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1. Introduction

The goal of this paper is twofold. The first goal is to associate a pre-additive
category C(Σ) to a closed oriented surface Σ, called the contact category and
constructed from contact structures on Σ× [0, 1].1 There are also C(Σ, F ),
where Σ is a compact oriented surface with boundary and F ⊂ ∂Σ is a finite
oriented set of points which bounds a submanifold of ∂Σ, and universal
covers C̃(Σ) and C̃(Σ, F ) of C(Σ) and C(Σ, F ). The contact category C(Σ)
admits a decomposition

C(Σ) =
∐

i∈Z

C(Σ, i)

into connected components, where i is the Euler class (= first Chern class)
of the contact structure evaluated on Σ.

The contact categories, a priori, have no reason to satisfy any nontrivial
axioms of a triangulated category. In spite of such an inauspicious start, the
contact categories partially satisfy the axioms of a triangulated category,
and, in particular, have distinguished triangles that we call the bypass exact
triangles.

The second goal of this paper is to study the universal covers of contact
categories of a disk in more detail. When Σ = D2, #F = 2n+ 2, and we are
in the component where the Euler class is n− 2e, we abbreviate

C̃n,e := C̃(D
2, F ;n− 2e).

We prove that C̃n,e admits an embedding into its “triangulated envelope”;
more precisely, we have:

Theorem 1.1. There exist a family of triangulated categories D̃n,e and ad-

ditive functors F̃n,e : C̃n,e → D̃n,e such that F̃n,e are fully faithful and images

of F̃n,e generate D̃n,e under taking iterated cones. Moreover, F̃n,e is exact,
i.e., takes bypass exact triangles to distinguished triangles.

In this paper we take C̃n,e and D̃n,e to be F2-linear, where F2 is the field
of two elements. We believe that the analogue of Theorem 1.1 holds for any
ground field, but technically difficult to keep track of signs.

1The contact category was discovered by the first author around 2007, but never
written up systematically. We hope that this is the first in a series of papers which
develops the theory of contact categories. The idea of constructing a contact cate-
gory was also pursued by Kevin Walker (unpublished) at around the same time.
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The category D̃n,e is the homotopy category of bounded chain complexes
of finitely generated left projective Rn,e-modules, where Rn,e is isomorphic
to the homology of a strands algebra over a disk (cf. [LOT] and [Za]). The
contact categories and their relation to Heegaard Floer homology have been
extensively studied by Mathews in a series of papers [M1, M2, M3, M4].

In [Co], Cooper defines the formal contact category Ko+(Σ, F ), which
can be interpreted as an abstractly constructed “triangulated envelope” of
C̃(Σ, F ). (Strictly speaking, the version in [Co] is ungraded, but it is expected
that his construction works in the graded case; we are referring to the graded
version as Ko+(Σ, F ).) He also proves the equivalence of Ko+(D

2, F ) and
D̃n,e: the functor Ko+(D

2, F )→ D̃n,e is defined using the universal property

of Ko+(D
2, F ) and the functor D̃n,e → Ko+(D

2, F ) is constructed using the
work of Zarev [Za]. Combining Theorem 1.1 and (the extension of) Cooper’s
work gives:

Theorem 1.2. C̃n,e embeds in the triangulated envelope Ko+(D
2, F ).

It is a very interesting problem to understand whether the contact cate-
gory for a general surface embeds in its triangulated envelope. For algebraic
applications, the contact categories of rectangles and annuli were used by
the second author to give categorifications of the quantized Lie superalgebra
sl(1|1)) and the Clifford algebras [T1, T2, T3, T4].

Index of notation. We have provided an index of notation at the end of the
paper, which we hope the reader will find useful starting with Section 4.

Organization of the paper. In Section 2 we define the contact categories
and their universal covers for general surfaces Σ and (Σ, F ); from Section 3
we restrict to contact categories Cn,e and C̃n,e over disks. In Section 3 we

introduce the Serre functors of Cn,e and C̃n,e which provide essential simpli-
fications in the proof of Theorem 1.1. In Section 4 we introduce notation to
algebraically describe Cn,e and C̃n,e and in Section 5 we define a family of

triangulated categories D̃n,e. In Section 6 we construct a family of functors
Fn,e : Cn,e → Dn,e of additive categories and in Section 7 we extend Fn,e to

F̃n,e : C̃n,e → D̃n,e and show that the F̃n,e preserve the shift functors and

distinguished triangles. Finally in Section 8 we show that the F̃n,e are fully

faithful and the images of F̃n,e generate D̃n,e under taking iterated cones.

Acknowledgements. The first author thanks Takashi Tsuboi and the Univer-
sity of Tokyo (in 2007), as well as MSRI and the organizers of the Symplec-
tic and Contact Geometry and Topology Program for their hospitality (in
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2009-2010). The first author also thanks Will Kazez and Gordana Matić on
collaborations leading up to this work, Thomas Geisser for discussions on
category theory, and Paolo Ghiggini, Toshitake Kohno and Shigeyuki Morita
for helpful discussions. The second author thanks the Simons Center for an
excellent research environment. Finally we thank the referee for a careful
reading of the paper and a large list of comments.

2. The contact category

The goal of this section is to define the contact categories C(Σ) and C(Σ, F ).
We first recall some properties of bypasses and contact structures.

2.1. Contact structures and bypasses

For more details, the reader is referred to [H1].

2.1.1. Convex surfaces. Let Σ be a compact oriented surface and Γ ⊂ Σ
be an oriented, properly embedded 1-manifold (i.e., a multicurve) which
divides Σ− Γ into alternating positive and negative regions in the sense
that the sign changes every time Γ is crossed once transversely. The positive
region (resp. negative region) will be denoted R+(Γ) (resp. R−(Γ)), and
the orientation of Γ and the boundary orientation of R+(Γ) agree. Such a
1-manifold Γ is called a dividing set of Σ.

Recall that an oriented embedded surface Σ in a contact 3-manifold
(M, ξ) is ξ-convex (or simply convex) if there is a contact vector field X
which is positively transverse to Σ. The dividing set of Σ with respect to
(ξ,X) is the locus

Γ = {x ∈ Σ | X(x) ∈ ξ(x)}.

In this paper, our convex surfaces are either closed or compact with Leg-
endrian boundary. In such cases, Γ is an oriented, properly embedded 1-
manifold and its isotopy class is independent of the choice of X. The positive
(resp. negative) region is the set of points x ∈ Σ for which the orientation
induced by X(x) on ξ(x) coincides with (resp. is opposite of) the orientation
on ξ(x). A dividing set Γ on Σ will usually be viewed as the dividing set
ΓΣ0

with respect to a [−ε, ε]-invariant contact structure ξΓ on Σ× [−ε, ε],
where we write Σt = Σ× {t}; in other words, we are locally taking X = ∂t.

Let Σ be a convex surface with dividing set Γ. According to a criterion of
Giroux [Gi1], Σ has a tight neighborhood if and only if either (i) Σ = S2 and
Γ = S1, or (ii) Σ ̸= S2 and Γ has no homotopically trivial closed component.
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2.1.2. Bypasses. An embedded Legendrian arc δ ⊂ Σ is an arc of attach-
ment of a bypass if δ is transverse to Γ and has exactly three intersections
with Γ, two of which are points of ∂δ. We also write δ = δ+ ∪ δ−, where
δ± is the closure of δ ∩R±(Γ). Let U ⊂ Σ be a disk neighborhood of δ,
which transversely intersects Γ along three arcs and whose boundary is Leg-
endrian. Consider an overtwisted disk ({(r, θ) | r ≤ 1}, ζ), where (r, θ) are
polar coordinates and ζ is the germ of a contact structure such that its
characteristic foliation is of “wheel-and-spokes” type with leaves r = 1 and
θ = const. Then a bypass D is ({r ≤ 1, 0 ≤ θ ≤ π}, ζ|0≤θ≤π), i.e., one-half of
an overtwisted disk.

We now attach D to the invariant contact structure (Σ× [0, ε], ξΓ) along
Σε (resp. (Σ× [−ε, 0], ξΓ) along Σ−ε) so that the diameter of D is glued to
δ × {ε} (resp. δ × {−ε}). If D is attached to Σε (resp. Σ−ε), then we say
the bypass is attached from the front (resp. from the back). When D is
attached from the front, a small one-sided neighborhood of (Σ× [0, ε]) ∪D
can be viewed as (Σ× [0, 1], ξ), where the dividing set ΓΣ0

is Γ and ΓΣ1
is

obtained from Γ by performing the local operation on U as in Figure 1. More
specifically, in the rest of this paper, we:

(B1) fix a model contact structure (D2 × [0, 1], ζ) such that D2 × {0, 1}
is convex with Legendrian boundary, ζ is ∂t-invariant on D2 × [0, ε]
and a neighborhood of (D2 × {1}) ∪ (∂D2 × [0, 1]), the dividing sets
ΓD2×{0}, ΓD2×{1} and the Legendrian arc δ0 are as given in Figure 1,
and ζ is contactomorphic to a small one-sided neighborhood of (D2 ×
[0, ε]) ∪δ0 D, where the contactomorphism is the identity onD2 × [0, ε];

(B2) choose an identification ϕ : U
∼
→ D2 such that ϕ(ΓU×{0}) = ΓD2×{0}

and ϕ(δ) = δ0; and

(B3) let ξ|(Σ−U)×[0,1] be t-invariant with dividing sets Γ(Σ−U)×{t} = (Γ−
U)× {t} and ξ|U×[0,1] = (ϕ× id[0,1])

∗ζ.

In other words, a bypass attachment depends on the choices of U ⊃ δ and
ϕ : U

∼
→ D2. We remark that topologically ΓΣ1

is obtained from Γ = ΓΣ0
by

applying two band sums in succession.
Suppose that (Σ× [0, 1], ξ) is obtained by attaching a bypass along δ to

(Σ0,Γ0) from the front. If U0 ⊂ Σ0 is the disk neighborhood of δ and U1

is the corresponding disk on Σ1 (in particular, Γ0|Σ0−U0
= Γ1|Σ1−U1

), then
there is a bypass arc of attachment δ′ ⊂ U1 which gives (a contact manifold
isotopic to) (Σ× [0, 1], ξ) when attached to (Σ1,Γ1) from the back. We will
call δ′ the anti-bypass arc of the bypass arc δ.
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δ0

D2

Figure 1: Effect of a bypass attachment along δ0 from the front. The left-
hand side is D2 × {0} and the right-hand side is D2 × {1}. The red arcs are
the dividing curves.

Convention 2.1.2.1. If we do not explicitly mention from which side the
bypass is attached, we always assume the bypass is attached from the front.

A bypass is overtwisted (resp. trivial) if there exists a disk neighborhood
U ⊂ Σ of the arc of attachment δ such that:

1) Γ ⋔ U and Γ|U consists of two arcs;

2) if Γ′ is the result of attaching the bypass, then Γ′|U has a homotopically
trivial component (resp. Γ′|U is homotopic to Γ|U ).

See Figure 2.

Figure 2: Overtwisted bypass (top) and trivial bypass (bottom).

2.1.3. Bypass rotation. We will now discuss bypass rotation, which was
introduced in [HKM]. Let Σ be a convex surface with dividing set Γ. The
ambient contact manifold for Σ is the [−ε, ε]-invariant contact neighbor-
hood of Σ = Σ0. Let δ0 and δ1 be arcs of attachment as given in Figure 3. In
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particular, δ0 is obtained from δ1 by rotating one endpoint in the counter-
clockwise direction. The bypasses are to be attached “from the front”. We
will call such an operation left rotation.

δ0 δ1

Figure 3: The arc δ0 is to the left of δ1.

Lemma 2.1.3.1 (Bypass Rotation). Let (Σ× [0, 1], ξδ1) be the contact
manifold obtained from (Σ,Γ) by attaching a bypass from the front along δ1.
If δ0 is obtained from δ1 by left rotation, then there exists a bypass along δ0
inside (Σ× [0, 1], ξδ1).

The lemma is completely local, i.e., it is valid when Σ = D2 and Γ con-
sists of the four arcs given in Figure 3.

2.2. The contact category C(Σ)

Let Σ be a closed, oriented surface. In this subsection we assign to each Σ a
category C(Σ), called the contact category.

Definition 2.2.1. A surface Σ is collared if it is equipped with auxiliary
data (Σ× [−ε, ε], X), where:

(i) Σ× [−ε, ε] is a thickening of Σ with coordinates (x, t) so that Σ =
Σ× {0}; and

(ii) X is the nonsingular vector field ∂t on Σ× [−ε, ε], i.e., the pullback of
∂t under the projection Σ× [−ε, ε]→ [−ε, ε].

The manifold Σ× [−ε, ε] is a collar or collar neighborhood of Σ.

We often write Σt = Σ× {t}.

2.2.1. The category Cont(Σ). We first define the category Cont(Σ),
where Σ is a collared surface with ε > 0 small.
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The objects of Cont(Σ) are dividing sets Γ on Σ, where a dividing set
Γ is an oriented embedded 1-manifold which is the oriented boundary of
an open 2-dimensional submanifold R+(Γ) of Σ. The submanifold R+(Γ)
has the same orientation as Σ and R−(Γ) = Σ−R+(Γ) has the opposite
orientation as Σ. The collection of objects of Cont(Σ) will be denoted by
ob(Cont(Σ)).

Remark 2.2.1.1. We take the objects to be 1-manifolds, not isotopy classes
of 1-manifolds. See Section 2.2.2 for more details.

Next we define HomCont(Σ)(Γ,Γ
′) to be the set of homotopy classes of

contact structures ξ on Σ× [0, 1] such that:

1) the boundary ∂(Σ× [0, 1]) = Σ1 − Σ0 is ξ-convex;

2) there exists an extension of ξ to Σ× [−ε, 1 + ε] so that (Σ× [−ε, ε], ∂t)
and (Σ× [1− ε, 1 + ε], ∂t) are collared neighborhoods of Σ0 and Σ1

and on which ∂t is a contact vector field with dividing sets Γ and Γ′

on Σ0 and Σ1.

Two contact structures ξ and ξ′ are homotopic if there is a path {ξs}s∈[0,1]
of contact structures on Σ× [0, 1] from ξ to ξ′ satisfying (1) and (2) above.

The identity morphism Γ
id
→ Γ is (homotopy class of) the [0, 1]-invariant

contact structure ξ on Σ× [0, 1] with dividing set Γ on Σ× {t}, t ∈ [0, 1].
To take the composition of

[ξ] ∈ HomCont(Σ)(Γ,Γ
′) and [ξ′] ∈ HomCont(Σ)(Γ

′,Γ′′),

we choose representatives ξ and ξ′ so they agree on collared neighborhoods
of Σ and then glue. The composition [ξ′ ◦ ξ] does not depend on the choices
(see Remark 2.2.1.2). The associativity and unit axioms are easily verified.

Remark 2.2.1.2. The set of contact structures on Σ× [−ε, ε] which have
dividing set Γ with respect to the contact vector field X = ∂t is contractible.
For this reason, we will suppress the collar Σ× [−ε, ε] in the rest of the paper.

Notation 2.2.1.3. In what follows we abuse notation and write ξ ∈
HomCont(Σ)(Γ,Γ

′) to mean the homotopy class of a contact structure ξ.

2.2.2. Isotopy of dividing curves and the weak identity morphism.
Suppose Γ0,Γ1 ∈ ob(Cont(Σ)) and Γt, t ∈ [0, 1], is an isotopy of dividing
curves from Γ0 to Γ1.
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Definition 2.2.2.1. A contact structure ξ on Σ× [0, 1] is a weak identity
morphism from Γ0 to Γ1 if there exists a a contact vector field X for ξ such
that X is transverse to all Σt = Σ× {t} and the dividing set of Σt with
respect to (ξ,X) is Γt.

A weak identity morphism from Γ0 to Γ1 gives an isomorphism between

Γ0 and Γ1, since one can similarly define its inverse morphism Γ1
ξ′

→ Γ0 which
is also a weak identity morphism.

The space of dividing curves of a fixed isotopy type has trivial funda-
mental group, except when Σ = S2 or T 2, or when Γ has a homotopically
trivial component. Consider the situation where Σ = T 2 = R

2/Z2. Suppose
Γ0 = Γ1 consists of two parallel, homotopically nontrivial curves of slope
∞. Let ξ0 be the [0, 1]-invariant contact structure with dividing set Γ on
Σ× {t} for all t ∈ [0, 1]. If ϕ : T 2 × [0, 1]

∼
→ T 2 × [0, 1] is the diffeomorphism

(x, y, t) 7→ (x+ t, y, t), then let ξ1 = ϕ∗ξ0. The contact structures ξ0 and ξ1
are not isotopic relative to the boundary. (However, they are isotopic when
the dividing sets are allowed to move freely.) Similarly, when Γ has a homo-
topically trivial component, we can take the homotopically trivial component
and isotop it around a nontrivial loop in Σ.

2.2.3. Bypass attachment. The most basic nontrivial morphism comes
from a bypass attachment. When attaching a bypass along δ to (Σ,Γ) we
need to Legendrian realize δ and ∂U , where U ⊂ Σ is a disk neighborhood
of δ which transversely intersects Γ along three arcs. This can be done using
the Legendrian realization principle of [H1], which states that there exists a
homotopy of contact structures {ξs}s∈[0,1] on Σ× [−ε, ε] such that:

1) ξ0 is a given contact structure on Σ× [−ε, ε] which is t-invariant with
dividing sets Γ× {t}, t ∈ [0, 1],

2) ∂t is a contact vector field on Σ× [−ε, ε] with dividing sets Γ× {t} for
all ξs, s ∈ [0, 1], and t ∈ [−ε, ε], and

3) δ and ∂U are Legendrian with respect to ξ1.

Since we are taking homotopy classes of contact structures in the definition
of Cont(Σ) in Section 2.2.1, we may assume that the Legendrian realization
automatically takes place when attaching bypasses.

A bypass attachment of D from the front along δ depends on the choices
of U ⊃ δ and ϕ : U

∼
→ D2 by (B1)–(B3) from Section 2.1.2. Two bypass

attachments with the same δ and U are related by a weak identity morphism
which is “supported on” U .
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Every morphism ζ ∈ HomCont(Σ)(Γ,Γ
′) can be written as a composition

of bypass attachment morphisms (or bypass morphisms for short), followed
by a weak identity morphism; see [H2].

2.2.4. Connected components of Cont(Σ). Consider the following
map ϕ which partitions the set of dividing curves according to their Eu-
ler class = first Chern class (we will often refer to ϕ as the “Spinc-map”):

ϕ : ob(Cont(Σ))→ Z,

Γ 7→ χ(R+(Γ))− χ(R−(Γ)).

Here R+(Γ) is the positively oriented subsurface of Σ whose boundary is
Γ; R−(Γ) is the negatively oriented subsurface which is the complement of
R+(Γ) in Σ; and χ is the Euler characteristic.

We leave it to the reader to verify that the set ϕ−1(i) is connected, i.e.,
for any pair Γ, Γ′ with the same ϕ value, there is a sequence of bypass
morphisms from Γ to Γ′. We will write Cont(Σ, i) for the full subcategory
of Cont(Σ) whose objects are ϕ−1(i). Then we have

Cont(Σ) =
∐

i∈Z

Cont(Σ, i).

We will often refer to Cont(Σ, i) as a connected component of Cont(Σ).

2.2.5. “Zero objects” and “zero morphisms”. A “zero object” in
Cont(Σ, i) is a dividing set Γ with an overtwisted neighborhood and a “zero
morphism” is a homotopy class of overtwisted contact structures. Recall
that, according to Giroux [Gi1], Γ is not a “zero object” if and only if either
Σ = S2 and Γ is connected, or Σ ̸= S2 and Γ has no homotopically trivial
component.

Recall that, by Eliashberg’s theorem [El1], there is a unique overtwisted
contact structure in each homotopy class of 2-plane field. Hence there are
as many “zero morphisms” as there are homotopy classes of 2-plane fields
in each HomCont(Σ)(Γ,Γ

′); this problem is remedied when we pass to the
universal cover of the contact category in Section 2.5.

2.2.6. The contact category C(Σ). We are now in a position to define
the contact category

C(Σ) =
∐

i∈Z

C(Σ, i),
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which is an F2-linear (and in particular a pre-additive) category. The objects
of C(Σ, i) are the same as those of Cont(Σ, i) and HomC(Σ,i)(Γ,Γ

′) is the F2-
vector space generated by the homotopy classes of tight contact structures
of HomCont(Σ,i)(Γ,Γ

′).
We are identifying all the “zero morphisms” in HomCont(Σ,i)(Γ,Γ

′) into
the unique zero morphism of HomC(Σ,i)(Γ,Γ

′). Moreover, the “zero objects”
in Cont(Σ, i) become genuine zero objects in C(Σ, i). They are isomorphic
to each other; we choose one zero object and denote it by 0.

2.2.7. The categories Cont(Σ, F ) and C(Σ, F ). Let Σ be a compact
oriented surface with boundary and let F ⊂ ∂Σ be a finite set of points
which divides ∂Σ into alternating positive and negative regions R+(F ) and
R−(F ), i.e., the signs on both sides of any point in F are opposite. (In other
words, F is a set of oriented points which is the boundary of a 1-dimensional
submanifold of ∂Σ.)

The objects of Cont(Σ, F ) are dividing sets Γ with endpoints on F ,
subject to the condition that the signs on ∂Σ− F and the signs on Σ− Γ

agree. The morphisms Γ
ξ
→ Γ′ are homotopy classes of contact structures

on Σ× [0, 1] so that the dividing set on Σ× {0} is Γ, the dividing set on
Σ× {1} is Γ′, and the dividing set on ∂Σ× [0, 1] is F × [0, 1], where F is
the set consisting of one point on each component of ∂Σ− F .

The contact category

C(Σ, F ) =
∐

i∈Z

C(Σ, F, i)

is defined in the same way as in Section 2.2.6: the objects of C(Σ, i) are the
same as those of Cont(Σ, F, i) and HomC(Σ,F,i)(Γ,Γ

′) is the F2-vector space
generated by the tight contact structures of HomCont(Σ,F,i)(Γ,Γ

′).

Notation 2.2.7.1. From now on, Hom without subscripts will always mean
HomC(Σ) or HomC(Σ,F ).

2.2.8. Generators and relations. We now give a description of the
generators and relations in C(Σ) or C(Σ, F ). Recall that every ξ ∈
HomCont(Σ)(Γ,Γ

′) can be written as a composition of bypass morphisms
and weak identity morphisms. The description of the relations is due to Bin
Tian.2

2Not to be confused with the second author.
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Theorem 2.2.8.1 (Bin Tian). Given ξ ∈ HomCont(Σ)(Γ,Γ
′), any two se-

quences of bypass attachments and weak identity morphisms from Γ to Γ′

which compose to give ξ can be taken to one another via the following two
types of operations:

(R1) Far commutativity — given two disjoint bypass arcs of attachment, we
can reverse the order in which the bypasses are attached.

(R2) Adding a weak identity morphism.

Theorem 2.2.8.1 is straightforward to prove for the contact category of
a disk when ξ is tight and the proof will be sketched in Section 3.

It is easy to see that relations (R1) and (R2) imply (R′
2):

(R′
2) Bypass rotation — referring to Figure 3, if we attach bypasses along

δ0 and then along δ1, then the resulting contact structure is homotopic
to the one obtained from attaching a bypass along δ1 and followed by
a weak identity morphism.

2.2.9. Opposite category. The opposite category C(Σ)op of C(Σ) is ob-
tained by reversing the arrows. It is not hard to see that C(Σ)op is equivalent
to C(−Σ) via the contravariant functor which sends Γ to −Γ and the mor-

phism Γ
ξ
→ Γ′ to −Γ

ξ
← −Γ′. Observe that when we switch from Σ to −Σ,

the positive and negative regions of Σ− Γ get switched, i.e., Γ gets sent to
−Γ.

2.3. Bypass exact triangles

A sequence of bypass attachments gives a triangle, called the bypass exact
triangle, as follows: Suppose the initial configuration is Γ1. Pick an arc of
attachment δ ⊂ Σ and its neighborhood U . Apply a bypass attachment from
the front along δ to obtain Γ2. Now, inside U , there is a unique arc of
attachment δ′ which intersects all three arcs of Γ2 ∩ U . A bypass attachment
from the front along δ′ yields Γ3. Similarly, a third bypass attachment from
the front along δ′′ yields Γ1. This is summarized in Figure 4. For convenience,
we say that the above bypass exact triangle starts at (Σ,Γ1, δ).

We claim that attaching two bypasses in succession inside U creates an
overtwisted contact structure. Indeed, δ′ is the anti-bypass arc of the bypass
arc δ. Hence the bypass along δ′ from the back and the bypass along δ′ from
the front glue to give an overtwisted disk. Therefore, the bypass triangle will
have the property that the composition of any two successive edges is the
zero morphism.



✐

✐

“3-Tian” — 2023/2/28 — 23:12 — page 677 — #13
✐

✐

✐

✐

✐

✐

Contact categories of disks 677

Figure 4: The top is Γ1, the bottom right is Γ2, and the bottom left is Γ3.

Examples of bypass triangles.

(i) (Identity triangle) Consider the morphism Γ1 = Γ
id
→ Γ = Γ2 which is

equivalently obtained by attaching a trivial bypass. Now, attaching the next
bypass yields Γ3 which has a homotopically trivial component. Hence Γ3

∼= 0.

Γ1 = Γ
id

✲ Γ2 = Γ

Γ3
∼= 0
✛

✛

(ii) (Fold-unfold triangle) Consider the morphism Γ1 = Γ→ Γ′ = Γ2 corre-
sponding to a bypass of fold type (i.e., a bypass such that Γ2 is the disjoint
union of Γ1 and two parallel homotopically nontrivial curves). The next
bypass attachment is an unfold type and the third bypass attachment is

overtwisted. (The map Γ
0
→ Γ factors into Γ

fold

→ Γ′′
unfold

−−−−→ Γ which glues into
an overtwisted contact structure.)

2.4. Octahedral axiom

One of the primary motivations for introducing the contact category was
that the bypass triangles often satisfy the octahedral axiom. In other words,
there was evidence that the contact category could be embedded inside some
sort of “triangulated envelope” while still preserving the bypass triangles.
Theorem 1.1 realizes this for the contact category of the disk.

We briefly review the octahedral axiom. Refer to Figure 6. If there are
three exact triangles (A,B,C ′), (B,C,A′), (A,C,B′), so that the face ABC
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Γ Γ′

Γ

fold

unfold0

Figure 5: Fold-unfold triangle.

commutes, then there is a fourth exact triangle (C ′, B′, A′) (i) which makes
the other three faces A′BC ′, A′CB′, AB′C ′ commute and (ii) such that

the compositions B′ t
→ A

j
→ B, B′ q

→ A′ m
→ B agree and the compositions

B
k
→ C

p
→ B′, B

n
→ C ′ s

→ B′ agree.

A’

B B’

C’

C

A

i

j

k

l

m

n

o p

q

r
s

t

Figure 6.

We present some evidence for the octahedral axiom where Σ = D2 and
#F = 8. The six dividing sets Γ with ϕ(Γ) = 1, where ϕ is the Spinc-map,
form the octahedron given in Figure 7, where all the arrows are nontrivial
bypass morphisms.

Using the labeling from Figure 6, let us consider the compositions B′ t
→

A
j
→ B and B′ q

→ A′ m
→ B in Figure 7. Both correspond to the same two

bypass moves along disjoint arcs of attachment, and differ only in the order
in which the attachment takes place. Hence both compositions give the same
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Figure 7.

contact structure up to isotopy, and agree as morphisms B′ → B. Similarly,
the compositions sn and pk agree.

Let us also discuss the commutativity of the triangle A′CB′, for example.
For this we use bypass rotation [HKM, Lemma 4.2]. The arc of attachment
δ that gives rise to the morphism C

o
→ A′ can be rotated to the left to give

an arc of attachment δ′ for the morphism C
p
→ B′. More precisely, inside a

small neighborhood of the union of Σ = D2 and the bypass half-disk along δ,
there exists a bypass half-disk along δ′. Moreover, the image of the arc δ on
B′ (after the bypass attachment along δ′) is precisely the arc of attachment

for B′ q
→ A′. Therefore, C

o
→ A′ can be factored into

C
p
→ B′ q

→ A′ x
→ A′.

By Eliashberg’s uniqueness theorem for tight contact structures on the 3-
ball, x = id and it follows that o = qp.

2.5. The universal cover of the contact category

In this subsection we describe the universal covers of the contact categories
C(Σ) and C(Σ, F ).

2.5.1. The universal cover. Let C(Σ, i) be a connected component of
C(Σ) and let Γ0 ∈ ob(C(Σ, i)). The universal cover of C(Σ, i) with basepoint
Γ0 is the category C̃(Σ, i,Γ0), together with the covering functor

π : C̃(Σ, i,Γ0)→ C(Σ, i),

defined as follows:
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The objects are given by (Γ0
[ζ]
→ Γ), where [ζ] is a homotopy class of 2-

plane fields which are contact near Σ× {0, 1} and have dividing sets Γ0 and
Γ. The objects are also denoted by (Γ, [ζ]).

We define HomC̃(Σ,i,Γ0)
((Γ, [ζ]), (Γ′, [ζ ′])) to be the F2-vector space gen-

erated by homotopy classes of tight contact structures ξ ∈ Hom(Γ,Γ′) such
that [ξ ◦ ζ] = [ζ ′], where [ξ ◦ ζ] is the homotopy class of 2-plane fields on
Σ× [0, 1] obtained by concatenating ζ and ξ.

The functor π takes (Γ0
[ζ]
→ Γ) to Γ and takes

(Γ0
[ζ]
→ Γ)

ξ
→ (Γ0

[ζ′]=[ξ◦ζ]

−−−−−→ Γ′) ∈ HomC̃(Σ,i,Γ0)
((Γ, [ζ]), (Γ′, [ζ ′])),

to Γ
ξ
→ Γ′ ∈ HomC(Σ,i)(Γ,Γ

′).

The universal cover C̃(Σ, F, i,Γ0) of C(Σ, F, i) is defined similarly. Since
Γ0 determines the integer i, we will sometimes suppress the i and write
C̃(Σ,Γ0) or C̃(Σ, F,Γ0).

2.5.2. 2-plane fields. Suppose that Σ is a closed surface. The preimage
π−1(Γ) of Γ ∈ ob(C(Σ, i)) is isomorphic to the Z-module Z⊕H1(Σ;Z), albeit
not naturally. Fix a trivialization of the tangent bundle of Σ× [0, 1] and a

reference 2-plane field (Γ0
[ζ0]
→ Γ).

We explain how to define the map

Θ : π−1(Γ)→ Z⊕H1(Σ;Z),

(Γ0
[ζ]
→ Γ) 7→ (Θ1(ζ),Θ2(ζ));

see [GH, Hu] for more details: Using a relative version of the Pontryagin-
Thom construction, we can assign a framed tangle in Σ× [0, 1] to any ζ. Here
the framed tangle is properly embedded and has endpoints on Σ× {0, 1}.
To the difference ζ − ζ0 we can assign a framed link L in (the interior of)
Σ× [0, 1].

Any framed link L in Σ× [0, 1] is the union of the following two types of
links, up to framed cobordism: (i) a (not necessarily connected) 1-manifold
C on Σ× {1/2}, with framing coming from the surface, and (ii) a framed
unknot. The proof is a slight generalization of the usual Pontryagin-Thom
proof of π3(S

2) ≃ Z, whose elements are classified by framed unknots: Let
πΣ : Σ× [0, 1]→ Σ be the projection to Σ. Without loss of generality assume
that πΣ(L) is an immersion with transverse crossings, and we resolve the
crossings to obtain a 1-manifold C which we can view to be on Σ× {1/2}.
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Adjusting the framing on C and resolving the crossings are both equivalent
in the framed cobordism category to adding a framed unknot. Finally a
union of framed unknots is framed cobordant to a single framed unknot.

The framing of the unknot is Θ1(ζ) and is equal to the Hopf invariant and
the homology class of C ⊂ Σ× {1/2} is Θ2(ζ). The class Θ2(ζ) ∈ H1(Σ;Z)
is dual to one-half of the first Chern class of the difference ζ − ζ0.

Suppose that ∂Σ ̸=∅, ∂Σ is connected, and #F >0. Let b={b1, . . . , b2g}
be a basis for Σ, i.e., it is a collection of disjoint, properly embedded, ori-
ented arcs which cut Σ up into a single polygon; in particular, b can be
viewed as a basis for H1(Σ, ∂Σ). Let us also assume that b is transverse
to Γ0 and Γ. Given the basis b, we can take disks Di = bi × [0, 1], whose
orientation agrees with the boundary orientation given by that of bi × {1}.
We can compute ⟨c1(ζ), Di⟩ to be χ(R+(ΓDi

))− χ(R−(ΓDi
)) with respect

to ζ. (Without loss of generality we may assume that ζ is an overtwisted
contact structure by Eliashberg’s classification of overtwisted contact struc-
tures [El1].) Then 1

2c1(ζ − ζ0) assigns an integer to the disks D1, . . . , Dg,
and is dual to Θ2(ζ).

2.5.3. Change of basepoint. Let Γ0,Γ
′
0 ∈ ob(C(Σ, i)) be two basepoints.

If ζ is a homotopy class of 2-plane fields which is contact near Σ× {0, 1} and
has dividing sets Γ0 and Γ′

0 that lie on Σ× {0} and Σ× {1}, respectively,
then ζ induces a change-of-basepoint functor

Fζ : C̃(Σ,Γ
′
0)→ C̃(Σ,Γ0),

which is given by:

F ((Γ′
0

[ξ]
→ Γ1)

ξ′

→ (Γ′
0

[ξ′◦ξ]

−−−−→ Γ2)) = (Γ0
[ξ◦ζ]
−→ Γ1)

ξ′

→ (Γ0

[ξ′◦ξ◦ζ]

−−−−−→ Γ2).

The functor Fζ gives an equivalence of the two categories. Also, if ζ is a
homotopy class from Γ0 to Γ′

0 = Γ0, then the functor Fζ is a deck transfor-

mation of C̃(Σ,Γ0).

2.5.4. Bypass exact triangles. A bypass exact triangle

...→ Γ1
ξ1
→ Γ2

ξ2
→ Γ3

ξ3
→ Γ1 → ...

lifts to a bypass exact triangle

...→ (Γ0
[ζ]
→ Γ1)

ξ1
→ (Γ0

[ξ1◦ζ]

−−−−→ Γ2)
ξ2
→ (Γ0

[ξ2◦ξ1◦ζ]

−−−−−−−→ Γ3)
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ξ3
→ (Γ0

[ξ3◦ξ2◦ξ1◦ζ]

−−−−−−−−→ Γ1)→ ....

For convenience, let us write ζ ′ = ξ3 ◦ ξ2 ◦ ξ1 ◦ ζ.
Let T : C̃(Σ,Γ0)→ C̃(Σ,Γ0) be the deck transformation which, for each

fiber π−1(Γ) and identification Θ : π−1(Γ)
∼
→ Z⊕H1(Σ;Z), sends (m,x) ∈

Z⊕H1(Σ;Z) to (m− 1, x). In other words, the shift functor is a grading
shift which drops the Hopf invariant (i.e., the linking number of the framed
unknot) by one without changing the relative Spinc-structure.

The following theorem, due to Huang [Hu], shows that the functor T is
the shift functor for the bypass exact triangles in C̃(Σ,Γ0).

Theorem 2.5.4.1 (Huang [Hu]). The homotopy classes of (Γ0
ζ
→ Γ1)

and (Γ0
ζ′

→ Γ1) have the same relative Spinc-structure, and the Hopf invari-
ant of ζ is one higher than that of ζ ′.

3. Contact category of a disk

In the rest of this paper we restrict attention to contact categories of the
disk. Letting Σ = D2, #F = 2n+ 2, 0 ≤ e ≤ n, we consider C(D2, F, n− 2e)
and C̃(D2, F, n− 2e). The basepoint Γ0 is arbitrary at this point. If Γ ∈
ob(C(D2, F, n− 2e)), then

χ+(Γ) := χ(R+(Γ)) = n− e+ 1, χ−(Γ) := χ(R−(Γ)) = e+ 1.

We also write χ± if Γ is understood.
The n+ 1 arcs of R+(F ) (called “positive arcs”) are labeled 0, 1, . . . , n

in clockwise order around ∂D2. The arc 0 is the “based arc”, analogous to
a basepoint. We will often write D2

n for (D2, F ) with #F = 2n+ 2 and a
fixed labeling of R+(F ). We also assume that the arcs of R+(F ) are evenly
spaced around ∂D2.

Notation 3.1. The labels of the arcs of R+(F ) will be underlined through-
out the paper. We will write s < t when we mean s < t.

3.1. Skeletal subcategory Cn,e

The category C(D2, F, n− 2e) has an uncountable number of objects since
isotopic dividing sets are treated as different objects (cf. Remark 2.2.1.1).
However,
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• any two isotopic dividing sets are isomorphic in C(D2, F, n− 2e) via a
weak identity morphism and

• any dividing set with a contractible component is isomorphic to a zero
object by Sections 2.2.5 and 2.2.6.

Hence C(D2, F, n− 2e) has only finitely many isomorphism classes of ob-
jects. In particular, the set of isomorphism classes of nonzero objects in
C(D2, F, n− 2e) is in bijection with the set of isotopy classes of dividing
sets without closed components, which in turn is in bijection with the set of
crossingless matchings with χ+ = n− e+ 1 and χ− = e+ 1.

Let Cn,e be a skeletal subcategory of C(D2, F, n− 2e), obtained by choos-
ing one representative from each isomorphism class of objects of C(D2, F, n−
2e) and taking the full subcategory of C(D2, F, n− 2e) with these objects.
Let C̃n,e be a skeletal subcategory of C̃(D2, F, n− 2e).

We now shift our perspective slightly and work with Cn,e and C̃n,e in the
rest of the paper. At this point it would be convenient to slightly change the
definition of a bypass from Γ to Γ′ so that:

new bypass = old bypass, followed by a weak identity morphism.

Given nonzero objects Γ,Γ′ of Cn,e with a (new) bypass from Γ to Γ′, the
(new) bypass does not depend on the choices of U and ϕ that appear in
the definition of the old bypass as well as the weak identity morphism. In
particular, the relation (R2) in Theorem 2.2.8.1 can be rephrased as “adding
a trivial bypass” in the case of a disk.

3.2. Compositions in Cn,e

Given Γ,Γ′ ∈ ob(Cn,e), γΓ,Γ′ denotes the dividing set on ∂(D2 × [0, 1]) ob-
tained by edge rounding Γ on D2 × {0}, Γ′ on D2 × {1}, and the vertical
dividing set on ∂D2 × [0, 1]. See [H1, Lemma 3.11] for the definition of edge
rounding of two dividing sets along a common boundary Legendrian curve.
We write #γΓ,Γ′ for the number of components of γΓ,Γ′ . If #γΓ,Γ′ > 1, then
Hom(Γ,Γ′) = 0; if #γΓ,Γ′ = 1, then Hom(Γ,Γ′) ≃ F2 and we denote its gen-
erator by ξΓ,Γ′ .

Convention 3.2.1. For the rest of the paper, if Γ,Γ′ ∈ ob(Cn,e), then
Hom(Γ,Γ′) is always understood to be HomCn,e

(Γ,Γ′).
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We study the composition Hom(Γ′,Γ′′)×Hom(Γ,Γ′)→ Hom(Γ,Γ′′)
when all three spaces are nonzero. The following lemma is similar to [M1,
Lemma 3.12]:

Lemma 3.2.2. Suppose that Hom(Γ,Γ′),Hom(Γ′,Γ′′),Hom(Γ,Γ′′) are non-
zero and Γ′ ̸= Γ,Γ′′. Then the following are equivalent:

1) The composition Hom(Γ′,Γ′′)×Hom(Γ,Γ′)→ Hom(Γ,Γ′′) is nontriv-
ial.

2) There exists a sequence of dividing sets Γi for 0 ≤ i ≤ k, k ≥ 1 satis-
fying:
a) Γ0 = Γ,Γk = Γ′;
b) each Hom(Γi,Γi+1), 0 ≤ i ≤ k − 1, is nonzero and is generated by

a bypass;
c) Hom(Γi,Γ′′) ̸= 0 for 0 ≤ i ≤ k.

3) There exists a sequence of dividing sets Γi for 0 ≤ i ≤ k, k ≥ 1 satis-
fying:
a) Γ0 = Γ′,Γk = Γ′′;
b) each Hom(Γi,Γi+1), 0 ≤ i ≤ k − 1, is nonzero and is generated by

a bypass;
c) Hom(Γ,Γi) ̸= 0 for 0 ≤ i ≤ k.

Proof. We prove the equivalence of (1) and (2). The proof of the equivalence
of (1) and (3) is similar.

(1)⇒ (2): The tight contact structure ξΓ,Γ′ can be written as a composition
of bypasses ξΓk−1,Γk ◦ · · · ◦ ξΓ0,Γ1 , where Γ0 = Γ and Γk = Γ′. For 0 ≤ i ≤ k,
the contact structure ξΓk,Γ′′ ◦ ξΓk−1,Γk ◦ · · · ◦ ξΓi,Γi+1 is tight because it can
be embedded in ξΓ′,Γ′′ ◦ ξΓ,Γ′ = ξΓ,Γ′′ which is tight. Hence Hom(Γi,Γ′′) ̸= 0
for 0 ≤ i ≤ k.

(2) ⇒ (1): Suppose k = 1, i.e., Hom(Γ,Γ′) is generated by a nontrivial by-
pass ξΓ,Γ′ and Hom(Γ,Γ′′) and Hom(Γ′,Γ′′) are nonzero. The dividing sets
Γ and Γ′ only differ on a neighborhood of the bypass arc of attachment.
Since Hom(Γ,Γ′′) and Hom(Γ′,Γ′′) are nonzero, #γΓ′,Γ′′ = #γΓ,Γ′′ = 1 and
the portion of γΓ,Γ′′ which is outside a neighborhood of the arc of attach-
ment is given by the three black arcs in Figure 8. (There are a priori three
possibilities for the black arcs by Euler class considerations and only one of
them satisfies #γΓ′,Γ′′ = #γΓ,Γ′′ = 1.) The tight contact structure ξΓ,Γ′′ is
obtained from ξΓ′,Γ′′ by attaching a bypass which is trivial when viewed as
a bypass on ∂(D2 × [0, 1]). Hence (1) follows when k = 1.
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Γ

Γ′

Γ′′

Figure 8: Peeling off the bypass ξΓ,Γ′ inside ξΓ,Γ′′ .

When k > 1, one can show by induction on k − i that the compositions
Hom(Γ′,Γ′′)×Hom(Γi,Γ′)→ Hom(Γi,Γ′′) are nontrivial for all 0 ≤ i ≤ k −
1. This implies (1) in general. □

Lemma 3.2.3. Let Γ,Γ′,Γ′′ be nonzero dividing sets. Suppose ξ ∈
Hom(Γ,Γ′) is nonzero, β′ ∈ Hom(Γ′,Γ′′) is a nontrivial bypass, and β′ ◦ ξ ∈
Hom(Γ,Γ′′) is zero. Then ξ can be factored into β ◦ ζ, where β, β′ are two
consecutive bypasses of a bypass triangle.

Proof. Since ξ ∈ Hom(Γ,Γ′) ̸= 0, we have #γΓ,Γ′ = 1. Since attaching β′

to ∂(D2 × I) yields an overtwisted contact structure, there exists an anti-
bypass along the same arc of attachment inside (D2 × I, ξ). This implies
that ξ can be factored into β ◦ ζ, where β, β′ are two consecutive bypasses
of a bypass triangle. □

Using the same line of argument (details left to the reader), one can also
prove the following:

Lemma 3.2.4. Let Γ̃ be a nonzero dividing set. Then Hom(Γ̃,−) is an
exact functor from Cn,e to the the category of F2-vector spaces, i.e., it takes
bypass exact triangles to short exact sequences. Similarly, Hom(−, Γ̃) is an
exact functor from Cn,e to F2-vector spaces.

We also sketch the proof of Theorem 2.2.8.1 for D2
n and a nonzero ξΓ,Γ′ ∈

Hom(Γ,Γ′). This will be used later in Section 6.4.
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Sketch of proof of Theorem 2.2.8.1 for D2
n and nonzero ξΓ,Γ′ ∈ Hom(Γ,Γ′).

Let ξΓ,Γ′ be a tight contact structure on D2 × [0, k]. Suppose we are given
a sequence of bypasses ξΓ0,Γ1 , . . . , ξΓk−1,Γk which compose to give ξΓ,Γ′ . Here
Γ0 = Γ, Γk = Γ′, and Γi is a dividing set on D2 × {i}. Let δi ⊂ D2 × {i} be
the arc of attachment for ξΓi,Γi+1 .

Let κ1 be a boundary parallel component of Γ′ and let c1 be a component
of (D2 × {k})− Γ′ which is bounded by κ1 and an arc d1 of ∂(D2 × {k}).
(This is unique if n ≥ 1, which we assume.) Extend d1 in the clockwise
direction along ∂(D2 × {k}) until it reaches the next endpoint of Γ′, and
call it d′1. Let δ′1 be an arc of attachment obtained by slightly pushing d′1
into D2 × {k} and let β1 be the corresponding trivial bypass. Now

ξΓk−1,Γk ◦ · · · ◦ ξΓ0,Γ1 = β1 ◦ ξΓk−1,Γk ◦ · · · ◦ ξΓ0,Γ1 ,

where = means equality as morphisms. Since δ′1 is close to ∂D
2, β1 commutes

with all the ξΓi,Γi+1 , and

β1 ◦ ξΓk−1,Γk ◦ · · · ◦ ξΓ0,Γ1 = ξΓk−1,Γk ◦ · · · ◦ ξΓ0,Γ1 ◦ β1.

Here we are abusing notation: there are analogous arcs d′1 and δ′1 on each
D2 × {i} and we also refer to a bypass attached along δ′1 ⊂ D2 × {i} by β1.

When we attach β1 first along D2 × {0}, we obtain a boundary parallel
component of the dividing set which is unchanged through the attachments
of all other bypasses. Hence this boundary parallel component can be re-
moved from consideration, and the same construction can be applied to a
dividing set with fewer components. We can iteratively write down a se-
quence of bypasses β1, . . . , βl so that

ξΓ,Γ′ = ξΓk−1,Γk ◦ · · · ◦ ξΓ0,Γ1 = βl ◦ · · · ◦ β1 ◦ ξΓk−1,Γk ◦ · · · ◦ ξΓ0,Γ1(3.2.5)

= ξΓk−1,Γk ◦ · · · ◦ ξΓ0,Γ1 ◦ βl ◦ · · · ◦ β1,(3.2.6)

and ξΓ,Γ′ = βl ◦ · · · ◦ β1. This means that the bypasses corresponding to
ξΓi,Γi+1 in Equation (3.2.6) are all trivial. The theorem then follows. □

3.3. Serre functors

In this subsection we define endofunctors S of Cn,e and SC̃ of C̃n,e which we

call the Serre functors of Cn,e and C̃n,e by analogy with the Serre functors
of triangulated categories introduced by Bondal and Kapranov [BK]. The
reader is referred to [Ke] for more details on Serre functors.
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3.3.1. Serre functor of Cn,e.

Definition 3.3.1.1 (Serre functor S). The Serre functor S is an end-
ofunctor of Cn,e which rotates dividing sets and contact structures by a
counterclockwise angle of 2π

n+1 . (Recall that we are assuming that R+(F ) is

evenly spaced around ∂D2.)

See Figure 9 for an example of S acting on a dividing set Γ.

Γ S(Γ)

S

Γ

Γ′

S(Γ)

Figure 9: An example of S(Γ) on the left; dividing sets γΓ,Γ′ and γΓ′,S(Γ) on
the right, used in the proof of Lemma 3.3.1.3.

Remark 3.3.1.2. This rotation operation was first studied in [M1, M2].

Lemma 3.3.1.3. Hom(Γ,Γ′) ̸= 0 if and only if Hom(Γ′,S(Γ)) ̸= 0. Hence,
Hom(Γ,S(Γ)) ̸= 0.

We denote the generator of Hom(Γ,S(Γ)) by ζ(Γ).

Proof. Consider the dividing sets γΓ,Γ′ and γΓ′,S(Γ). For any boundary paral-
lel component Γ0 of Γ, there is a corresponding boundary parallel component
S(Γ0) of S(Γ). The results of edge rounding Γ0 in γΓ,Γ′ and S(Γ0) in γΓ′,S(Γ)

are the same; see Figure 9. By iterating the above procedure, we obtain
#γΓ,Γ′ = #γΓ′,S(Γ), which implies the lemma. □

Lemma 3.3.1.4. If Hom(Γ,Γ′) ̸= 0, then the composition

Hom(Γ′,S(Γ))×Hom(Γ,Γ′)→ Hom(Γ,S(Γ))

is nontrivial.
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Proof. We decompose ξΓ,Γ′ into a composition of bypasses ξΓk−1,Γk ◦ · · · ◦
ξΓ1,Γ2 , where Γ1 = Γ and Γk = Γ′. Then Hom(Γ,Γi) ̸= 0 for 1 ≤ i ≤ k. By
Lemma 3.3.1.3, Hom(Γi,S(Γ)) ̸= 0. The lemma then follows from Lemma
3.2.2. □

3.3.2. Serre functor of C̃n,e.

Definition 3.3.2.1 (Serre functor SC̃). The Serre functor SC̃ is an end-

ofunctor of C̃n,e which is defined on objects by SC̃(Γ, [ξ]) = (S(Γ), [ζ(Γ) ◦ ξ])
and on morphisms by rotating contact structures by a counterclockwise an-
gle of 2π

n+1 .

Claim 3.3.2.2. The Serre functor SC̃ is well-defined.

Proof. It suffices to show the following diagram commutes:

(Γ, [ξ0])
ζ(Γ) //

ξ

��

(S(Γ), [ζ(Γ) ◦ ξ0])

SC̃(ξ)
��

(Γ′, [ξ ◦ ξ0])

55

ζ(Γ′)
//(S(Γ′), [ζ(Γ′) ◦ ξ ◦ ξ0])

i.e., [ζ(Γ′) ◦ ξ ◦ ξ0] = [SC̃(ξ) ◦ ζ(Γ) ◦ ξ0]. Here we are assuming that
Hom(Γ,Γ′) ̸= 0. By Lemma 3.3.1.3, Hom(Γ′,S(Γ)) ̸= 0 and is generated by
ξΓ′,S(Γ). By applying Lemma 3.3.1.4 to the lower and upper triangles in the
diagram, we obtain

[ζ(Γ′) ◦ ξ ◦ ξ0] = [SC̃(ξ) ◦ ξΓ′,S(Γ) ◦ ξ ◦ ξ0] = [SC̃(ξ) ◦ ζ(Γ) ◦ ξ0].

This proves the claim. □

3.3.3. Calabi-Yau property. According to [Ke], a triangulated category
T is weakly d-Calabi-Yau if it admits a Serre functor S ′ and there is an
isomorphism of functors T d ∼

−→ S ′, where d is an integer and T is the shift
functor on T . The analogous result for SC̃ on C̃n,e is the following:

Lemma 3.3.3.1. The endofunctor Sn+1

C̃
is isomorphic to T e(n−e) on C̃n,e,

i.e., C̃n,e is “d-Calabi-Yau” for a fraction d = e(n−e)
n+1 .
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Proof. For any dividing set Γ, Sn+1(Γ) = Γ since S(Γ) rotates Γ by 2π
n+1 .

Also

Sn+1

C̃
(Γ, [ξ]) = (Γ, [ξn(Γ) ◦ · · · ◦ ξ0(Γ) ◦ ξ]),

where ξi(Γ) = ξSi(Γ),Si+1(Γ) for 0 ≤ i ≤ n. Let k(Γ) be minus the Hopf in-
variant of ξn(Γ) ◦ · · · ◦ ξ0(Γ). The proof of Claim 3.3.2.2 implies that k(Γ)
is independent of Γ. Hence Sn+1

C̃
is isomorphic to some T k, where k = k(Γ)

for any Γ ∈ ob(Cn,e).
We compute k by choosing a special Γ ∈ ob(Cn,e) which has n boundary

parallel components; such a Γ is unique in ob(Cn,e) up to rotation. The case
of n = 5, e = 3 is depicted in Figure 10. We can write ξ0(Γ) as a composition
of n− e bypasses, illustrated as in the upper left diagram of Figure 10. The
bypasses of ξi(Γ) are obtained from those of ξi−1(Γ) by a 2π

n+1 rotation,
followed by an isotopy in the radial direction so that they are closer to
∂D2

n+1; the (n− e)(n+ 1) bypasses are then mutually disjoint. The (n−
e)(n+ 1) bypasses can be grouped into n− e copies of n+ 1 bypasses which
are arranged in a circle; see the upper right diagram of Figure 10.

+

+

+

1

0

0

1

5

2
2

3

3

4

4

5

+
= 2 

+
= 2 

=

Γ S(Γ)

ξ0

Figure 10: ξ0 is written as a composition of n− e = 2 bypasses on the upper
left. The (n− e)(n+ 1) = 2(5 + 1) bypasses for ξn(Γ) ◦ · · · ◦ ξ0(Γ) are drawn
on the upper right, where the black arcs with label i denote the bypasses of
ξi(Γ) for 0 ≤ i ≤ n = 5. The computation of the Hopf invariant is given on
the bottom row for e = 1.

It suffices to show that the Hopf invariant of the composition of the n+ 1
bypasses is −e. Among the n+ 1 bypasses, n− e of them are trivial. After
attaching the trivial bypasses we are left with e+ 1 overtwisted bypasses
arranged in a pinwheel [HKM, Section 1]; see the upper right diagram of
Figure 10. When e = 1 the bottom row of Figure 10 shows that attaching
the e+ 1 = 2 overtwisted bypasses in pinwheel position is equivalent to the
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composition of the three bypasses in a bypass triangle. Hence the Hopf
invariant of the composition is −1 by Theorem 2.5.4.1. We can inductively
write the pinwheel with e+ 1 bypasses into two pinwheels, one with two
bypasses and another with e bypasses (left to the reader). Hence the Hopf
invariant of ξn(Γ) ◦ · · · ◦ ξ0(Γ) is −e. □

Remark 3.3.3.2. Fractional Calabi-Yau categories have recently been
studied by Kuznetsov [Ku].

In Section 8.2 we will show that C̃n,e can be embedded into a triangulated

category D̃n,e which admits a Serre functor. Moreover, the Serre functors
commute with the embedding as proved in Proposition 8.2.3.

4. Algebraic description of Cn,e

The contact category Cn,e is defined over a disk D2
n with 2(n+ 1) marked

points on the boundary, and the Euler number equal to n− 2e. In particular,
χ+ = n− e+ 1, and χ− = e+ 1.

4.1. Notation for dividing sets

In this subsection let Γ ∈ ob(Cn,e) be a nonzero dividing set. Such Γ is a
crossingless matching of 2(n+ 1) marked points on ∂D2

n. We introduce no-
tation to algebraically encode Γ.

A dividing set Γ is determined by its positive region R+(Γ). Let
π0(R+(Γ)) be the set of components of R+(Γ). Each component c of R+(Γ)
is a (partially open) disk which intersects ∂D2

n at one or more positive arcs
and the labels of c ∩ ∂D2

n form the set of labels of c. Observe that a compo-
nent c is determined by its set of labels. A component which has only one
label is said to be boundary parallel.

The relative positions of the components of R+(Γ) are described by the
following nesting and adjacency relations:

Definition 4.1.1 (Nesting and adjacency). Let c and c
′ be components

of R+(Γ). Then:

1) c nests inside c
′ if any path [0, 1]→ D2

n from c to the component of
R+(F ) corresponding to the label 0 nontrivially intersects c′.

2) c and c
′ are adjacent if there is a path in D2

n between c and c
′ which

does not intersect any other component of R+(Γ).
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3) c directly nests inside c
′ if c nests inside c

′ and c and c
′ are adjacent.

In particular, the component containing 0 does not nest inside any other
component and there is no component which nests inside a boundary parallel
component.

Let Z+ be the set of positive integers. Define

V =
⊔

k≥0

Z
k
+,

where Z
0
+ = {∗} is a set of one special element. The dimension dim(v) of

v = (v1, . . . , vk) ∈ Z
k
+ is k and the dimension of ∗ is 0.

Definition 4.1.2 (Direct nesting of vectors). For v ∈ V, t ∈ Z+, define
v ⊔ t ∈ V by dim(v ⊔ t) = dim(v) + 1 and

(v ⊔ t)j =

{
vj if 1 ≤ j ≤ dim(v),
t if j = dim(v) + 1.

The vector v ⊔ t is said to directly nest inside v.

The assignment ΦΓ. We label regions of R+(Γ) by some vectors in V.
More precisely, we inductively define an injective map

ΦΓ : π0(R+(Γ))→ V.

We use the notation Γv = Φ−1
Γ (v) for v ∈ Im(ΦΓ). The component which

contains 0 is defined to be Γ∗ and is called the based component. Next,
given a component Γv, suppose there are k components which directly nest
inside Γv, arranged in clockwise order with respect to the label 0. The t-
th component is then defined to be Γv⊔t for 1 ≤ t ≤ k. Note that the two
notions of direct nesting — for vectors in V and for regions of R+(Γ) —
agree under the map ΦΓ. We also sometimes mix up the notation and say
that a region directly nests inside a vector.

We now define

V (Γ) = Im(ΦΓ), V +(Γ) = V (Γ)\{∗}, V +
nb(Γ) = {v ∈ V +(Γ) | |Γv| > 1}.

By abuse of notation, we are using Γv to denote its set of labels (a subset of
{0, . . . , n}) and |Γv| to denote its cardinality. Observe that the component
Γv is not boundary parallel for any v ∈ V +

nb(Γ). The cardinality |V (Γ)| is
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the number of components of R+(Γ), which is equal to χ+(Γ) = n− e+ 1
for Γ in Cn,e.

Definition 4.1.3. A (nonzero) dividing set Γ is basic if V +
nb(Γ) = ∅, i.e.,

every component Γv ̸= Γ∗ is boundary parallel.

The set of all basic dividing sets in Cn,e is denoted by Bn,e. For 0 < s1 <
· · · < se ≤ n, let Γ(s1, . . . , se) denote the basic dividing set Γ ∈ Bn,e such
that Γ∗ = {0, s1, . . . , se}. Any Γ ∈ Bn,e is determined by its based component
Γ∗ which is a subset of {0, . . . , n} containing 0. Moreover, (n+ 1− |Γ∗|) +
1 = χ+(Γ) = n− e+ 1. Hence |Γ∗| = e+ 1 and |Bn,e| =

(
n
e

)
.

Let lΓv
= |Γv| − 1. We order the elements of Γv so that

Γv = {Γv(0), . . . ,Γv(lΓv
)} and Γv(0) < · · · < Γv(lΓv

).

Example 4.1.4. Let Γ be the dividing set in Cn,e for n = 7, e = 4 as shown
in Figure 11. There are 4 components of R+(Γ):

Γ∗ = {0, 4}; Γ(1) = {1, 3}, Γ(2) = {5, 6, 7}; Γ(1,1) = {2}.

The elements of Γ(2) satisfy Γ(2)(0) = 5, Γ(2)(1) = 6, and Γ(2)(2) = 7.

0

1

2

3

4

5

6

7

+++ +

-

-

-

-

-

-

-

-

Figure 11: The four components of R+(Γ).

To summarize, we describe a dividing set Γ by a partition {Γv | v ∈
V (Γ)} of {0, . . . , n}, where each Γv is a component of R+(Γ). We will write
Γ = {Γv} for simplicity. The collection {Γv} satisfies the following:

1) V (Γ) is a finite subset of V such that |V (Γ)| = n− e+ 1.

2) ∗ ∈ V (Γ) for any Γ and 0 ∈ Γ∗.

3) If v,v ⊔ t ∈ V (Γ), then there exists unique i ∈ {0, 1, . . . , lΓv
} such that

Γv⊔ t is a subset of an open interval (Γv(i),Γv(i+ 1)). Here Γv(lΓv
+ 1)

is understood to be n+ 1.
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4) If v,v ⊔ t0∈V (Γ), then v ⊔ t∈V (Γ) for 1 ≤ t ≤ t0, and Γv⊔ t(lΓv⊔ t
)<

Γv⊔ t′(0) for 1 ≤ t < t′ ≤ t0.

5)
⊔

v∈V (Γ)

Γv = {0, . . . , n}.

Remark 4.1.5. Properties (3) and (4) follow from the fact that a dividing
set Γ is properly embedded in D2.

4.2. Notation for bypasses

In this subsection we introduce notation to describe bypasses.
Let Γ,Γ′ be nonzero objects of Cn,e, let β ∈ Hom(Γ,Γ′) be a nontrivial

bypass, and let δ = δ+ ∪ δ− be the arc of attachment for β. Since β is non-
trivial, δ intersects three distinct components of Γ. We position δ and the
three components of Γ as in Figure 12 so that δ is vertical, int(δ+) ⊂ R+(Γ)
is the lower subarc, and int(δ−) ⊂ R−(Γ) is the upper subarc.

Notation 4.2.1.

1) b(β) is the vector in V (Γ) such that int(δ+) is contained in the com-
ponent Γb(β).

2) b(β) is the vector in V (Γ) such that int(δ−) connects the components
Γb(β) and Γb(β).

3) x(β), y(β) are elements of {0, . . . , lΓb(β)
} such that labels Γb(β)(x(β))

and Γb(β)(y(β)) appear at the bottom left and top left corners of Γb(β),
respectively.

4) z(β) is the element of {0, . . . , lΓ
b(β)
} such that the label Γb(β)(z(β))

appears at the bottom left corner of Γb(β).

Refer to the left-hand side of Figure 12 for an illustration.

Observe that b(β) ̸= b(β) since β is nontrivial. We will omit the variable
β and write b,b, x, y, z for simplicity when β is understood.

Depending on the position of the label 0, both x ≤ y and x > y are
possible. We use the notation [[x, y]] for the generalized interval between
x, y ∈ Z given by:

[[x, y]] :=

{
[x, y] if x ≤ y;

(−∞, y] ∪ [x,+∞) otherwise.
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Notation 4.2.2. The component Γb is cut into two parts Γl
b and Γr

b by
δ+, where:

1) Γl
b := {Γb(i) | i ∈ [[x, y]]} is the subset of Γb which consists of labels

to the left of δ+.

2) Γr
b := Γb\Γ

l
b.

+

-

+

-

Γl
b Γr

b

Γb(x)

Γb(y)

Γb(z)

Γ′
β(b)

Γ′
β(b)

δ+

δ−
β

Figure 12: Definitions of b,b, x, y, z, and the change of components of R+

under a bypass β.

The map β. Given a nontrivial β ∈ Hom(Γ,Γ′), by abuse of notation we
write

(4.2.3) β : V (Γ)→ V (Γ′)

for the map which satisfies

Γ′
β(v) =





Γl
b if v = b,

Γb ⊔ Γr
b if v = b,

Γv otherwise,

as subsets of {0, . . . , n} for v ∈ V (Γ). The map β is a bijection.

Remark 4.2.4. We have β(∗) = ∗ ∈ V (Γ′) unless 0 ∈ Γr
b; in that case

β(b) = ∗ ∈ V (Γ′).

5. Definition of D̃n,e

Recall from Definition 4.1.3 that Bn,e, 0 ≤ e ≤ n, is the set of basic dividing
sets Γ in Cn,e and that each basic dividing set is determined by Γ∗. Let
(Γ) and (Γ|Γ′) denote the generators of End(Γ) and Hom(Γ,Γ′) which are
1-dimensional when Hom(Γ,Γ′) ̸= 0.
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For 0 ≤ e ≤ n, define the F2-algebra

Rn,e =
⊕

Γ,Γ′∈Bn,e

HomCn,e
(Γ,Γ′),

where the multiplication a · b is given by the composition b ◦ a in Cn,e for
a, b ∈ {(Γ), (Γ′|Γ′′)} if they are composable and zero otherwise.

Proposition 5.1 (Tightness criterion for basic dividing sets). For
Γ,Γ′ ∈ Bn,e,Γ ̸= Γ′, the following are equivalent:

1) Hom(Γ,Γ′) ̸= 0.

2) There exists a sequence of labels 0 < s1 < s′1 < · · · < sk < s′k such that

Γ∗ ∩ [si, s
′
i] = {si} for 1 ≤ i ≤ k

and

Γ′
∗ = (Γ∗\{s1, . . . , sk}) ∪ {s

′
1, . . . , s

′
k}.

We will refer to (2) as the tightness condition.

Proof. (2) ⇒ (1): The dividing set Γ′ can be obtained from Γ by attaching
k disjoint bypasses corresponding to k disjoint closed intervals [si, s

′
i] for

1 ≤ i ≤ k; see the left-hand side of Figure 13. The resulting contact structure
is tight by [HKM, Theorem 1.2].

0

...

0

...

...

...

...

...

0 0

...
...

s1

k

k

-

-

-

-

-

-

s' 1-
s
-

s' 
-

-

k

ks
-

s' 
-

s1-

s' 1-

s1-

s' 1-

- -

s' 1-

s1-

Γ Γ′ Γ Γ′

Figure 13: The k disjoint bypasses in the proof of (2)⇒ (1) on the left. The
case of s1 > s′1 in the proof of (1)⇒ (2) on the right. The components of Γ
and Γ′ with markings form a closed loop after edge rounding.

(1) ⇒ (2): Let s1 = min(Γ∗\Γ
′
∗), s

′
1 = min(Γ′

∗\Γ∗).
We first prove that s1 < s′1. Arguing by contradiction, suppose that s1 >

s′1. (Note that s1 = s′1 is not possible by definition.) Let s1 = Γ∗(r0), s
′
1 =

Γ′
∗(r0), and Γ∗(r) = Γ′

∗(r) for r ≤ r0. The case of r0 = 1 is depicted on the
right-hand side of Figure 13. The dividing curve on ∂(D2 × [0, 1]) obtained
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by edge rounding (i) the boundary parallel components Γ(t) = {t} for 1 ≤ t ≤
s′1, (ii) the boundary parallel components Γ′

(t′) = {t
′} for 1 ≤ t′ ≤ s′1 − 1, and

(iii) the arc of Γ′ joining the labels 0 and s′1, forms a closed loop. Hence γΓ,Γ′

has more than one component and Hom(Γ,Γ′) = 0, which is a contradiction.
The case of r0 in general is no more difficult and is left to the reader.

Next we prove that Γ∗ ∩ [s1, s
′
1] = {s1} and Γ′

∗ ∩ [s1, s
′
1] = {s

′
1}. Suppose

that Γ∗ ∩ [s1, s
′
1] ̸= {s1}. Let t1 = min(Γ∗ ∩ (s1, s

′
1)). The dividing curve on

∂(D2 × [0, 1]) obtained by edge rounding (i) the components of Γ with both
endpoints on arcs of R+(F ) labeled s1 to t1 and (ii) the boundary parallel
components of Γ′ with both endpoints on arcs labeled s1 to t1 − 1 forms a
closed loop. Hence Hom(Γ,Γ′) = 0 and we have a contradiction. This implies
that Γ∗ ∩ [s1, s

′
1] = {s1}. The proof of Γ′

∗ ∩ [s1, s
′
1] = {s

′
1} is similar.

Let Γ1 ∈ Bn,e such that Γ1
∗ = Γ∗\{s1} ∪ {s

′
1}. We claim that Hom(Γ1,Γ′)

̸= 0. From the proof of (2) ⇒ (1) above, Hom(Γ,Γ1) ̸= 0 and is generated
by a bypass that we denote by (Γ|Γ1). By an argument similar to the proof
of (2) ⇒ (1) in Lemma 3.2.2, the bypass (Γ|Γ1) is a trivial bypass when
viewed as a bypass on ∂(D2 × [0, 1]) with dividing set γΓ,Γ′ . By peeling off
the bypass (Γ|Γ1) from the contact structure which generates Hom(Γ,Γ′), we
obtain a tight contact structure which generates Hom(Γ1,Γ′). In particular,
this implies the claim.

If Γ1 = Γ′, then we are done. Otherwise, we inductively define si =
min(Γi−1

∗ \Γ
′
∗), s

′
i = min(Γ′

∗\Γ
i−1
∗ ), and Γi ∈ Bn,e such that Γi

∗ = Γi−1
∗ \{si} ∪

{s′i}. After finitely many steps, we have Γk = Γ′ for some k, which implies
(2). □

Corollary 5.2. For Γ,Γ′,Γ′′ ∈ Bn,e, if Hom(Γ,Γ′),Hom(Γ′,Γ′′), and
Hom(Γ,Γ′′) are all nonzero, then (Γ|Γ′)(Γ′|Γ′′) = (Γ|Γ′′).

Corollary 5.3. Suppose Hom(Γ,Γ′) and Hom(Γ′,Γ′′) are both nonzero for
Γ,Γ′,Γ′′ ∈ Bn,e. If there exists s such that s ∈ Γ∗ ∩ Γ′′

∗ but s /∈ Γ′
∗, then

Hom(Γ,Γ′′) = 0.

Given Γ̃ ∈ Bn,e, let us define #(Γ̃, s) = |{t ∈ Γ̃∗ | t > s}|.

Proof. Suppose that s ∈ Γ∗ ∩ Γ′′
∗, s /∈ Γ′

∗, and Hom(Γ,Γ′′) ̸= 0. Let 0 < s1 <
s′′1 < · · · < sk < s′′k be the sequence of labels in Proposition 5.1 which corre-

spond to Hom(Γ,Γ′′). Since s ∈ Γ∗ ∩ Γ′′
∗, s /∈ [si, s

′′
i ] for all i. Then we imme-

diately have #(Γ, s) = #(Γ′′, s).
On the other hand, #(Γ′, s) = #(Γ, s) + 1 since Hom(Γ,Γ′) ̸= 0 and s ∈

Γ∗, s /∈ Γ′
∗; and #(Γ′′, s) ≥ #(Γ′, s) since Hom(Γ′,Γ′′) ̸= 0. Hence #(Γ′′, s) >

#(Γ, s), a contradiction. □
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Notation 5.4. We write Γ
s
−→ Γ′ for Γ,Γ′ ∈ Bn,e, s ∈ {1, . . . , n− 1} if s ∈

Γ∗, s+ 1 /∈ Γ∗ and Γ′
∗ = Γ\{s} ∪ {s+ 1}. In this case Hom(Γ,Γ′) ̸= 0.

The bypasses Γ
s
−→ Γ′ are the elementary blocks of tight contact struc-

tures between basic dividing sets.

Lemma 5.5. The algebra Rn,e has idempotents (Γ), generators (Γ|Γ′) where

Γ,Γ′ ∈ Bn,e,Γ
s
−→ Γ′ for some s, and relations:

(Γ)(Γ′) = δΓ,Γ′ ;(5.6)

(Γ)(Γ|Γ′) = (Γ|Γ′)(Γ′) = (Γ|Γ′);(5.7)

(Γ|Γ′)(Γ′|Γ′′) = 0 if Γ
s
−→ Γ′,Γ′ s−1

−−→ Γ′′;(5.8)

(Γ|Γ′)(Γ′|Γ′′) = (Γ|Γ′′′)(Γ′′′|Γ′′)(5.9)

if Γ
s
−→ Γ′,Γ′ t

−→ Γ′′,Γ
t
−→ Γ′′′,Γ′′′ s

−→ Γ′′ for |s− t| > 1.

Proof. Suppose that Hom(Γ,Γ′) ̸= 0 and Γ ̸= Γ′. Let s1 = min(Γ∗\Γ
′
∗).

Define Γ̃ ∈ Bn,e such that Γ
s1−→ Γ̃. By Proposition 5.1, Hom(Γ, Γ̃) and

Hom(Γ̃,Γ′) are nonzero. By Lemma 3.2.2, the composition Hom(Γ̃,Γ′)×
Hom(Γ, Γ̃)→ Hom(Γ,Γ′) is nontrivial since the generator (Γ|Γ̃) is a bypass.
By an iterated peeling off of bypasses, one can prove that {(Γ), (Γ|Γ′) | Γ

s
−→

Γ′ for some s} generate Rn,e as an algebra.
The first two relations of Rn,e are immediate from the definition of Rn,e.

For a composition of two bypasses Γ
s
−→ Γ′,Γ′ t

−→ Γ′′, there are 3 possibil-
ities:

1) If t = s− 1, then Γ∗ ∩ [s− 1, s+ 1] = {s− 1, s} and Γ′′
∗ ∩ [s− 1, s+ 1]

= {s, s+ 1}. Hence Hom(Γ,Γ′′) = 0 by Corollary 5.3, implying the
third relation of Rn,e.

2) If t = s+ 1, then Hom(Γ,Γ′′) ̸= 0 and the product (Γ|Γ′)(Γ′|Γ′′) is
the generator of Hom(Γ,Γ′′). Γ∗ ∩ [s, s+ 2] = {s} and Γ′′

∗ ∩ [s, s+ 2] =
{s+ 2} and there is no relation in this case.

3) If |s− t| > 1, then Γ′ t
−→ Γ′′ induces a bypass Γ

t
−→ Γ′′′ on Γ which is

disjoint from the bypass Γ
s
−→ Γ′. We have Γ∗ ∩ [s, s+ 1] = {s}, Γ∗ ∩

[t, t+ 1] = {t}, Γ′′
∗ ∩ [s, s+ 1] = {s+ 1}, and Γ′′

∗ ∩ [t, t+ 1] = {t+ 1}.
The last relation of Rn,e follows from the commutativity of a pair of
disjoint bypasses.

Now let Ralg
n,e denote the algebra with the generators and defining re-

lations as in the lemma. The discussion above gives a homomorphism of
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algebras ϕ : Ralg
n,e → Rn,e, which is obviously surjective. To prove the injec-

tivity, it suffices to show that

(Γ) ·Ralg
n,e · (Γ

′) ∼= (Γ) ·Rn,e · (Γ
′) ∀Γ,Γ′.

By Proposition 5.1, (Γ) ·Rn,e · (Γ
′) is one-dimensional if the tightness con-

dition (Proposition 5.1(2)) holds; otherwise, it is zero. If the tightness con-
dition does not hold, then either

(i) there is no path from Γ to Γ′, i.e., a sequence Γ = Γ1, . . . ,Γn = Γ′ such
that (Γi|Γi+1) is a generator (this is the case if and only if there exists
r0 such that Γ∗(r) ≤ Γ′

∗(r) for r = 0, . . . , r0 − 1 and Γ∗(r0) > Γ′
∗(r0))

or

(ii) there exist Γi
s
−→ Γi+1,Γi+1

s−1
−−→ Γi+2 such that

(Γ) ·Ralg
n,e · (Γ

′) ∼=
(
(Γ) ·Ralg

n,e · (Γi)
)
·
(
(Γi) ·R

alg
n,e · (Γi+2)

)
(5.10)

·
(
(Γi+2) ·R

alg
n,e · (Γ

′)
)
.

But then (5.10) is zero since (Γi) ·R
alg
n,e · (Γi+2) = 0 by (5.8). If the tightness

condition holds, then no factorization of (Γ) ·Ralg
n,e · (Γ′) contains (Γi) ·R

alg
n,e ·

(Γi+2) satisfying Γi
s
−→ Γi+1,Γi+1

s−1
−−→ Γi+2. Hence (Γ) ·R

alg
n,e · (Γ′) is nonzero

and one-dimensional. □

Remark 5.11. The algebra Rn,e is isomorphic to the homology of a strands
algebra of a disk which is a differential graded algebra. Relationships between
the contact category and bordered/sutured Heegaard Floer homology have
been studied in [Za, M1, M2, M3, M4, Co].

The quiver Qn,e. Let Qn,e be the oriented quiver whose set of vertices is

V (Qn,e) = Bn,e and whose set of arrows is I(Qn,e) = {Γ
s
−→ Γ′ for some s}.

A path in Qn,e from Γ to Γ′ is said to be nonzero if Hom(Γ,Γ′) ̸= 0 and a
nonzero path is denoted by Γ→ Γ′. We define a partial order “≤” on the set
of all nonzero paths: (Γ1 → Γ′

1) ≤ (Γ2 → Γ′
2) if Γ1 → Γ′

1 can be extended to
Γ2 → Γ′

2 in Qn,e. The partial order motivates the constructions in Section 6;
see Remarks 6.2.15 and 6.3.2.7.

The finite dimensional algebra Rn,e is isomorphic to a quotient of the
path algebra F2Qn,e of Qn,e. We refer to [ASS] for an introduction to the rep-
resentation theory of finite dimensional algebras and quivers. In particular,
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by [ASS, Section I.4], {(Γ) | Γ ∈ Bn,e} is a complete set of primitive orthog-
onal idempotents in Rn,e and {P (Γ) = Rn,e(Γ) | Γ ∈ Bn,e} forms a complete
set of non-isomorphic indecomposable projective left Rn,e-modules. A nice
property of the finite quiver Qn,e is that it has no oriented cycles. It implies
that any simple module has a finite projective resolution. Hence the algebra
Rn,e has finite global dimension.

Define D̃n,e as the homotopy category of bounded cochain complexes
of finitely generated projective left Rn,e-modules. By a standard result in

homological algebra D̃n,e is equivalent to the bounded derived category
Db(Rn,e) of finitely generated left Rn,e-modules as triangulated categories.

The Grothendieck group K0(D̃n,e) is isomorphic to Z
⊕(n

e
).

Let Dn,e be the ungraded version of D̃n,e, whose objects are the same as

D̃n,e and whose morphisms are given by

HomDn,e
(M,N) :=

⊕

n∈Z

HomD̃n,e
(M,N [n]).

6. The functors Fn,e

In this section, we define a family of functors Fn,e : Cn,e → Dn,e for 0 ≤ e ≤
n. We write F for Fn,e when n, e are understood. Since the definition of F
is highly technical, we first give some motivating examples in Section 6.1.
In Section 6.2, we define a complex F(Γ) in Dn,e for each dividing set Γ in
Cn,e. In Section 6.3, we define a chain map F(β) ∈ Hom(F(Γ),F(Γ′)) for any
nontrivial bypass morphism β ∈ Hom(Γ,Γ′) and then define F(ξ) in general
as a composition of chain maps corresponding to bypasses. In Section 6.4,
we show that the functor F is well-defined.

6.1. Motivation from Cn,e

The goal of this subsection is to give some motivating examples.
We say that Γ is represented by Γ′,Γ′′ if there exists a bypass triangle Γ→

Γ′ → Γ′′ in Cn,e. The idea for constructing F(Γ) is to iteratively represent
Γ by basic dividing sets using iterated bypass triangles, and then form a
complex of (left) projective Rn,e-modules corresponding to the basic dividing
sets.

Recall that the indecomposable projective Rn,e-modules are of the form
Rn,e(Γ) for Γ ∈ Bn,e. Using the notation Γ(s1, . . . , se) for the basic dividing
set in Bn,e satisfying Γ(s1, . . . , se)∗ = {0, s1, . . . , se}, we write P (s1, . . . , se)
for the projective module corresponding to Γ(s1, . . . , se).
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Example 6.1.1. There are three dividing sets Γ,Γ(1),Γ(2) in ob(C2,1) as
shown in Figure 14. Among them Γ is not basic since Γ∗ = {0} and Γ(1) =
{1, 2}. There is a bypass triangle Γ→ Γ(1)→ Γ(2) in C2,1 which is induced
by a bypass β(Γ) ∈ Hom(Γ,Γ(1)). Here β(Γ) is the unique nontrivial bypass
on Γ whose arc of attachment δ intersects Γ∗ at one point and δ+ ⊂ Γ(1).
Hence Γ is represented by the basic dividing sets Γ(1),Γ(2). The bypass
in Hom(Γ(1),Γ(2)) gives a generator of R2,1. We define F(Γ) ∈ D2,1 as the
cochain complex P (1)→ P (2), where the differential is the multiplication
by the generator of R2,1 and P (2) is at degree 0.

0

1

2

0 0

1

1 22
-

-

- -

-

-

-

--

Γ(1)Γ

Γ(2)

β(Γ)

Γ∗

Γ(1)

Figure 14: F(Γ) for a non-basic Γ in C2,1.

Representing non-basic dividing sets. Before proceeding to the next
examples, we describe the bypass triangles we choose to iteratively represent
a non-basic dividing set by basic ones. Given a non-basic Γ, the set {i ∈
Z+ | (i) ∈ V +

nb(Γ)} is nonempty. Let i0 be the smallest element of this set. Let
By(Γ) denote the set of nontrivial bypasses on Γ whose arcs of attachment
δ intersect the closure of Γ∗ at one point and satisfy δ+ ⊂ int(Γ(i0)). The set
By(Γ) is nonempty since the component Γ(i0) is not boundary parallel. We
make the following choice:

Definition 6.1.2 (Choice of β(Γ)). Given a non-basic Γ, let β(Γ) be
the first bypass in the clockwise direction starting from 0 in By(Γ). As the
based arc 0 is usually put at the bottom, β(Γ) is called the leftmost bypass
in By(Γ).

Let Γ
β(Γ)
−−−→ Γ′ → Γ′′ be the triangle induced by β(Γ). One immediately

sees that Γ∗ can be viewed as a proper subset of Γ′
∗ and Γ′′

∗ (in fact this
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holds for any bypass in By(Γ)). In other words, Γ′ and Γ′′ are “closer” to
being basic. If Γ′ or Γ′′ is not basic, we can further represent it using a trian-
gle induced by β(Γ′) or β(Γ′′). After finitely many steps we can iteratively
represent Γ by basic dividing sets.

In Example 6.1.1, Γ is not basic, V +(Γ) = {(1)}, and lΓ(1)
= 1. In the

next example we have V +(Γ) = {(1)} and lΓ(1)
= 2.

Example 6.1.3. Let Γ ∈ ob(C4,3) such that Γ∗ = {0, 4},Γ(1) = {1, 2, 3}; see
Figure 15. The bypasses β(Γ) and β(Γ′) induce two triangles:

Γ
β(Γ)
−−−→ Γ′ → Γ(2, 3, 4), Γ′ β(Γ′)

−−−→ Γ(1, 2, 4)→ Γ(1, 3, 4),

where Γ′ is not basic: Γ′
∗ = {0, 1, 4},Γ

′
(1) = {2, 3}. The non-basic dividing

set Γ is iteratively represented by basic dividing sets Γ(1, 2, 4),Γ(1, 3, 4),
and Γ(2, 3, 4).

Each of Hom(Γ(1, 2, 4),Γ(1, 3, 4)) and Hom(Γ(1, 3, 4),Γ(2, 3, 4)) is gen-
erated by a nontrivial bypass and their composition is zero by the tightness
criterion (Proposition 5.1). We define F(Γ) ∈ D4,3 as the cochain complex

P (1, 2, 4)→ P (1, 3, 4)→ P (2, 3, 4),

where the differentials are given by the bypasses and P (2, 3, 4) is at degree 0.

0

1

2 3

4

0

1

2 3

4

0

1

2 3

4

0

1

2 3

4

0

1

2 3

4

0

1

2 3

4

-

-

-

--

-

-

--

- -

-

-

--

-

-

-

- --

--

-

-

-

-

- -

-

Γ Γ′ Γ′ Γ(1, 2, 4)

Γ(1, 3, 4)Γ(2, 3, 4)

β(Γ) β(Γ′)

Figure 15: Two triangles to represent a non-basic Γ in C4,3.

In Examples 6.1.1 and 6.1.3, |V +(Γ)| = 1. In the following two examples,
we consider the case |V +(Γ)| = 2.
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Example 6.1.4. Consider Γ ∈ ob(C4,2) such that Γ∗ = {0}, Γ(1) = {1, 2},

Γ(2) = {3, 4}; see Figure 16. The bypass β(Γ) induces a triangle Γ
β(Γ)
−−−→ Γ′ →

Γ′′, where

Γ′
∗ = {0, 1},Γ

′
(1) = {2},Γ

′
(2) = {3, 4}; Γ′′

∗ = {0, 2},Γ′
(1) = {1},Γ

′
(2) = {3, 4}.

Since Γ′ and Γ′′ are not basic, there are two more triangles induced by β(Γ′)
and β(Γ′′):

Γ′ β(Γ′)
−−−→ Γ(1, 3)→ Γ(1, 4), Γ′′ β(Γ′′)

−−−→ Γ(2, 3)→ Γ(2, 4).

Each of the nontrivial morphisms Γ(1, 3)→ Γ(1, 4), Γ(1, 3)→ Γ(2, 3),
Γ(1, 4)→ Γ(2, 4), Γ(2, 3)→ Γ(2, 4) is given by a nontrivial bypass and the
two ways of composing the bypasses in Hom(Γ(1, 3),Γ(2, 4)) commute. We
define F(Γ) ∈ D4,2 as the cochain complex

P (1, 3)→ (P (1, 4)⊕ P (2, 3))→ P (2, 4),

where the differentials are induced by the bypasses and P (2, 4) is at degree 0.
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Γ Γ′ Γ′ Γ(1, 3) Γ′′ Γ(2, 3)

Γ′′ Γ(1, 4) Γ(2, 4)

β(Γ) β(Γ′) β(Γ′′)

Figure 16: Three triangles to represent a non-basic Γ in C4,2.

Example 6.1.5. Consider Γ ∈ ob(C4,2) such that Γ∗ = {0}, Γ(1) = {1, 4},

Γ(1,1) = {2, 3}; see Figure 17. The bypass β(Γ) induces a triangle Γ
β(Γ)
−−−→

Γ′ → Γ′′, where

Γ′
∗ = {0, 1},Γ

′
(1) = {2, 3},Γ

′
(2) = {4}; Γ′′

∗ = {0, 4},Γ′
(1) = {1},Γ

′
(2) = {2, 3}.

Since Γ′ and Γ′′ are not basic, there are two more triangles induced by β(Γ′)
and β(Γ′′):

Γ′ β(Γ′)
−−−→ Γ(1, 2)→ Γ(1, 3), Γ′′ β(Γ′′)

−−−→ Γ(2, 4)→ Γ(3, 4).
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There is a tight contact structure in Hom(Γ(1, 3),Γ(2, 4)) which is a
composition of two bypasses. The spaces Hom(Γ(1, 2),Γ(2, 4)) and
Hom(Γ(1, 3),Γ(3, 4)) are zero. We then define F(Γ) ∈ D4,2 as the cochain
complex

N := (P (1, 2)→ P (1, 3)→ P (2, 4)→ P (3, 4)),(6.1.6)

where the differentials are induced by the tight contact structures and P (3, 4)
is at degree 0.
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Γ Γ′ Γ′ Γ(1, 2) Γ′′ Γ(2, 4)

Γ′′ Γ(1, 3) Γ(3, 4)

β(Γ) β(Γ′) β(Γ′′)

Figure 17: Three triangles to represent a non-basic Γ in C4,2.

In Example 6.1.4, V (Γ) = {∗, (1), (2)}, where Γ(1) and Γ(2) directly nest
inside Γ∗. In Example 6.1.5, V (Γ) = {∗, (1), (1, 1)} and Γ(1,1) directly nests
inside Γ(1) which in turn directly nests inside Γ∗. As we will see in Equa-
tion (6.2.16), the differentials in F(Γ) are defined differently for the two
examples.

6.2. Definition of F(Γ)

In this subsection we define F(Γ) for Γ ∈ ob(Cn,e). If Γ ∈ Bn,e, then we set

(6.2.1) F(Γ) := P (Γ) ∈ ob(Dn,e),

viewed as a complex centered at degree 0, and if Γ is a zero object, then we
set F(Γ) = 0.

In the rest of this subsection suppose Γ is nonzero. We use bypass trian-
gles in Cn,e and construct F(Γ) ∈ ob(Dn,e) in 3 steps:

Step 1. Make a list of projective Rn,e-modules that appear in F(Γ).

Step 2. Define the cohomological degree for each term in Step 1.
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Step 3. Define the differential using Steps 1 and 2.

The following definition generalizes the ad hoc definitions in Exam-
ples 6.1.1, 6.1.3, 6.1.4, 6.1.5.

Step 1. The list of projective Rn,e-modules that appear in F(Γ) is given by
{Γ(i) ∈ Bn,e | i ∈ OI(Γ)}, which we describe now.

In the examples from Section 6.1, every Γ was represented by an iterated
cone of certain basic dividing sets. The key observation is that the based
component of each of these basic dividing sets was obtained from the total
set {0, . . . , n} by omitting one label from each component in V +(Γ).

Definition 6.2.2 (Omitting index). Let

OI(Γ) =
∏

v∈V +(Γ)

{0, . . . , lΓv
}.

An element i = ⟨iv⟩ ∈ OI(Γ) is called an omitting index of Γ and iv is called
the entry of i corresponding to v (or the “v-entry of i”, for short). Also, the
set {Γv(iv)}v∈V +(Γ) is called the set of omitting labels for i.

We define 0 ∈ OI(Γ) to be the omitting index such that 0v = 0 for any
v ∈ V +(Γ).

Remark 6.2.3. Any i ∈ OI(Γ) is determined by {iv | v ∈ V +
nb(Γ)} since

iv = 0 for all v ∈ V +(Γ)\V +
nb(Γ).

Given i ∈ OI(Γ), define Γ(i) ∈ Bn,e such that

(6.2.4) Γ(i)∗ = Γ∗ ∪
⊔

v∈V +(Γ)

(Γv\{Γv(iv)}) = {0, . . . , n}\{Γv(iv)}v∈V +(Γ).

Since |V (Γ)| = n− e+ 1, |V +(Γ)| = n− e, and
⊔

v∈V (Γ) Γv = {0, . . . , n}, it
follows that |Γ(i)∗| = e+ 1. Observe that (i) if Γ ∈ Bn,e, then we have
OI(Γ) = {0} and Γ(0) = Γ, since lΓv

= 0 for all v ∈ V +(Γ), and (ii) if Γ /∈
Bn,e and i ∈ OI(Γ), then Γ(i)∗ always contains Γ∗ as a proper subset.

Remark 6.2.5. We have two ways of describing basic dividing sets; they
are complementary in some sense. The first one Γ(s1, . . . , se) describes the
labels that are contained in the based component and is mainly used in
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examples. The second one Γ(i) emphasizes the labels that are omitted (i.e.,
the set i ∈ OI(Γ)) and is our choice for most of the paper.3

Step 2. We define the cohomological degree h(i) for each i ∈ OI(Γ).

Definition 6.2.6.

(i) Given v ∈ V (Γ) and 0 ≤ i ≤ lΓv
, a vector w ∈ V +

nb(Γ) nests inside v
up to i if Γw ⊂ (Γv(0),Γv(i)).

(ii) Given v ∈ V (Γ) and 0 < i ≤ lΓv
, a vector w ∈ V +

nb(Γ) is a direct nest-
ing vector of (v, i) if Γw directly nests inside Γv and Γw ⊂ (Γv(i−
1),Γv(i)).

Let NV (v, i) denote the set of vectors in V +
nb(Γ) that nest inside v up

to i and let DNV (v, i) denote the set of direct nesting vectors of (v, i).

Definition 6.2.7 (Nesting degree). Given v ∈ V (Γ) and 0 ≤ i ≤ lΓv
, the

nesting degree cv(i) is given by

cv(i) =
∑

w∈NV (v,i)

lΓw
=

∑

w∈NV (v,i)

(|Γw| − 1),

if NV (v, i) ̸= ∅ and is zero otherwise.

Definition 6.2.8 (Cohomological degree). The cohomological degree
h(i) of i ∈ OI(Γ) is given by

h(i) =
∑

v∈V +(Γ)

h(i,v), h(i,v) = iv + cv(iv).

Remark 6.2.9. Since NV (v, 0) = ∅, we have cv(0) = 0 and h(0) = 0.

The nesting degree is trivial in Examples 6.1.1, 6.1.3, and 6.1.4. Hence
h(i) is simply the sum of all the entries of i.

Example 6.1.5 revisited. We have V +(Γ) = {(1), (1, 1)} and lΓv
= 1 for v ∈

V +(Γ). The only nonzero nesting degree is c(1)(1) = 1 since Γ(1,1) nests inside

3The notations are similar, but we note that the former has entries that are
underlined.
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Γ(1) up to 1:

Γ(1,1) = {2, 3} ⊂ (1, 4) = (Γ(1)(0),Γ(1)(1)).

Writing i = ⟨i(1), i(1,1)⟩ for i ∈ OI(Γ), we have:

h⟨1, 1⟩ = 1 + 1 + c(1)(1) = 3, h⟨1, 0⟩ = 1 + 0 + c(1)(1) = 2,

h⟨0, 1⟩ = 0 + 1 = 1, h⟨0, 0⟩ = 0,

which agree with the negatives of the degrees in the complex N from (6.1.6).

Step 3. We define the differential, which is induced by the morphisms be-
tween basic dividing sets in Cn,e.

Example 6.1.5 revisited. We have

Γ⟨1, 1⟩ = Γ(1, 2), Γ⟨1, 0⟩ = Γ(1, 3), Γ⟨0, 1⟩ = Γ(2, 4), Γ⟨0, 0⟩ = Γ(3, 4).

There are two types of morphisms between the Γ(i)’s for i = ⟨i(1), i(1,1)⟩ ∈
OI(Γ):

(SL) Hom(Γ⟨i, 1⟩,Γ⟨i, 0⟩) for i = 0, 1;

(SH) Hom(Γ⟨1, 0⟩,Γ⟨0, 1⟩).

For Type (SL), only the (1, 1)-entry of i = ⟨i, 1⟩ decreases by 1 and the
other entry is left unchanged. In Definition 6.2.10 the vector (1, 1) is called
an sliding vector of i.

For Type (SH), the (1)-entry of i = ⟨1, 0⟩ decreases from 1 to 0 and the
(1, 1)-entry increases from 0 to 1 = lΓ(1,1)

. In this case (1, 1) directly nests
inside (1). In Definition 6.2.10 the vector (1) is called a shuffling vector of
i = ⟨1, 0⟩.

Definition 6.2.10 (Sliding and shuffling vectors).

1) A vector v ∈ V +(Γ) is a sliding vector of i ∈ OI(Γ) if iv > 0 and
DNV (v, iv) = ∅.

2) A vector v ∈ V +(Γ) is a shuffling vector of i ∈ OI(Γ) if iv > 0,
DNV (v, iv) ̸= ∅ and iw = 0 for all w ∈ DNV (v, iv).

Let SLV (i) denote the set of sliding vectors of i, let SHV (i) denote the
set of shuffling vectors of i, and let SV (i) = SLV (i) ∪ SHV (i). Note that
not every vector in V +(Γ) is a sliding vector or a shuffling vector.
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Definition 6.2.11 (Modified omitting index). Given i ∈ OI(Γ) and
v ∈ SV (i), the v-modified omitting index v|i ∈ OI(Γ) satisfies

(v|i)w =

{
iv − 1 if w = v,
iw otherwise,

if v ∈ SLV (i);

(v|i)w =





iv − 1 if w = v,
lΓw

if w ∈ DNV (v, iv),
iw otherwise,

if v ∈ SHV (i).

Vectors in DNV (v, iv) ⊂ V +
nb(Γ) must be indices of non-boundary-

parallel regions, so that the lΓw
are positive for all w ∈ DNV (v, iv).

Remark 6.2.12. As we change from i to v|i,

(i) the v-entry of i is the only entry which decreases;

(ii) aw-entry of i increases if and only if v ∈ SHV (i) andw ∈ DNV (v, iv);
and

(iii) all other entries of i are left unchanged.

Lemma 6.2.13. If v ∈ SV (i), then Hom(Γ(i),Γ(v|i)) ̸= 0.

Given v ∈ SV (i), let r(i,v) ∈ Rn,e be the generator of Hom(Γ(i),Γ(v|i)).

Proof. If v ∈ SLV (i), then Γ(i)∗ ∩ [Γv(iv − 1),Γv(iv)] = {Γv(iv − 1)} and

Γ(v|i)∗ = Γ(i)∗\{Γv(iv − 1)} ∪ {Γv(iv)}.

Then Hom(Γ(i),Γ(v|i)) ̸= 0 by Proposition 5.1.
If v ∈ SHV (i), then we can write DNV (v, iv) = {u

1, . . . ,uk} so that

Γv(iv − 1) < Γu1(0); Γuj (lΓ
uj ) < Γuj+1(0), 1 ≤ j ≤ k − 1;

Γuk(lΓ
uk
) < Γv(iv).

If [a, b] is any of the corresponding k + 1 closed disjoint intervals:

[Γv(iv − 1),Γu1(0)]; [Γuj (lΓ
uj ),Γuj+1(0)], 1 ≤ j ≤ k − 1;(6.2.14)

[Γuk(lΓ
uk
),Γv(iv)],
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the intersections Γ(i)∗ ∩ [a, b] = {a}. We have

Γ(v|i)∗ = Γ(i)∗\
(
{Γv(iv − 1)} ∪ {Γuj (lΓ

uj )}
k
j=1

)

∪
(
{Γuj (0)}kj=1 ∪ {Γv(iv)}

)
.

Hence Hom(Γ(i),Γ(v|i)) ̸= 0 by Proposition 5.1. □

Remark 6.2.15. With a little more work one can show that {Γ(i)→
Γ(v|i) | v ∈ SV (i)} coincides with the set of minimal elements of {nonzero
path Γ(i)→ Γ(j) | i, j ∈ OI(Γ)} with respect to the partial order≤ from Sec-
tion 5. This is actually the motivation behind Definitions 6.2.10 and 6.2.11.

We now define F(Γ) for Γ in general:

(6.2.16) F(Γ) =


 ⊕

i∈OI(Γ)

P (Γ(i))[h(i)], dΓ =
∑

i∈OI(Γ)

∑

v

d(i,v)


 ,

where the second summation is taken over v ∈ SV (i) and d(i,v) : P (Γ(i))→
P (Γ(v|i)) is given by right multiplication by r(i,v).

Remark 6.2.17.

1) If Γ ∈ Bn,e, then OI(Γ) = {0},Γ(0) = Γ, and h(0) = 0. Hence F(Γ) =
(P (Γ), dΓ = 0), which agrees with F(Γ) from Equation (6.2.1).

2) By the usual grading shift convention, P (Γ(i))[h(i)] is at degree −h(i).
Since h(i) is nonnegative, the highest degree term of F(Γ) has degree 0.

We will write d for dΓ when Γ is understood. By definition d : F(Γ)→
F(Γ) is a map of Rn,e-modules. It remains to verify that d2 = 0 and d is
homogeneous of degree 1; they are proved in Lemmas 6.2.20 and 6.4.1.3.

Interpretation in terms of negative regions. We now give a slightly
more unified way of describing d = dΓ in terms of the negative region R−(Γ).
Let i ∈ OI(Γ) and let c be a component of R−(Γ) such that:

(*) if the component Γv of R+(Γ) has (nonempty) boundary γv in common
with c, then v ̸= ∗.

Then we say i is c-admissible if
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(**) the omitting label of v satisfying (*) is the label of the interval of ∂D2

which is adjacent to the initial point of γv. (Recall that Γ is oriented
as the boundary of R+(Γ).)

If i is c-admissible, then c|i is obtained from i by replacing the label of
each v satisfying (*) by the label which is adjacent to the terminal point
of γv; see Figure 18. Observe that if i ∈ OI(Γ) and v ∈ SV (i), then there
is a unique c such that i is c-admissible and v|i = c|i. In such a case we
write r(i, c) = r(i,v) and d(i, c) = d(i,v). Hence d(i, c) can be viewed as a
refinement of d(i,v).

.

.

.

.

. .
.

..
.

-

- -

-

...
i c|i

c

c
v

c

v

Figure 18: The picture on the left describes d(i, c), where dividing sets are
γv, and black boxes are locations of omitting labels for i and c|i. The pictures
on the right are c-admissible omitting indices i such that v|i = c|i, where
v ∈ SLV (i) and SHV (i), respectively.

Given c ∈ π0(R−(Γ)), let us define

(6.2.18) dc =
∑

i

d(i, c),

where the summation in the first equation is taken over i ∈ OI(Γ) such that
i is c-admissible. We immediately see that d =

∑
c∈π0(R−(Γ)) dc. Let us also

write

(6.2.19) dv =
∑

c

dc,

where c has a boundary component in common with v and v is closer to the
based component.

Lemma 6.2.20.

1) If c ∈ π0(R−(Γ)), then d2
c
= 0.
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2) If c, c′ ∈ π0(R−(Γ)) and c ̸= c
′, then dcdc′ = dcdc′.

3) d2 = 0.

Proof. (1) This is immediate from observing that c|i is not c-admissible.

(2) Suppose c and c
′ are adjacent, i.e., there is a component of R+(Γ) labeled

by v which has boundary in common with both c and c
′. If i is not c- or c′-

admissible, then d(i, c) = d(i, c′) = 0. If i is c-admissible, then i cannot be c′-
admissible and d(i, c′) = 0. If c|i is c′-admissible, then there are components
of ∂D2 ∩ c and ∂D2 ∩ c

′ that are adjacent to a label of v; however, d(c|i, c′) ◦
d(i, c) = 0 by Corollary 5.3. In any case dcdc′ = dc′dc = 0.

Suppose c and c
′ are not adjacent. Then clearly c|(c′|i) = c

′|(c|i) (if either
side exists) and dcdc′ = dc′dc.

(3) It follows from (1), (2), and d =
∑

c
dc. □

Lemma 6.2.21. If v ∈ V (Γ) and 0 < i ≤ lΓv
, then the following holds as

subsets of V +
nb(Γ):

NV (v, i) = NV (v, i− 1) ⊔DNV (v, i) ⊔
⊔

w∈DNV (v,i)

NV (w, lΓw
).

Proof. By Definition 6.2.6,

NV (v, i) = NV (v, i− 1) ⊔ {u ∈ V +
nb(Γ) | Γu ⊂ (Γv(i− 1),Γv(i))}.

For any u satisfying Γu ⊂ (Γv(i− 1),Γv(i)), either Γu directly nests inside
Γv, i.e., u ∈ DNV (v, i); or Γu nests inside Γw for a unique w ∈ DNV (v, i),
i.e., u ∈ NV (w, lΓw

). □

Lemma 6.2.22. The degree of d is 1.

Proof. Since the term P (Γ(i))[h(i)] is at cohomological degree −h(i), it suf-
fices to show that h(v|i) = h(i)− 1 for v ∈ SV (i).

If v ∈ SLV (i), then i 7→ v|i leaves all the entries of i unchanged ex-
cept for the v-entry. In particular, h(v|i,w) = h(i,w) for w ̸= v. Since
DNV (v, iv) = ∅, NV (v, iv − 1) = NV (v, iv) by Lemma 6.2.21. Hence
cv(iv − 1) = cv(iv) and h(v|i,v) = h(i,v)− 1. This implies that h(v|i) =
h(i)− 1.

If v ∈ SHV (i), then the entries of i that are unchanged by i 7→ v|i are
those of w /∈ {v} ∪DNV (v, iv). Hence h(v|i,w) = h(i,w) for w /∈ {v} ∪
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DNV (v, iv). It remains to show that


 ∑

w∈DNV (v,iv)

h(v|i,w)


+ h(v|i,v) =


 ∑

w∈DNV (v,iv)

h(i,w)


+ h(i,v)− 1.

By Definitions 6.2.7 and 6.2.8 this can be rewritten as

∑

w∈DNV (v,iv)

(cw(lΓw
) + lΓw

) + cv(iv − 1) + iv − 1

=
∑

w∈DNV (v,iv)

(cw(0) + 0) + cv(iv) + iv − 1,

∑

w∈DNV (v,iv)

(cw(lΓw
) + lΓw

) + cv(iv − 1) = cv(iv).

The last equation follows from Lemma 6.2.21. □

6.3. Definition of F(β)

In this subsection we define F(β) ∈ Hom(F(Γ),F(Γ′)) for any nontrivial
bypass β ∈ Hom(Γ,Γ′). Recall from Notation 4.2.1 and Notation 4.2.2 (see
also Figure 12) that a bypass β is described by two vectors b,b ∈ V (Γ),
three integers x, y, z, and a partition Γb = Γl

b ⊔ Γr
b.

6.3.1. Identity and shuffling indices. Given i ∈ OI(Γ) and j ∈ OI(Γ′),
the restriction of F(β) to P (Γ(i))→ P (Γ′(j)) will be the zero map or one of
two types:

(Id) the identity map P (Γ(i))→ P (Γ′(j)) for a unique j ∈ OI(Γ′);

(Sh) a nonzero map P (Γ(i))→ P (Γ′(j)) for a unique j ∈ OI(Γ′).

For each i ∈ OI(Γ), the unique j ∈ OI(Γ′), if it exists, satisfies the condition
that the path from Γ(i) to Γ′(j) (possibly the identity path) is the shortest
nonzero path in Qn,e starting from Γ(i). The main distinction between Types
(Id) and (Sh) is whether there exists j ∈ OI(Γ′) such that Γ′(j) = Γ(i). In
each type there are two subcases b = ∗ or b ̸= ∗; see Figures 19 and 20.

Type (Id).

Definition 6.3.1.1 (Identity index). An omitting index i ∈ OI(Γ) is
called an identity index of β if either
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(a) 0 ∈ Γl
b; or

(b) 0 /∈ Γb and ib ∈ [[x, y]] (i.e., Γb(ib) ∈ Γl
b).

Let II(β) ⊂ OI(Γ) denote the set of identity indices of β.

If i ∈ II(β), then there exists a unique j ∈ OI(Γ′) such that Γ′(j) = Γ(i).

+

-

+

-

+

-

+

-

0 0

ib jβ(b)

ib jβ(b)

ib jβ(b)

Figure 19: Type (Id). The case 0 ∈ Γl
b is on the left and the case 0 /∈ Γb and

ib ∈ [[x, y]] is on the right. Here iv, jw denote entries of i ∈ OI(Γ), j ∈ OI(Γ′)
and 0 is the label on ∂D2.

Type (Sh). We first require that i ∈ OI(Γ) satisfies: (1) either 0 ∈ Γr
b; or

0 /∈ Γb and ib /∈ [[x, y]]; and (2A) b ∈ V +(Γ). Additional conditions are more
involved and will be motivated in the following several paragraphs; the full
description will then be given in Definition 6.3.1.5.

We first observe that if i ∈ OI(Γ) satisfies (1), then there is no j ∈ OI(Γ′)
such that Γ′(j) = Γ(i): this is because there is no Γ′

β(b)(jβ(b)) if Γ
′(j) = Γ(i).

+

-

+

-

+

-

+

-

0 0

z=i
b

x

y

LSV (β)

jβ(b)
ib jβ(b)

z=i
b

jβ(b)

x

y

LSV (β)

Figure 20: Type (Sh). The case 0 ∈ Γr
b is on the left and the case 0 /∈ Γb

and ib /∈ [[x, y]] is on the right. In both cases b ̸= ∗. See Definition 6.3.1.2
for LSV (β).

If i ∈ OI(Γ) satisfies (1) and (2A), the most efficient way to move omit-
ting labels of i to omitting labels of j is to send Γb(z) to Γb(y) and leave the
other labels intact. In particular, this means that ib = z and Γ′

β(b)(jβ(b)) =

Γb(y); at the same time the omitting labels in Γw may be moved for Γw

lying between Γb(y) and Γb(z).
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Definition 6.3.1.2. A vector w ∈ V +(Γ) is called a left shuffling vector
of β if lΓw

> 0, the component Γw is adjacent to Γb and Γb, and Γw ⊂
[[Γb(y),Γb(z)]]. Let LSV (β) denote the set of left shuffling vectors of β.

The condition Γw ⊂ [[Γb(y),Γb(z)]] implies that the component Γw is
to the left to the arc of attachment δ, assuming that δ is positioned as in
Figure 12.

Definition 6.3.1.3 (Shuffling types).

(Y) A bypass β ∈ Hom(Γ,Γ′) is of shuffling type (Y) if Γb(y) < Γb(z).

(Z) A bypass β ∈ Hom(Γ,Γ′) is of shuffling type (Z) if Γb(y) > Γb(z) and
there exist w(β) ∈ LSV (β) and 0 < k(β) ≤ lΓw(β)

such that Γb ∪ Γb ⊂
(Γw(β)(k(β)− 1),Γw(β)(k(β))).

For type (Y), neither Γb nor Γb directly nests inside any w ∈ LSV (β).
For type (Z), Γb and Γb directly nest inside a unique w(β) ∈ LSV (β).

Remark 6.3.1.4.

1) The two shuffling types (Y) and (Z) are mutually exclusive but some
bypasses do not belong to either type when the conditions w ∈ V +(Γ)
and lΓw

> 0 in the definition of a left shuffling vector are not met. This
happens when Γ∗ is adjacent to Γb and Γb and Γ∗ ⊂ [[Γb(y),Γb(z)]].

2) If β is of shuffling type (Z), then the pair (w(β), k(β)) is unique. We
use (w(β), k(β)) to denote this pair.

Definition 6.3.1.5 (Shuffling index). An omitting index i ∈ OI(Γ) is a
shuffling index of β if the following conditions hold:

1) either
a) 0 ∈ Γr

b; or
b) 0 /∈ Γb and ib /∈ [[x, y]] (i.e., Γb(ib) ∈ Γr

b);

2) b ∈ V +(Γ) and ib = z;

3) iw = 0 for all w ∈ LSV (β) if β is of shuffling type (Y);

4) iw(β) = k(β) and iw = 0 for all w ∈ LSV (β)\{w(β)} if β is of shuffling
type (Z).

Let SI(β) ⊂ OI(Γ) denote the set of shuffling indices of β.
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+

-

...

...

+

-

...
...

...
...

.

.

Γ(i) Γ′(β(i))
Γ(i) Γ′(β(i))

y

i
b
=z

ib β(i)β(b)

ib β(i)β(b)

w1

wk

0

0

β(i)β(b)

l1

lk

w(β)

ws+1

ws

k(β)

y
0

0

i
b
=z

β(i)β(b)

ls+1

k(β)−1

ls

Figure 21: Examples of SI(β), where β(i) is defined in Definition 6.3.2.2.
A bypass of shuffling type (Y), Γb(y) < Γb(z), is on the left, where
LSV (β) = {w1, . . . ,wk} and lt = lΓ

wt . A bypass of shuffling type (Z),
Γb(y) > Γb(z), with the pair (w(β), k(β)) is on the right, where LSV (β) =
{w(β),w1, . . . ,ws, . . . ,wk−1} and lt = lΓ

wt . The entries iv and β(i)β(v) are

drawn for v ∈ LSV (β) ⊔ {b,b} for both types of shuffling.

In the special case where 0 ∈ Γb or Γb, the following descriptions of
II(β) and SI(β) are straightforward.

Lemma 6.3.1.6.

1) If 0 ∈ Γl
b then II(β) = OI(Γ) and SI(β) = ∅.

2) If 0 ∈ Γr
b, then II(β) = ∅.

3) If 0 ∈ Γb, then SI(β) = ∅.

By Definitions 6.3.1.1 and 6.3.1.5(1), II(β) ∩ SI(β) = ∅. The disjoint
union II(β) ⊔ SI(β) is always nonempty, but is not equal to OI(Γ) in gen-
eral.

6.3.2. Definition of the chain map. The bypass β changes omitting
indices in II(β) ⊔ SI(β) ⊂ OI(Γ) to those in OI(Γ′).

Notation 6.3.2.1. We abuse notation and use β to denote three related
things:

1) a bypass;

2) the map V (Γ)→ V (Γ′) from Equation (4.2.3); and

3) the map II(β) ⊔ SI(β)→ OI(Γ′), defined below.
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Definition 6.3.2.2. For β∈Hom(Γ,Γ′), define β : II(β)⊔SI(β)→OI(Γ′)
by:

(C1). If i ∈ II(β), then define β(i) ∈ OI(Γ′) by β(i)β(v) ∈ Z+ for β(v) ̸= ∗
such that

Γ′
β(v)(β(i)β(v)) = Γv(iv).

(C2). If i ∈ SI(β) and β is of shuffling type (Y), then define β(i) ∈ OI(Γ′)
by β(i)β(v) ∈ Z+ for β(v) ̸= ∗ such that

Γ′
β(v)(β(i)β(v)) =





Γb(y) if v = b,

Γb(ib) if v = b and β(b) ̸= ∗,
Γv(lΓv

) if v ∈ LSV (β),
Γv(iv) otherwise.

(C3). If i ∈ SI(β) and β is of shuffling type (Z), then define β(i) ∈ OI(Γ′)
by β(i)β(v) ∈ Z+ for β(v) ̸= ∗ such that

Γ′
β(v)(β(i)β(v)) =





Γb(y) if v = b,

Γb(ib) if v = b and β(b) ̸= ∗,
Γw(β)(k(β)− 1) if v = w(β),

Γv(lΓv
) if v ∈ LSV (β),v ̸= w(β),

Γv(iv) otherwise.

See Figure 21 for examples. We verify that Definition 6.3.2.2 is well-
defined, i.e., iv exists (equivalently v ̸= ∗) on the right-hand side of the
equations. For (C1), 0 /∈ Γr

b since i ∈ II(β). Hence β(∗) = ∗ by Remark 4.2.4.
Then β(v) ̸= ∗ implies that v ̸= ∗. For the second rows of (C2) and (C3),
0 /∈ Γr

b since β(b) ̸= ∗; and 0 /∈ Γl
b since i ∈ SI(β). Hence b ̸= ∗.

Remark 6.3.2.3.

(i) An effective way to understand β is to track the movement of the
omitting labels from Γ(i) to Γ′(β(i)).

(ii) Since β : V (Γ)→ V (Γ′) only changes the two components Γb,Γb by
definition, we have

β(i)β(v) = iv

for v /∈ {b,b} if i ∈ II(β), and for v /∈ {b,b} ∪ LSV (β) if i ∈ SI(β).

(iii) The map β : II(β) ⊔ SI(β)→ OI(Γ′) is injective.
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Interpretation in terms of negative regions. For i ∈ SI(β) we give a
description of β(i) in terms of the component c of R−(Γ) that lies between b
and b. Let cl be the left-hand side of c cut along the arc of attachment for β,
i.e., the region that lies between Γl

b and Γb as in Figure 12. Let i ∈ OI(Γ).
Then i ∈ SI(β) if and only if the following hold:

(N1) if Γv ̸= Γb is a component of R+(Γ) which has boundary γv in common
with c

l, then v ̸= ∗;

(N2) the omitting label of any v satisfying (N1) is the label of the interval
of ∂D2 which is adjacent to the initial point of γv;

(N3) neither 0 nor the omitting label of b is on the left-hand side of b.

If i ∈ OI(Γ), then β(i) is obtained from i by removing the label of each v
satisfying (N1) and, for each v ̸= b which has boundary γv in common with
c
l, adding the label which is adjacent to the terminal point of γv.

A closer look at SI(β). The conditions iw = 0 in Definitions 6.2.10(2) and
6.3.1.5(3),(4) are similar, and there is a good reason for this. Let Γ′′ be the
third dividing set in the bypass triangle

Γ
β
−→ Γ′ β′

−→ Γ′′

induced by β. For each i ∈ SI(β) there exists a unique k ∈ OI(Γ′′) such that
Γ′′(k) = Γ(i); see Lemma 6.4.1.1. We will see in the proof of Lemma 6.4.1.3
that there exists u ∈ SVΓ′′(k) such that Γ′′(u|k) = Γ′(β(i)). As a result,
the restriction F(β)|Γ(i) : P (Γ(i))→ P (Γ′(β(i))) coincides with part of the
differential dΓ′′(k,u) : P (Γ′′(k))→ P (Γ′′(u|k)). This is the key to proving
that

F(Γ)
F(β)
−−−→ F(Γ′)

F(β′)
−−−→ F(Γ′′)

is a distinguished triangle in Proposition 7.3.1; see Examples 6.3.3.1 and
6.3.3.2.

Lemma 6.3.2.4.

1) If i ∈ II(β), then Γ′(β(i)) = Γ(i).

2) If i ∈ SI(β), then Hom(Γ(i),Γ′(β(i))) ̸= 0.

Proof. (1) is immediate from Definition 6.3.2.2(C1).
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(2) Suppose that β is of shuffling type (Y). Let LSV (β) = {w1, . . . ,wk}
such that

Γb(y) < Γw1(0); Γwj (lΓ
wj ) < Γwj+1(0), 1 ≤ j ≤ k − 1;

Γwk(lΓ
wk
) < Γb(z).

There are k + 1 disjoint closed intervals:

[Γb(y),Γw1(0)]; [Γwj (lΓ
wj ),Γwj+1(0)], 1 ≤ j ≤ k − 1;(6.3.2.5)

[Γwk(lΓ
wk
),Γb(z)].

The intersections Γ(i)∗ ∩ [a, b] = {a}, where [a, b] is any of the k + 1 inter-
vals. We have

Γ′(β(i))∗ = Γ(i)∗\
(
{Γb(y)} ∪ {Γwj (lΓ

wj )}
k
j=1

)
∪
(
{Γwj (0)}kj=1 ∪ {Γb(z)}

)

and Hom(Γ(i),Γ′(β(i)) ̸= 0 by Proposition 5.1.
Suppose that β is of shuffling type (Z). Let LSV (β) = {w(β),w1, . . . ,

ws, . . . ,wk−1} such that Γwj (lΓ
wj )<Γwj+1(0) for 1≤j≤k − 2, Γws(lΓws )<

Γb(z), and Γb(y) < Γws+1(0). Moreover, Γw(β)(k(β)− 1) < Γw1(0),
and Γwk−1(lΓ

wk−1 ) < Γw(β)(k(β)). Then there are k + 1 disjoint closed in-
tervals:

[Γw(β)(k(β)− 1),Γw1(0)]; [Γwj (lΓ
wj ),Γwj+1(0)], 1 ≤ j ≤ s− 1;(6.3.2.6)

[Γws(lΓws ),Γb(z)]; [Γb(y),Γws+1(0)];

[Γwj (lΓ
wj ),Γwj+1(0)], s+ 1 ≤ j ≤ k − 2;

[Γwk−1(lΓ
wk−1 ),Γw(β)(k(β))].

Again Hom(Γ(i),Γ′(β(i)) ̸= 0 follows from Proposition 5.1. □

Remark 6.3.2.7. With a little more work one can show that the nonzero
path Γ(i)→ Γ′(β(i)) is the unique minimal element of {nonzero path Γ(i)→
Γ′(j) | i ∈ OI(Γ), j ∈ OI(Γ′)}. This is actually the motivation behind Defi-
nitions 6.3.1.5 and 6.3.2.2.

The k + 1 closed intervals in Equation (6.3.2.5) or (6.3.2.6) are called
the chain intervals of β.

Let t(β, i) ∈ Rn,e denote the idempotent of Γ(i) if i ∈ II(β), or the gen-
erator of Hom(Γ(i),Γ′(β(i))) if i ∈ SI(β).
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Definition 6.3.2.8. For a nontrivial bypass morphism β ∈ Hom(Γ,Γ′), de-
fine a map of Rn,e-modules F(β) : F(Γ)→ F(Γ′) by

F(β) =
∑

i∈II(β)⊔SI(β)

F(β, i),

where F(β, i) : P (Γ(i))→ P (Γ′(β(i))) is the right multiplication by t(β, i)
for i ∈ II(β) ⊔ SI(β).

6.3.3. Some examples. Before proving that F(β) is a chain map, we
look at some examples.

Example 6.3.3.1. Consider the bypass triangle Γ
β
−→ Γ′ β′

−→ Γ′′ β′′

−→ Γ in
Figure 22. By definition,

F(Γ) :

F(β)
��

P (1, 2) //

%%
(A),c

P (1, 3)

(B),c

%%

// P (2, 4)

%%

// P (3, 4)

F(Γ′) :

F(β′)
��

P (1, 2)

(B),c

//

��

P (1, 4)

(A),c

//

��

P (2, 4)

��
F(Γ′′) :

F(β′′)

��

P (1, 3)

(A),c

��

// P (1, 4)

(B),c

��

// P (3, 4)

��
F(Γ) : P (1, 2) // P (1, 3) // P (2, 4) // P (3, 4)

The labels (e.g., (A), c) above correspond to the cases (e.g., Case (A),
c = c) in the proof of Lemma 6.3.4.2. All the squares are commutative by the
commutativity relation of Rn,e. Therefore, F(β), F(β

′), and F(β′′) are all
chain maps and the sum of their degrees is 1. Moreover, F(Γ)→ F(Γ′)→
F(Γ′′) is a distinguished triangle in Dn,e up to grading shift.

We now check the definition of F(β) in more detail. We have Γl
b =

{3},Γr
b = {2},Γb = {1, 4}, and x = y = z = 1. By definition β is of shuffling

type (Y) since Γb(1) < Γb(1).

1) For P (1, 2), P (2, 4) ∈ F(Γ), the corresponding i ∈ II(β) since Γb(ib) =
3 ∈ Γl

b.

2) For P (1, 3) ∈ F(Γ), the corresponding i ∈ SI(β) since Γb(ib) = 2 ∈
Γr
b, Γb(ib) = 4 = Γb(z) and LSV (β) = ∅. The restriction F(β)|P (1,3) :

P (1, 3)→ P (1, 4) corresponds to dΓ′′(k,u), where Γ′′(k) = Γ(i) and
u = β′′−1(b).
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Figure 22.

3) For P (3, 4) ∈ F(Γ), the corresponding i /∈ II(β) since Γb(ib) = 2 ∈
Γr
b, and i /∈ SI(β) since Γb(ib) = 1 ̸= Γb(z). Hence i /∈ II(β) ⊔ SI(β).

All the three bypasses in Example 6.3.3.1 are of shuffling type (Y). We
consider a bypass of shuffling type (Z) in the next example.

Example 6.3.3.2. Consider the bypass triangle Γ
β
−→ Γ′ β′

−→ Γ′′ β′′

−→ Γ in
Figure 23. By definition,

F(Γ) :

F(β)
��

P (1, 3) //

%%

P (1, 4) //

%%

P (3, 5)

%%

// P (4, 5)

F(Γ′) :

F(β′)
��

P (1, 2)

��

// P (1, 3)

��

// P (2, 5)

��

// P (3, 5)

��
F(Γ′′) :

F(β′′)

��

P (1, 2) //

��

P (1, 4)

��

// P (2, 5)

��

// P (4, 5)

��
F(Γ) : P (1, 3) // P (1, 4) // P (3, 5) // P (4, 5)

The maps F(β),F(β′),F(β′′) are chain maps, the sum of their degrees
is 1, and F(Γ)→ F(Γ′)→ F(Γ′′) is a distinguished triangle in Dn,e up to
grading shift.
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Figure 23.

For the bypass β ∈ Hom(Γ,Γ′), we have Γl
b = {4},Γr

b = {3},Γb = {2},
and x = y = 1, z = 0. Also Γb,Γb ⊂ (1, 5) = (Γw(β)(0),Γw(β)(1)). Hence β
is of shuffling type (Z), where Γw(β) = {1, 5} and k(β) = 1.

1) For P (1, 3), P (3, 5) ∈ F(Γ), the corresponding i ∈ II(β) since Γb(ib) =
4 ∈ Γl

b.

2) For P (1, 4) ∈ F(Γ), the corresponding i ∈ SI(β) since Γb(ib) =
3 ∈ Γr

b, Γb(ib) = 2 = Γb(z), Γw(β)(iw(β)) = 5 = Γw(β)(k(β)), and
LSV (β)\w(β) = ∅. The restriction F(β)|P (1,4) : P (1, 4)→ P (2, 5) cor-
responds to dΓ′′(k,u), where Γ′′(k) = Γ(i) and u = β′′−1(w(β)).

3) For P (4, 5) ∈ F(Γ), the corresponding i /∈ II(β) since Γb(ib) = 3 ∈
Γr
b, and i /∈ SI(β) since Γw(β)(iw(β)) = 1 ̸= Γw(β)(k(β)). Hence i /∈

II(β) ⊔ SI(β).

6.3.4. Proof that F(β) is a chain map.

Proposition 6.3.4.1. If β ∈ Hom(Γ,Γ′) is a nontrivial bypass morphism,
then dΓ′ ◦ F(β) = F(β) ◦ dΓ.

Proof. Observe that β : II(β) ⊔ SI(β)→ OI(Γ′) is injective by Remark
6.3.2.3(iii) and any two paths with the same endpoints in Qn,e give the
same element of Rn,e. Hence the proposition is a consequence of the follow-
ing lemma. □

Lemma 6.3.4.2. Let i ∈ OI(Γ).
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1) If i is c-admissible for c ∈ π0(R−(Γ)), c|i ∈ II(β) ⊔ SI(β), and the
path Γ(i)→ Γ(c|i)→ Γ′(β(c|i)) is nonzero, then i ∈ II(β) ⊔ SI(β) and
there exists a unique c′ ∈ π0(R−(Γ

′)) such that β(i) is c′-admissible and
c
′|β(i) = β(c|i).

2) If i ∈ II(β) ⊔ SI(β), there exists c
′ ∈ π0(R−(Γ

′)) such that β(i) is c
′-

admissible, and the path Γ(i)→ Γ′(β(i))→ Γ′(c′|β(i)) is nonzero, then
there exists c ∈ π0(R−(Γ)) such that i is c-admissible, c|i ∈ II(β) ⊔
SI(β), and β(c|i) = c

′|β(i).

Proof. (1) We assume that b,b ̸= ∗. The proofs of other cases are similar.
The main idea is to track the movements of the omitting labels under F(β)
and the differentials. Note that the uniqueness of c

′ ∈ π0(R−(Γ
′)) follows

immediately from the existence by Remark 6.2.12(i).
Let c(β) be the component of R−(β) that lies between b(β) and b(β)

and let c(β) be the component of R−(Γ) that lies directly below b(β). If we

omit β, it is understood that c = c(β), etc. Let Γ
β
−→ Γ′ β′

−→ Γ′′ be the bypass
triangle starting with β.

Suppose c satisfies the assumptions of (1).

Case (A). Suppose that ib ∈ [[x, y]], i.e., the label is on the left-hand side
of b. Then i ∈ II(β) and Γ′(β(i)) = Γ(i).

If c ̸= c, c, then (c|i)b ∈ [[x, y]] and c|i ∈ II(β). We can take c′ = c, viewed
as an element of π0(R−(Γ

′)), and it is immediate that c
′|β(i) = β(c|i). See

Figure 24 for two possible locations for c.
If c = c and i is c-admissible, then ib = x and (c|i)b ̸∈ [[x, y]]. Since we

are assuming that c|i ∈ SI(β), (N1)–(N3) from Section 4.2 must hold. If we
take c

′ = c(β′) (this is c with respect to β′), then β(i) is c
′-admissible and

c
′|β(i) = β(c|i).

If c = c, then i is not c-admissible.

Case (B). Suppose that ib /∈ [[x, y]]. Then i ∈ SI(β).
If c = c, then i is not c-admissible.
If c = c and i is c-admissible, then ib = z and (c|i)b = y ∈ [[x, y]]. Hence

c|i ∈ II(β). If we take c
′ = c(β′), then β(i) is c

′-admissible and c
′|β(i) =

β(c|i); see Figure 25. In this case, we say that c = c lies below and shares a
common boundary with b. This convention on the relative positions of the
different regions (i.e., the positioning as in Figure 25) will be used for the
rest of the proof.

If c ̸= c, c, then (c|i)b ̸∈ [[x, y]] and c|i ∈ SI(β). Suppose c lies above and
shares a common boundary with b, or c is to the left of c and shares a
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+

-

+

-

+

-

+

-

Γ(i) Γ(c|i)

Γ′(β(i)) Γ′(c′|β(i))

ib

β(i)
β(b)

(c|i)bb

c

β(b)

c
′

β β β β

Γ(i) Γ(c|i)

Γ′(β(i)) Γ′(c′|β(i))

i
b (c|i)

b

b

β(b)

β(i)
β(b)

c

c
′

Figure 24: c is to the left of b in the left-hand figure and is above b in the
right-hand figure.

common boundary with some w ∈ LSV (β). Since i is c-admissible, we have
i ̸∈ SI(β) by (N1)–(N3), a contradiction; on the other hand, by Corollary 5.3,
Γ(i)→ Γ(c|i)→ Γ′(β(c|i)) is zero, which is consistent. If c is to the left of
and shares a common boundary with b, then i is not c-admissible since
ib /∈ [[x, y]]. In the remaining cases of i-admissible c ̸= c, c, we can take c′ = c,
viewed as an element of π0(R−(Γ

′)), and it is immediate that c′|β(i) = β(c|i).

+

-

+

-

.

.

Γ(i) Γ(c|i)

Γ′(β(i)) Γ′(c′|β(i))

i
b
=z (c|i)

b

c=c

ib (c|i)b=y

β(i)β(b) β(i)β(b)

c
′

(c′|β(i))β(b)

(c′|β(i))
β(b)

Figure 25.
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(2) The proof is similar to that of (1) and is left to the reader. □

Remark 6.3.4.3. Observe that we set c
′ = c except in Case (A) when

c = c and Case (B) when c = c; see the labels of the commuting squares in
Example 6.3.3.1 for example.

We now complete the definition of F : Cn,e → Dn,e. If Γ
ξ
→ Γ′ is a zero

morphism, then F(ξ) is defined to be the zero morphism; in particular this
is the case when Γ or Γ′ is the zero object and F(Γ) or F(Γ′) = 0. Any
nonzero morphism ξ in Cn,e can be written as a composition βk ◦ · · · ◦ β1 of
nontrivial bypass morphisms and we define F(ξ) as the composition F(βk) ◦
· · · ◦ F(β1). If ξ is an identity morphism (i.e., induced by a trivial bypass),
then we set F(ξ) = id. In Section 6.4 we will show that F is well-defined.

6.4. Well-definition of the composition

In order to prove that F : Cn,e → Dn,e is well-defined it suffices to show the
following:

1) F(ξ) is independent of the choice of decomposition of any nonzero
morphism ξ into a sequence of nontrivial bypass morphisms.

2) If the composition of a sequence β1, . . . , βk of nontrivial bypasses is a
zero morphism, then the composition F(βk) ◦ · · · ◦ F(β1) = 0 in Dn,e.

By Theorem 2.2.8.1, (1) can be reduced to the case where ξ is a compo-
sition of two disjoint bypasses. Here the bypasses may be trivial.

By Lemma 3.2.3, (2) can be reduced to the case where the composi-
tion is β′ ◦ β for two consecutive (nonzero, non-identity) bypasses β, β′ in
any bypass triangle: Let β′ = βk and ξ = βk−1 ◦ · · · ◦ β1. If ξ is a zero mor-
phism, then we can replace β1, . . . , βk by β1, . . . , βk−1. If ξ is nonzero, then
Lemma 3.2.3 implies that ξ can be factored into β ◦ ζ, where β, β′ are two
consecutive bypasses of a bypass triangle.

6.4.1. Composition in bypass triangles. We fix the notation Γ
β
−→

Γ′ β′

−→ Γ′′ β′′

−→ Γ for a bypass triangle throughout this section. We also use
the notation b(β) and c(β) to mean b and c for β.

In Examples 6.3.3.1 and 6.3.3.2, each projective Rn,e-module in F(Γ)
appears either in F(Γ′) or in F(Γ′′). This observation can be generalized as
follows.

Lemma 6.4.1.1. For any i ∈ OI(Γ), one of the following holds:



✐

✐

“3-Tian” — 2023/2/28 — 23:12 — page 724 — #60
✐

✐

✐

✐

✐

✐

724 K. Honda and Y. Tian

1) if i ∈ II(β), then j := β(i) is not in II(β′) and satisfies Γ′(j) = Γ(i);

2) if i /∈ II(β), then there exists a unique k ∈ II(β′′) such that Γ′′(k) =
Γ(i).

Proof. First observe that Γb(β) = Γ′r
b(β′) = Γ′′l

b(β′′).

If i ∈ II(β), then j := β(i) satisfies Γ′(j) = Γ(i) by definition of II(β). If
b(β) ̸= ∗, then

Γ′
b(β′)(jb(β′)) = Γb(β)(ib(β)) ∈ Γb(β) = Γ′r

b(β′),

and, if b(β) = ∗, then 0 ∈ Γ′r
b(β′). In both cases j /∈ II(β′).

If i /∈ II(β), then each label which is omitted in Γ(i)∗ appears exactly
once in Γ′′

w for somew ̸= ∗. Hence there exists k ∈ OI(Γ′′) such that Γ′′(k) =
Γ(i). If b(β) ̸= ∗, then

Γ′′
b(β′′)(k b(β′′)) = Γb(β)(ib(β)) ∈ Γb(β) = Γ′′l

b(β′′),

and, if b(β) = ∗, then 0 ∈ Γ′′l
b(β′′). In both cases k ∈ II(β′′). □

In view of Lemma 6.4.1.1(2), there exists a map

γ(β′′) : OI(Γ)\II(β)→ II(β′′) ⊂ OI(Γ′′)

such that Γ′′(γ(β′′)(i)) = Γ(i) for i /∈ II(β). Then define the map

(6.4.1.2) F(γ(β′′)) : F(Γ)→ F(Γ′′)

of Rn,e-modules as the direct sum of identity morphisms

P (Γ(i))→ P (Γ′′(γ(β′′)(i))) for i /∈ II(β).

The following lemma implies that

F(β′) ◦ F(β) = 0 ∈ HomDn,e
(F(Γ),F(Γ′′)),

i.e., in the (ungraded) homotopy category.

Lemma 6.4.1.3. dF(γ(β′′)) = F(β′) ◦ F(β) as Rn,e-module maps from F(Γ)
to F(Γ′′).
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Proof. We write γ for γ(β′′) during the proof. By definition dF(γ) = dΓ′′ ◦
F(γ) + F(γ) ◦ dΓ. We assume that b(β),b(β) ̸= ∗; the proofs of the other
cases are easier.

We will show that

(6.4.1.4) (F(β′) ◦ F(β) + dΓ′′ ◦ F(γ) + F(γ) ◦ dΓ)|P (Γ(i)) = 0

for any i ∈ OI(Γ).

Case A. Suppose i ∈ II(β), i.e., ib ∈ [[x(β), y(β)]]. Then F(γ)|P (Γ(i)) = 0
and Equation (6.4.1.4) becomes (F(β′) ◦ F(β) + F(γ) ◦ dΓ)|P (Γ(i)) = 0. Also
β(i) /∈ II(β′) by Lemma 6.4.1.1(1).

We first consider F(β′) ◦ F(β)|P (Γ(i)). If F(β
′) ◦ F(β)|P (Γ(i)) ̸= 0, then

β(i) ∈ SI(β′) since β(i) /∈ II(β′). This forces ib(β) = x(β) and i to be c(β)-
admissible, and we have Γ′′(β′(β(i))) = Γ(c(β)|i). Note that, by Remark
6.3.1.4(1), c(β) cannot share a common boundary with ∗.

Recall that dΓ =
∑

c
dc, where the summation is over π0(R−(Γ)). Hence

F(γ) ◦ dΓ|P (Γ(i)) is the sum of F(γ) ◦ dc|P (Γ(i)), where i is c-admissible. If
c ̸= c(β), c(β), then c|i ∈ II(β) and F(γ) ◦ dc|P (Γ(i)) = 0. If c = c(β), then
i is not c-admissible. If c = c(β), then the c-admissibility of i implies that
ib(β) = x(β) and Γ′′(β′(β(i))) = Γ(c|i). See Figure 26.

+

-

+

-

+

-

+

-
+

-

+

-

+

-

+

-

+ +

β
β

DNV (b(β),ib(β)) LSV (β′)

x(β) z(β′)

b(β)

v i0 w(β′) k(β′)

Figure 26: Two subcases of c = c(β): b(β) = v on the left and b(β) ∈
DNV (v, i0) on the right.

Case B. Suppose i /∈ II(β), i.e., ib ̸∈ [[x(β), y(β)]].
We first consider F(β′) ◦ F(β)|P (Γ(i)). Note that F(β

′) ◦ F(β)|P (Γ(i)) ̸= 0
if and only if i ∈ SI(β), since β(i) ∈ II(β′) is automatic.

Next let c ∈ π0(R−(Γ)). If c ̸= c(β), c(β), then there exists c′′ = c, viewed
as an element of π0(R−(Γ

′′)), such that dc′′ ◦ F(γ)|P (Γ(i)) = F(γ) ◦ dc|P (Γ(i)).
(This takes care of all c′′ ̸= c(β′′), c(β′′).) If c = c(β) and i is not c-admissible,
then F(γ) ◦ dc|P (Γ(i)) = 0. If c = c(β) and i is c-admissible, then c|i ∈ II(β)
and F(γ) ◦ dc|P (Γ(i)) = 0. If c = c(β), then i is not c-admissible and F(γ) ◦
dc|P (Γ(i)) = 0. If c

′′ = c(β′′), then γ(β′′)(i) is not c
′′-admissible and dc′′ ◦
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F(γ)|P (Γ(i)) = 0. Finally, if c′′ = c(β′′), then dc′′ ◦ F(γ)|P (Γ(i)) ̸= 0 if and only
if i ∈ SI(β). Moreover, when this happens,

β(i) ∈ II(β′) and dc′′ ◦ F(γ)|P (Γ(i)) = F(β
′) ◦ F(β)|P (Γ(i)). □

Lemma 6.4.1.3 will be the key to proving that F is exact, i.e., maps
bypass triangles to distinguished triangles; see Proposition 7.3.1.

6.4.2. Disjoint pairs. For s = 0, 1, let βs ∈ Hom(Γ,Γs) be a pair of by-
pass morphisms whose arcs of attachment are disjoint. Let Γ̃ be the resulting
dividing set after attaching both bypasses to Γ. We assume that the compo-
sition of the two bypass morphisms is nonzero; in particular we are assuming
that Γ̃ does not contain contractible components. Let β̃s ∈ Hom(Γ1−s, Γ̃),
s = 0, 1, be bypass morphisms such that β̃1 ◦ β0 = β̃0 ◦ β1 ∈ Hom(Γ, Γ̃).

The goal of this subsection is to prove:

Lemma 6.4.2.1. Given a pair of disjoint bypasses βs, s = 0, 1, on Γ, and
Γ̃, β̃s, s = 0, 1, as above, we have

F(β̃1) ◦ F(β0) = F(β̃0) ◦ F(β1) ∈ HomDn,e
(F(Γ),F(Γ̃)).

Since the reduction to disjoint pairs of bypasses at the beginning of
Section 6.4 allows for any of βs, β̃s to be trivial, we first consider the situation
where at least one of βs, β̃s is trivial. We can enumerate all the possible
relative positions of β0 and β1, assuming β0 is a fixed trivial bypass. The
enumeration is left to the reader, but we almost always have β0 and β̃0

trivial and β1 = β̃1. The only (nontrivial, nonzero) exception is given in
Figure 27, which is equivalent to a bypass rotation relation (R′

2) right below
Theorem 2.2.8.1.

β1

β0

Figure 27.

Next we enumerate all the cases where all of βs, β̃s are nontrivial and
nonzero. For any nontrivial morphism β, F(β) is determined by the maps
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β : II(β) ⊔ SI(β)→ OI(Γ). Let

BV (β) = {b(β),b(β)} ∪ LSV (β).

Then β(i)β(v) = iv for v /∈ BV (β) by Remark 6.3.2.3(ii). Our proof is based
on a case-by-case analysis of the relative positions of BV (β0) and BV (β1).
The following cases cover all the possibilities, after possibly switching β0

and β1:

1) BV (β0) ∩BV (β1) = ∅;

2) b(β0) = b(β1);

3) b(β0) = b(β1);

4) b(β0) = b(β1);

5) LSV (β0) ∩BV (β1) ̸= ∅.

See Figure 28 for a full list of Cases (2)-(5). Each red arc is assumed to be a
distinct arc of the dividing set, except for Case (4) where it is only required
that the two positive regions belong to the same component. The list for
Case (5) does not include cases that were already listed (e.g., Case (2-1)).
Note that the various cases may have overlaps.
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Figure 28: Black arcs with labels s = 0, 1 are the arcs where bypasses βs are
attached.
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Before we discuss the general case, we look at an example in Case (2-
1) where F(β̃1) ◦ F(β0) ̸= F(β̃0) ◦ F(β1) as Rn,e-linear maps from F(Γ) to
F(Γ̃). This illustrates the necessity of working in the homotopy category
Dn,e.

Example 6.4.2.2. Consider the bypasses in Figure 29, where b(β0) =
b(β1).
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-

-

-
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-
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-

- -

-

-

-

--

-

-β0 β̃1

β1 β̃0

Γ

Γ0

Γ1

Γ̃

Figure 29: A pair of disjoint bypasses in Case (2-1).

By definition, the two compositions are:

F(Γ) :

F(β0)
��

P (1, 3) // P (1, 4)

��

// P (3, 5)

��

// P (4, 5)

��
F(Γ0) :

F(β̃1)
��

P (3, 4) //

''

P (3, 5) //

''

P (4, 5)

F(Γ̃) : P (2, 4) // (P (3, 4)⊕ P (2, 5)) // P (3, 5)

F(Γ) :

F(β1)
��

P (1, 3) //

$$

P (1, 4)

((

// P (3, 5)

((

// P (4, 5)

F(Γ1) :

F(β̃0)
��

P (1, 2) // P (1, 3)

��

// P (2, 5)

��

// P (3, 5)

��
F(Γ̃) : P (2, 4) // (P (3, 4)⊕ P (2, 5)) // P (3, 5)
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For P (3, 5), the corresponding index i is in II(β0) ∩ II(β1). Hence both
compositions are identity morphisms when restricted to P (3, 5).

Let F(h) be the following map:

F(Γ) :

F(h)
��

P (1, 3) // P (1, 4)

��

// P (3, 5) // P (4, 5)

F(Γ̃) : P (2, 4) // (P (3, 4)⊕ P (2, 5)) // P (3, 5)

We can easily verify that F(β̃1) ◦ F(β0) + F(β̃0) ◦ F(β1) = dF(h) as maps.
Hence F(β̃1) ◦ F(β0) = F(β̃0) ◦ F(β1) ∈ HomDn,e

(F(Γ),F(Γ̃)).

Proof of Lemma 6.4.2.1. The following claims imply Lemma 6.4.2.1:

Claim A. With the exception of Cases (2-1), (2-2), and (5-4), in Cases
(1)–(5),

F(β̃1) ◦ F(β0) = F(β̃0) ◦ F(β1)

as maps from F(Γ) to F(Γ̃).

Claim B. In Cases (2-1), (2-2), and (5-4), there exists F(h) : F(Γ)→
F(Γ̃) such that

(F(β̃1) ◦ F(β0) + F(β̃0) ◦ F(β1) + dF(h))|P (Γ(i)) = 0,(H)

for any i ∈ OI(Γ).

Claim C. Referring to Figure 3, if β0 and β1 are bypass morphisms cor-
responding to δ0 and δ1, then

F(β̃1) ◦ F(β0) = F(β1).

We only prove Claim A for Case (1) and Claim B for Case (2-2). The
proofs of the other cases are similar and are left to the reader.

Case (1). Since BV (β0) ∩BV (β1) = ∅, the maps F(β0) and F(β1) do not
affect each other. More precisely, for i ∈ XI(β0) ∩ Y I(β1) where XI, Y I ∈
{II, SI}, we have β0(i) ∈ Y I(β̃1), β1(i) ∈ XI(β̃0), and β̃1(β0(i)) = β̃0(β1(i)).
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For i /∈ (II(β0) ⊔ SI(β0)) ∩ (II(β1) ⊔ SI(β1)),

F(β̃1) ◦ F(β0)|P (Γ(i)) = F(β̃
0) ◦ F(β1)|P (Γ(i)) = 0.

Case (2-2). Suppose that b(βs) = b(β1−s). Assume that b,b ̸= ∗ for sim-
plicity. Let bs, bs, cs, cs denote b, b, c, c for βs, where s = 0, 1. In this case
c
0 = c

1. We say i ∈ OI(Γ) is of type (a0, a1) for as ∈ {l, r} if Γbs(ibs) ∈ Γas

bs ;
see Figure 30.

For i of type (r, r), there exists j ∈ OI(Γ̃) such that Γ̃(j) = Γ(i). We
denote j by h(i) for i of type (r, r). Define F(h) : F(Γ)→ F(Γ̃) as the sum
of identity morphisms P (Γ(i))→ P (Γ̃(h(i))) for i of type (r, r).
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β̃1(β0(b1))

Figure 30: The letters ls, rs on Γ indicate types of i ∈ OI(Γ); ls, r1−s on Γs

indicate βs(i) for i ∈ II(βs); r0, r1 on Γ̃ indicate h(i) for i of type (r, r).

Case (2-2-A). Suppose i is of type (l, l). Then i ∈ II(β0) ∩ II(β1) and
βs(i) ∈ II(β̃1−s) and β̃1(β0(i)) = β̃0(β1(i)). Hence (F(β̃1) ◦ F(β0) + F(β̃0) ◦
F(β1))|P (Γ(i)) = 0 by the commutativity.

We have F(h)|P (Γ(i))=0 by the definition of F(h); hence dΓ̃◦F(h)|P (Γ(i))

= 0.
It remains to show that F(h) ◦ dΓ|P (Γ(i)) = 0. This follows from observ-

ing that there is no c ∈ π0(R−(Γ)) such that i is c-admissible and c|i is of

type (r, r): This is clear if c ̸= c
0, c0, c1 since the labels in b0 and b

0
are not

moved. If c = c
0 = c

1, then i is not c-admissible. If c = c
0, then the label of

b
0
is not moved, and if c = c

1, then the label of b0 is not moved.
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Summing all the above terms gives (H) for i of type (l, l).

Case (2-2-B). Suppose i is of type (l, r). Then i ∈ II(β0), i /∈ II(β1) and
β0(i) /∈ II(β̃1). Since Γb0(ib0) ∈ Γl

b0 , we have i /∈ SI(β1) and F(β1)|P (Γ(i)) =
0.

We have F(h)|P (Γ(i))=0 by the definition of F(h); hence dΓ̃◦F(h)|P (Γ(i))

= 0.
Let c ∈ π0(R−(Γ)). If c ̸= c

0, c0, c1, then c|i cannot be of type (r, r) even
if it exists. If c = c

0 = c
1 or c

1, then i is not c-admissible. Hence F(h) ◦
dc|P (Γ(i)) = 0 for c ̸= c

0.
Finally, if c = c

0, then i is c-admissible if and only if c|i is of type (r, r).
This holds precisely when β0(i) ∈ SI(β̃1). Hence (F(β̃1) ◦ F(β0) + F(h) ◦
dc0)|P (Γ(i)) = 0.

Summing all the above terms gives (H) for i of type (l, r).

Case (2-2-C). Suppose i is of type (r, l). The proof is the same as that of
type (l, r), with l and r reversed.

Case (2-2-D). Suppose i is of type (r, r). Then i /∈ II(β0) ∪ II(β1).

Let c ∈ π0(R−(Γ)). If c ̸= c
0, c0, c1, then the labels in b0 and b

0
are not

moved and there exists c
′ = c, viewed as an element of π0(R−(Γ̃)), such

that F(h) ◦ dc + dc′ ◦ F(h) = 0 on P (Γ(i)). If c = c
0 or c

1, then i is not
c-admissible. If c = c

0 and i is c-admissible, then c|i is of type (l, l) and
F(h) ◦ dc = 0 on P (Γ(i)).

There are three components c
′ of π0(R−(Γ̃)) that are not of the form

c
′ = c; they will be denoted by c

′
1, c

′
2, c

′
3, in order from left to right in the

right-hand diagram of Figure 30. h(i) is not c′2-admissible. One easily checks
that

(dc′1 ◦ F(h) + F(β̃
1) ◦ F(β0))|P (Γ(i)) = 0,

(dc′3 ◦ F(h) + F(β̃
0) ◦ F(β1))|P (Γ(i)) = 0.

Summing all the above terms gives (H) for i of type (r, r). □

The well-definition of the functor F : Cn,e → Dn,e follows from Lemmas
6.4.1.3 and 6.4.2.1.

7. The functors F̃n,e

In this section we extend F : Cn,e → Dn,e to F̃ : C̃n,e → D̃n,e by relating the
homotopy gradings on both sides.
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7.1. Degree of F(β)

Let β ∈ Hom(Γ,Γ′) be a nontrivial, nonzero bypass. If h(i)− h(β(i)) is the
same for all i ∈ II(β) ⊔ SI(β), then we say that F(β) is homogeneous and
define the degree of F(β) to be deg(F(β)) = h(i)− h(β(i)) for any i. The
goal of this subsection is to show that F(β) is homogeneous and to compute
deg(F(β)).

The arc of attachment of a nontrivial bypass 0 ̸= β ∈ Hom(Γ,Γ′), to-
gether with the three components of Γ that it intersects, cuts the disk D2

into 6 components. The components are labeled Pi(β), i = 1, . . . , 6, where
P1(β) is the bottom component and i increases as we go clockwise around
∂D2; see the top left diagram of Figure 31. Pi(β

′) and Pi(β
′′) are defined

analogously; see the top right and bottom diagrams of Figure 31. Pi(β) will
be abbreviated as Pi if β is understood. We write 0 ∈ Pi if the boundary arc
with label 0 is contained in Pi.
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Figure 31.

For convenience we will write

(7.1.1) lΓ(A) =
∑

Γv⊂A

lΓv
,

where A is a subset of R.

Lemma 7.1.2.
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1) If β ∈ Hom(Γ,Γ′) is a nontrivial bypass, then F(β) is homogeneous
and

(7.1.3) deg(F(β)) =





0 if 0 ∈ P1, P2;
|Γr

b|+ lΓ((Γb(0),Γb(x))) if 0 ∈ P3, P4;

1− |Γl
b| − lΓ((Γb(x),Γb(z))) if 0 ∈ P5, P6.

2) The sum of degrees of the three bypasses in a bypass triangle is 1.

Proof. (1) Suppose 0 ∈ P1. The other cases are similar and are left to the
reader.

If i ∈ II(β), then β(i)β(v) = iv for any v ∈ V +(Γ). Moreover, the nesting
degree is unchanged: cβ(v)(β(i)β(v)) = cv(iv) for any v since 0 ∈ P1. Hence
h(β(i)) = h(i) and deg(F(β)) = 0.

If i ∈ SI(β), then the bypass is of shuffling type (Y); see Figure 32. Note
that

h(β(i))− h(i) = (h(β(i), β(b))− h(i,b)) + (h(β(i), β(b))− h(i,b))

(7.1.4)

+
∑

w∈LSV (β)

(h(β(i), β(w))− h(i,w)) ,

since the only regions that are modified are b, b, and w ∈ LSV (β). We have
x = z = 0, y = |Γl

b| − 1, and

(a) β(i)β(b) − ib = lΓ
b
− |Γl

b|+ 1;

(b) ib = 0 and β(i)β(b) = |Γ
l
b| − 1;

(c) iw = 0 and β(i)β(w) = lΓw
for w ∈ LSV (β).

Using (a)–(c) we compute each of the three terms on the right-hand side of
Equation (7.1.4):

h(β(i), β(b))− h(i,b) = (β(i)β(b) − ib) + lΓ((Γb(0),Γb(ib)))

− lΓ((Γb(0),Γb(ib)))

= (lΓ
b
− |Γl

b|+ 1)− (lΓ((Γb(0),Γb(0))) + lΓ
b
)

= 1− |Γl
b| − lΓ((Γb(0),Γb(0))),

h(β(i), β(b))− h(i,b) = |Γl
b| − 1 + lΓ((Γb(0),Γb(y))),

∑

w∈LSV (β)

(h(β(i), β(w))− h(i,w)) = lΓ((Γb(y),Γb(0))).
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Summing the three terms gives:

h(β(i))− h(i) = lΓ((Γb(0),Γb(y))) + lΓ((Γb(y),Γb(0)))

− lΓ((Γb(0),Γb(0)))

= 0.

+

-

+

-0

β

ib

iw

x

y

ib = z

β(i)β(b)

β(i)β(b)

β(i)β(w)

Figure 32: A shuffling index i ∈ SI(β), where 0 ∈ P1.

(2) For a bypass triangle Γ
β
−→ Γ′ β′

−→ Γ′′ β′′

−→ Γ, Pi(β) = Pi+2(β
′) = Pi+4(β

′′)
where the subscripts are viewed mod 6. Since any triangle is invariant under
rotation, we may assume that 0 ∈ P1(β) or P2(β). By Equation (7.1.3), we
may further assume that 0 ∈ P1(β). Then 0 ∈ P3(β

′) = P5(β
′′). Note that

the terms b,b, x, y, z that appear in Equation (7.1.3) are those for β. We
can verify that:

Γr
b(β′) = Γl

b(β′′), Γb(β′)(0) = Γb(β′′)(x(β
′′)), Γb(β′)(x(β

′)) = Γb(β′′)(z(β
′′));

lΓ′((Γb(β′)(0),Γb(β′)(x(β
′)))) = lΓ′′((Γb(β′′)(x(β

′′)),Γb(β′′)(z(β
′′)))).

Hence deg(F(β)) + deg(F(β′)) + deg(F(β′′)) = 1 by Equation (7.1.3). □

7.2. Definition of F̃

Each indecomposable object of C̃n,e is a pair (Γ, [ξ]) consisting of a dividing
set Γ in Cn,e and a homotopy grading. From now on the source Γ0 ∈ Bn,e of

the quiver Qn,e, i.e., Γ
0
∗ = {0, 1, . . . , e}, will be the basepoint of C̃n,e.

7.2.1. Definition of [ξ(Γ)]. We first choose a “canonical” homotopy
grading [ξ(Γ)] for each Γ ∈ Cn,e. It is defined by induction on m(Γ) = e+
1− |Γ∗|. Note that m(Γ) = 0 if and only if Γ ∈ Bn,e is basic.
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For any Γb ∈ Bn,e, choose a path from Γ0 to Γb in Qn,e and let ξb de-
note the composition of bypasses corresponding to the path. The homotopy
grading [ξb] is independent of the choice of path and we define [ξ(Γb)] = [ξb].
(Note that ξb may not be a tight contact structure.)

Next suppose that m(Γ) > 0. Recall β(Γ) from Definition 6.1.2 for any
non-basic Γ. There is a bypass triangle

(7.2.1.1) Γ
β(Γ)
−−−→ Γ′ → Γ′′ β(Γ)

−−−→ Γ.

By the construction of β(Γ), we have m(Γ′),m(Γ′′) < m(Γ). Let β(Γ) denote
the bypass from Γ′′ to Γ. We then define [ξ(Γ)] = [β(Γ) ◦ ξ(Γ′′)].

7.2.2. Definition of F̃ . We define F̃ : C̃n,e → D̃n,e as follows: We set

F̃(Γ, [ξ(Γ)]) = F(Γ) and extend F̃ to any object so that it commutes with
the shift functors on both sides, i.e., F̃((Γ, [ξ])[i]) = F̃(Γ, [ξ])[i]. Here
(Γ, [ξ])[i] = T i(Γ, [ξ]), where T is the shift functor on C̃n,e. Next, suppose
β ∈ Hom(Γ̃,Γ) is nonzero, where β is not necessarily a bypass. Let c(β) be
the integer encoding minus the Hopf invariant and satisfying

(7.2.2.1) [β ◦ ξ(Γ̃)] = [ξ(Γ)][c(β)],

where [c(β)] refers to shifting by c(β). Then we define

F̃((Γ̃, [ξ(Γ̃)])
β
→ (Γ, [β ◦ ξ(Γ̃)])) = (F(Γ̃)

F(β)[c(β)]

−−−−−−−→ F(Γ)[c(β)]),

where F(β)[c(β)] is F(β) postcomposed with the shift [c(β)].

7.2.3. Well-definition. In this subsection we will abuse notation and not
distinguish between β ∈ Hom(Γ̃,Γ) and β ∈ HomC̃n,e

((Γ̃, [ξ]), (Γ, [β ◦ ξ])).

Proposition 7.2.3.1. The functor F̃ is well-defined, i.e., deg(F̃(β)) = 0
for any nonzero β ∈ Hom(Γ̃,Γ).

Proof. It suffices to prove that

[β ◦ ξ(Γ̃)] = [ξ(Γ)][deg(F(β))](7.2.3.2)

for a nontrivial bypass β. Comparing with Equation (7.2.2.1), c(β) =
deg(F(β)) and deg(F̃(β)) = deg(F(β))− c(β) = 0.

We first prove Equation (7.2.3.2) for β = β(Γ) ∈ Hom(Γ̃,Γ). By Defi-
nition 6.1.2, 0 ∈ Γl

b, where b = b(β). Hence 0 ∈ P2(β), which implies that
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deg(F(β)) = 0 by Lemma 7.1.2(1). Equation (7.2.3.2) is immediate from the
definition of [ξ(Γ)] as [ξ(Γ)] = [β(Γ) ◦ ξ(Γ̃)] = [β ◦ ξ(Γ̃)].

For a general nontrivial bypass β, we use β(Γ) and β(Γ̃), defined as in
Equation (7.2.1.1), to simplify β.

Case 1. 0 ∈ P1(β) ∪ P2(β). Equation (7.2.3.2) will be proved by induction
on

κ(β) := dimb(β) + lΓ̃((0, Γ̃b(β)(0))).

If κ(β) ≥ 1, then there exists a commutative diagram:

(7.2.3.3) Γ̃
β // Γ

Γ̃′′ β′′

//

β(Γ̃)

OO

Γ′′

β(Γ)

OO

where κ(β′′) < κ(β) and 0 ∈ P1(β
′′) ∪ P2(β

′′). (In some cases, e.g., Figure 33,
there may be degeneracies.) Since we have already shown that Equation
(7.2.3.2) holds for β(Γ) and β(Γ̃), it suffices to prove Equation (7.2.3.2) for
β′′. We then reduce to the case where κ(β) = 0, i.e., lΓ̃((0, Γ̃b(β)(0))) = 0,

dimb(β) = 0, and 0 ∈ Γ̃l
b(β).

0

0 0
- -

-

β

β(Γ̃)

β′′

Γ̃′′

Γ̃ Γ

Figure 33: The case 0 ∈ P1(β) and dimb(β) = 1.

Let Γ̃
β
→ Γ be a bypass satisfying κ(β) = 0. If lΓ̃

b(β)
= 0, then β = β(Γ)

and Equation (7.2.3.2) holds. If lΓ̃
b(β)

> 0, then we apply the same commuta-

tive diagram (7.2.3.3) with β′′ trivial to iteratively reduce to the case where
β = β(Γ).
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Case 2. 0 ∈ P5(β) ∪ P6(β). Then deg(F(β)) ≤ 0 by Lemma 7.1.2(1). We
use bypass triangles to reduce to the case where deg(F(β)) = 0.

Suppose that deg(F(β)) < 0 for β ∈ Hom(Γ̃,Γ). Then by Lemma 7.1.2
there exists a nontrivial bypass α ∈ Hom(Γ,Γ′) such that b(α) = β(b(β))
and Γb(α) ⊂ [Γ̃b(β)(x), Γ̃b(β)(z)]; see Figure 34 for an example. There exists

a nontrivial bypass α̃ ∈ Hom(Γ̃, Γ̃′) whose arc of attachment is disjoint from
that of β; attaching the bypasses in different orders, we obtain a bypass
β′ ∈ Hom(Γ̃′,Γ′) such that β′ ◦ α̃ = α ◦ β ∈ Hom(Γ̃,Γ′). Note that β′ is a

trivial bypass if b(α) = β(b(β)). We also use the bypass triangle Γ
α
−→ Γ′ α′

−→

Γ′′ α′′

−→ Γ.

+

+
0

+

+

+

+

0

0 000

0

- - - -

--

Γ̃ Γ̃′

α̃

Γ′′ Γ Γ′ Γ′′

β β′

α α′α′′

Figure 34: The case 0 ∈ P5(β) and deg(F(β)) < 0.

By the definition of α, we have 0 ∈ P4(α), which implies that 0 ∈ P2(α
′′)

and 0 ∈ P6(α
′). Note that 0 ∈ P5(α̃) ∪ P6(α̃) and 0 ∈ P5(β

′) ∪ P6(β
′). By

Lemma 7.1.2(1),(2),

deg(F(β)) = deg(F(α̃)) + deg(F(β′))− deg(F(α))

= deg(F(α̃)) + deg(F(β′)) + deg(F(α′)) + deg(F(α′′))− 1

= deg(F(α̃)) + deg(F(β′)) + deg(F(α′))− 1.

Suppose by induction Equation (7.2.3.2) holds for any β̃ such that
deg(F(β̃)) > deg(F(β)) and 0 ∈ P5(β̃) ∪ P6(β̃). In particular, it holds for
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β̃ ∈ {α̃, β′, α′}. Then

[α ◦ β ◦ ξ(Γ̃)] = [β′ ◦ α̃ ◦ ξ(Γ̃)] = [ξ(Γ′)][deg(F(β′)) + deg(F(α̃))]

= [ξ(Γ′)][deg(F(α)) + deg(F(β))].

By composing with α′′ ◦ α′, we obtain

[β ◦ ξ(Γ̃)][1] = [α′′ ◦ α′ ◦ α ◦ β ◦ ξ(Γ̃)]

= [α′′ ◦ α′ ◦ ξ(Γ′)][deg(F(α)) + deg(F(β))]

= [ξ(Γ′)][deg(F(α′′)) + deg(F(α′)) + deg(F(α)) + deg(F(β))]

= [ξ(Γ′)][1 + deg(F(β))],

where the third line uses Equation (7.2.3.2) for α′′ and α′. Equation (7.2.3.2)
holds for α′′, since 0 ∈ P2(α

′′) was treated in Case 1, and for α′ by the
inductive hypothesis. This proves Equation (7.2.3.2) for β.

By induction on deg(F(β)), we reduce to the case where deg(F(β)) =
0. Then, by the procedure used in Case 1, we reduce to the case where
lΓ̃((0, Γ̃b(β)(0))) = 0 and dimb(β) = 0. A further reduction (details left to

the reader) gets us to the case where β ∈ Hom(Γ̃,Γ) and Γ̃,Γ are basic
dividing sets. Hence Equation (7.2.3.2) holds since [ξ(Γ)] = [β ◦ ξ(Γ̃)] by
definition.

Case 3. 0 ∈ P3(β) ∪ P4(β). We have a bypass triangle Γ̃
β
−→ Γ

β′

−→ Γ′ β′′

−→ Γ̃
such that 0 ∈ P5(β

′) ∪ P6(β
′) and 0 ∈ P1(β

′′) ∪ P2(β
′′). Equation (7.2.3.2)

follows from Lemma 7.1.2(2) and Cases 1 and 2. □

7.3. Bypass triangles

In this subsection we show that F̃ takes bypass triangles in C̃n,e to distin-

guished triangles in D̃n,e.

Proposition 7.3.1. Let (Γ, [ξ])
β
−→ (Γ′, [β ◦ ξ])

β′

−→ (Γ′′, [β′ ◦ β ◦ ξ])
β′′

−→
(Γ, [ξ][1]) be a bypass triangle in C̃n,e. Then its image under F̃ is a dis-

tinguished triangle in D̃n,e.

Proof. We will omit the gradings in the objects and write F̃(Γ), etc. for
simplicity. Let F(γ′′) denote F(γ(β′′)) from Equation (6.4.1.2). Similarly,
let F(γ) and F(γ′) denote F(γ(β)) and F(γ(β′)), respectively.
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In order to show that cone(F̃(β)) and F̃(Γ′′) are homotopy equivalent,
we define the following two maps

F̃(η) = F̃(γ′′)⊕ F̃(β′) : cone(F̃(β)) = F̃(Γ)⊕ F̃(Γ′)→ F̃(Γ′′),

F̃(ϵ) = F̃(β′′) + F̃(γ′) : F̃(Γ′′)→ cone(F̃(β)) = F̃(Γ)⊕ F̃(Γ′).

They fit into the following diagram:

F̃(Γ′)
F̃(β′) // F̃(Γ′′)

F̃(γ′) //

F̃(β′′) ##

F̃(Γ′)

F̃(Γ)

F̃(β)

OO

F̃(γ′′)

;;

F̃(Γ)

F̃(β)

OO

where F̃(α) = F(α) up to grading shifts for α ∈ {β, β′, β′′, γ′, γ′′}. By the
method of Lemma 7.1.2, we can show that F(γ), F(γ′), and F(γ′′) are
homogeneous. By Lemma 6.4.1.3, F̃(η) and F̃(ϵ) are chain maps and are
therefore morphisms in D̃n,e.

We now show that they are homotopy inverses. By Lemma 6.4.1.1 and
Equation (6.4.1.2),

F̃(γ) ◦ F̃(β) + F̃(β′′) ◦ F̃(γ′′) = idF̃(Γ),

F̃(γ′) ◦ F̃(β′) + F̃(β) ◦ F̃(γ) = idF̃(Γ′),

F̃(γ′′) ◦ F̃(β′′) + F̃(β′) ◦ F̃(γ′) = idF̃(Γ′′) .

We have F̃(η) ◦ F̃(ϵ) = idF̃(Γ′′) from the third equation. It follows from the
first two equations and Lemma 6.4.1.1 that

F̃(ϵ) ◦ F̃(η) = idcone(F̃(β))+dF̃(γ),

where F̃(γ) : F̃(Γ′)→ F̃(Γ). Here we are also using F̃(γ′) ◦ F̃(γ′′) = 0 which
is immediate from the definition. □

8. D̃n,e as a triangulated envelope of C̃n,e

The image of F̃n,e generates D̃n,e under taking iterated cones since all the
P (Γ), Γ ∈ Bn,e, are in the image. The goal of this section is to show that
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F̃n,e is faithful, i.e.,

(F) F̃n,e : HomC̃n,e
((Γ, [ξ]), (Γ′, [ξ′]))

∼
−→ HomD̃n,e

(F̃(Γ, [ξ]), F̃(Γ′, [ξ′])).

We first prove (F) in the following three basic cases: (i) Γ = Γ′; (ii) there

exists a bypass Γ
β
−→ Γ′; and (iii) there exists a bypass Γ′ β

−→ Γ. Using the
calculations for the basic cases we show in Proposition 8.2.3 that the Serre
functors SC̃ of C̃n,e and SD̃ of D̃n,e commute with F̃n,e. We finally prove the
faithfulness in general by combining the results for the basic cases and the
Serre functors.

8.1. Basic cases

8.1.1. The case Γ = Γ′. The goal is to prove (F) for Γ = Γ′. Since
EndCn,e

(Γ) = F2⟨idΓ⟩, it suffices to prove the following.

Proposition 8.1.1.1. For any Γ in Cn,e, EndDn,e
(F(Γ)) = F2⟨idF(Γ)⟩.

Before proving Proposition 8.1.1.1 we introduce some definitions. Re-
call that dΓ =

∑
v∈V +(Γ) dv, where dv is given in Equation (6.2.19). Lemma

6.2.20 implies that:

d2v = 0, dΓdv + dvdΓ = 0,(D)

for any v ∈ V +(Γ).
For Γ,Γ′ in Cn,e, let Map(F(Γ),F(Γ′)) denote the space of Rn,e-module

maps, where F(Γ),F(Γ′) are viewed as Rn,e-modules by ignoring the differ-
entials. We then define maps

(8.1.1.2) dw,v, d∅,v, dw,∅, dΓ′,Γ : Map(F(Γ),F(Γ′))→ Map(F(Γ),F(Γ′)),

where f ∈ Map(F(Γ),F(Γ′)), v ∈ OI(Γ),w ∈ OI(Γ′), and

dw,vf = dw ◦ f + f ◦ dv,

d∅,vf = f ◦ dv,

dw,∅f = dw ◦ f,

dΓ′,Γf = dΓ′ ◦ f + f ◦ dΓ.

The lemma below follows from (D).
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Lemma 8.1.1.3. If d0, d1 ∈ {dw,v, d∅,v, dw,∅, dΓ′,Γ}, then

d20 = 0, d0d1 = d1d0,

in End(Map(F(Γ),F(Γ′))).

Note that Hom(F(Γ),F(Γ′)) is the cohomologyHdΓ′,Γ
(Map(F(Γ),F(Γ′)))

by definition.
Recall that to compute EndCn,e

(Γ) on the topological side, we observe
that #γΓ,Γ = #γΓ′,Γ′ , where Γ′ is obtained from Γ by removing a bound-
ary parallel component. By repeating this reduction, we eventually obtain
#γΓ,Γ = #γΓ0,Γ0 = 1, where Γ0 is the unique dividing set in C0,0. To com-
pute EndDn,e

(F(Γ)) on the algebraic side we consider a similar reduction
on

|V +
nb(Γ)| = |{v ∈ V +(Γ) | lΓv

> 0}|.

The following example illustrates the idea of the reduction.

Example 8.1.1.4. We compute End(F(Γ)) for Γ from Example 6.1.5. Re-
call that V +

nb(Γ) = {(1), (1, 1)}, where Γ(1,1) = {2, 3} directly nests inside
Γ(1) = {1, 4} and no vector in V +

nb(Γ) nests inside Γ(1,1). Let w = (1) and

v = (1, 1). Let Γ̂v denote a dividing set which is obtained from Γ by re-
placing the component Γv with lΓv

+ 1 boundary parallel components cor-
responding to the lΓv

+ 1 elements of Γv. In particular, V +
nb(Γ̂

v) = {(1)} and

Γ̂v
(1) = {1, 4}.

The complex N (given by (6.1.6)) for F(Γ) is

P (1, 2)
dv−→ P (1, 3)

dw−→ P (2, 4)
dv−→ P (3, 4),

where dv is given in (6.2.19). As an F2-vector space Map(F(Γ),F(Γ)) is
7-dimensional. The differential dv,v acts on Map(F(Γ),F(Γ)) by:

dv,v : Map(F(Γ),F(Γ)) → Map(F(Γ),F(Γ))
idP (1,2) 7→ dv ◦ idP (1,2),
idP (1,3) 7→ dv ◦ idP (1,2),
idP (2,4) 7→ dv ◦ idP (2,4),
idP (3,4) 7→ dv ◦ idP (2,4),

dw ◦ idP (1,3), dv ◦ idP (1,2), dv ◦ idP (2,4) 7→ 0.
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There is a double complex (Map(F(Γ),F(Γ)); dv,v, dΓ,Γ − dv,v). Its first
page (Hdv,v

; dΓ,Γ − dv,v) is given by:

dΓ,Γ − dv,v : Hdv,v
→ Hdv,v

[idP (1,2)+ idP (1,3)] 7→ [dw ◦ idP (1,3)],
[idP (2,4)+ idP (3,4)] 7→ [dw ◦ idP (1,3)].

It is easy to see that (Hdv,v
; dΓ,Γ−dv,v) is isomorphic to (Map(Γ̂v, Γ̂v); dΓ̂v,Γ̂v)

whose cohomology is End(Γ̂v). By the spectral sequence associated to the
double complex, End(Γ̂v) converges to End(Γ).

Returning to the discussion of End(F(Γ)) in general, suppose Γ /∈ Bn,e

and v ∈ V +
nb(Γ) such that NV (v, lΓv

) = ∅, i.e., no vector in V +
nb(Γ) directly

nests inside v. (If Γ /∈ Bn,e, then such a vector always exists.) We define Γ̂v as
the dividing set in ob(Cn,e−lΓv

) obtained from Γ by replacing the component
Γv with lΓv

+ 1 boundary parallel components corresponding to the lΓv
+ 1

elements of Γv. We will write Γ̂ for Γ̂v and l for lΓv
when v is understood.

There is a bijection

v̂ : V +
nb(Γ)\{v}

∼
−→ V +

nb(Γ̂)

satisfying Γ̂v̂(w) = Γw for w ∈ V +
nb(Γ)\{v}. There is also an induced map

v̂ : OI(Γ)→ OI(Γ̂)

given by v̂(i)v̂(w) = iw for w ∈ V +
nb(Γ)\{v}. (It is also called v̂ by abuse of

notation.) The map v̂ : OI(Γ)→ OI(Γ̂) is surjective and is an (l + 1)-to-1
map. Given î ∈ OI(Γ̂) and 0 ≤ s ≤ l, define is ∈ v̂−1(̂i) such that (is)v = s.

The following lemma relates End(F(Γ)) and End(F(Γ̂)).

Lemma 8.1.1.5. Suppose that v ∈ V +
nb(Γ) such that NV (v, lΓv

) = ∅. Then
there is a finite double complex (Map(F(Γ),F(Γ)); dv,v, dΓ,Γ − dv,v) whose

first page (Hdv,v
; dΓ,Γ − dv,v) is isomorphic to the complex (Map(F(Γ̂),

F(Γ̂)); dΓ̂,Γ̂).

Proof. Since dv,v and dΓ,Γ are two commuting differentials by Lemma 8.1.1.3,

(Map(F(Γ),F(Γ)); dv,v, dΓ,Γ − dv,v)

is a finite double complex.
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Since du = 0 for u /∈ V +
nb(Γ), the space Map(F(Γ),F(Γ)) has an F2-basis

{
k∏

t=1

dut ◦ idΓ(i)

∣∣∣∣∣ i ∈ OI(Γ),ut ∈ V +
nb(Γ), k ≥ 0

}
,

where
∏0

t=1 dut ◦ idΓ(i) is understood to be idΓ(i). In this basis

• the composition is independent of the order of the dut since they pair-
wise commute; and

• each dut appears at most once since d2ut = 0 by Lemma 6.2.20.

Let w ∈ V (Γ) such that v directly nests inside w. We consider the case
w ̸= ∗. (When w = ∗, there is no dw and the same proof holds by setting
dw = 0 and dv̂(w) = 0 below.)

We say that a generator f is of Type (1) if it has the form:

f =
∏

t

dut ◦ idΓ(i) or
∏

t

dut ◦ dv ◦ idΓ(i), where ut ̸= w,v.

For each
∏

t dut , ut ̸= w,v, there is a subcomplex of (Map(F(Γ),F(Γ)); dv,v):

Type (1) :
∏

t

dut ◦ idΓ(is)

dv,v

−−→





∏
t

dut ◦ dv ◦ idΓ(i1) s = 0,
∏
t

dut ◦ dv ◦ idΓ(is)+
∏
t

dut ◦ dv ◦ idΓ(is+1) 0 < s < l,
∏
t

dut ◦ dv ◦ idΓ(il) s = l.

Such a subcomplex is said to be of Type (1). As an F2-vector space, this
subcomplex has dimension 2l + 1 and any two subcomplexes of Type (1) are
either equal or intersect trivially.

We say that a generator f is of Type (2) if it has the form:

f =
∏

t

dut ◦ dw ◦ idΓ(i), where ut ̸= w,v.

If f ̸= 0, then iv = 0, i.e., i = i0 for some î ∈ OI(Γ̂). Each nonzero f of Type
(2) generates a 1-dimensional subcomplex:

Type (2) : f
dv,v

−−→ 0.
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The complex (Map(F(Γ),F(Γ)); dv,v) is a direct sum of its subcomplexes
of Types (1) and (2); note that there are no generators of type

∏
t dut ◦ dw ◦

dv ◦ idΓ(i) since dw ◦ dv = 0.
We compute the cohomology Hdv,v

. For a subcomplex of Type (1), dv,v
is a surjective map from F

l+1
2 to F

l
2 and a generator of Hdv,v

is given by∑l
s=0

∏
t dut ◦ idΓ(is). For a subcomplex of Type (2), a generator of Hdv,v

is
given by

∏
t dut ◦ dw ◦ idΓ(i0).

Define an F2-linear map:

G : Hdv,v
→ Map(F(Γ̂),F(Γ̂))

l∑
s=0

∏
t

dut ◦ idΓ(is) 7→
∏
t

dv̂(ut) ◦ idΓ̂(̂i),∏
t

dut ◦ dw ◦ idΓ(i0) 7→
∏
t

dv̂(ut) ◦ dv̂(w) ◦ idΓ̂(̂i) .

It is an isomorphism of F2-vector spaces since v̂ : V +
nb(Γ)\{v}

∼
−→ V +

nb(Γ̂) is

a bijection and v̂ : OI(Γ)→ OI(Γ̂) is surjective.
For any u ∈ V +

nb(Γ)\{v}, we have G(du ◦ f) = dv̂(u) ◦G(f) and G(f ◦
du) = G(f) ◦ dv̂(u) for f ∈ Hdv,v

. Since

dΓ − dv =
∑

u∈V +
nb(Γ)\{v}

du, dΓ̂ =
∑

û∈V +
nb(Γ̂)

dû,

it follows that G commutes with dΓ,Γ − dv,v and dΓ̂,Γ̂. Hence the two com-
plexes are isomorphic. □

Proof of Proposition 8.1.1.1. Since F(Γ) is not isomorphic to the zero object
of Dn,e, it follows that idF(Γ) ∈ End(F(Γ)) is nonzero. It then remains to
prove that dim(End(F(Γ))) ≤ 1, which is proved by induction on |V +

nb(Γ)|.
If |V +

nb(Γ)| = 0, then Γ ∈ Bn,e. Hence F(Γ) = P (Γ) and dim(End(P (Γ)))
≤ 1.

If |V +
nb(Γ)| > 0, there exists v ∈ V +

nb(Γ) such that NV (v, lΓv
) = ∅. By

definition |V +
nb(Γ̂

v)| = |V +
nb(Γ)| − 1. By Lemma 8.1.1.5, the cohomology of

(Map(F(Γ̂),F(Γ̂)); dΓ̂,Γ̂) converges to the cohomology of (Map(F(Γ),F(Γ));
dΓ,Γ). Hence

dim(End(F(Γ))) ≤ dim(End(F(Γ̂)))

and dim(End(F(Γ))) ≤ 1 by induction. □

8.1.2. The case of a bypass. Let β ∈ Hom(Γ,Γ′) be a nontrivial bypass.
Then Hom(Γ,Γ′) = F2⟨β⟩ and Hom(Γ′,Γ) = 0.
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Proposition 8.1.2.1. For any nontrivial bypass β ∈ Hom(Γ,Γ′), we have

1) Hom(F̃(Γ, [ξ]), F̃(Γ′, [ξ̃′])) = F2⟨F̃(β)⟩, if [ξ̃′] = [β ◦ ξ]; otherwise, it is
zero.

2) Hom(F(Γ′),F(Γ)) = 0.

Proof. Consider a bypass triangle (Γ, [ξ])
β
−→ (Γ′, [ξ′])

β′

−→ (Γ′′, [ξ′′])
β′′

−→
(Γ′, [ξ][1]) in C̃n,e. By Proposition 7.3.1, it is mapped to a distinguished

triangle in D̃n,e. By applying the exact functor HomD̃n,e
(F̃(Γ, [ξ̃]),−) to the

distinguished triangle, we obtain a long exact sequence:

Hom(F̃(Γ, [ξ̃]), F̃(Γ, [ξ]))
F̃(β)
−−−→ Hom(F̃(Γ, [ξ̃]), F̃(Γ′, [ξ′]))

F̃(β′)
−−−→ Hom(F̃(Γ, [ξ̃]), F̃(Γ′′, [ξ′′])),

where the subscripts D̃n,e are omitted. Hence (1) is equivalent to
Hom(F(Γ),F(Γ′′)) = 0.

Similarly, by applying the exact functor HomD̃n,e
(−, F̃(Γ′, [ξ̃′])), one can

see that (1) is equivalent to Hom(F(Γ′′),F(Γ′)) = 0. By rotating the by-
pass triangle, the proposition is equivalent to any one of the following three
statements:

(i)Hom(F(Γ′),F(Γ)) = 0; (ii)Hom(F(Γ′′),F(Γ′)) = 0;

(iii)Hom(F(Γ),F(Γ′′)) = 0.

Without loss of generality we can assume that 0 ∈ P1(β) ∪ P2(β). Proposi-
tion 8.1.2.1 is a consequence of the following lemma. □

Lemma 8.1.2.2. We have Hom(F(Γ′),F(Γ)) = 0 if Hom(Γ,Γ′) is gener-
ated by a bypass β and 0 ∈ P1(β) ∪ P2(β).

Proof. There is a bypass triangle Γ
β
−→ Γ′ β′

−→ Γ′′ starting with β. Let us write
b, x, y,w for b(β′), x(β′), y(β′),b(β), as in Notation 4.2.1; see Figure 35.
Since 0 ∈ P1(β) ∪ P2(β) = P3(β

′) ∪ P4(β
′), we have 0 < x ≤ y = lΓ′

b
and b ̸=

∗,w ̸= ∗. We write

Map(F(Γ′),F(Γ)) =
⊕

j∈OI(Γ′),i∈OI(Γ)

Hom(P (Γ′(j))[h(j)], P (Γ(i))[h(i)]).

We prove the lemma by induction on lΓ′((Γ′
b(0),Γ

′
b(y))), defined in

Equation (7.1.1).
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+
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β
β

vv′

ΓΓ′

β′

b

β′

b

ΓΓ′

P4(β′)

P3(β′)

P2(β)

P1(β)

s+x

s+y

s+x−1

s

Figure 35: The left-hand side describes Case 1 after removing boundary par-
allel components nesting inside (Γ′

b(0),Γ
′
b(y)); the right-hand side depicts

v,v′ in Case 2.

Case 1. If lΓ′((Γ′
b(0),Γ

′
b(y))) = 0, then no vector in V +

nb(Γ
′) nests inside b.

We view Map(F(Γ′),F(Γ)) as a finite double complex

(Map(F(Γ′),F(Γ)); d∅,b, dΓ,Γ′ − d∅,b),

whose first page (Hd∅,b
; dΓ,Γ′ − d∅,b) converges toHdΓ,Γ′ = Hom(F(Γ′),F(Γ)).

Here d∅,bf := f ◦ db for f ∈ Map(F(Γ′),F(Γ)). The following claim implies
the lemma for Case 1.

Claim. The cohomology of the complex (Map(F(Γ′), P (Γ(i))); d∅,b) is zero
for any i ∈ OI(Γ).

Proof of Claim. We can ignore boundary parallel components Γ′
v ⊂

(Γ′
b(0),Γ

′
b(y)) in the computation since those labels do not appear in either

P (Γ′(j)) or P (Γ(i)) for any j ∈ OI(Γ′), i ∈ OI(Γ). Since we are assuming
that lΓ′((Γ′

b(0),Γ
′
b(y))) = 0,

Γ′
b(0) = s, Γ′

b(x) = s+ x, Γ′
b(y) = s+ y;

Γw(0) = s, Γw(lΓw
) = s+ x− 1.

Let f ∈ Map(P (Γ′(j)), P (Γ(i))) be a generator such that f ◦ db = 0. If
jb < y, then f ◦ db is a map P (Γ′(j′))→ P (Γ(i)), where j = b|j′. We have

Hom(Γ′(j),Γ(i)) ̸= 0, Hom(Γ′(j′),Γ(i)) = 0; Γ′(j′)
s+jb
−−−→ Γ′(j).

By the tightness criterion (Proposition 5.1), in order for Hom(Γ′(j′),Γ(i)) =
0, Hom(Γ′(j),Γ(i)) must factor through Hom(Γ′(j),Γ′(j′′)), where j′′ = b|j ∈

OI(Γ′) such that Γ′(j)
s+jb−1
−−−−−→ Γ′(j′′). Hence Hom(Γ′(j′′),Γ(i)) ̸= 0 is gener-

ated by g such that f = g ◦ db.
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If jb = y and Hom(Γ′(b|j),Γ(i)) ̸= 0 is generated by g, then f = g ◦ db.
If jb = y and Hom(Γ′(b|j),Γ(i)) = 0, then {s, s+ 1, . . . , s+ y − 1} ⊂ Γ(i)∗.
In particular Γw ⊂ Γ(i)∗ which is not possible since w ̸= ∗. This proves the
claim. □

Case 2. If lΓ′((Γ′
b(0),Γ

′
b(y))) > 0, then there exists v′ ∈ V +

nb(Γ
′) such that

Γ′
v′ ⊂ (Γ′

b(0),Γ
′
b(y)) and no vector in V +

nb(Γ
′) nests inside v′ (i.e., v′ is “out-

ermost”). There is a corresponding vector v ∈ V +
nb(Γ) such that Γv = Γ′

v′

and no vector in V +
nb(Γ) nests inside v; see the right-hand side of Figure 35.

Let Γ̂, Γ̂′ denote Γ̂v, Γ̂′v′

. There is a bypass triangle Γ̂
β̂
−→ Γ̂′ β̂′

−→ Γ̂′′. Let b̂, x̂, ŷ
denote b(β̂′), x(β̂′), y(β̂′). Then

lΓ̂′((Γ̂′
b̂
(0), Γ̂′

b̂
(ŷ))) < lΓ′((Γ′

b(0),Γ
′
b(y))).

The following claim implies the lemma for Case 2.

Claim. There is a finite double complex (Map(F(Γ′),F(Γ)); dv,v′ , dΓ,Γ′ −
dv,v′), where dv,v′f = dv ◦ f + f ◦ dv′, whose first page with respect to dv,v′

is isomorphic to (Map(F(Γ̂′),F(Γ̂)); dΓ̂,Γ̂′).

Proof of Claim. If jb < x, then there exists i′ ∈ OI(Γ) such that Γ(i′) =
Γ′(j). Such j ∈ OI(Γ′) is said to be of Type (1). Any f ∈ Hom(P (Γ′(j)),
P (Γ(i))) can be written as

∏
t dut ◦ idΓ′(j) for u

t ∈ V +
nb(Γ).

If jb ≥ x and Hom(P (Γ′(j)), P (Γ(i))) ̸= 0 for some i, then jb = x and
b ∈ SV (j) such that (b|j)b = x− 1. Such j ∈ OI(Γ′) is said to be of Type
(2). Then there exists i′ ∈ OI(Γ) such that Γ(i′) = Γ′(b|j) and any f ∈
Hom(P (Γ′(j)), P (Γ(i))) can be written as

∏
t dut ◦ idΓ′(j) ◦db for ut ∈ V +

nb(Γ).
Summarizing, Map(F(Γ′),F(Γ)) has an F2-basis:

{∏

t

dut ◦ idΓ′(j)

∣∣∣∣∣ j ∈ OI(Γ′) of Type (1),ut ∈ V +
nb(Γ)

}

⋃{∏

t

dut ◦ idΓ′(j) ◦db

∣∣∣∣∣ j ∈ OI(Γ′) of Type (2),ut ∈ V +
nb(Γ)

}
.

The rest of the proof is similar to that of Lemma 8.1.1.5 and is left to the
reader. □

This completes the proof of Lemma 8.1.2.2. □
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8.2. Serre functors of D̃n,e

In this subsection we write R = Rn,e for simplicity. According to [Ke, The-
orem 3.1], Db(R) admits a Serre functor since R has finite global dimension
and the Serre functor is the left derived functor

M → DR⊗L

R M,

where M is a left R-module and DR denotes the R-bimodule HomF2
(R,F2).

Note that this means that if r1, r2, r ∈ R and ϕ ∈ HomF2
(R,F2), then

r1ϕr2(r) = ϕ(r2rr1). Since D̃n,e is equivalent to Db(R), it admits an induced
Serre functor which we denote by SD̃. For any projective R-module P (Γ),
Γ ∈ Bn,e, SD̃(P (Γ)) is isomorphic to a projective resolution of the tensor
product DR⊗R P (Γ).

By definition, DR has a dual F2-basis {[Γ
′|Γ] | Hom(Γ,Γ′) ̸= 0,Γ,Γ′ ∈

Bn,e}, where the linear map [Γ′|Γ] : R→ F2 sends the generator of Hom(Γ,Γ′)
to 1 and other generators to zero. As an R-bimodule, DR has the defining
relations:

(Γ′)[Γ′|Γ] = [Γ′|Γ](Γ) = [Γ′|Γ].

(Γ̃′|Γ′)[Γ′|Γ] =

{
[Γ̃′|Γ] if Hom(Γ, Γ̃′) ̸= 0;
0 otherwise.

[Γ′|Γ](Γ|Γ̃) =

{
[Γ′|Γ̃] if Hom(Γ̃,Γ′) ̸= 0;
0 otherwise.

Hence DR⊗R P (Γ) has an F2-basis {[Γ
′|Γ] | Hom(Γ,Γ′) ̸= 0,Γ′ ∈ Bn,e}.

For Γ ∈ Bn,e, we compute SD̃(P (Γ)) ∼= DR⊗R P (Γ) in terms of S(Γ). If
1 ∈ Γ∗ then V +

nb(S(Γ)) = ∅. If 1 ̸∈ Γ∗, then V +
nb(S(Γ)) = {w}, lS(Γ)w = e and

S(Γ)w = {Γ∗(1)− 1, . . . ,Γ∗(e)− 1, n}, and we write

(8.2.1) S(Γ)i = S(Γ)(i) ∈ Bn,e for 0 ≤ i ≤ e,

where i ∈ OI(S(Γ)) such that iw = i.

Lemma 8.2.2. For any Γ ∈ Bn,e, SD̃(F̃(Γ)) = SD̃(P (Γ)) is isomorphic to

F(S(Γ)) in D̃n,e.

Proof. The tensor productDR⊗R P (Γ) has an F2-basis {[Γ
′|Γ] | Hom(Γ,Γ′)

̸= 0,Γ′ ∈ Bn,e}.
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If 1 ∈ Γ∗, then S(Γ) ∈ Bn,e. By Lemma 3.3.1.3, Hom(Γ,Γ′) ̸= 0 if and
only if Hom(Γ′,S(Γ)) ̸= 0. Hence DR⊗R P (Γ) is isomorphic to P (S(Γ)),
i.e., SD̃(F̃(Γ)) is isomorphic to F(S(Γ)).

Assume 1 /∈ Γ∗ from now on. Our proof makes repeated use of Proposi-
tion 5.1 and Corollary 5.2. Consider the complex F(S(Γ)):

P (S(Γ)e)
pre−−→ · · ·

pr2−−→ P (S(Γ)1)
pr1−−→ P (S(Γ)0).

We have S(Γ)0∗ = {0,Γ∗(2)− 1, . . . ,Γ∗(e)− 1, n}. By Proposition 5.1,
Hom(Γ,S(Γ)0) ̸= 0 so that [S(Γ)0|Γ] ∈ DR⊗R P (Γ) exists. Define a map
of left R-modules

pr0 : P (S(Γ)0)→ DR⊗R P (Γ)

by pr0(S(Γ)
0) = [S(Γ)0|Γ]. Moreover, the path from Γ to S(Γ)0 is the longest

nonzero path starting from Γ. In other words, Hom(Γ′,S(Γ)0) ̸= 0 if
Hom(Γ,Γ′) ̸= 0 for Γ′ ∈ Bn,e. Then pr0(Γ

′|S(Γ)0) = [Γ′|Γ] for any genera-
tor [Γ′|Γ] ∈ DR⊗R P (Γ). Hence pr0 is a surjection.

Claim. Ker(pr0) = Im(pr1).

Proof of Claim. Since

S(Γ)1∗ = {0,Γ∗(1)− 1,Γ∗(3)− 1, . . . ,Γ∗(e)− 1, n},

it follows that Hom(Γ,S(Γ)1) = 0 and Im(pr1) ⊂ Ker(pr0).
To prove Ker(pr0) ⊂ Im(pr1), it suffices to show that if Hom(Γ,Γ′) =

0 and Hom(Γ′,S(Γ)0) ̸= 0 for Γ′ ∈ Bn,e, then Hom(Γ′,S(Γ)1) ̸= 0. Since
Hom(Γ′,S(Γ)0) ̸= 0 we have

Γ∗(i)− 1 = S(Γ)0∗(i− 1) < Γ′
∗(i) ≤ S(Γ)

0
∗(i) = Γ∗(i+ 1)− 1,

for 1 < i ≤ e. This implies that Γ′
∗(1) < Γ∗(1) since Hom(Γ,Γ′) = 0. We have

Γ′
∗(1) ≤ Γ∗(1)− 1,

S(Γ)1∗(i− 1) ≤ S(Γ)0∗(i− 1) < Γ′
∗(i) ≤ S(Γ)

0
∗(i) = S(Γ)

1
∗(i),

for 1 < i ≤ e. Hence Hom(Γ′,S(Γ)1) ̸= 0. □

The proofs of Ker(pri) = Im(pri+1) for 0 < i ≤ e are similar, where
Im(pre+1) is understood to be 0. Hence F(S(Γ)) is a projective resolution
of DR⊗R P (Γ). □
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Proposition 8.2.3. The Serre functors SC̃ and SD̃ commute with F̃ .

Proof.

Step 1. We first show that SC̃ and SD̃ commute with F̃ on the level of
objects, i.e.,

(8.2.4) SD̃(F̃(Γ, [ξ]))
∼= F̃(SC̃(Γ, [ξ])).

We prove this by induction on m(Γ) = e+ 1− |Γ∗|.
Suppose m(Γ) = 0, i.e., Γ ∈ Bn,e. It suffices to prove Equation (8.2.4)

for ξ = ξ(Γ) since both sides commute with shift functors. By Lemma 8.2.2,

SD̃(F̃(Γ, [ξ(Γ)])) = SD̃(F(Γ))
∼= F(S(Γ)) = F̃(S(Γ), [ξ(S(Γ))]).

By Definition 3.3.2.1, F̃(SC̃(Γ, [ξ(Γ)])) = F̃(S(Γ), [ζ(Γ) ◦ ξ(Γ)]), where ζ(Γ)
is the generator of Hom(Γ,S(Γ)). It remains to show that

[ζ(Γ) ◦ ξ(Γ)] = [ξ(S(Γ))],(8.2.5)

for Γ ∈ Bn,e. If S(Γ) ∈ Bn,e, then ζ(Γ) corresponds to a nonzero path from Γ
to S(Γ) in Qn,e and Equation (8.2.5) follows from the definition of [ξ(S(Γ))].
If S(Γ) /∈ Bn,e, then consider β(S(Γ)) ∈ Hom(S(Γ)0,S(Γ)) as defined in
Equation (7.2.1.1). By Lemma 3.3.1.4, the composition Hom(S(Γ)0,S(Γ))×
Hom(Γ,S(Γ)0)→ Hom(Γ,S(Γ)) is nontrivial. Hence

[ξ(S(Γ))] = [β(S(Γ)) ◦ ξ(S(Γ)0)]

= [β(S(Γ)) ◦ ξΓ,S(Γ)0 ◦ ξ(Γ)] = [ζ(Γ) ◦ ξ(Γ)],

where ξΓ,S(Γ)0 is the generator of Hom(Γ,S(Γ)0).
Suppose m(Γ) > 0. Consider the bypass triangle

(Γ, [ξ][−1])
β(Γ)
−−−→ (Γ′, [ξ′])

β
−→ (Γ′′, [ξ′′]) −→ (Γ, [ξ])

in C̃n,e which contains β(Γ) as defined in Definition 6.1.2. We have
m(Γ′),m(Γ′′) < m(Γ). Let β ∈ HomC̃n,e

((Γ′, [ξ′]), (Γ′′, [ξ′′])) be the second
morphism in the triangle. By Proposition 8.1.2.1,

HomD̃n,e
(F̃(Γ′, [ξ′]), F̃(Γ′′, [ξ′′])) = F2⟨F̃(β)⟩.
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Since SC̃ is the rotation endofunctor of C̃n,e, it maps bypass triangles to
bypass triangles and

HomD̃n,e
(F̃(SC̃(Γ

′, [ξ′])), F̃(SC̃(Γ
′′, [ξ′′]))) = F2⟨F̃(SC̃(β))⟩.

Also, since SD̃ is an auto-equivalence of D̃n,e,

HomD̃n,e
(SD̃(F̃(Γ

′, [ξ′])),SD̃(F̃(Γ
′′, [ξ′′]))) = F2⟨SD̃(F̃(β))⟩.

Finally, since

SD̃(F̃(Γ
′, [ξ′])) ∼= F̃(SC̃(Γ

′, [ξ′]))

and

SD̃(F̃(Γ
′′, [ξ′′])) ∼= F̃(SC̃(Γ

′′, [ξ′′]))

by induction, we have SD̃(F̃(β)) = F̃(SC̃(β)). Hence,

SD̃(F̃(Γ, [ξ]))
∼= SD̃(Cone(F̃(β)))

= Cone(SD̃(F̃(β))) = Cone(F̃(SC̃(β)))
∼= F̃(SC̃(Γ, [ξ])),

where the first and last isomorphisms follow from Proposition 7.3.1.

Step 2. Since the morphisms of C̃n,e are generated by bypasses, it suffices to

prove that SD̃(F̃(β))
∼= F̃(SC̃(β)) for any bypass β∈HomC̃n,e

((Γ, [ξ]), (Γ′, [ξ′])).
This in turn follows from observing that both are generators of

HomD̃n,e
(F̃(SC̃(Γ, [ξ])), F̃(SC̃(Γ

′, [ξ′])))

= HomD̃n,e
(SD̃(F̃(Γ, [ξ])),SD̃(F̃(Γ

′, [ξ′]))).

□

We prove the analogue of Lemma 3.3.3.1 for the Serre functor SD̃ of D̃n,e.

Proposition 8.2.6. There is an isomorphism of endofunctors of D̃n,e:
Sn+1

D̃
∼= T e(n−e).

Proof. Since D̃n,e is generated by the image of F̃ (and in particular the
projectives P (Γ), Γ ∈ Bn,e, and morphisms between projectives), it suffices

to show that Sn+1

D̃
(F̃(Γ, [ξ])) = F̃(Γ, [ξ])[e(n− e)] for any (Γ, [ξ]). By Lemma
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3.3.3.1 and Proposition 8.2.3,

Sn+1

D̃
(F̃(Γ, [ξ])) = F̃(Sn+1

C̃
(Γ, [ξ]))

= F̃(Γ, [ξ][e(n− e)]) = F̃(Γ, [ξ])[e(n− e)].

□

8.3. General cases

Since HomCn,e
(Γ,Γ′) is at most one-dimensional, F̃n,e is faithful if and only

if Fn,e is faithful, i.e.,

(F′) Fn,e : HomCn,e
(Γ,Γ′)

∼
−→ HomDn,e

(F(Γ),F(Γ′)).

By Proposition 8.2.3, (F′) holds for Γ,Γ′ if and only if it holds for Sk(Γ),
Sk(Γ′) for some k.

We prove Equation (F′) for Γ,Γ′ in Cn,e by induction on n. If Γ and Γ′

have a common boundary parallel component, then it is either a positive
region or a negative region.

Case 1. Suppose that R+(Γ) and R+(Γ
′) have a common boundary parallel

component, i.e., there exist v ∈ V (Γ) and v′ ∈ V (Γ′) such that Γv = Γ′
v′ =

{t}. By applying the Serre functor t+ 1 times, we can assume that Γv =
Γ′
v′ = {n}. Let Γ̃ and Γ̃′ denote dividing sets in Cn−1,e obtained from Γ and

Γ′ by removing Γv and Γ′
v′ , respectively.

Case 2. Suppose that R−(Γ) and R−(Γ
′) have a common boundary parallel

component, i.e., there exist v ∈ V (Γ) and v′ ∈ V (Γ′) such that {t, t+ 1} ⊂
Γv,Γ

′
v′ . By applying the Serre functor t+ 1 times, we can assume that

{0, n} ⊂ Γ∗,Γ
′
∗. Let Γ̃ and Γ̃′ denote dividing sets in Cn−1,e−1 obtained from

Γ and Γ′ by removing n from Γ∗ and Γ′
∗, respectively.

Lemma 8.3.1. (F′) holds for Γ,Γ′ if and only if it holds for Γ̃, Γ̃′ in both
Cases 1 and 2.

Proof. It suffices to prove that there exist canonical isomorphisms:

HomCn,e
(Γ,Γ′) ∼= HomCn−1,e

(Γ̃, Γ̃′);(8.3.2)

HomDn,e
(F(Γ),F(Γ′)) ∼= HomDn−1,e

(F(Γ̃),F(Γ̃′)).(8.3.3)

The first isomorphism (8.3.2) follows from observing that γΓ,Γ′ is iso-
morphic to γΓ̃,Γ̃′ .
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Consider two full sub-quivers Q′
n,e and Q′′

n,e of Qn,e, where

V (Q′
n,e) = {Γ ∈ Bn,e | n /∈ Γ∗}, V (Q′′

n,e) = {Γ ∈ Bn,e | n ∈ Γ∗}.

There are two subalgebras R′
n,e and R′′

n,e of Rn,e which are generated by
Q′

n,e and Q′′
n,e, respectively. Let D

′
n,e and D′′

n,e be the corresponding full
subcategories of Dn,e. By Lemma 5.5, R′

n,e is canonically isomorphic to
Rn−1,e, and R′′

n,e is canonically isomorphic to Rn−1,e−1. The second isomor-

phism (8.3.3) follows from compositions of functors: Dn−1,e
∼
−→ D′

n,e →֒ Dn,e

and Dn−1,e−1
∼
−→ D′′

n,e →֒ Dn,e. □

Before proving (F′) in general, consider the special cases described in
Figure 36. There are two boundary parallel components, one in R±(Γ) and
the other in R∓(Γ

′). The boundary parallel component of Γ′ is obtained by
rotating that of Γ through a counterclockwise angle of π

n+1 . We say that the
pair (Γ,Γ′) is in local annihilation position.

+
+

+
+

1 1

00

nn

0 0

-

- -

-

-

-

-

-

Γ Γ′ Γ Γ′

Figure 36: A pair (Γ,Γ′) in local annihilation position, normalized using the
Serre functor.

Lemma 8.3.4. If the pair (Γ,Γ′) is in local annihilation position, then

HomCn,e
(Γ,Γ′) = 0, HomDn,e

(F(Γ),F(Γ′)) = 0.

Proof. Since the two boundary parallel components form a loop after edge
rounding, #γΓ,Γ′ > 1 and HomCn,e

(Γ,Γ′) = 0.
By applying the Serre functor we are in one of the following two cases

as in Figure 36:

1) The boundary parallel components are in R+(Γ) and R−(Γ
′): there

exists v ∈ V (Γ) such that Γv = {1}; and 1 ∈ Γ′
∗.

2) The boundary parallel components are in R−(Γ) and R+(Γ
′): there

exists v′ ∈ V (Γ′) such that Γ′
v′ = {n}; and n ∈ Γ∗.

For any i ∈ OI(Γ), j ∈ OI(Γ′), 1 /∈ Γ(i) and 1 ∈ Γ′(j) in the first case and
n ∈ Γ(i) and n /∈ Γ′(j) in the second case. In either case Hom(Γ(i),Γ′(j)) = 0
by Proposition 5.1. Hence HomDn,e

(F(Γ),F(Γ′)) = 0. □
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We are finally in a position to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. We show that (F′) holds for any Γ,Γ′ by induction on
n. For any boundary parallel component of Γ′, consider the neighborhood
of the component in Γ′ as on the right-hand side of Figure 37: there are
three endpoints r, s, t of Γ′ in clockwise order around ∂D2 and Γ′ connects
r and s. We may assume that Γ does not connect r and s since if Γ and
Γ′ have a common boundary parallel component then we can reduce n by
Lemma 8.3.1; and that Γ does not connect s and t since if (Γ,Γ′) is in local
annihilation position then we are done by Lemma 8.3.4. Hence there exists

a nontrivial bypass triangle Γ
β
−→ Γ̃ −→ Γ0 −→ Γ such that (Γ0,Γ′) is in local

annihilation position; see Figure 37.
By applying exact functors Hom(−,Γ′) (this is exact by Lemma 3.2.4)

and Hom(−,F(Γ′)), we have two isomorphisms:

Hom(Γ̃,Γ′)
◦β
−→ Hom(Γ,Γ′), Hom(F(Γ̃),F(Γ′))

◦F(β)
−−−−→ Hom(F(Γ),F(Γ′)),

since Hom(Γ0,Γ′) = 0 and Hom(F(Γ0),F(Γ′)) = 0 by Lemma 8.3.4.

Γ Γ̃ Γ0 Γ′

Figure 37.

Since Γ̃ and Γ′ have a common boundary parallel component we can
reduce n by Lemma 8.3.1. In the case where n = 2, there are 5 dividing sets in
C2, and Γ and Γ′ are either the same or in the unique bypass triangle in C2,1.
The first part of Theorem 1.1 follows from Propositions 8.1.1.1 and 8.1.2.1.
The assertion about exact triangles was the content of Proposition 7.3.1. □
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Index of notation

Section 2

Γ : a dividing set
R+(Γ) : the positive region of a convex surface Σ with dividing set Γ
R+(F ) : the positive region of ∂Σ with respect to the marked points F ⊂ ∂Σ
δ = δ+ ∪ δ− : the arc of a bypass attachment as a union of its positive and
negative parts

Section 3

Cn,e : the (skeletal version of the) contact category of a disk

C̃n,e : the universal cover of the (skeletal version of the) contact category of
a disk
χ+ = χ+(Γ), χ− = χ−(Γ) : the Euler characteristics of R+(Γ) and R−(Γ).
s : the label s of a positive arc in ∂D2

S,SC̃ : Serre functors of Cn,e and C̃n,e

Section 4

π0(R+(Γ)), π0(R−(Γ)) : the set of components of R+(Γ) and R−(Γ)
V : the set of vectors of positive integers
∗ : the special element of V
ΦΓ : π0(R+(Γ))→ V the assignment of components of R+(Γ) by vectors in
V

V (Γ) = Im(ΦΓ) : the set of vectors of Γ
V +(Γ) = V (Γ)\{∗}
V +
nb(Γ) : the subset of non-boundary-parallel components of V +(Γ)

Bn,e : the set of basic dividing sets
Γ(s1, . . . , se) : the basic dividing set Γ ∈ Bn,e such that Γ∗ = {0, s1, . . . , se}.
Γv : the v-component of R+(Γ), where v ∈ V (Γ) = Im(ΦΓ); the set of labels
contained in the

v-component of R+(Γ)
Γ∗ : the based component of R+(Γ) containing the label 0
Γv(i) : the ith element of Γv

lΓv
= |Γv| − 1

β : a bypass attachment; later β will also be a map V (Γ)→ V (Γ′) (cf. Equa-
tion 4.2.3) and a

map II(β) ⊔ SI(β)→ OI(Γ′) (cf. Definition 6.3.2.2)
b(β),b(β) : elements of V (Γ), cf. Notation 4.2.1
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x(β), y(β) : elements of {0, . . . , lΓb(β)
}, cf. Notation 4.2.1

z(β) : element of {0, . . . , lΓ
b(β)
}, cf. Notation 4.2.1

Γl
b(β),Γ

r
b(β) : left and right subsets of Γb(β), cf. Notation 4.2.2

Section 5

Qn,e : the quiver
Rn,e : the F2-algebra

Γ
i
−→ Γ′ : an arrow in the quiver Qn,e

(Γ), (Γ|Γ′) : generators of the algebra Rn,e

P (Γ) : left projective Rn,e-module corresponding to Γ ∈ Bn,e

D̃n,e : the homotopy category of bounded complexes of finitely projective
Rn,e-modules

Dn,e : ungraded version of D̃n,e

Section 6

Fn,e : Cn,e → Dn,e and F̃n,e : C̃n,e → D̃n,e functors
β(Γ) : the leftmost bypass on Γ
i = ⟨iv⟩ : an omitting index with its v-entries
OI(Γ) : the set of omitting indices of Γ
Γ(i) : the basic dividing set corresponding to i ∈ OI(Γ)
cv(i) : the nesting degree of i for v ∈ V (Γ)
h(i) : the cohomological degree of i ∈ OI(Γ)
NV (v, i) : the set of nesting vectors inside v up to i
DNV (v, i) : the set of direct nesting vectors inside v between i− 1 and i
SLV (i) : the set of sliding vectors of i
SHV (i) : the set of shuffling vectors of i
SV (i) : SLV (i) ∪ SHV (i)
v|i : v-modified omitting index, cf. Definition 6.2.11
c|i : c-modified omitting index, where c is a component of π0(R−(Γ))
r(i,v) : a nonzero element of Rn,e corresponding to a path from Γ(i) to
Γ(v|i) in Qn,e

d(i,v) : P (Γ(i))→ P (Γ(v|i)) given by right multiplication by r(i,v)
r(i, c), d(i, c) defined analogously
dv, dc : components of differential d = dΓ for F(Γ)
LSV (β) : the set of left shuffling vectors of β
II(β) : the set of omitting indices of type (Id) for β
SI(β) : the set of omitting indices of type (Sh) for β
t(β, i) : a nonzero element of Rn,e corresponding to a path from Γ(i) to
Γ′(β(i)) in Qn,e



✐

✐

“3-Tian” — 2023/2/28 — 23:12 — page 757 — #93
✐

✐

✐

✐

✐

✐

Contact categories of disks 757

Section 7

[ξ(Γ)] : a homotopy class of Γ
β(Γ) : a nontrivial bypass to Γ
lΓ(A) : the sum of lΓv

for Γv ⊂ A
Pi(β) : six parts of ∂D2 for β

Section 8

Γ̂v : a dividing set associated to Γ and v ∈ V +
nb(Γ); also written as Γ̂ if v is

understood
v̂ : bijection V +

nb(Γ)\{v}
∼
−→ V +

nb(Γ̂); also denotes the induced map v̂ :

OI(Γ)→ OI(Γ̂)
Map(F(Γ),F(Γ′)) : Rn,e-module maps where F(Γ) and F(Γ′) are viewed as
Rn,e-modules
dw,vf = dw ◦ f + f ◦ dv, where f ∈ Map(F(Γ),F(Γ′)) and v ∈ OI(Γ),w ∈
OI(Γ′)
d∅,vf = f ◦ dv, dw,∅f = dw ◦ f, dΓ′,Γf = dΓ′ ◦ f + f ◦ dΓ
SD̃ : Serre functor of D̃n,e

DR : R-bimodule HomF2
(R,F2)

[Γ′|Γ] : generators of the R-bimodule DR
S(Γ)i : a basic dividing set representing S(Γ)
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Geom. Topol. 5 (2005), 769–784.

[Hu] Y. Huang, Bypass attachments and homotopy classes of 2-plane
fields in contact topology, J. Symplectic Geom. 12 (2014), 599–617.

[GH] V. Gripp and Y. Huang, A topological grading on bordered Heegaard
Floer homology, Quantum Topol. 6 (2015), 403–449.

[Ke] B. Keller, Calabi-Yau triangulated categories, Trends in representa-
tion theory of algebras and related topics, 467–489, EMS Ser. Congr.
Rep., Eur. Math. Soc., Zürich, 2008.
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