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Twisted cyclic group actions on Fukaya

categories and mirror symmetry

Chi Hong Chow and Naichung Conan Leung

Let (X,ω) be a compact symplectic manifold whose first Chern
class c1(X) is divisible by a positive integer n. We construct a
twisted Z2n-action on its Fukaya category Fuk(X) and a Zn-action
on the local models of its moduli of Lagrangian branes. We show
that this action is compatible with the gluing functions for different
local models.

1. Introduction

Let (X,ω) be a compact symplectic manifold. We study the following ob-
jects:

1) the Fukaya category Fuk(X) of X; and

2) the moduli M of Lagrangian branes on X with the superpotential W .

This paper establishes results about cyclic group actions on these objects
which arise from the divisibility of the first Chern class c1(X).
Assumption (A). The first Chern class c1(X) ∈ H2(X;Z) is divisible by
a positive integer n, i.e. there exists α ∈ H2(X;Z) such that c1(X) = n · α.

Let us begin with (1). Let ζ be a complex number. Define a ζ-twisted A∞

functor on Fuk(X), or simply a twisted A∞ functor, to be an A∞ functor
of the form

Φ : Fuk(X) → Fuk(X)(ζ)

where Fuk(X)(ζ) is the A∞ category whose objects and morphism spaces
are the same as those of Fuk(X), and whose A∞ product (m(ζ))k is defined
by

(m(ζ))k := ζk−2mk, k ⩾ 0

where mk is the A∞ product of Fuk(X). Clearly, a twisted A∞ functor
can also be regarded as an A∞ functor Fuk(X)(ζi) → Fuk(X)(ζi+1) for any
i ∈ Z.
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Theorem 1.1. Put ζ = e
2πi

2n . A choice of α in Assumption (A) induces a
ζ-twisted A∞ functor Φ on Fuk(X) whose (2n)-th power is A∞ homotopic
to the identity functor idFuk(X).

Next we consider (2). Recall that M comes with the superpotential W
which arises from the effect by quantum corrections. It is known that lo-
cal models for (M,W ) are the weak Maurer-Cartan schemes Mweak(L)
associated to Lagrangians L of X [12, 17, 19]. The deformed m0 of each
b ∈ Mweak(L) is by definition equal to the unit class of CF (L,L) multi-
plied by a constant which is the value of W evaluated at b.

Proposition 1.2. A choice of α in Assumption (A) induces a Zn-action
on (Mweak(L),W ), i.e.

W (τ · b) = e
2πi

n W (b) for any b ∈ Mweak(L)

where τ is a generator of the Zn-action on Mweak(L).

In order to give a reasonable structure on M, one has to define glu-
ing functions between the weak Maurer-Cartan schemes associated to two
different Lagrangians. This problem has been studied by a lot of people
[5, 8, 10, 11, 13, 21, 23, 27, 29]. In this paper, we consider the following
effective approach by Fukaya [13] whose idea is now known as the Fukaya’s
trick. For any two Lagrangians L and L′ which can be brought from one
to the other by an isotopy φt. Fix an ω-tame almost complex structure J .
Then the count of (φ−1

t )∗J-holomorphic disks bounding L yields the desired
gluing function

(1.1) ΨL,L′ : Mweak(L) 99K Mweak(L
′)

where the dash arrow indicates that this function is defined only on an open
subset of the domain. See Section 3.1 for more detail.

Proposition 1.3. The Zn-actions on Mweak(L) and Mweak(L
′) commute

with ΨL,L′ in (1.1).

In other words, our Zn-action on each (Mweak(L),W ) is compatible with
the gluing of these local models. Hence, we obtain

Theorem 1.4. There exists a Zn-action on (M,W ).
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As an example, assume X is Kähler and has an anticanonical divisor D.
Consider an SYZ fibration defined on the complement X −D, i.e. a special
Lagrangian torus fibration with singularities [30]. By gluing the local models
associated to the smooth Lagrangian torus fibers based on the Fukaya’s trick,
the moduli M of these Lagrangian tori can thus be given the structure of
an analytic variety1. The details can be found in the work of Tu [31] under
the assumption W = 0 and the recent work by Yuan [32] for the general
case. See also the work of Abouzaid [1–3] using another approach. In this
case (M,W ) is the (uncompactified) SYZ mirror of the pair (X,D) which
we denote by (X̌◦,W ).

Corollary 1.5. There exists a Zn-action on (X̌◦,W ).

Remark 1.6. If X is Fano, then (X̌◦,W ) is usually defined over C and can
be compactified to the complete mirror (X̌,W ) which is an affine variety
by adjoining a codimension-two subvariety (those points arising from the
singular fibers). We point out that in this case our Zn-action on (X̌◦,W )
can be extended to a Zn-action on the complete mirror (X̌,W ) by the second
Riemann extension theorem2. See Section 4 for more detail.

Remark 1.7. As pointed out by Kuznetsov and Smirnov [24, 25], the ex-
istence of a Zn-action on (X̌,W ) may be interpreted, via the homological
mirror symmetry [22], as the mirror of the existence of a Zn-action on the
Lefschetz decomposition of the derived category Db(X) of coherent sheaves
on X. Our results give an A-side interpretation of this phenomenon.

This paper is organized as follows. In Section 2, we prove Theorem 1.1.
In Section 3, we recall the Fukaya’s trick and the definition of Mweak(L),
and prove Proposition 1.2 and 1.3. In Section 4, we fill in the details for the
claim made in Remark 1.6.
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2. Action on Fuk(X)

In this paper, we will not work with a particular version of Fukaya cate-
gory because, as we will see, our twisted A∞ functor Φ modifies only the
local system carried by each object, and hence it does not depend on which
approach adopted to handle the issues arising from the moduli spaces of
holomorphic disks. We believe that readers can easily apply our ideas to the
version they are using.

Nevertheless, we will recall in Appendix A the least amount of features
of Fuk(X) which are necessary in order to explain the construction of Φ. For
example, the objects of Fuk(X) consist of L = (L, E) where L is an immersed
Lagrangian of X with clean self-intersection and E is a C×-local system
on L, and the morphism space between two cleanly intersecting objects
Li = (Li, Ei), i = 0, 1 is defined by

(2.1) HomFuk(X)(L0,L1) :=
⊕

C∈π0(L0×ιL1)

Ω•(C;Hom(E0|C , E1|C))

where Ω•(C; E) is any of the standard models (de Rham, singular cochain,
etc) of the cohomology group H•(C; E) with local coefficient E .

Here is the idea of the construction of Φ. We assign to each Lagrangian L
of X a particular Z2n-local system EL and to each connected component C of
the fiber product L0 ×ι L1 a flat section fC of Hom(EL0

|C , EL1
|C). Then EL

and fC will contribute to the object and morphism parts of Φ respectively.
The key is to show that Φ satisfies the twisted version of A∞ equations.

Remark 2.1. The idea of twisting objects by particular C×-local systems
has been used by Fukaya in his early work [14]. They are the restriction of
a prequantum line bundle on the ambient manifold. See also [18] and [26]
for other applications of these local systems. Recently, Auroux and Smith
[7] constructed group actions on the Fukaya categories of Riemann surfaces
using ambient local systems.
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We point out that our local system EL is different from theirs, as it
cannot be extended to an ambient one and it is equal to Fukaya’s one only
when X and L are monotone.

Remark 2.2. Regarding group actions on Fukaya categories, we also men-
tion the work [9] of Cho and Hong. But their action is not constructed in
the above fashion, i.e. twisting objects by local systems.

2.1. Object level

Let m = 1
2dim(X). Notice that the unitary group U(m) admits a unique

Zn-covering group U(m)
∼

, i.e. there is a short exact sequence

0 → Zn → U(m)
∼

→ U(m) → 1.

By Assumption (A), c1(X) = n · α for some α ∈ H2(X;Z). It follows
that α induces a reduction of the structure group of the frame bundle of

X from U(m) to U(m)
∼

. Let LG(m) be the Lagrangian Grassmannian of
(Cm, ωstd) which has fundamental group Z. We know that

LG(m) ≃ U(m)/O(m)

is a symmetric space of U(m), or U(m)/{±1}. As U(m)
∼

is a Z2n-cover of
U(m)/{±1}, it acts on the Z2n-cover LG

′(m) of LG(m). Since the reduced

frame bundle has structure group U(m)
∼

, we have

Lemma 2.3. [28, Lemma 2.2] The Lagrangian Grassmannian bundle
LX := LG(TX,ω) on X admits a fiberwise cover L′

X → LX with deck trans-
formation group isomorphic to Z2n. It depends on the choice of α in Assump-
tion (A).

Let ι : L→ X be a Lagrangian immersion with clean self-intersection.
The Gauss map of L is a section θL of ι∗LX defined by

(2.2) θL(x) := dι(TxL) ∈ (LX)ι(x), x ∈ L.

The inverse image of the subspace θL(L) ⊆ ι∗LX under the fiberwise covering
map ι∗L′

X → ι∗LX is then a Z2n-local system on L, which we denote by
EL. We may regard EL as a C×-local system via the inclusion Z2n →֒ C× :
1 (mod2n) 7→ ζ := e

2πi

2n .
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Definition 2.4. Let L = (L, E) be an object of Fuk(X). Define

Φ(L) := (L, E ⊗ EL).

Remark 2.5. If L is oriented, then θL has a lift in the fiberwise double
cover of ι∗LX which lies between ι∗LX and ι∗L′

X . It follows that the Z2n-local
system EL is reduced to a Zn-local system, and hence Φn(L) = L. Similarly,
if L is Z2n-graded with respect to the fiberwise covering map L′

X → LX , i.e.
θL has a lift in ι∗L′

X , then Φ(L) = L.

Remark 2.6. Suppose X is Kähler and L is a special Lagrangian in the
complement of an anti-canonical divisor D (say defined by a section s of
K−1
X ). Then EL is the restriction of a local system on X \D, namely, the

inverse image of s|X\D with respect to the fiberwise covering mapK ′ → K−1
X

(branched along the zero section) where K ′ is the complex line bundle with
c1(K

′) = α where α is given in Assumption (A). The reason is that since L
is a special Lagrangian, the two non-vanishing sections of K−1

X , s|L and the
Gauss map of L, are homotopic through non-vanishing sections.

2.2. Morphism level

The linear part Φ1 of our twisted A∞ functor Φ is of the form

Φ1 : HomFuk(X)(L0,L1) → HomFuk(X)(Φ(L0),Φ(L1)).

By (A.1), the morphism space between two objects Li = (Li, Ei), i = 0, 1 of
Fuk(X) is given by

(2.3) HomFuk(X)(L0,L1) =
⊕

C∈π0(L0×ιL1)

Ω•(C;Hom(E0|C , E1|C)).

Then

HomFuk(X)(Φ(L0),Φ(L1))

=
⊕

C∈π0(L0×ιL1)

Ω•(C;Hom((E0 ⊗ EL0
)|C , (E1 ⊗ EL1

)|C))

≃
⊕

C∈π0(L0×ιL1)

Ω•(C;Hom(E0|C , E1|C)⊗Hom(EL0
|C , EL1

|C)).(2.4)

Define the family version of the canonical short path [6], θCt , taking θL0
|C

to θL1
|C through sections of ι∗LX over C as follows. Consider the symplectic
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vector bundle VC := TC⊥ω/TC defined on C with the induced symplectic
form [ω]. Its associated Lagrangian Grassmannian bundle LC := LG(VC , [ω])
embeds canonically into LX |C through the quotient map TC⊥ω ↠ VC . No-
tice that the images of θL0

|C and θL1
|C lie in LC . Choose a compatible almost

complex structure JC on (VC , [ω]) such that JC · TL0/TC = TL1/TC. Then
the desired path θCt is defined by

(2.5) θCt := e−
πt

2
JC · TL0/TC, t ∈ [0, 1].

Remark 2.7. It can be shown that θCt is independent of JC up to homo-
topy.

The lift of θCt with respect to the fiberwise covering map L′
X |C → LX |C

gives an isomorphism sC : EL0
|C → EL1

|C of local systems and hence a flat
section of Hom(EL0

|C , EL1
|C) which is denoted by the same notation sC .

By (2.3) and (2.4), sC induces a chain isomorphism

fC : (Ω•(C;Hom(E0|C , E1|C)),m1,0)

→ (Ω•(C;Hom((E0 ⊗ EL0
)|C , (E1 ⊗ EL1

)|C)),m1,0) .

For later use, we denote by C ′ the connected component C regarded
as an element of π0(L1 ×ι L0), i.e. considered by interchanging L0 and L1.
Define sC′ and fC′ similarly. Notice that in this case, we should start with
the canonical short path taking θL1

|C to θL0
|C .

Before defining Φ1, recall that our goal is not to define an A∞ functor
but a twisted one. That means Φ1 should not commute with m1,0 exactly,
but commute with it up to a twist. Hence it is natural to introduce the
following operator

Definition 2.8. Let A• =
⊕

r∈ZA
r and B• =

⊕

r∈ZB
r be two cochain

complexes and f : A• → B• be a chain map. Define a map f ζ : A• → B•

by

f ζ |Ar := ζ−ridAr

for any r ∈ Z. Notice that f ζ is no longer a chain map.

Definition 2.9. Define

Φ1 :=
⊕

C∈π0(L0×ιL1)

f ζC

and Φk := 0 for k ⩾ 2.
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2.3. Proof of Theorem 1.1

It is clear from the construction that Φ has order 2n. Thus it remains to
verify that Φ satisfies the twisted A∞ equations

(2.6) mk ◦ Φ
⊗k
1 = ζ2−kΦ1 ◦mk, k ⩾ 0.

Let
−→
L = (L0, . . . ,Lk) be a sequence of k + 1 objects of Fuk(X). Put L−1 :=

Lk. Suppose for each i = 0, . . . , k, Li−1 and Li intersect cleanly. By (A.3),
the A∞ product map

mk :

k
⊗

i=1

HomFuk(X)(Li−1,Li) → HomFuk(X)(L0,Lk)

is equal to the sum
∑

−→
C ,β

TE(β)m
k,β,

−→
L ,

−→
C

where

m
k,β,

−→
L ,

−→
C

:

k
⊗

i=1

Ω•(Ci;Hom(Ei−1|Ci
, Ei|Ci

)) → Ω•(C ′
0;Hom(E0|C′

0
, Ek|C′

0
))

is a multilinear map,
−→
C = (C0, . . . , Ck) with Ci ∈ π0(Li−1 ×ι Li), β ∈

π2

(

X,
⋃k
i=0 ι(Li)

)

such that Mk+1(
−→
L ,

−→
C , β, J) ̸= ∅ and E(β) =

∫

β
ω is the

symplectic area.

Put Φ(
−→
L ) := (Φ(L0), . . . ,Φ(Lk)) and fix

−→
C . Equation (2.6) will be ver-

ified if we show that

(2.7) m
k,β,Φ(

−→
L ),

−→
C
◦

(

k
⊗

i=1

f ζCi

)

= ζ2−kf ζC′
0
◦m

k,β,
−→
L ,

−→
C
.

Consider inputs ai∈Ωri(Ci, Hom(Ei−1|Ci
, Ei|Ci

)). Then f ζCi
(ai)=ζ

−rifCi
(ai).

Case (k, β) = (1, 0)

In this case,
−→
L = (L0,L1),

−→
C = (C0, C1), and it is necessary that C ′

0 =
C1. The LHS of (2.7) is equal to ζ−r1m

1,0,Φ(
−→
L ),

−→
C
(fC1

(a1)) and the RHS of

(2.7) is equal to ζ2−1 · ζ−(r1+1)fC′
0
(m

1,0,
−→
L ,

−→
C
(a1)).

Since −r1 = 2− 1− (r1 + 1), C ′
0 = C1 and fC1

is a chain map, (2.7)
holds.
Case (k, β) ̸= (1, 0)
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The LHS of (2.7) is equal to ζ−
∑

k

i=1 rim
k,β,Φ(

−→
L ),

−→
C
(fC1

(a1), . . . , fCk
(ak))

and the RHS of (2.7) is equal to ζ2−k−r0fC′
0
(m

k,β,
−→
L ,

−→
C
(a1, . . . , ak)) where r0

is the degree of m
k,β,

−→
L ,

−→
C
(a1, . . . , ak). By A.2,

r0 =

(

dim(C0)−
1

2
dim(X)

)

+ 2− k − µ(β) +

k
∑

i=1

ri.

In other words, we have to show

m
k,β,Φ(

−→
L ),

−→
C
(fC1

(a1), . . . , fCk
(ak))

= ζµ(β)−(dim(C0)−
1

2
dim(X))fC′

0
(m

k,β,
−→
L ,

−→
C
(a1, . . . , ak)).

Observe that the holonomy contribution of a J-holomorphic polygon

u ∈ Mk+1

(−→
L ,

−→
C , β, J

)

to m
k,β,Φ(

−→
L ),

−→
C

is equal to the tensor product of the

holonomy contribution of the same polygon to m
k,β,

−→
L ,

−→
C

and

PT (ũ[ξk,ξ0], ELk
) ◦ (sCk

)ũ(ξk) ◦ · · · ◦ (sC1
)ũ(ξ1) ◦ PT (ũ[ξ0,ξ1], EL0

)

∈ Hom
(

(EL0
)ũ(ξ+0 ), (ELk

)ũ(ξ−0 )

)

where PT (γ, E) is the parallel transport of the local system E along the path
γ and

ũ(ξi) := (ũ(ξ−i ), ũ(ξ
+
i ))

:=



 lim
ξ→ξi

ξ∈(ξi−1,ξi)

ũ[ξi−1,ξi](ξ), lim
ξ→ξi

ξ∈(ξi,ξi+1)

ũ[ξi,ξi+1](ξ)



 ∈ Ci.

The last expression is illustrated schematically as follows.
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ξ0

ξ1ξ2

ξkξk−1

L0

L1

Lk

Lk−1

u

PT (ũ[ξ0,ξ1], EL0
)

PT (ũ[ξ1,ξ2], EL1
)

PT (ũ[ξk−1,ξk], ELk−1
)

PT (ũ[ξk,ξ0], ELk
)

sC1
sC2

sCk
sCk−1

Hence it suffices to show that this expression is equal to

ζµ(β)−(dim(C0)−
1

2
dim(X))sC′

0
.

Since the concatenation of two canonical short paths in LC0
, from

TLk/TC0 to TL0/TC0 and from TL0/TC0 back to TLk/TC0 has Maslov
index −dim

(

TC⊥ω
0 /TC0

)

= dim(C0)−
1
2dim(X), we have

sC′
0
◦ sC0

= ζdim(C0)−
1

2
dim(X)idEL0

.

Hence the last claim is equivalent to

sC0
◦ PT (ũ[ξk,ξ0], ELk

) ◦ (sCk
)ũ(ξk) ◦ · · ·(2.8)

◦ (sC1
)ũ(ξ1) ◦ PT (ũ[ξ0,ξ1], EL0

) = ζµ(β)idEL0
.

To show (2.8), notice that the domain of u is contractible3, and hence
the bundle u∗L′

X has a fiberwise infinite cover L′′ → u∗L′
X , i.e. its deck

transformation group is isomorphic to Z.

3In case u contains sphere bubbles, we still regard the domain of u as the punc-
tured disk by contracting a finite collection of loops. The argument which follows
will also work because Maslov index is additive with respect to cut-and-paste op-
eration.
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Consider the loop η in u∗LX which is the concatenation of following
paths (in the given order)

θL0
(ũ[ξ0,ξ1]), θ

C1

t (ũ(ξ1)), . . . , θ
Ck

t (ũ(ξk)), θLk
(ũ[ξk,ξ0]), θ

C0

t (ũ(ξ0)).

Then the lifts of η in u∗L′
M and in L′′ are paths whose end points are

related by some group elements a ∈ Z2n and b ∈ Z respectively. It is easy
to see that ζa = ζb. By definition, ζaidEL0

is equal to the LHS of (2.8) and
b = µ(β). This shows (2.8) and hence completes the proof of Theorem 1.1.

Remark 2.10. The construction of the A∞ structure mk is usually sup-
plied with some algebraic tools. For example, the perturbation theory of
Kuranishi spaces only gives “mk,β modulo TE” [15] or an “AN,K structure”
[4, 17]. In order to enhance them to an A∞ structure, algebraic arguments
such as the homological perturbation and the approximate A∞ Whitehead’s
theorem are used. It is straightforward to keep track of these arguments
and show that Φ : Fuk(X) → Fuk(X)(ζ) is an A∞ functor. The key point
is that Φ1 is a (twisted) chain isomorphism which allows us to transport
the data used in the construction of the A∞ structure, such as the inputs
for the homological perturbation and the homotopy inverses given by the
approximate A∞ Whitehead’s theorem, from the source Fuk(X) to the tar-
get Fuk(X)(ζ) of Φ. Since we are using different data for the source and
the target, we should consider Φ only well-defined up to A∞ homotopy. In
particular, Φ2n is only A∞ homotopic to the identity.

3. Action on (M,W )

Define

Λ :=

{

∞
∑

i=0

aiT
λi

∣

∣

∣

∣

∣

ai ∈ C, λ0 ⩽ λ1 ⩽ · · · , lim
i→+∞

λi = +∞

}

Λ0 :=

{

∞
∑

i=0

aiT
λi

∣

∣

∣

∣

∣

ai ∈ C, 0 ⩽ λ0 ⩽ λ1 ⩽ · · · , lim
i→+∞

λi = +∞

}

Λ+ :=

{

∞
∑

i=0

aiT
λi

∣

∣

∣

∣

∣

ai ∈ C, 0 < λ0 ⩽ λ1 ⩽ · · · , lim
i→+∞

λi = +∞

}

UΛ := C⊕ Λ+.
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Define the valuation val : Λ → R ∪ {+∞} by val(0) := +∞ and

val

(

∞
∑

i=0

aiT
λi

)

:= λmin{i|ai ̸=0}.

Similarly, define val : V ⊗C Λ → R for any C-vector space V .
We start by recalling the Fukaya’s trick and the definition of Mweak(L).

Details can be found in [13, 31, 32].

3.1. The Fukaya’s trick and Mweak(L)

Let L be a compact, oriented, relatively spin Lagrangian of X. In what fol-
lows, unless otherwise specified, the coefficient ring of the de Rham complex
Ω•(L) and the cohomology H•(L) is taken to be Λ0. In [13], Fukaya con-
structed, for any ω-tame almost complex structure J on X, a cyclic unital
filtered A∞ structure mJ = (mJ

k,β) on Ω•(L) which satisfies the open string
analogue of the divisor axiom originating from the closed string Gromov-
Witten theory:

∑

m0+···+mk=m

mJ
k+m,β(b

⊗m0 , x1, b
⊗m1 , . . . , b⊗mk−1 , xk, b

⊗mk)(3.1)

=
⟨∂β, b⟩m

m!
mJ
k,β(x1, . . . , xk)

for any β withM1(L, β, J) ̸= ∅, k,m ⩾ 0 with (k,m, β) ̸= (0, 1, 0); b ∈ Ω1(L)
and x1, . . . , xk ∈ Ω•(L).

Moreover, for any smooth family J = {Jt}t∈[0,1] of ω-tame almost com-
plex structures on X, the A∞ quasi-isomorphism FJ : (Ω•(L),mJ0) →
(Ω•(L),mJ1) induced by the associated pseudo-isotopy is cyclic, unital and
satisfies the similar divisor axiom:

∑

m0+···+mk=m

FJ
k+m,β(b

⊗m0 , x1, b
⊗m1 , . . . , b⊗mk−1 , xk, b

⊗mk)(3.2)

=
⟨∂β, b⟩m

m!
FJ
k,β(x1, . . . , xk)

for any β withM1(L, β, J) ̸= ∅, k,m ⩾ 0 with (k,m, β) ̸= (0, 1, 0); b ∈ Ω1(L)
and x1, . . . , xk ∈ Ω•(L).

Notice that mJ
1,0 is equal to the de Rham differential and FJ

1,0 is equal
to the identity.
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By passing to the canonical model via homological perturbation, the
above story holds with Ω•(L) replaced by H•(L), except that mJ

1,0 is now
equal to zero.

An immediate consequence of (3.1) is the following. Let b ∈ H1(L). De-
fine mJ,b = (mJ,b

k,β) where m
J,b
k,β : H•(L)⊗k → H•(L) is given by

mJ,b
k,β(x1, . . . , xk)

:=

∞
∑

m=0

∑

m0+···+mk=m

mJ
k+m,β(b

⊗m0 , x1, b
⊗m1 , . . . , b⊗mk−1 , xk, b

⊗mk).

By (3.1), mJ,b
k,β = e⟨∂β,b⟩mJ

k,β . In other words, mJ,b is equal to mJ twisted

by the local system Eb with holonomy e⟨−,b⟩. This allows us to identify the
Lagrangian brane (L, Eb) with the Lagrangian brane (L, b) where the latter
does not carry any local system but an element b ∈ H1(L) which will play
the role of weak bounding cochain.

Take a basis {e1, . . . , eℓ} of H1(L;Z)/torsion. Then every element b ∈
H1(L) can be written uniquely as b = x1e1 + · · ·+ xℓeℓ with x1, . . . , xℓ ∈ Λ0.
Put yi = exi . Then y1, . . . , yℓ are coordinates of the ℓ-torus H1(L; Λ×) over
the Novikov field4 (Λ× := Λ− {0}).

Consider a formal power series P on H1(L; Λ×)⊕Hodd>1(L; Λ) defined
by

P (y1, . . . , yℓ, b>1) :=
∑

k,β

TE(β)y
⟨∂β,e1⟩
1 · · · y

⟨∂β,eℓ⟩
ℓ mJ

k,β((b>1)
⊗k).

Theorem 3.1. [13, Theorem 1.2] P is convergent in

Vδ = {(y1, . . . , yℓ, b>1)| val(y1), . . . , val(yℓ) ∈ (−δ, δ), b>1 ∈ Hodd>1(L; Λ+)}

where δ > 0 is a positive constant.

The proof is based on the following argument which is what the Fukaya’s
trick refers to. Consider a Weinstein neighbourhood U of L. Then every
small α = v1e1 + · · ·+ vℓeℓ ∈ H1(L;R), i.e. v1, . . . , vℓ are real numbers close
enough to 0, gives rise to a nearby Lagrangian L(α) lying inside U which is
expressed as the graph of a closed 1-form representing α. Take a diffeomor-
phism Fα of X such that Fα(L) = L(α) and (Fα)∗J := dFα ◦ J ◦ (dFα)

−1

4In order for yi = exi to have meaning, it is necessary and sufficient that yi ∈ UΛ.
But for the purpose of extending the domain of definition of the function P which
will be introduced shortly, we regard each yi formally as an element of Λ×.
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is ω-tame5. Write β′ := (Fα)∗β, e
′
i = (Fα)∗ei, etc. Let E(β) denote the sym-

plectic area
∫

β
ω.

By the facts that E(β′) = E(β) + ⟨∂β, α⟩ and the moduli spaces
Mk+1(L, β, J) are identified with Mk+1(L(α), β

′, (Fα)∗J) as Kuranishi
spaces (see [4, 13, 16, 17] for the definition), we have

P (y1, . . . , yℓ, b>1)

=
∑

k,β′

TE(β′) · T−⟨∂β,v1e1+···+vℓeℓ⟩y
⟨∂β′,e′1⟩
1 · · · y

⟨∂β′,e′ℓ⟩
ℓ m

(Fα)∗J
k,β′ ((b′>1)

⊗k)

=
∑

k,β′

TE(β′)
(

T−v1y1
)⟨∂β′,e′1⟩ · · ·

(

T−vℓyℓ
)⟨∂β′,e′ℓ⟩m

(Fα)∗J
k,β′ ((b′>1)

⊗k).

It follows that P (y1, . . . , yℓ, b>1) is convergent if val(yi) = vi, i = 1, . . . , ℓ,
by Gromov compactness.

Definition 3.2. Define the local mirror of L, denoted by Mweak(L,m
J),

to be

{b = (y1, . . . , yℓ, b>1) ∈ Vδ| P (b) =W (b) · 1 for some scalar W (b)}/∼

where ∼ is the gauge equivalence [17]. Notice that it depends on J .

The proof of Theorem 3.1 suggests that Mweak(L,m
J) contains not

only the weak bounding cochains (over Λ+) on L but also those on all
nearby Lagrangians (up to Hamiltonian isotopy). Therefore, for any two
Lagrangians L and L′ which are close to each other, their local mirrors
overlap. More precisely, they contain weak bounding cochains (over Λ+)
on all Lagrangians which are close to L and L′ simultaneously. The gluing
function defined on this overlapping region can be obtained as follows.

Take a smooth path {F t
L,L′}t∈[0,1] of diffeomorphisms of X such that

F0
L,L′ = id, F1

L,L′(L) = L′ and (F t
L,L′)−1

∗ J remains ω-tame for all t. Put J :=

{(F t
L,L′)−1

∗ J}t∈[0,1]. Then J induces an A∞ quasi-isomorphism FJ satisfying
(3.2). Define

FJ
∗ : Mweak(L,m

J) 99K Mweak(L,m
(F1

L,L′ )
−1
∗ J)

by

FJ
∗ (b) :=

(

y1e
⟨pr1(f(b)),e

∨
1 ⟩, . . . , yℓe

⟨pr1(f(b)),e
∨
ℓ ⟩, pr ̸=1(f(b))

)

5The latter condition is satisfied if α is small enough.
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where {e∨1 , . . . , e
∨
ℓ } is the dual basis of {e1, . . . , eℓ}, pr1 (resp. pr ̸=1) is the

projection of H•(L; Λ) onto H1(L; Λ) (resp.
⊕

d ̸=1H
d(L; Λ)), and f(b) :=

∑

k,β T
E(β)y

⟨∂β,e1⟩
1 · · · y

⟨∂β,eℓ⟩
ℓ FJ

k,β((b>1)
⊗k). Here the dash arrow indicates

that FJ
∗ is defined only on an open subset of the domain due to the conver-

gence issue which will be discussed shortly.
On the other hand, the diffeomorphism F1

L,L′ induces a bijection ψ :

Mweak(L,m
(F1

L,L′ )
−1
∗ J) → Mweak(L

′,mJ) given by

ψ(y1, . . . , yℓ, b>1) :=
(

T−v1(F1
L,L′)∗y1, . . . , T

−vℓ(F1
L,L′)∗yℓ, (F

1
L,L′)∗(b>1)

)

where we regard L′ as the graph of a closed 1-form representing v1e1 + · · ·+
vℓeℓ.

Then the desired gluing function ΨL,L′ is defined to be the composite

Mweak(L,m
J)

F
J

∗ Mweak(L,m
(F1

L,L′ )
−1
∗ J)

ψ
−−→ Mweak(L

′,mJ).

It turns out that FJ
∗ is convergent at any point which corresponds to a third

Lagrangian L′′ which is close to L and L′ simultaneously (i.e. the overlapping
region). This is proved by a family version of the Fukaya’s trick [31]. The key
point is to find a family {Gt}t∈[0,1] of diffeomorphisms such that Gt(L) = L′′

for all t and {(Gt)∗J }t∈[0,1] is a family of ω-tame almost complex structures
joining (Fα)∗J and (Fα′)∗J where L′′ = Fα(L) = Fα′(L′) and Fα (resp. Fα′)
are the diffeomorphisms used in the proof of Theorem 3.1 for L (resp. L′).

3.2. Action on (Mweak(L),W )

Recall the Z2n-local system EL from Section 2.1. Since L is oriented, EL is
reduced to a Zn-local system. See Remark 2.5. Hence EL is represented by
an element γ ∈ Hom(H1(L;Z),C

×) with the property that

γ(∂β) = ζµ(β)

for any β ∈ π2(X,L) where ζ = e
2πi

2n . See (2.8). Write γi := γ(e∨i ), i = 1, . . . , ℓ.
Apply the operator (·)ζ from Section 2.2 to idH•(L;Λ+). Recall it means

idζ |Hd(L;Λ+) = ζ−didHd(L;Λ+).

Definition 3.3. Define τ : Vδ → Vδ by

τ(y1, . . . , yℓ, b>1) :=
(

γ1y1, . . . , γℓyℓ, ζid
ζ(b>1)

)

.
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Lemma 3.4. If b ∈ Mweak(L,m
J), then τ(b) ∈ Mweak(L,m

J) and

W (τ(b)) = ζ2W (b).

Proof. Write b>1 =
∑

bi with bi ∈ H i(L; Λ+). We have

P (b) =
∑

k,β

∑

i1,...,ik

TE(β)y
⟨∂β,e1⟩
1 · · · y

⟨∂β,eℓ⟩
ℓ mJ

k,β(bi1 , . . . , biℓ)

=W (b) · 1.

On the other hand,

P (τ(b))

=
∑

k,β

∑

i1,...,ik

TE(β) (γ1y1)
⟨∂β,e1⟩ · · · (γℓyℓ)

⟨∂β,eℓ⟩ ζk−(i1+···+ik)mJ
k,β(bi1 , . . . , biℓ)

=
∑

k,β

∑

i1,...,ik

TE(β)y
⟨∂β,e1⟩
1 · · · y

⟨∂β,eℓ⟩
ℓ γ(β)ζk−(i1+···+ik)mJ

k,β(bi1 , . . . , biℓ)

=
∑

k,β

∑

i1,...,ik

TE(β)y
⟨∂β,e1⟩
1 · · · y

⟨∂β,eℓ⟩
ℓ ζµ(β)+k−(i1+···+ik)mJ

k,β(bi1 , . . . , biℓ)

= ζ2
∑

k,β

∑

i1,...,ik

TE(β)y
⟨∂β,e1⟩
1 · · · y

⟨∂β,eℓ⟩
ℓ ζ−[i1+···+ik+2−k−µ(β)]mJ

k,β(bi1 , . . . , biℓ)

Notice that mJ
k,β(bi1 , . . . , bik) has degree i1 + · · ·+ ik + 2− k − µ(β), and

hence

P (τ(b)) = ζ2 idζ(P (b)) = ζ2 idζ(W (b) · 1) = ζ2W (b).

The proof that τ preserves gauge equivalences is similar. □

It is clear that τn = id. We have proved

Proposition 3.5. (=Proposition 1.2) There is a Zn-action on Mweak(L,m
J)

with respect to which W is equivariant.

3.3. Commute with wall-crossing

Recall ΨL,L′ is defined to be the composite

Mweak(L,m
J)

F
J

∗ Mweak(L,m
(F1

L,L′ )
−1
∗ J)

ψ
−−→ Mweak(L

′,mJ).
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By Proposition 3.5, Zn acts on the following local mirrors

Mweak(L,m
J),Mweak(L,m

(F1
L,L′ )

−1
∗ J),Mweak(L

′,mJ)

with respect to which W is equivariant.

Lemma 3.6. τ commutes with FJ
∗ .

Proof. Write b>1 =
∑

bi as before. We have

f(τ(b))

=
∑

k,β

TE(β) (γ1y1)
⟨∂β,e1⟩ · · · (γℓyℓ)

⟨∂β,eℓ⟩ FJ
k,β((ζ idζ(b>1))

⊗k)

=
∑

k,β

∑

i1,...,ik

TE(β)y
⟨∂β,e1⟩
1 · · · y

⟨∂β,eℓ⟩
ℓ ζµ(β)+k−(i1+···+ik)FJ

k,β(bi1 , . . . , bik)

= ζ
∑

k,β

∑

i1,...,ik

TE(β)y
⟨∂β,e1⟩
1 · · · y

⟨∂β,eℓ⟩
ℓ ζ−[i1+···+ik+1−k−µ(β)]FJ

k,β(bi1 , . . . , bik).

Since FJ
k,β(bi1 , . . . , bik) has degree i1 + · · ·+ ik + 1− k − µ(β), we have

f(τ(b)) = ζ idζ(f(b)).

Then

FJ
∗ ◦ τ(b) =

(

γ1y1e
⟨pr1(f(τ(b))),e

∨
1 ⟩, . . . , γℓyℓe

⟨pr1(f(τ(b))),e
∨
ℓ ⟩, pr ̸=1(f(τ(b)))

)

=
(

γ1y1e
⟨pr1(f(b)),e

∨
1 ⟩, . . . , γℓyℓe

⟨pr1(f(b)),e
∨
ℓ ⟩, ζ idζ(pr ̸=1(f(b)))

)

= τ ◦ FJ
∗ (b).

(We have used the fact that idζ commutes with pr1 and pr ̸=1.) □

Lemma 3.7. τ commutes with ψ.

Proof. It follows from the fact that if ιt : L→ X is a Lagrangian isotopy,
then the local systems ι∗0Eι0(L) and ι

∗
1Eι1(L) on L are isomorphic, as they are

isomorphic to a local system on L× [0, 1] restricted to the slices L× {0}
and L× {1} respectively. □

Therefore, we have proved

Proposition 3.8. (=Proposition 1.3) τ commutes with ΨL,L′.
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4. Extending the action to the complete mirror

Let X,D and (X̌◦,W ) be given as in the introduction. Recall that X is
Kähler,D is an anticanonical divisor ofX and (X̌◦,W ) is the uncompactified
mirror obtained by gluing the local mirror charts of the smooth torus fibers
of an SYZ fibration on X −D following Fukaya’s scheme.
Assumptions (B).

• X̌◦ is an analytic variety over C.

• (X̌◦,W ) can be completed to (X̌,W ) where X̌ is a normal affine an-
alytic variety and W : X̌ → C is a holomorphic function.

• The complement X̌ − X̌◦ is contained in a closed analytic subset A
which has codimension at least two.

• There is a Zn-action on (X̌◦,W ), i.e. there is a biholomorphism τ :
X̌◦ → X̌◦ such that τn = id and

W (τ · x) = e
2πi

n W (x), x ∈ X̌◦.

Notice that the last assumption is actually the outcome of Corollary 1.5. As
for the first three, we emphasize that they are reasonable if X is Fano. For
example, consider the complete SYZ mirror of the famous special Lagrangian
torus fibration defined on CP 2 minus a line and a conic which is given by

X̌ = {(u, v) ∈ C
2| uv ̸= 1}

W = u+
v2

uv − 1
.

The only point that the local mirror charts of the Clifford tori and Chekanov
tori do not cover is (0, 0). (It is covered by the local mirror chart of the
immersed 2-sphere.) This point has codimension two, and the desired action
is given by (u, v) 7→ (ζu, ζ−1v) where ζ = e

2πi

3 .
Back to the general case.

Proposition 4.1. Under the assumptions (B), the Zn-action on (X̌◦,W )
extends to a unique Zn-action on (X̌,W ).

Proof. Let U := X̌ −A. Define

V :=

n−1
⋂

i=0

τ i(U).
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Then V is an open analytic subset of X̌ whose complement has codimension
at least two. Moreover, V is contained in X̌◦ and is invariant under the given
Zn-action. It follows that Zn acts on the ring C[V ] of holomorphic functions
on V . But the inclusion V →֒ X̌ induces an isomorphism C[X̌] ≃ C[V ] by

Lemma 4.2. (The second Riemann extension theorem, see e.g. [20, Chap-
ter 7]) Every holomorphic function on V extends to a unique holomorphic
function on X̌.

It follows that Zn acts on the ring C[X̌] and hence on the space X̌, since
X̌ is affine. It is clear that this action is the unique extension of the given
one on X̌◦ and W is equivariant in the above sense. □

Appendix A. Fuk(X)

The objects of Fuk(X) consist of L = (L, E)6 where L is taken from a fixed
finite collection of immersed compact oriented Lagrangians of X with clean
self-intersection and E is a C×-local system on L.

For any pair L0, L1 of such Lagrangians, let ι : Li → X, i = 0, 1 denote
the immersion. Suppose L0 and L1 intersect cleanly. Recall it means the
fiber product

L0 ×ι L1 := {(x, y) ∈ L0 × L1| ι(x) = ι(y)}

is smooth and satisfies

T(x,y)(L0 ×ι L1) = TxL0 ×dι TyL1

for any (x, y) ∈ L0 ×ι L1.
Define the morphism space between two objects Li = (Li, Ei), i = 0, 1

by

(A.1) HomFuk(X)(L0,L1) :=
⊕

C∈π0(L0×ιL1)

Ω•(C;Hom(E0|C , E1|C))

where Ω•(C; E) is any of the standard models (de Rham, singular cochain,
etc) of the cohomology group H•(C; E) with local coefficient E7.

6A relative spin structure on L is also included as part of the data. But since it
is not relevant for our construction, we drop it from the discussion.

7Strictly speaking, the local system Hom(E0|C , E1|C) in (A.1) has to be twisted
by a Z2-local system which is used to orient the moduli spaces of holomorphic disks.
Since our Φ will not modify it, we drop it from the discussion.
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The A∞ structure on Fuk(X) is defined by making sense of the slogan

“counting holomorphic polygons”. Let
−→
L = (L0, . . . ,Lk) be a sequence of

k + 1 objects of Fuk(X) such that Li−1 and Li intersect cleanly for each

i = 0, . . . , k. (Here L−1 = Lk.) Let
−→
L = (L0, . . . , Lk). For each i = 0, . . . , k,

fix a connected component Ci ∈ π0(Li−1 ×ι Li). Let C
′
0 denote the connected

component C0 regarded as an element of π0(L0 ×ι Lk). Fix a homotopy class

β ∈ π2

(

X,
⋃k
i=0 ι(Li)

)

and an ω-tame almost complex structure J on X.

The domain Σ of holomorphic polygons are bordered Riemann surfaces
of genus zero with boundary marked points ξ0, . . . , ξk, ξk+1 = ξ0 arranged
counterclockwise. For each pair of consecutive marked points ξi and ξi+1,
we denote by [ξi, ξi+1] the arc in ∂Σ drawn from ξi to ξi+1 counterclockwise.

Define Mk+1(
−→
L ,

−→
C , β, J) to be the moduli space of J-holomorphic poly-

gons u which represents β and has continuous lifts ũ[ξi,ξi+1], i = 0, . . . , k into
Li along the arc [ξi, ξi+1] such that for each i

ũ(ξi) := (ũ(ξ−i ), ũ(ξ
+
i ))

:=



 lim
ξ→ξi

ξ∈(ξi−1,ξi)

ũ[ξi−1,ξi](ξ), lim
ξ→ξi

ξ∈(ξi,ξi+1)

ũ[ξi,ξi+1](ξ)



 ∈ Ci.

The virtual dimension of Mk+1(
−→
L ,

−→
C , β, J) is equal to 1

2dim(X) + µ(β) +
k − 2 where µ(β) is the Maslov index of β which is defined in the standard
way. See [4]. Notice that in the presence of corners, µ(β) depends on an
assignment to each marked point ζi a path in the Lagrangian Grassmannian
LG(Tu(ξi)X,ωu(ξi)) joining the two limiting Lagrangian subspaces at u(ξi)
(from the left and from the right) determined by a representative u. In our
case, we have chosen the canonical short path (2.5) from Section 2.2.

By performing abstract or rigid count of elements of Mk+1(
−→
L ,

−→
C , β, J),

weighted by the holonomy of Ei’s along their boundary arcs, one obtains a
multilinear map

m
k,β,

−→
L ,

−→
C

:

k
⊗

i=1

Ω•(Ci;Hom(Ei−1|Ci
, Ei|Ci

))(A.2)

→ Ω•(C ′
0;Hom(E0|C′

0
, Ek|C′

0
))

of degree
(

dim(C0)−
1
2dim(X)

)

+ 2− k − µ(β). (The degree can be seen

from the dimension of Mk+1(
−→
L ,

−→
C , β, J) given above.)
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The A∞ product map

mk :

k
⊗

i=1

HomFuk(X)(Li−1,Li) → HomFuk(X)(L0,Lk)

is then defined to be

(A.3) mk :=
∑

−→
C ,β

TE(β)m
k,β,

−→
L ,

−→
C

over all
−→
C =(C0, . . . , Ck) with Ci∈π0(Li−1×ιLi) and β∈π2

(

X,
⋃k
i=0 ι(Li)

)

for which Mk+1(
−→
L ,

−→
C , β, J) ̸= ∅. (Here E(β) =

∫

β
ω is the symplectic area.)

In general, Fuk(X) is defined over the Novikov ring Λ0.
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