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Symplectic homology of fiberwise convex

sets and homology of loop spaces
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For any nonempty, compact and fiberwise convex set K in T*R",
we prove an isomorphism between symplectic homology of K and
a certain relative homology of loop spaces of R™. We also prove a
formula which computes symplectic homology capacity (which is a
symplectic capacity defined from symplectic homology) of K using
homology of loop spaces. As applications, we prove (i) symplectic
homology capacity of any convex body is equal to its Ekeland-
Hofer-Zehnder capacity, (ii) a certain subadditivity property of
the Hofer-Zehnder capacity, which is a generalization of a result
previously proved by Haim-Kislev.
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1. Introduction
1.1. Symplectic homology and the capacity cgy

Let n be a positive integer. Let us consider coordinates qi,...,qn,P1,---,Pn
on T*R"™, where q1,...,q, are coordinates on R™ and py,...,p, are coordi-
nates on fibers with respect to the global frame dqy, ..., dg,. We often ab-
breviate (q1,...,¢,) by ¢ and (p1,...,pn) by p. Let w, := Zlgz‘gn dp; dg; €
O?(T*R™). For any nonempty compact set K C T*R" and real numbers
a < b, one can define a Z-graded Z/2-vector space SH () (K), which is called
symplectic homology (see Section 2.2 for details).

Remark 1.1. Throughout this paper, all (co)homology groups are defined
over 7 /27, unless otherwise specified.

When K satisfies certain nice conditions, we say that K is a restricted
contact type (RCT) set (see Definition note that our definition of RCT
sets is slightly more generalized than the usual definition). Any compact
star-shaped (in particular, convex) set is a RCT set (Lemma . For any
RCT set K € T*R"™ and a € R+, there exists a natural linear map

i Hyon(T*R™, T*R" \ K) — SH " (K).

See Section 2.3 for the definition of i%. Also, as we define in Section 2.4,
there exists a canonical element v% ®" € Ha, (T*R™, T*R™ \ K). Then let us
define the following numerical invariant:

csu (K) := inf{a € Ry | i% vk ®") = 0}.
In this paper, the invariant cgy is called symplectic homology capacity.

Remark 1.2. The first symplectic capacity defined from symplectic ho-
mology was introduced by Floer-Hofer-Wysocki [9], who defined a capacity
(denoted by crppw) for arbitrary open sets in the symplectic vector space.
The above definition of cgyy is due to Hermann [I4], which is based on the
idea by Viterbo [23] (see Section 5.3 of [23]). Indeed, Hermann (Proposition
5.7 of [14]) proved that (in the language of the present paper) any C*°-RCT
set K (see Definition satisfies csp (K) = cppgw(int (K)). Here int (K)
denotes the interior of K.

Although symplectic homology and the capacity csg are fundamental
quantitative invariants of subsets of the symplectic vector space, they are
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notoriously difficult to compute, or even to estimate. This is because sym-
plectic homology is a version of Floer homology, whose definition involves
counting solutions of nonlinear PDEs (so called Floer equations), thus it is
very difficult to compute these invariants directly from definitions. The core
results of this paper, which we discuss in Section 1.2, enable us to investigate
these invariants via computations of homology of loop spaces.

1.2. Main results

The core results of this paper are Theorem and Corollary Corol-
lary has two applications: Theorem and Theorem [I.8] The goal of
this subsection is to describe these four results.

Theorem [3.4shows that, for any nonempty compact set K C T*R™ which
is fiberwise convex (i.e. K NT, 4 R™ is convex for every q € R™), symplectic
homology of K is isomorphic to a certain relative homology of loop spaces of
R™. Theorem [3.4] is a version of the well-known isomorphism between Floer
homology of cotangent bundles and homology of loop spaces. Indeed, the
proof of Theorem [3.4] heavily relies on the proof by Abbondandolo-Schwarz
[3] of this isomorphism.

Corollary which is an easy consequence of Theorem shows that
if K is a RCT set then csy (K) is equal to a certain min-max value defined
from homology of loop spaces. In the rest of this subsection, we present two
applications of Corollary Theorem and Theorem

To state Theorem let us recall the definition of the Ekeland-Hofer-
Zehnder capacity (which we denoted by cgpz) of convex bodies. For defini-
tions of “symplectic action” and “closed characteristics”, see Section 2.3.

Definition 1.3. K C T*R" is called a convez body if K is compact, convex,
and int (K) # (0. When 0K is a C*°-hypersurface, then its Ekeland-Hofer-
Zehnder capacity cgpnz(K) is defined as the minimum symplectic action of
closed characteristics on 0K. For arbitrary convex body K, we define

cenz(K) := inf{cgnz(K’) | K’ is a convex body with
C*-boundary such that K C K'}.

Now let us state our first application of Corollary [3.8}
Theorem 1.4. csy (K) = cguz(K) for any convexr body K C T*R™.

Remark 1.5. e Theorem|L.4]is also proved by Abbondandolo-Kang [1].
Their proof is based on an isomorphism (which is the main result of [1])
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between the filtered Floer complex of a convex quadratic Hamiltonian
on T*R™ (satisfying some technical conditions) and the filtered Morse
complex of its Clarke dual action functional.

e Using S'-equivairiant symplectic homology, one can define a sequence
of capacities (ch «1)k>1. Felix Schlenk [21] pointed out that, assum-
ing some standard properties of these capacities, Theorem [I.4] implies
céH s1(K) = cgn (K) for any convex body K C T*R™; see Section 2.5

for details.

Theorem is motivated by the following folk conjecture, which says
that all symplectic capacities on T*R™ coincide for convex bodies (see Section
5 of [20] and the references therein):

Conjecture 1.6. Let ¢ be any symplectic capacity on T*R™; namely, c is a
map from the set of all subsets of T*R™ to [0, 00] which satisfies the following
three properties:

e For any S C T C T*R"™, there holds c(S) < ¢(T).

e For any S C T*R", a € Ryg and ¢ € Diff (T*R™) such that p*w, =
awn,, there holds c(¢(S)) = ac(9).

o c({(g;p) € T*R" | |¢]* + Ip|* < 1}) = c({(¢,p) € T*R"™ | ¢} + p7 < 1})

= T.

Then ¢(K) = cguz(K) for any convex body K.

Conjecture [1.6]is still widely open. As far as the author knows, Conjec-
ture [1.6] was verified only for the first equivariant Ekeland-Hofer capacity
and the Hofer-Zehnder capacity. The result for the first equivariant Ekeland-
Hofer capacity was mentioned by Viterbo (Proposition 3.10 of [22]), and a
detailed proof can be found in Section 6 of Gutt-Hutchings-Ramos [12]. The
result on the Hofer-Zehnder capacity is due to Hofer-Zehnder [15]. Theo-
rem verifies Conjecture for the symplectic homology capacity csy .

Our second application of Corollary is a certain subadditivity prop-
erty of the Hofer-Zehnder capacity. Let us recall the definition of the Hofer-
Zehnder capacity:

Definition 1.7. H € C°(T*R",R>) is called Hofer-Zehnder admissible
if there exists a nonempty open set U C T*R" such that H|y = max H, and
every nonconstant periodic orbit of its Hamiltonian vector field Xp (see the
first paragraph of Section 2 for our convention) has period strictly larger
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than 1. Let %4 denote the set of all Hofer-Zehnder admissible functions
on (T*R™ wy). For any S C T*R™ such that int (S) # 0, its Hofer-Zehnder
capacity cpyz (S) € Rsg is defined as

cnz (S) :=sup{max H | H € 4, supp H C S}.
Now we can state our second application of Corollary

Theorem 1.8. Let K be any compact set in T*R™ with int (K) # 0, and
IT be any hyperplane in T*R™ which intersects int (K). Let II" and I1~ be
distinct closed halfspaces such that OIIT = OII~ = II. Then, setting K+ :=
KNI and K~ := K NII~, there holds

CHYZ (K) < CEHz(CODV (K+)) + CEHZ (CODV (K_)),
where conv denotes the convex hull.

Theorem [1.§] can be rephrased as follows: for any K and II such that
K* and K~ are convex, cnz (K) < cgnz(K™) + cgaz(K ™). In particular,
we recover the following result by Haim-Kislev [I3] as a corollary:

Corollary 1.9 ([13] Theorem 1.8). Let K be any convex body in T*R™
and 1T be any hyperplane in T*R™ which intersects int (K). Then, cpnz(K) <
cenz(K™) + cpnz(K 7).

The proof in [I3] uses a combinatorial formula (Theorem 1.1 of [13])
which computes the EHZ capacity of convex polytopes, and it seems difficult
to extend this proof to prove Theorem when K is not convex.

Theorem [I.§]is inspired by the following conjecture by Akopyan-Karasev-
Petrov [0]:

Conjecture 1.10 ([5]). Let K, K;,..., K, be convexr bodies in T*R™. If
K C U;Zl Ki, then CEHz(K) < Z:Zl CEHZ(Ki)-

In [5], Conjecture was verified for hyperplane cuts of round balls,
which was later generalized to hyperplane cuts of arbitrary convex bod-
ies (Corollary . Note that the convexity of Kj,..., K, is essential in
Conjecture as shown by examples in Section 5.1 of [5], for which the
subadditivity fails without the convexity assumption. Let us also mention
the following Proposition [I.11], which gives another such example. The proof
of Proposition [I.11} which we explain in Section 7, is elementary.
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Proposition 1.11. Let n > 2 be an integer. For any bounded B C T*R"
and any € € Rwg, there are compact star-shaped sets K1, Ko C T*R"™ such
that B C K1 U Ks and e(K1),e(K2) < €, where e denotes the Hamiltonian
displacement energy.

On the other hand, it seems unknown if the following conjecture, which
is stronger than Conjecture holds true.

Conjecture 1.12. For any convex bodies K1, ..., K., in T*R",

m m

enz ( U K;) < ZCEHZ(KZ‘)-

i=1

As far as the author knows, Theorem is the first verification of Con-
jecture [1.12]in a situation not covered by Conjecture [1.10

1.3. Structure of this paper

Let us explain the structure of this paper. In Section 2 we review basics of
symplectic homology. In particular, we recall the definition of the capacity
csy and explain its basic properties. In Section 3, we state Theorem [3.4]
and deduce Corollary [3.8 from Theorem [3.4] Section 4 is devoted to the
proof of Theorem [3.4] which is based on the “hybrid moduli space” method
of Abbondandolo-Schwarz [3]. The outline of the proof is sketched in the
first paragraph of Section 4. Section 4 is the most technical section, and can
be skipped at the first reading. In Section 5 we prove Theorem [1.4] and in
Section 6 we prove Theorem Using Corollary these results can be
proved by elementary arguments about loop spaces. In particular, the key
estimate is Lemma(5.7] In Section 7, we prove Proposition [I.11] This section
can be read independently from Sections 2—6.

Acknowledgement. The author thanks Felix Schlenk for pointing out
an application discussed in Section 2.5, and his comments on an earlier
version of this paper. The author also thanks Alberto Abbondandolo and
Jungsoo Kang for sharing their manuscript [I] and having discussions about
relations between their approach and the author’s. Finally, the author thanks
the referee for many comments which are very helpful to improve readabil-
ity of this paper. This research is supported by JSPS KAKENHI Grant
No.18K13407 and No.19H00636.
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2. Symplectic homology and the capacity csy

For any h € C*°(T*R"), its Hamiltonian vector field X;, € 2 (T*R") is de-
fined by wy,(Xy, - ) = —dh(-). Let S* := R/Z. For any H € C>®(S! x T*R")
and t € S1, we define H; € C(T*R"™) by Hy(q,p) := H(t,q,p). Let

P(H) = {y: 8" = T'R" [4(t) = X, (+(t)) (vt € S1)}.

vy € P(H) is called nondegenerate if 1 is not an eigenvalue of (dej;)4(0),
where (SDtH)OStSI denotes the Hamiltonian isotopy generated by H.

Remark 2.1. The isotopy (¢4 )o<t<1 may not be globally defined, but it
is defined at least on a neighborhood of ~(0).

2.1. Filtered Floer homology

In this subsection, we review basic facts about filtered Floer homology of
(time-dependent) Hamiltonians on C™ which are compact perturbations of
quadratic functions. The results in this subsection are essentially contained
in [7]. However, here we mainly follow [I8], since the class of Hamiltonians
we consider is slightly different from that in [7].

For any H € C®(S! x T*R") we consider the following conditions:

(HO): Every v € &Z(H) is nondegenerate.
(H1): There exist A € Ry \ 7Z and B € R such that the function

H(t,q,p) — A(lg]* + [p]>) — B € C=(S" x T*R")

is compactly supported.

In the following we assume that H € C*°(S! x T*R") satisfies (H0) and
(H1). Note that (H1) implies that all elements of &?(H) are contained in a
compact subset of T*R™. This is because on the complement of a sufficiently
large compact set, every orbit of Xy is periodic with the minimal period
equal to %. By A ¢ 7Z, there exists no periodic orbit with period 1 on the
complement. Moreover (HO) implies that &?(H) is discrete, thus it is finite.

For any real numbers a < b and k € Z, let CF La’b)(H) denote the Z/2-
vector space spanned by

{ye ZH) | Zu(y) € la,b), indcz (v) = k}.
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Here, ind ¢z denotes the Conley-Zehnder index (see Section 1.3 of [7]) and
oy is defined by

() = /S 1 7(2 pidqi> — Hy(~(t)) dt.

To define a boundary operator on CF La’b) (H), we take J = (J;)iest,
which is a C'®°-family of almost complex structures on T*R" with the fol-
lowing condition:

(J1): Forevery t € S!, J; is compatible with respect to wy,. Namely, g, (v, w)
:= wp (v, Jyw) is a Riemannian metric on T*R".

For any J satisfying (J1) and z_, x4 € Z(H), we define
My, g(x-,2y) = {u:Rx S = T*R" | du — J;(8u — Xp,(u)) =0,
lim ws =y}

s—+oo

Here s denotes the coordinate on R, ¢ denotes the coordinate on S!, and
us : ST — T*R™ is defined by us(t) := u(s,t). We set

My (2 xi) = Mg (v—,24) /R,
where the R action on 4y j(x_,z4) is defined by
(r-u)(s,t) :=u(s—rt) (ue My j(x—,zy), r€R).

Let us define the standard complex structure on T*R"™, which is denoted
by Jstd , by

JStd (8171) = BQN JStd (aqz) = _8pi (1 < i < Tl)

Lemma 2.2. Suppose H satisfies (HO) and (H1), J satisfies (J1), and
supsegt ||J — Jstd ||co is sufficiently small. Then

sup lu(s,t)] < oco.
r_ o €P(H)
uEMu, j(x_,x4)
(s,t)ERx ST

Proof. This lemma follows from Lemma 2.3 in [I§]; note that conditions
(HO), (J1) in [I8] are the same as (HO), (J1) in this paper, and the condition
(H1) in [18] is weaker than (H1) in this paper. O
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For a generic (with respect to the C*°-topology) choice of J, the moduli
space A j(z—,x4) is cut out transversally for any pair (z_,z). For any
such J, Ay j(x_,zy) is a finite set if ind ¢z (v4) = ind ¢z (z_) — 1, and the
linear map

dm,y - CF &V (H) — CF 1) (1),
T+ Z Holly j(r—,x4) T4

ind CZ (cc+):1nd CZ (33,)—1

satisfies 8%17 7 = 0, where #32 denotes the cardinality modulo 2. The homology

of the chain complex (CF La’b)(H ), Om,.y) does not depend on the choice of J.
This homology is denoted by HF La’b) (H) and called filtered Floer homology
of H. For any a,b,a’,b' € R with a <b, a’ <V, a<a and b <V, one can
define a natural linear map HF La’b)(H ) — HF La/’b/)(H ).

Remark 2.3. As we remarked at the beginning of this subsection, the fact
8}2117 ;7 =0, as well as the independence of the homology on the choice of J,
are due to [7] and references therein.

Suppose that H—, HT € C°(S! x T*R") satisfy (H0), (H1) and
(1) H™(t,q,p) <H*(t.q,p)  (V(t.q,p) € S' x T"R").

Then, for any real numbers a < b one can define a linear map (called mono-
tonicity map)
HF Y (g~) - HF Y (g

as follows. First, we take J~ = (J; )ies: and J* = (J;")sest such that J—
defines a boundary map on CF ,(H~) and J* defines a boundary map on
CF.(H"). Next, we take a C*°-family of Hamiltonians H = (Hy ) (s.1)erx s
and a C'*°-family of almost complex structures J = (Js ) (s +)erx st such that
the following conditions hold:

Hﬁ(tv Qap) (8 < _SO)
H*(t,q,p) (5> —s0),
(HH2): dsHs(q,p) > 0 for any (s,t,q,p) € R x ST x T*R".

(HH3): There exist a(s), b(s) € C*°(R) such that the following conditions hold:
e d/(s) >0 for any s.
e a(s) e nZ = d/(s) > 0.

(HH1): There exists so > 0 such that Hy(q,p) = {
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e Setting A, (q,p) := H(s,t,q,p) — a(s)(|q* + Ip|*) — b(s), there
holds

sup || As tllcrpemny < 00, sup [ 9sAs tl|co(rerny < 00.

(s,t) (s,t)

J; (s < —s1)

JJ1): There exists s; > 0 such that Jg; =
Iy ' ! {JEL (s = s1).

(JJ2): For every (s,t) € R x S, J;; is compatible with wy,.

Remark 2.4. For any H~ and H™ satisfying (HO), (H1) and , there
exists H = (Hst)(sp)erxst satisfying (HH1), (HH2) and (HH3), as we ex-
plained in pp.517 of [I§]. Let us repeat the explanation for the convenience of
the reader. Take p € C*°(R) such that p|r_, =0, p|r., = land 0 < p(s) < 1,
p'(s) > 0 for any 0 < s < 1. Then let us define H :7(H5’t)(s’t)€]R><Sl by

Hii(q,p) := (1= p(s))H (t,q,p) + p(s)HT (t,q,p).

On the other hand, the existence of J = (Js ) (s,¢)erxst satisfying (JJ1) and
(JJ2) is straightforward from the fact that the set of almost complex struc-
tures compatible with w, is contractible.

For any H = (Hs ) (s,t)erxst and J = (Js1)(s,)erx s satisfying the above
conditions, and for any x_ € Z(H ") and x4 € Z(H™), we consider the
moduli space

My g(w—,xy) = {u:Rx St = T*R" |
Osu — Js4(Opu — Xpg, () =0, lim w, =24}

s—+oo

Lemma 2.5. Suppose that H satisfies (HH1), (HH2) and (HH3). If J satis-
fies (JJ1), (JJ2) and sup(s yerxst [|Jst — Jsta oo is sufficiently small, then

sup lu(s,t)] < oo.
v €P(H)w eP(HY)
uEMn, (T, z4)
(s,t)ERxS?

Proof. See Lemma 2.4 in [I§]. O

For a generic choice of (H,J) which satisfies the assumptions in
Lemma My j(x—,xy) is cut out transversally for any pair (z_,z4).
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In particular, .#py j(x—,z4) is a finite set if ind ¢z (z4) = ind ¢z (z—), and
the linear map

o:CFY(H ) = cF P

T_ > Ho My, (r—,204) Ty

ind Ccz (.1’+):in Cz (Z‘,)
satisfies Og+ j+ 0o ® = ® 0 9y~ j-. The induced map on homology
: [a,b) (g7 [a,b) ¢ 1+
does not depend on the choice of (H, J); see Section 4.3 of [7]. This completes
the definition of the monotonicity map.
For any HO, H', H? € C>(S! x T*R") satisfying (H0), (H1) and
H'(t,q,p) < H'(t,q,p) < H(t,q,p)  (V(t,q,p) € S' x T*R"),

the diagram

HF ) (H0) HF ) (12)

\/

HF % (g)

commutes (all three maps are monotonicity maps).

2.2. Symplectic homology

For any nonempty compact set K in T*R", let J¢ denote the set of
H € C°(S' x T*R™) which satisfies (H0), (H1) and H(t,q,p) < 0 for any
(t,q,p) € S' x K. Then % becomes a directed set by setting H° < H!
if and only if H°(t,q,p) < H'(t,q,p) for any (t,q,p) € S' x T*R™. For any
real numbers a < b, we set

SHI(K) =l HF (1),
He

where the limit is taken by monotonicity maps.
For any a,b,a’,b' € R with a < b, o’ <V, a <d/, b <V, and nonempty
compact sets K’ C K, one can define a natural linear map SH La’b)(K ) —
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SH Eﬁa/’b/)(K "). Also, for any ¢ € R one can define a natural isomorphism

SH*Y (k) = SHIE ) (k).
This follows from an isomorphism of filtered Floer homology HF La’b)(H ) =
HF o b)(Hc), where H.(z) := ¢*H(z/c).

2.3. Symplectic homology of RCT sets

Let us start from our definition of RCT (restricted contact type) sets:

Definition 2.6. Let K be a compact subset of T*R".

e K is called a C*®°-RCT set, if K is connected, int K # (), K is of C°,
and there exists X € 2 (T*R"™) which satisfies the following properties:
— Lxw, = wg,
— X points strictly outwards at every point on 0K.

o K iscalled a RCT set, if there exists a sequence (K;);>1 which satisfies
the following properties:
— K; is a C°°-RCT set for every ¢,
— K;41 C K; for every i,
-NZ K= K.

Remark 2.7. Usually, “restricted contact type domain” is defined as a
domain (i.e. connected open set) such that its closure is a C*°-RCT set in
the above sense (see e.g. Definition 1.3 in [14]). Thus, the above definition
of RCT set is slightly more generalized than the usual definition.

K C T*R"™ is called star-shaped if there exists x € K such that ty + (1 —
t)r € K for any y € K and t € [0,1]. In particular any convex set is star-
shaped.

Lemma 2.8. Any compact and star-shaped set in T*R"™ is a RCT set.

Proof. Suppose that K C T*R" is compact and star-shaped. We may as-
sume that (0,...,0) € K and ty € K for any t € [0,1] and y € K. Let S :=
{(q,p) € T*R™ | |q|?> + |p|*> = 1}. Then there exists a function f:S — Rx
such that

K={tylyeS 0<t< f(y)}

It is easy to see that f is upper semi-continuous. Thus there exists a se-
quence (f;)j>1 in C*°(S,Rs¢) such that f;(y) > fj+1(y) for every y € S and
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j>1,and f(y) = limjo fj(y). Forevery j > 1, Kj:={ty |y € S,0<¢t <
fi(y)} is a C°-RCT set, since X 1= > | p;0y, + q;0,, satisfies Lyw, =
wp, and is transversal to OK;. Then (Kj);>1 is a decreasing sequence of
C*°-RCT sets satisfying ﬂ‘;‘;l K; = K, thus K is a RCT set. g

Let K be a C*°-RCT set in T*R". The distribution ker(wy,|gx) on 0K
defines a 1-dimensional foliation of 0K, which is called the characteristic fo-
liation of OK. Closed characteristics are closed leaves of this foliation which
are diffeomorphic to S'. Let 2(0K) denote the set of closed characteristics.
The distribution ker(wp|gx) is oriented so that v € ker(wy|gx) is positive
if and only if w,(X,v) >0, where X is any vector on 9K which points
strictly outwards. With this orientation, for each v € Z(9K) we define its
symplectic action /() by

A (7) i—L<Zp¢dqi>.

Lemma 2.9. Let K be any C*°-RCT set in T*R™. Then every v € Z(0K)
satisfies </ () > 0. Moreover, there exists o € P(0K) such that </ (yo) =

inf, e o (a5) 7 (7).

Proof. By definition of C°°-RCT sets, there exists X € 2 (T*R") which
satisfies L xw, = w, and points strictly outwards on 0K. Let us define \ €
QYT*R") by A :=ixw,. Then X is a contact form on OK, and when R,
denotes its Reeb vector field (i.e. ig, (d\) =0 and A(R)) = 1), Z(0K) is
the set of simple closed orbits of Ry. Moreover, for every v € Z(0K), /()
is equal to the period of v as an orbit of Ry. Then inf,cpor) < (7) is
positive, since K is compact and R) is nonzero at every point on 0K. To
show that there exists a closed orbit which attains the infimum, let (7;);>1 be
a sequence in & (0K) such that o7 (v;) converges to the infimum as j — oo.
Let us take p; on v, for each j, and let p be the limit of a certain subsequence
of (pj);. Then the orbit «¢ which passes through p is closed, and #7(vy) is
equal to the infimum. O

For any C*°-RCT set K C T*R", we denote cmin(K) :=min,c »@x) < (7)-
When K is convex, cyin(K) is also denoted by cguz(K) (see Definiton .

Lemma 2.10. For any C*°-RCT set K C T*R"™ and ¢ € (0, cmin(K)), one
can assign an isomorphism SH ) (K) 2 Hoyn (T*R™, T*R™ \ K) so that the
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diagram

Hy (TR, TR\ K) — H, 1 (T*R?, T*R" \ K”)

% F

sH ) (K) sH <) (k")

commutes for any C*-RCT sets K' C K and 0 < e <&’ < min{emin(K),
Cmin(K')}.

Proof. The isomorphism
SH")(K) = H,,,(K,0K) = H, ,,(T*R", T*R" \ K)

follows from the third bullet in Proposition 4.7 of [I4]. The commutativity
of the diagram follows from the construction of this isomorphism. O

Remark 2.11. For any convex body K and ¢ € (0, cguz(K)), there exists
a natural isomorphism SH ) (K) = Hoy o (T*R™, T*R™ \ K) obtained as

SH LO,&) (K) o hgrl SH LO,E) (K/) ~ hg H*+n(T*Rn7 T*Rn \ Kl)
K/ K/
= *-‘rn(T*an T*R" \ K)’

where K’ runs over all convex bodies with C*> boundaries such that K’ D K.
The second isomorphism holds since cgnz(K') > &, which follows from the
monotonicity of the EHZ capacity cpuz(K') > cpuz(K).

By Lemma for any C'°°°-RCT set K we obtain an isomorphism

H, (TR, T'R" \ K) = Jim SH ().
e—0
Then, for any a € Ry, we can define a linear map
i+ Hopn(TR™, T*R™\ K) 2 1im SH ' (K) — SH P (K).
e—0

The following diagram commutes for any C°°-RCT sets K/ C K and a < d’:

(2) Hyyn(T*RY, T*R?\ K) — H, o(T*R?, T*R" \ K")

a .o/
'K J{ \LZ;}/

sH ) (k) su ) (k).
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Also, the following diagram commutes for any ¢ € R<q:

(3) Hypn(T*R™, T*R™ \ K) —=> H, ,,(T*R", T*R" \ cK)
SH " (k) SH <) (cK).

1%

Now let us define the map % : Hypro(T*R", T*R" \ K) — SH Lo’a)(K)
for any RCT set K and a € R~(. Notice that there are natural isomorphisms

H.on(T'R", T*R" \ K) = lig Ho . (T*R", T*R™ \ K7),
K/

SHI () = limg SH P (K),
KI

where K’ runs over all C®°-RCT sets with KX’ D K. Then one can define 1%
as the limit of (1%, )k >Kk.

2.4. Symplectic homology capacity csy

To define the capacity cgpr, we first need the following definition. Recall that,
in this paper all (co)homology groups are defined over Z/2, unless otherwise
specified.

Definition 2.12. For any R-vector space V of dimension d € Z~q and a
compact subset K C V, we define v}, € Hy(V,V \ K) in the following man-
ner.

e If K is convex, then Hy(V,V \ K) =2 Z/2. Then we define v}, to be the
unique non-zero element of Hy(V,V \ K).

e When K is an arbitrary compact subset of V', take a compact con-
vex set K’ C V satisfying K C K', and let igr : Hy(V,V\ K') —
Hy(V,V \ K) be the linear map induced by idy : (V,V \ K') — (V,V'\
K). Then it is easy to see that ix k(1)) does not depend on the choice
of K'. Then we define v}, = if g (v),).

Now, for any RCT set K C T*R", we define

csi (K) = inf{a € Ry | i% vk ®") = 0}.
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The invariant cgg will be called symplectic homology capacity. The next
lemma summarizes some properties of the capacity cgp. The properties (i),
(i), (iii) are (respectively) called conformality, monotonicity, and spectrality.

Lemma 2.13. (i): For any RCT set K and ¢ € R+, there holds csy (cK)
= c%cgp (K).

(ii): For any RCT sets K' C K, there holds csu (K') < csu (K).

(iii): For any C*°-RCT set K, there exist v € Z(0K) and m € Z>1 such
that csir (K) = m - o/ (7). In particular cgp (K) > ¢min(K).

Proof. (i) follows from the commutativity of (3], and (ii) follows from the
commutativity of ([2). (iii) is proved in Corollary 5.8 of [I4] under the assump-
tion that 0K has a nice action spectrum (see pp. 342 of [14] for its definition).
Since K has a nice action spectrum for C'*°-generic K (Proposition 2.5 of
[14]), one can remove this assumption by the limiting argument. O

2.5. Sl-equivariant symplectic homology capacities

For any C*°-RCT set K C T*R"™ (in general, for any Liouville domain)
and a €1R>0, one can define the S'-equivariant symplectic homology
sp [0S (K) and a linear map

(i5)5" - HEL(T'R", T*R"\ K) — SH (K),

where HY' (T*R™ T*R™\ K) is the S'-equivariant homology with the
trivial Sl-action on (T*R",T*R"\ K), thus canonically isomorphic to
H,(T*R*, T*R" \ K) ® H,(CP>). For each k € Zs1, let

chyy o1 (K) := inf{a | (%)% (v ™ @ [CP*1)) = 0}

k

Let us call the invariants ¢,

capacities.

(k > 1) S'-equivariant symplectic homology

Remark 2.14. This construction goes back at least to Section 5.3 of
Viterbo [23], where the Floer-theoretic analogue of the equivariant Ekeland-
Hofer capacities [6] was introduced. This construction is revisited in recent
papers such as Gutt-Hutchings [I1] and Ginzburg-Shon [10]. In particular,
[11] introduced a sequence of capacities using positive equivariant symplec-
tic homology with rational coefficients, established basic properties of these
capacities, and gave combinatorial formulas to compute these capacities of
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convex and concave toric domains. In [I1] it is conjectured that the Gutt-
Hutchings capacities are equal to the equivariant Ekeland-Hofer capacities
for any compact star-shaped domain (Conjecture 1.9 of [I1]).

For any C"°°-RCT set K, there holds the following inequalities:
(4) Cmin(K) < ¢4y 01 (K) < csn (K).

For the first inequality, see the “contractible Reeb orbits” property in The-
orem 1.24 of [11]. For the second inequality, see Lemma 3.2 of [10].

Remark 2.15. One has to be careful since [11] and [10] use Q-coefficients,
while we work over Z /2 -coefficients. Also, the definitions of equivariant ca-
pacities in these papers use positive (equivariant) symplectic homology, and
are superficially different from our definition. However, it is straightforward
to see that the proofs in these papers also work in our setting.

F. Schlenk [21] pointed out that Theorem[L.4] combined with ({4]), implies
the following corollary:

Corollary 2.16. cgpz(K)
i T*R™.

= céH < (K) = csp (K) for any conver body K

3. Symplectic homology and loop space homology

Let pr: T*R™ — R™ denote the natural projection map, namely pr(q,p) :=
q. For any ¢ € R", we identify T/R" with pri(q).

Definition 3.1. K C T"R" is called fiberwise convezr if K,:= K NT;R"
is a convex set in TH'R™ for every ¢ € R".

Throughout this section, K denotes a nonempty, compact and fiberwise
convex set in T*R™. In Section 3.1, we state Theorem [3.4], which shows that
symplectic homology of K is isomorphic to a certain relative homology of
loop spaces of R™. The proof of Theorem is carried out in Section 4.
In Section 3.2, we deduce Corollary from Theorem [3.4] which shows
that the capacity cgi (K) is equal to a certain min-max value defined from
homology of loop spaces. In Section 3.3, we prove some technical results
about fiberwise convex functions, which are used in Section 3.1 and in the
proof of Theorem [3.4] (see Section 4.6).
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3.1. Symplectic homology and loop space homology

Let A denote the space of L'?-maps from S' = R/Z to R", equipped with
the L!2-topology. For each v € A, we define leng (7) as follows:

en = fSl (maxper, ., p-y(t))dt (v(S1) C pr(K))
(5)  leng(y): {_OO O

Example 3.2. If K is the unit disk cotangent bundle of pr(XK), namely
K ={(¢;p) € T"R" | g € pr(K), |p| < 1},
then leng () = [q. [§(t)| dt for any v € A satisfying v(S') C pr(K).
Let us summarize elementary properties of leng.

Lemma 3.3. Let K be any nonempty, compact, and fiberwise convexr set
in T*R™.
(i): (@ is well-defined. Namely, for any v € A satisfying v(S*) C pr(K),
the function p : ST — R; t maxper ,, P - Y(t) is integrable.

(ii): leng is upper semi-continuous. Namely, if a sequence (V)i in A con-
verges to y € A in the LY?-topology, then leng () > limsupy, leng (7).

(iii): Suppose that OK is of C*° and strictly convex. Let~ : St — int (pr(K))
be a C®-map such that ¥(t) #0 for every t € S*. Then, for every
t € St there exists unique p,(t) € K.y such that

t)-~(t) = max p-~(t
py(t) - 7() max p ¥(t)

. Moreover, 7 : S* — 0K defined by 5(t) := (y(t),p(t)) is of C*, and
satisfies

n
leng (7) = / ol ( Zpid(ﬁ>.
St i=1
(iv): Suppose that OK is of C* and strictly convex. Then leng is continuous
on {v € A|~(SY) C pr(K)} with respect to the L'2-topology.

(v): Let K' be any nonempty, compact, and fiberwise convex set in T*R™
which satisfies K' C K. Then leng (v) <leng () for any v € A.
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Proof. (i) and (ii) are consequences of Lemmas and Let us take a
sequence (H;);>1 as in Lemma and let Ly, denote the Legendre dual
of H; (see Lemma for the definition of Legendre dual).

Let us prove (i). Since K is compact, there exists C' > 0 such that [p| < C
for every (¢q,p) € K. Then |p,| < C - || for every v € A satisfying v(S!) C
pr(K). Since |¥| is integrable, it is sufficient to show that p, is measurable.
Lemma (ii) says that p,(t) = limje La, (7(t),7(t)) for every t € ST.
Then p, is measurable, since L, (7,7) is obviously measurable for every j.

Let us prove (ii). For each j, let us define .Z;: A - R by Zj(vy) :=
Jo1 L, (v,7) dt. Then (Z;);>1 is a decreasing sequence of continuous func-
tions on A, and leng = lim;_,o,.%; by Lemma Then leng is upper
semi-continuous.

Let us prove (iii). Since 0K is of C* and strictly convex, 0K, is of C*°
and strictly convex for any ¢ € int (pr(K)). Then, for any ¢ € S*, there exists
unique p(t) € K, which satisfies maxper , p-§(t) = p,(t) - ¥(t). More-
over, ¥ = (7, py) is of C* by the inverse mapping theorem. The last assertion

follows from ~* ( > pidqi> = p,(t) - ¥(t) dt, which is straightforward.

Let us prove (iv). First we prove that

c:pr(K) xR"—>R; (¢q,v)— maxp-v
peK,

is continuous. Let (gx, vk )r>1 be a sequence on pr(K) x R™ which converges
t0 (Goos Voo) @s k — 0o0. Then we want to show limy_, oo maXpek, P Uk =
maxpek, P Voo- By the compactness of K one has limsupy,_, ., maxpek, p-
v < MaXpek, P Voo, thus it is sufficient to show liminfy oo maxper, p-
Vg > MaXpek, P Voo Take poo € Ky 80 that pe - Voo = maxper, P Voo
We claim that there exists a sequence (p )i such that (gx, pr) € K for every
k and limg_,oo P = Poo- This claim can be verified as follows:

o If g € int (pr(K)), then there exists € > 0 such that the closed e-
neighborhood of ¢ is contained in pr(K). For each k > 1 such that
lgk — qoo| < €, let us define pj, as follows:

— If gk = goo, then pi 1= po.

— If gi # goo, then there exist (¢}, p};,) € K and t; € (0,1) such that
G0 — q3,] = € and g = trqy, + (1 — t)qgoo- Then py, := tgp) + (1 —
tk)poo-

Then it is easy to see that limg_,o0 Pk = Poo-
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o If oo € O(pr(K)), then K, = {ps} since OK is strictly convex, thus
any sequence (pg)y satisfying (qr,px) € K (Vk) satisfies limg_, o pr, =
Poo-

Now we can finish the proof of the continuity of ¢ by

liminf max p- v > lim pg - Vp = Poo * Voo-
k—oo peK,, k—o0
Now suppose that (iv) does not hold. Then there exists a sequence (V)
in {y € A|~(S") C pr(K)} which converges to 7. in the L12-topology, and
infy, [leng (%) — leng (700)| > 0. By replacing (i) with its subsequence if
necessary, we may assume limy_ oo Y (t) = Yoo (t) for almost every ¢ € S?.
On the other hand limy_, % (t) = Yoo(t) for every ¢. Thus

i e((8), (1)) = (Yoo (8), oo (2))

for almost every ¢, which implies limy_, leng (7x) = leng (7o), contradict-
ing our assumption.

Finally, (v) follows from pr(K’)C pr(K) and maxpek; (p-v) <
maxper, (p-v) for any ¢ € pr(K’) and v € R™. O

For any a € R, let A% := {y € A |leng(y) < a}. By Lemma3.3)(ii), this
is open in A with the L'2-topology. Moreover, Lemma (v) shows that if
K' C K then A% C A%,.

Theorem 3.4. For any nonempty, compact and fiberwise convexr set K C
T*R™ and real numbers a < b, one can assign an isomorphism

SHY (K) 22 H, (A, A%)
so that the diagram

(6) SHIY (K) —— H. (A%, A%)

| |

'y , ,
SH" " (K') —> H.(A, A%)
commutes for any a < a’, b <V and any fiberwise convex K' C K.

Remark 3.5. If the boundary of pr(K) C R" is of C* and K is the unit
disk cotangent bundle of pr(K’), then Theorem is essentially equivalent
to Theorem 1.1 of [18].
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Remark 3.6. It is likely that Theorem naturally extends to any non-
empty, compact and fiberwise convex set K C T*(Q) where @ is an arbitrary
closed manifold. However, since our main applications (Theorem and
Theorem make sense only on symplectic vector spaces, in this paper we
work on symplectic vector spaces.

3.2. Symplectic homology capacity and loop space homology

In this subsection, we prove a formula (Corollary which computes
csi (K) in terms of homology of loop spaces of R™. Let us recall from Section
2.4 that for any RCT set K,

csu (K) = inf{a € Rug | i% (v ®") = 0.
For any a € Ry, let us consider a map
Jic o (R",R™ \ pr(K)) — (A%, Ak)
which sends each ¢ € R” to the constant loop at q.

Lemma 3.7. Let K be any RCT set in T*R™ which is fiberwise conver.

Then, for any a € Rxo, i%(vER") € SH L?’“)(K) corresponds to

HL (5 () € Ha(Ae, A%)

. . . 0, ~
via the isomorphism SH [ a)(K) >~ H, (A%, AY).
Proof. For any R € R+ let Ki :={(q,p) € T*R" | |q|, |p| < R}.

First notice that it is sufficient to prove the lemma for K = Kp for every
R. Indeed, for any compact K C T*R", there exists R such that K C Kpg.
By the commutativity of @, we have a commutative diagram

SH " (Kp) SH " (K)

Nl lN

H, (A%, A(}(R) —— H, (A%, AY).
Then the upper horizontal map sends i‘}(R(l/}Q;R") to i%(vER"). Assum-
ing that we have proved the lemma for Kp, the left vertical map sends
i (V") to H, (j?{R)(ug(KR)), which is sent to H, (j?()(yfr?m) by the lower
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horizontal map. By the commutativity of the diagram, the right vertical map
sends i% (vEE") to H.( j}l{)(z/ll;&:(' K)), which completes the proof for K.

Thus it is sufficient to consider the case K = Kpg. It is also sufficient to
consider the case when a is sufficiently small, since for any a < b we have a
commutative digram

SH " (K p)

|

HL(Ag, A ) — HL (Al A% ).

1%

Moreover, it is sufficient to prove H, (j?(R)(VE{;E k) 7 0 for sufficiently
small a. Indeed, when a is sufficiently small, Remark implies that
sp ’a)(K R) = 7Z/2 is generated by i% (v F"). Then the isomorphism
SH [00) (KRr) = Hn(A%R3 A%, ) maps z"}gR(V};;R") to the only nonzero element
in Hn(A%R,AOKR), that is 'H*(j}l(R)'(Vgr(KR)).

The rest of the proof is essentially the same as the proof of Lemma 6.6
(2) of [18], which we repeat here for the sake of completeness. For any v € A
let len(y) := [ [¥(t)] dt, and for any a € Rsq let U%:= {y € A |len(y) <
a/R}. Also let Br :={q€R" | |q| < R} and Vg := {y € A | ~v(S!) ¢ Bgr}.
Then

%, =U"UVr, Af, =Vg

Since both U* and Vi are open sets in A, the inclusion map
(U, U"NVg) = (U U Vg, Vi) = (A%, A%,)
induces an isomorphism on homology. Thus it is sufficient to show that
¢k (R",R"\ Br) —» (U*,U*N VR)

which sends each g € R" to the constant loop at ¢, induces an injection on
homology if a is sufficiently small.

Let us define ev : A — R"™ by ev (y) := v(0). If a is sufficiently small,
then ev maps U* N Vi to R™\ {0}, and we obtain a commutative diagram

(R",R" \ Br) —*~ (U*, U N V)

ev
k l

(R™,R™\ {0}).
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The diagonal map induces an isomorphism on homology, thus H,(c%) is
injective. This completes the proof. O

As an immediate corollary of Lemma we obtain the following formula
which computes cgpy (K) from homology of loop spaces.

Corollary 3.8. For any RCT set K C T*R"™ which is fiberwise convez,
csu (K) = inf{a € Roo | He(j%) (Vi) = O}
3.3. Technical results on fiberwise convex functions

In this subsection we prove some preliminary results on (fiberwise) convex
functions.

Definition 3.9. For any (finite-dimensional) real vector space V, f €
CO(V,R) is called convez if f(tz + (1 —1t)y) <tf(x)+ (1 —1t)f(y) for any
z,y € Vandt € [0,1]. f € C?(V,R) is called strictly convez, if for any = € V,
the Hessian of f at z (which is a symmetric bilinear form on V') is positive
definite. f € CO(T*R") is called fiberwise convex if f T:r» is convex for ev-
ery ¢ € R", and f € C%(T*R") is called fiberwise strictly convex if flrsrn s
strictly convex for every g € R™.

For any a € R+, let us define Q, € C®°(T*R"™) by Q.(q,p) := a(|q|* +
[pl?).

Lemma 3.10. For any nonempty, compact, and fiberwise convex set K C
T*R"™, there exist sequences (a;);>1 and (Hj)j>1 which satisfy the following
properties:

(i): (aj); is a strictly increasing sequence in Rsq \ 7Z.

(ii): limj_o0 aj = 0.

(iii): (Hj); is a strictly increasing sequence of fiberwise strictly convex C™-

functions on T*R™.

(iv): For every j, there exists b; € R such that H; is a compact perturbation
of Qa, +bj, i.e. Hj — (Qa, +bj) is compactly supported.

o ((¢,p) ¢ K)

(v): limj o0 Hj(q,p) = {0 (a.p) € K.



440 Kei Irie

Proof. Let us take a sequence (U;); of open sets in T*R"™ such that U;41 C U;
for every j, and (2, U; = K.
Let us consider conditions (ii’) and (v’) as follows:

(ii"): a; > 27 for every j.

(v’): The following properties hold for every j:
e Hj(q,p) > 27 if (q,p) & Uj,
o —5 < Hj(q,p) < —gr if (¢,p) € K.

Obviously (ii’) implies (ii), and (v’) implies (v). Thus it is sufficient to con-
struct sequences (a;); and (H;); satisfying (i), (ii’), (iii), (iv), (v’). We are
going to construct such sequences by induction on j. Suppose that we have
defined a1, ...,aj—1 and Hy,..., Hj_; satisfying these conditions. In the fol-
lowing argument we construct a pair (a;, H;) so that these conditions are
satisfied. Let us take a € R¢ \ 7Z such that a > max{a;_1, 27}. We fix such
a in the rest of the proof.

Step 1. For any b € R>(, we define F}, : T*R"™ — R in the following way.

For each g € R", let .#(b,q) denote the set of convex functions f:
T;R™ — R satisfying the following conditions:

e f(p) < Qalg,p) +b for every p € T;R".
o f(p) < —5% if (¢,p) € K.

Let us define Iy, by Fy(q,p) := supsez(pq) f(p). Then, Fp|r:gs is convex
(thus continuous) for every ¢ € R™. The function Fp satisfies the following
properties:

1-0): If ¢ ¢ pr(K) then Fy(q,p) = Qu(q,p) + .

1-1): F; is a compact perturbation of Q4 + b.

1-2): Fy(q,p) > —25% for every (q,p) € T*R™.

1-3): Fy(q,p) = — 5% if (¢,p) € K.

1-4): For any e >0, there exists 6 >0 such that if p € T/R" satisfies

dist(Ky,p) < d, where dist denotes the Euclidean distance on T;R",
then Fy(q,p) < —27—3;2 +e.

(1-0) holds since Qq(q,p) +b e F(b,q) if ¢ ¢ pr(K). (1-2) and (1-3) hold
since the constant function — 52 is an element of . (b, ¢). (1-1) holds since
if |q|? + |p|? is sufficiently large, the linear function

T,R" = R; x = Qalg,p) +b+2a(p- (z —p))
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is an element of .Z (b, ¢). (1-4) follows from (1-3), (1-1) and the convexity of
Fy|rsmn.
Moreover, when b is sufficiently large, the following properties hold:

(1-5): Fy(q,p) > Hj—1(q,p) for any (¢,p) € T*R™.
(1-6): Fy(q,p) > 27 if (q,p) ¢ Uj.

Let us check that (1 5) holds for sufﬁciently large b By the induction
assumption, H; 1 < — OnK Thus H;_1 + 27+2 < — 2J+2 on K. Since H;_;
is a compact perturbatlon of Qq;_, +bj—1and a; 1 < a, when b is sufficiently
large H;_1 + 2J1+2 € #(b,q). This means that H;_1(q,p) + QJ% < Fy(q,p)
for any (¢,p) € T*R"™, thus (1-5) holds.

Let us check that (1-6) holds for sufficiently large b. For any (q,p) ¢ U;
such that K, # 0, let p’ be the unique point on K, such that |p —p/| =

dist(Ky,p).

Remark 3.11. The uniqueness of p’ follows from the convexity of K.
Indeed, suppose that there exist p’ # p” in K, satisfying [p — p/| = |[p — p'| =
dist(Ky,p). Then p” := (p’ +p")/2 € K, by the convexity of K,;. On the
other hand |p — p"'| < dist(Ky,p) by p’ # p”, which contradicts p”’ € K.

Let us define a linear function Hy; on T;R" by

2/ + 1+ 3/272
lp—1'I?

3
Hyp(@) = =55 + (x =p) - (0 = 1) -
Then H,,(p) =27 +1 and H, < —y% on K. Also, there holds

S = . Sl)lgU (ng}raﬁnH (@) — Qalg, 2)) < o0

K,#0

This can be checked as follows: for any (¢,p) ¢ U; with K, # 0,

. Hypl(o) — Qala,2) = Hyp(0) + V202l g2
zeTR" P ’ &P 4a
Setting v := 27 + 1+ 3/2/2
_ 3 / / Y 3 R~y
Hyp(0) = —g5m =9 - (P =) p_ppP = w5
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where R and ¢ are positive constants (depending only on K and Uj) such
that [p'| < R and |p — p’| > 4. Also, there holds |VHy,| =~/|p —p'| <~/0.
Then we can conclude that S < oo.

We show that if b > max{27, S} then (1-6) holds, i.e. Fy(q,p) > 27 if
(g,p) € U;. We consider two cases:

e The case K, # (). In this case Hy, € .Z(b,q), because Hy, < —52
on Ky and Hyp(z) < Qu(g,7) + 5 < Qalg,x) + b for any z € TyR™.
Hence Fy(q,p) > Hyp(p) =27 +1 > 27,

e The case K, = (). In this case, Fy(q,p) = Qu(q,p) +b>b> 27.

In the rest of the proof we take and fix b so that (1-5) and (1-6) hold.

Step 2. Let us take p € C°(R",R>p) such that p(z) = p(—z) and
Jgn p(x) dz = 1. For any € > 0 let p*(x) := e "p(x/c). Then we define G* :
T*R" s R by

G(q,p) = / Fy(q,y)p°(p —y) dy.
yeT R

Then G*¢ satisfies the following properties:
e For every ¢ € R", G*

o If ¢ ¢ pr(K) then G*(¢,p) = Qu(q,p) + b+ a-c(e),
where c(g) := [, [2]?p°(z) dz.

T:re 18 @ C°° convex function.

e (¢ is a compact perturbation of Q, + b+ a - c(¢).

e G°(q,p) > Fy(q,p) for any (¢,p) € T*R™.
In particular, G*(¢,p) > max{—g;, Hj_1(¢,p)} for any (¢,p) € T*R",
and G%(q,p) > 27 for any (q,p) ¢ Uj.

Moreover, by (1-4), if € is sufficiently small then

(@.p) € K = G(4,p) < — 557

In the rest of the proof we fix such e.
Step 3. For each ¢ € R", let us define H, : T*R" — R by

Hy(d',p) := G(q,p) + a(|d* - |aI*).

Then Hq|Tq*,Rn is a C*°-convex function for every ¢’ € R™. Moreover, if ¢ ¢
pr(K) then Hy = Qq + b+ a - c(e).
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For every g € R", there exists an open neighborhood of ¢ (denoted by
U,) such that the following properties hold for every ¢’ € Uy:

e Hy(q',p) > max{—5,Hj_1(¢,p)} for every p € TyR™.
o Hy(q,p) < —gi if (¢',p) € K.
o Hy(q',p) > 2 if (¢',p) ¢ Uj.

Moreover, if ¢ ¢ pr(K) then we may take Ug so that U, Npr(K) = 0.

Let us consider an open covering of R”, % := {U, }qern. Let ¥ = {V;}32,
be a refinement of % which is locally finite. For every 4, choose ¢; € R™ such
that V; C U,,. Let (x;); be a partition of 1 with ¥, i.e. x; € C*(R"™, [0, 1])
and supp x; C V; for every ¢ > 1, and ) ., x; = 1. Then

H(q,p) ==Y xi(q)Hy,(q,p)
i=1

is a C*°-function on T*R", and satisfies the following properties:
e H is a compact perturbation of Q4 + b+ a - ¢(e).
e H is fiberwise convex.
e H(q,p) > Hj_1(q,p) for every (q,p) € T*R"™.
° —% < H(q,p) < —ﬁ if (¢,p) € K.
o H(q,p) > 2 if (¢,p) ¢ Uj.

The first property holds since Hy, # Q4 + b+ a - ¢(¢) only if ¢; € pr(K),
and there are only finitely many such ¢;’s. The other properties are straight-
forward.

Step 4. Let us take a sufficiently small 6 > 0 such that a 4+ ¢ ¢ 7Z. Then
H; := H + Qs satisfies the following properties:

e H; is a compact perturbation of Qq45 + b+ a - c(e).
e H; is fiberwise strictly convex.

e H;(q,p) > Hj_1(q,p) for every (q,p) € T*R".

. —% < Hj(g,p) < —QJ% for every (¢q,p) € K.

o Hj(q,p) > 2 if (q,p) ¢ Uj.

The fourth property can be achieved by taking d sufficiently small. The other
properties are straightforward.
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Finally, setting a; := a + ¢, the pair (a;, H;) satisfies conditions (i), (ii’),
(i), (iv), (v). 0

Lemma 3.12. Let K be a compact and fiberwise convex set in T*R"™,
and let (Hj)j>1 and (a;);>1 be sequences which satisfy the conditions in
Lemma . For each j, let Ly, € C*°(TR") denote the Legendre dual of
H;, namely

Li;(q0) = max (p-v-Hj(g.p)) (¢ €R" veTRY.

Then the following properties hold:
(i): L, (q,v) > Ly,,,(q,v) for any (q,v) € TR™ and j > 1.

maxper, (p-v) (¢ € pr(K))
—00 (¢ ¢ pr(K)).
(iii): limj oo fgu L, (7(2),7(t)) dt = leng () for any v € A.

(ii): limj_mo LHj (q,v) = {

Proof. (i): For each ¢ € R, there exists po € T, R" which satisfies Ly, (¢,v)
=po v — Hjt1(q, po). Then

LH]‘ (Qa U) = ml?“x(p U= HJ(Qap))
> po - v — Hj(q,p0) > po-v— Hjt1(q,p0) = Lu,,,(q,v).

(ii) follows from Lemma applied to (Hj|r:g»);, identifying R" and
T;R™ via the standard Riemannian metric on R".

(iii): First, we consider the case y(S') C pr(K). By Lemma (i), py :
S — R; t — maxpeg,,, p - ¥(t) is integrable. On the other hand, Ly, (7,%)
is integrable (since 4 is square-integrable), and (L, (v,%)); is a decreasing
sequence of integrable functions, which converges to p, pointwise as j — o0.
Then, by Lebesgue’s dominated convergence theorem, we obtain

i [ L, (00, 5(0) dt = [l L (050 de

j—00 g1 g1 j—00

_ / P (£) dt = leng (7).
Sl

Next, we consider the case v(S!) ¢ pr(K). In this case I :=~ }(R"\
pr(K)) is a nonempty open set in S'. Now consider an obvious inequality

/ L, (4(0),4(0) e < /S B OO0 de /I Lar, (7(8), 3(1)) dt.



Symplectic homology of fiberwise convex sets 445

The first term on the RHS does not depend on j, and the second term goes
to —oo as j — 0o. Thus the LHS goes to —oo. g

Lemma 3.13. Let K be any compact and convex set in R™, which may be
empty. Let (aj)j>1 and (hj)j>1 be sequences with the following properties:
(i): (aj); is a strictly increasing sequence in Rxg.
i): limj_o0 aj = 00.
(iii): (hyj); is a strictly increasing sequence of convexr C*°-functions on R™.
)

: For every j, there exists bj € R such that h;(x) — aj|x|> — bj is com-
pactly supported.
: oo (z¢K)
v): limj 00 hj(x) =
N ]
Then, for any x € R"

masxyerc(z - y) (K #0)
—00 (K =10).

j—oo yeR”

lim (max(m Yy — hj(y))) = {

Proof. First we consider the case K # (). Let J# denote the set of h €
C>°(R™) with the following properties:

(a): h is convex.

(b): There exists @ € C*°(R") of the form

Q(xla--wxn): Z aijﬂiiquLb

1<ij<n

where (aij)i<ij<n is a non-negative symmetric matrix, such that
h(z) — Q(x) is compactly supported.

(¢): h(xz) <0 for any =z € K.

Then the sequence (h;); is cofinal in J#, which implies that for any € R”

Jim (;rggg(w -y = hi(y))) = Jnf (max(z -y — h(y))).

For any h € 47, there holds

.r—h > -y—nh > R
max(y - z (y))_ryne%(w y (y))_ggﬂf y
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Thus infj,ec  (maxyern (2 - y — h(y))) > maxycx 2 - y. To complete the proof,
it is sufficient to prove the opposite inequality, i.e.

inf cy—h(y))) < .
nnf (max(x -y — h(y))) < maxz -y

To prove this, it is sufficient to show that for any § > 0 there exists h €
such that

sy —h(y)) < Y+ 0.
yng]gg(wy (y))_ryngﬂc y+

When z =0 it is easy to see. When = #0, let I, :={x-y|y € K} and
M, := max I, = maxycx « - y. It is easy to see that there exists ¢ € C*°(R)
with the following properties:

e ( is convex.

e There exist a > 0 and b € R such that ¢(t) — (at? + b) is compactly
supported.

o —0 < (t) <0 for any t € I,.

o J(M) = 1.

Take such ¢ and let h(y) := p(x - y). Then h € S, and there holds

cy — = — = - < .
;ré%{g(fv y = h(y)) = max(t — (1)) = My — p(Ma) < Mo +9
This completes the proof when K # ().
Finally we consider the case K = (. Let s#’ denote the set of h €
C*°(R™) which satisfies conditions (a) and (b) above. Then, the sequence
(hj); is cofinal in .7#”, which implies that for any z € R"

Jim (max(z-y—h;(y)) = inf (max(e -y~ h(y)):

If h € ' then h + ¢ € # for any ¢ € R, thus the RHS is obviously equal
to —oo. This completes the proof. O

4. Proof of Theorem [3.4]

The goal of this section is to prove Theorem In Section 4.1, we summa-
rize basic properties of Lagrangian action functionals on the free loop space
of R™. In Section 4.2 we state Theorem which shows an isomorphism
between Hamiltonian Floer homology on T*R"™ and homology of loop spaces
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of R™. The proof of Theorem occupies Sections 4.3-4.5; the plan of the
proof of Theorem is explained in the last paragraph of Section 4.2. Fi-
nally, in Section 4.6, we prove Theorem [3.4] by taking a limit of isomorphisms
obtained by Theorem 4.5

4.1. Lagrangian action functional on the loop space

Consider the following conditions (L1), (L2) for L € C*°(S! x TR"):

(L1): There exist a € Rsg and b € R such that the function on S x TR"

o]

L(t,q,’U) - <E - a|Q‘2 + b>

is compactly supported.
(L2): There exists ¢ € R~ such that 92L(t,q,v) > ¢ for any (t,q,v) € S! x
TR"™.

Remark 4.1. 92L(t,q,v) > ¢ means that the symmetric matrix
L (=)

(0v, 00, L(t,q,v) — cdij)1<i,j<n is nonnegative, where d;; = { o
0 (i#7J)

Recall A := LY2(SY, R"). If L satisfies the condition (L1), then one can
define the functional .#7, : A — R by

Su() = /S (D) A1) .

Lemma 4.2. If L € C°°(S' x TR") satisfies (L1) and (L2), the functional
S satisfies the following properties:

(i): .7 is a Fréchet C'-function. The differential d.77, is given by
d-S1,(§) = . Oy L(t, (), 4(1)) - £(t) + Bu L (£, 7(£),4(1)) - £(t) dt - (V€ € A).
Moreover .5, is Gateauz differentiable.

(ii): v € A satisfies d.7(7) = 0 if and only if v € C°°(S',R™) and satisfies

OgL(t,~(t), ¥(t)) — (9 L(t, (1), 7(2))) = 0.
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(iii): For every v € A, let us define D.Z1(y) € A so that
(DFL(), > =dIL()(€)  (VEEA),

where (, )2 is defined by (f,g)rr2 = [o f(t) - g(t) + f(t)-g(t)dt.
Then the pair (1, D7) satisfies the Palais-Smale condition. Namely,
if a sequence (xy)r on A satisfies supy, |7 (x)| < oo and

lim d.%, (DS (x)) =0
k—ro0
then (x)k contains a convergent subsequence.
Proof. (i) and (ii) follow from Proposition 3.1 (i), (ii) of [4]. (iii) is proved
as Corollary 3.4 of [I§], which is based on Proposition 3.3 of [4]. O

Suppose that L € C®°(S! x TR") satisfies (L1) and (L2). Let £(L) de-
note the set of critical points of .77, namely

P (L) ={yeA|dS(y) =0}

For any v € Z(L), the second Gateaux differential d.77 () is Fredholm
and has finite Morse index (see Proposition 3.1 (iii) of [4]). The Morse index
is denoted by ind porse(y). We say that « is nondegenerate if 0 is not an

eigenvalue of d?.77(y). Let us introduce the following condition for L €
C> (St x TR™):

(LO): Every v € #(L) is nondegenerate.

4.2. Isomorphism between Hamiltonian Floer homology and loop
space homology

Let us consider the following condition for H € C*°(S1 x T*R"):

(H2): There exists ¢ € R~ such that 8§H(t,q,p) > ¢ for any (t,q,p) € St x
T*R™.

For any H € C°°(S' x T*R™) which satisfies (H1) and (H2), its Legendre
dual Ly € C®(S! x TR") is defined by

Ly(t,q,v) := max (p-v—H(t,q,p)) (teS',qeR", ve T,R™).
pET;R"
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Lemma 4.3.  (i): If H satisfies (H1) and (H2), then Ly satisfies (L1)
and (L2). Moreover, the map

P(H)— P(Ly); x>y :=prox
s a bijection, and the inverse map is
P(Lu) = P(H); v = (7,p4)
where p,, is characterized by

Lu(t,7(t),7(t) = py(t) - 4(t) — H(t,7(2),7(t)) (vt es?).

(ii): In the situation of (i), for any x € P(H), 75 is nondegenerate if
and only if x is nondegenerate. Moreover, for any such x, there holds
ind Morse(wx) =ind gz (:B)

Proof. (i) can be checked by direct computations. (ii) follows from Theo-
rem 1 of [19] Section 7.3. O

Remark 4.4. Lemma (ii) extends to Hamiltonians on arbitrary man-
ifolds, at least when H is a “classical” Hamiltonian (i.e. the sum of the
kinetic energy and a potential function on the base) on a Riemannian man-
ifold M, although one needs a correction term if the vector bundle vi7T M
is not oriented. See Theorem 1.2 and Lemma 2.1 of [24].

Now let us state the isomorphism between Hamiltonian Floer homology
on T*R™ and homology of loop spaces of R™:

Theorem 4.5. For any H € C*®(S! x T*R") which satisfies (H0), (H1),
(H2), and any real numbers a < b, one can define an isomorphism

HF “Y(H) = H.(%; {(Ra), 77 (Rea))

so that the following diagram commutes:

(7) HF Y () HF @Y (i)

|

H*(yL_HI(R<b)ayL_Hl(R<a>) HH*(yL_ (R<b’)a°§ﬂ[;1(R<a’))

1
H
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where a < a’ and b <V,

(8) HF Y (1) HF Y (f)

IR

(=23

Ho (S (R), S (Rea) — Ho(F L (Rey), 77 (Rea)

where H(t,q,p) < H'(t,q,p) (Y(t,q,p) € S' x T*R").

Remark 4.6. Commutative diagrams and are special cases of the
following commutative diagram:

(9) HF Y () HF @) (g

~l l~

H (S, (Rap), 77, (Rea)) — H (S| (Ra), 77| (Rear)),

where a < a’, b <V and H(t,q,p) < H'(t,q,p) (V(t,q,p) € St x T*R").

The proof of Theorem which follows the arguments in [3] and [I§],
occupies Sections 4.3—4.5. In Section 4.3 we recall the construction of Morse
complex of Lagrangian action functionals. In Section 4.4 we explain a chain-
level construction of the isomorphism in Theorem and check the com-
mutativity of the diagram . In Section 4.5 we prove the commutativity
of the diagram .

4.3. Morse theory for Lagrangian action functionals

Suppose that L € C°(S! x TR") satisfies (L0), (L1) and (L2). The goal of
this subsection is to recall the construction of the Morse complex of .77,.

For each k € Z>g, let CM (L) denote the free Z/2-module generated
over

{y € Z(L) | ind morse () = k}.

To define the boundary operator we need the following lemma. For defini-
tions of “Morse vector field” and “Morse-Smale condition”, see Section 2 of
[4]. In the next lemma, A = L%?(S1, R") is equipped with a natural structure
of a Hilbert manifold.
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Lemma 4.7. If L € C*°(S! x TR") satisfies (L0), (L1), (L2), there exists
a smooth vector field X on A which satisfies the following conditions:
(i): X is complete.

(i): .77 is a Lyapunov function for X. Namely, d.1(X(v)) < 0 if X(v) #
0.

(iii): X is a Morse vector field. X () = 0 if and only if v € Z(L), and the
Morse index of X at v is equal to the Morse index of v as a critical
point of ..

(iv): The pair (<1, X) satisfies the Palais-Smale condition.

(v): X satisfies the Morse-Smale condition up to every order.

Proof. This lemma follows from Lemma 3.5 of [I8] (which is essentially same
as Theorem 4.1 of [4]), since the condition (L1) of [I8] is weaker than the
condition (L1) of this paper. O

Let us take a vector field X on A which satisfies the conditions in
Lemma Let (% )ier denote the flow on A generated by X. For any
v € (L) let us set

Wh(y: X)i={z e A] lim ¢ (z) =~}
Wiy X) = o € A| Jim gy (a) = 7).

For any real numbers a < b, let CM La’b)(L) denote the free Z/2-module
generated over {y € Z(L) | a < (y) < b}. For any two generators v and
/
v, let

Mx(y,7) = Wiy : X)N Wy : X).
When v # +/, let .#x(,7') denote the quotient of .#x(,7') by the nat-

ural R-action. Since X satisfies the Morse-Smale condition, the boundary
operator

op.x : CM (L) - oM (L),
s > o llx (v,7') -

ind Morse (’Y/):lnd Morse (7) -1

is well-defined and satisfies 8%’)( = 0. Homology of the chain complex
(CM La’b)(L),(“)L,X) does not depend on the choice of X, and denoted by
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HM La’b)(L). There exists a natural isomorphism
7b ~ — -
HMI(L) = H( 7 (Ra). 7 (Rea).

These facts follow from Theorems 2.7, 2.8 and 2.11 in [2].

Consider LY L' € C*°(S! x TR™) which satisfy (L0), (L1), (L2) and
LO(t,q,v) > L(t,q,v) for any (t,q,v) € S' x TR™. We also assume that
PN 2(LY) =0.

Take vector fields X°, X' on A such that (LY, X°) and (L', X1!) satisfy
the conditions in Lemma By taking small perturbations of X° and X!
(note that these perturbations do not change Morse complexes of L and
L'), we can achieve the following condition:

For any 4° € 2(L°) and v! € 2(L'), W¥ (4" : X©) is transverse

to Ws(yt: X1,
If this assumption is satisfied, .#Zxo x1 (70, y) :=W4(y% : XO)NWs (4! : X1)
is a smooth manifold of dimension ind yorse(7°) — ind Morse(Y!). Then we
define a chain map

oML, X0 —» eMm (Lt X1y,
v > fo.tlxo x1(7,7') -

ind morse (V) =Ind morse (7)

® induces a linear map on homology HM [2:b) (L) — HM [a.6) (L'), which does
not depend on the choices of X9, X'. Via isomorphisms between the Morse
homology and the loop space homology, this map corresponds to the map

Ho (S (Ra), 710 (Rea)) = Ho( S (Ry), 770 (Rea))
which is induced by the inclusion map.

4.4. Isomorphism at chain level

Let us take H € C*°(S! x T*R") satisfying (H0), (H1), (H2). Its Legen-
dre dual Ly satisfies (LO), (L1), (L2) by Lemma Let us also take
real numbers a < b. The goal of this subsection is to define a chain map
CM La’b)(LH) — CF Y (H) which induces an isomorphism HM La’b)(LH) =
HF [0 (H).

The definition of the chain map involves “hybrid moduli spaces” intro-
duced by Abbondandolo-Schwarz [3]. Let us take X and J as follows:
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e X is a vector field on A such that CM La’b)(L i, X) is well-defined.

o J = (Jt)ies is a family of almost complex structures on T*R"™ such
that CF*Y (H, J) is well-defined.

For any v € &(Ly) with .77, () € [a,b) and x € P (H) with oy (z) €
[a,b), let .#x 11,7(y, ) denote the set of u € L13(Rso x St, T*R™) such that

8Su — Jt(&gu — XHt (U)) = 0,
prouy € Wh(y: X),

lim ug = x.
S5—00

Here us : ST — T*R™ is defined by us(t) := u(s, t).

Remark 4.8. The above Sobolev space L3 can be replaced with L' for
any 2 < r < 4; see pp.299 of [3].
Lemma 4.9. Let v and x be as above.

(i): For any w € Mx u,5(7,x), there holds
ZLu(V) 2 FLn(Pro ) = T (uo) > i ().

In particular, if #x m.j(v,x) #0 then S, (v) > u(z).

(ii): If S1,(v) = du(x), then Mx m.y(v,x) # 0 if and only if x = pro~.
Moreover, the moduli space M x m,7(y,pr oY) consists of a point which
s cut out transversally.

Proof. See pp.299 of [3] for (i) and the first sentence in (ii). For the second
sentence in (ii), see Proposition 3.7 of [3]. O

Lemma 4.10. For generic J, Mx u.j(7v,x) has a structure of a C*-
manifold of dimension ind yjorse(7) — ind ¢z () for any v and z as above.

Proof. The case x = pr o~ is discussed in Lemma (ii). The other cases
follow from the standard argument using [8]. See pp.313 of [3]. O

Let us state the following C%-estimate. For comments on the proof see

Remark [4.141
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Lemma 4.11. Ifsup,cg ||t — Jsed |lco is sufficiently small, then for any ~
and x as above

sup lu(s,t)] < oo.
wEMx m,7(7,)
(S,t)ERZ()Xsl

By these results and the standard compactness and glueing arguments
(see Sections 3.3 and 3.4 of [3]), generic J which is sufficiently close to Jyq
satisfies the following properties:

e For any v and z as above satisfying ind porse(7) — ind ¢z (z) = 0, the
moduli space .#x g, 7(7,x) is a finite set.

e A linear map

v oML, x) —» cr Ym0y,
ol > H#ollx H,y(7,2) @

ind ¢z (z)=ind morse (7)
is a chain map with respect to boundary operators Jr,,, x and Og, ;.

Finally, Lemma [£.9]implies that ¥ is an isomorphism (see Section 3.5 of [3]).
In particular, H,(¥) : HM [:b) (L) — HF La’b)(H) is an isomorphism.

For any a, b,d’,b’ € R satisfyinga < b,a’ < b, a < a’ and b < V', the com-
mutativity of the following diagram is straightforward from the definition of
v:

(10) CM Y (L) ——= M) (Ly)
CFIY(H) —~ cF I ().
This implies the commutativity of @

4.5. Commutativity of monotonicity maps

The goal of this subsection is to prove the commutativity of . Let us take
the following data:

e H H' € C®(S! x T*R") satisfying (HO0), (H1), (H2) and H(t,q,p) <
H'(t,q,p) for any (t,q,p) € St x T*R™.

e Real numbers a < b.
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e Almost complex structures J, J' and vector fields X, X’ such that
chain complexes CF [2.b) (H,J), CF [2.b) (H',J), CM [2.b) (Ly, X),
M ) (Lp+, X') are defined.

Without loss of generality, we may assume & (Ly)N P (Ly) = 0. In-
deed, for any H and H' satisfying (H0), (H1), (H2) and H < H’, there
exists a strictly increasing sequence (H;)j>1 such that every H; satisfies
(HO), (H1), (H2), limj_,o H; = H, and

@(LHJ.)H@(LHHI):@, Q(LHj)ﬂﬁ(LH)zﬁ,
Q(LHJ.) NP Ly )=10

for every j > 1. Then, assuming that the commutativity of is proved for
pairs (H;, Hj11), (H;, H) and (H;, H') for every j, the commutativity of
for (H, H') follows by taking limits.

In the previous subsection we defined isomorphisms of chain complexes

UM (Ly, X) = cF Y (H, )

and
v M (L, X'y = CF Y, ).

We also defined chain maps ®* : CM La’b)(LH,X) — oMt (Lg, X') and
o . cpl+?) (H,J) — CF La’b)(H’, J'). Our goal is to show that the following
diagram commutes up to homotopy:

(11) M (Ly, xX) —2 = cF*Y(H, )

(=23

mi lqm

CM (L, X') —= CR (', ),

This immediately implies the commutativity of the diagram . Since vector
spaces in the diagram are generated by finitely many critical points,
boundary operators and chain maps in this diagram do not change under
C*°-small perturbations of X, X', J, J'. Hence we may assume that these
data are taken so that all moduli spaces which appear in the rest of this
subsection are cut out transversally.
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To prove that commutes up to homotopy, first we define a linear
map

0 :CM " (Ly, X) —» CFY ', 7y,
v Z HoMlx b,y (7, %) - .

ind Morse (’Y):lnd CZ (-77)

© is a chain map (namely Op' j 0 © = © 0 Jr,, x) by the same reason that
U in the previous subsection is a chain map. We are going to prove ® o ¥ ~
O ~ V' ok,

First we prove ¥/ o @' ~ ©. For any v € #(Ly) and z € Z(H') such
that .77, (7), @g (z) € [a,b), let 4 0(v,z) denote the set of (o, u,v) where

a€Rsg, w:[0,a] = A, ve L3R5y x ST, T*RY)
such that

u(0) € Wh(vy: X)), u(s) = ¢ (u(0)) (Vs € [0, a]),
asv — J{((‘)tv — XH{(U)) = O,

provg =u(a), lim vs =z.
S5—00
Let us state the following C?-estimate:

Lemma 4.12. Ifsup,cq: ||Ji — Jstd ||co is sufficiently small, then for any
and x as above
sup [v(s,t)] < oo.

(au,v)EeN(y,1)
(S,t)ERzo xSt

For generic J’ which is sufficiently close to Jyq, #°(7, ) is a finite set
for any v and z satisfying ind ¢z () = ind porse(Y) + 1, and the linear map

K°: M (L) - CF i‘l’bl) (H');

v > Ho N O(v,2)

ind ¢z (z)=ind morse (7)+1

satisfies Op jv o K9+ K%0 0L, x =06 — U’ o &L For details see Section 4.3
of [18].



Symplectic homology of fiberwise convex sets 457

Secondly we prove ®7 oW~ ©. Let us take (Hst)(s,t)erx st and
(Js.t)(s,t)erx st Which satisfy (HH1), (HH2), (HH3) and (JJ1), (JJ2). In par-
ticular there exists s > 0 such that

Hy, J, < —
(Hsp, Jst) = (He, Ji) (s < —s2)

(Hi, J;) (s = s2).
For any v € Z(Ly) and z € & (H') such that .77, (v), & () € [a,b), let
N 1(7,z) denote the set of (3, w) where

BER<s,,  we LY (Rspx SHTRY)
such that

prowg € W (v : X), asw_Js,t(atw_XHs,t(w)) =0
lim ws = x.
S—r00

Let us state the following C°-estimate:

Lemma 4.13. Ifsup;cq: || Ji — Jstd ||co is sufficiently small, then for any
and T as above
sup lw(s,t)] < 0.

(B;w)eAN(7,2)
(S,t)ERzB xSt

For generic J which is sufficiently close to Jgq, 4 (7, ) is a finite set
for any v and z satisfying ind ¢z (z) = ind Morse(7) + 1, and the linear map
b b
K': oM™ (L) » cFY () e 3 o Ny, 7) - T
ind CZ (Jf)ilnd Morse (’Y)J’_l

satisfies Op g © K'+K'o OrLx =06 — & o U, For details see Section 4.3
of [1§].

Remark 4.14 (Proofs of C'-esimtates). CY-estimates in this section,
namely Lemmas [£.11] [£.12] [£.13] are slight generalizations of Lemmas 4.8,
4.9, 4.10 in [18]. These results in [I8] are stated for Hamiltonians of special
type (i.e. elements of the sequence (H™),, defined in Section 4.1 of [1§]),
however the proofs of these results in [18] use only assumptions (JJ1), (JJ2),
(HH1), (HH2), (HH3). Hence the proofs in [18] work without any modifi-
cation for Lemmas 4.11] |4.12] 4.13] Strictly speaking, the condition (HH3)
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in [I8] requires b(s) =0 in the condition (HH3) in this paper. Namely, if
H € C®(R x S! x T*R") satisfies (HH3) in this paper, then there exists
b € C*°(R) such that

(12) H®(s,t,q,p) == H(s,t,q,p) — b(s)

satisfies the condition (HH3) in [I8]. However, this difference does not affect

Floer equations, since (12 obviously implies Xy, (¢, p) =X me, (g, p) for any
(s,t) € R x St and (q,p) € T*R™.

4.6. Proof of Theorem [3.4]

Now we can complete the proof of Theorem Let K be any nonempty,
compact and fiberwise convex set in T*R"™. Taking time-dependent pertur-
bations of Hamiltonians obtained in Lemma there exists a sequence
(H;)j>1 in C*(S* x T*R™) which satisfies the following conditions:

e H; satisfies (HO), (H1), (H2) for every j > 1.

e Hi(t,q,p) < Hj41(t,q,p) for every j > 1 and (t,q,p) € S* x T*R".
0 ((¢,p) € K)
oo ((¢,p) ¢ K)

For each j, let Lj:= Ly, € C>(S! x TR™) denote the Legendre dual of
H;. Then, (Y (R<c))j>1 is an increasing sequence of open sets in A for

any ¢ € R. Moreover U -1 (R<C) A% by Lemma (3.12f (iii). Then we
obtain

o lim;_,oc Hj(t,q,p) = { for any (¢,q,p) € S x T*R".

SH ") (1) = lig HF Y (H;)

Jj—o00
= lim H.(7 H(Ra), 71 (Rea))
j—o0
=~ H, ( U 5’ R<b U R<a )
Jj=1 Jj=1
= H*(Ab 7A(;()7

where the isomorphism on the second line follows from the commutativity of
(8). Finally, the commutativity of @ follows from the commutativity of @
and taking limits of Hamiltonians. This completes the proof of Theorem

O



Symplectic homology of fiberwise convex sets 459

5. Proof of Theorem [1.4]

The goal of this section is to prove Theorem Namely, we prove csy (K) =
cenz(K) for any convex body K C T*R™.

The case n = 1 can be proved by the following simple argument. For any
convex body K C T*R!, both cguz(K) and the Hamiltonian displacement
energy of K (denoted by e(K)) are equal to the measure of K. On the
other hand, cguz(K) < cgu (K) (by Lemma [2.13] (iii)) and cgu (K) < e(K)
(second inequality in Theorem 1.4 of [14]), thus cpuz(K) = csu (K) = e(K).

Hence we assume n > 2 in the rest of the proof. Let us first introduce
the notion of nice convex bodies.

Definition 5.1. A convex body K C T*R" is called nice if 0K is of C'*®
and strictly convex, and there exists a C*°-map I" : S — 0K which satisfies
the following conditions:

(i): I'(t) generates ker(wn |1y, 05 ) and of positive direction (i.e. wy (X, I(t))
> 0 for any X € Tp()(T*R"™) which points strictly outwards) for every
te St

(il): [qu T* < >y pid(h’> = cenz(K),
(iii): proI'(S1) C int (pr(K)).

Any curve ' which satisfies these three conditions is called a nice curve on
oK.

Remark 5.2. The convex body B := {(q,p) € T*R" | |q|* + |p|* < 1} is
not nice. Indeed, if I' : S — OB satisfies the conditions (i) and (ii) above,
then I'(S!) = {(esint,ecost) | t € R/27Z}, thus pr(I'(S1)) = {es | -1 < s <
1}. Hence pr(I'(S1)) is not contained in int (pr(B)) = {qg € R" | |q| < 1}.

Lemma 5.3. When n > 2, for any convex body K C T*R"™, there exists
a sequence of nice convexr bodies which converges to K in the Hausdorff
distance.

Proof. It is easy to see that there exists a sequence (Kj); such that each
0K is of C™ and strictly convex, and lim;_,,, K; = K in the Hausdorff
distance. Thus it is sufficient to show that, for any convex body C' C T*R"
such that 9C' is of C* and strictly convex, there exists C’ which is nice and
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arbitrarily close to C. Since C is strictly convex,
Lo :={x € 0C | pr(z) € d(pr(C))}

is a submanifold of OC which is diffeomorphic to S™~!, in particular its
codimension in OC is n. Since n > 2, there exists C’ which is arbitrarily
C*-close to C, and all closed characteristics of dC" are disjoint from Lcv,
which implies that C” is nice. O

By Lemma [5.3] Theorem [I.4]is reduced to the following theorem:

Theorem 5.4. For any n € Z>2 and any nice conver body K C T*R",
there holds csp (K) = cpuz(K).

In the rest of this section we prove Theorem Let n € Z>2 and K
be any nice convex body in T*R". Let ' be a nice curve on 0K, and v :=
prol : St — int (pr(K)). By Lemma (iii), there holds

leng (v) = /S1 F*<Zpid(h‘) = cpnz(K).

Lemma 5.5. 5(t) #0 for anyt € S*.

Proof. Let v be a unit vector which is normal to T (9K). Since I(t) is
parallel to Jsq (v), it is sufficient to show that the p-component of v is
nonzero. If the p-component of v is zero, then the convexity of K implies
(¢,p) € K = q-v <~(t) v, thus v(t) € d(pr(K)), which contradicts the
assumption v(S') C int (pr(K)). O

Lemma 5.6. Let (vs)_1<s<1 be a C®-family of elements of C*(S!,
int (pr(K))) such that vo = . Then Ci,(len;((*ys)> =0.
s=0

Proof. Since #(t) #0 for any t € S', we may assume that 7s(t) # 0 for
any (s,t) € [-1,1] x S*. Let us define 75 : S' — 0K as in Lemma (iii).
Namely,

Vo) = (1), pr. (), Pru(8)-Aslt) = max p-Ts(t).
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Then T’ = 79, and leng (7s) = [o: (7s)* < Zipidqi> for every s € [—1,1]. Thus

Ci(lenK(’Ys))S_O = dd3</sl (’_Ys)*<zi:pz‘d%)>s_0
= [ wnl(@3-0(0) T0)) dt = .

g

For any a € R>g and € R", let us define v, , € A by 74..(t) := ay(t) +
x. Let

T:={(a,2) € Rx0 x R" [ 74,4(8") C pr(K)}.
It is easy to see that T"is a compact convex set in R>g x R™. Let us define
a function L:T — R by L(a,z) := leng(7,4). Obviously L(1,0,...,0) =
leng (v) = cgnz(K). By Lemma (iv), L is continuous.
Lemma 5.7. L(a,x) < L(1,0,...,0) for any (a,x) € T.

Proof. By the continuity of L, it is sufficient to prove the lemma for (a,z) €
int T'. For any s € [0, 1], let

Vs = Vsat(1—s),s2> Ls:= lenK(’Ys) = L(Sa + (1 —s),sz)
Our goal is to prove Ly < Ly.
For any s € [0, 1], we have (sa+ (1 —s),sz) € int 7. This implies that

75(S1) C int (pr(K)) and sa + (1 — s) > 0, thus ¥s(t) = (sa + (1 — 5))¥(t) #
0 for any t € S'. Let us abbreviate D~. as ps. Then

L, = /Sl ps(t) : "Ys(t) dt.
By (70(t),po(t)), (71(t), p1(t)) € K and the convexity of K,

(s(t), (1 — 8)po(t) + spi(t)) € K.

Then

ps(t) - 4s(t) = max p-s(t) 2 (1= s)po(t) + spr(t)) - 3s(0)-
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On the other hand 44(t) = (sa + (1 — 5))5(t), thus

Loz [ (0 (@= D350 (ult) + (o1(6) = po(t))s)

and the equality holds for s = 0. Hence
OLilio> [ 40 (@ =2o(®) + ()

On the other hand 9sLg|s—9 = 0 by Lemma Then we obtain

/ A(t) - pr(t) dt < (2 - a)/ (t) - po(t) dt.
St St

Now we can finish the proof by
Ly~ Lo= / a4 (1) - pr(t) — A(8) - po(t) dt < —(a— 1)*Lo < 0.
Sl

The first inequality follows from a > 0, and the second inequality follows
from Ly > 0, which is obvious since Ly = leng () = cguz(K) > 0. O

We have proved

max lenK(’ya,x) = lenK(’Y) = CEHZ(K)-
(a,z)eT

On the other hand, if (a,z) ¢ T, then leng (v,,) = —oo. Thus for any C >
cenz(K), one can define a map

09 (Rsg x R, R>o x R*\ T) = (AL, A%);  (a,2) — Yaz.

Now consider the commutative diagram

n n H. (%) C A0
H,(R",R" \ pr(K)) Hn(AKaAK)

l H,,(£°)
Hn(RZO X Rn,RZO x R™ \ T)

where the vertical map is induced by the map ¢ — (0, ¢). Since T is bounded,
the vertical map is 0. Then H.(j$) = 0, which implies cgyy (K) < C. Since
C' is any number larger than cgnz(K), we obtain csp (K) < cgnaz(K). The
inverse inequality cgp (K) > cpnaz(K) follows from Proposition (iii),
thus we have proved Theorem to which Theorem was reduced. [
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6. Proof of Theorem [1.8

The goal of this section is to prove Theorem[I.8] Let us recall the situation: K
is a compact set in T*R"™ with int (K) # (), IT is a hyperplane which intersects
int (K), II" and II~ are distinct closed halfspaces with OITt = JII~ = II, and
Kt := KNI, K~ = KNII". Then our goal is to prove

cnz (K) < cgnz(conv (K1) + cgaz(conv (K 7)),

where conv denotes the convex hull.
Let K’ :=conv (K*)Uconv (K~). Then K’ is star-shaped, thus it is a
RCT set. We first need the following lemma:

Lemma 6.1. If C C T*R™ is a RCT set satisfying int (C) # 0, then
CHYZ (C) S CSH (C)

Proof. First we need to recall Corollary 3.5 of [17]: for any 2n-dimensional Li-
ouville domain (W, A) and a € Rs¢ \ Spec(WW, A) such that the canonical map
g : H"*(W)—HF £*(W, \) satisfies ¢,(1) =0, there holds cyy (int W, d\) <
a. Moreover, since Spec(W, \) is a measure zero set, the assumption a ¢
Spec(W, A) can be omitted.

Now let us assume that C' C T*R"™ is a C°°-RCT set with a nice action
spectrum in the sense of [I4]. There exists X € 2 (T*R") satisfying Lxw, =
wy, and X points outwards on OC. Setting A := (ixwy)|c, (C, A) is a Liouville
domain and there exists a canonical isomorphism HF £¢(C, \) = SH Lo’a)(C’)
such that ¢, corresponds to i, (see Section 4, in particular Proposition 4.5 of
[14]). Now, if a > cgig (C) then ¢4(1) = 0, thus cuz (C) < a. This completes
the proof when C' is a C°°-RCT set with a nice action spectrum.

Let C be an arbitrary RCT set in T*R"™. Then there exists a sequence
of C*-RCT sets (with nice action spectra) (C;);>1 such that Cjy1 C C;
for every j > 1 and (22, C; = C. Then SH!*(C) = lim SH ien
for every a >0, which implies ¢y (C) = limj_o0 csu (Cj). On the other
hand, for each j there holds cuz (C) < cnz (C;) < csu (C;) thus we obtain
CH7Z (C) < limj_ﬂx, CSH (CJ> — CSH (C) O

Now let us state the key inequality:

Lemma 6.2. cgi (K’) < cgnz(conv (K1) + cgaz(conv (K 7)).
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Assuming Lemma [6.2] we obtain
CHYZ (K) S CHYZ (K/) S CSH (K/) S CEHZ (conv (K+)) + CEHz(COnV (K_)),

where the first inequality follows from K C K’, the second inequality follows
from Lemma [6.1) and the last inequality is Lemma [6.2] Hence we have
reduced Theorem [[.8l to Lemma [6.2

6.1. Proof of Lemma [6.2]

The case n = 1 is easy to prove. Indeed, for any compact S C T*R! satisfying
int (S) # 0, there holds cpz (S) < |S|, where | - | denotes the measure. Also,
|S| = cenz(S) if S is convex. Then we can prove the case n = 1 by

caz (K') < |K'| = |conv (K1)| + |conv (K 7))
= cgnuz(conv (K1) + cgaz(conv (K 7)).

Hence in the rest of the proof we may assume n > 2. We may also assume
that IT = {q; = 0}, since for any hyperplane II there exists an affine map A
on T*R"™ with A*wy, = wy, and A(Il) = {¢1 = 0}. Finally, we assume that
Kt=Kn{g >0}, K- =Kn{qu <0}

Lemma 6.3. K’ is fiberwise convexz.

Proof. Let q=(q1,...,qn) €R™ If ¢ >0, then K=K NT/R"=
conv (K*)NT;R", thus K is convex. Similarly, if ¢; <0, then K, =
conv (K~) NT;R", thus KC’I is convex. Finally, when ¢; = 0, there holds
K| = conv (K*) NTXR™ = conv (K~ ) N T;R", since conv (K*)N{q =0}
= conv (K N{q1 = 0}) = conv (K~) N {g1 = 0}. In particular, K7 is convex.

O

For any A € R, let us consider the map jz, : (R",R"\ pr(K’)) —
(A%, A%,) which maps each ¢ € R" to the constant loop at g. By Corol-
lary [3-8] to prove Lemma [6.2] it is sufficient to prove the following:

(13) A > cguz(conv (KT)) + cgz(conv (K7)) = H,(ji) = 0.

By Lemma there exist nice convex bodies Ct and C~ such that
conv (K*) c Ct,conv(K~) C C~ and cgnz(CT) + cpuz(C~) < A. Let Tt :
St — OCT be a nice curve on Ct, and I'™ : S* — 9C~ be a nice curve on
C~. By changing parameterizations if necessary, we may assume that the
following properties hold:
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e The g;-component of proI't : S — R” takes its minimum at 0 € S*,

e The ¢;-component of pro '™ : §1 — R” takes its maximum at 0 € S*.

Then there exist v : S? — Rsg x R*™! and v~ : St — R<p x R*! such
that v© —proI't and v~ — pro '~ are constant maps from S to R”.

Remark 6.4. By Lemma ~T and v~ are nonconstant.
Lemma 6.5. (i): For any a € R>g and z € Ry x R"71,
'7;,9: (ST S RY tes ayT(t) + 2
satisfies leng: (v} ,) < cpnz(CY).
(ii): For any a € Rsg and x € R<g x R"™ 1,
Yo St SRt ay (t) +
satisfies leng(7v,,) < cenz(C™).

Proof. Since 7 ,(51) CR>o x R™' and K’ Npr '(Rxo x R"1) c CF,
there holds leng (v, ,) <lenc+(v;,). On the other hand, Lemma im-
plies lenc+ (7, ;) < cenz(C™), which completes the proof of (i). The proof
of (ii) is similar to the proof of (i). O

For any (s,t,za,...,2,) € (R2 \ (R<0)2) x R" ! we define Vot -
St — R™ as follows:

e When s <0 and t > 0,

t-yt(20) + (—s,22,...,2,) (0<6<1/2)
(—s,mo,...,xy) (1/2<6<1).

Vs,t,xz ,,,,, zn(ﬁ) = {

e When s,t > 0,

t-yT(20) + (0,22, ...,2,) 0<0<1/2)

Vs,t,xz,...,x”(e) = _
s-77(20 1)+ (0,22,...,2,) (1/2<60<1).

e When s > 0 and t <0,

(0) = (t,@2,...,2n) (0<6<1/2)
Toterern O @0 1)+ (s, ) (1250 <),
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Then, Lemma [6.5] implies

sup leng: (Vs t,ea,..wn) < cEHZ(CT) + cEHZ(CT) < A,
(Svtva:?7"'7$71)€(R2\(R<0)2)XRH71

thus one can define a map
A (R?\ (Reo)?) x RN = A (8,6,22, o, 0) & Vst

It is easy to check that ¢4 is continuous with respect to the L2-topology
on A. For any (z1,...,7,) € R", let ¢, ., ) denote the constant map from
St to (z1,..., 7).

Lemma 6.6. (i): For any r € R<,

Vr0,@a,ec@n = C(—r 22,0 YO,r,@2s,stn = C(ryaa,.n)
(ii): There exists R € Rsq such that
max{|s|, |t],|(x2,...,xn)|} > R = leng: (Vs tas,..z,) = —00.

Proof. (i) follows directly from the definition. To prove (ii), let us take R > 0
so that the following conditions hold:

B"(R) D pr(K’), R-min{diam(y"(S")), diam(y~(S'))} > diam(pr(K’)).

Here B"(R) := {q € R" | |¢| < R} and diam denotes the diameter. Note that
the second condition can be achieved when R is sufficiently large, since
and v~ are both nonconstant maps (see Remark .

Let us prove that such R satisfies the required conditions: if
leng: (Vs,tas,..2,) > —00 (which is equivalent to vs,mz,m,zn(Sl) C pr(K"))
then max{|s|, [t], |(x2,...,2n)|} < R. It is sufficient to consider the following
three cases:

e s<0andt > 0:Sincet-diam(y"(S!)) < diam(pr(K’)), we obtain t <
R. Since Ysta,....x,(0) = (=8, 22,...,2,) € pr(K’') C B"(R), we ob-
tain |s|,|(z2,...,2n)| < R.

e 5,t>0: Since t - diam(y*(Sh)), s - diam(y~(S1)) < diam(pr(K")), we
obtain ¢,s<R. Since Vs tz,,..2,(0)=(0,22,...,2,) €pr(K’')C B"(R),
we obtain |(x2,...,zy)| < R.

e s >0 and t <0 : this case is similar to the first case.
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Let us define h : R — (R?\ (R-()?) x R*~! by

~—

)

- 707 ey 20
h(.fl,xg,... 73777,) — {( Tl ) l'n) (xl

(0, 21,22, ..., %) (1 <0).

Then Lemma (i) implies €4 o h(zy,...,x,) = Clzy,....xn) By Lemma
(ii), when R € Ry is sufficiently large,

H, (64 o h) : Hy(R™,R™\ B"(R)) — Hy (A, A°) — Hy (AR, A%)

is zero. We may also assume that pr(K’) C B"(R). Now the diagram

Ho (i)
H, (R R™ \ pr(K')) —="H, (A%, AY%)

T n(£40h)
H,(R",R™\ B"(R))

commutes, the vertical map is surjective (since pr(K’) is star-shaped) and
the diagonal map is zero, thus Hn(j}é,) =0, which completes the proof

of . 0
7. Proof of Proposition [1.11

First let us introduce a few notations. For any S C R", let

D*S:={(q,p) e T'R" | g € S, [p| <1},
w(S) :=inf{suph —infh | h € C°(R"), |dh(z)| > 1 for any = € S},
7(S) := sup{r | there exists ¢ € R" with B"(¢q:r) C S}.

B"(q : r) denotes the closed ball in R™ with center ¢ and radius r.

Our goal is to show that, for any bounded B C T*R™ and any ¢ € Ry,
there exist compact star-shaped sets K1, Ko C T*R"™ such that B € K7 U K>
and e(K),e(Ks2) < e. Note that, for any compact K C T*R™ and a > 0,
there holds e(aK) = a’e(K). Thus we may assume that B is a subset of
D*B"(1) = {(g;p) € T"R" | [q|,p| < 1}.
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For any nonempty compact S C R", there holds
e(D*S) <2w(S) < C,r(S)

where C,, is a positive constant which depends only on n. The first inequality
is proved in Lemma 4 of [16], and the second inequality is proved in Sec-
tion 2.2 of [16], although notations and settings in this section are slightly
different from those in [16].

For any 6, let Ry denote the anti-clockwise rotation of R? with center
(0,0) and angle 6. For any integer N > 1, let

T(N) :={(rcosf,rsinf) |0<r<1,0<0<7/N}CR%L
Moreover, for any i € {1,2}, let us define S;(N) C R? and S;(N) C R™ by

Si(N) (n=2)
Si(N) x B™2(1) (n > 3).

N-1 g
= U Rusyons (M), Si(N) ::{
7=0

Then D*S;(N) C T*R"™ is a compact star-shaped set for any i € {1,2}, and
there holds

B C D*B™(1) C D*S1(N)U D*S3(N).
On the other hand, for any N and 1,

r(Si(N)) < r(Si(N)) < r(T(N)) < e

Thus, if N > “208 , then max;<;<oe(D*S;(N )) <e. One can complete the
proof by taking such N and setting K; := D*S;(N ) (1=1,2). O
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