MC(C; K),

g-d=godog™.

Definition 6.21 (Canonical differentials). For each involution p €
GNR(C), a canonical differential d, € MC(C;K) is defined as

(_1)p(i)dpei — € <] :'p(l);
0 otherwise.

Recall the following lemma.

Lemma 6.22. [27, Lem.4.5] The group action of B(C;K) induces a de-
composition of MC(C'; K) into finitely many orbits

MC(C;K) =[] B(CK)-d,.
pEGNR(C)

Now, we can prove Claim [6.19]
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Proof of Claim[6.19 By Lemma if (C,d;) is acyclic, then d; = g; -
d,, = giod,, og; " for some g; € B(C;K) and some involution p; € NR(C).
Here, d,, is the canonical differential associated to p; as in Definition
By definition, d,,eq = ey if a < b = p;(a) and d,,e, = 0 otherwise.

Let us define 6,, € E71 as §,,ep = €4 if a < b= p;(a) and §,,e, = 0 oth-
erwise. Then clearly we have 5; =0 and

dp, ©0p, +0p, 0dp, = 1d.

Define 6; € E71 as &; == g; - 0,, = gi 05, © gz._l. It follows immediately that
62=0and d;0d; +d;0d; =1d.

Now, if (C,dz) is acyclic, we define a map Hs : £ — £ of degree —1 by
Hy(f) == d2 o f. Then we have the following computation.

[D, Ho)(f) = D o Ha(f) + Hz 0 D(f)
= D(d20 f) + 620 D(f)
=dyo (90 f) = (=1)/ (G20 ) 0 da
+ a0 (dyof—(~1)Vlfody)
=
That is, Id = [D, Hy| : £ — £ is chain homotopic to zero as desired. If (C, d;)

is acyclic, by a similar argument, one can show that Id = [D, H;| with
Hi(f) = (=1)If 0 6, as desired. O

Now we give an alternative geometric proof of Lemma [6.17]

A geometric proof of Lemma[6.17. Let us start by introducing an alterna-
tive parallel copies, say v’ (®) of the vertex v of type (0,7) as depicted in

Figure [T9]

Figure 19: An alternative parallel m-copy near a vertex for r = 3 and m = 4.



Augmentations are sheaves for Legendrian graphs 389

Clearly v/(*) is in BL 9(L°a)g and its consistent LCH DGA will be denoted

by A®) (v ). By using the same labeling convention of the crossing as in
Figure|18] the DGA A(®)(v/) is generated by the following sets of generators:

Cr={c|1<i<j<m, 1<a<r}
C’g::{cg)[lgi<]’§m, 1<a<b<r};
Vi={vl,|1<i<m, 1<a<r (€N}

Note that the generators in C] are the crossings near the right border while

the ones in Cy are crossings near the vertices v’ in Figure The grading
is given by

el = (@) —u(d) =1, |vl | = pa) = pla+0) + (N = 1),

where N = N(n,a,!) is the same as in (2.3).

The differential for the vertex generators V is the same as before, see
in Example/Definition m For the generators in C and Cs, the dif-
ferential is given by

/(m) 45 _ § : ik kj.
a caa - Caacaa7

i<k<j
W(m) ij [0F y_o |41, ij § : el +1 Jig o)
My, = (=1) e | Va,b—aCpp T (=1) Caclep—c
a<c<b
Z k|41 ik ki
+ <_1)‘ | CacCeb -
i<k<j
a<c<b

Now describe the corresponding augmentation category Aug, (v'; K).
The objects of Aug, (v") is the augmentations of A(v):

Ob(Aug, (¢)) = Aug(v; K).
For any two augmentations €1, €2, the set of morphism becomes
Hom g () (€1,€2) = K (cip" [1<a<b<r).

By dualizing the differential &™), we have the following A, structure
{m/ }>1 as follows:
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e For €1, €2 € Aug(v;K), the map

mj HomAug+(v,)(el, €) — Homﬂug+(v,)(61, €2)

is defined as
(622) m’ ( ég\/) = - Zfl (Uca c 12\/ + Z 12\/| 12 (’Ub’d,b)
c<a b<d

e For €1, €2, €3 € Aug(v; K), the map
mh Hom g, (v)(€2,€3) ® Hom gy vy (€1, €2) = Homgyg (vr) (€1, €3)
is defined as
i (3 & ) = (1)

e For m/ with K > 3, the higher composition m/, vanishes.
Note that
1= Z cl2v ¢ Hom 4ug (v (€, €)

1<a<r

is the unit for all € € Aug(v’), and hence Aug, (v') is a (strictly) unital Au-
category.

We show that tg : Aug, (v') = Aug, (vg) is an As-equivalence. Similar
as before, it suffices to check that the A.-functor t} is essentially surjective
and fully-faithful. Indeed, vy is surjective (and hence essentially surjective).
The main issue again is to show the following lemma.

Lemma 6.23. As in the above setup,
/(1
th ) : Homﬂug+(v’)(€1a 62) — Homﬂug+(v,§)(€l,R> 62,R)

18 a quasi-isomorphism.

Proof. The DGA A(m)(vﬁ) is nothing but a trivial bordered Legendrian de-
scribed in Section The generators are

(ki |[1<a<r, 1§i<j§m}H{kZ)‘1§a<b§r, 1§i,j§m},
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with grading \k;jb] = u(a) — pu(b) — 1, and the differential

(m)ij _ Rk |1 ik 1.k
ORVkS = > (~nkel TR
a<c<b
1<k<m
Here we use the convention on generators in Assumption [6.2]
Now consider the DGA map

AU AU (1) — AU (),
By a direct counting of polygons in Figure [I9] we have

oR" (kip) = v, and o0 (k7)) = ¢

a,b—a
Then by the construction below Proposition |4.5) we obtain
(1), .
e HomAug+(v’)(€17 62) — HomAung(vé)(eLR, 6273),

12v 12v
Cap kab

for 1 <a <b<r. By comparing 1} and 1) we conclude that t/Fgl) is
a (strict) isomorphism between two chain complexes, in particular, a quasi-
isomorphism. O

As a second step, we will show the following lemma.

Lemma 6.24. There is a Ax quasi equivalence between Aug, (v;K) and
Aug, (v'; K).

Proof. Let us consider a zig-zag sequence of elementary consistent Lagrangian
Reidemeister moves between v(™ and v'(™) as shown in Figure Even
though the illustration is given when » = 3 and m = 4, the similar works for
arbitrary r and m. Note that each of them is in BLS(L;)g, so it makes sense
to consider the corresponding consistent DGAs.

Since each arrow is elementary and consistent, there is a zig-zag of
stabilizations between A(®)(v) and A(®)(v). Moreover, we already argued
that Aug_ (v') is strictly unital. Then by Proposition we conclude that
Aug_ (v;K) and Aug, (v';K) are Ay quasi-equivalent to each other which
proves Lemma [6.24] O

Note that the consistent Reidemeister moves in Figure [20] fix the right
border. So Lemma and the fact that vy : Aug, (v;K) — Aug, (vg; K)
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b

}2 (i) < =

A‘m

&2
IS

S

bs

Figure 20: A sequence of consistent Reidemeister moves between v("™) and
ACON

is an A, equivalence imply that
R Aug (v;K) — Aug, (vr, tr; K)

is also a A quasi equivalence. This gives a geometric proof of Lemma [6.17]
O

6.2. Sheaf property of augmentation categories

Similar to [21], for the purpose of proving that “augmentations are sheaves”
for Legendrian graphs, or more generally, bordered Legendrian graphs, we
will need a sheaf property of augmentation categories, which we now explain.
Let C be a constructible sheaf of (homotopically) unital A.-categories
on an interval (x|, zR), with respect to a stratification X consisting of a zero
dimensional stratum {x; } and one-dimensional stratum {u; ;+1 = (2, zi+1)}-
Equivalently, the restriction maps near O-dimensional stratum x; induce a
diagram of unital A.-categories and (homotopically) unital A,-functors:
C(Ui—l,i) & C$ g—R> C(ui’i_;,_l).

i
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It then follows from the sheaf axiom that if z; < x;41 < --- < x; are the zero
dimensional strata in the interval (a,b) C (zL,zRr), then

C((a7 b)) = Cl‘z XC( ) Cﬂ?z‘,+1 X X C$j7

Ui, i+1
is a fiber product. Here, the objects are tuples (&, &i41,--.,&j; fiitt,-- -,
fi—1,j), where &, € Cy, and fi 11 : 9r(Ek) — 9L(Ek+1) is an isomorphism in
C, i.e. a closed degree 0 morphism in Homg, 1 (ar(&k), 9L(&k+1)), Whose
cohomology is invertible by passing to the cohomological category of C(uy j+1).

On the other hand, there is a full subcategory of this fiber product, called
a strict fiber product

(Cﬂﬂz XC (i it1) Cxi+1 X X Czj )strict7
in which all the fy ;41’s are identity morphisms, that is, gr(§k) = g1 (§k+1)-

Lemma 6.25. [21, Lemma 7.4] Suppose that all g, ’s satisfy the isomor-
phism lifting property such that any isomorphism ¢ : g (§) = ' is the image
under gL of some isomorphism v : £ = &', Then the inclusion of the strict
fiber product in the actual fiber product is an Aso-equivalence.

In our case for augmentation categories, we have the following lemma.

Lemma 6.26. In the front projection picture, let (T, ) be any of the fol-
lowing elementary bordered Legendrian graph: (i) n parallel strands, (ii) a
single crossing, (iii) a single left cusp, (iv) a single right cusp with a base-

T

point, or (v) a single vertex as in Example . Then Aug (Ty, p; K) <
Aug (T, ; K) satisfies the isomorphism lifting property as in Lemma |6.25)

Proof. The smooth cases are covered in [21], §7.2]. The only remaining case
is when 7 =V is a single vertex as in Example [6.1.2] By Lemma the
restriction functor v, is just the obvious projection p; : Aug, (VL, u; K) x
Aug, (v;K) — Aug, (W, uL; K), which clearly satisfies the isomorphism lift-
ing property. (]

Then the following proposition is a consequence of the previous lemma.

Proposition 6.27. Let (T,u) be any bordered Legendrian graph in J'U
with U = [z, xRr] such that the x-coordinates of the singularities in its front
projection are all distinct, denoted by x| =xp <z <T2<...<2ZN <
TN+1 = Zr. Assume that each right cusp has a basepoint and each vertex
has no left half-edges.
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Let C be the constructible sheaf of unital A -categories on (x|, zR) de-
fined by

(C(ux’“*l’k) & Cay = C(Uk,k+1))
— <‘Aug+(T‘uk71,k7:u"ukak;K) & ‘Aug‘F(T’(l“kfl,:thrﬂ? M‘(Ik71,xk+1);K)

g—R> ‘Aug—i- (T|uk,k+1 ’ iu|’uk,k-+1; K)) ’

where w;j+1 = (4, Ti+1). Then we have the following equivalences between
the rows of diagrams of unital A -categories:

Aug_ (T, s K) = Aug, (T, 1;K) - Aug_ (TR, ur; K)

C(uoyl) —t (Czl XC(us,2) Coy X . X CzN)strlct — C UNN+1

l |

gL R
C(UOJ) — Cwl XC(uLQ) sz X ... X CJEN _— C uNNJrl

In particular, the augmentation categories {Aug+(T\(a,b),M’(a,b);K)}(a7b)cu
form a sheaf.

Proof. Similar to [21, §7.2], the identification between the first two rows
follows directly from the definition of diagrams of augmentation categories,
and the co-sheaf property of LCH DGAs associated to bordered Legendrian
graphs. It remains to show the middle-lower inclusion is an equivalence,

which is done by Lemmas and above. [l

6.3. Augmentations are sheaves

Let us start by recalling the result and strategy from [21].

Theorem 6.28. [Z1] Let A C R? be a Legendrian knot. Then there is an
Ao equivalence between two categories

Aug. (A K) = Ci(A;K).

The first step of the proof is to cut the front 7g(A) C Ry, diagram into
elementary pieces, each of which is a bordered Legendrian in (0,1) x R,
having only one of a cusp, a crossing, or a basepoint. The next step is to
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show the equivalence for each pieces and then argue the sheaf property in
both sides to conclude the global equivalence.

Among many ingredients in the proof, let us recall the equivalence when
a bordered Legendrian is the bordered Legendrian graph 7;, of trivial n-
strands.

Proposition 6.29. [21] Let (Tp, i) be the trivial bordered Legendrian graph
with n-strands. Then there are DG equivalences:

Aug (T, p; K) =, MC(Tp, 1:K)  and  MC(Ty, 11; K) — Ci(Th, i1 K).

The first equivalence has been described in Lemma The second
equivalence can be described as follows: Recall that

C=C(T,) = éK-ei
i=1

with |e;| = —p(i) and C is equipped with a filtration
F*:F'=F'C=®;>K-e;.

In particular, FO = C, F™ = 0 and Sr, is the regular cell complex induced by
T,,. Then by Definition the poset category R(Sr,) is the A, 11-quiver:

n - n—1—= ... = 0,

where the node ¢ corresponds to the region immediately below the strand ¢
for 1 <4 <n and 0 corresponds to the upper region.
Recall the indecomposable projective representation P; of the quiver
An+1
P=0— —>K4YKY KL K),

which consists of a copy of K at all nodes k <. In general, any indecom-
posable representation of A, is one of S ;

Id

Sij ::Pj/PZ-,lz(O—>---—>0—>KE>K—>...E>K—>O—>---—>O).

In other words, S;; consists of a copy of K at all nodes k for i < k < j, which
admits a projective resolution

Sz,'j = (Pi—l — P]) —» SZJ
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Moreover, the path algebra K(A,+1) of 4,1 is of global cohomological
dimension one, hence every submodule of a projective for K(A, 1) is still
projective. It then follows that each object in the DG category Fun(A,,+1,K)
(see Definition splits and quasi-isomorphic to a direct sum of S;;[s]’s.

The lemma below is an immediate consequence.

Lemma 6.30. [21, Lem.7.38] Every representation R in Fun(A,4+1,K) is
quasi-isomorphic to a representation R’ defined as

R, <R, <Ry and R =0

such that
1) The maps R | — R; are injective;
2) The quiver representation R’ in each cohomological degree is projective;

3) The differential on each R}/R;,  is zero.
There is a natural DG equivalence
R, s MC(Ty, 155 K) = Fun(g, 1)1(R(S) = Apy1, K)
such that
R, u(Cyd) = ((F™,d|pn) = (F" 1 d|pa-1) = ... — (F°,d)),

and R, , sends Hom-complexes in MC(T},, u; K) literally to the correspond-
ing identical Hom-complexes in Fun(p, ;) 1(An+1, K). It follows immediately
that Ry, , is fully faithful. The essential surjectivity of Rr, , is a direct
corollary of Lemma [6.30] above. Now, the second equivalence in Proposi-
tion [6.29] is just the composition of the equivalence in Corollary with
R, -

Finally, we come to our main theorem.

Theorem 6.31 (Augmentations are sheaves). Let (T, u) be a bordered
Legendrian graph. Then there is an A -equivalence:

Aug (T, 1K) = Ci(T, u; K)

Proof. Let us recall the invariance property Theorem Corollary of
the both sides, and sheaf property Proposition of Aug (T, p; K). Thus
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it suffices to check the equivalence for a new type of an elementary piece
V=W -5V& R I,

which is a bordered Legendrian graph of type (k,k + r) consisting of one
vertex v of type (0,7) and trivial k-strands as follows:

k+r
As in Section[5.3] let Sy be the Whitney stratification of U x R, induced
by V and S be the regular cell complex for U x R, refining Sy by adding one

left half-edge at v. Clearly, S satisfies Assumption[5.17 Then by Lemmal6.1
and Corollary it suffices to show the equivalence

Ry s MC(V, u; K) — Fun(y ) 1(R(S), K)
between the diagram of Morse complex categories
MCWV, 1K) = (MC(VL,ML;K) FL MV, s K) x MC(vg, ir; K)
< MC (V. jig: K))

and Fungy )1 (R(S), K).
Notice that the poset category R(S|v,) = Any1 with n =k 4 r and

Fun,),1(R(S),K) = Fun(yg o), 1 (R(S k), K)

is just the fully faithful embedding into the full DG subcategory of
Fun(vi ug),1(An+1, K) which consists of functors F' such that F(k+ 17 — k)
is a quasi-isomorphism.
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On the other hand, by the discussion above, we have the DG equivalence
Rvi s : MC(VR, pr; K) = ff"un(VR7MR)71(An+1,K).

Notice that the image of i of MC(V, u; K) x MC(vR, pur; K) consists of
Morse complexes (CR,dr) = (C,dL) ® (Cyg, dy,), such that each summand
is acyclic. Then, the composition Ry, © i induces a fully faithful DG func-
tor

Ry, MC(VL, pu; K) x MC(vR, pr; K) <= Fungy ) 1 (R(S), K),

which is also essentially surjective.

In fact, the essential surjectivity of Ry, implies that any functor F' €
Funiy,1(R(S),K) is quasi-isomorphic to Ry,,((Cr,dr)) for some Morse
complex (CR,dg), which we can assume to be canonical (or Barannikov’s
normal form). Moreover, the summand (C,,, dy,) of (Cr, dR) is acyclic since
F(k+r — k) is a quasi-isomorphism. Therefore it follows that (Cg,dr) =
(CL,dL) ® (Cyg,dy,) for some canonical Morse complexes (Cp,d ) and
(Cor, duvg ). We are done.

Finally, it is direct to check that Ry, commutes with the DG equivalence

Rvi g MC(VL, s K) = Fungy ,1(R(S|w), K)

defined as in the discussion above up to a specified natural isomorphism.
Thus, we obtain a DG equivalence

Ry : MC(V, w; K) = Funpy ) 1(R(S), K)

as desired. This finishes the proof of Theorem [6.31] O

6.4. Example

Let us consider a Legendrian graph (A, ) having the following front with
Maslov potential and Lagrangian projection. Note that A has one vertex v
and two (oriented) edges eq, ea:

6.4.1. Augmentation category. Fix the base field K = Z/27Z. Firstly,
let us consider the augmentation category Aug, = Aug, (A, u; K). We con-
sider CE DGA A = AF(A, p) with Z/2Z[tF!, tF1]-coefficient. Here, t; cor-
responds to the basepoint on the edge e; for i = 1,2 in Figure Then the
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Figure 21: The front and Lagrangian projection of A.

DGA (A, |-],) is

A= Z/22[¢5, £21)(G);
G={a,b,c}U{viy|ieZ/AZ,l € N5p},

and the grading is given by
al = bl =1, |l =0, |vid=p() — puli+ 6+ N(v,i, €) — 1.
The differential on the crossing generators are as follows:

Oa =1t + V1,2 + cva1;
0b =1ty + Vg2 + 1)271151_1(1)173 + cvo o + a11371);

86 = V1,1-
The following is the list of degree zero generators:
C,01,2,V1,3, V2,1, V2,2, V3,2, U3 3, V4,1, V4,2.

For any augmentation €, denote g := €(g) for any generator g. Among in-
finitely many equations of differential on vertex generators, let us list rela-
tions coming from the differential of degree one generators that the augmen-
tation should satisfy:

V12032 +0130s1 = 1, 021033+ 022042 = 1,

V32012 +033021 =1, 041013+ Va2022 = 1;

V12033 + V13042 =0, 032013+ V33022 =0,

V21032 + 022041 =0, 041012 + 042021 = 0.
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Then by direct computation, we can check that there are eight possible
(Z/2Z-valued) augmentations:

i ‘ €i(c) | €i(v1,2) ‘ €i(v13) | €i(va1) | €(v22) | €i(vs2) | €(vas) | €(van) | €i(va2)
1 1 0 1 1 0 0 1 1 0
2 0 1 0 0 1 1 0 0 1
3 0 1 1 1 0 0 1 1 1
4 1 0 1 1 1 1 1 1 0
5 0 1 1 0 1 1 1 0 1
6 1 1 0 0 1 1 0 0 1
7 1 1 1 0 1 1 1 0 1
8 0 1 0 1 1 1 0 1 1
Obviously €(t1) = e(t2) = 1.

Remark 6.32. Note that there are only two equivalence classes of aug-
mentations up to isomorphisms. One can check that

€1 N~ €3 N €4 "~ €8, €9 ~ €5 " € " €7.
In the rest of example, we mainly consider two non-equivalent augmentations
€1 and ey. Moreover, two (equivalence classes of) augmentation corresponds
to two possible resolutions at vertex v

e1 € Aug? (A, 11 K), ez € Aug’ (A, 11 K),

where pl = {{1,4},{2,3}}, and p? = {{1,3},{2,4}}. See [3] §5] for the de-
tails.

Figure 22: Two copies of A in the Lagrangian projection.

Now consider two copies A?). The labeling of the crossing is given as in
Section Then the corresponding algebra A®?) is generated by vertex
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generators
{viy|i=1,2,k € Z/AZ,{ € N5},
pure Reeb chords
{a”,b”,cii |i=1,2},

and mixed Reeb chords

Here v%?l, Uf_l are the crossings near two-copies of vertex, see 1) for the
label convention near m-copy of the vertex, and the crossings z; ,yi12 arise
from the right- and left cusps, respectively. The grading for the generator is
straight forward from the DGA A(A) except the following

;% =0, yi?l=—-1 fori=1,2
|Ui21 =—1, |Ui2—1| =0.

Now let us consider the mixed chords in A®, especially from the second
to the first copy. Note that there are such Reeb chords a'?, b'? of degree 1,
c'?, vffl, 232, 232 of degree 0, and yi?%, yi?, v%?l of degree —1.

For convenience of the computation, let us restrict the differential to the

where n; is a nonnegative integer, and Méi denotes the submodule spanned
by degree 0 elements for ¢ = 1,2. Then the restriction of the differential
becomes

12 12,2 | 11 1112 12,22 11,12 .
da""|ype = 217t + ¢ vgpus g + €05 F 01305

12 12,2 11 r,1\—1 12, 22
8[) ‘Mgz) = Ty t2 + 'U2?1(t1) & ’U2’2

= (B0 al? + bl (D)) (e + o)

12 12 22 | 11,12 12
Oc ‘Mff) =y ey +u;
12 11,12, 22 11,12, 22 11,12, 22 .
av4,—1\Mg)2> = V1011021 T Vg 2Y2 V37 + Vi 1Y17 V103
12 111,12, 22 11,12, 22 11,12,22 (42\—1 12.
Oxq \Mg% =1 (%,2“1,1“2,1 T U32Y1 V12 T U3 3V U2,1) (t) " + 55

12 111 1222 11,12, 22 11,1222 (42y—1 , . 12.
0z ‘Mg) =13 (%1”1,1”2,2 T Vg 22 V39 + Uy 1Y 7)1,3) (t3) " + 125

12
avl,l‘Mff) =0;

12 —0N-
oy ‘Mf) =0;

ay%2‘Mg2) = 0.
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Note that the above restriction only contribute the bi-linearized differ-
entials. For example, we have the following bi-linearized differential with
respect to a pair (e, €1):

(’Lhela12 = x? +c2 4 vi?_l, Oel)elbm = x? + x%Q, 351,61012 = y%Q + y%2 + vizlg
ae1,61”i,2—1 = U%,le 861,6193%2 = y%g + y%Qv 861,611'%2 = 9%2 + y%25
Dey Y12 =0, Dey Y32 =0, 8617611)%721 =0.

For a pair (€1, €2), we have

12 12 12 12 12, 12 12 12 12,
Oy e, " = 21" + Va1 Oey 077 =x3" + 7, Oeyes” =y + V1,15
12 _ 12 12 _ 12 12 _ 12 12,
Oy Va1 = Y17, Oy 1" = Y1 s Oy e, Tg” =017+ Yg;
12 _ 12 _ 12 _
aﬂ,ﬁzyl - 07 a€1,ﬁ2y2 - 07 ael,ﬁzvl,l =0.
In a case of (e, €1), we deduce
12 12, 12 12 12 12 12 12 12,
8627€1a =y +c7, 662,611) =Ty + Vg,—15 662,610 =Y+ V1,15
12 _ .12 12 _ 12 12 12 _ 12,
Oy Va—1 = Y2, Ocrer®1” =017 T Y17, Oepe, 3" =437
12 12 12
aez,ﬂyl = 07 662,61y2 = 07 aﬁz,Elvl,l =
When a pair is (€2, €2), then
12 _ 12 12 _ 12 12 _ 12
862,620’ =21, 862,62b =Ty, 862,620 - vl,l?

with all other differentials are trivial.
For any pair of augmentation (¢, €;), we have

= HornOAug+ (€i,€5) ® Homhu&(ei, €)@ Homilung (€, €5);
2%, 03)"s

= Z/2Z<Cl27 Ui?—lv x%27 m%2>\/;
< 12,[)12>V.

By dualizing the bi-linearized differential O, ,, we have

M )Y = (@)Y + @)Y+ @), mpe )Y = @)Y+ )Y, mee @) =0
M) = ()Y + @)+ @), mp @)Y = 612) i (b)Y = 0;
i o) = (@)Y + 012)", m§ e (wl2)" = (@12), s (el)Y = (@),

The only non-trivial cohomology class with respect to m{" is o = [(y32 +

ya?)V] € H° Hom qug, (€1, €1).
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By the similar computation for (€1, €2), (€2,€1), and (ez, €2), we have the
following non-trivial cohomology classes

(6.23) B = (2" +v13)"] € H' Homayg, (€1, €2),
v =y + U%,21)V] € H° Hom g, (€2, €1);
(6.24) 61 = [(y19)"], 62 = [(12°)"] € H” Hom pug, (€2, €2),

b5 = [(v12.1)"] € H' Homaug, (e2,€2),

respectively.
For the A, structure, especially ms, we consider three copy of A as in
Figure Again the labeling and grading convention for generators are as

Figure 23: Three copies of A.

in Section Since the DGA A(A®), 13)) is complicated, for simplicity,
let us list the terms in the differential which are relevant to our construction
of A structure. Especially, we only list term of type M(()g), where

M(()k+1) o M((]k) ® MFE+1 ® (MISH k+1)®nk+1.

MSH k+1 denotes the submodule

Here ng41 is a nonnegative integer, and
spanned by degree 0 elements.

Then the restriction of the differential becomes

13 12,22 23 .
da |M(g3) = C Vg 9V4 15

13 _ (1112 g2\—1 .11, 1\—1_12\ (.23 33,33 , 23 33 23, 33

ob |M(<)3> = (U2,2U4,—1(t1) + g (t) 21 ) (21¢ vy + Uy + T U1,3)
13 _ 12,23, 12, 23.

Oc |M(<)3) =y°c® + Y5

11,12 22 23 12,22 12 22 23 22 23,33

13 _ 11 12
81’4,71|M(<,3> = V0¥ V3004 1+ Uy (y1 U3+ U1,1U2,2) Vi T Uy 1 U3y VT

12 22 23 , .22 23\.33.
+TUs (U3,3y2 + 93,2"‘11,1) CORE

9
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13 12,23, 12,2 (.22 23 33 22 23 33 22 23 33\ (,3y—1
Oxq ‘Mg& =y xr ot (7)3,2y1 UYp + V39011057 + V33395 712,1) (t7)

111,012,922 | 11,12 22 11,12 22,23 (,3\—1
1 (V30Y1 V% 4 V3201 1055 + V3 3Ys Vs ) U1 (17)

13 12,23, 12,2 (.22 23 33 22 923 33 2223 33\ (,3y-1
0y |M§)3> =y 23" + a3t (U4,1yl VY3 + V31011022 T U30Y) U2,2) (t3)

13 _ 1223 | .12 23 .

8”1,1‘1\43@ =017Y2" T Y1701
13 _ 12,23,

0y ‘Mg@ =Y Y1

13 _ 12,23
Yy ‘M[g3> =Y Y-

If we choose the triple (e1, €1, €1), then 9

yIp@ induces a multipli-
9
cation on cohomology classes

€1,€1,€1

7(6 76 76 ) .
() AR & i HomAug+(61,61) ® H* HomAug+(e1,61) — H* HomAug+(61,€1)

is given by
—(61761761)
s (a®a) =a.

By the similar computation,

mg€1751,€2)(6 ® a) — B’ m551762,€1)(")/ ® ,6) — 07
mng,El,El)(a ® 7) — ,_y, méEz,El,fZ)(ﬁ ® ’Y) = 07

and

my T (6 @) =0, myr (G @) =B, My (630 B) = 0;
w0 a) =g, m (@ 6) =0, m(y @) = 0.

For the triple (eg, €2, €2), we deduce the following table of multiplication:

mg“él‘éz‘ég

01 |01] 0 |63
d2 || 0 | d2
03 || 0 | d3

For the higher multiplication mg, k > 3, let us consider (k + 1)-copy of

A, the induced differential, and its restriction to M(()k+1). The followings are
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possible terms which may contribute to myg, k > 3:

O g = (2 () ofh ) o) o

34,44 34,44 34 44 44 .
(C U272 +$1 U173 —I—l‘l C U272),

14 12 22 . 23 33 22 23 33 22 23 33\ 34 .
8U4,—1’Mg4> =v4q (03,291 VY3 U301 V25 + U335 U2,2) Vg 13

14 _ 12,2022 2333 | 0922 23 33 |, 22 23 33\ 34 ,4\—1.
Jzq |M54J = x17t] (V3%Y7° 07 + VIRV Uy + U3y Uy ) v (E7) T

O g = (e3bel? () + () al?) Pt g2
(Cmflm mm m—1m, mm m—1m _mm mm)

Vg + x4 U3 + x4 c Vg 9

)

For example, a term in 6bl4|M<4) has a chain level contribution
0
(€2,€1,€1,€2) 1 12 12 12 12
(mg (" ®r"®uy),b7) =1.

6.4.2. Sheaf category. On the other hand, let us consider the sheaf
category Ci(A, p;K). By the discussion in Sections and a sheaf
F € Ci(A, 13 K) C 8hy(R?; K) of microlocal rank 1 whose micro-support lies
in A can be identified with a representation of the quiver diagram in Fig-
ure

Figure 24: The front diagram of A, and the induced legible model.

More precisely, the representation of the above quiver diagram is deter-
mined by three lines
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[01] = Image (1 — K2, [ly] := Imagely — K2, [fg] = ker 7 — K2,
satisfying that 7 o ¢; is quasi-isomorphism for ¢ = 1,2, in other words,

[fo] # [61], [fo] # [£2].

in P!(K). There are two possible cases, [(1] # [f2] and [¢1] = [¢2], and let us
denote the corresponding representation of quiver by @)1 and ()9, respec-
tively. Note that Q2 = Q} © Q3, where

K 0
1 T 2 T
Qs = K Q35 = K
AN SN
K K 0 0

Let us list all projective indecomposable representations of the above
quiver of type D, as follows:

K K K K
T T T T
P o= 0 P = K P3 = K Py = K
N N 2N SN
0 0 0 0 K 0 0 K

6.4.3. Computation of differential. In the rest of example, we assume
that our base field is Z/27Z. Recall for a vector space V' that V[i] means the
degree shift by —iE|

Note that

Hom(P;[k|, P;[¢))

~ K[e_k] if i =jor (27]) = (172)a(173)?(174)7(273)7(274)§
~]o otherwise.

We sometimes use K 4p instead of Hom(A, B) when its cohomology is K]0].

®We omit the degree shift notation [¢] when it is clear.
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The quivers Q1, Q3 and Qj admit the following projective resolutions

which will be denoted by Q1, Q3 and Q2, respectively:
0 > Py LN Ps & Py Q1 0;
0 sy Py —2 s Py Py Q3 0;
0 » P h ., p Q3 0.

1

Here a matrix form of f, g and h are given by (}), (1), and (1) with respect
to a canonical choice of basis of each ordered summand. Then we compute

that

~ 11
RHom(Q1,Q1) = Hom(Q1, Q1) = ( Kp,0, ® Kp,q, @y Kp g, [—1] > =~ K.

Let by and b2 be the non-zero element of Kp,g, and Kp,q,, then the only

non-trivial cohomology class in H* Hom(@l, Q1) is [by + ba).
Similarly we verify that
HOHI(@%?QQ) = (K2 ) =K
Hom(Q3, Q3) = (0 — [— ) = K[ ]
(6.25) -
Hom(Q3,03) = (K 5 K[-1]) =0,
Hom(33, @3) = (K — 0[—1]) 2 K,
which conclude
RHom(Q2,Q2) = Hom(Q2,Q2) = €P Hom(Q}, Q%) = K* @ K[-1

i,j=1,2

Also compute

I

HOHl(Ql, QQ

Hom(éla Q
HOHl QQa 1

Hom(Q27 Ql

(1)
(KPSQ; ®Krqy — Kpg

12

(0= 0[-1]) = 0;

I

)
)
)
)

1%

(Hom(P», Q1) - Kp,g,[—

Kp,0, ® Kp,q, 5 Hom(Ps, Q1)[~ 1})
1)) 2K,

1)

K

0;

].
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which imply

I

RHom(Q1,Q2) = HOHI(@17 Q%) 2] Hom(él, Q%)
RHom(Q2,Q1) = Hom(Q3, Q1) & Hom(Q3, Q1)

K;
K.

I

Note that the above computation coincide with the one in Aug, (A), see
6.23).

6.4.4. Computation of multiplication. Now consider the compositions
between Hom spaces. Especially look at

m: RHom(Ql, Ql) X RHom(Ql, Ql) — RHOHl(Ql, Ql)

The domain is isomorphic to Hom(@1,Q1) ® Hom(@l,él) and hence be-
comes the following:

11
(Kngl & Kp,q, ¢y Kp,q, [1}>

® (KPIPI 69]KPSP?, @KP4P4 (i;) KP1P3[_1] 69]K]:’lpzx[_”> .

Let c1, co, and c3 be the non-zero element in Kp p,, Kp,p,, and Kp,p,,
respectively, then [c; + ca 4 c3] is the unique non-trivial cohomology class

in H* Hom(Q1, Q1).
Let us denote the domain of mo by D®, then the i-th degree part D?
becomes as follows for i = 0,1, 2:

D' = (Kp,g, @ Kp,p,) ® (Kp,0, ®Kp,p,) ® (Kp,g, @ Kp,p,)

® (Kp,g, ®Kp,p,) ® (Kp,@, ® Kp,p,) ® (Kp,g, ® Kp,p,) ;
D' = (Kp,g, ® Kp,p,) ® (Kp,0, ®Kp,p,) ® (Kp,g, @ Kp,p,)

® (Kp,0, ®Kp,p,) ® (Kp,g, ®Kp, p,)

® (Kpq, ®Kp,p,) @ (Kpg, ® Kp,p,);
D*= (Kpg, ® Kp,p,) ® (Kp,g, ® Kp,p,)
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The differential d; : D' — D**! for i = 0,1 can be expressed by the following
matrix form

11000 0
101000
000 110 1010110
d=10 0010 1], d1:(0101101>,
10010 0
010010
001001

with respect to basis {e?};—1 g, {e}}jzl,_._j, {e%}k:m for D°, D', D2.
These are chosen by a canonical element in each ordered summand. Note
that the only non-trivial cohomology class in the domain D* is

[ 4+ ed] =2 [by + b2 @ [e1 + ¢ + c3).
In the codomain of m, Kp,qo, ® Kp,q, . Kpg,[—1], let fi and f2 be

the non-zero element in Kp,, and Kp,q,, respectively. Then [fi + fo] is the
only non-trivial cohomology class.
The multiplication m for each summand is defined by

Kgg ifT =W,

6.26 K ® K =
( ) m (Kwr s) {0 otherwise.

and the induced multiplication
m : H* Hom(Q1,Q1) ® H* Hom(Q1, Q1) — H* Hom(Q1, Q1)
sends [ + - + €] to [f1 + f2] which coincides with
mo : H*Hom(ey, e1) ® H* Hom(ep, €1) — H* Hom(eq, €1).
Now move onto the multiplication
m : RHom(Q2, @2) ® RHom(Q2, Q2) — RHom(Q2, Q2).

which can be decomposed into the following four parts

mb (RHom(Q%,Q%) ® RHOIH(Q%,Q%))
& (R Hom(Q3, @}) © RHom(Qh, @3)) — RHom(Q}, Q)
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for (i,7) = (1,1),(1,2),(2,1) and (2,2).

Note that the cochain complex computation for (i,j)=(1,1) is
identical to the above case. Let [a] be the non-trivial cohomology class of
R Hom(Q%, Q%), then the induced multiplication m on the cohomology gives

m([al, [a]) = [a].

When (i,7) = (1,2), the multiplication m* becomes
m!? ; (Hom(Q}, Q3) @ Hom(Q, Qb))
@ (Hom(Q3, @3) © Hom(Q4, Q3)) — Hom(Gh, Q).

By the computation in (6.25)), we already know that each summand of the
domain is non-trivial. More precisely,

H*Hom(Q3, Q3) =~ H* Hom <P2 ), P; & Py, Q%) = ([0]);

H*Hom(Q3,Q}) =~ H* Hom <P2 Q Py @ Py, Py Q Ps & P4>
=~ H* (KP2P2 S KPng @ KP4P4 (&i KP2P‘3 [_1] ® KP2P4 [_1]>

= ([ca + 3 + c4l),

where b and ¢; are the nonzero element in Kp,gz[—1] and Kpp,, i = 2,3, 4,
respectively. Then we have m!'2(b ® (co + c3 + ¢4)) = b, see (6.26). Similarly,

Hom(Q3,Q3) 2 Kp,g: = (¢),  Hom(Q},Q3) = Kp,p,[-1] = (f),

where e and f are nonzero elements of the corresponding vector spaces. Then
the induced multiplication

m'? : (H* Hom(Q} Q3) @ H* Hom(@3, @3))
& (H* Hom(Q3, Q3) © H* Hom(Q}, Q3) ) — H" Hom(Qh, @3).
satisfies
APl tata) =B, w2l =[]

When (7, 7) = (2,1), the domain and the codomain of the multiplication
become acyclic, hence the multiplication is trivial.
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Let (i,7) = (2,2), then by (6.25)), we have
m*? : Hom(Q3, Q3) ® Hom(Q3, Q3) — Hom(Q3, Q3).
Note that
H*Hom(Q3,Q3) = H* Hom(P, — Py, P, — P)

. 11
=0 <KP1P1 © Kp,p, ¢y KPIPQ[—1]>

= ([g1 + g2]),

where g; is the nonzero element of Kp, p, for ¢ = 1, 2. Then the multiplication
satisfies m*?(e ® (g1 + g2)) = e, and hence induces

m?2 : H* Hom(Q3, Q%) ® H* Hom(Q3,Q3) — H* Hom(Q3, Q3);
le] @ [g1 + g2] — [e].

Let &1, d2, and d3 be the cohomology class of RHom(Q3,Q3),
RHom(Q1,Q31), and RHom(Q3, Q3), respectively, then the above multipli-
cations recover the table of T2 with respect to the triple (eg, €2, €2).

Now consider the multiplication

m RHOIH(Ql, QQ) ® RHOIH(QQ, Ql) — RHOHI(QQ, Qg)
which can be reduced into
m: Hom(élv Q%) ® Hom(égu Ql) — HOI’H(@%, Q%) = 0.

Obviously, the above multiplication vanishes. In a similar manner, the fol-
lowing also vanishes:

m : RHOHI(QQ, Q1> ® RHom(Ql, QQ) — RHOHI(Ql, Ql)

These coincide with the computation

mé&1,62,61)(f}/ ® IB) — 0’ mé€27€1,€2)(ﬂ ® 7) = 0-
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The remaining cases are

: RHom(Q1,Q2) ® RHom(Q1,Q1) — RHom(Q1, Q2);
: RHom(Q2, Q2) ® RHom(Q1, Q2

: RHom(Q2, Q1) ® RHom(Q2, Q2
: RHom(Q1, Q1) ® RHom(Q2, Q1

3 3 3 3

whose non-trivial parts boil down to

m(Q1, Q3) ® Hom(Q1, Q1) — Hom(Q1,Q
Hom(@%, Q%) ® Hom(

(@3, Q1) ® Hom(Q
m(Q1, Q1) ® Hom(Q3, Q

1
1, Q% — Hom
02,02
2, @3

Hom

~— — ~— —

);
Q1,Qb);
Q3. Q1);

)

(
(
— Hom(
— HOIII(QQ, Ql 3

3 3 3 3

respectively. These give non-trivial contribution to the multiplication and
match with the following non-trivial o computation in the augmentation
side:

s (B @ a) = B, my" ) (6, © 8) = B,
ms e (y @ 1) =, my Y (@) =,
respectively.
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