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Removing parametrized rays

symplectically

Bernd Stratmann

Let (M,ω) be a symplectic manifold. Let [0,∞)×Q ⊂ R×Q be
considered as parametrized rays [0,∞) and let φ : [−1,∞)×Q→
M be an injective, proper, continuous map immersive on (−1,∞)×
Q. If for the standard vector field ∂

∂t on R and any further vector
field ν tangent to (−1,∞)×Q the equation φ∗ω( ∂

∂t , ν) = 0 holds
then M and M \ φ([0,∞)×Q) are symplectomorphic.

The question which subsets N of a symplectic manifold M can be chosen
such that M and M\N are symplectomorphic has been treated in particu-
lar for M = R2n a time ago already, see e.g. [Gro85, McD87, MT93, Tra93].
More recently, X. Tang showed that for a general manifold M the subset
N can be chosen to be a ray if the ray possesses a “wide neighborhood”
([Tan20]). Roughly speaking a ray is a 2-ended connected non-compact 1-
dimensional local submanifold whose one end closes up inside M while at
the other end the embedding is proper. In this paper an extension to higher
dimensional sets regarded as parametrized rays is provided. While for those
higher dimensional sets a condition is needed, this condition is trivially ful-
filled for an isolated ray as treated in [Tan20].

In order to state the theorem precisely let ∂
∂t denote the standard vector

field on R, i.e. whose flow consists of translations.

Theorem. Let (M,ω) be a symplectic manifold, Q some manifold and the
map φ : [−1,∞)×Q→M be injective, proper and continuous such that
φ|(−1,∞)×Q is immersive. If the equation

(1) ı ∂

∂t
φ∗ω = 0

holds on (−1,∞)×Q then M and M0 =M\φ([0,∞)×Q) are symplecto-
morphic.

The research for this work was partially supported by the “SFB/Transregio 191
Symplektische Strukturen in Geometrie, Algebra und Dynamik”.
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500 Bernd Stratmann

Additionally this symplectomorphism can be chosen to be the identity
outside some selected neighborhood of φ([0,∞)×Q).

During the final preparations of this paper the author learned about
the recent e-print of Y. Karshon and X. Tang ([KarTan21]) where similar
statements are proven using time-independent flows.

For simplicity, the set [−1,∞)×Q will be seen as a subset of M as the
map φ is assumed to be injective, proper and continuous.

Each ray [0,∞)× {q} has an extension [−1, 0)× {q}. The proof will
construct a diffeomorphism θ : [−1, 0)×Q→ [−1,∞)×Q mapping for each
q ∈ Q the extension [−1, 0)× {q} diffeomorphically to the corresponding ex-
tended ray [−1,∞)× {q}. This map θ extends to the desired diffeomorphism
ψ :M0 →M which is injective, surjective and satisfies ψ∗ω = ω, hence is a
symplectomorphism.

The idea of the proof is as follows. A smooth curve s 7→ θs for s ∈ R of
diffeomorphisms θs : [−1,∞)×Q→ [−1,∞)×Q is constructed which will
converge on [−1, 0)×Q to a diffeomorphism θ : [−1, 0)×Q→ [−1,∞)×Q
for s→ ∞. This curve θs of diffeomorphisms in turn will be extended to a
curve s 7→ ψs of symplectomorphisms ψs :M →M . This latter curve will
converge onM0 to the desired symplectomorphism ψ :M0 →M for s→ ∞.
The diffeotopy θs will be constructed as the flow of a time-dependent vector
field ζs extending to a time-dependent Hamiltonian vector field ξs whose
flow is ψs.

This time-dependent vector field ξs will be constructed to satisfy

(ξ1) the set ⋃
s′∈[s−1,s+1]

( int ({m ∈M | ξs′ |m = 0}) )c

is relatively compact for all s ∈ R,
where by “int” the topological interior is denoted and the complement
by “superscript c”.

(ξ2) for all compact subsets K ⊂M0 there is sK ∈ R such that ψs|K =
ψs′ |K for all s, s′ ≥ sK and

(ξ3) for each compact set L ⊂M there exists σL ∈ R such that

ψσ|ψ−1
σL (L) = ψσ′ |ψ−1

σL (L)

for all σ, σ′ ≥ σL.
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Property (ξ1) provides integrabilty of ξs, i.e. the existence of diffeomor-
phisms ψs :M →M as the flow of ξs. Furthermore Property (ξ2) will en-
sure that the curve of diffeomorphisms ψs becomes locally stable on M0 for
s→ ∞ and therefore converges to a limit ψ :M0 →M which is an injective
immersion automatically. Since ξs is a Hamiltonian vector field such that
ψ∗
sω = ω, the limit ψ is still satisfying ψ∗ω = ω while finally Property (ξ3)

will provide surjectivity of this limit ψ.

Proof. In the first part of the proof a suitable diffeotopy

θs : [−1,∞)×Q→ [−1,∞)×Q with s ∈ R

is constructed which in turn is constructed from a diffeotopy τs of [−1,∞).
For later extension to the ambient space the maps θs and θ will equal

the identity around {−1} ×Q and therefore τs and τ shall equal the identiy
around {−1}. So fix b ∈ (−1, 0) and a diffeomorphism τ : [−1, 0) → [−1,∞)
with τ |[−1,b] = id[−1,b]. There is a diffeotopy τs, i.e. a smooth curve s 7→ τs
of diffeomorphisms τs : [−1,∞) → [−1,∞), such that

(τ1) τs = id for all s ≤ 0,

(τ2) τs|[−1,b] = id[−1,b] for all s ∈ R,

(τ3) for all s ∈ R the set⋃
s′∈[s−1,s+1]

( int ({t ∈ (−1,∞) | τs′(t) = t}) )c

is relatively compact in (−1,∞) and

(τ4) for each compact subset A ⊂ (−1, 0) there is sA ∈ R such that τs|A =
τ |A for all s ≥ sA.

Property (τ3) will provide Property (ξ1) of the extended Hamiltonian
vector field ξs while Property (τ4) will be needed to ensure the extension ξs
to satisfy both Properties (ξ2) and (ξ3) later, needed for the flow becoming
locally stable and the limit being surjective.

Property (τ1) is only used to define θs later via a time shift.
Now the diffeomorphism θ : [−1, 0)×Q→ [−1,∞)×Q can be defined

from τ : [−1, 0) → [−1,∞) in the most naive way by θ(t, q) = (τ(t), q). How-
ever, if Q is not compact, defining the diffeotopy θ◦s in the same naive way
would result in that θ◦s differs from the identity on a non-compact set con-
tradicting Property (ξ1). Instead, θ◦s is defined using a time shift. Choose a
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function ρ : Q→ (0,∞) such that the set {q ∈ Q | ρ(q) ≤ c} is compact for
each c ∈ R. Define θ◦s by

θ◦s(t, q) = (τs−ρ(q)(t), q) .

Denoting πQ : R×Q→ Q the projection the maps θ◦s satisfy πQ ◦ θ◦s = πQ
while for fixed q and s the map t 7→ τs−ρ(q)(t) is a diffeomorphism of [−1,∞).
Thus θ◦s is a diffeomorphism. By construction it satisfies

(θ1) θ◦s = id for all s ≤ 0,

(θ2) θ◦s |[−1,b]×Q = id[−1,b]×Q for all s ∈ R,

(θ3) for all s ∈ R the set

⋃
s′∈[s−1,s+1]

( int ({(t, q) ∈ (−1,∞)×Q | θ◦s′(t, q) = (t, q)}) )c

is relatively compact in (−1,∞)×Q and

(θ4) for each compact set A ⊂ [−1, 0)×Q there is sA ∈ R such that θ◦s |A =
θ|A for all s ≥ sA.

Later, the Hamiltonian vector fields which define the Hamiltonian flow will
be modified using cut off functions (see (χ2) and (χ3) below). For this, the
flow is required to be static in a neighborhood of time s ∈ Z. This is done
by deforming the time of the diffeotopy θ◦s . For this, choose an increasing
smooth map κ : R → R and δ > 0 such that κ|[n−δ,n+δ] = n for all n ∈ Z
and define the diffeotopy θs = θ◦κ(s) satisfying likewise all the above Proper-

ties (θ1)-(θ4). Denote ζs the time-dependent vector field whose flow is θs.
The property πQ ◦ θs = πQ shows that the time-dependent vector field ζs
points in the direction of the rays, i.e. there is a time-dependent function
λs : [−1,∞)×Q→ R such that

(2) ζs = λs ·
∂

∂t
.

By construction ζs satisfies the following properties.

(ζ1) ζs = 0 for all s ≤ 0 and for all s ∈ [n− δ, n+ δ] for each n ∈ Z,

(ζ2) ζs|[−1,b]×Q = 0 for all s ∈ R,
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(ζ3) for each s ∈ R the set⋃
s′∈[s−1,s+1]

(
int

(
{(t, q) ∈ (−1,∞)×Q | ζs′ |(t,q) = 0}

) )c
is relatively compact in (−1,∞)×Q and

(ζ4) for each compact subset A ⊂ [−1, 0)×Q there is an sA ∈ R defining
B = θsA(A) such that ζs|B = 0 for all s ≥ sA.

Denote Cs = {(t, q) ∈ [−1,∞)×Q | ζs′ |(t,q) = 0 for all s′ ≥ s} the set of
those points in [−1,∞)×Q the flow has finally stopped at at time at most s.
Then the above properties imply⋃

s∈R
int (Cs) = [−1,∞)×Q and⋃
s∈R

θ−1
s (int (Cs)) ⊃ [−1, 0)×Q

(3)

This can be seen as follows. Let B be an open subset of [−1,∞)×Q such
that B̄ is compact and int

(
B̄
)
= B. Property (θ4) states that for A =

θ−1(B̄) there is sA ∈ R such that θs|A = θ|A for all s ≥ sA hence ζs|B = 0
for all s ≥ sA, i.e. B ⊂ int (CsA). Exhausting [−1,∞)×Q by such sets B
yields the first statement of (3). The second equality of (3) follows from

θ−1(int (Cs)) ⊂ θ−1
s (int (Cs))

and using the first statement of (3)

[−1, 0)×Q = θ−1(
⋃
s∈R

int (Cs))

=
⋃
s∈R

θ−1(int (Cs)) ⊂
⋃
s∈R

θ−1
s (int (Cs)) .

The goal of this second part is to extend the time-dependent vector field ζs
on [−1,∞)×Q to a time-dependent Hamiltonian ξs onM satisfying suitable
conditions.

In a first step, a time-dependent function gs :M → R with gs|[−1,∞)×Q =
0 is constructed satisfying

(4) ıζsω|(−1,∞)×Q = dgs|(−1,∞)×Q
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such that ıξsω = dgs defines an extension ξs of ζs. Using Equation (2), Con-
dition (1) requested to hold in the Theorem reads

ω(ζs, ν) = 0 for all ν ∈ T ((−1,∞)×Q) ⊂ TM

One down to the earth way to see that gs exists might be to see that gs
can be given in local coordinates explicitly. The global result is then easily
obtained by a partition of unity.

This curve of functions gs may not have sufficiently small support, it will
therefore be cut off in the following. In detail, by construction, dgs vanishes
on (−1,∞)×Q if and only if ζs vanishes (see (4)). Combining this with
(ζ3), there is a smooth curve of smooth functions χs :M → [0, 1] satisfying

(5) {(t, q) ∈ (−1,∞)×Q | dgs|(t,q) ̸= 0} ⊂ {m ∈M | χs(m) = 1}

for all s ∈ R as well as that⋃
s′∈[s−1,s+1]

( int ({m ∈M | χs′(m) = 0}) )c

is relatively compact for all s ∈ R. Now the curve g̃s = χs · gs satisfies dg̃s =
dgs on (−1,∞)×Q, since on the one hand dg̃s = χsdgs on this set as gs
vanishes there and on the other hand χs = 1 whenever dgs does not vanish
(see (5)). Therefore g̃s has the desired support, namely for all s ∈ R⋃

s′∈[s−1,s+1]

( int ({m ∈M | g̃s′(m) = 0}) )c

is relatively compact.
Starting from g̃s a time-dependent function fs will be defined as the limit

of a sequence of time-dependent functions fn,s. Each such time-dependent
function fn,s and fs define a time-dependent Hamitonian vector field by

ıξn,s
ω = dfn,s and

ıξsω = dfs

with flows ψn,s and ψs respectively.
Initialize f1,s = g̃s and set fn+1,s = χn,s · fn,s for a sequence of smooth

time-dependent functions χn,s :M → [0, 1] whose properties will be specified
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below. Since for all time-dependent functions hs ∈ {fn,s, fs} the set⋃
s′∈[s−1,s+1]

( int ({m ∈M | hs′ |m = 0}) )c

⊂
⋃

s′∈[s−1,s+1]

( int ({m ∈M | g̃s′ |m = 0}) )c

is relatively compact for all s ∈ R, the flows ψn,s and ψs are defined for all
s ∈ R globally.

In order to define χn,s let Ln be an exhausting sequence of compact
subsets of M , i.e. L0 = ∅, Ln ⊂ int (Ln+1) and

⋃
n∈N Ln =M . In view of

(3), this choice can be made such that Ln ∩ [−1,∞)×Q ⊂ int (Cn) for all
n ∈ N. Analogously using (3) again, an exhaustion Kn of M\([0,∞)×Q) is
chosen such that Kn ∩ [−1, 0)×Q ⊂ θ−1

n (int (Cn)).
The time-dependent functions χn,s shall satisfy

(χ1) χn,s(m) = 1 if n ≥ s,

(χ2) χn,s(m) = 1 if m ∈ [−1,∞)×Q and dfn,s(m) ̸= 0 and

(χ3) χn,s(m) = 0 if s ∈ [n+ δ,∞) and m ∈ Ln ∪ ψn,n(Kn) .

To see that this is possible note that the sets Ln and Kn have been chosen
such that for all s ≥ n

Wn = (Ln ∪ ψn,n(Kn)) ∩ [−1,∞)×Q ⊂ int (Cn) , i.e.

ζs|Wn
= 0 for all s ≥ n .

where for s ≥ n the set Wn = (Ln ∩ [−1,∞)×Q) ∪ θn(Kn ∩ [−1,∞)×Q)
and hence depends only on θn and not on the extension ψn,n. So χn,s(m)
can be chosen to vanish for s ≥ n+ δ satisfying (χ3) and likewise (χ1) and
(χ2). For s ∈ (n, n+ δ) the vector field ξs vanishes by construction such
that χn,s can be chosen freely to fit the conditions for s ≤ n and s ≥ n+ δ.
Furthermore the sequence χn,s can be defined inductively, since the choice
of χn,s does not change ψs′ for all s

′ ≤ n.
Property (χ1) implies that

fn,s = fm,s and ξn,s = ξm,s

and hence ψn,s = ψm,s
for all n,m ≥ s .

So, fn,s converges to fs for n→ ∞, and consequently ξn,s converges to ξs
and so the sequence of corresponding flows ψn,s converges to the flow ψs of
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ξs. The limits satisfy

fn,s = fs and ξn,s = ξs and ψn,s = ψs for all n ≥ s .

By making use of Property (ζ1) incidentally, this condition (χ3) implies

ψs|Kn
= ψs′ |Kn

for all s, s′ ≥ n .

Thus, since Kn has been chosen to exhaust M0 =M \ ([0,∞)×Q), the
diffeomorphisms ψs converge for s→ ∞ on M0 to a diffeomorphism ψ :
M0 → ψ(M) ⊂M . Recall that each diffeomorphism ψn,s as well as each
diffeomorphism ψs is in fact a symplectomorphism, so the limit ψ satisfies
likewise ψ∗ω = ω.

Finally the map ψ will be shown to be surjective to M . By construction
ψ|[−1,0)×Q = θ, so the image of θ, namely [−1,∞)×Q, is contained in the
image of ψ. For a compact set L disjoint to [−1,∞)×Q there is n ∈ N
such that L ⊂ Ln. Furthermore ψn is a bijection of M and the restriction
ψn|M\([−1,∞)×Q) a bijection of M \ ([−1,∞)×Q), i.e.

L ⊂ ψn(M \ ([−1,∞)×Q)) .

For each l ∈ L there is an m ∈ ψ−1
n (L) such that

l = ψs(m) = ψs′(m) for all s, s′ ≥ n

with m ̸∈ [−1,∞)×Q and hence as ψ(m) = ψs(m) for all s ≥ n, the equa-
tion ψ(m) = l holds which finishes the proof showing surjectivity of the map
ψ :M0 →M .

Additionally, the theorem claims that ψ can be constructed to equal the
identity in a chosen neighborhood U of [0,∞)×Q. This can be obtained in
modifying the immersion φ such that [−1,∞)×Q is contained in U . Doing
this in shrinking each ray condition (1) will still hold. Then the constructed
function gs can be cut off to zero on U c such that all vector fields constructed
on M vanish on U c. By force

ψ|Uc = idUc

□

A few examples may be given both for which the result holds and to which
the theorem does not apply.
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Let N = [0,∞)×Q ⊂M denote the local submanifold which is excised
fromM . If N is 1-dimensional the result holds, more generally it holds for N
being isotropic. On the other extreme, for N being symplectic the theorem
does not apply. One may also construct straightforward examples where the
rank of ω on N jumps from point to point. For this, let M1 and M2 be
symplectic manifolds, N1 ⊂M1 be isotropic and of the form [0,∞)×Q1.
Then N2 ⊂M2 can be chosen to be an arbitrary closed submanifold. The
result holds for N1 ×N2 ⊂M1 ×M2 and N2 can be chosen such that the
rank of the 2-form on N1 ×N2 jumps.

IfM is of dimension 4, then ifN is of dimension 2,N must be Lagrangian
while the case in which N is of dimension 3 seems to be difficult to describe.

Applying this to R2n with standard ω =
∑n

i=1 dx2i−1 ∧ dx2i the result
holds to the case N = {(x1, . . . , x2n) ∈ R2n | x1 ≥ 0, x2 = 0} but the the-
orem does not apply to all cases N = {(x1, x2) ∈ R2 | x1 ≥ 0} ×N2 for
N2 ⊂ R2n−2 being a closed submanifold or any open subset N2 ⊂ R2n−2.
Furthermore the theorem treats the cases

N =

{
(x1, . . . , x2n) ∈ R2n

∣∣∣∣ x1 = 0,

2n∑
i=2

aixi ≥ 0

}

if a2 ̸= 0. This provides few examples in the case of R4 with dimN = 3.

In [Str20], the author proves that a manifold with exact symplectic form
ω admits a nowhere vanishing primitive β to ω, i.e. ω = dβ, a property
required in the paper of Blohmann and Weinstein ([BW18]). The Theorem
simplifies the last step of the proof in [Str20] where the nowhere vanishing
primitive is constructed from a primitive with isolated zeroes inductively.
This can be done with this paper’s Theorem in one step by choosing rays
covering the zeros and then apply the global symplectomorphism of the
complement of the rays to the initial manifold.
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