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Splitting formulas for the local real
Gromov-Witten invariants

PENKA GEORGIEVA AND ELENY-NICOLETA IONEL

Motivated by the real version of the Gopakumar-Vafa conjecture
for 3-folds, the authors introduced in [GI] the notion of local real
Gromov-Witten invariants associated to local 3-folds over Real
curves. This article is devoted to the proof of a splitting formula
for these invariants under target degenerations. It is used in [GI] to
show that the invariants give rise to a 2-dimensional Klein TQFT
and to prove the local version of the real Gopakumar-Vafa conjec-
ture.
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1. Introduction

A central problem in Gromov-Witten theory is understanding the struc-
ture and properties of the Gromov-Witten invariants. Motivated by the real
version of the Gopakumar-Vafa conjecture and the work of Bryan and Pand-
haripande [BP2], the authors introduced and studied in [GI] the notion of
local real Gromov-Witten invariants. In this article we prove the splitting
formula for these invariants, as outlined in [GI, §4] and used to establish the
structural results of [GI].

A symmetric (or Reaﬂ) Riemann surface is a (possibly disconnected and
marked) Riemann surface ¥ together with an anti-holomorphic involution
c: Y — X (also referred to as a real structure). Throughout this paper we
restrict attention to the case in which none of the marked points are real,
and we denote by V the collection of marked points of Y. Consider the real

relative moduli space
—R

Mg, z2(8,V)

7X7I"'/

of degree d real maps f: C — X from (possibly disconnected) domains of
Fuler characteristic x and having ramification profile i over the divisor
V', reviewed in Here fi is a collection of partitions of d, one for each
pair of conjugate points in V. These moduli spaces are orientable, but not a
priori canonically oriented; their orientation depends on a choice of (twisted)
orientation data o on X, cf.

When L — ¥ is a holomorphic line bundle, the local RGW invariants are
defined as the pairing

1 _
1.1 RGWQO E, L); = e~ / C —ind 0
( ) d:X( )M \Aut(u)] [ﬂnj,x’ﬂ(zyv)}vimﬂ b/2< L)

between the appropriate Chern class of the index bundle Ind d;, (regarded
as an element in the usual complex K-theory) and the virtual fundamental
class of the real relative moduli space. Here b is the (virtual) dimensionﬂ
of the moduli space and the presence of the factor |[Aut(ji)| is explained in
Remark . In particular, are the coefficients of the generating series
[GI, (2.24)].

'We use Real with capital R for spaces or bundles with anti-holomorphic involu-
tions, following Atiyah.

2Unless otherwise noted, all dimensions appearing in this paper are real dimen-
sions rather than complex dimensions.
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The pairing is invariant under smooth deformations of the target
Y (as a symmetric marked curve) together with L and o; in particular it
is independent of the holomorphic structure on L. By considering a family
UsXs of smooth symmetric marked curves degenerating to a symmetric nodal
curve ¥y (with a conjugate pair of nodes), the splitting formula proved in
this paper relates the local RGW invariants of a smooth fiber >, to those
of the normalization of the singular fiber X.

Throughout this paper, ¥y denotes a symmetric nodal curve with a
single pair of conjugate nodes and r pairs of conjugate marked points; in
particular, we assume that Yy has no real special points. We always denote
by

1.2 = IR

( ) F/ A sgA

a (flat) family of deformations of ¥y parametrized by the unit disk A as
described in The fibers over s # 0 are smooth (marked, symmetric)
curves ;. We also denote by

i—)EQ

the normalization (or resolution) of the singular fiber ¥y (as a symmetric
marked curve). We denote by ¢, ¢ and Vi, V' the corresponding real struc-
tures and markings.

If L — F is a complex line bundle over the family, we denote by L and L
its pullback to ¥4 and respectively 3. There is also a notion of twisted orien-
tation data o on the family F, which pulls-back to give twisted orientation
data o5 on X, and o on i cf.

With these preliminaries, the main result of this paper is the proof of
the following theorem.

Theorem 1.1 (RGW Splitting Theorem). Let F = UsX be a family
of deformations of ¥o and X be its normalization as described above. Fix
L — F a complex line bundle and ox a twisted orientation on F. Then the
local RGW invariants (L.1) associated to the smoothing ¥s are related to
those associated to the normalization ¥ as follows:

(1.3) RGW ™ (S, Lo)g = 3 CVRGWEL 4y (2, L)an
Ad

for all s # 0 and all d, x, and fi. Here X is a partition of d, £(\) is its length
and the coefficient ((\) is given by (2.2)).
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Theorem is an extension to the real setting of the splitting formula
of Bryan-Pandharipande [BP2, Theorem 3.2] proved in [BP1, Appendix A].
A direct consequence of Theorem |1.1|is [GI, Theorem 4.1] cf. Corollary
and the discussion after it. This is used in [GI] to show that the local RGW
invariants give rise to a 2-dimensional Klein TQFT and to prove the local
version of the real Gopakumar-Vafa conjecture.

The proof of Theorem is a consequence of the splitting properties of
the total Chern class of the index bundle established by Bryan and Pand-
haripande, combined with a splitting formula for the virtual fundamental
class of the real relative moduli space. The proof of the latter — Theorem
below — occupies the majority of this paper. The basic idea is an adaptation
to the real setting of the classical proof of the splitting theorem [LR [Li, TP2].

We consider a family of real moduli spaces
- —R
(1.4) Mayi(Fja) = U Maya(Es,Vs)

associated to the family F of targets, cf. (3.14). For every partition A of d,
we also consider the real relative moduli space

7[& ~ ~
My ian(EV)

associated to the normalization 3 of Yo; note that 3 has two additional
pairs of conjugate marked points (corresponding to the pair of conjugate
nodes of ¥y) and we restrict to the case when the ramification profile is A
over all these additional points. There is a natural map

—R <~  —R
(1.5) P |_| M sraen,ian (V) = Mg, (20, Vo)
Ad

which attaches pairs of marked points of both the domain and target to
produce nodes, cf.

Theorem 1.2 (VFC Splitting Theorem). With the notation above, for
every d, x, and [i and all s € A\ 0 the equality

AR vir C(A AR S 1/)\]vir,o
(1.6) [Mg, z(3s, Vs)]["00 = Z mui())\)gq)*[Md,erM()\),ﬁ,)\,)\(za Ve
A-d

holds in the rational Cech homology of the family (1.4]) of moduli spaces.
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We now outline the key steps involved in the proof of the splitting for-
mula . In this paper we use Ruan-Tian perturbations adapted to our
setting in combination with the thin compactification method of [IP5] as
summarized in §2.3] This approach allows us to use standard arguments
after adapting them to the real setting.

The notion of Ruan-Tian perturbations extends to the family F = Uz
of targets in a way that is compatible with the real structures and the
divisors, cf. In particular, every RT perturbation v on the family is
real and pulls back to a RT perturbation on ¥; and X, compatible with
their divisors. Denote by P the space of such RT perturbations v on the
family F.

As v varies over the parameter space P, we get various families of moduli
spaces over P, cf. Denote by 171(X;) and 171(X) the family (over P) of
real relative moduli spaces associated to the fiber Xg and respectively the
normalization ¥ of the nodal fiber ¥y. Fix a segment I = [0, sg] C A, where
s0 # 0. As in the usual proof of the splitting formula, we consider a family
of moduli spaces

The attaching map (1.5 extends to a proper map
meE) —2— mo).

These are all f@ilies over the parameter space P if RT perturbations v and
we denote by 171(—), the corresponding fiber of 177(—).

In section [5.2] we first show that

(1.7) m(ss,), (¥), and M(%)

are thinly compactified families over the parameter space P (in the sense of
[IP5]) and therefore carry a VFC, cf. Theorem [5.3| This involves proving that
for generic v all the strata of the moduli spaces 1711(—), are cut transversally.
There is one subtlety: when the real locus of the target is nonempty, it also
involves gluing across the codimension 1 strata to show that for generic v,
the corresponding subsets

M)y, M)y, and  M(So)w,
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(defined as the union of codimension at most 1 strata) are orientable topo-
logical manifolds (without boundary). As a consequence of transversality,
generically the union of the codimension at least 2 strata of 771(—), have ho-
mological codimension at least 2 and thus the thin compactification method
applies to define the VFC.

To establish the relation (1.6]) it suffices to compare the fundamental
classes

[M(Zs0)ls @L[M(E),],  and  [M(Z0),] in HL(N(F)1); Q)

for generic v € P. These classes depend on the choice of orientation of the
moduli spaces, which in turn is determined by a choice of twisted orientation
data or on F, cf. There are two natural perspectives on the moduli space
associated to the nodal target ¥y, one coming from the normalization and
the other from the deformation, cf. Each perspective gives rise to a
natural orientation (after fixing ox) and a key step is showing that these
two orientations agree, proved in

We prove in §6| that for generic v € P the attaching map & restricts to
a proper, finite degree map between the two oriented topological manifolds
m(x), and M(%yp), and thus

(1.8) @, [M(E),] =deg®- [M(Z0),] in  H,(M(S0),; Q).

Lemma [6.1] expresses the degree of ® in terms of specific combinatorial
factors.

Theorem E would follow if m(f Iy = UI ﬁ(zs)y was generically a
se

topological cobordism; however, as in the usual splitting formula, in general
it is branched along s = 0. After passing to a cover 11(3g) of M (%), we
construct in §7] an auxiliary space

—~ o~ —

T(F)r) = (o) U Y 7(S).

This space comes with a proper continuous projection to 171(F,;) which

o~ —

restricts to a map gqo : M (Xg) — M (Xp). We prove in §7| that for generic
veP,

—~

(i) qo restricts to a proper map between two oriented manifolds 771(X),
and M1(Xg),. Thus

— —~ - —~

(QO)*[m(ZO)V] - (deg qO) : [m(EO)V] in H*(m(20>l/a @)7
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(ii) m(]: /1)v is an oriented topological cobordism between 77’2(280),, and
771(20) Thus

(o)) = M(S,,),]  in H((F)); Q).

This allows us to relate [777(250)1,] to [fﬁ(Eo)y] up to specific combinato-
rial factors. Combined with , the precise formulas for the degrees of
® and qg, and the properties of thin compactifications, this implies ,
completing the proof of Theorem [I.2] cf. §9}

Outline of paper. In Section [2] we review notation and background; a
summary of the thin compactification method is included in §2.3]and at the
beginning of §5| In Section [3] we review the construction of the real rela-
tive moduli space and extend it to a family of targets. In Sections [] and
we construct the relevant VFCs by turning on Ruan-Tian perturbations
to obtain transversality strata-wise and applying the thin compactification
method. The moduli space of maps to a nodal target is analyzed in Sec-
tion [0 including several equivalent descriptions of the linearization and its
orientation sheaf. The auxiliary space m(f / 1) is constructed and analyzed
in Section [7] The orientations of the various moduli spaces involved are dis-
cussed in Section [§] The main result of Section [§]is Proposition which
compares the two natural orientations on the moduli space associated to the
nodal target. Theorems [I.2] and [I.1] are proved in Sections [9] and [I0] The
appendices provide more detalls on the various linearizations con51dered and
the relations between them.
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2. Background and notation
2.1. Notations for partitions

Let d € Z. A partition X of d, denoted A F d, is a finite sequence of positive
integers A = (A1 > --- > \y) such that the sum of its parts, denoted |A|, is
equal to d. The number of its parts, called length of the partition, is denoted
£(X\). We can also write a partition in the form A\ = (17122 ...) where my
is the number of parts of A equal to k. Then

J4 %) [e'S)
d=\=> XN=> kmp and (A) == my.
i=1 k=1 k=1
Let Aut(A) be the automorphism group of \; its order is

(2.1) [Aut(A)| = [ [ma.

We also consider the following combinatorial factor

(2.2) ¢ = [ malk™.
2.2. The local RGW invariants

A symmetric (or Real) curve (C,0) is a closed, oriented, possibly nodal,
possibly disconnected, possibly marked complex curve C' together with an
anti-holomorphic involution o, called the real structure. In this paper we
only consider the case when all marked points of C' come in conjugate pairs.

Let (X, w) be a symplectic manifold and ¢ an anti-symplectic involution
on X. A real map

(2.3) f:(Co) — (X,9)

is a map f:C — X such that foo =¢o f. In this paper we restrict to
almost complex structures J on X which are real i.e. satisfy ¢*J = —J and
are tamed by w. Denote by

—R
(24) Md,X7Z(X)
the (absolute) real moduli space consisting of equivalence classes (up to
reparametrization of the domain) of stable degree d J-holomorphic real maps
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(2.3) from symmetric curves of Euler characteristic x and ¢ pairs of conjugate
marked points.

Throughout this paper we restrict ourselves to target manifolds X which
are (families of) symmetric curves; in this case we denote the target curve

by (X, ¢) and the family of such by F, see
Assume (X, ¢) is a (smooth) symmetric curve with r (ordered) pairs of
conjugate marked points

(2.5) V={(z{,27),...,(x],2,)}, where z; =c(z]),

)

and no other marked points. For a collection ji = (u!,...,u") of r partitions

of d, denote by
—R
(26) Md,x,ﬁ(27 V)

the real relative moduli space reviewed in Note that when > has no
marked points V = ) and the real relative moduli space becomes an
absolute real moduli space.

The virtual dimension of the moduli space is equal to

T

(27)  b=dy(®) - x—26(), where 8() =3 (d— E(u)),
=1

of. (A16).

In general, the (absolute) real moduli spaces are not always ori-
entable, but there are some criteria that ensure orientability. In [GZ1l Def-
initions 1.2 and 5.1] a notion of real orientation was introduced. When the
target X is odd complex dimensional, the existence of a real orientation
on T'X ensures that the real moduli spaces M§7X75(X ) are orientable, and
a choice determines a canonical orientation of the moduli space cf. [GZ1]
Theorem 1.3]. This was extended in [GI, Definitions 2.1 and A.1] to the
notion of a twisted orientation, reviewed in Definition [8.1] below, and used
to orient the real relative moduli spaces. While a real orientation in the
sense of [GZ1), Definition 1.2] does not exist on a symmetric curve with even
genus and fixed-point free involution, a twisted orientation exists on every
symmetric marked curve (with no real special points), cf.

For a smooth marked symmetric curve ¥ as in ([2.5)), its relative tangent
bundle 7y, is defined by

(2.8) EzTZ@O(—ZmT—Zx;).
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It is a holomorphic line bundle over ¥ and has a canonical real structure ¢y

induced by c, see also .

As described after |GI, (A.13)] and reviewed in the moduli space
MS{,X’Q(Z, V') is orientable, and can be canonically oriented by a choice of
twisted orientation data o on the relative tangent bundle Tx. This gives rise
to a virtual fundamental class denoted [MIS’X’ (% V)]¥i'° which depends on

0. For any holomorphic line bundle L — X, we can consider its index bundle
Ind 0f, as an element in K-theory, see (10.1]). Denote

C def ]- Y
(29) RGWd:;(E7 L)ﬁ == m / Cb/Q(—Ind 8L)

My 2 (Z,V)vire

Here b is the (virtual) dimension (22.7]) of the moduli space and ¢ (E) denotes
the k’th Chern class of E. The local RGW invariant defined by [GI, (2.24)] is
then equal to

(2.10) RGWS® (S, L); = Z RGW(;”;(Z, L); §X/2 (4 )b/ 2k
X

cf. Remark Here k = ¢1(L)[X] is the degree of the line bundle.

While there may be different ways of defining the VFC, in this paper we
describe a specific construction of the VFC

R vir,o T AR
(2.11) (Mg zg(E VI € Hy(Mg, 2(2,V); Q)

as an element of rational Cech homology, using the thin compactification
method as introduced in [IP5l §2] and briefly reviewed in This has the
advantage that it is very concrete and does not use sophisticated virtual tech-
niques. In the case when the target is a Riemann surface, turning on certain
geometric perturbations v of the J-holomorphic map equation as introduced
by Ruan-Tian [RT] suffices to obtain transversality strata-wise for the real
relative moduli space (after passing to a cover of the Deligne-Mumford mod-
uli space; see Remark . This ensures that the moduli space is generically
a thin compactification, and thus carries a VFC for all Ruan-Tian pertur-
bations, including for v = 0. We present the details of this construction in

§4 and
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2.3. Thin compactifications

Here we briefly summarize the method of thin compactifications as intro-
duced in [IP5] and how it applies to construct the virtual fundamental class
(VFC) of the real relative moduli spaces considered in this paper; the details
of this construction are presented in

Throughout this paper, by a d-dimensional manifold we mean a Haus-
dorff space M locally modeled on R?. If M is also oriented (but not nec-
essarily compact), it has a fundamental class in Steenrod homology and we
denote by [M] € Hy(M; Q) its image in rational Cech homology. There are
some subtleties involved when working with these homology theories; in
particular, to pushforward such classes one needs a proper continuous map
(between locally compact Hausdorff spaces), cf. [IP5L §1]. However, ratio-
nal Cech homology satisfies a continuity axiom, a relative homeomorphism
axiom and is also exact; in particular, there is a natural long exact sequence

(212) ... > H,(4;Q) - H(X;Q) B H, (X \4;Q) — ...

associated to a closed pair (X, A), where p is the "restriction” to an open
set, cf. [M] and [IP5 §1].

If M is an oriented d-dimensional manifold, a thin compactification of
M (in the sense of [IP5l §2]) is a compact Hausdorff space M containing
M such that S = M \ M is closed and (homologically) codimension 2, i.e.
H.(S;Q) =0 for all *+ >d —2. Then p: H,(M;Q) — H,(M;Q) is an iso-
morphism for * = d, cf. (2:12)), thus the fundamental class [M] € H.(M;Q)
uniquely lifts to a class on M denoted [M] € H,(M; Q). Thinly compactified
cobordisms are defined similarly, cf. [IP5] §2.3].

Roughly speaking, the thin compactifications method of [IP5] applies to
a moduli problem whenever (i) for generic perturbation the moduli space is
a thinly compactified manifold, i.e. is an oriented manifold away from (ho-
mologically) codimension 2 strata and (ii) the moduli space over a generic
1-parameter family of perturbations is a thinly compactified cobordism, i.e.
is an oriented cobordism away from (homologically) codimension 2 strata.
Since the fundamental class (in rational Cech homology) of a manifold
uniquely extends to any thin compactification, the first condition defines
the fundamental class of the moduli space for generic parameter. For non-
generic parameter, the virtual fundamental class is obtained as the limit (in
rational Cech homology) of nearby classes, which is well defined by condition
(ii). For more details, see [IP5, Theorem 4.2].
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The ideal situation in which the thin compactification method applies
is when all the strata of the moduli space are cut transversally, and the
boundary strata have (virtual) codimension at least 2, cf. [[P5, Lemmas 2.2
and 5.3]. More generally, it suffices to cover the boundary by images of
codimension 2 manifolds, as in [IP6, Lemma 2.2].

Because the targets considered in this paper are holomorphic curves,
we are in a very special situation where geometric Ruan-Tian perturbations
work particularly well, and are sufficient to obtain transversality strata-
wise on all strata of the real relative moduli spaces, with one exception.
When the target is a sphere without any marked points, the (absolute)
moduli space of maps from a genus 1 domain with no marked points has a
few strata which are not cut transversally, cf. Remark [£.7] In all the other
cases, the RT perturbations suffice to ensure that all the strata are cut
transversally, as we outline below. For this reason, we work under the mild
technical assumption that the target ¥ has a marked point on each spherical
component, which suffices for our considerations, cf. Remark [0.2} for precise
details, see Lemma 4.5

Classically, it is known that one can use Ruan-Tian perturbations v to
get transversality on all stable components of the domain (after first passing
to a cover of the Deligne-Mumford moduli space as in Remark. However,
Ruan-Tian perturbations identically vanish on unstable domain components,
so these components must be handled by other methods. When the domain
is a genus g curve with at least 3 — 2¢g marked points, these are the spherical
components collapsed to points under the map to the Deligne-Mumford
moduli space. Otherwise, the entire domain is unstable (when it has genus
1 and no marked points or genus 0 with fewer than 3 marked points).

However, when the target is aspherical (e.g. a smooth higher genus curve)
unstable spherical domain components cannot occur for maps in the moduli
space. When the target is a sphere, there could be unstable spherical domain
components, but these are well understood classically, and in particular are
cut transversally (even though they are multiple covers!). This is also true
for all the strata of the moduli space of (holomorphic) maps from a genus 1
curve without marked points, as long as the target has genus one (or higher).

For the relative moduli spaces, there are also rubber components in-
volved, but in our case these project to constant maps into the divisor
which satisfy an additional condition that depends on Vv, cf. . This
condition is automatically satisfied on genus 0 components and is again
cut transversally on the other rubber components because we can use Vv
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to get transversality. Moreover, any stratum with rubber components has
codimension at least 2. For more details, see

The moduli spaces of real maps considered in this paper may have codi-
mension 1 strata. In this case, we first argue that for generic parameter v
the union of the codimension at most one strata is an oriented topologi-
cal manifold (without boundary), and thus carries a fundamental class (in
rational Cech homology); this involves only standard gluing techniques at
an ordinary real node of the domain (and no rubber components). All the
other boundary strata have codimension at least two, thus the method of
thin compactifications applies. For details, see

3. Family moduli spaces

A key step in proving the splitting formula for the RGW invariants is to con-
sider a family of moduli spaces associated to a family of symmetric marked
curves degenerating to a nodal symmetric curve (with a conjugate pair of
nodes). This family moduli space, denoted M (F / A), serves as the ambient
space where we can compare the VFCs and integrands used in defining the
RGW invariants. In this and the following two sections we set up the nec-
essary notation, review the constructions and show that the moduli spaces
involved in defining the RGW invariants extend over families of sym-
metric marked curves, including across the singular fibers.

3.1. Families of symmetric curves

Recall that if ¥y is a complex nodal marked curve, then we can consider

(a) a smooth normalization Y of ¥y that replaces each node by a pair of
marked points;

(b) a (flat) family F of deformations 3, of ¥y smoothing out the nodes.

Let (X0, ¢o) be a nodal symmetric curve with r pairs of conjugate marked
points V, and a single pair of conjugate nodes z*. Let

(3.1) 7w (F,cr) — (Az,cA),

denote a (flat) family of deformations of (g, cp) smoothing the nodes as
defined in [GZ2], §4.2], cf. Here A C Cis the unit disk and A% = A x A.
The total space F is a smooth Kéahler manifold with complex structure J and
the projection is holomorphic. Moreover, cr is a real structure on F which
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is anti-holomorphic and restricts to the real structure cg on the central fiber
Yo, while ca : A2 — A? is defined by (s1,s2) > (32,51). Finally, marked
points give rise to sections of F — A?; their images define a smooth divisor
VcF.

The fiber of (3.1)) over (s,3) is a symmetric marked curve denoted Xg;
its real structure cg is the restriction of cr to g while its marked points
correspond to the restriction Vs of V' to 3. This determines a family

(3.2) ]:/A = U X

SEA

of symmetric marked curves over A (the pullback of (3.1) via the map
A — A2 s+ (s,5) for all s € A). We will later consider restrictions of this

family (3.2) to a line, path, etc.

Consider also
(3.3) (3,2) — (S0, co)

the normalization of the singular fiber ¥y (as a marked symmetric curve).
Here ¢ denotes the real structure of > and we denote by V' the collection of
marked points of 3 consisting of one point over each marked point of ¥,
and a pair of points over each node of ¥g. The curves ¥ and ¥ come with
natural maps

(34)  1:(Bs,0s) = (Foerp) and  ¢: (2,8) = (F,cr).

into the total space F of the family; the second map factors through the
nodal fiber.
Finally, let

(3.5) (T,er) — (F,cr)

denote the relative tangent bundle to the family ; here T is a holomor-
phic line bundle (locally free sheaf) over F which comes with an induced
real structure ¢, cf. [GZ2) Lemma 4.8] and (B.6). The pullback of (T, ¢7) to
both > and ¥ under gives their corresponding relative tangent bundle
. The relative tangent bundle 7y, to the nodal curve X is defined as the
restriction of T to Xp, and it fits in the normalization short exact sequence
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of holomorphic sheaves
(36) 0— 7-20 — 7% — 7\—nodes — 0

compatible with the real structures.

3.2. Family moduli space

The real relative moduli spaces of maps into the smooth fibers 3¢ naturally
form a family which can be compactified by adding a fiber over s = 0. In
parallel with the proof of the usual splitting formula e.g [BP1, (14)], we
consider the family

-— —R
Md,x,ﬁ(]:/A) = sgAMd’X’ﬁ(Es’ V;) — A

of moduli spaces whose fiber at s € A\ 0 is the real relative moduli space
MR(ZS, Vs), while the fiber ﬂR(EO, Vo) over s = 0 includes maps with rub-
ber components over both the nodes and the marked points of 3y. We de-
scribe these spaces in more detail below.

3.3. Relative real moduli spaces

Even in the complex category, there are several versions of the relative mod-
uli space of holomorphic maps to a complex curve X relative to a divisor V.
The version used by Bryan-Pandharipande in [BP2| Definition 3.1] is more
convenient for computational purposes, and is a finite quotient of the stan-
dard one defined by Jun Li in [Li]. The latter has the property that all the
contact points are ordered, and is more convenient for analytical considera-
tions, including for constructing the VFC and describing its behavior under
target degenerations. Of course, the virtual fundamental classes of these two
versions of the moduli space are essentially the same up to a combinatorial
factor.

In this section we outline the construction of the relative moduli space,
in which all the contact points are ordered, adapted to the real setting;
see also Remark We include some of the standard arguments for ease
of reference when we extend these arguments to families of degenerating
targets.

Let (X, ¢) be a (smooth) symmetric marked curve with r pairs of conju-
gate marked points V as in (2.5)). Fix d, x and a collection ji = (u*, ..., u")
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of r partitions of d. Consider first the "top stratum”

(3.7) My a2 V)
consisting of equivalence classes (up to reparametrizations of the domain)
of J-holomorphic real maps f : (C,0) — (3, ¢) such that

(i) the domain C' is a smooth, marked, possibly disconnected symmetric
Riemann surface of Euler characteristic x;

+

(ii) f has ramification pattern p' over x;

x; ), foralli=1,...,n;

(and thus also over its conjugate

(iii) f is nontrivial on each connected component of C;
(iv) f is a degree d map, i.e. the image of f represents d[X] in Ho(3;7Z);

The points in f~1(V) are called contact points of f to V, and here all the
contact points are marked points of the domain (and the domain has no
other marked points); see also Remark below. Specifically, condition (ii)
means that

° ffl(x;t) = {yz;;}jﬂ,m,@(uﬂ for every i = 1,...,r; thus f(y;;) = a:j

e the ramification order of f at yz?';- is ,ué» and yfs are conjugate points;
. {yi |j=1,...,(u"), i=1,...,7} are marked points of the domain.

A map f which satisfies these conditions is said to have its contact to V
prescribed by [i.

The moduli space has a compactification M]ix,ﬁ(z’ V) in which
both the domain and target of the maps is allowed to degenerate. We start
by briefly describing the targets, denoted ¥[m], and called buildings obtained
by rescaling ¥ around to V; for the general rescaling construction normal to
a divisor see for example [I, §4]. In our case X[m] is a nodal symmetric
marked curve, obtained from ¥ by attaching chains of spheres at its marked
points in the following manner. Let Ny be the normal bundle of V in 3,
and consider the projectivization Py = P(Ny @ C). Then

(3.8) Py =P! x V = ,Ql P! x {zF} = Ql P,

is a P! bundle over V = {zF,... 2} with

(i) a zero and infinity section Vy and V.,
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_l’_

(ii) a real structure induced by the one on Ny, thus covering c(z;

in the base, and

)= a;

(ili) a C* action on each P =+, fixing (i) pointwise and compatible with (ii)
i.e. satisfying c(\ - 2) = X - ¢(2).

Assume first for simplicity that V' consists of a single pair of marked points,
i.e. r = 1. Starting with ¥ and inductively rescaling it m times around V
gives rise to the building

Sml =% U Py

oo 0

U ... U Py—3%,
=V Vo=Ve

with a divisor V[m| C ¥[m] corresponding to the zero divisor of the last
copy of Py. For the general case, we allow X to be independently rescaled
m; times around each pair {xfc} of conjugate points in V = {x{c, o)
This similarly gives rise to a building X[m] with a divisor V[m] = {zF}7_,.
The C* action on each P+ induces a (C*)I™l action on the building X[m],
called the rescaling action,land denoted

t— Ry € Aut(X[m]);
here m = (m1,...,m;) and |m| =m; + - - - + m,. Finally, let
(3.9) p:X[m] — X

denote the projection induced by collapsing all the m; copies of P_+ for
i=1,...,7r down to V.

Then the compactification H]S,x, 7(2,V) of the top stratum (3.7)) is de-

fined as follows.

Definition 3.1. An element of the moduli space ﬂf,x,ﬁ(z, V) is an equiv-
alence class, up to reparametrizations of the domain and rescaling the target,
of real J-holomorphic maps

(3.10) f:C = Sm

from some possibly nodal, possibly disconnected symmetric Riemann surface
C' to some symmetric building X[m] such that

(i) f has prescribed contact to the marked points of the target, i.e. the
preimage of{xf} consists only of marked points of the domain, denoted
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{yz?';}, and f has order of contact ,ué» at yf? to x;t; thus f(y;;) =z and

1
y;; are conjugate marked points.

(ii) f satisfies the following matching condition: the preimage of the nodes
of the target consists only of nodes of the domain with the same order
of contact on the two local branches.

(iii) the restriction of f to every connected component of the domain is
nontrivial.

(iv) f has degree d and its domain has (virtual) Euler characteristic x.

(v) f is relatively stable, i.e. Autf is finite; here an automorphism of f :
C — X[m] is a pair (p,t) € Aut(C) x (C)™ such that Ry o fop = f.

The real relative moduli space
—R
(3.11) M ,q(3,V)

comes with natural maps induced by forgetting some of the data such as the
real structures, the order of the contact points, the divisor V, etc. Forgetting
the real structure defines a map to the (usual) relative moduli space of
holomorphic maps to ¥ relative the divisor V.

Remark 3.2. Unlike in [GI, Definition 2.5] (or [BP2, Definition 3.1]),
throughout this paper we are using the standard definition of the relative
moduli space (cf. [Li] or [IP1]) in which all the contact points are marked.
The moduli space comes with a group action permuting the contact
points with same image and multiplicity; the quotient by this Aut(ii) action
is the moduli space in [GI, Definition 2.5]. In particular, the former moduli
space is the degree |Aut(i7)| = []; |Aut(u?)| cover of the latter moduli space,
obtained by ordering the contact points.

3.4. Rubber components and stratification

There is an equivalent description of the elements of the relative moduli
space that is more convenient for transversality purposes. Decompose any
real map satisfying conditions (i)-(v) of Definition into compo-
nents, obtained by restricting f to the irreducible components of its domain.
These components can be grouped according to their image in X[m]; those
that are mapped to ¥ are called level zero components and the rest are called
rubber components. In turn, the rubber components can be grouped accord-
ing to which copy of Pmii in X[m] their image lands in, and the vertices of
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the dual graph of f: C' — X[m] are decorated by this discrete data (along
with the genus and the homology class represented by each irreducible com-
ponent).

By Definition (ii), each node ¢ of the domain has an associated order
of contact A\(q), where A\(¢) = 0 if ¢ is an ordinary node i.e. mapped away
from the nodes of X[m|. Each marked point of the domain also comes with an
associated order of contact cf. Definition (1) Altogether, this associates
to every special point g of the domain a multiplicity A(q), and the dual graph
of f is decorated by this data as well.

Remark 3.3. Note that every rubber component fi of f, regarded as a
map fi : Cr — Py either represents 0 in homology (and its image is disjoint
from the 0 and oo divisors) or else its domain has at least two special points
(the inverse image of 0 and o0), cf. Definition [3.1](1)-(ii).

For each decorated dual graph 7, let M, denote the corresponding stra-
tum of the real relative moduli space. Elements of this stratum can also
be described in terms of their projection under the collapsing map ,
and the lifts of this projection to meromorphic sections of a line bundle as
follows.

Since V is 0 dimensional, each rubber component projects to a constant
map to V under , and is a holomorphic map to one of the Py’s, with
prescribed contact to 0 and oo (determined by 7), cf. Definition [3.1)i)-(ii).
Equivalently, it is a meromorphic section £ # 0 of the pullback normal bundle
of V' with zeros and poles at the special points of prescribed order (and no
other zeros/poles). Note that any two such sections, if they exist, must be
constant multiples of each other. For more details, see

Some rubber components may be multiple covers P! — P! totally ram-
ified over 0 and oo; these are called trivial components, and their domain is
a sphere with precisely two special points. All the other (nontrivial) rubber
components project to a stable map to V cf. Remark [3.3]

In particular, the projection (3.9) induces a forgetful map
—R —R
(3.12) M (Z,V) = M (%,0)
to the (absolute) real moduli space; it takes f : C'— X[m] to the map ob-

tained from po f: C' — X after collapsing all the chains of trivial compo-
nents in the domain to obtain a stable map to X.
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Remark 3.4. (Stability vs relative stability) Let f: C — X[m] be a real
map which satisfies conditions (i)-(iii) of Definition Then f is relatively
stable if and only if (a) f is stable as a map to X[m] and (b) every copy of
P+ in Y.[m] contains at least one nontrivial rubber component of f.

Remark 3.5. By definition, the image of the forgetful map consists
of stable, real holomorphic maps f: C — X that have a real holomorphic
lift f:C — X[m| which satisfies the matching conditions over the singular
locus of ¥[m] and has prescribed contact with V[m], cf. Definition In
particular, the components of f that are mapped to V must have a lift to a
rubber component.

3.5. Nodal targets

Definition [3.1] extends verbatim to nodal targets, as long as we include maps
with rubber components over both the marked points and the nodes of the
target. Assume > is a nodal symmetric marked curve with one ordered
pair {xi} of conjugate nodes, r pairs of conjugate marked points V{, and
no other special points. Then the real relative moduli space

—“—R
My, i(Z0, Vo)

is defined as in Definition except that X[m] is replaced by a building
Yo[m] obtained by rescaling ¥ at both the marked points and the nodes; in
particular, chains of spheres are also inserted at the nodes of ¥y, in addition
to those inserted at the marked points. Therefore an element of this moduli
space is an equivalence class of real J-holomorphic maps

f : C() — Eg[m]

satisfying conditions (i)-(v) of Definition Now the domain Cy must be
nodal and the top stratum M& (3, Vp) is the subset consisting of maps to
>0 whose domain has no other nodes besides those in the inverse image of
the nodes of Y. B

Recall that attaches pairs of marked points of X to produce the
nodes of Yg; it extends to a map between any building associated to ¥ and
the corresponding building associated to »g. The attaching map

—R < =~ —R
(3.13) )\|F|de,X+4é(,\),ﬁ,,\,,\(Ea V) — M. 71(X0, Vo)



Splitting formulas for the local real Gromov-Witten invariants 581

is then induced by attaching pairs of marked points of both the domain and
target to produce nodes (then forgetting the order of these nodes). Note that
in the domain of the contact points are ordered; however ® factors
through the quotient by the diagonal Aut(\) action to produce unordered
nodes in its image.

3.6. Maps to the family
Consider the family
-— —R
(3.14) Md%ﬁ(]:/A) = U Md,xﬂ(zs,v;) — A

moduli spaces associated to the family of targets; its fiber over s € A
is the real relative moduli space associated to the fiber of F over s defined
above. In particular, the fiber HR(EO,VO) over s = 0 includes maps with
rubber components over both the nodes and the marked points of Xg.

The inclusion of ¥4 into F is holomorphic, and induces a proper map

7R J—
(3.15) M i(Bs, V) —— Mayi(Fya)

for every s € A. The map ({3.3]) is also holomorphic and induces the proper
map (3.13) at the level of moduli spaces; the composition of the latter with
the map (3.15) for s = 0 is a proper map

7R ~ ~ PR
(3.16) A|:|d/\/lcz,x+4z(,\),ﬁ,/\,A(Za V) —— Mayq(F/a)-

Remark 3.6. The topology of these real relative moduli spaces is a refine-
ment of the usual Gromov topology, defined by a process of rescaling the
target normal to the divisors cf. [I[P1] and [IP2]; in particular, the topology
on the subset consisting of maps without rubber components is the
usual Gromov topology.

4. Perturbations and transversality

In this section we introduce spaces of Ruan-Tian perturbations adapted
to our setting and show that the strata of the real relative moduli spaces
described above are cut transversally over such parameter spaces.
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4.1. Ruan-Tian perturbations

To obtain transversality stata-wise, we fix the (integrable) complex structure
J on the target, but turn on Ruan-Tian perturbations v adapted to the
situation. In particular, for the real relative moduli space M (X,V), we
restrict to the space JV¥(E, V) of RT-perturbations on ¥ compatible with
both the real structure and the divisor V', as described in this section.

In general, recall that if J is an (almost) complex structure on X and v
is a Ruan-Tian perturbation [RT], then a (J,v)-holomorphic map to X is a
solution f : C'— X of the equation

(4.1) asf =vly

or equivalently the graph F' of f is J,-holomorphic, as reviewed for example
in [IP4] §3.1). If the domain C has trivial automorphism group, one can
use the variation in v to show that the linearization is cut transversally,
essentially because the graph of f is an embedding. This extends to the
case the domain C' is stable after passing to a regular cover of the Deligne-
Mumford moduli space as in Remark [£.1] below.

Remark 4.1. In general, for higher genus domains, passing to covers of
the moduli spaces is needed to kill the automorphism groups and turn on
Ruan-Tian perturbations, as reviewed for example in [[P4, §3.1]. This is
classically achieved by working on a regular cover of the Deligne-Mumford
moduli space, defined by considering curves with extra decorations such as
level structures or twisted bundles eg. as constructed by Abramovich-Corti-
Vistoli in [ACV], cf. [ACG, Chapter XVI, Theorem 7.1]; see also Chapter
XVI, §10 of [ACG]. Such regular cover comes with an universal curve U
whose fiber at a (decorated stable) curve C is C.

When (X, c¢) is a manifold with a real structure ¢, denote by JV*(X)
the space of real Ruan-Tian perturbations on X, as defined for example in
[Z, §2 and §3.1]. These are constructed as follows. Using the forgetful map
from the real Deligne-Mumford moduli space ME’E to the complex one, and
a regular cover of the latter, one constructs a cover of Mﬂiﬁ and a universal
curve (U, cyy). The fiber of (U, cyy) at a (decorated stable) symmetric curve
(C,o) is (C,0).

A real RT perturbation on X is an element v € Hom® (7, TX) defined
on U x X, such that

y4L2yeal and is supported away from the special points of the domain.
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Here 7y — U is the relative tangent bundle to the fibers of U, cf. , and
Hom! denotes the space of anti-complex linear homomorphisms i.e. such
that Jv + vj = 0, where J is the (almost) complex structure on (X, c), and
j is the family of complex structures on the fibers of &/. Such a homomor-
phism v can be regarded as section of the bundle (7)Y K¢ TX which has
an induced real structure; v is called real if this section is invariant with
respect to the real structures. For details, see [Z, §2 and §3.1].

When X =3 is a symmetric curve with conjugate marked points V,
consider the subset

(4.3) JVE(E, V) C JVE(D)

of real RT perturbations (J, v) which are compatible with V' in the sense of
[IP1l Definition 3.2]. Since here J is integrable and V' is 0 dimensional, these
conditions reduce to the requirement that v vanishes along & x V and Vv
is complex linear along U x V. Specifically, the conditions are

(4.4)

Viuxy =0 and (Vyur)(v) = J(Vyr)(v) for all w € TX|y and v € Ty.

Note that the last condition is equivalent to
(4.5) VeV =ay @ w for all w € Ny

where ay € Hom®!(Ty; C) is defined on U x V.
Thus, as in [IP1, §3], the compatibility condition with the divisor V'
ensures that

(a) vrestricts to a RT perturbation on V' (i.e. v takes values in 7'V along V');

(b) for maps with image in V', the normal operator L = 9 — Vv is complex
linear;

(c) the 1-jet of v determines a RT perturbation on Py and on (the normal-
ization of) the building X [m] obtained by rescaling X normal to V.

Property (c) follows using the fact that
(4.6) Py =P(Ny ®C) =P(C® (Ny)Y)

has a C* action and an involution swapping the zero and infinity divisors (in-
duced by z — 271). Let ¢ denote the canonical C*-equivariant vector field on
Py,. This vanishes along the zero and infinity divisors Vy U Vo, while its re-
striction to Ny C Py under the inclusion w — [w, 1] is ¢, = (w;w) € Ty, Ny
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for all w € Ny . Then the restriction of Vv induces a RT perturbation
on Ny C Py, defined as the tensor product of the pullbacks of ay and (.
This tensor product ay X ¢ can be regarded as a C*-equivariant RT per-
turbation on Py, compatible with its zero and infinity divisors as in .
Thus v induces a RT perturbation on X[m], whose restriction to X C X[m)]
is equal to v, and the restriction to each copy Py of X [m] is equal to ay X (.

Remark 4.2. Note that a map f:C — X[m| to the building is (J,v)-
holomorphic (with respect to this lift of v to X[m]) if and only if

(i) the projection p := p(f): C — X is (J, v)-holomorphic

(ii) each rubber part f, := f|c, : Cr — Py of f, regarded as a section £ of
the pullback normal bundle p} Ny, satisfies 9§ = Vv i.e. LN¢ = 0; for

details, see §

In fact, since LY is complex linear, then ¢ is a meromorphic section; thus up
to scale is determined by its zero and infinity divisor. Note that if £ # 0 then
¢ = ¢! is a section of the dual bundle p%(Ny)Y which solves ¢ = -V v;
the poles of ( correspond to the zeros of £ and viceversa.

This perspective neatly encodes the conditions describing the relative
stable map compactitication constructed in [IP1], cf. [IP1, Remark 7.7 and
Definition 7.2].

The space of RT perturbations easily extends to the family of
targets. As before, we start with the space of real Ruan-Tian perturbations
v on the total space (F, cr) of the family . These satisfy condition
for X equal to the total space of the family F. Then we restrict to the
subspace

(4.7) IVE(F)a)
of such perturbations which additionally satisfy the following conditions:

(a) v is compatible with the fibration i.e. m,v = 0;

(b) v is compatible with the divisor V of F i.e. the 1-jet condition (4.4)
holds for X equal to the total space of the family F and V C X the
union of the marked points of the family.

(c) v is compatible with the nodal locus i.e. the pullback v = ¢*v to the
normahzatlon ¥ takes values in TS C ¢*TF and satisfies the 1-jet con-
dition (4.4) for X equal to 5 and V equal to the preimage of the nodes
of EO-
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Condition (a) implies that any (J,~) holomorphic map to F projects to
a holomorphic, thus (locally) constant map to A, and therefore its image is
contained in a fiber of F (if the domain is connected). Moreover, conditions
(a)-(b) imply that the pullback v of v to X, is a real RT perturbation on 3,
which is compatible with the divisor Vs = V' N ¥. Similarly, the pullback v
of v to the normalization X is a real RT perturbation on ¥ compatible with
the divisor V' (the inverse image of the special points of 3g). This means
that the maps ts and ¢ in induce maps

(48)  JVHF) = IVHEG V) TVRF) - TVREY)

Vi Uy ViU

at the level of parameter spaces.

Note that the family F has a specific local model in a neighborhood
of the nodes of ¥, and is a product away from a smaller neighborhood.
Thus in ([4.7), condition (a) implies (c) away from U x {nodes}. A standard
calculation shows that (a) and (c) imply that for every node ¢ of ¥,

(4.9) Vluxg =0 and ag + g =0.

Here ¢; are the lifts of ¢ to i, and oy, € Hom"!(7; C) over U x q is deter-

mined by v via (4.5).

Remark 4.3. Property implies that the lift of v to the building
Yo[m] is well defined, i.e. its value on P, is independent of the choice of
lift ¢; € > of the node q of Y. Note that for each node q of ¥y we get
two copies Py, and Py, in Py; and there is an identification Py, = Py, swap-
ping the zero and infinity divisors, induced by (g1, z) — (g2, z~1). For a map
p: C — {nodes} C ¥, each lift p; to ¥ has an associated normal operator
LN . Property implies that the condition ker LV # 0 is well defined,
independent of the choice of lift of p to the normalization 3, cf. Remark

4.2. Transversality for each stratum

Since our targets are curves, a generic real RT perturbation v compati-
ble with the divisor ensures that all strata are of expected dimension and
therefore as in [IP5], the real relative moduli spaces carry a VFC for all pa-
rameters, including v = 0. For completeness, we provide the details of this
argument here.
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Assume first ¥ is a smooth symmetric curve with conjugate marked
points V as in (2.5) and a fixed integrable complex structure J. As v varies
in the space of RT perturbations JV¥(2, V) defined in (#.3)), we get a family

(4.10) My 25, V) —"= JVEE,V)

of real relative moduli spaces, one for each choice of topological data d, x,
fi and we denote by M, 2(%,V), its fiber at v; it can be regarded as a

deformation of the moduli space M]}j% 7(2, V) in (3.11)), which corresponds
to v = 0. Specifically, an element of the moduli space (4.10) is a pair ([f], v)
where

(4.11) f:C—3m]

is a (relatively stable) real (J, v)-holomorphic map satisfying the properties
(i)-(v) listed in Definition

As in the moduli space is stratified with strata M. indexed
by the decorated dual graph 7 of the maps ; therefore, along a stratum,
the topological type of the domain and target is fixed, as is the ramification
pattern of f over the special points of the target. Note that the preimage
of the nodes/marked points of ¥[m] consists only of nodes/marked points
of C. Denote by x the collection of special points of the target X[m], and
by y = f~!(x) its preimage. An element y of y is called a contact point,
and comes decorated by the contact multiplicity A(y) of f at y, cf. .
The other points of the domain are called ordinary points; they are mapped
away from the special points of the target, and their contact multiplicity is
0. Note that some of the nodes could be ordinary ones, but all the marked
points are contact points.

Fix a stratum M. of the moduli space. Restrict first to the case m = 0,
i.e. the target X[m] = X is smooth; here the domain could be nodal, but all
its nodes are ordinary (mapped away from V). When f : C' — 3 has contact
order A at the points y = f~1(V), the linearization (to this moduli problem)
is

* R *
Ly : Dy (F*TS)* @ Te M,y — Ta—1y (Y ®c TR

4.12
(4.12) Ly(&,h) = 0¢ — [Vev + 5 Jdf )1,

cf. (A.42)) and §A.6| Here I'y., (E)® denotes the subspace of invariant sections
of FE which vanish to order A(y) at y, for all y in y, and ﬂie denotes the real
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Deligne-Mumford moduli space containing C'. Here for simplicity we assume
C' is stable, but as in [IP3, §4.2], one can always use a "local slice” to
parametrize the variations in the domains, after first locally stabilizing the
domains if necessary. Those considerations extend to our case, as long as we
are working with symmetric choices throughout, by adding pairs of conjugate
marked points in the domain, mapped to fixed pairs of non-special conjugate
points of the target. For the strata-wise linearization, the second term in
(4.12)) is replaced by the tangent space TS to the stratum S containing C.

As in [MS, §3.1-§3.2], there are several choices of norms/completions one
can use to locally describe a stratum of the family as the zero locus
of a Fredholm map

(4.13) U(f,v) =sf — vl

between Banach manifoldsﬂ When ¥ is transverse to 0 at f (i.e. 0¥ is onto)
then a neighborhood of f in its stratum is a Banach manifold modeled on the
kernel of the strata-wise linearization. For more details on the standard set-
up, we refer the reader to [MS| §3.1-§3.2]; see also [IP3), §4.2] for a summary
of some analytic preliminaries.

After completing in the A-weighted Sobolev norms , the
strata-wise linearization (to this moduli problem) at f:C — ¥ becomes
the Fredholm operator

k, k-1,
,Cftgfp@TCSHgf P

(4.14) _
Lf(€,h) =0 — [Vev + $Jdfh)™

cf. . While the weighted completions E}f’p and 9”;6 —Lp depend on the

choice of k,p > 1 (where kp > 2) the kernel and cokernel of L¢ are indepen-

dent of these choices, and consist of smooth elements. The full linearization

0V ¢, which also includes the variation p = v in the parameter v, is given

by

When m # 0, (J, v)-holomorphic maps f : C' — X[m] satisfying the prop-

erties listed in Definition can be analyzed as in Remark by consider-
ing their projection p(f) : C' — ¥ under the collapsing map ¥[m] — ¥ in the

3the Banach manifolds used here are Hausdorff, separable, and paracompact, so
that Sard-Smale theorem applies.
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target. The rubber components of f continue to project to constant maps
to V (since V is 0 dimensional), and satisfy the condition

(4.16) ker LY # 0

along this projection, cf. [[P1} (6.3) and (7.1)]. Here LY is the normal oper-
ator, given by

(4.17) IN¢E =0¢ — Ve,

see (A.67)-(A.70). When the index of L% is negative, condition (4.16]) im-

poses additional restrictions on the rubber components as in [IP1, Lemma 6.4].

Remark 4.4. Assume ¥ is connected and V' # (). If f : C' — X[m)] satisfies
conditions (i)-(iii) of Definition then every connected component of its
domain has at least one marked point (the preimage of V[m]). Thus the
unstable domain components of a map in the moduli space have genus
0; see also Remarks and One can also show that when (3,V) is a
stable curve, the trivial rubber components are the only unstable domain
components of the maps in the moduli space .

Below we assume for simplicity that 3 is connected and V' # (), or more
generally that every rational component of 3 has at least one marked point;
otherwise, see Remark [1.7] below.

Standard arguments (cf. [MS, §3.2]) imply the following result whose
proof we sketch for completeness.

Lemma 4.5. Assume that every rational component of ¥ has at least one
marked point. Then over the parameter space jVR(E, V) of real RT-
perturbations on X compatible with V, every stratum of the real relative mod-

uli space (4.10)) is cut transversally.

Proof. As in the proof of [MS| Proposition 3.2.1], transversality follows pro-
vided we have enough variations in the parameters v to ensure that the
linearization of the equations cutting out each stratum of the moduli space
has trivial cokernel.

Assume f: C — X[m] is a real (J,v)-holomorphic map as in for
some v € JVE(X, V). Decompose its domain C into stable and unstable
components. When the divisor V' is non-empty, also decompose f into rubber
components (collapsed to points in V' under the projection p : X[m] — %)
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and non-rubber ones (level zero components), and consider the projection
of f to X; see also —.

By definition, the Ruan-Tian perturbations v used here are pulled back
from U x ¥ and v must vanish along U x V. Therefore such perturbations
identically vanish on both unstable domain components and on the projec-
tion to V of the rubber components, so these must be treated separately.
To obtain transversality on the stable components, we use the fact that the
restriction to these components defines an embedding into & x X. Transver-
sality then follows by using variations either in v (on the non-rubber com-
ponents) or else in Vv (on the rubber components) which have prescribed
values at a suitable collection of points; we just need to ensure that the
variations can be chosen so that they are tangent to the parameter space
JVE(Z,V), i.e. satisfy conditions and ([4.4).

Specifically, decompose f as in into a non-rubber part fo : Cp — X
and rubber parts f, : C,, — Py and consider the projection

(4.18) p=p(f):C—-X

of f. Then the restriction of p to Cy is fy while its restriction 