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For any nonempty, compact and fiberwise convex set K in T ∗Rn,
we prove an isomorphism between symplectic homology of K and
a certain relative homology of loop spaces of Rn. We also prove a
formula which computes symplectic homology capacity (which is a
symplectic capacity defined from symplectic homology) of K using
homology of loop spaces. As applications, we prove (i) symplectic
homology capacity of any convex body is equal to its Ekeland-
Hofer-Zehnder capacity, (ii) a certain subadditivity property of
the Hofer-Zehnder capacity, which is a generalization of a result
previously proved by Haim-Kislev.
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1. Introduction

1.1. Symplectic homology and the capacity cSH

Let n be a positive integer. Let us consider coordinates q1, . . . , qn, p1, . . . , pn
on T ∗Rn, where q1, . . . , qn are coordinates on Rn and p1, . . . , pn are coordi-
nates on fibers with respect to the global frame dq1, . . . , dqn. We often ab-
breviate (q1, . . . , qn) by q and (p1, . . . , pn) by p. Let ωn :=

∑

1≤i≤n dpi dqi ∈
Ω2(T ∗Rn). For any nonempty compact set K ⊂ T ∗Rn and real numbers

a < b, one can define a Z-graded Z/2-vector space SH
[a,b)
∗ (K), which is called

symplectic homology (see Section 2.2 for details).

Remark 1.1. Throughout this paper, all (co)homology groups are defined
over Z/2Z, unless otherwise specified.

When K satisfies certain nice conditions, we say that K is a restricted
contact type (RCT) set (see Definition 2.6; note that our definition of RCT
sets is slightly more generalized than the usual definition). Any compact
star-shaped (in particular, convex) set is a RCT set (Lemma 2.8). For any
RCT set K ⊂ T ∗Rn and a ∈ R>0, there exists a natural linear map

iaK : H∗+n(T
∗Rn, T ∗Rn \K)→ SH

[0,a)
∗ (K).

See Section 2.3 for the definition of iaK . Also, as we define in Section 2.4,
there exists a canonical element νT

∗
R

n

K ∈ H2n(T
∗Rn, T ∗Rn \K). Then let us

define the following numerical invariant:

cSH (K) := inf{a ∈ R>0 | i
a
K(νT

∗
R

n

K ) = 0}.

In this paper, the invariant cSH is called symplectic homology capacity.

Remark 1.2. The first symplectic capacity defined from symplectic ho-
mology was introduced by Floer-Hofer-Wysocki [9], who defined a capacity
(denoted by cFHW) for arbitrary open sets in the symplectic vector space.
The above definition of cSH is due to Hermann [14], which is based on the
idea by Viterbo [23] (see Section 5.3 of [23]). Indeed, Hermann (Proposition
5.7 of [14]) proved that (in the language of the present paper) any C∞-RCT
set K (see Definition 2.6) satisfies cSH (K) = cFHW(int (K)). Here int (K)
denotes the interior of K.

Although symplectic homology and the capacity cSH are fundamental
quantitative invariants of subsets of the symplectic vector space, they are
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notoriously difficult to compute, or even to estimate. This is because sym-
plectic homology is a version of Floer homology, whose definition involves
counting solutions of nonlinear PDEs (so called Floer equations), thus it is
very difficult to compute these invariants directly from definitions. The core
results of this paper, which we discuss in Section 1.2, enable us to investigate
these invariants via computations of homology of loop spaces.

1.2. Main results

The core results of this paper are Theorem 3.4 and Corollary 3.8. Corol-
lary 3.8 has two applications: Theorem 1.4 and Theorem 1.8. The goal of
this subsection is to describe these four results.

Theorem 3.4 shows that, for any nonempty compact setK ⊂ T ∗Rn which
is fiberwise convex (i.e. K ∩ T ∗

q R
n is convex for every q ∈ Rn), symplectic

homology of K is isomorphic to a certain relative homology of loop spaces of
Rn. Theorem 3.4 is a version of the well-known isomorphism between Floer
homology of cotangent bundles and homology of loop spaces. Indeed, the
proof of Theorem 3.4 heavily relies on the proof by Abbondandolo-Schwarz
[3] of this isomorphism.

Corollary 3.8, which is an easy consequence of Theorem 3.4, shows that
if K is a RCT set then cSH (K) is equal to a certain min-max value defined
from homology of loop spaces. In the rest of this subsection, we present two
applications of Corollary 3.8: Theorem 1.4 and Theorem 1.8.

To state Theorem 1.4, let us recall the definition of the Ekeland-Hofer-
Zehnder capacity (which we denoted by cEHZ) of convex bodies. For defini-
tions of “symplectic action” and “closed characteristics”, see Section 2.3.

Definition 1.3. K ⊂ T ∗Rn is called a convex body if K is compact, convex,
and int (K) ̸= ∅. When ∂K is a C∞-hypersurface, then its Ekeland-Hofer-
Zehnder capacity cEHZ(K) is defined as the minimum symplectic action of
closed characteristics on ∂K. For arbitrary convex body K, we define

cEHZ(K) := inf{cEHZ(K
′) |K ′ is a convex body with

C∞-boundary such that K ⊂ K ′}.

Now let us state our first application of Corollary 3.8:

Theorem 1.4. cSH (K) = cEHZ(K) for any convex body K ⊂ T ∗Rn.

Remark 1.5. • Theorem 1.4 is also proved by Abbondandolo-Kang [1].
Their proof is based on an isomorphism (which is the main result of [1])
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between the filtered Floer complex of a convex quadratic Hamiltonian
on T ∗Rn (satisfying some technical conditions) and the filtered Morse
complex of its Clarke dual action functional.

• Using S1-equivairiant symplectic homology, one can define a sequence
of capacities (ck

SH S1 )k≥1. Felix Schlenk [21] pointed out that, assum-
ing some standard properties of these capacities, Theorem 1.4 implies
c1
SH S1 (K) = cSH (K) for any convex body K ⊂ T ∗Rn; see Section 2.5
for details.

Theorem 1.4 is motivated by the following folk conjecture, which says
that all symplectic capacities on T ∗Rn coincide for convex bodies (see Section
5 of [20] and the references therein):

Conjecture 1.6. Let c be any symplectic capacity on T ∗Rn; namely, c is a
map from the set of all subsets of T ∗Rn to [0,∞] which satisfies the following
three properties:

• For any S ⊂ T ⊂ T ∗Rn, there holds c(S) ≤ c(T ).

• For any S ⊂ T ∗Rn, a ∈ R>0 and φ ∈ Diff (T ∗Rn) such that φ∗ωn =
aωn, there holds c(φ(S)) = ac(S).

• c({(q, p) ∈ T ∗Rn | |q|2 + |p|2 ≤ 1}) = c({(q, p) ∈ T ∗Rn | q21 + p21 ≤ 1})
= π.

Then c(K) = cEHZ(K) for any convex body K.

Conjecture 1.6 is still widely open. As far as the author knows, Conjec-
ture 1.6 was verified only for the first equivariant Ekeland-Hofer capacity
and the Hofer-Zehnder capacity. The result for the first equivariant Ekeland-
Hofer capacity was mentioned by Viterbo (Proposition 3.10 of [22]), and a
detailed proof can be found in Section 6 of Gutt-Hutchings-Ramos [12]. The
result on the Hofer-Zehnder capacity is due to Hofer-Zehnder [15]. Theo-
rem 1.4 verifies Conjecture 1.6 for the symplectic homology capacity cSH .

Our second application of Corollary 3.8 is a certain subadditivity prop-
erty of the Hofer-Zehnder capacity. Let us recall the definition of the Hofer-
Zehnder capacity:

Definition 1.7. H ∈ C∞
c (T ∗Rn,R≥0) is called Hofer-Zehnder admissible

if there exists a nonempty open set U ⊂ T ∗Rn such that H|U ≡ maxH, and
every nonconstant periodic orbit of its Hamiltonian vector field XH (see the
first paragraph of Section 2 for our convention) has period strictly larger
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than 1. Let Had denote the set of all Hofer-Zehnder admissible functions
on (T ∗Rn, ωn). For any S ⊂ T ∗Rn such that int (S) ̸= ∅, its Hofer-Zehnder
capacity cHZ (S) ∈ R>0 is defined as

cHZ (S) := sup{maxH | H ∈Had , suppH ⊂ S}.

Now we can state our second application of Corollary 3.8:

Theorem 1.8. Let K be any compact set in T ∗Rn with int (K) ̸= ∅, and
Π be any hyperplane in T ∗Rn which intersects int (K). Let Π+ and Π− be
distinct closed halfspaces such that ∂Π+ = ∂Π− = Π. Then, setting K+ :=
K ∩Π+ and K− := K ∩Π−, there holds

cHZ (K) ≤ cEHZ(conv (K
+)) + cEHZ(conv (K

−)),

where conv denotes the convex hull.

Theorem 1.8 can be rephrased as follows: for any K and Π such that
K+ and K− are convex, cHZ (K) ≤ cEHZ(K

+) + cEHZ(K
−). In particular,

we recover the following result by Haim-Kislev [13] as a corollary:

Corollary 1.9 ([13] Theorem 1.8). Let K be any convex body in T ∗Rn

and Π be any hyperplane in T ∗Rn which intersects int (K). Then, cEHZ(K) ≤
cEHZ(K

+) + cEHZ(K
−).

The proof in [13] uses a combinatorial formula (Theorem 1.1 of [13])
which computes the EHZ capacity of convex polytopes, and it seems difficult
to extend this proof to prove Theorem 1.8 when K is not convex.

Theorem 1.8 is inspired by the following conjecture by Akopyan-Karasev-
Petrov [5]:

Conjecture 1.10 ([5]). Let K,K1, . . . ,Km be convex bodies in T ∗Rn. If
K ⊂

⋃m
i=1Ki, then cEHZ(K) ≤

∑m
i=1 cEHZ(Ki).

In [5], Conjecture 1.10 was verified for hyperplane cuts of round balls,
which was later generalized to hyperplane cuts of arbitrary convex bod-
ies (Corollary 1.9). Note that the convexity of K1, . . . ,Km is essential in
Conjecture 1.10, as shown by examples in Section 5.1 of [5], for which the
subadditivity fails without the convexity assumption. Let us also mention
the following Proposition 1.11, which gives another such example. The proof
of Proposition 1.11, which we explain in Section 7, is elementary.
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Proposition 1.11. Let n ≥ 2 be an integer. For any bounded B ⊂ T ∗Rn

and any ε ∈ R>0, there are compact star-shaped sets K1,K2 ⊂ T ∗Rn such
that B ⊂ K1 ∪K2 and e(K1), e(K2) < ε, where e denotes the Hamiltonian
displacement energy.

On the other hand, it seems unknown if the following conjecture, which
is stronger than Conjecture 1.10, holds true.

Conjecture 1.12. For any convex bodies K1, . . . ,Km in T ∗Rn,

cHZ

(

m
⋃

i=1

Ki

)

≤
m
∑

i=1

cEHZ(Ki).

As far as the author knows, Theorem 1.8 is the first verification of Con-
jecture 1.12 in a situation not covered by Conjecture 1.10.

1.3. Structure of this paper

Let us explain the structure of this paper. In Section 2 we review basics of
symplectic homology. In particular, we recall the definition of the capacity
cSH and explain its basic properties. In Section 3, we state Theorem 3.4,
and deduce Corollary 3.8 from Theorem 3.4. Section 4 is devoted to the
proof of Theorem 3.4, which is based on the “hybrid moduli space” method
of Abbondandolo-Schwarz [3]. The outline of the proof is sketched in the
first paragraph of Section 4. Section 4 is the most technical section, and can
be skipped at the first reading. In Section 5 we prove Theorem 1.4, and in
Section 6 we prove Theorem 1.8. Using Corollary 3.8, these results can be
proved by elementary arguments about loop spaces. In particular, the key
estimate is Lemma 5.7. In Section 7, we prove Proposition 1.11. This section
can be read independently from Sections 2–6.

Acknowledgement. The author thanks Felix Schlenk for pointing out
an application discussed in Section 2.5, and his comments on an earlier
version of this paper. The author also thanks Alberto Abbondandolo and
Jungsoo Kang for sharing their manuscript [1] and having discussions about
relations between their approach and the author’s. Finally, the author thanks
the referee for many comments which are very helpful to improve readabil-
ity of this paper. This research is supported by JSPS KAKENHI Grant
No.18K13407 and No.19H00636.
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2. Symplectic homology and the capacity cSH

For any h ∈ C∞(T ∗Rn), its Hamiltonian vector field Xh ∈X (T ∗Rn) is de-
fined by ωn(Xh, · ) = −dh( · ). Let S

1 := R/Z. For any H ∈ C∞(S1 × T ∗Rn)
and t ∈ S1, we define Ht ∈ C∞(T ∗Rn) by Ht(q, p) := H(t, q, p). Let

P(H) := {γ : S1 → T ∗Rn | γ̇(t) = XHt
(γ(t)) (∀t ∈ S1)}.

γ ∈P(H) is called nondegenerate if 1 is not an eigenvalue of (dφ1
H)γ(0),

where (φt
H)0≤t≤1 denotes the Hamiltonian isotopy generated by H.

Remark 2.1. The isotopy (φt
H)0≤t≤1 may not be globally defined, but it

is defined at least on a neighborhood of γ(0).

2.1. Filtered Floer homology

In this subsection, we review basic facts about filtered Floer homology of
(time-dependent) Hamiltonians on Cn which are compact perturbations of
quadratic functions. The results in this subsection are essentially contained
in [7]. However, here we mainly follow [18], since the class of Hamiltonians
we consider is slightly different from that in [7].

For any H ∈ C∞(S1 × T ∗Rn) we consider the following conditions:

(H0): Every γ ∈P(H) is nondegenerate.

(H1): There exist A ∈ R>0 \ πZ and B ∈ R such that the function

H(t, q, p)−A(|q|2 + |p|2)−B ∈ C∞(S1 × T ∗Rn)

is compactly supported.

In the following we assume that H ∈ C∞(S1 × T ∗Rn) satisfies (H0) and
(H1). Note that (H1) implies that all elements of P(H) are contained in a
compact subset of T ∗Rn. This is because on the complement of a sufficiently
large compact set, every orbit of XH is periodic with the minimal period
equal to π

A . By A /∈ πZ, there exists no periodic orbit with period 1 on the
complement. Moreover (H0) implies that P(H) is discrete, thus it is finite.

For any real numbers a < b and k ∈ Z, let CF
[a,b)
k (H) denote the Z/2-

vector space spanned by

{γ ∈P(H) | AH(γ) ∈ [a, b), indCZ (γ) = k}.
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Here, indCZ denotes the Conley-Zehnder index (see Section 1.3 of [7]) and
AH is defined by

AH(γ) :=

∫

S1

γ∗
Å

∑

i

pidqi

ã

−Ht(γ(t)) dt.

To define a boundary operator on CF
[a,b)
∗ (H), we take J = (Jt)t∈S1 ,

which is a C∞-family of almost complex structures on T ∗Rn with the fol-
lowing condition:

(J1): For every t ∈ S1, Jt is compatible with respect to ωn. Namely, gJt
(v, w)

:= ωn(v, Jtw) is a Riemannian metric on T ∗Rn.

For any J satisfying (J1) and x−, x+ ∈P(H), we define

MH,J(x−, x+) := {u : R× S1 → T ∗Rn | ∂su− Jt(∂tu−XHt
(u)) = 0,

lim
s→±∞

us = x±}.

Here s denotes the coordinate on R, t denotes the coordinate on S1, and
us : S

1 → T ∗Rn is defined by us(t) := u(s, t). We set

M̄H,J(x−, x+) := MH,J(x−, x+)/R,

where the R action on MH,J(x−, x+) is defined by

(r · u)(s, t) := u(s− r, t) (u ∈MH,J(x−, x+), r ∈ R).

Let us define the standard complex structure on T ∗Rn, which is denoted
by Jstd , by

Jstd (∂pi
) = ∂qi , Jstd (∂qi) = −∂pi

(1 ≤ i ≤ n).

Lemma 2.2. Suppose H satisfies (H0) and (H1), J satisfies (J1), and
supt∈S1 ∥Jt − Jstd ∥C0 is sufficiently small. Then

sup
x−,x+∈P(H)

u∈MH,J(x−,x+)
(s,t)∈R×S1

|u(s, t)| <∞.

Proof. This lemma follows from Lemma 2.3 in [18]; note that conditions
(H0), (J1) in [18] are the same as (H0), (J1) in this paper, and the condition
(H1) in [18] is weaker than (H1) in this paper. □
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For a generic (with respect to the C∞-topology) choice of J , the moduli
space M̄H,J(x−, x+) is cut out transversally for any pair (x−, x+). For any
such J , M̄H,J(x−, x+) is a finite set if indCZ (x+) = indCZ (x−)− 1, and the
linear map

∂H,J : CF
[a,b)
∗ (H)→ CF

[a,b)
∗−1 (H);

x− 7→
∑

indCZ (x+)=indCZ (x−)−1

#2M̄H,J(x−, x+) · x+

satisfies ∂2
H,J = 0, where #2 denotes the cardinality modulo 2. The homology

of the chain complex (CF
[a,b)
∗ (H), ∂H,J) does not depend on the choice of J .

This homology is denoted by HF
[a,b)
∗ (H) and called filtered Floer homology

of H. For any a, b, a′, b′ ∈ R with a < b, a′ < b′, a ≤ a′ and b ≤ b′, one can

define a natural linear map HF
[a,b)
∗ (H)→ HF

[a′,b′)
∗ (H).

Remark 2.3. As we remarked at the beginning of this subsection, the fact
∂2
H,J = 0, as well as the independence of the homology on the choice of J ,

are due to [7] and references therein.

Suppose that H−, H+ ∈ C∞(S1 × T ∗Rn) satisfy (H0), (H1) and

(1) H−(t, q, p) < H+(t, q, p) (∀(t, q, p) ∈ S1 × T ∗Rn).

Then, for any real numbers a < b one can define a linear map (called mono-
tonicity map)

HF
[a,b)
∗ (H−)→ HF

[a,b)
∗ (H+)

as follows. First, we take J− = (J−
t )t∈S1 and J+ = (J+

t )t∈S1 such that J−

defines a boundary map on CF ∗(H
−) and J+ defines a boundary map on

CF ∗(H
+). Next, we take a C∞-family of Hamiltonians H = (Hs,t)(s,t)∈R×S1

and a C∞-family of almost complex structures J = (Js,t)(s,t)∈R×S1 such that
the following conditions hold:

(HH1): There exists s0 > 0 such that Hs,t(q, p) =

®

H−(t, q, p) (s ≤ −s0)

H+(t, q, p) (s ≥ −s0).

(HH2): ∂sHs,t(q, p) ≥ 0 for any (s, t, q, p) ∈ R× S1 × T ∗Rn.

(HH3): There exist a(s), b(s) ∈ C∞(R) such that the following conditions hold:
• a′(s) ≥ 0 for any s.
• a(s) ∈ πZ =⇒ a′(s) > 0.
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• Setting ∆s,t(q, p) := H(s, t, q, p)− a(s)(|q|2 + |p|2)− b(s), there
holds

sup
(s,t)
∥∆s,t∥C1(T ∗Rn) <∞, sup

(s,t)
∥∂s∆s,t∥C0(T ∗Rn) <∞.

(JJ1): There exists s1 > 0 such that Js,t =

®

J−
t (s ≤ −s1)

J+
t (s ≥ s1).

(JJ2): For every (s, t) ∈ R× S1, Js,t is compatible with ωn.

Remark 2.4. For any H− and H+ satisfying (H0), (H1) and (1), there
exists H = (Hs,t)(s,t)∈R×S1 satisfying (HH1), (HH2) and (HH3), as we ex-
plained in pp.517 of [18]. Let us repeat the explanation for the convenience of
the reader. Take ρ ∈ C∞(R) such that ρ|R≤0

≡ 0, ρ|R≥1
≡ 1 and 0 < ρ(s) < 1,

ρ′(s) > 0 for any 0 < s < 1. Then let us define H = (Hs,t)(s,t)∈R×S1 by

Hs,t(q, p) := (1− ρ(s))H−(t, q, p) + ρ(s)H+(t, q, p).

On the other hand, the existence of J = (Js,t)(s,t)∈R×S1 satisfying (JJ1) and
(JJ2) is straightforward from the fact that the set of almost complex struc-
tures compatible with ωn is contractible.

For anyH = (Hs,t)(s,t)∈R×S1 and J = (Js,t)(s,t)∈R×S1 satisfying the above
conditions, and for any x− ∈P(H−) and x+ ∈P(H+), we consider the
moduli space

MH,J(x−, x+) := {u : R× S1 → T ∗Rn |

∂su− Js,t(∂tu−XHs,t
(u)) = 0, lim

s→±∞
us = x±}.

Lemma 2.5. Suppose that H satisfies (HH1), (HH2) and (HH3). If J satis-
fies (JJ1), (JJ2) and sup(s,t)∈R×S1 ∥Js,t − Jstd ∥C0 is sufficiently small, then

sup
x−∈P(H−),x+∈P(H+)

u∈MH,J(x−,x+)
(s,t)∈R×S1

|u(s, t)| <∞.

Proof. See Lemma 2.4 in [18]. □

For a generic choice of (H, J) which satisfies the assumptions in
Lemma 2.5, MH,J(x−, x+) is cut out transversally for any pair (x−, x+).
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In particular, MH,J(x−, x+) is a finite set if indCZ (x+) = indCZ (x−), and
the linear map

Φ : CF
[a,b)
∗ (H−)→ CF

[a,b)
∗ (H+);

x− 7→
∑

indCZ (x+)=indCZ (x−)

#2MH,J(x−, x+) · x+

satisfies ∂H+,J+ ◦ Φ = Φ ◦ ∂H−,J− . The induced map on homology

H∗(Φ) : HF
[a,b)
∗ (H−)→ HF

[a,b)
∗ (H+)

does not depend on the choice of (H, J); see Section 4.3 of [7]. This completes
the definition of the monotonicity map.

For any H0, H1, H2 ∈ C∞(S1 × T ∗Rn) satisfying (H0), (H1) and

H0(t, q, p) < H1(t, q, p) < H2(t, q, p) (∀(t, q, p) ∈ S1 × T ∗Rn),

the diagram

HF
[a,b)
∗ (H0) //

''

HF
[a,b)
∗ (H2)

HF
[a,b)
∗ (H1)

77

commutes (all three maps are monotonicity maps).

2.2. Symplectic homology

For any nonempty compact set K in T ∗Rn, let HK denote the set of
H ∈ C∞(S1 × T ∗Rn) which satisfies (H0), (H1) and H(t, q, p) < 0 for any
(t, q, p) ∈ S1 ×K. Then HK becomes a directed set by setting H0 < H1

if and only if H0(t, q, p) < H1(t, q, p) for any (t, q, p) ∈ S1 × T ∗Rn. For any
real numbers a < b, we set

SH
[a,b)
∗ (K) := lim

−→
H∈HK

HF
[a,b)
∗ (H),

where the limit is taken by monotonicity maps.
For any a, b, a′, b′ ∈ R with a < b, a′ < b′, a ≤ a′, b ≤ b′, and nonempty

compact sets K ′ ⊂ K, one can define a natural linear map SH
[a,b)
∗ (K)→
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SH
[a′,b′)
∗ (K ′). Also, for any c ∈ R>0 one can define a natural isomorphism

SH
[a,b)
∗ (K) ∼= SH

[c2a,c2b)
∗ (cK).

This follows from an isomorphism of filtered Floer homology HF
[a,b)
∗ (H) ∼=

HF
[c2a,c2b)
∗ (Hc), where Hc(x) := c2H(x/c).

2.3. Symplectic homology of RCT sets

Let us start from our definition of RCT (restricted contact type) sets:

Definition 2.6. Let K be a compact subset of T ∗Rn.

• K is called a C∞-RCT set, if K is connected, intK ̸= ∅, ∂K is of C∞,
and there existsX ∈X (T ∗Rn) which satisfies the following properties:
– LXωn ≡ ωn,
– X points strictly outwards at every point on ∂K.

• K is called a RCT set, if there exists a sequence (Ki)i≥1 which satisfies
the following properties:
– Ki is a C∞-RCT set for every i,
– Ki+1 ⊂ Ki for every i,
–

⋂∞
i=1Ki = K.

Remark 2.7. Usually, “restricted contact type domain” is defined as a
domain (i.e. connected open set) such that its closure is a C∞-RCT set in
the above sense (see e.g. Definition 1.3 in [14]). Thus, the above definition
of RCT set is slightly more generalized than the usual definition.

K ⊂ T ∗Rn is called star-shaped if there exists x ∈ K such that ty + (1−
t)x ∈ K for any y ∈ K and t ∈ [0, 1]. In particular any convex set is star-
shaped.

Lemma 2.8. Any compact and star-shaped set in T ∗Rn is a RCT set.

Proof. Suppose that K ⊂ T ∗Rn is compact and star-shaped. We may as-
sume that (0, . . . , 0) ∈ K and ty ∈ K for any t ∈ [0, 1] and y ∈ K. Let S :=
{(q, p) ∈ T ∗Rn | |q|2 + |p|2 = 1}. Then there exists a function f : S → R≥0

such that

K = {ty | y ∈ S, 0 ≤ t ≤ f(y)}.

It is easy to see that f is upper semi-continuous. Thus there exists a se-
quence (fj)j≥1 in C∞(S,R>0) such that fj(y) > fj+1(y) for every y ∈ S and
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j ≥ 1, and f(y) = limj→∞ fj(y). For every j ≥ 1, Kj := {ty | y ∈ S, 0 ≤ t ≤
fj(y)} is a C∞-RCT set, since X := 1

2

∑n
i=1 pi∂pi

+ qi∂qi satisfies LXωn =
ωn, and is transversal to ∂Kj . Then (Kj)j≥1 is a decreasing sequence of
C∞-RCT sets satisfying

⋂∞
j=1Kj = K, thus K is a RCT set. □

Let K be a C∞-RCT set in T ∗Rn. The distribution ker(ωn|∂K) on ∂K
defines a 1-dimensional foliation of ∂K, which is called the characteristic fo-
liation of ∂K. Closed characteristics are closed leaves of this foliation which
are diffeomorphic to S1. Let P(∂K) denote the set of closed characteristics.
The distribution ker(ωn|∂K) is oriented so that v ∈ ker(ωn|∂K) is positive
if and only if ωn(X, v) > 0, where X is any vector on ∂K which points
strictly outwards. With this orientation, for each γ ∈P(∂K) we define its
symplectic action A (γ) by

A (γ) :=

∫

γ

Å

∑

i

pidqi

ã

.

Lemma 2.9. Let K be any C∞-RCT set in T ∗Rn. Then every γ ∈P(∂K)
satisfies A (γ) > 0. Moreover, there exists γ0 ∈P(∂K) such that A (γ0) =
infγ∈P(∂K) A (γ).

Proof. By definition of C∞-RCT sets, there exists X ∈X (T ∗Rn) which
satisfies LXωn = ωn and points strictly outwards on ∂K. Let us define λ ∈
Ω1(T ∗Rn) by λ := iXωn. Then λ is a contact form on ∂K, and when Rλ

denotes its Reeb vector field (i.e. iRλ
(dλ) ≡ 0 and λ(Rλ) ≡ 1), P(∂K) is

the set of simple closed orbits of Rλ. Moreover, for every γ ∈P(∂K), A (γ)
is equal to the period of γ as an orbit of Rλ. Then infγ∈P(∂K) A (γ) is
positive, since ∂K is compact and Rλ is nonzero at every point on ∂K. To
show that there exists a closed orbit which attains the infimum, let (γj)j≥1 be
a sequence in P(∂K) such that A (γj) converges to the infimum as j →∞.
Let us take pj on γj for each j, and let p be the limit of a certain subsequence
of (pj)j . Then the orbit γ0 which passes through p is closed, and A (γ0) is
equal to the infimum. □

For any C∞-RCT setK⊂T ∗Rn, we denote cmin(K) :=minγ∈P(∂K) A (γ).
When K is convex, cmin(K) is also denoted by cEHZ(K) (see Definiton 1.3).

Lemma 2.10. For any C∞-RCT set K ⊂ T ∗Rn and ε ∈ (0, cmin(K)), one

can assign an isomorphism SH
[0,ε)
∗ (K) ∼= H∗+n(T

∗Rn, T ∗Rn \K) so that the
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diagram

H∗+n(T
∗Rn, T ∗Rn \K)

∼=
��

// H∗+n(T
∗Rn, T ∗Rn \K ′)

∼=
��

SH
[0,ε)
∗ (K) // SH

[0,ε′)
∗ (K ′)

commutes for any C∞-RCT sets K ′ ⊂ K and 0 < ε ≤ ε′ < min{cmin(K),
cmin(K

′)}.

Proof. The isomorphism

SH
[0,ε)
∗ (K) ∼= H∗+n(K, ∂K) ∼= H∗+n(T

∗Rn, T ∗Rn \K)

follows from the third bullet in Proposition 4.7 of [14]. The commutativity
of the diagram follows from the construction of this isomorphism. □

Remark 2.11. For any convex body K and ε ∈ (0, cEHZ(K)), there exists

a natural isomorphism SH
[0,ε)
∗ (K) ∼= H∗+n(T

∗Rn, T ∗Rn \K) obtained as

SH
[0,ε)
∗ (K) ∼= lim

−→
K′

SH
[0,ε)
∗ (K ′) ∼= lim

−→
K′

H∗+n(T
∗Rn, T ∗Rn \K ′)

∼= H∗+n(T
∗Rn, T ∗Rn \K),

whereK ′ runs over all convex bodies with C∞ boundaries such thatK ′ ⊃ K.
The second isomorphism holds since cEHZ(K

′) > ε, which follows from the
monotonicity of the EHZ capacity cEHZ(K

′) ≥ cEHZ(K).

By Lemma 2.10, for any C∞-RCT set K we obtain an isomorphism

H∗+n(T
∗Rn, T ∗Rn \K) ∼= lim

←−
ε→0

SH
[0,ε)
∗ (K).

Then, for any a ∈ R>0, we can define a linear map

iaK : H∗+n(T
∗Rn, T ∗Rn \K) ∼= lim

←−
ε→0

SH
[0,ε)
∗ (K)→ SH

[0,a)
∗ (K).

The following diagram commutes for any C∞-RCT sets K ′ ⊂ K and a ≤ a′:

(2) H∗+n(T
∗Rn, T ∗Rn \K)

iaK
��

// H∗+n(T
∗Rn, T ∗Rn \K ′)

ia
′

K′

��

SH
[0,a)
∗ (K) // SH

[0,a′)
∗ (K ′).
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Also, the following diagram commutes for any c ∈ R>0:

(3) H∗+n(T
∗Rn, T ∗Rn \K)

iaK
��

∼= // H∗+n(T
∗Rn, T ∗Rn \ cK)

ic
2a

cK

��

SH
[0,a)
∗ (K) ∼=

// SH
[0,c2a)
∗ (cK).

Now let us define the map iaK : H∗+n(T
∗Rn, T ∗Rn \K)→ SH

[0,a)
∗ (K)

for any RCT set K and a ∈ R>0. Notice that there are natural isomorphisms

H∗+n(T
∗Rn, T ∗Rn \K) ∼= lim

−→
K′

H∗+n(T
∗Rn, T ∗Rn \K ′),

SH
[0,a)
∗ (K) ∼= lim

−→
K′

SH
[0,a)
∗ (K ′),

where K ′ runs over all C∞-RCT sets with K ′ ⊃ K. Then one can define iaK
as the limit of (iaK′)K′⊃K .

2.4. Symplectic homology capacity cSH

To define the capacity cSH , we first need the following definition. Recall that,
in this paper all (co)homology groups are defined over Z/2, unless otherwise
specified.

Definition 2.12. For any R-vector space V of dimension d ∈ Z>0 and a
compact subset K ⊂ V , we define νVK ∈ Hd(V, V \K) in the following man-
ner.

• If K is convex, then Hd(V, V \K) ∼= Z/2. Then we define νVK to be the
unique non-zero element of Hd(V, V \K).

• When K is an arbitrary compact subset of V , take a compact con-
vex set K ′ ⊂ V satisfying K ⊂ K ′, and let iKK′ : Hd(V, V \K

′)→
Hd(V, V \K) be the linear map induced by id V : (V, V \K ′)→ (V, V \
K). Then it is easy to see that iKK′(νVK′) does not depend on the choice
of K ′. Then we define νVK := iKK′(νVK′).

Now, for any RCT set K ⊂ T ∗Rn, we define

cSH (K) := inf{a ∈ R>0 | i
a
K(νT

∗
R

n

K ) = 0}.
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The invariant cSH will be called symplectic homology capacity. The next
lemma summarizes some properties of the capacity cSH . The properties (i),
(ii), (iii) are (respectively) called conformality, monotonicity, and spectrality.

Lemma 2.13. (i): For any RCT set K and c ∈ R>0, there holds cSH (cK)
= c2cSH (K).

(ii): For any RCT sets K ′ ⊂ K, there holds cSH (K ′) ≤ cSH (K).

(iii): For any C∞-RCT set K, there exist γ ∈P(∂K) and m ∈ Z≥1 such
that cSH (K) = m ·A (γ). In particular cSH (K) ≥ cmin(K).

Proof. (i) follows from the commutativity of (3), and (ii) follows from the
commutativity of (2). (iii) is proved in Corollary 5.8 of [14] under the assump-
tion that ∂K has a nice action spectrum (see pp. 342 of [14] for its definition).
Since ∂K has a nice action spectrum for C∞-generic K (Proposition 2.5 of
[14]), one can remove this assumption by the limiting argument. □

2.5. S
1-equivariant symplectic homology capacities

For any C∞-RCT set K ⊂ T ∗Rn (in general, for any Liouville domain)
and a ∈ R>0, one can define the S1-equivariant symplectic homology

SH
[0,a),S1

∗ (K) and a linear map

(iaK)S
1

: HS1

∗+n(T
∗Rn, T ∗Rn \K)→ SH

[0,a),S1

∗ (K),

where HS1

∗ (T ∗Rn, T ∗Rn \K) is the S1-equivariant homology with the
trivial S1-action on (T ∗Rn, T ∗Rn \K), thus canonically isomorphic to
H∗(T

∗Rn, T ∗Rn \K)⊗H∗(CP
∞). For each k ∈ Z≥1, let

ck
SH S1 (K) := inf{a | (iaK)S

1

(νT
∗
R

n

K ⊗ [CP k−1]) = 0}.

Let us call the invariants ck
SH S1 (k ≥ 1) S1-equivariant symplectic homology

capacities.

Remark 2.14. This construction goes back at least to Section 5.3 of
Viterbo [23], where the Floer-theoretic analogue of the equivariant Ekeland-
Hofer capacities [6] was introduced. This construction is revisited in recent
papers such as Gutt-Hutchings [11] and Ginzburg-Shon [10]. In particular,
[11] introduced a sequence of capacities using positive equivariant symplec-
tic homology with rational coefficients, established basic properties of these
capacities, and gave combinatorial formulas to compute these capacities of
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convex and concave toric domains. In [11] it is conjectured that the Gutt-
Hutchings capacities are equal to the equivariant Ekeland-Hofer capacities
for any compact star-shaped domain (Conjecture 1.9 of [11]).

For any C∞-RCT set K, there holds the following inequalities:

(4) cmin(K) ≤ c1
SH S1 (K) ≤ cSH (K).

For the first inequality, see the “contractible Reeb orbits” property in The-
orem 1.24 of [11]. For the second inequality, see Lemma 3.2 of [10].

Remark 2.15. One has to be careful since [11] and [10] use Q -coefficients,
while we work over Z/2 -coefficients. Also, the definitions of equivariant ca-
pacities in these papers use positive (equivariant) symplectic homology, and
are superficially different from our definition. However, it is straightforward
to see that the proofs in these papers also work in our setting.

F. Schlenk [21] pointed out that Theorem 1.4, combined with (4), implies
the following corollary:

Corollary 2.16. cEHZ(K) = c1
SH S1 (K) = cSH (K) for any convex body K

in T ∗Rn.

3. Symplectic homology and loop space homology

Let pr : T ∗Rn → Rn denote the natural projection map, namely pr(q, p) :=
q. For any q ∈ Rn, we identify T ∗

q R
n with pr−1(q).

Definition 3.1. K ⊂ T ∗Rn is called fiberwise convex if Kq := K ∩ T ∗
q R

n

is a convex set in T ∗
q R

n for every q ∈ Rn.

Throughout this section, K denotes a nonempty, compact and fiberwise
convex set in T ∗Rn. In Section 3.1, we state Theorem 3.4, which shows that
symplectic homology of K is isomorphic to a certain relative homology of
loop spaces of Rn. The proof of Theorem 3.4 is carried out in Section 4.
In Section 3.2, we deduce Corollary 3.8 from Theorem 3.4, which shows
that the capacity cSH (K) is equal to a certain min-max value defined from
homology of loop spaces. In Section 3.3, we prove some technical results
about fiberwise convex functions, which are used in Section 3.1 and in the
proof of Theorem 3.4 (see Section 4.6).
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3.1. Symplectic homology and loop space homology

Let Λ denote the space of L1,2-maps from S1 = R/Z to Rn, equipped with
the L1,2-topology. For each γ ∈ Λ, we define lenK(γ) as follows:

(5) lenK(γ) :=

®
∫

S1 (maxp∈Kγ(t)
p · γ̇(t) ) dt (γ(S1) ⊂ pr(K))

−∞ (γ(S1) ̸⊂ pr(K)).

Example 3.2. If K is the unit disk cotangent bundle of pr(K), namely

K = {(q, p) ∈ T ∗Rn | q ∈ pr(K), |p| ≤ 1},

then lenK(γ) =
∫

S1 |γ̇(t)| dt for any γ ∈ Λ satisfying γ(S1) ⊂ pr(K).

Let us summarize elementary properties of lenK .

Lemma 3.3. Let K be any nonempty, compact, and fiberwise convex set
in T ∗Rn.

(i): (5) is well-defined. Namely, for any γ ∈ Λ satisfying γ(S1) ⊂ pr(K),
the function ργ : S1 → R; t 7→ maxp∈Kγ(t)

p · γ̇(t) is integrable.

(ii): lenK is upper semi-continuous. Namely, if a sequence (γk)k in Λ con-
verges to γ ∈ Λ in the L1,2-topology, then lenK(γ) ≥ lim supk lenK(γk).

(iii): Suppose that ∂K is of C∞ and strictly convex. Let γ : S1 → int (pr(K))
be a C∞-map such that γ̇(t) ̸= 0 for every t ∈ S1. Then, for every
t ∈ S1 there exists unique pγ(t) ∈ Kγ(t) such that

pγ(t) · γ̇(t) = max
p∈Kγ(t)

p · γ̇(t)

. Moreover, γ̄ : S1 → ∂K defined by γ̄(t) := (γ(t), pγ(t)) is of C
∞, and

satisfies

lenK(γ) =

∫

S1

γ̄∗
Å n
∑

i=1

pidqi

ã

.

(iv): Suppose that ∂K is of C∞ and strictly convex. Then lenK is continuous
on {γ ∈ Λ | γ(S1) ⊂ pr(K)} with respect to the L1,2-topology.

(v): Let K ′ be any nonempty, compact, and fiberwise convex set in T ∗Rn

which satisfies K ′ ⊂ K. Then lenK′(γ) ≤ lenK(γ) for any γ ∈ Λ.
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Proof. (i) and (ii) are consequences of Lemmas 3.10 and 3.12. Let us take a
sequence (Hj)j≥1 as in Lemma 3.10, and let LHj

denote the Legendre dual
of Hj (see Lemma 3.12 for the definition of Legendre dual).

Let us prove (i). SinceK is compact, there exists C > 0 such that |p| ≤ C
for every (q, p) ∈ K. Then |ργ | ≤ C · |γ̇| for every γ ∈ Λ satisfying γ(S1) ⊂
pr(K). Since |γ̇| is integrable, it is sufficient to show that ργ is measurable.
Lemma 3.12 (ii) says that ργ(t) = limj→∞ LHj

(γ(t), γ̇(t)) for every t ∈ S1.
Then ργ is measurable, since LHj

(γ, γ̇) is obviously measurable for every j.
Let us prove (ii). For each j, let us define Lj : Λ→ R by Lj(γ) :=

∫

S1 LHj
(γ, γ̇) dt. Then (Lj)j≥1 is a decreasing sequence of continuous func-

tions on Λ, and lenK = limj→∞ Lj by Lemma 3.12. Then lenK is upper
semi-continuous.

Let us prove (iii). Since ∂K is of C∞ and strictly convex, ∂Kq is of C∞

and strictly convex for any q ∈ int (pr(K)). Then, for any t ∈ S1, there exists
unique pγ(t) ∈ Kγ(t) which satisfies maxp∈Kγ(t)

p · γ̇(t) = pγ(t) · γ̇(t). More-
over, γ̄ = (γ, pγ) is of C

∞ by the inverse mapping theorem. The last assertion

follows from γ̄∗
Å

∑

i pidqi

ã

= pγ(t) · γ̇(t) dt, which is straightforward.

Let us prove (iv). First we prove that

c : pr(K)× Rn → R; (q, v) 7→ max
p∈Kq

p · v

is continuous. Let (qk, vk)k≥1 be a sequence on pr(K)× Rn which converges
to (q∞, v∞) as k →∞. Then we want to show limk→∞maxp∈Kqk

p · vk =
maxp∈Kq∞

p · v∞. By the compactness of K one has lim supk→∞maxp∈Kqk
p ·

vk ≤ maxp∈Kq∞
p · v∞, thus it is sufficient to show lim infk→∞maxp∈Kqk

p ·
vk ≥ maxp∈Kq∞

p · v∞. Take p∞ ∈ Kq∞ so that p∞ · v∞ = maxp∈Kq∞
p · v∞.

We claim that there exists a sequence (pk)k such that (qk, pk) ∈ K for every
k and limk→∞ pk = p∞. This claim can be verified as follows:

• If q∞ ∈ int (pr(K)), then there exists ε > 0 such that the closed ε-
neighborhood of q∞ is contained in pr(K). For each k ≥ 1 such that
|qk − q∞| < ε, let us define pk as follows:
– If qk = q∞, then pk := p∞.
– If qk ̸= q∞, then there exist (q′k, p

′
k) ∈ K and tk ∈ (0, 1) such that

|q∞ − q′k| = ε and qk = tkq
′
k + (1− tk)q∞. Then pk := tkp

′
k + (1−

tk)p∞.
Then it is easy to see that limk→∞ pk = p∞.
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• If q∞ ∈ ∂(pr(K)), then Kq∞ = {p∞} since ∂K is strictly convex, thus
any sequence (pk)k satisfying (qk, pk) ∈ K (∀k) satisfies limk→∞ pk =
p∞.

Now we can finish the proof of the continuity of c by

lim inf
k→∞

max
p∈Kqk

p · vk ≥ lim
k→∞

pk · vk = p∞ · v∞.

Now suppose that (iv) does not hold. Then there exists a sequence (γk)k
in {γ ∈ Λ | γ(S1) ⊂ pr(K)} which converges to γ∞ in the L1,2-topology, and
infk |lenK(γk)− lenK(γ∞)| > 0. By replacing (γk)k with its subsequence if
necessary, we may assume limk→∞ γ̇k(t) = γ̇∞(t) for almost every t ∈ S1.
On the other hand limk→∞ γk(t) = γ∞(t) for every t. Thus

lim
k→∞

c(γk(t), γ̇k(t)) = c(γ∞(t), γ̇∞(t))

for almost every t, which implies limk→∞ lenK(γk) = lenK(γ∞), contradict-
ing our assumption.

Finally, (v) follows from pr(K ′) ⊂ pr(K) and maxp∈K′
q
(p · v) ≤

maxp∈Kq
(p · v) for any q ∈ pr(K ′) and v ∈ Rn. □

For any a ∈ R, let Λa
K := {γ ∈ Λ | lenK(γ) < a}. By Lemma 3.3 (ii), this

is open in Λ with the L1,2-topology. Moreover, Lemma 3.3 (v) shows that if
K ′ ⊂ K then Λa

K ⊂ Λa
K′ .

Theorem 3.4. For any nonempty, compact and fiberwise convex set K ⊂
T ∗Rn and real numbers a < b, one can assign an isomorphism

SH
[a,b)
∗ (K) ∼= H∗(Λ

b
K ,Λa

K)

so that the diagram

(6) SH
[a,b)
∗ (K)

∼= //

��

H∗(Λ
b
K ,Λa

K)

��
SH

[a′,b′)
∗ (K ′) ∼=

// H∗(Λ
b′

K′ ,Λa′

K′)

commutes for any a ≤ a′, b ≤ b′ and any fiberwise convex K ′ ⊂ K.

Remark 3.5. If the boundary of pr(K) ⊂ Rn is of C∞ and K is the unit
disk cotangent bundle of pr(K), then Theorem 3.4 is essentially equivalent
to Theorem 1.1 of [18].
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Remark 3.6. It is likely that Theorem 3.4 naturally extends to any non-
empty, compact and fiberwise convex set K ⊂ T ∗Q where Q is an arbitrary
closed manifold. However, since our main applications (Theorem 1.4 and
Theorem 1.8) make sense only on symplectic vector spaces, in this paper we
work on symplectic vector spaces.

3.2. Symplectic homology capacity and loop space homology

In this subsection, we prove a formula (Corollary 3.8) which computes
cSH (K) in terms of homology of loop spaces of Rn. Let us recall from Section
2.4 that for any RCT set K,

cSH (K) = inf{a ∈ R>0 | i
a
K(νT

∗
R

n

K ) = 0}.

For any a ∈ R>0, let us consider a map

jaK : (Rn,Rn \ pr(K))→ (Λa
K ,Λ0

K)

which sends each q ∈ Rn to the constant loop at q.

Lemma 3.7. Let K be any RCT set in T ∗Rn which is fiberwise convex.

Then, for any a ∈ R>0, i
a
K(νT

∗
R

n

K ) ∈ SH
[0,a)
n (K) corresponds to

H∗(j
a
K)(νR

n

pr(K)) ∈ Hn(Λ
a
K ,Λ0

K)

via the isomorphism SH
[0,a)
∗ (K) ∼= H∗(Λ

a
K ,Λ0

K).

Proof. For any R ∈ R>0 let KR := {(q, p) ∈ T ∗Rn | |q|, |p| ≤ R}.
First notice that it is sufficient to prove the lemma for K = KR for every

R. Indeed, for any compact K ⊂ T ∗Rn, there exists R such that K ⊂ KR.
By the commutativity of (6), we have a commutative diagram

SH
[0,a)
∗ (KR) //

∼=

��

SH
[0,a)
∗ (K)

∼=

��
H∗(Λ

a
KR

,Λ0
KR

) // H∗(Λ
a
K ,Λ0

K).

Then the upper horizontal map sends iaKR
(νT

∗
R

n

KR
) to iaK(νT

∗
R

n

K ). Assum-
ing that we have proved the lemma for KR, the left vertical map sends
iaKR

(νT
∗
R

n

KR
) toH∗(j

a
KR

)(νR
n

pr(KR)), which is sent toH∗(j
a
K)(νR

n

pr(K)) by the lower
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horizontal map. By the commutativity of the diagram, the right vertical map
sends iaK(νT

∗
R

n

K ) to H∗(j
a
K)(νR

n

pr(K)), which completes the proof for K.
Thus it is sufficient to consider the case K = KR. It is also sufficient to

consider the case when a is sufficiently small, since for any a < b we have a
commutative digram

SH
[0,a)
∗ (KR) //

∼=

��

SH
[0,b)
∗ (KR)

∼=
��

H∗(Λ
a
KR

,Λ0
KR

) // H∗(Λ
b
KR

,Λ0
KR

).

Moreover, it is sufficient to prove H∗(j
a
KR

)(νR
n

pr(KR)) ̸= 0 for sufficiently
small a. Indeed, when a is sufficiently small, Remark 2.11 implies that

SH
[0,a)
n (KR) ∼= Z/2 is generated by iaKR

(νT
∗
R

n

KR
). Then the isomorphism

SH
[0,a)
∗ (KR) ∼= Hn(Λ

a
KR

,Λ0
KR

) maps iaKR
(νT

∗
R

n

KR
) to the only nonzero element

in Hn(Λ
a
KR

,Λ0
KR

), that is H∗(j
a
KR

)(νR
n

pr(KR)).
The rest of the proof is essentially the same as the proof of Lemma 6.6

(2) of [18], which we repeat here for the sake of completeness. For any γ ∈ Λ
let len(γ) :=

∫

S1 |γ̇(t)| dt, and for any a ∈ R>0 let Ua := {γ ∈ Λ | len(γ) <
a/R}. Also let BR := {q ∈ Rn | |q| ≤ R} and VR := {γ ∈ Λ | γ(S1) ̸⊂ BR}.
Then

Λa
KR

= Ua ∪ VR, Λ0
KR

= VR.

Since both Ua and VR are open sets in Λ, the inclusion map

(Ua, Ua ∩ VR)→ (Ua ∪ VR, VR) = (Λa
KR

,Λ0
KR

)

induces an isomorphism on homology. Thus it is sufficient to show that

caR : (Rn,Rn \BR)→ (Ua, Ua ∩ VR)

which sends each q ∈ Rn to the constant loop at q, induces an injection on
homology if a is sufficiently small.

Let us define ev : Λ→ Rn by ev (γ) := γ(0). If a is sufficiently small,
then ev maps Ua ∩ VR to Rn \ {0}, and we obtain a commutative diagram

(Rn,Rn \BR)
caR //

id Rn ((

(Ua, Ua ∩ VR)

ev

��
(Rn,Rn \ {0}).
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The diagonal map induces an isomorphism on homology, thus H∗(c
a
R) is

injective. This completes the proof. □

As an immediate corollary of Lemma 3.7, we obtain the following formula
which computes cSH (K) from homology of loop spaces.

Corollary 3.8. For any RCT set K ⊂ T ∗Rn which is fiberwise convex,

cSH (K) = inf{a ∈ R>0 | H∗(j
a
K)(νR

n

pr(K)) = 0}.

3.3. Technical results on fiberwise convex functions

In this subsection we prove some preliminary results on (fiberwise) convex
functions.

Definition 3.9. For any (finite-dimensional) real vector space V , f ∈
C0(V,R) is called convex if f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for any
x, y ∈ V and t ∈ [0, 1]. f ∈ C2(V,R) is called strictly convex, if for any x ∈ V ,
the Hessian of f at x (which is a symmetric bilinear form on V ) is positive
definite. f ∈ C0(T ∗Rn) is called fiberwise convex if f |T ∗

q R
n is convex for ev-

ery q ∈ Rn, and f ∈ C2(T ∗Rn) is called fiberwise strictly convex if f |T ∗
q R

n is
strictly convex for every q ∈ Rn.

For any a ∈ R>0, let us define Qa ∈ C∞(T ∗Rn) by Qa(q, p) := a(|q|2 +
|p|2).

Lemma 3.10. For any nonempty, compact, and fiberwise convex set K ⊂
T ∗Rn, there exist sequences (aj)j≥1 and (Hj)j≥1 which satisfy the following
properties:

(i): (aj)j is a strictly increasing sequence in R>0 \ πZ.

(ii): limj→∞ aj =∞.

(iii): (Hj)j is a strictly increasing sequence of fiberwise strictly convex C∞-
functions on T ∗Rn.

(iv): For every j, there exists bj ∈ R such that Hj is a compact perturbation
of Qaj

+ bj, i.e. Hj − (Qaj
+ bj) is compactly supported.

(v): limj→∞Hj(q, p) =

®

∞ ((q, p) /∈ K)

0 ((q, p) ∈ K).
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Proof. Let us take a sequence (Uj)j of open sets in T ∗Rn such that Uj+1 ⊂ Uj

for every j, and
⋂∞

j=1 Uj = K.
Let us consider conditions (ii’) and (v’) as follows:

(ii’): aj > 2j for every j.

(v’): The following properties hold for every j:
• Hj(q, p) > 2j if (q, p) /∈ Uj ,
• − 1

2j < Hj(q, p) < −
1

2j+1 if (q, p) ∈ K.

Obviously (ii’) implies (ii), and (v’) implies (v). Thus it is sufficient to con-
struct sequences (aj)j and (Hj)j satisfying (i), (ii’), (iii), (iv), (v’). We are
going to construct such sequences by induction on j. Suppose that we have
defined a1, . . . , aj−1 and H1, . . . , Hj−1 satisfying these conditions. In the fol-
lowing argument we construct a pair (aj , Hj) so that these conditions are
satisfied. Let us take a ∈ R>0 \ πZ such that a > max{aj−1, 2

j}. We fix such
a in the rest of the proof.

Step 1. For any b ∈ R≥0, we define Fb : T
∗Rn → R in the following way.

For each q ∈ Rn, let F (b, q) denote the set of convex functions f :
T ∗
q R

n → R satisfying the following conditions:

• f(p) ≤ Qa(q, p) + b for every p ∈ T ∗
q R

n.

• f(p) ≤ − 3
2j+2 if (q, p) ∈ K.

Let us define Fb by Fb(q, p) := supf∈F (b,q) f(p). Then, Fb|T ∗
q R

n is convex
(thus continuous) for every q ∈ Rn. The function Fb satisfies the following
properties:

(1-0): If q /∈ pr(K) then Fb(q, p) = Qa(q, p) + b.

(1-1): Fb is a compact perturbation of Qa + b.

(1-2): Fb(q, p) ≥ −
3

2j+2 for every (q, p) ∈ T ∗Rn.

(1-3): Fb(q, p) = −
3

2j+2 if (q, p) ∈ K.

(1-4): For any ε > 0, there exists δ > 0 such that if p ∈ T ∗
q R

n satisfies
dist(Kq, p) < δ, where dist denotes the Euclidean distance on T ∗

q R
n,

then Fb(q, p) < −
3

2j+2 + ε.

(1-0) holds since Qa(q, p) + b ∈ F (b, q) if q /∈ pr(K). (1-2) and (1-3) hold
since the constant function − 3

2j+2 is an element of F (b, q). (1-1) holds since
if |q|2 + |p|2 is sufficiently large, the linear function

T ∗
q R

n → R; x 7→ Qa(q, p) + b+ 2a(p · (x− p))
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is an element of F (b, q). (1-4) follows from (1-3), (1-1) and the convexity of
Fb|T ∗

q R
n .

Moreover, when b is sufficiently large, the following properties hold:

(1-5): Fb(q, p) > Hj−1(q, p) for any (q, p) ∈ T ∗Rn.

(1-6): Fb(q, p) > 2j if (q, p) /∈ Uj .

Let us check that (1-5) holds for sufficiently large b. By the induction
assumption,Hj−1 < −

1
2j onK. ThusHj−1 +

1
2j+2 < − 3

2j+2 onK. SinceHj−1

is a compact perturbation ofQaj−1
+ bj−1 and aj−1 < a, when b is sufficiently

large Hj−1 +
1

2j+2 ∈ F (b, q). This means that Hj−1(q, p) +
1

2j+2 ≤ Fb(q, p)
for any (q, p) ∈ T ∗Rn, thus (1-5) holds.

Let us check that (1-6) holds for sufficiently large b. For any (q, p) /∈ Uj

such that Kq ̸= ∅, let p′ be the unique point on Kq such that |p− p′| =
dist(Kq, p).

Remark 3.11. The uniqueness of p′ follows from the convexity of Kq.
Indeed, suppose that there exist p′ ̸= p′′ inKq satisfying |p− p′| = |p− p′′| =
dist(Kq, p). Then p′′′ := (p′ + p′′)/2 ∈ Kq by the convexity of Kq. On the
other hand |p− p′′′| < dist(Kq, p) by p′ ̸= p′′, which contradicts p′′′ ∈ Kq.

Let us define a linear function Hq,p on T ∗
q R

n by

Hq,p(x) := −
3

2j+2
+ (x− p′) · (p− p′) ·

2j + 1 + 3/2j+2

|p− p′|2
.

Then Hq,p(p) = 2j + 1 and Hq,p ≤ −
3

2j+2 on Kq. Also, there holds

S := sup
(q,p)/∈Uj

Kq ̸=∅

( max
x∈T ∗

q R
n
Hq,p(x)−Qa(q, x)) <∞.

This can be checked as follows: for any (q, p) /∈ Uj with Kq ̸= ∅,

max
x∈T ∗

q R
n
Hq,p(x)−Qa(q, x) = Hq,p(0) +

|∇Hq,p|
2

4a
− a|q|2.

Setting γ := 2j + 1 + 3/2j+2,

Hq,p(0) = −
3

2j+2
− p′ · (p− p′) ·

γ

|p− p′|2
≤ −

3

2j+2
+

Rγ

δ
,
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where R and δ are positive constants (depending only on K and Uj) such
that |p′| ≤ R and |p− p′| ≥ δ. Also, there holds |∇Hq,p| = γ/|p− p′| ≤ γ/δ.
Then we can conclude that S <∞.

We show that if b > max{2j , S} then (1-6) holds, i.e. Fb(q, p) > 2j if
(q, p) ̸∈ Uj . We consider two cases:

• The case Kq ̸= ∅. In this case Hq,p ∈ F (b, q), because Hq,p ≤ −
3

2j+2

on Kq and Hq,p(x) ≤ Qa(q, x) + S < Qa(q, x) + b for any x ∈ T ∗
q R

n.
Hence Fb(q, p) ≥ Hq,p(p) = 2j + 1 > 2j .

• The case Kq = ∅. In this case, Fb(q, p) = Qa(q, p) + b ≥ b > 2j .

In the rest of the proof we take and fix b so that (1-5) and (1-6) hold.
Step 2. Let us take ρ ∈ C∞

c (Rn,R≥0) such that ρ(x) = ρ(−x) and
∫

Rn ρ(x) dx = 1. For any ε > 0 let ρε(x) := ε−nρ(x/ε). Then we define Gε :
T ∗Rn → R by

Gε(q, p) :=

∫

y∈T ∗
q R

n

Fb(q, y)ρ
ε(p− y) dy.

Then Gε satisfies the following properties:

• For every q ∈ Rn, Gε|T ∗
q R

n is a C∞ convex function.

• If q /∈ pr(K) then Gε(q, p) = Qa(q, p) + b+ a · c(ε),
where c(ε) :=

∫

Rn |x|2ρε(x) dx.

• Gε is a compact perturbation of Qa + b+ a · c(ε).

• Gε(q, p) ≥ Fb(q, p) for any (q, p) ∈ T ∗Rn.
In particular, Gε(q, p) > max{− 1

2j , Hj−1(q, p)} for any (q, p) ∈ T ∗Rn,
and Gε(q, p) > 2j for any (q, p) /∈ Uj .

Moreover, by (1-4), if ε is sufficiently small then

(q, p) ∈ K =⇒ Gε(q, p) < −
1

2j+1
.

In the rest of the proof we fix such ε.
Step 3. For each q ∈ Rn, let us define Hq : T

∗Rn → R by

Hq(q
′, p) := Gε(q, p) + a(|q′|2 − |q|2).

Then Hq|T ∗
q′
Rn is a C∞-convex function for every q′ ∈ Rn. Moreover, if q /∈

pr(K) then Hq = Qa + b+ a · c(ε).
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For every q ∈ Rn, there exists an open neighborhood of q (denoted by
Uq) such that the following properties hold for every q′ ∈ Uq:

• Hq(q
′, p) > max{− 1

2j , Hj−1(q
′, p)} for every p ∈ T ∗

q′R
n.

• Hq(q
′, p) < − 1

2j+1 if (q′, p) ∈ K.

• Hq(q
′, p) > 2j if (q′, p) /∈ Uj .

Moreover, if q /∈ pr(K) then we may take Uq so that Uq ∩ pr(K) = ∅.
Let us consider an open covering of Rn, U := {Uq}q∈Rn . Let V = {Vi}

∞
i=1

be a refinement of U which is locally finite. For every i, choose qi ∈ Rn such
that Vi ⊂ Uqi . Let (χi)i be a partition of 1 with V , i.e. χi ∈ C∞(Rn, [0, 1])
and suppχi ⊂ Vi for every i ≥ 1, and

∑∞
i=1 χi ≡ 1. Then

H(q, p) :=

∞
∑

i=1

χi(q)Hqi(q, p)

is a C∞-function on T ∗Rn, and satisfies the following properties:

• H is a compact perturbation of Qa + b+ a · c(ε).

• H is fiberwise convex.

• H(q, p) > Hj−1(q, p) for every (q, p) ∈ T ∗Rn.

• − 1
2j < H(q, p) < − 1

2j+1 if (q, p) ∈ K.

• H(q, p) > 2j if (q, p) /∈ Uj .

The first property holds since Hqi ̸= Qa + b+ a · c(ε) only if qi ∈ pr(K),
and there are only finitely many such qi’s. The other properties are straight-
forward.

Step 4. Let us take a sufficiently small δ > 0 such that a+ δ /∈ πZ. Then
Hj := H +Qδ satisfies the following properties:

• Hj is a compact perturbation of Qa+δ + b+ a · c(ε).

• Hj is fiberwise strictly convex.

• Hj(q, p) > Hj−1(q, p) for every (q, p) ∈ T ∗Rn.

• − 1
2j < Hj(q, p) < −

1
2j+1 for every (q, p) ∈ K.

• Hj(q, p) > 2j if (q, p) /∈ Uj .

The fourth property can be achieved by taking δ sufficiently small. The other
properties are straightforward.
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Finally, setting aj := a+ δ, the pair (aj , Hj) satisfies conditions (i), (ii’),
(iii), (iv), (v’). □

Lemma 3.12. Let K be a compact and fiberwise convex set in T ∗Rn,
and let (Hj)j≥1 and (aj)j≥1 be sequences which satisfy the conditions in
Lemma 3.10. For each j, let LHj

∈ C∞(TRn) denote the Legendre dual of
Hj, namely

LHj
(q, v) := max

p∈T ∗
q R

n
(p · v −Hj(q, p)) (q ∈ Rn, v ∈ TqR

n).

Then the following properties hold:

(i): LHj
(q, v) > LHj+1

(q, v) for any (q, v) ∈ TRn and j ≥ 1.

(ii): limj→∞ LHj
(q, v) =

®

maxp∈Kq
(p · v) (q ∈ pr(K))

−∞ (q /∈ pr(K)).

(iii): limj→∞

∫

S1 LHj
(γ(t), γ̇(t)) dt = lenK(γ) for any γ ∈ Λ.

Proof. (i): For each q ∈ Rn, there exists p0 ∈ T ∗
q R

n which satisfies LHj+1
(q, v)

= p0 · v −Hj+1(q, p0). Then

LHj
(q, v) = max

p
(p · v −Hj(q, p))

≥ p0 · v −Hj(q, p0) > p0 · v −Hj+1(q, p0) = LHj+1
(q, v).

(ii) follows from Lemma 3.13 applied to (Hj |T ∗
q R

n)j , identifying Rn and
T ∗
q R

n via the standard Riemannian metric on Rn.
(iii): First, we consider the case γ(S1) ⊂ pr(K). By Lemma 3.3 (i), ργ :

S1 → R; t 7→ maxp∈Kγ(t)
p · γ̇(t) is integrable. On the other hand, LH1

(γ, γ̇)
is integrable (since γ̇ is square-integrable), and (LHj

(γ, γ̇))j is a decreasing
sequence of integrable functions, which converges to ργ pointwise as j →∞.
Then, by Lebesgue’s dominated convergence theorem, we obtain

lim
j→∞

∫

S1

LHj
(γ(t), γ̇(t)) dt =

∫

S1

lim
j→∞

LHj
(γ(t), γ̇(t)) dt

=

∫

S1

ργ(t) dt = lenK(γ).

Next, we consider the case γ(S1) ̸⊂ pr(K). In this case I := γ−1(Rn \
pr(K)) is a nonempty open set in S1. Now consider an obvious inequality

∫

S1

LHj
(γ(t), γ̇(t)) dt ≤

∫

S1\I
LH1

(γ(t), γ̇(t)) dt+

∫

I
LHj

(γ(t), γ̇(t)) dt.
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The first term on the RHS does not depend on j, and the second term goes
to −∞ as j →∞. Thus the LHS goes to −∞. □

Lemma 3.13. Let K be any compact and convex set in Rn, which may be
empty. Let (aj)j≥1 and (hj)j≥1 be sequences with the following properties:

(i): (aj)j is a strictly increasing sequence in R>0.

(ii): limj→∞ aj =∞.

(iii): (hj)j is a strictly increasing sequence of convex C∞-functions on Rn.

(iv): For every j, there exists bj ∈ R such that hj(x)− aj |x|
2 − bj is com-

pactly supported.

(v): limj→∞ hj(x) =

®

∞ (x /∈ K)

0 (x ∈ K).

Then, for any x ∈ Rn

lim
j→∞

(

max
y∈Rn

(x · y − hj(y))
)

=

®

maxy∈K(x · y) (K ̸= ∅)

−∞ (K = ∅).

Proof. First we consider the case K ̸= ∅. Let H denote the set of h ∈
C∞(Rn) with the following properties:

(a): h is convex.

(b): There exists Q ∈ C∞(Rn) of the form

Q(x1, . . . , xn) =
∑

1≤i,j≤n

aijxixj + b

where (aij)1≤i,j≤n is a non-negative symmetric matrix, such that
h(x)−Q(x) is compactly supported.

(c): h(x) < 0 for any x ∈ K.

Then the sequence (hj)j is cofinal in H , which implies that for any x ∈ Rn

lim
j→∞

(

max
y∈Rn

(x · y − hj(y))
)

= inf
h∈H

(max
y∈Rn

(x · y − h(y))).

For any h ∈H , there holds

max
y∈Rn

(y · x− h(y)) ≥ max
y∈K

(x · y − h(y)) ≥ max
y∈K

x · y.
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Thus infh∈H (maxy∈Rn(x · y − h(y))) ≥ maxy∈K x · y. To complete the proof,
it is sufficient to prove the opposite inequality, i.e.

inf
h∈H

(max
y∈Rn

(x · y − h(y))) ≤ max
y∈K

x · y.

To prove this, it is sufficient to show that for any δ > 0 there exists h ∈H

such that

max
y∈Rn

(x · y − h(y)) ≤ max
y∈K

x · y + δ.

When x = 0 it is easy to see. When x ̸= 0, let Ix := {x · y | y ∈ K} and
Mx := max Ix = maxy∈K x · y. It is easy to see that there exists φ ∈ C∞(R)
with the following properties:

• φ is convex.

• There exist a > 0 and b ∈ R such that φ(t)− (at2 + b) is compactly
supported.

• −δ ≤ φ(t) < 0 for any t ∈ Ix.

• φ′(Mx) = 1.

Take such φ and let h(y) := φ(x · y). Then h ∈H , and there holds

max
y∈Rn

(x · y − h(y)) = max
t∈R

(t− φ(t)) = Mx − φ(Mx) ≤Mx + δ.

This completes the proof when K ̸= ∅.
Finally we consider the case K = ∅. Let H ′ denote the set of h ∈

C∞(Rn) which satisfies conditions (a) and (b) above. Then, the sequence
(hj)j is cofinal in H ′, which implies that for any x ∈ Rn

lim
j→∞

(

max
y∈Rn

(x · y − hj(y))
)

= inf
h∈H ′

(max
y∈Rn

(x · y − h(y))).

If h ∈H ′ then h+ c ∈H ′ for any c ∈ R, thus the RHS is obviously equal
to −∞. This completes the proof. □

4. Proof of Theorem 3.4

The goal of this section is to prove Theorem 3.4. In Section 4.1, we summa-
rize basic properties of Lagrangian action functionals on the free loop space
of Rn. In Section 4.2 we state Theorem 4.5, which shows an isomorphism
between Hamiltonian Floer homology on T ∗Rn and homology of loop spaces
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of Rn. The proof of Theorem 4.5 occupies Sections 4.3–4.5; the plan of the
proof of Theorem 4.5 is explained in the last paragraph of Section 4.2. Fi-
nally, in Section 4.6, we prove Theorem 3.4 by taking a limit of isomorphisms
obtained by Theorem 4.5.

4.1. Lagrangian action functional on the loop space

Consider the following conditions (L1), (L2) for L ∈ C∞(S1 × TRn):

(L1): There exist a ∈ R>0 and b ∈ R such that the function on S1 × TRn

L(t, q, v)−

Å

|v|2

4a
− a|q|2 + b

ã

is compactly supported.

(L2): There exists c ∈ R>0 such that ∂2
vL(t, q, v) ≥ c for any (t, q, v) ∈ S1 ×

TRn.

Remark 4.1. ∂2
vL(t, q, v) ≥ c means that the symmetric matrix

(∂vi
∂vj

L(t, q, v)− cδij)1≤i,j≤n is nonnegative, where δij =

®

1 (i = j)

0 (i ̸= j).

Recall Λ := L1,2(S1,Rn). If L satisfies the condition (L1), then one can
define the functional SL : Λ→ R by

SL(γ) :=

∫

S1

L(t, γ(t), γ̇(t)) dt.

Lemma 4.2. If L ∈ C∞(S1 × TRn) satisfies (L1) and (L2), the functional
SL satisfies the following properties:

(i): SL is a Fréchet C1-function. The differential dSL is given by

dSL(ξ) :=

∫

S1

∂qL(t, γ(t), γ̇(t)) · ξ(t) + ∂vL(t, γ(t), γ̇(t)) · ξ̇(t) dt (∀ξ ∈ Λ).

Moreover dSL is Gâteaux differentiable.

(ii): γ ∈ Λ satisfies dSL(γ) = 0 if and only if γ ∈ C∞(S1,Rn) and satisfies

∂qL(t, γ(t), γ̇(t))− ∂t(∂vL(t, γ(t), γ̇(t))) = 0.
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(iii): For every γ ∈ Λ, let us define DSL(γ) ∈ Λ so that

⟨DSL(γ), ξ⟩L1,2 = dSL(γ)(ξ) (∀ξ ∈ Λ),

where ⟨ , ⟩L1,2 is defined by ⟨f, g⟩L1,2 :=
∫

S1 f(t) · g(t) + ḟ(t) · ġ(t) dt.
Then the pair (SL, DSL) satisfies the Palais-Smale condition. Namely,
if a sequence (xk)k on Λ satisfies supk |SL(xk)| <∞ and

lim
k→∞

dSL(DSL(xk)) = 0

then (xk)k contains a convergent subsequence.

Proof. (i) and (ii) follow from Proposition 3.1 (i), (ii) of [4]. (iii) is proved
as Corollary 3.4 of [18], which is based on Proposition 3.3 of [4]. □

Suppose that L ∈ C∞(S1 × TRn) satisfies (L1) and (L2). Let P(L) de-
note the set of critical points of SL, namely

P(L) := {γ ∈ Λ | dSL(γ) = 0}.

For any γ ∈P(L), the second Gâteaux differential d2SL(γ) is Fredholm
and has finite Morse index (see Proposition 3.1 (iii) of [4]). The Morse index
is denoted by indMorse(γ). We say that γ is nondegenerate if 0 is not an
eigenvalue of d2SL(γ). Let us introduce the following condition for L ∈
C∞(S1 × TRn):

(L0): Every γ ∈P(L) is nondegenerate.

4.2. Isomorphism between Hamiltonian Floer homology and loop
space homology

Let us consider the following condition for H ∈ C∞(S1 × T ∗Rn):

(H2): There exists c ∈ R>0 such that ∂2
pH(t, q, p) ≥ c for any (t, q, p) ∈ S1 ×

T ∗Rn.

For any H ∈ C∞(S1 × T ∗Rn) which satisfies (H1) and (H2), its Legendre
dual LH ∈ C∞(S1 × TRn) is defined by

LH(t, q, v) := max
p∈T ∗

q R
n
(p · v −H(t, q, p)) (t ∈ S1, q ∈ Rn, v ∈ TqR

n).
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Lemma 4.3. (i): If H satisfies (H1) and (H2), then LH satisfies (L1)
and (L2). Moreover, the map

P(H)→P(LH); x 7→ γx := pr ◦ x

is a bijection, and the inverse map is

P(LH)→P(H); γ 7→ (γ, pγ)

where pγ is characterized by

LH(t, γ(t), γ̇(t)) = pγ(t) · γ̇(t)−H(t, γ(t), γ̇(t)) (∀t ∈ S1).

(ii): In the situation of (i), for any x ∈P(H), γx is nondegenerate if
and only if x is nondegenerate. Moreover, for any such x, there holds
indMorse(γx) = indCZ (x).

Proof. (i) can be checked by direct computations. (ii) follows from Theo-
rem 1 of [19] Section 7.3. □

Remark 4.4. Lemma 4.3 (ii) extends to Hamiltonians on arbitrary man-
ifolds, at least when H is a “classical” Hamiltonian (i.e. the sum of the
kinetic energy and a potential function on the base) on a Riemannian man-
ifold M , although one needs a correction term if the vector bundle γ∗xTM
is not oriented. See Theorem 1.2 and Lemma 2.1 of [24].

Now let us state the isomorphism between Hamiltonian Floer homology
on T ∗Rn and homology of loop spaces of Rn:

Theorem 4.5. For any H ∈ C∞(S1 × T ∗Rn) which satisfies (H0), (H1),
(H2), and any real numbers a < b, one can define an isomorphism

HF
[a,b)
∗ (H) ∼= H∗(S

−1
LH

(R<b),S
−1
LH

(R<a))

so that the following diagram commutes:

(7) HF
[a,b)
∗ (H) //

∼=
��

HF
[a′,b′)
∗ (H)

∼=
��

H∗(S
−1
LH

(R<b),S
−1
LH

(R<a)) // H∗(S
−1
LH

(R<b′),S
−1
LH

(R<a′))
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where a ≤ a′ and b ≤ b′,

(8) HF
[a,b)
∗ (H) //

∼=

��

HF
[a,b)
∗ (H ′)

∼=

��
H∗(S

−1
LH

(R<b),S
−1
LH

(R<a)) // H∗(S
−1
LH′

(R<b),S
−1
LH′

(R<a))

where H(t, q, p) < H ′(t, q, p) (∀(t, q, p) ∈ S1 × T ∗Rn).

Remark 4.6. Commutative diagrams (7) and (8) are special cases of the
following commutative diagram:

(9) HF
[a,b)
∗ (H) //

∼=

��

HF
[a′,b′)
∗ (H ′)

∼=

��
H∗(S

−1
LH

(R<b),S
−1
LH

(R<a)) // H∗(S
−1
LH′

(R<b′),S
−1
LH′

(R<a′)),

where a ≤ a′, b ≤ b′ and H(t, q, p) < H ′(t, q, p) (∀(t, q, p) ∈ S1 × T ∗Rn).

The proof of Theorem 4.5, which follows the arguments in [3] and [18],
occupies Sections 4.3–4.5. In Section 4.3 we recall the construction of Morse
complex of Lagrangian action functionals. In Section 4.4 we explain a chain-
level construction of the isomorphism in Theorem 4.5 and check the com-
mutativity of the diagram (7). In Section 4.5 we prove the commutativity
of the diagram (8).

4.3. Morse theory for Lagrangian action functionals

Suppose that L ∈ C∞(S1 × TRn) satisfies (L0), (L1) and (L2). The goal of
this subsection is to recall the construction of the Morse complex of SL.

For each k ∈ Z≥0, let CM k(L) denote the free Z/2-module generated
over

{γ ∈P(L) | indMorse(γ) = k}.

To define the boundary operator we need the following lemma. For defini-
tions of “Morse vector field” and “Morse-Smale condition”, see Section 2 of
[4]. In the next lemma, Λ = L1,2(S1,Rn) is equipped with a natural structure
of a Hilbert manifold.
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Lemma 4.7. If L ∈ C∞(S1 × TRn) satisfies (L0), (L1), (L2), there exists
a smooth vector field X on Λ which satisfies the following conditions:

(i): X is complete.

(ii): SL is a Lyapunov function for X. Namely, dSL(X(γ)) < 0 if X(γ) ̸=
0.

(iii): X is a Morse vector field. X(γ) = 0 if and only if γ ∈P(L), and the
Morse index of X at γ is equal to the Morse index of γ as a critical
point of SL.

(iv): The pair (SL, X) satisfies the Palais-Smale condition.

(v): X satisfies the Morse-Smale condition up to every order.

Proof. This lemma follows from Lemma 3.5 of [18] (which is essentially same
as Theorem 4.1 of [4]), since the condition (L1) of [18] is weaker than the
condition (L1) of this paper. □

Let us take a vector field X on Λ which satisfies the conditions in
Lemma 4.7. Let (φt

X)t∈R denote the flow on Λ generated by X. For any
γ ∈P(L) let us set

W u(γ : X) := {x ∈ Λ | lim
t→−∞

φt
X(x) = γ}

W s(γ : X) := {x ∈ Λ | lim
t→∞

φt
X(x) = γ}.

For any real numbers a < b, let CM
[a,b)
∗ (L) denote the free Z/2-module

generated over {γ ∈P(L) | a ≤ SL(γ) < b}. For any two generators γ and
γ′, let

MX(γ, γ′) := W u(γ : X) ∩W s(γ′ : X).

When γ ̸= γ′, let M̄X(γ, γ′) denote the quotient of MX(γ, γ′) by the nat-
ural R-action. Since X satisfies the Morse-Smale condition, the boundary
operator

∂L,X : CM
[a,b)
∗ (L)→ CM

[a,b)
∗−1 (L);

γ 7→
∑

indMorse(γ′)=indMorse(γ)−1

#2M̄X(γ, γ′) · γ′

is well-defined and satisfies ∂2
L,X = 0. Homology of the chain complex

(CM
[a,b)
∗ (L), ∂L,X) does not depend on the choice of X, and denoted by
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HM
[a,b)
∗ (L). There exists a natural isomorphism

HM
[a,b)
∗ (L) ∼= H∗(S

−1
L (R<b),S

−1
L (R<a)).

These facts follow from Theorems 2.7, 2.8 and 2.11 in [2].
Consider L0, L1 ∈ C∞(S1 × TRn) which satisfy (L0), (L1), (L2) and

L0(t, q, v) > L1(t, q, v) for any (t, q, v) ∈ S1 × TRn. We also assume that
P(L0) ∩P(L1) = ∅.

Take vector fields X0, X1 on Λ such that (L0, X0) and (L1, X1) satisfy
the conditions in Lemma 4.7. By taking small perturbations of X0 and X1

(note that these perturbations do not change Morse complexes of L0 and
L1), we can achieve the following condition:

For any γ0 ∈P(L0) and γ1 ∈P(L1), W u(γ0 : X0) is transverse
to W s(γ1 : X1).

If this assumption is satisfied, MX0,X1(γ0, γ1) :=W u(γ0 : X0)∩W s(γ1 : X1)
is a smooth manifold of dimension indMorse(γ

0)− indMorse(γ
1). Then we

define a chain map

Φ : CM
[a,b)
∗ (L0, X0)→ CM

[a,b)
∗ (L1, X1);

γ 7→
∑

indMorse(γ′)=indMorse(γ)

♯2MX0,X1(γ, γ′) · γ′.

Φ induces a linear map on homology HM
[a,b)
∗ (L0)→ HM

[a,b)
∗ (L1), which does

not depend on the choices of X0, X1. Via isomorphisms between the Morse
homology and the loop space homology, this map corresponds to the map

H∗(S
−1
L0 (R<b),S

−1
L0 (R<a))→ H∗(S

−1
L1 (R<b),S

−1
L1 (R<a))

which is induced by the inclusion map.

4.4. Isomorphism at chain level

Let us take H ∈ C∞(S1 × T ∗Rn) satisfying (H0), (H1), (H2). Its Legen-
dre dual LH satisfies (L0), (L1), (L2) by Lemma 4.3. Let us also take
real numbers a < b. The goal of this subsection is to define a chain map

CM
[a,b)
∗ (LH)→ CF

[a,b)
∗ (H) which induces an isomorphism HM

[a,b)
∗ (LH) ∼=

HF [a,b)(H).
The definition of the chain map involves “hybrid moduli spaces” intro-

duced by Abbondandolo-Schwarz [3]. Let us take X and J as follows:
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• X is a vector field on Λ such that CM
[a,b)
∗ (LH , X) is well-defined.

• J = (Jt)t∈S1 is a family of almost complex structures on T ∗Rn such

that CF
[a,b)
∗ (H, J) is well-defined.

For any γ ∈P(LH) with SLH
(γ) ∈ [a, b) and x ∈P(H) with AH(x) ∈

[a, b), let MX,H,J(γ, x) denote the set of u ∈ L1,3(R≥0 × S1, T ∗Rn) such that

∂su− Jt(∂tu−XHt
(u)) = 0,

pr ◦ u0 ∈W u(γ : X),

lim
s→∞

us = x.

Here us : S
1 → T ∗Rn is defined by us(t) := u(s, t).

Remark 4.8. The above Sobolev space L1,3 can be replaced with L1,r for
any 2 < r ≤ 4; see pp.299 of [3].

Lemma 4.9. Let γ and x be as above.

(i): For any u ∈MX,H,J(γ, x), there holds

SLH
(γ) ≥ SLH

(pr ◦ u0) ≥ AH(u0) ≥ AH(x).

In particular, if MX,H,J(γ, x) ̸= ∅ then SLH
(γ) ≥ AH(x).

(ii): If SLH
(γ) = AH(x), then MX,H,J(γ, x) ̸= ∅ if and only if x = pr ◦ γ.

Moreover, the moduli space MX,H,J(γ, pr ◦ γ) consists of a point which
is cut out transversally.

Proof. See pp.299 of [3] for (i) and the first sentence in (ii). For the second
sentence in (ii), see Proposition 3.7 of [3]. □

Lemma 4.10. For generic J , MX,H,J(γ, x) has a structure of a C∞-
manifold of dimension indMorse(γ)− indCZ (x) for any γ and x as above.

Proof. The case x = pr ◦ γ is discussed in Lemma 4.9 (ii). The other cases
follow from the standard argument using [8]. See pp.313 of [3]. □

Let us state the following C0-estimate. For comments on the proof see
Remark 4.14.
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Lemma 4.11. If supt∈S1 ∥Jt − Jstd ∥C0 is sufficiently small, then for any γ
and x as above

sup
u∈MX,H,J(γ,x)
(s,t)∈R≥0×S1

|u(s, t)| <∞.

By these results and the standard compactness and glueing arguments
(see Sections 3.3 and 3.4 of [3]), generic J which is sufficiently close to Jstd
satisfies the following properties:

• For any γ and x as above satisfying indMorse(γ)− indCZ (x) = 0, the
moduli space MX,H,J(γ, x) is a finite set.

• A linear map

Ψ : CM
[a,b)
∗ (L,X)→ CF

[a,b)
∗ (H, J);

γ 7→
∑

indCZ (x)=indMorse(γ)

#2MX,H,J(γ, x) · x

is a chain map with respect to boundary operators ∂LH ,X and ∂H,J .

Finally, Lemma 4.9 implies that Ψ is an isomorphism (see Section 3.5 of [3]).

In particular, H∗(Ψ) : HM
[a,b)
∗ (L)→ HF

[a,b)
∗ (H) is an isomorphism.

For any a, b, a′, b′ ∈ R satisfying a < b, a′ < b′, a ≤ a′ and b ≤ b′, the com-
mutativity of the following diagram is straightforward from the definition of
Ψ:

(10) CM
[a,b)
∗ (LH) //

∼=
��

CM
[a′,b′)
∗ (LH)

∼=
��

CF
[a,b)
∗ (H) // CF

[a′,b′)
∗ (H).

This implies the commutativity of (7).

4.5. Commutativity of monotonicity maps

The goal of this subsection is to prove the commutativity of (8). Let us take
the following data:

• H,H ′ ∈ C∞(S1 × T ∗Rn) satisfying (H0), (H1), (H2) and H(t, q, p) <
H ′(t, q, p) for any (t, q, p) ∈ S1 × T ∗Rn.

• Real numbers a < b.
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• Almost complex structures J , J ′ and vector fields X, X ′ such that

chain complexes CF
[a,b)
∗ (H, J), CF

[a,b)
∗ (H ′, J ′), CM

[a,b)
∗ (LH , X),

CM
[a,b)
∗ (LH′ , X ′) are defined.

Without loss of generality, we may assume P(LH) ∩P(LH′) = ∅. In-
deed, for any H and H ′ satisfying (H0), (H1), (H2) and H < H ′, there
exists a strictly increasing sequence (Hj)j≥1 such that every Hj satisfies
(H0), (H1), (H2), limj→∞Hj = H, and

P(LHj
) ∩P(LHj+1

) = ∅, P(LHj
) ∩P(LH) = ∅,

P(LHj
) ∩P(LH′) = ∅

for every j ≥ 1. Then, assuming that the commutativity of (8) is proved for
pairs (Hj , Hj+1), (Hj , H) and (Hj , H

′) for every j, the commutativity of (8)
for (H,H ′) follows by taking limits.

In the previous subsection we defined isomorphisms of chain complexes

Ψ : CM
[a,b)
∗ (LH , X)→ CF

[a,b)
∗ (H, J)

and

Ψ′ : CM
[a,b)
∗ (LH′ , X ′)→ CF

[a,b)
∗ (H ′, J ′).

We also defined chain maps ΦL : CM
[a,b)
∗ (LH , X)→ CM

[a,b)
∗ (LH′ , X ′) and

ΦH : CF
[a,b)
∗ (H, J)→ CF

[a,b)
∗ (H ′, J ′). Our goal is to show that the following

diagram commutes up to homotopy:

(11) CM
[a,b)
∗ (LH , X)

Ψ
∼=

//

ΦL

��

CF
[a,b)
∗ (H, J)

ΦH

��

CM
[a,b)
∗ (LH′ , X ′)

Ψ′

∼= // CF
[a,b)
∗ (H ′, J ′).

This immediately implies the commutativity of the diagram (8). Since vector
spaces in the diagram (11) are generated by finitely many critical points,
boundary operators and chain maps in this diagram do not change under
C∞-small perturbations of X, X ′, J , J ′. Hence we may assume that these
data are taken so that all moduli spaces which appear in the rest of this
subsection are cut out transversally.
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To prove that (11) commutes up to homotopy, first we define a linear
map

Θ : CM
[a,b)
∗ (LH , X)→ CF

[a,b)
∗ (H ′, J ′);

γ 7→
∑

indMorse(γ)=indCZ (x)

#2MX,H′,J ′(γ, x) · x.

Θ is a chain map (namely ∂H′,J ′ ◦Θ = Θ ◦ ∂LH ,X) by the same reason that
Ψ in the previous subsection is a chain map. We are going to prove ΦH ◦Ψ ∼
Θ ∼ Ψ′ ◦ ΦL.

First we prove Ψ′ ◦ ΦL ∼ Θ. For any γ ∈P(LH) and x ∈P(H ′) such
that SLH

(γ),AH′(x) ∈ [a, b), let N 0(γ, x) denote the set of (α, u, v) where

α ∈ R≥0, u : [0, α]→ Λ, v ∈ L1,3(R≥0 × S1, T ∗Rn)

such that

u(0) ∈W u(γ : X), u(s) = φs
X′(u(0)) (∀s ∈ [0, α]),

∂sv − J ′
t(∂tv −XH′

t
(v)) = 0,

pr ◦ v0 = u(α), lim
s→∞

vs = x.

Let us state the following C0-estimate:

Lemma 4.12. If supt∈S1 ∥Jt − Jstd ∥C0 is sufficiently small, then for any γ
and x as above

sup
(α,u,v)∈N 0(γ,x)
(s,t)∈R≥0×S1

|v(s, t)| <∞.

For generic J ′ which is sufficiently close to Jstd , N 0(γ, x) is a finite set
for any γ and x satisfying indCZ (x) = indMorse(γ) + 1, and the linear map

K0 : CM
[a,b)
∗ (LH)→ CF

[a,b)
∗+1 (H

′);

γ 7→
∑

indCZ (x)=indMorse(γ)+1

#2N
0(γ, x) · x

satisfies ∂H′,J ′ ◦K0 +K0 ◦ ∂LH ,X = Θ−Ψ′ ◦ ΦL. For details see Section 4.3
of [18].
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Secondly we prove ΦH ◦Ψ ∼ Θ. Let us take (Hs,t)(s,t)∈R×S1 and
(Js,t)(s,t)∈R×S1 which satisfy (HH1), (HH2), (HH3) and (JJ1), (JJ2). In par-
ticular there exists s2 > 0 such that

(Hs,t, Js,t) =

®

(Ht, Jt) (s ≤ −s2)

(H ′
t, J

′
t) (s ≥ s2).

For any γ ∈P(LH) and x ∈P(H ′) such that SLH
(γ),AH′(x) ∈ [a, b), let

N 1(γ, x) denote the set of (β,w) where

β ∈ R≤s2 , w ∈ L1,3(R≥β × S1, T ∗Rn)

such that

pr ◦ wβ ∈W u(γ : X), ∂sw − Js,t(∂tw −XHs,t
(w)) = 0

lim
s→∞

ws = x.

Let us state the following C0-estimate:

Lemma 4.13. If supt∈S1 ∥Jt − Jstd ∥C0 is sufficiently small, then for any γ
and x as above

sup
(β,w)∈N 1(γ,x)
(s,t)∈R≥β×S1

|w(s, t)| <∞.

For generic J which is sufficiently close to Jstd , N 1(γ, x) is a finite set
for any γ and x satisfying indCZ (x) = indMorse(γ) + 1, and the linear map

K1 : CM
[a,b)
∗ (L)→ CF

[a,b)
∗+1 (H

′); γ 7→
∑

indCZ (x)=indMorse(γ)+1

#2N
1(γ, x) · x

satisfies ∂H′,J ′ ◦K1 +K1 ◦ ∂L,X = Θ− ΦH ◦Ψ. For details see Section 4.3
of [18].

Remark 4.14 (Proofs of C0-esimtates). C0-estimates in this section,
namely Lemmas 4.11, 4.12, 4.13, are slight generalizations of Lemmas 4.8,
4.9, 4.10 in [18]. These results in [18] are stated for Hamiltonians of special
type (i.e. elements of the sequence (Hm)m defined in Section 4.1 of [18]),
however the proofs of these results in [18] use only assumptions (JJ1), (JJ2),
(HH1), (HH2), (HH3). Hence the proofs in [18] work without any modifi-
cation for Lemmas 4.11, 4.12, 4.13. Strictly speaking, the condition (HH3)
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in [18] requires b(s) ≡ 0 in the condition (HH3) in this paper. Namely, if
H ∈ C∞(R× S1 × T ∗Rn) satisfies (HH3) in this paper, then there exists
b ∈ C∞(R) such that

(12) H0(s, t, q, p) := H(s, t, q, p)− b(s)

satisfies the condition (HH3) in [18]. However, this difference does not affect
Floer equations, since (12) obviously impliesXHs,t

(q, p) = XH0
s,t
(q, p) for any

(s, t) ∈ R× S1 and (q, p) ∈ T ∗Rn.

4.6. Proof of Theorem 3.4

Now we can complete the proof of Theorem 3.4. Let K be any nonempty,
compact and fiberwise convex set in T ∗Rn. Taking time-dependent pertur-
bations of Hamiltonians obtained in Lemma 3.10, there exists a sequence
(Hj)j≥1 in C∞(S1 × T ∗Rn) which satisfies the following conditions:

• Hj satisfies (H0), (H1), (H2) for every j ≥ 1.

• Hj(t, q, p) < Hj+1(t, q, p) for every j ≥ 1 and (t, q, p) ∈ S1 × T ∗Rn.

• limj→∞Hj(t, q, p) =

®

0 ((q, p) ∈ K)

∞ ((q, p) /∈ K)
for any (t, q, p) ∈ S1 × T ∗Rn.

For each j, let Lj := LHj
∈ C∞(S1 × TRn) denote the Legendre dual of

Hj . Then, (S
−1
Lj

(R<c))j≥1 is an increasing sequence of open sets in Λ for

any c ∈ R. Moreover
⋃∞

j=1 S
−1
Lj

(R<c) = Λc
K by Lemma 3.12 (iii). Then we

obtain

SH
[a,b)
∗ (K) = lim

−→
j→∞

HF
[a,b)
∗ (Hj)

∼= lim
−→
j→∞

H∗(S
−1
Lj

(R<b), S
−1
Lj

(R<a))

∼= H∗

Å ∞
⋃

j=1

S
−1
Lj

(R<b),

∞
⋃

j=1

S
−1
Lj

(R<a)

ã

= H∗(Λ
b
K ,Λa

K),

where the isomorphism on the second line follows from the commutativity of
(8). Finally, the commutativity of (6) follows from the commutativity of (9)
and taking limits of Hamiltonians. This completes the proof of Theorem 3.4.

□
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5. Proof of Theorem 1.4

The goal of this section is to prove Theorem 1.4. Namely, we prove cSH (K) =
cEHZ(K) for any convex body K ⊂ T ∗Rn.

The case n = 1 can be proved by the following simple argument. For any
convex body K ⊂ T ∗R1, both cEHZ(K) and the Hamiltonian displacement
energy of K (denoted by e(K)) are equal to the measure of K. On the
other hand, cEHZ(K) ≤ cSH (K) (by Lemma 2.13 (iii)) and cSH (K) ≤ e(K)
(second inequality in Theorem 1.4 of [14]), thus cEHZ(K) = cSH (K) = e(K).

Hence we assume n ≥ 2 in the rest of the proof. Let us first introduce
the notion of nice convex bodies.

Definition 5.1. A convex body K ⊂ T ∗Rn is called nice if ∂K is of C∞

and strictly convex, and there exists a C∞-map Γ : S1 → ∂K which satisfies
the following conditions:

(i): Γ̇(t) generates ker(ωn|TΓ(t)∂K) and of positive direction (i.e. ωn(X, Γ̇(t))
> 0 for any X ∈ TΓ(t)(T

∗Rn) which points strictly outwards) for every
t ∈ S1,

(ii):
∫

S1 Γ
∗

Å

∑n
i=1 pidqi

ã

= cEHZ(K),

(iii): pr ◦ Γ(S1) ⊂ int (pr(K)).

Any curve Γ which satisfies these three conditions is called a nice curve on
∂K.

Remark 5.2. The convex body B := {(q, p) ∈ T ∗Rn | |q|2 + |p|2 ≤ 1} is
not nice. Indeed, if Γ : S1 → ∂B satisfies the conditions (i) and (ii) above,
then Γ(S1) = {(e sin t, e cos t) | t ∈ R/2πZ}, thus pr(Γ(S1)) = {es | −1 ≤ s ≤
1}. Hence pr(Γ(S1)) is not contained in int (pr(B)) = {q ∈ Rn | |q| < 1}.

Lemma 5.3. When n ≥ 2, for any convex body K ⊂ T ∗Rn, there exists
a sequence of nice convex bodies which converges to K in the Hausdorff
distance.

Proof. It is easy to see that there exists a sequence (Kj)j such that each
∂Kj is of C∞ and strictly convex, and limj→∞Kj = K in the Hausdorff
distance. Thus it is sufficient to show that, for any convex body C ⊂ T ∗Rn

such that ∂C is of C∞ and strictly convex, there exists C ′ which is nice and
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arbitrarily close to C. Since C is strictly convex,

LC := {x ∈ ∂C | pr(x) ∈ ∂(pr(C))}

is a submanifold of ∂C which is diffeomorphic to Sn−1, in particular its
codimension in ∂C is n. Since n ≥ 2, there exists C ′ which is arbitrarily
C∞-close to C, and all closed characteristics of ∂C ′ are disjoint from LC′ ,
which implies that C ′ is nice. □

By Lemma 5.3, Theorem 1.4 is reduced to the following theorem:

Theorem 5.4. For any n ∈ Z≥2 and any nice convex body K ⊂ T ∗Rn,
there holds cSH (K) = cEHZ(K).

In the rest of this section we prove Theorem 5.4. Let n ∈ Z≥2 and K
be any nice convex body in T ∗Rn. Let Γ be a nice curve on ∂K, and γ :=
pr ◦ Γ : S1 → int (pr(K)). By Lemma 3.3 (iii), there holds

lenK(γ) =

∫

S1

Γ∗

Å

∑

i

pidqi

ã

= cEHZ(K).

Lemma 5.5. γ̇(t) ̸= 0 for any t ∈ S1.

Proof. Let ν be a unit vector which is normal to TΓ(t)(∂K). Since Γ̇(t) is
parallel to Jstd (ν), it is sufficient to show that the p-component of ν is
nonzero. If the p-component of ν is zero, then the convexity of K implies
(q, p) ∈ K =⇒ q · ν ≤ γ(t) · ν, thus γ(t) ∈ ∂(pr(K)), which contradicts the
assumption γ(S1) ⊂ int (pr(K)). □

Lemma 5.6. Let (γs)−1≤s≤1 be a C∞-family of elements of C∞(S1,

int (pr(K))) such that γ0 = γ. Then d
ds

Å

lenK(γs)

ã

s=0

= 0.

Proof. Since γ̇(t) ̸= 0 for any t ∈ S1, we may assume that γ̇s(t) ̸= 0 for
any (s, t) ∈ [−1, 1]× S1. Let us define γ̄s : S

1 → ∂K as in Lemma 3.3 (iii).
Namely,

γ̄s(t) = (γs(t), pγs
(t)), pγs

(t) · γ̇s(t) = max
p∈Kγs(t)

p · γ̇s(t).
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Then Γ = γ̄0, and lenK(γs) =
∫

S1(γ̄s)
∗

Å

∑

i pidqi

ã

for every s ∈ [−1, 1]. Thus

d

ds

Å

lenK(γs)

ã

s=0

=
d

ds

Å∫

S1

(γ̄s)
∗

Å

∑

i

pidqi

ãã

s=0

=

∫

S1

ωn((∂sγ̄s)s=0(t), Γ̇(t)) dt = 0.

□

For any a ∈ R≥0 and x ∈ Rn, let us define γa,x ∈ Λ by γa,x(t) := aγ(t) +
x. Let

T := {(a, x) ∈ R≥0 × Rn | γa,x(S
1) ⊂ pr(K)}.

It is easy to see that T is a compact convex set in R≥0 × Rn. Let us define
a function L : T → R by L(a, x) := lenK(γa,x). Obviously L(1, 0, . . . , 0) =
lenK(γ) = cEHZ(K). By Lemma 3.3 (iv), L is continuous.

Lemma 5.7. L(a, x) ≤ L(1, 0, . . . , 0) for any (a, x) ∈ T .

Proof. By the continuity of L, it is sufficient to prove the lemma for (a, x) ∈
intT . For any s ∈ [0, 1], let

γs := γsa+(1−s),sx, Ls := lenK(γs) := L(sa+ (1− s), sx)

Our goal is to prove L1 ≤ L0.
For any s ∈ [0, 1], we have (sa+ (1− s), sx) ∈ intT . This implies that

γs(S
1) ⊂ int (pr(K)) and sa+ (1− s) > 0, thus γ̇s(t) = (sa+ (1− s))γ̇(t) ̸=

0 for any t ∈ S1. Let us abbreviate pγs
as ps. Then

Ls =

∫

S1

ps(t) · γ̇s(t) dt.

By (γ0(t), p0(t)), (γ1(t), p1(t)) ∈ K and the convexity of K,

(γs(t), (1− s)p0(t) + sp1(t)) ∈ K.

Then

ps(t) · γ̇s(t) = max
p∈Kγs(t)

p · γ̇s(t) ≥ ((1− s)p0(t) + sp1(t)) · γ̇s(t).
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On the other hand γ̇s(t) = (sa+ (1− s))γ̇(t), thus

Ls ≥

∫

S1

(1 + (a− 1)s)γ̇(t) · (p0(t) + (p1(t)− p0(t))s) dt

and the equality holds for s = 0. Hence

∂sLs|s=0 ≥

∫

S1

γ̇(t) · ((a− 2)p0(t) + p1(t)) dt.

On the other hand ∂sLs|s=0 = 0 by Lemma 5.6. Then we obtain
∫

S1

γ̇(t) · p1(t) dt ≤ (2− a)

∫

S1

γ̇(t) · p0(t) dt.

Now we can finish the proof by

L1 − L0 =

∫

S1

aγ̇(t) · p1(t)− γ̇(t) · p0(t) dt ≤ −(a− 1)2L0 ≤ 0.

The first inequality follows from a ≥ 0, and the second inequality follows
from L0 ≥ 0, which is obvious since L0 = lenK(γ) = cEHZ(K) > 0. □

We have proved

max
(a,x)∈T

lenK(γa,x) = lenK(γ) = cEHZ(K).

On the other hand, if (a, x) /∈ T , then lenK(γa,x) = −∞. Thus for any C >
cEHZ(K), one can define a map

ℓC : (R≥0 × Rn,R≥0 × Rn \ T )→ (ΛC
K ,Λ0

K); (a, x) 7→ γa,x.

Now consider the commutative diagram

Hn(R
n,Rn \ pr(K))

Hn(jCK) //

��

Hn(Λ
C
K ,Λ0

K)

Hn(R≥0 × Rn,R≥0 × Rn \ T )

Hn(ℓC)

44

where the vertical map is induced by the map q 7→ (0, q). Since T is bounded,
the vertical map is 0. Then H∗(j

C
K) = 0, which implies cSH (K) ≤ C. Since

C is any number larger than cEHZ(K), we obtain cSH (K) ≤ cEHZ(K). The
inverse inequality cSH (K) ≥ cEHZ(K) follows from Proposition 2.13 (iii),
thus we have proved Theorem 5.4, to which Theorem 1.4 was reduced. □
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6. Proof of Theorem 1.8

The goal of this section is to prove Theorem 1.8. Let us recall the situation:K
is a compact set in T ∗Rn with int (K) ̸= ∅, Π is a hyperplane which intersects
int (K), Π+ and Π− are distinct closed halfspaces with ∂Π+ = ∂Π− = Π, and
K+ := K ∩Π+, K− = K ∩Π−. Then our goal is to prove

cHZ (K) ≤ cEHZ(conv (K
+)) + cEHZ(conv (K

−)),

where conv denotes the convex hull.
Let K ′ := conv (K+) ∪ conv (K−). Then K ′ is star-shaped, thus it is a

RCT set. We first need the following lemma:

Lemma 6.1. If C ⊂ T ∗Rn is a RCT set satisfying int (C) ̸= ∅, then
cHZ (C) ≤ cSH (C).

Proof. First we need to recall Corollary 3.5 of [17]: for any 2n-dimensional Li-
ouville domain (W,λ) and a ∈ R>0 \ Spec(W,λ) such that the canonical map
ιa : Hn−∗(W )→HF<a

∗ (W,λ) satisfies ιa(1)=0, there holds cHZ (intW,dλ)≤
a. Moreover, since Spec(W,λ) is a measure zero set, the assumption a /∈
Spec(W,λ) can be omitted.

Now let us assume that C ⊂ T ∗Rn is a C∞-RCT set with a nice action
spectrum in the sense of [14]. There exists X ∈X (T ∗Rn) satisfying LXωn ≡
ωn andX points outwards on ∂C. Setting λ := (iXωn)|C , (C, λ) is a Liouville

domain and there exists a canonical isomorphism HF<a
∗ (C, λ) ∼= SH

[0,a)
∗ (C)

such that ιa corresponds to iaC (see Section 4, in particular Proposition 4.5 of
[14]). Now, if a > cSH (C) then ιa(1) = 0, thus cHZ (C) ≤ a. This completes
the proof when C is a C∞-RCT set with a nice action spectrum.

Let C be an arbitrary RCT set in T ∗Rn. Then there exists a sequence
of C∞-RCT sets (with nice action spectra) (Cj)j≥1 such that Cj+1 ⊂ Cj

for every j ≥ 1 and
⋂∞

j=1Cj = C. Then SH
[0,a)
∗ (C) ∼= lim

−→j→∞
SH

[0,a)
∗ (Cj)

for every a > 0, which implies cSH (C) = limj→∞ cSH (Cj). On the other
hand, for each j there holds cHZ (C) ≤ cHZ (Cj) ≤ cSH (Cj) thus we obtain
cHZ (C) ≤ limj→∞ cSH (Cj) = cSH (C). □

Now let us state the key inequality:

Lemma 6.2. cSH (K ′) ≤ cEHZ(conv (K
+)) + cEHZ(conv (K

−)).
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Assuming Lemma 6.2, we obtain

cHZ (K) ≤ cHZ (K
′) ≤ cSH (K ′) ≤ cEHZ(conv (K

+)) + cEHZ(conv (K
−)),

where the first inequality follows from K ⊂ K ′, the second inequality follows
from Lemma 6.1, and the last inequality is Lemma 6.2. Hence we have
reduced Theorem 1.8 to Lemma 6.2.

6.1. Proof of Lemma 6.2

The case n = 1 is easy to prove. Indeed, for any compact S ⊂ T ∗R1 satisfying
int (S) ̸= ∅, there holds cHZ (S) ≤ |S|, where | · | denotes the measure. Also,
|S| = cEHZ(S) if S is convex. Then we can prove the case n = 1 by

cHZ (K
′) ≤ |K ′| = |conv (K+)|+ |conv (K−)|

= cEHZ(conv (K
+)) + cEHZ(conv (K

−)).

Hence in the rest of the proof we may assume n ≥ 2. We may also assume
that Π = {q1 = 0}, since for any hyperplane Π there exists an affine map A
on T ∗Rn with A∗ωn = ωn and A(Π) = {q1 = 0}. Finally, we assume that
K+ = K ∩ {q1 ≥ 0}, K− = K ∩ {q1 ≤ 0}.

Lemma 6.3. K ′ is fiberwise convex.

Proof. Let q = (q1, . . . , qn) ∈ Rn. If q1 > 0, then K ′
q = K ′ ∩ T ∗

q R
n =

conv (K+) ∩ T ∗
q R

n, thus K ′
q is convex. Similarly, if q1 < 0, then K ′

q =
conv (K−) ∩ T ∗

q R
n, thus K ′

q is convex. Finally, when q1 = 0, there holds
K ′

q = conv (K+) ∩ T ∗
q R

n = conv (K−) ∩ T ∗
q R

n, since conv (K+) ∩ {q1 = 0}
= conv (K ∩ {q1 = 0}) = conv (K−) ∩ {q1 = 0}. In particular, K ′

q is convex.
□

For any A ∈ R>0, let us consider the map jAK′ : (Rn,Rn \ pr(K ′))→
(ΛA

K′ ,Λ0
K′) which maps each q ∈ Rn to the constant loop at q. By Corol-

lary 3.8, to prove Lemma 6.2 it is sufficient to prove the following:

(13) A > cEHZ(conv (K
+)) + cEHZ(conv (K

−)) =⇒ Hn(j
A
K′) = 0.

By Lemma 5.3, there exist nice convex bodies C+ and C− such that
conv (K+) ⊂ C+, conv (K−) ⊂ C− and cEHZ(C

+) + cEHZ(C
−) < A. Let Γ+ :

S1 → ∂C+ be a nice curve on C+, and Γ− : S1 → ∂C− be a nice curve on
C−. By changing parameterizations if necessary, we may assume that the
following properties hold:
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• The q1-component of pr ◦ Γ+ : S1 → Rn takes its minimum at 0 ∈ S1,

• The q1-component of pr ◦ Γ− : S1 → Rn takes its maximum at 0 ∈ S1.

Then there exist γ+ : S1 → R≥0 × Rn−1 and γ− : S1 → R≤0 × Rn−1 such
that γ+ − pr ◦ Γ+ and γ− − pr ◦ Γ− are constant maps from S1 to Rn.

Remark 6.4. By Lemma 5.5, γ+ and γ− are nonconstant.

Lemma 6.5. (i): For any a ∈ R≥0 and x ∈ R≥0 × Rn−1,

γ+a,x : S1 → Rn; t 7→ aγ+(t) + x

satisfies lenK′(γ+a,x) ≤ cEHZ(C
+).

(ii): For any a ∈ R≥0 and x ∈ R≤0 × Rn−1,

γ−a,x : S1 → Rn; t 7→ aγ−(t) + x

satisfies lenK′(γ−a,x) ≤ cEHZ(C
−).

Proof. Since γ+a,x(S
1) ⊂ R≥0 × Rn−1 and K ′ ∩ pr−1(R≥0 × Rn−1) ⊂ C+,

there holds lenK′(γ+a,x) ≤ lenC+(γ+a,x). On the other hand, Lemma 5.7 im-
plies lenC+(γ+a,x) ≤ cEHZ(C

+), which completes the proof of (i). The proof
of (ii) is similar to the proof of (i). □

For any (s, t, x2, . . . , xn) ∈ (R2 \ (R<0)
2)× Rn−1, we define γs,t,x2,...,xn

:
S1 → Rn as follows:

• When s ≤ 0 and t ≥ 0,

γs,t,x2,...,xn
(θ) :=

®

t · γ+(2θ) + (−s, x2, . . . , xn) (0 ≤ θ ≤ 1/2)

(−s, x2, . . . , xn) (1/2 ≤ θ ≤ 1).

• When s, t ≥ 0,

γs,t,x2,...,xn
(θ) :=

®

t · γ+(2θ) + (0, x2, . . . , xn) (0 ≤ θ ≤ 1/2)

s · γ−(2θ − 1) + (0, x2, . . . , xn) (1/2 ≤ θ ≤ 1).

• When s ≥ 0 and t ≤ 0,

γs,t,x2,...,xn
(θ) :=

®

(t, x2, . . . , xn) (0 ≤ θ ≤ 1/2)

s · γ−(2θ − 1) + (t, x2, . . . , xn) (1/2 ≤ θ ≤ 1).
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Then, Lemma 6.5 implies

sup
(s,t,x2,...,xn)∈(R2\(R<0)2)×Rn−1

lenK′(γs,t,x2,...,xn
) ≤ cEHZ(C

+) + cEHZ(C
−) < A,

thus one can define a map

ℓA : (R2 \ (R<0)
2)× Rn−1 → ΛA

K′ ; (s, t, x2, . . . , xn) 7→ γs,t,x2,...,xn
.

It is easy to check that ℓA is continuous with respect to the L1,2-topology
on Λ. For any (x1, . . . , xn) ∈ Rn, let c(x1,...,xn) denote the constant map from
S1 to (x1, . . . , xn).

Lemma 6.6. (i): For any r ∈ R≤0,

γr,0,x2,...,xn
= c(−r,x2,...,xn), γ0,r,x2,,...,xn

= c(r,x2,...,xn).

(ii): There exists R ∈ R>0 such that

max{|s|, |t|, |(x2, . . . , xn)|} > R =⇒ lenK′(γs,t,x2,...,xn
) = −∞.

Proof. (i) follows directly from the definition. To prove (ii), let us take R > 0
so that the following conditions hold:

Bn(R) ⊃ pr(K ′), R ·min{diam(γ+(S1)), diam(γ−(S1))} ≥ diam(pr(K ′)).

Here Bn(R) := {q ∈ Rn | |q| ≤ R} and diam denotes the diameter. Note that
the second condition can be achieved when R is sufficiently large, since γ+

and γ− are both nonconstant maps (see Remark 6.4).
Let us prove that such R satisfies the required conditions: if

lenK′(γs,t,x2,...,xn
) > −∞ (which is equivalent to γs,t,x2,...,xn

(S1) ⊂ pr(K ′))
then max{|s|, |t|, |(x2, . . . , xn)|} ≤ R. It is sufficient to consider the following
three cases:

• s ≤ 0 and t ≥ 0 : Since t · diam(γ+(S1)) ≤ diam(pr(K ′)), we obtain t ≤
R. Since γs,t,x2,...,xn

(0) = (−s, x2, . . . , xn) ∈ pr(K ′) ⊂ Bn(R), we ob-
tain |s|, |(x2, . . . , xn)| ≤ R.

• s, t ≥ 0 : Since t · diam(γ+(S1)), s · diam(γ−(S1)) ≤ diam(pr(K ′)), we
obtain t, s≤R. Since γs,t,x2,...,xn

(0)=(0, x2, . . . , xn)∈pr(K
′)⊂Bn(R),

we obtain |(x2, . . . , xn)| ≤ R.

• s ≥ 0 and t ≤ 0 : this case is similar to the first case.
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□

Let us define h : Rn → (R2 \ (R<0)
2)× Rn−1 by

h(x1, x2, . . . , xn) =

®

(−x1, 0, x2, . . . , xn) (x1 ≥ 0),

(0, x1, x2, . . . , xn) (x1 ≤ 0).

Then Lemma 6.6 (i) implies ℓA ◦ h(x1, . . . , xn) = c(x1,...,xn). By Lemma 6.6
(ii), when R ∈ R>0 is sufficiently large,

Hn(ℓ
A ◦ h) : Hn(R

n,Rn \Bn(R))→ Hn(Λ
A
K′ ,Λ−∞

K′ )→ Hn(Λ
A
K′ ,Λ0

K′)

is zero. We may also assume that pr(K ′) ⊂ Bn(R). Now the diagram

Hn(R
n,Rn \ pr(K ′))

Hn(jAK′ )// Hn(Λ
A
K′ ,Λ0

K′)

Hn(R
n,Rn \Bn(R))

OO

Hn(ℓA◦h)

55

commutes, the vertical map is surjective (since pr(K ′) is star-shaped) and
the diagonal map is zero, thus Hn(j

A
K′) = 0, which completes the proof

of (13). □

7. Proof of Proposition 1.11

First let us introduce a few notations. For any S ⊂ Rn, let

D∗S := {(q, p) ∈ T ∗Rn | q ∈ S, |p| ≤ 1},

w(S) := inf{suph− inf h | h ∈ C∞
c (Rn), |dh(x)| ≥ 1 for any x ∈ S},

r(S) := sup{r | there exists q ∈ Rn with Bn(q : r) ⊂ S}.

Bn(q : r) denotes the closed ball in Rn with center q and radius r.
Our goal is to show that, for any bounded B ⊂ T ∗Rn and any ε ∈ R>0,

there exist compact star-shaped setsK1,K2 ⊂ T ∗Rn such that B ⊂ K1 ∪K2

and e(K1), e(K2) < ε. Note that, for any compact K ⊂ T ∗Rn and a > 0,
there holds e(aK) = a2e(K). Thus we may assume that B is a subset of
D∗Bn(1) = {(q, p) ∈ T ∗Rn | |q|, |p| ≤ 1}.
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For any nonempty compact S ⊂ Rn, there holds

e(D∗S) ≤ 2w(S) ≤ Cnr(S)

where Cn is a positive constant which depends only on n. The first inequality
is proved in Lemma 4 of [16], and the second inequality is proved in Sec-
tion 2.2 of [16], although notations and settings in this section are slightly
different from those in [16].

For any θ, let Rθ denote the anti-clockwise rotation of R2 with center
(0, 0) and angle θ. For any integer N ≥ 1, let

T (N) := {(r cos θ, r sin θ) | 0 ≤ r ≤ 1, 0 ≤ θ ≤ π/N} ⊂ R2.

Moreover, for any i ∈ {1, 2}, let us define Si(N) ⊂ R2 and S̄i(N) ⊂ Rn by

Si(N) :=

N−1
⋃

j=0

R (i+2j−1)π

N

(T (N)), S̄i(N) :=

®

Si(N) (n = 2)

Si(N)×Bn−2(1) (n ≥ 3).

Then D∗S̄i(N) ⊂ T ∗Rn is a compact star-shaped set for any i ∈ {1, 2}, and
there holds

B ⊂ D∗Bn(1) ⊂ D∗S̄1(N) ∪D∗S̄2(N).

On the other hand, for any N and i,

r(S̄i(N)) ≤ r(Si(N)) ≤ r(T (N)) ≤
π

2N
.

Thus, if N > πCn

2ε , then max1≤i≤2 e(D
∗S̄i(N)) < ε. One can complete the

proof by taking such N and setting Ki := D∗S̄i(N) (i = 1, 2). □
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