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K. Cieliebak, H. Hofer, J. Latschev, and F. Schlenk (CHLS) posed
the problem of finding a minimal generating set for the (symplectic)
capacities on a given symplectic category. We show that if the
category contains a certain one-parameter family of objects, then
every countably Borel-generating set of (normalized) capacities has
cardinality (strictly) bigger than the continuum. This appears to
be the first result regarding the problem of CHLS, except for two
results of D. McDuff about the category of ellipsoids in dimension 4.

We also prove that every finitely differentiably generating set of
capacities on a given symplectic category is uncountable, provided
that the category contains a one-parameter family of symplectic
manifolds that is “strictly volume-increasing” and “embedding-
capacity-wise constant”. It follows that the Ekeland-Hofer capaci-
ties and the volume capacity do not finitely differentiably generate
all generalized capacities on the category of ellipsoids. This answers
a variant of a question of CHLS.

In addition, we prove that if a given symplectic category con-
tains a certain one-parameter family of objects, then almost no
normalized capacity is domain- or target-representable. This pro-
vides some solutions to two central problems of CHLS.
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“The introduction of the cipher 0 or the group concept was general non-
sense too, and mathematics was more or less stagnating for thousands
of years because nobody was around to take such childish steps . . . ”

— Alexander Grothendieck

1. Introduction

1.1. The problems and special cases of the main results

In this section we state special cases of the main results, since they seem
easier to digest. We postpone the statements of the general results until the
next section.1

Our first main result is concerned with generating sets of capacities on
symplectic categories. To explain a special case of this result, let n ∈ N0 :=

1In the spirit of Grothendieck we have aimed at formulating our main results in
the greatest possible generality.2 The anonymous referee for this article was afraid
that this would scare off readers. For this reason we first state special cases of the
results.

2Probably we failed miserably in this attempt.
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{0, 1, . . .}. We denote by Symp2n the category of all symplectic manifolds3 of
dimension 2n, with morphisms given by the symplectic embeddings4. Recall
that a subcategory C′ of a category C is called isomorphism-closed (in C) iff
every isomorphism of C starting at some object of C′ is a morphism of C′.5

Definition ((weak) symplectic category). A weak symplectic category
in dimension 2n is a subcategory C = (O,M) 6 of Symp2n, such that for
every (M,ω) ∈ O and every a ∈ (0,∞) we have (M,aω) ∈ O. We call such
a C a symplectic category if it is isomorphism-closed.

Remark. Weak symplectic categories were first defined in [3, 2.1. Defini-
tion, p. 5], where the adjective “weak” is left out. We explain the reason for
our change in terminology in Remark 11 on p. 849.

We denote by Bm
r (B

m
r ) the open (closed) ball of radius r around 0 in

Rm, and abbreviate

B := B2n
1 , Z2n

r := B2
r × R

2n−2, Z := Z2n
1 .

We equip B2n
r and Z2n

r with the standard symplectic form ωst. Let C =
(O,M) be a symplectic category.

Definition 1. A generalized capacity on C is a function

c : O → [0,∞]

with the following properties:

(i) (monotonicity) If (M,ω) and (M ′, ω′) are two objects in O between
which there exists a C-morphism, then

c(M,ω) ≤ c(M ′, ω′).

(ii) (conformality) For every (M,ω) ∈ O and a ∈ (0,∞) we have

c(M,aω) = a c(M,ω).

3In this article “manifold” refers to a smooth (C∞) real finite-dimensional man-
ifold. It is allowed to be disconnected and have boundary.

4By an embedding we mean an injective smooth immersion with continuous in-
verse. We do not impose any condition involving the boundaries of the two mani-
folds.

5In particular, it ends at some object of C′.
6Here O and M denote the classes of objects and morphisms of C, respectively.
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Assume now that B,Z ∈ O. Let c be a generalized capacity on C. We call c
a capacity iff it satisfies:

(iii) (non-triviality) c(B) > 0 and c(Z) <∞.

We call it normalized iff it satisfies:

(iv) (normalization) c(B) = c(Z) = π.7

We denote

Cap(C) :=
{
generalized capacity on C

}
.

Remark. There is a set-theoretic issue with this definition, which we will
resolve in Definition 12 in the next section. Compare to Remark 11.

Example 2 (embedding capacities). Let C = (O,M) be a symplectic
category in dimension 2n and (M,ω) an object of Symp2n. We define the
domain-embedding capacity for (M,ω) on C to be the function

cM,ω := cCM,ω : O → [0,∞],

cM,ω(M
′, ω′) := sup

{
c ∈ (0,∞)

∣∣ ∃ symplectic embedding

(M, cω) → (M ′, ω′)
}
.

We define the target-embedding capacity for (M,ω) on C to be the function

cM,ω := cM,ω
C : O → [0,∞],

cM,ω(M ′, ω′) := inf
{
c ∈ (0,∞)

∣∣ ∃ symplectic embedding

(M ′, ω′) → (M, cω)
}
.

These are generalized capacities.8 We define the Gromov width on C to be

(1) w := πcCB,ωst
.

If B,Z ∈ O, then by Gromov’s nonsqueezing theorem the Gromov width is
a normalized capacity.

7In [3, 2.1. Definition, p. 5] only the condition c(B) = 1 is imposed here. The
second part of our first main result, Theorem 17 below, holds even with our stronger
definition.

8In the definition on p. 13 in [3] (M,ω) is assumed to be an object of C, and
the morphisms in the definitions of the embedding capacities are asked to be C-
morphisms. However, in [3, Example 2, p. 14] the definition is applied with an
(M,ω) that is not an object of C. In order to make that example work, one needs
to allow for Symp2n-morphisms in the definition of the embedding capacities.
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Capacities on the category of all symplectic manifolds of a fixed dimen-
sion were introduced by I. Ekeland and H. Hofer in [5, 6]. They measure
how much a given symplectic manifold does not embed into another one. In
[3] the notion of a symplectic capacity on a general weak symplectic cate-
gory was introduced.9 For an overview over symplectic capacities we refer
to [3, 13, 14] and references therein.

To define the notion of a CHLS capacity-generating set, let f : [0,∞]ℓ →
[0,∞]ℓ

′

be a map. We call it homogeneous iff it is positively 1-homogeneous,
i.e., iff f(ax) = af(x) for every a ∈ (0,∞) and x ∈ [0,∞]ℓ.10 We equip [0,∞]ℓ

with the partial order given by x ≤ y iff xi ≤ yi for every i ∈ {1, . . . , ℓ}.
We call f monotone iff it preserves this partial order. As pointed out by
the authors of [3] in that article, if ℓ′ = 1, f is homogeneous and mono-
tone, and c1, . . . , cℓ are generalized capacities, then f ◦ (c1, . . . , cℓ) is again
a generalized capacity. Homogeneity and monotonicity are preserved under
compositions.

Examples. The following functions are homogeneous and monotone:

• maximum, minimum

• For every a ∈ [0,∞)ℓ and p ∈ R \ {0} the function

fa,p(x) :=
p

√√√√
ℓ∑

i=1

aix
p
i .

11

In the case a =
(
1
ℓ
, . . . , 1

ℓ

)
, p = 1 the function fa,p is the arithmetic

mean, and in the case a =
(
1
ℓ
, . . . , 1

ℓ

)
, p = −1 it is the harmonic mean.

• For every p ∈ [0,∞)ℓ satisfying
∑ℓ

i=1 pi = 1 the function

x 7→
ℓ∏

i=1

xpi

i .

In the case p =
(
1
ℓ
, . . . , 1

ℓ

)
this is the geometric mean.

9For the set-theoretic reason mentioned in Remark 11 one needs to ask that the
category is isomorphism-closed or small, in order to make sense of this definition.

10Here we use the convention a · ∞ := ∞ for every a ∈ (0,∞).
11Here we use the conventions∞+ a = ∞ for every a ∈ [0,∞],∞p = ∞ for every

p > 0, and 0p := ∞ and ∞p := 0 for every p < 0.
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Let C be a symplectic category and G a subset of Cap(C). By a finite
homogeneous monotone combination of G we mean an expression of the
form f ◦ (c1, . . . , cℓ), where ℓ ∈ N0, f : [0,∞]ℓ → [0,∞] is homogeneous and
monotone, and c1, . . . , cℓ ∈ G. We define the set CHLS generated by G to
be the set of all functions c : O → [0,∞] that are the pointwise limit of a
sequence of finite homogeneous monotone combinations of G. Since pointwise
limits preserve homogeneity and monotonicity, the set CHLS generated by
G consists again of generalized capacities.

By a CHLS (generalized-)(capacity-)generating set (for C) we mean a
subset G of Cap(C), whose CHLS generated set equals Cap(C).12 The set
CHLS generated by G is obtained by combining capacities in a lot of ways.
One may therefore expect that few capacities suffice to generate all the other
capacities. It is tempting to even look for a generating set of capacities that
is minimal, in the sense that none of its subsets is generating. This problem
was posed by K. Cieliebak, H. Hofer, J. Latschev, and F. Schlenk (CHLS):

Problem 3 ([3], Problem 5, p. 17). For a given symplectic category find
a minimal CHLS capacity-generating set.

In [3] CHLS also propose more restrictive notions of generating set, for
example one in which the only allowed combining functions f : [0,∞]ℓ →
[0,∞] are the minimum and the maximum. We call such a set limit-min/max
(capacity-)generating. A concrete instance of Problem 3 for this variant of
generation is the following.

Question 4. For a given symplectic category, does there exist a countable13

(minimal) limit-min/max capacity-generating set?

To our knowledge, up to now, Problem 3 and Question 4 have been
completely open, except for the following two results of D. McDuff.14 The
first result states that the ECH-capacities are generating in a weaker sense
for the category of ellipsoids in dimension 4, see Theorem 29 on p. 865. The
second result states that the Ekeland-Hofer capacities together with the vol-
ume capacity are not CHLS generating for the restriction category of (open)
ellipsoids (as defined on p. 844) in dimension 4. (See [10, Corollary 1.4].)

12This notion is introduced in [3, Problem 5, p. 17], where it is just called a
“generating system”. (The authors of that article do not explicitly state that G
should be a subset of Cap(C), but presumably they implicitly ask for this.)

13By this we mean finite or countably infinite.
14There are of course some trivial cases in which Question 4 is easy, e.g. the case

in which there are only finitely many C-isomorphism classes.
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By the continuum we mean the cardinality of the set of real numbers.
The following special case of our first main result (Theorem 17 on p. 854)
provides a negative answer to Question 4. In fact, it implies that there is
not even a generating set of cardinality at most that of the continuum.

Theorem 5 (cardinality of generating set). If n ≥ 2 then every limit-
min/max capacity-generating set for Symp2n has cardinality (strictly) bigger
than the continuum.

This result follows immediately from Corollary 18(i) on p. 855, which
follows from Theorem 17. This corollary greatly generalizes Theorem 5
by extending it to (differential) form categories containing a certain one-
parameter family of objects and by replacing the notion of limit-min/max
generation by the much weaker notion of countable Borel-generation. (See
Definition 16 on p. 853 and Remarks 15 and 19.)15 The idea of proof of part
of Theorem 17 is to use Stokes’ theorem for helicity. (We will explain this
in Subsection 2.4.)

Theorem 5 and - more generally - Corollary 18 diminish the hope of
finding manageable generating sets of (generalized) symplectic capacities.

Our second main result states that every suitably generating set for the
generalized capacities on a small weak form category is uncountable, if the
category contains a one-parameter family of objects that is “strictly volume-
increasing” and “embedding-capacity-wise constant”. Morally speaking, this
hypothesis is weaker than those of the first main result. As a special case the
second main result holds for the category of ellipsoids in dimension at least
4. This answers a variant of a question of CHLS about the Ekeland-Hofer
capacities.

To explain this, let (V, ω) be a (finite-dimensional) symplectic vector

space. We abbreviate V := (V, ω) and define ÕpV to be the category with
objects given by all pairs (U, ω|U), where U ranges over all open subsets of
V , and morphisms between two objects U,U ′ given by the restrictions φ|U ,
where φ ranges over all symplectomorphisms of V , such that φ(U) ⊆ U ′.
This is a small16 weak symplectic category. For such a category we define
the notion of a generalized capacity as in Definition 1.

Let i ∈ N0. The i-th Ekeland-Hofer capacity cEHi is a capacity on ÕpV ,
which is defined as a certain min-max involving the symplectic action, see

15We also formulate a version of the result for normalized capacities. See Corol-
lary 18(ii).

16A category is called small iff its objects and its morphisms form sets.
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[5, 6] or [3, p. 7]. The capacity cEH1 is normalized; the other Ekeland-Hofer
capacities are not normalized.

The Ekeland-Hofer capacities are hard to compute. Their values are
known for ellipsoids and polydisks, see [6, Proposition 4, p. 562] and [6,
Proposition 5, p. 563].

Recall that a (bounded, open, full) ellipsoid in V is a set of the form
p−1((−∞, 0)), where p : V → R is a quadratic polynomial function whose
second order part is positive definite. We equip each ellipsoid E with the
restriction of ω to E. We define the restriction category of ellipsoids to
be the full subcategory ẼllV of ÕpV consisting of ellipsoids.17 The objects

of ẼllV are uniquely determined by the Ekeland-Hofer capacities, up to
isomorphism, see [3, FACT 10, p. 27]. Therefore the following question seems
natural:

Question 6 ([3], Problem 15, p. 29). Do the Ekeland-Hofer capacities

together with the volume capacity18 form a CHLS generating set for ẼllV ?
19

In the case dimV = 4 this question was answered negatively by D. Mc-
Duff, see [10, Corollary 1.4]. A special case of our second main result, The-
orem 7 below, answers Question 6 in the negative in dimension at least 4,
if we replace “CHLS generating” by “finitely differentiably generating”, as
defined below. In fact, it states that every finitely differentiably generating
set on the category of ellipsoids is uncountable.

Let C be a small weak symplectic category. We call a subset G of Cap(C)
finitely differentiably (capacity-)generating for C iff for every c ∈ Cap(C)
there exist ℓ ∈ N0, c1, . . . , cℓ ∈ G, and a differentiable function f : [0,∞]ℓ →
[0,∞], such that c = f

(
c1, . . . , cℓ

)
.20 A special case of our second main result

is the following.

17The word “restriction” refers to the fact that the morphisms of ẼllV are restric-
tions of global symplectomorphisms. ẼllV is a subcategory of the category EllV
whose objects and morphisms are given by ellipsoids and all symplectic embeddings.
We reserve the nicer notation EllV for the bigger category.

18One needs to include the volume capacity, since the Ekeland-Hofer capacities
do not CHLS generate this capacity, see [3, Example 10, p. 28].

19In [3] it is only asked whether these generalized capacities generate all capaci-
ties, not all generalized capacities. However, from the discussion that precedes the
question it is clear that the authors intended to include the word generalized here.

20Here we view [0,∞] as a compact 1-dimensional manifold with boundary. Its
Cartesian power is a manifold with boundary and corners. The function f is only
assumed to be differentiable one time, with possibly discontinuous derivative.
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Theorem 7 (uncountability of every generating set for ellipsoids).
Let V be a symplectic vector space of dimension at least 4. Then every finitely
differentiably capacity-generating set for ẼllV is uncountable.

Proof. This follows from Theorem 25 on p. 860 and Example 26 by consid-
ering the ellipsoids

Ma :=

{
x =

(
x1, . . . , xn

)
∈ R

2n = (R2)n
∣∣∣∣
n−1∑

i=1

∥xi∥2 +
∥xn∥2
a

< 1

}
,

for a ∈ A := [1,∞). Here ∥ · ∥ denotes the Euclidean norm on R2. Our hy-
pothesis n ≥ 2 guarantees that the inequality “≤” in condition (10) on p. 860
holds. □

The idea of proof of Theorem 25 is to use Lebesgue’s Monotone Differenti-
ation Theorem. (We explain this in Subsection 2.4.)

By Theorem 7, in particular, the Ekeland-Hofer capacities together with
the volume capacity do not finitely differentiably generate the set of all
generalized capacities on ẼllV . This provides a negative answer to the vari-
ant of Question 6 involving the notion of finite differentiable generation.
We will generalize Theorem 7 to small weak form categories containing a
certain type of one-parameter family of objects. (See Theorem 25 on p. 860.)

Our first main result (Theorem 17 below) also has immediate applica-
tions to two questions that CHLS prominently posed as Problems 1 and 2
in their article [3]. To explain these problems, let n ∈ N and C = (O,M) be
a symplectic category in dimension 2n.

Definition (representability). Let c be a capacity on C. We call c (sym-
plectically) domain-/ target-representable iff there exists a symplectic man-
ifold (M,ω), for which c = cM,ω/ c = cM,ω (defined as in Example 2). We
call it connectedly target-representable iff there exists a connected symplec-
tic manifold (M,ω), for which c = cM,ω.

Remark. By definition, the topology of a manifold is second countable.
Without this condition every capacity would be target-representable, if all
objects of C are connected, see [3, Example 2, p. 14].
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Question 8 (target-representability, [3], p. 14, Problem 1). Which
(generalized) capacities on C are connectedly target-representable?21

Question 9 (domain-representability, [3], p. 14, Problem 2). Which
(generalized) capacities on C are domain-representable?22

In particular, one may wonder about the following:

Question 10. Is every generalized capacity connectedly target-representable?

If the answer to this question is “yes”, then this simplifies the study of
capacities, since we may then identify every capacity with some symplectic
manifold that target-represents it.

Apart from some elementary examples, up to now, the answers to Ques-
tions 8,9, and 10 appear to be completely unknown. In order to answer
Question 10 negatively, it seems that we need to understand all symplectic
embeddings from objects of C to all connected symplectic manifolds. At first
glance this looks like a hopeless enterprise.

The following application of the first main result may therefore come as
a surprise. Namely, the answer to Question 10 is “no”, if the symplectic cat-
egory is of dimension at least 4 and contains a certain one-parameter family
of objects. In fact, the answer remains “no”, even if we ask the question only
for normalized capacities and drop the word “connectedly”. Perhaps all the
more unexpectedly, almost no normalized capacity is target-representable.
Here we say that almost no element of a given infinite set has a given prop-
erty iff the subset of all elements with this property has smaller cardinality
than the whole set. Similarly, almost no normalized capacity is domain-
representable. The following application of the first main result concerns
the special case of these statements for the whole symplectic category.

Theorem (representability). For every n ≥ 2 almost no normalized ca-
pacity on Symp2n is domain- or target-representable.

21In [3] this question is asked, based on the definition of the embedding capacities
on p. 13 in that article. In that definition the embedding capacity is only defined
for objects of C. However, in [3, Example 2, p. 14] the authors use the definition
with a symplectic manifold that is not an object of C. This suggests that CHLS are
interested in Question 8 with the modified definition given in Example 2. Compare
to footnote 8.

22A remark similar to footnote 21 applies.
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This is an immediate consequence of Corollary 20 on p. 857.23 It follows
that there are as many normalized capacities on Symp2n that are neither
domain- nor target-representable, as there are normalized capacities over-
all (namely P(R)-many24). This provides some answers to Questions 8,9,
and 10.

1.2. Organization of this article

In Section 2 we state the main results in the general setting of (weak) dif-
ferential form categories and deduce the applications about generating sets
and representability. We also present the ideas of proof of the main results.
Furthermore, we discuss the related result of D. McDuff about monotone
capacity-generation for the category of ellipsoids in dimension 4, and a po-
tential application of our proof technique to morphism detection.

In Section 3 we formulate Theorem 43, which generalizes part of the
first main result (Theorem 17(i,ii)). It states that the cardinality of the set
of (normalized) capacities equals that of P(R) for every form category con-
taining each disjoint union Ma ⊔M−a for a suitable one-parameter family
of manifolds with forms (Ma, ωa)a∈A0

. This family needs to satisfy the fol-
lowing crucial condition. We denote by Ia the set of connected components
of the boundary of Ma, and I := (Ia)a∈A0

. Then the collection of bound-
ary helicities associated with (Ma, ωa)a∈A0

is an I-collection. We introduce
the notions of helicity and of an I-collection in this section. We also state
Proposition 44, which provides sufficient criteria for the helicity hypothesis
of Theorem 43.

In Sections 4 and 5 we prove Theorem 43 and Proposition 44.
Section 6 contains the proof of the last part of the first main result

(Theorem 17(iii)), which states that every set of cardinality at most that of
R countably Borel-generates a set of cardinality at most that of R.

Section 7 is devoted to the proof of our second main result, Theorem
25, stating that every finitely differentiably generating set of capacities is
uncountable if the category contains a certain type of one-parameter family
of objects.

In Section A we prove an auxiliary result, which states that the set of
diffeomorphism classes of manifolds has cardinality that of R. We also show

23In that corollary we use a definition of representability that allows for the
representing pair (M,ω) to be a general manifold with a two-form.

24Here P(S) denotes the power set of a set S.



✐

✐

“3-Ziltener” — 2023/3/4 — 1:17 — page 848 — #12
✐

✐

✐

✐

✐

✐

848 D. Joksimović and F. Ziltener

that the same holds for the set of all equivalence classes of pairs (M,ω),
where M is a manifold and ω a differential form on M .

Finally, in Section B we deduce Theorem 29 (monotone generation for
ellipsoids) from McDuff’s characterization of the existence of symplectic
embeddings between ellipsoids.
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2. Main results and applications

In this section we state the main results of this article in the general set-
ting and deduce the applications about generating sets and representability,
taking care of the set-theoretic issue that was mentioned in the previous
section.

2.1. Cardinalities of the set of capacities and of the generated set

The first main result provides conditions under which every generating set
of capacities on a differential form category is bigger than the continuum. To
define the notion of such a category, let m, k ∈ N0 := {0, 1, . . .}. We define
Ωm,k to be the following category:

• Its objects are pairs (M,ω), where M is a manifold of dimension m,
and ω is a differential k-form on M .

• Its morphisms are embeddings that intertwine the differential forms.

Definition. A weak (m, k)-(differential) form category is a subcategory C =
(O,M) of Ωm,k, such that if (M,ω) ∈ O and a ∈ (0,∞) then (M,aω) ∈ O.
We call such a C a (m, k)-form category iff it is also isomorphism-closed.

A (weak) symplectic category (in dimension 2n) is a (weak) (2n, 2)-form
category whose objects are symplectic manifolds.
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Examples ((weak) (m, k)-form category).

(i) Let M be a diffeomorphism class of smooth manifolds of dimension m.
The full subcategory of Ωm,k whose objects (M,ω) satisfy M ∈ M, is
an (m, k)-form category.

(ii) Let (M,ω) be an object of Ωm,k. Consider the category with objects
given by all pairs (U, ω|U), where U ranges over all open subsets of M ,
and morphisms between two objects U,U ′ given by the restrictions φ|U ,
where φ ranges over all isomorphisms of (M,ω), such that φ(U) ⊆ U ′.
This is a small weak (m, k)-form category, which is not isomorphism-
closed, hence not an (m, k)-form category.

Remark 11 (isomorphism-closedness). Symplectic categories were first
defined in [3, 2.1. Definition, p. 5]. In that definition isomorphism-closedness
is not assumed. However, this condition is needed in order to avoid the
following set-theoretic issue in the definition of the notion of a symplectic
capacity on a given symplectic category C.

This article is based on ZFC, the Zermelo-Fraenkel axiomatic system
together with the axiom of choice. A category is a pair consisting of classes
of objects and morphisms. Formally, in ZFC there is no notion of a “class”
that is not a set. The system can handle a “class” that is determined by
a wellformed formula, such as the “class” of all sets or the “class” of all
symplectic manifolds, by rewriting every statement involving the “class” as
a statement involving the formula.

However, it is not possible in ZFC to define the “class” of all maps
between two classes, even if the target class is a set. In particular, it is a
priori not possible to define the “class” of all symplectic capacities on a given
symplectic category. Our assumption that C is isomorphism-closed makes it
possible to define this “class” even as a set, see below.

We now define the notion of a (generalized) capacity on a given form
category. Let S be a set. By |S| we denote the (von Neumann) cardinality
of S, i.e., the smallest (von Neumann) ordinal that is in bijection with S.
For every pair of sets S, S′ we denote by S′S the set of maps from S to S′.
For every pair of cardinals α, β 25 we also use βα to denote the cardinality
of βα. Recursively, we define ℶ0 := N0, and for every i ∈ N0, the cardinal
ℶi+1 := 2ℶi .26

25i.e., cardinalities of some sets
26ℶ (bet) is the second letter of the Hebrew alphabet.
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Let C = (O,M) be an (m, k)-form category. We define the set

(2) O0 :=
{
(M,ω) ∈ O

∣∣The set underlying M is a subset of ℶ1.
}
.

Definition 12. A generalized capacity on C is a function

c : O0 → [0,∞]

with the following properties:

(i) (monotonicity) If (M,ω) and (M ′, ω′) are two objects in O0 between
which there exists a C-morphism, then

c(M,ω) ≤ c(M ′, ω′).

(ii) (conformality) For every (M,ω) ∈ O0 and a ∈ (0,∞) we have

c(M,aω) = a c(M,ω).

Assume now that k = 2, m = 2n for some integer n, and that O0 contains
some objects B0, Z0 that are isomorphic to B,Z (the open unit ball and
cylinder). Let c be a generalized capacity on C. We call c a capacity iff it
satisfies:

(iii) (non-triviality) c(B0) > 0 and c(Z0) <∞.27

We call it normalized iff it satisfies:

(iv) (normalization) c(B0) = c(Z0) = π.

We denote by

Cap(C), NCap(C)

the sets of generalized and normalized capacities on C. If C is a symplec-
tic category then we call a (generalized/ normalized) capacity on C also a
(generalized/ normalized) symplectic capacity.

Example 13 (embedding capacities). Let C = (O,M) be an (m, k)-
form category and (M,ω) an object of Ωm,k. We define O0 as in (2) and the

27These conditions do not depend on the choices of B0, Z0, since c is is invariant
under isomorphisms by monotonicity.
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domain-embedding capacity for (M,ω) on C to be the function

cM,ω := cCM,ω : O0 → [0,∞],(3)

cM,ω(M
′, ω′) := sup

{
c ∈ (0,∞)

∣∣ ∃Ωm,k-morphism (M, cω) → (M ′, ω′)
}
.

We define the target-embedding capacity for (M,ω) on C to be the function

cM,ω := cM,ω
C : O0 → [0,∞],

cM,ω(M ′, ω′) := inf
{
c ∈ (0,∞)

∣∣ ∃Ωm,k-morphism (M ′, ω′) → (M, cω)
}
.

These are generalized capacities.

Remarks 14 (set of capacities and isomorphism-closedness). (i)
The collections Cap(C) and NCap(C) are indeed sets, since O0 is a set.

(ii) Heuristically, let us denote by C̃ap(C) the “subclass” of “[0,∞]O” con-
sisting of all “functions” satisfying conditions the monotonicity and
conformality conditions of Definition 12. Formally, the restriction from
O to O0 induces a bijection between C̃ap(C) and Cap(C).28 This means
that our definition of a generalized capacity corresponds to the intu-
ition behind the usual “definition”. Here we use isomorphism-closedness
of C. Compare to Remark 11.

(iii) Isomorphism-closedness of C implies that there is a canonical bijection
between Cap(C) and the set of generalized capacities that we obtain
by replacing O0 by any subset of O that contains an isomorphic copy
of each element of O. Such a subset can for example be obtained by
replacing ℶ1 in (2) by any set of cardinality at least ℶ1.

29 This means
that our definition of Cap(C) is natural.

(iv) Example 13 generalizes Example 2, taking care of the set-theoretic
issue mentioned in Remark 11.

28This follows from the fact that every object of Ωm,k is isomorphic to one whose
underlying set is a subset of ℶ1, and the assumption that C is isomorphism-closed.
To prove the fact, recall that by definition, the topology of every manifold M
is second countable. Using the axiom of choice, it follows that its underlying set
has cardinality ≤ ℶ1. This means that there exists an injective map f :M → ℶ1.
Consider now an object (M,ω) of Ωm,k. Pushing forward the manifold structure and
ω via a map f , we obtain an object of Ωm,k isomorphic to (M,ω), whose underlying
set is a subset of ℶ1. This proves the fact.

29This follows from an argument as in the last footnote.
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Let G be a subset of Cap(C). We define the set CHLS generated by G
as on p. 842, except that we ask the domain of each function c to be O0

rather than O. The reason for this change is the set-theoretic issue discussed
in Remark 11. (See also Remarks 14.) As mentioned in Section 1.1, in [3,
Problem 5, p. 17] K. Cieliebak, H. Hofer, J. Latschev, and F. Schlenk posed
the following problem:

Problem. For a given symplectic category find a minimal CHLS capacity-
generating set.

In particular, we may ask whether there exists a countable generating
set. Our first main result, Theorem 17 below, answers this question in the
negative for a notion of a generation that, morally speaking, is much weaker
than CHLS generation. The theorem states that in dimension at least 4
the cardinality of the set of generalized (or normalized) capacities on C
is ℶ2, provided that the category contains a certain one-parameter family
of objects.30 Its last part implies that a set of [0,∞]-valued functions of
cardinality at most ℶ1 countably Borel-generates a set of cardinality at most
ℶ1 in the sense of Definition 16 below.

As an immediate consequence, every countably Borel-generating set for
Cap(C) (or NCap(C)) has cardinality bigger than the continuum. See Corol-
lary 18 below. Countable Borel-generation is a weak notion of generation.
(Compare to Remark 15 below.) It is weaker than the notion of limit-
min/max generation (as defined on p. 842).31 Hence Corollary 18 makes
a statement about a large class of “generating sets of capacities”.

This corollary diminishes the hope of finding manageable generating sets
of (generalized) symplectic capacities.

To state our first main result, we need the following. Let (X, τ) be a
topological space. Recall that the (τ -)Borel σ-algebra of X is the smallest
σ-algebra containing the topology of X. We call its elements (τ -)Borel sets.

Remark 15 (Borel sets). Consider the real line X = R. The axiom of
choice (AC) implies that there exist subsets of R that are not Lebesgue-
measurable, hence not Borel-measurable. However, all subsets occurring in
practice are Borel. Furthermore, for any concretely described subset of R,

30It is formulated for a form category, not just for a symplectic category.
31This follows from the fact that a given set of capacities countably Borel-

generates a larger set than it limit-min/max generates. Compare to Remark 19.
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it appears to be difficult to prove (using AC) that it is indeed not Borel-
measurable.32

Let now (X, τ) and (X ′, τ ′) be topological spaces. A map f : X → X ′

is called (τ, τ ′)-Borel-measurable iff the pre-image under f of every τ ′-Borel
set in X ′ is a τ -Borel set.33 In particular, every continuous map is Borel-
measurable. Borel-measurability is preserved under composition. It is pre-
served under pointwise limits of sequences if X ′ is metrizable. This yields
many examples of Borel-measurable maps. In fact, all maps occurring in
practice are Borel-measurable.

Let S, S′ be sets. We denote

S′S :=
{
map from S to S′

}
.

For every subset G ⊆ S′S we denote by

(4) evG : S → S′G , evG(s)(u) := u(s),

the evaluation map. If (X, τ) is a topological space then we denote by τS
the product topology on XS .

Definition 16 (countably Borel-generated set). Let S be a set, (X, τ)
a topological space, and G ⊆ XS. We define the set countably (τ -)Borel-
generated by G to be

⟨G⟩ :=
{
f ◦ evG0

∣∣G0 ⊆ G countable,

f : XG0 → X: (τG0
, τ)-Borel-measurable

}
⊆ XS .

For every subset F ⊆ XS we say that G countably (τ -)Borel-generates at
least F iff F ⊆ ⟨G⟩.

We denote by intS the interior of a subset S of a topological space. Let
V be a vector space, S ⊆ V , A ⊆ R, and n ∈ N0. We denote AS :=

{
av
∣∣ a ∈

A, v ∈ S
}
. In the case A = {a} we also denote this set by aS. We call S

32An example of such a subset A was provided by N. Luzin. It can be obtained
from [9, Exercise (27.2), p. 209] via [9, Exercise (3.4)(ii), p. 14]. This set is Σ1

1
-

analytic, see [9, Definitions (22.9), p. 169, (21.13), p. 156]. It follows from a theorem
of Souslin, [9, (14.2) Theorem, p. 85] and the definition of Σ1

1
-analyticity that A is

not Borel.
33This happens if and only if the pre-image under f of every element of τ ′ is a

τ -Borel set.
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strictly starshaped around 0 iff [0, 1)S ⊆ intS. For every i ∈ {1, . . . , n} we
denote by pri : V

n = V × · · · × V → V the canonical projection onto the i-
th component. For every multilinear form ω on V we denote

ω⊕n :=

n∑

i=1

pr∗i ω.

For every r ∈ (1,∞) we define the closed spherical shell of radii 1, r in Rm

to be

Shmr := B
m
r \Bm

1 .

We equip Shr := Sh2nr with the standard symplectic form ωst. The first main
result of this article is the following.

Theorem 17 (cardinalities of the set of (normalized) capacities and
of the generated set). The following statements hold:

(i) Let k, n ∈ {2, 3, . . .} with k even, and C = (O,M) be a (kn, k)-form
category. Then the cardinalitiy of Cap(C) equals ℶ2, provided that there
exist
• a (real) vector space V of dimension k,
• a volume form Ω on V ,34

• a nonempty compact submanifold K of V n (with boundary) that is
strictly starshaped around 0,

• a number r ∈
(
1, kn

√
2
)
,

such that defining Ma := (r + a)K \ intK and equipping this manifold
with the restriction of Ω⊕n, we have

(5) Ma ⊔M−a ∈ O, ∀a ∈ (0, r − 1). 35

34By this we mean a nonvanishing top degree skewsymmetric multilinear form.
35Here A ⊔B denotes the disjoint union of two sets A,B. This can be defined

in different ways, e.g. as the set consisting of all pairs (0, a), (1, b), with a ∈ A,
b ∈ B, or alternatively pairs (1, a), (2, b). Based on this, we obtain two definitions
of the disjoint union of two objects of Ωkn,k. The disjoint union defined in either
way is isomorphic to the one defined in the other way. Since we assume C to be
isomorphism-closed, condition (5) does not depend on the choice of how we define
the disjoint union.
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(ii) Let n ∈ {2, 3, . . .} and C = (O,M) be a (2n, 2)-form category that con-
tains the objects B and Z. The cardinality of NCap(C) equals ℶ2, pro-
vided that there exists r ∈

(
1, 2n

√
2
)
satisfying

(6) Shr−a ⊔ Shr+a ∈ O, ∀a ∈ (0, r − 1).

(iii) Let S be a set and (X, τ) a separable metrizable topological space. If
a subset of XS has cardinality at most ℶ1, then the set it countably
τ -Borel-generates has cardinality at most ℶ1.

This result has the following immediate application. We define O0 as in
(2), and τ0 to be the standard topology on [0,∞], w.r.t. which it is homeo-
morphic to the interval [0, 1].

Corollary 18 (cardinality of a generating set).

(i) Under the hypotheses of Theorem 17(i) every subset of [0,∞]O0 that
countably τ0-Borel-generates at least Cap(C) has cardinality bigger
than ℶ1.

(ii) Under the hypotheses of Theorem 17(ii) every subset of [0,∞]O0 that
countably τ0-Borel-generates at least NCap(C) has cardinality bigger
than ℶ1.

This corollary answers Question 4 (p. 842) negatively for every sym-
plectic category satisfying the hypotheses of Theorem 17(i). An example of
such a category is the category of all symplectic manifolds of some fixed
dimension, which is at least 4.

Remarks (cardinalities of the set of (normalized) capacities and of
the generated set).

• As Corollary 18 holds for (kn, k)-form categories with k even and n ≥
2, the fact that generating sets of capacities are large, is not a genuinely
symplectic phenomenon.

• The proof of Theorem 17(ii) shows that the cardinality of the set of
discontinuous normalized capacities is ℶ2. This improves the result
of K. Zehmisch and the second author that discontinuous capacities
exist, see [17].36

36The proof of [17, Theorem 1.2] actually shows that the spherical shell capaci-
ties used in that proof are all different. This implies that the set of discontinuous
normalized symplectic capacities has cardinality at least ℶ1.
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• The statements of Theorem 17(i,ii) and thus of Corollary 18 hold in
a more general setting, see Theorem 43 and Proposition 44 below. In
particular, let V,Ω be as in Theorem 17(i), j ∈ {1, 2, . . .}, and for each
a ∈ R let Ma be the complement of j disjoint connected open sets in
some compact submanifold of V n. The cardinality of Cap(C) equals ℶ2,
provided that Ma ⊔M−a ∈ O 37 for every a, the volumes of the open
sets are all equal (also for different a), the volume of each Ma is small
enough and strictly increasing in a, the infimum of these volumes is
positive, and each Ma is 1-connected.

• Morally, Corollary 18 implies that every generating set of capacities
has as many elements as there are capacities. More precisely, we denote
by ZF the Zermelo-Fraenkel axiomatic system, and ZFC := ZF + AC.
We claim that ZFC is consistent with the statement that under the
hypotheses of Theorem 17(i) every subset of [0,∞]O0 that countably
Borel-generates at least Cap(C) has the same cardinality as Cap(C)
(namely ℶ2)

38.
To see this, assume that the generalized continuum hypothesis (GCH)
holds. This means that for every infinite cardinal α there is no cardinal
strictly between α and 2α. In particular, there is no cardinal strictly
between ℶ1 and ℶ2 = 2ℶ1 . Hence under the hypotheses of Theorem
17(i) by Corollary 18(i) every subset of [0,∞]O0 that countably Borel-
generates at least NCap(C) has cardinality at least ℶ2. By Theorem
17(i) this equals the cardinality of Cap(C). Since GCH is consistent
with ZFC 39, the claim follows.

Remark 19 (comparison of different notions of generating sets).
Let C be a symplectic category and G a CHLS generating set (as defined on
p. 842), with the extra condition that each combining function f : [0,∞]ℓ →
[0,∞] is Borel-measurable. Then G countably Borel-generates Cap(C). (See

37In particular we assume here that Ma is a smooth submanifold of V n.
38provided that ZF is consistent
39provided that ZF is consistent
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Definition 16.)40 This holds in particular if G is limit-min/max generating
(as defined on p. 842).

Definition 16 relaxes the conditions in the definition of a CHLS gener-
ating set in two ways:

• The combining functions are allowed to depend on countably many
variables (elements of the generating set), not just on finitely many
variables.

• The assumption that the combining functions are homogeneous and
monotone is omitted.

2.2. Representability of symplectic capacities and morphism
detection

The following corollary is a direct consequence of Theorem 17(ii). Let C
be an (m, k)-form category. We say that a generalized capacity c on C is
domain-/ target-representable iff there exists an object (M,ω) of Ωm,k, such
that c = c(M,ω)/ c = c(M,ω) (defined as in Example 13). We say that almost
no element of a given infinite set has a given property iff the subset of all
elements with this property has smaller cardinality than the whole set.

Corollary 20 (representability). Under the hypotheses of Theorem 17(ii)
almost no normalized capacity on C is domain- or target-representable.

It follows that under the hypotheses of Theorem 17(ii) there are as many
normalized capacities that are neither domain- nor target-representable, as
there are normalized capacities overall (namely ℶ2). This provides some
answers to Questions 8,9, and 10 (p. 845). The statement of Corollary 20
holds in particular for C given by the category of all symplectic manifolds
of some fixed dimension, which is at least 4.

40To see this, let c ∈ Cap(C). We choose a sequence of Borel-measurable combin-
ing functions and finite sets of generalized capacities in G as in the definition of
a CHLS generating set. We define G0 to be the set of all capacities occurring in
the sequence. Each combining function gives rise to a Borel-measurable function
from [0,∞]G0 to [0,∞]. Its restriction to the image of evG0

is measurable w.r.t. the
σ-algebra induced by the Borel σ-algebra. By assumption the sequence of these
restrictions converges pointwise. The limit f is again measurable. Since its target
space is [0,∞], an argument involving approximations by simple functions shows
that f extends to a Borel-measurable function on [0,∞]G0 . Hence G0 and f satisfy
the conditions of Definition 16, as desired.
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Proof of Corollary 20. The set of isomorphism classes of 2n-dimensional
manifolds together with 2-forms has cardinality ℶ1. This follows from Corol-
lary 58 on p. 904. The image of this set under the map [(M,ω)] 7→ cM,ω is
the set of all domain-representable capacities. It follows that at most ℶ1

normalized capacities are domain-representable. A similar statement holds
for target-representation. The statement of Corollary 20 now follows from
Theorem 17(ii). □

The proof technique for Corollary 18 can potentially also be used to show
that certain sets of capacities do not detect morphisms. To explain this,
let C = (O,M) be an (m, k)-form category and G ⊆ Cap(C). We say that
G detects morphisms iff for each pair of objects (M,ω), (M ′, ω′) of C the
following holds. Assume that c(M,ω) ≤ c(M ′, ω′), for every c ∈ G. Then
there exists a C-morphism from (M,ω) to (M ′, ω′). CHLS asked the following
question in the case in which C is a symplectic category and G = Cap(C) (see
[3, Question 1, p. 20]):

Question 21. Does G detect morphisms?41

Remark (monotone generation and detection of morphisms). We
equip the set S := O0 with the pre-order given by (M,ω) ≤ (M ′, ω′) iff there
exists a C-morphism from (M,ω) to (M ′, ω′). We also equip this set with
the (0,∞)-action given by rescaling of forms. Suppose the following:

(*) Every subset of Cap(C) that monotonely generates in the sense of Def-
inition 28 on p. 864, has cardinality bigger than ℶ1.

Let G ⊆ Cap(C) be a subset of cardinality at most ℶ1. Then G does not detect
morphisms, thus the answer to Question 21 is “no”. To see this, observe that
by our assumption (*) the set G does not monotonely generate. Therefore,
by Proposition 60 on p. 906, it is not almost order-reflecting. Hence G is not
order-reflecting, i.e., it does not detect morphisms.

By Corollary 18, under the hypotheses of Theorem 17(i), condition (*)
is satisfied with “monotonely generates” replaced by “countably τ0-Borel-
generates”. Therefore potentially, the proof technique for Corollary 18 may
be adapted, in order to provide a negative answer to Question 21 under

41CHLS do not use our terminology of “morphism detection”. Instead, the title
of the subsection in which they ask their Question 1, is “Recognition”. We think
that the expression “G detects morphisms” more accurately describes the condition
that G determines whether there exists a morphism between two given objects.
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suitable conditions on C that do not involve (*), if the cardinality of G is at
most ℶ1.

2.3. Uncountability of every generating set under a mild
hypothesis

Our second main result states that every finitely differentiably capacity-
generating set for a small weak form category is uncountable, if the cat-
egory contains a one-parameter family of objects that is “strictly volume-
increasing” and “embedding-capacity-wise constant”. Morally speaking, this
hypothesis is weaker than those of the first main result. In order to state
the result, we recall the notion of finite differentiable generation from Sec-
tion 1.1, reformulating and generalizing it slightly:

Definition (finite differentiable generation). Let S be a set, and F ,G ⊆
[0,∞]S. We say that G finitely differentiably generates at least F iff the fol-
lowing holds. For every F ∈ F there exists a finite subset G0 ⊆ G and a
differentiable function f : [0,∞]G0 → [0,∞] 42 , such that F = f ◦ evG0

.

Let now k, n ∈ N := {1, 2, . . .} and (M,ω) be an object of Ωkn,k. We call
ω maxipotent iff ω∧n = ω ∧ · · · ∧ ω does not vanish anywhere.

Remark 22 (maxipotency and nondegeneracy). Let V be a (real)
vector space and k ∈ N. We call a k-linear form ω on V nondegenerate iff
interior multiplication with ω is an injective map from V to the space of
(k − 1)-linear forms. Let k, n ∈ N and assume that dimV = kn. We call a
skewsymmetric k-form ω on V maxipotent iff ω∧n ̸= 0. Every maxipotent
form on V is nondegenerate. The converse holds if and only if k = 1, k = 2,
or n = 1.

Let (M,ω) be a maxipotent object of Ωkn,k. We equip M with the ori-
entation induced by ω∧n and define

(7) Vol(M) := Vol(M,ω) :=
1

n!

∫

M

ω∧n.

42Here we view [0,∞] as a compact 1-dimensional manifold with boundary. The
set [0,∞]G0 carries a canonical structure of a smooth finite-dimensional manifold
with boundary and corners. The function f is only assumed to be differentiable one
time, with possibly discontinuous derivative.
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Remark 23 (volume). Assume that k is odd. Then we have ω ∧ ω = 0,
and therefore Vol(M,ω) = 0 in the case n ≥ 2.

Let C = (O,M) be a small weak (kn, k)-form category. We define the
notion of a generalized capacity as in Definition 12.

Remark 24. Since C is small, Definition 12 and our original Definition 1
are equivalent in the sense that capacities in either sense correspond to each
other in a canonical way. This follows from Remark 14(iii). Recall here that
a capacity in the sense of Definition 12 (Definition 1) is a function with
domain O0 (O).

Our second main result is the following.

Theorem 25 (uncountability of every generating set under a mild
hypothesis). Every subset of Cap(C) that finitely differentiably generates
(at least) Cap(C), is uncountable, provided that there exists an interval A of
positive length and a map M : A→ O, such that

Ma :=M(a) is maxipotent for every a ∈ A,(8)

Vol ◦M is continuous and strictly increasing,(9)

cMa
(Ma′) = 1, ∀a, a′ ∈ A : a ≤ a′.(10)

Remarks.

• Condition (8) ensures that the volume of each Ma is well-defined.
Hence condition (9) makes sense.

• Condition (10) means that M is “embedding-capacity-wise constant”,
in the sense that the composition of the map

{
(a, a′) ∈ A2

∣∣ a ≤ a′
}
∋

(a, a′) 7→ (Ma,Ma′) with the “embedding capacity function” (X,X ′) 7→
cX(X ′) is constant.

• Assume that there exists a map M satisfying (8,9). Then we have
n > 0. If n ≥ 2, then k is even. This follows from Remark 23. Assume
that there exists a map satisfying (8,9,10). Then we have k > 0. If
each Ma is compact, then n ̸= 1. This follows from Moser’s isotopy
argument.

Example 26. Let n ≥ 2 and A be an interval of positive length. We denote
by U the set of all open subsets of R2n that contain B2n

1 and are contained in
Z2n
1 . We equip each element of U with the restriction of the form ωst. LetM :
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A→ U be an increasing map in the sense that a ≤ a′ implies that M(a) ⊆
M(a′). If M also satisfies (9) then it satisfies all conditions of Theorem 25.
The inequality “≤” in condition (10) follows from Gromov’s nonsqueezing
theorem.

As an application of Theorem 25 we obtain Theorem 7 (p. 845, uncount-
ability of every generating set for ellipsoids).

Remark. Theorem 7 is concerned with the weak symplectic category
ẼllV of ellipsoids in V . This is not a symplectic category, since it is not
isomorphism-closed in Ω2n,2, where 2n := dimV . This is the reason for for-
mulating Theorem 25 for a (small) weak form category.

Remarks. • The hypotheses of Corollary 18(i) (i.e., of Theorem 17(i))
and of Theorem 25 do not imply each other. However, morally, the
hypotheses of Corollary 18(i) are more restrictive than that of Theorem
25. This becomes literally true if we modify the hypotheses of this
corollary by replacing the disjoint union Ma ⊔M−a by Ma.

• On the other hand, the conclusion of Corollary 18(i) is stronger than
that of Theorem 25.

2.4. Ideas of proof

The idea of the proof of Theorem 17(i) is the following. Recall the definition
(3) of the domain-embedding capacity cM := cM,ω. We choose V,Ω,K, r and
define Ma as in the hypothesis of the theorem. We define Wa :=Ma ⊔M−a.
For each A ∈ P((0, r − 1)) 43 we define

cA := sup
a∈A

cWa
.

This is a capacity, satisfying

cA(Wa) = 1, ∀a ∈ A,(11)

supa∈(0,r−1)\A cA(Wa) < 1.(12)

The second statement follows from Stokes’ Theorem for helicity. Helicity as-
signs a real number to an exact k-form on a closed oriented manifold of di-
mension kn− 1, where n ≥ 2. (To build some intuition, see the explanations

43Here P(S) denotes the power set of a set S.
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862 D. Joksimović and F. Ziltener

on p. 871 and Figures 1,2,3 on p. 872–873.) Helicity generalizes contact vol-
ume. The conditions (11,12) imply that cA ̸= cA′ if A ̸= A′ ∈ P((0, r − 1)).
Since the cardinality of P((0, r − 1)) equals ℶ2, it follows that the cardinality
of Cap(C) is at least ℶ2.

On the other hand, we denote by S the set of isomorphism classes of
objects of C. This set has cardinality ℶ1. Since Cap(C) can be viewed as a
subset of [0,∞]S , it has cardinality at most ℶ2, hence equal to ℶ2.

A refined version of this argument shows Theorem 17(ii), i.e., that
|NCap(C)| = ℶ2. For this we normalize each capacity cA, by replacing it
by the maximum of cA and the Gromov width.

Remark (helicity argument). In [17] K. Zehmisch and F. Ziltener used
helicity to show that the spherical capacity is discontinuous on some smooth
family of ellipsoidal shells. This argument is related to the proof of Theo-
rem 17(i,ii).

The proof of Theorem 17(iii) is based on the fact that the set of Borel-
measurable maps from a second countable space to a separable metrizable
space has cardinality at most ℶ1. The proof of this uses the following well-
known results:

• Every map f with target a separable metric space is determined by
the pre-images under f of balls with rational radii around points in a
countable dense subset.

• The σ-algebra generated by a collection of cardinality at most ℶ1 has
itself cardinality at most ℶ1. The proof of this uses transfinite induc-
tion.

The idea of the proof of Theorem 25 is to use Lebesgue’s Monotone
Differentiation Theorem, which states that every monotone function on an
interval is differentiable almost everywhere. It follows that for every count-
able set G of capacities, there exists a point a0 ∈ A at which the function
c ◦M is differentiable, for every c ∈ G. On the other hand, our conditions on
the map M : A→ O imply that the function cMa0

◦M is not differentiable
at a0. It follows that G does not finitely differentiably generate cMa0

.

Remark (diagonal argument). This idea of the proof is remotely rem-
iniscent of Cantor’s second diagonal argument, which shows that the set of
real numbers is uncountable. Namely, consider the open sentence P given
by:
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P (a, b): “The function cMa
◦M is differentiable at b.”

The proof of Theorem 25 exploits the fact that P is false along the
diagonal, that is, P (a, a) is false for all a.

2.5. McDuff’s characterization of existence of symplectic
embeddings for ellipsoids in dimension 4 and monotone

generation

In this subsection we recall a result of D. McDuff, which states that the
ECH-capacities are monotonely generating for the category of ellipsoids in
dimension 4. On ellipsoids, these capacities are given by the following. Let
n, j ∈ N0. We define the function

N n
j : [0,∞)n → [0,∞),

N n
j (a) := min

{
b ∈ [0,∞)

∣∣∣∣∣ j+1 ≤ #

{
m ∈ Nn

0

∣∣∣∣∣m · a =

n∑

i=1

miai ≤ b

}}
.

Remark. The sequence
(
N n

j (a)
)
j∈N0

is obtained by arranging all the non-
negative integer combinations of a1, . . . , an in increasing order, with repeti-
tions.

We define the ellipsoid

E(a) :=

{
x =

(
x1, . . . , xn) ∈ R

2n = (R2)n

∣∣∣∣∣

n∑

i=1

∥xi∥2
ai

< 1

}
.

(Here ∥ · ∥ denotes the Euclidean norm on R2.) We equip this manifold with
the standard symplectic form.

Let V := (V, ω) be a symplectic vector space. We denote by OEll
V the

set of all pairs (E,ω|E), where E is a (bounded, open, full) ellipsoid in
V , and by MEll

V the set of all symplectic embeddings between elements
of OEll

V . We define the category of (open) ellipsoids in V to be the pair
EllV := (OEll

V ,MEll
V ). This is a small weak symplectic category. For such a

category we may view a generalized capacity as a monotone and conformal
function on the whole set of objects. (Compare to Remark 24.) For every
j ∈ N0 we define the function

(13) cVj : OEll
V → [0,∞),
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by setting cVj (E) := N n
j (a), where a ∈ [0,∞)n is such that E is affinely sym-

plectomorphic to E(a). This number is well-defined, i.e., such an a exists (see
[12, Lemma 2.43]) and N n

j (a) does not depend on its choice. The latter is
true, since if E(a) and E(a′) are affinely symplectomorphic, then a and a′

are permutations of each other. (See [12, Lemma 2.43].) The following result
is due to M. Hutchings.

Theorem 27 (ECH-capacities). If dimV = 4 then for every j ∈ N0 the
function cVj is a generalized capacity on EllV .

Proof. Conformality follows from the definition of N n
j . Monotonicity was

proved by M. Hutchings in [8, Proposition 1.2, Theorem 1.1]. □

Remarks.

• The function cVj is the restriction of the j-th ECH-capacity to EllV ,
see [8, Proposition 1.2].

• The category ẼllV that we considered on p. 844 is a subcategory of
EllV .

McDuff proved that the set of all cVj (with j ∈ N0) monotonely generates
all generalized capacities. To explain this, we equip the interval (0,∞) with
multiplication and let it act on the extended interval [0,∞] via multiplica-
tion. Let S, S′ be sets. We fix (0,∞)-actions on S and S′ and call a map
f : S → S′ (positively 1-)homogeneous iff it is (0,∞)-equivariant.

Recall that a preorder on a set S is a reflexive and transitive relation on
S. We call a map f between two preordered sets monotone (or increasing) if
it preserves the preorders, i.e., if s ≤ s′ implies that f(s) ≤ f(s′). Let (S,≤)
be a preordered set. We fix an order-preserving (0,∞)-action on S. We define
the set of (generalized) capacities on S to be

(14) Cap(S) :=
{
c ∈ [0,∞]S

∣∣ c monotone and (0,∞)-equivariant
}
.

We equip the set [0,∞]S with the preorder

x ≤ x′ ⇐⇒ x(s) ≤ x′(s), ∀s ∈ S.

Let G ⊆ Cap(S).

Definition 28 (monotone and homogeneous monotone generation).
We say that G monotonely (capacity-)generates iff for every c ∈ Cap(S)
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there exists a monotone function F : [0,∞]G → [0,∞], such that c = F ◦
evG. We say that G homogeneously and monotonely (capacity-)generates
iff the function F above can also be chosen to be homogeneous.

Remark (monotone versus homogeneous and monotone genera-
tion). The set G monotonely generates if and only if it homogeneously
and monotonely generates. The “only if”-direction follows by considering
the monotonization (see p. 906 below) of the restriction of a function F as
in Definition 28 to the image of evG . Here we use that every c ∈ Cap(S) is
homogeneous, and thus F | im(evG) is homogeneous, as well as Remark 61
on p. 906.

Let V := (V, ω) be a symplectic vector space. Recall the definition (13)
of the capacity cVj . The next result easily follows from McDuff’s solution of
the embedding problem for ellipsoids in dimension 4. (See Section B.)

Theorem 29 (monotone generation for ellipsoids in dimension 4).
If dimV = 4 then the set of all cVj (with j ∈ N0) monotonely generates (the
generalized capacities on the category of ellipsoids EllV ).

This theorem provides a positive answer to the variant of Question 4 with
“limit-min/max generating” replaced by “monotonely generating”. Mono-
tone generation is (possibly nonstrictly) weaker than CHLS generation, since
the pointwise limit of monotone functions is monotone. To deduce the theo-
rem from McDuff’s result, we will characterize monotone generation in terms
of almost order-reflexion.

3. Proof of Theorem 17(i,ii) (cardinality of the set of
capacities)

In this section we prove Theorem 17(i,ii), based on a more general result,
Theorem 43 below. That result states that the set of generalized capacities
on a given (kn, k)-category C has cardinality ℶ2, provided that C contains
each disjoint union Ma ⊔M−a for a suitable one-parameter family of mani-
folds with forms (Ma, ωa)a∈A0

. A crucial hypothesis is that the collection of
boundary helicities associated with (Ma, ωa)a∈A0

, is an I-collection.
We also state Proposition 44, which provides sufficient conditions for

this hypothesis to be satisfied.
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3.1. (Boundary) helicity of an exact differential form

In this subsection we introduce the notion of helicity of an exact form, and
based on this, the notion of boundary helicity.

Let k, n ∈ N0 be such that n ≥ 2, N a closed44 (kn− 1)-manifold, O an
orientation on N , and σ an exact k-form on N .

Definition 30 (helicity). We define the helicity of (N,O, σ) to be the
integral

(15) h(N,O, σ) :=

∫

N,O

α ∧ σ∧(n−1),

where α is an arbitrary primitive of σ, and
∫
N,O

denotes integration over N
w.r.t. O.

We show that this number is well-defined, i.e., it does not depend on the
choice of the primitive α. Let α and α′ be primitives of σ. Then α′ − α is
closed, and therefore

(α′ − α) ∧ σ∧(n−1) = (−1)k−1d
(
(α′ − α) ∧ α ∧ σ∧(n−2)

)
.

Here we used that n ≥ 2. Using Stokes’ Theorem and our assumption that
N has no boundary, it follows that

∫

N,O

(α′ − α) ∧ σ∧(n−1) = 0.

Therefore, the integral (15) does not depend on the choice of α.

Remark 31 (case k odd, case n = 1). The helicity vanishes if k is odd.
This follows from the equality

α ∧ (dα)n−1 =
1

2
d
(
α∧2 ∧ (dα)n−2

)
,

which holds for every even-degree form α, and from Stokes’ Theorem. The
helicity is not well-defined in the case n = 1. Namely, in this case dimN =
k − 1, and therefore every (k − 1)-form is a primitive of the k-form 0. Hence
the integral (15) depends on the choice of a primitive.

44This means compact and without boundary.
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Remark 32 (orientation). Denoting by O the orientation opposite to O,
we have

h(N,O, σ) = −h(N,O, σ).

Remark 33 (rescaling). For every c ∈ R we have

h
(
N,O, cσ

)
= cnh

(
N,O, σ

)
.

This follows from a straight-forward argument.

Remark 34 (naturality). Let N and N ′ be closed (kn− 1)-manifolds, O
an orientation on N , σ an exact k-form on N , and φ : N → N ′ a (smooth)
embedding. We denote

φ∗(N,O, σ) :=
(
φ(N), φ∗O,φ∗σ

)

(push-forwards of the orientation and the form). A straight-forward argu-
ment shows that

h
(
φ∗

(
N,O, σ

))
= h(N,O, σ).

Remark 35 (helicity of a vector field). In the case k = 2 and n = 2
the integral (15) equals the helicity of a vector field V on a three-manifold
N , which is dual to the two-form σ, via some fixed volume form. See [1,
Definition 1.14, p. 125]. This justifies the name “helicity” for the function h.

The helicity of the boundary of a compact manifold equals the volume
of the manifold. This is a crucial ingredient of the proofs of the main results
and the content of the following lemma. LetM be a manifold, N ⊆M a sub-
manifold, and ω a differential form on M . We denote by ∂M the boundary
of M , and

(16) ωN := pullback of ω by the canonical inclusion of N into M .

If O is an orientation on M and N is contained in ∂M , then we define

(17) ON := OM
N := orientation of N induced by O.

Let k, n ∈ N0, such that n ≥ 2, (M,O) be a compact oriented (smooth)
manifold of dimension kn and ω an exact k-form on M .
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Lemma 36 (Stokes’ theorem for helicity). The following equality holds:
∫

M,O

ω∧n = h
(
∂M,O∂M , ω∂M

)
.

Remark. The left hand side of this equality is n! times the signed volume
of M associated with O and ω.

Proof of Lemma 36. Choosing a primitive α of ω, we have

ω∧n = d
(
α ∧ ω∧(n−1)

)
,

and therefore, by Stokes’ Theorem,
∫

M,O

ω∧n =

∫

∂M,O∂M

α ∧ ω∧(n−1) = h(∂M,O∂M , ω∂M ).

This proves Lemma 36. □

This lemma has the following consequence. We denote

IM :=
{
connected component of ∂M

}
.

Definition 37 (boundary helicity). We define the boundary helicity of
(M,O, ω) to be the function

hM := hM,O,ω : IM → R, hM,O,ω(i) := h
(
i, Oi, ωi

)
,

Corollary 38 (Stokes’ theorem for helicity). The following equality
holds: ∫

M,O

ω∧n =
∑

i∈IM

h
(
i, Oi, ωi

)
.

Proof. This directly follows from Lemma 36. □

3.2. I-collections

An I-collection is collection f = (fa)a∈A0
of real-valued functions with finite

domains, such that the supremum of a certain set of numbers is less than
1. The set consists of all numbers C for which A ∪B is nonempty, where A
and B are certain sets of partitions, which depend on f and C. I-collections
will occur in the generalized main result, Theorem 43 below. Namely, one
hypothesis of this result is that the boundary helicities of a certain collection
of manifolds and forms, are an I-collection.
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Definition 39. Let I and I ′ be finite sets. an (I, I ′)-partition is a partition
P of the disjoint union I ⊔ I ′, such that

(18) ∀J ∈ P : |J ∩ I| = 1.

Let f : I → R, f ′ : I ′ → R, and C ∈ (0,∞). For every J ⊆ I ⊔ I ′ we define

(19)
∑

J,f,f ′,C
:= −C

∑

i∈J∩I

f(i) +
∑

i′∈J∩I′

f ′(i′).

A (f, f ′, C)-partition is an (I, I ′)-partition P such that

(20)
∑

J,f,f ′,C
≥ 0, ∀J ∈ P.

Definition 40. Let I+, I−, I ′ be finite sets. We denote I := I+ ⊔ I−. an(
I+, I−, I ′

)
-partition is a partition P of I ⊔ I ′ with the following properties:

(a) There exists a unique element of P that intersects both I+ and I− in
exactly one point.

(b) All other J ∈ P intersect I in exactly one point.

Let f± : I± → R, f ′ : I ′ → R, and C ∈ (0,∞). We denote by f := f+ ⊔ f− :
I → R the disjoint union of functions.45 A (f+, f−, f ′, C)-partition is an
(I+, I−, I ′)-partition satisfying (20).

Remark 41. Every (I+, I−, I ′)-partition P satisfies

|P| = |I| − 1.

Let A0 be an interval and I a collection of finite sets indexed by A0,
i.e., a map from A0 to the class of all finite sets. We denote Ia := I(a). Let
f =

(
fa : Ia → R

)
a∈A0

be a collection of functions. We define

Cf
0 := sup

{
C ∈ (0,∞)

∣∣ ∃a, a′ ∈ A0 : a > a′, ∃
(
fa, fa′ , C

)
-partition

}
,(21)

Cf
1 := sup

{
C ∈ (0,∞)

∣∣ ∃a, a′ ∈ A0 ∩ (0,∞) : a < a′,(22)

∃
(
fa, f−a, fa′ , C

)
-partition

}
.

Here we use the convention that sup ∅ := 0.

45This is the function defined by f(i) := f±(i) if i ∈ I±.
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Definition 42 (I-collection). We call f an I-collection iff the following
holds:

Cf
0 < 1,(23)

Cf
1 < 1.(24)

Remark. The condition of being an I-collection is invariant under rescal-
ing by some positive constant.

3.3. Cardinality of the set of capacities in a more general setting,
sufficient conditions for being an I-collection, proof of

Theorem 17(i,ii)

Theorem 17(i,ii) is a special case of the following more general result. We
call a k-form ω on a kn-manifold maxipotent iff ω∧n = ω ∧ · · · ∧ ω does not
vanish anywhere.46 In this case we denote

Oω := orientation on M induced by ω∧n.

Recall that B,Z denote the unit ball and the standard symplectic cylinder,
ωst the standard symplectic form, cM,ω the domain-embedding capacity for
(M,ω) as in (3), and w the Gromov width as in (1).

Theorem 43 (cardinality of the set of (normalized) capacities, more
general setting). The following holds:

(i) Let k, n ∈ {2, 3, . . .} with k even, and C = (O,M) be a (kn, k)-form
category. Then the cardinality of Cap(C) equals ℶ2, provided that there
exist an interval A0 around 0 of positive length, and a collection
(Ma, ωa)a∈A0

of objects of Ωkn,k, such that for every a ∈ A0, Ma is
nonempty, compact, and 1-connected,47 ωa is maxipotent and exact,
and the following holds:
(a) (Wa, ηa) := (Ma ⊔M−a, ωa ⊔ ω−a) ∈ O, for every a ∈ A0 ∩ (0,∞).
(b) We denote by Ia the set of connected components of ∂Ma, and I :=

(Ia)a∈A0
. The collection of boundary helicities f :=

(
hMa,Oωa ,ωa

)
a∈A0

is an I-collection.

(ii) Let n ∈ {2, 3, . . . , } and C = (O,M) be a (2n, 2)-form category that
contains the objects B and Z. Then the cardinality of NCap(C) equals

46See Remark 22 for the relation between maxipotency and nondegeneracy.
47This means connected and simply connected.
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ℶ2, provided that there exist A0 and (Ma, ωa)a∈A0
as in (i), such that

also the following holds:
(a) supa∈A0

w(Ma, ωa) < 1
(b) supa∈A0

cMa,ωa
(Z, ωst) ≤ π

We will prove this theorem in Section 4. The idea of the proof is to
consider the family of capacities

cA := sup
a∈A

cWa,ηa
, A ∈ P

(
A0 ∩ (0,∞)

)
.

Hypothesis (ib) implies that there exists c0 < 1 such that for all a ̸= a′ ∈
(0,∞) and c ≥ c0, the pair (Wa, cηa) does not embed into (Wa′ , ηa′). See the
explanations below. It follows that

sup
{
cA(Wa, ηa)

∣∣ a ∈ A0 ∩ (0,∞) \A
}
< 1, ∀A.

Since also cA(Wa, ηa) = 1, for every a ∈ A, it follows that

cA ̸= cA′ , if A ̸= A′.

Since the cardinality of P((0,∞)) equals ℶ2, it follows that the cardinality
of Cap(C) is at least ℶ2. On the other hand, we denote by S the set of
isomorphism classes of symplectic manifolds. This set has cardinality ℶ1.
Since Cap(C) can be viewed as a subset of [0,∞]S , it has cardinality at most
ℶ2, hence equal to ℶ2.

A refined version of this argument shows that |NCap(C)| = ℶ2. For this
we normalize each capacity cA, by replacing it by the maximum of cA and
the Gromov width. Hypothesis (iia) guarantees that the modified capacities
are still all different from each other. Hypothesis (iib) guarantees that they
are normalized.

To understand the reason why no big multiple of (Wa, ηa) embeds into
(Wa′ , ηa′), consider the case in which each Ma is a spherical shell in a sym-
plectic vector space, with inner radius 1 and outer radius r + a for some
fixed r > 1. Assume that (Ma, cωa) embeds into (Ma′ , ωa′) in such a way
that the image of the inner boundary sphere of Ma wraps around the in-
ner boundary sphere of Ma′ . By Corollary 38 (Stokes’ Theorem for helicity)
and Remark 32 the difference of the helicities of these spheres equals the
enclosed volume on the right hand side. Since this volume is nonnegative, it
follows that c ≥ 1. Using our hypothesis (ib) that the collection of boundary
helicities is an I-collection, it follows that a ≤ a′.
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872 D. Joksimović and F. Ziltener

It follows that if a > a′ then no multiple of Wa (symplectically) embeds
into Wa′ in such a way that the inner boundary sphere of Ma wraps around
one of the two inner boundary spheres of Wa′ . Figure 1 illustrates this. In
contrast with this, Figure 2 shows a possible embedding. In this case our
helicity hypothesis (ib) implies that the rescaling factor is small.

Figure 1: If a > a′ then no multiple of the red spherical shellMa (symplecti-
cally) embeds into the blue shell Ma′ in such a way that the inner boundary
sphere of the red shell wraps around the inner boundary sphere of the blue
shell, since our helicity hypothesis (ib) forces the rescaling factor to be at
least 1.

If a < a′ then Ma embeds into Ma′ (without rescaling). However, there
is not enough space left for M−a. See Figure 3.

In the proof of Theorem 17(i) we will use the following sufficient criterion
for condition (ib) of Theorem 43. For every finite set S and every function
f : S → R we denote

(25)
∑

f :=
∑

s∈S

f(s).

Let A0 be an interval, I := (Ia)a∈A0
a collection of finite sets, and f =

(
fa :

Ia → R
)
a∈A0

a collection of functions. We define the disjoint unions of I and



✐

✐

“3-Ziltener” — 2023/3/4 — 1:17 — page 873 — #37
✐

✐

✐

✐

✐

✐

Generating sets for symplectic capacities 873

f to be

⊔
I :=

⊔
a∈A0

Ia :=
{
(a, i)

∣∣ a ∈ A0, i ∈ Ia
}
,

⊔
f :
⊔
I → R,

⊔
f(a, i) := fa(i).

Figure 2: A possible embedding of (Wa, cηa) into (Wa′ , ηa′) in the case a >
a′. The constant c needs to be small (even if a is close to a′), since the
volume of the hole enclosed by the image of Ma equals minus c times the
helicity of the inner boundary sphere of Ma. Here we use again our helicity
hypothesis (ib).

Figure 3: An attempt for an embedding of Wa into Ma′ in the case a < a′

(without rescaling). The image of M−a overlaps itself, since there is not
enough space left in Ma′ .
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Proposition 44 (sufficient conditions for being an I-collection).
The collection f is an I-collection if there exists ℓ ∈ N0, such that the fol-
lowing holds:

(i) For all a ∈ A0 we have

|Ia| = ℓ,(26)

fa ≥ −1,(27)

f−1
a (−1) ̸= ∅,(28)

|f−1
a ((0,∞))| = 1,(29) ∑

fa ≤ 1.(30)

(ii) For all a, a′ ∈ A0 we have

(31)
∑

fa >
∑

fa′ , if a > a′.

(iii) We have

(32) sup
(
im
(⊔

f
)
∩ (−∞, 0]

)
< −1 + inf

a∈A0

∑
fa.

If ℓ ≥ 4 then we have

(33) sup
⊔
f < 2 inf

(
im
(⊔

f
)
∩ (0,∞)

)
+ 1.

We will prove this proposition in Section 5.

Remark. The conditions (28,29) imply that ℓ ≥ 2.

Proof of Theorem 17(i,ii). (i): We choose V,Ω,K, r as in the hypothesis.
We define

(34) ω := Ω⊕n.

Since by hypothesis, k is even and Ω is a volume form, the form ω is max-
ipotent, i.e., ω∧n is a volume form. We denote by O the orientation on V n
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induced by this form. Since by hypothesis, K is nonempty and strictly star-
shaped around 0, its interior contains 0. It follows that

(35) C :=

∫

K,O

ω∧n > 0.48

By hypothesis, we have

(36) a1 := min
{
r − 1,

kn
√
2− r

}
> 0.

We choose a0 ∈ (0, a1) and define A0 := [−a0, a0]. For every a ∈ A0 we define

Ma := (r + a)K \ intK,(37)

ωa := C− 1

nω
∣∣Ma,(38)

Ia :=
{
connected component of ∂Ma

}
,(39)

I := (Ia)a∈A0
.

The form ωa is well-defined, since C > 0. We check the hypotheses of Theo-
rem 43(i). Let a ∈ A0. The setMa is compact. Since K is strictly starshaped
around 0, Ma is a smooth submanifold of V n that continuously deformation
retracts onto ∂K. The manifold ∂K is homeomorphic to the sphere Skn−1

1 .
Since by hypothesis k, n ≥ 2, this sphere is 1-connected. Hence the same
holds for Ma. The form Ω is exact. Hence the same holds for ω and thus for
ωa.

Condition (ia) is satisfied by our hypothesis and the rescaling property
for a (kn, k)-form category. We show that the collection of boundary helici-
ties

(40) f :=
(
fa := hMa,Oωa ,ωa

)
a∈A0

satisfies (ib). We check the hypotheses of Proposition 44. Let s ∈ (0,∞). We
denote by Os the orientation on ∂(sK) induced by O and sK. By Lemma
36 we have

(41) h
(
∂(sK), Os, ω∂(sK)

)
=

∫

sK,O

ω∧n = Cskn.

48Here we view V n as a manifold and ω as a differential form on it.
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For every connected component i of ∂Ma we denote by Oi the orientation
of i induced by O,Ma. Using (41,38) and Remarks 33,32, we obtain

(42) h (i, Oi, (ωa)i) =

{
(r + a)kn, for i = ∂

(
(r + a)K

)
,

−1, for i = ∂K.

Here we used that the orientation of ∂K induced by O andMa is the opposite
of O1. It follows that

∑
fa :=

∑

i∈Ia

fa(i) = −1 + (r + a)kn(43)

∈
[
− 1 + (r − a0)

kn,−1 + (r + a0)
kn
]
, ∀a ∈ A0.

Since a0 < a1 ≤ r − 1, we have −1 + (r − a0)
kn > 0. Hence by (43), we have

infa∈A0

∑
fa > 0. Using (42), it follows that condition (32) is satisfied.

Since a0 < a1 ≤ kn
√
2− r, we have −1 + (r + a0)

kn < 1. Using (43), it
follows that supa∈A0

∑
fa < 1. Hence inequality (30) is satisfied. The col-

lection f also satisfies the other hypotheses of Proposition 44. Applying
this proposition, it follows that f is an I-collection. Hence condition (ib) is
satisfied.

Therefore, all hypotheses of Theorem 43(i) are satisfied. Applying this
theorem, it follows that the cardinality of Cap(C) equals ℶ2. This proves
Theorem 17(i).

To prove (ii), assume that the hypotheses of this part of the theorem
are satisfied. We choose r ∈

(
1, 2n

√
2
)
satisfying (6). We define V := R2, Ω to

be the standard area form on R2, K := B
2n
1 , and a1 as in (36). We choose

a0 ∈ (0, a1), and define A0 := [−a0, a0] and (Ma, ωa) as in (37,38). The tripel
(V,Ω,K) satisfies the conditions of part (i) of Theorem 17. Hence by what
we proved above, the collection (Ma, ωa), a ∈ A0, satisfies the conditions of
Theorem 43(i). Let a ∈ A0. By (34) we have ω = ωst. Using (35), it follows
that

C =

∫

K=B
2n

1

ω∧n
st = πn,

and therefore,

(44) (Ma, ωa) =

(
Shr+a,

1

π
ωst

∣∣Ma

)
.

We check condition (iia) of Theorem 43. Let a ∈ A0. It follows from (44)

that the symplectic volume of (Ma, ωa) is −1+(r+a)2n

πn times the volume of
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the unit ball. Therefore, we have

w(Ma, ωa) ≤ n
√

−1 + (r + a)2n.

Using the inequalities a ≤ a0 < a1 ≤ 2n
√
2− r, it follows that condition (iia)

is satisfied.
We check (iib). Let a ∈ A0. Since r + a ≥ r − a0 > r − a1 ≥ 1, the shell

Shr+a contains the sphere S2n−1
r+a . Using r + a > 1, ωa = 1

π
ωst, and n ≥ 2, it

follows from [15, Corollary 5, p. 8] (spherical nonsqueezing) that (Ma, bωa)
does not symplectically embed into Z for any b ≥ π. Hence (iib) holds.

Therefore, all hypotheses of Theorem 43(ii) are satisfied. Applying this
part of the theorem, it follows that the cardinality of NCap(C) equals ℶ2.
This proves Theorem 17(ii). □

4. Proof of Theorem 43 (cardinality of the set of capacities,
more general setting)

As mentioned, the idea of proof of Theorem 43 is that our helicity hypothesis
(ib) and Stokes’ Theorem for helicity imply that for a ̸= a′ only small mul-
tiples of (Wa, ηa) embed into (Wa′ , ηa′). The idea behind this is that every
embedding φ of Ma into Ma′ gives rise to a partition of the disjoint union
of the sets of connected components of ∂Ma and ∂Ma′ . The elements of this
partition consist of components that lie in the same connected component
of the complement of φ(IntM). Here IntM denotes the interior of M as a
manifold with boundary, and we identify each component of ∂Ma with its
image under φ.

Stokes’ Theorem for helicity implies that the inequality (20) is satis-
fied. Together with a similar argument in which we consider embeddings of
Wa into Ma′ , it follows that the partition satisfies the conditions of Defini-
tions 39,40. Combining this with our helicity hypothesis (ib), it follows that
indeed only small multiples of Wa embed into Wa′ .

Lemmata 47 and 49 below will be used to make this argument precise.
To formulate the first lemma, we need the following.

Remark 45 (pullback of relation). Let S′, S be sets, R a relation on S,
and f : S′ → S a map. Denoting by × the Cartesian product of maps, the
set

R′ := f∗R := (f × f)−1(R)
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is a relation on S′. If R is reflexive/ symmetric/ transitive, then the same
holds for R′.

Let X be a topological space. We define

(45) CX :=
{
path-connected subset of X

}

and the relation ∼X on CX by

(46) A ∼X B : ⇐⇒ ∃ continuous path starting in A and ending in B.

This is an equivalence relation.
Let M and M ′ be topological manifolds of the same dimension, and

φ :M →M ′ a topological embedding, i.e., a homeomorphism onto its image.
We denote by Int(M) and ∂M the interior and the boundary of M as a
manifold with boundary. We denote

I := IM :=
{
connected component of ∂M

}
, I ′ := IM ′(47)

P :=M ′ \ φ(Int(M)).(48)

We define

Φ : P(M) → P(M ′), Φ(A) := image of A under φ,

Ψ : I ⊔ I ′ → P(P ), Ψ := Φ on I, Ψ := id on I ′,

∼φ:= Ψ∗ ∼P ,

Pφ := partition of I ⊔ I ′ associated with ∼φ .

Remark 46 (partition induced by embedding). For every path-
component P0 of P we define

Jφ(P0) := Ψ−1(P(P0))(49)

=
{
i ∈ I

∣∣Φ(i) ∈ P(P0)
}
⊔ (I ′ ∩ P(P0)).

The map

Jφ :
{
path-component P0 of P : Jφ(P0) ̸= ∅

}
→ Pφ

is well-defined and a bijection.

For every field F and i ∈ N0 we denote by Hi(M ;F ) the degree i singular
homology of M with coefficients in F .
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Lemma 47 (partition associated with an embedding). Assume that
M,M ′ are compact, M ′ is connected, ∂M ′ ̸= ∅, and that there exists a field
F , for which H1(M

′;F ) vanishes. Then the following holds:

(i) If M is nonempty and connected then Pφ is an (IM , IM ′)-partition.

(ii) If M consists of precisely two connected components M+ and M− then
Pφ is an

(
IM+ , IM− , IM ′

)
-partition.

Recall that the first statement means that condition (18) is satisfied, i.e.,
|J ∩ IM | = 1 for every J ∈ Pφ. The idea of proof of the inequality ≤ 1 is the
following. Each J corresponds to a path-component P0 of the complement
of φ(IntM). Suppose that there exists J that intersects IM in at least two
points i0, i1 (= components of ∂M). Then there is a path in P0 joining φ(i0)
and φ(i1). By connecting this path with a path in φ(M) with the same
endpoints, we obtain a loop in M ′ that intersects i0 and i1 in one point
each. See Figure 4.

Figure 4: The blue region is the image of M under φ, and the red and
green regions are the path-components of the complement of φ(IntM). The
red region contains the images of two connected components i0, i1 of the
boundary of M . The yellow loop intersects these images in one point each.

Hence the algebraic intersection number of this loop with i0 equals 1. In
particular, it represents a nonzero first homology class. Hence the hypothesis
that the first homology of M ′ vanishes, is violated. It follows that |J ∩ IM |
≤ 1.
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In order to make this argument precise one needs to ensure that the
algebraic intersection number equals the “näıve intersection number”. For
simplicity, we therefore use an alternative method of proof, which is based
on a certain Mayer-Vietoris sequence for singular homology. We need the
following.

Remark 48 (embedding is open, boundary). We denote by ∂XS the
boundary of a subset S of a topological space X. Let M,M ′ be topological
manifolds of the same dimension n, and φ :M →M ′ an injective continuous
map. By invariance of the domain, in every pair of charts for IntM and M ′,
the map φ sends every open subset of Rn to an open subset of Rn. It follows
that the set φ(IntM) is open in M ′. This implies that

φ(∂M) ⊆ ∂M
′

φ(IntM),

and if M is compact, then equality holds.
Suppose now that M is nonempty and compact, ∂M = ∅, and M ′ is

connected. ThenM ′ has no boundary, either. To see this, observe that φ(M)
is compact, hence closed inM ′. SinceM = IntM , as mentioned above, φ(M)
is also open. SinceM ′ is connected, it follows that φ(M) =M ′. Since in every
pair of charts for M and M ′, φ sends every open subset of Rn to an open
subset of Rn, it follows that ∂M ′ = ∅.

Proof of Lemma 47. Assume that M,M ′ are compact, M ̸= ∅, M ′ is con-
nected, and ∂M ′ ̸= ∅. We denote

I := IM , I ′ := IM ′ , P :=M ′ \ φ(Int(M)),

and by k the number of connected components of M .

Claim 1. We have

(50) |Pφ| = |I|+ 1− k.

Proof of Claim 1. Let P0 be a path-component of P .

Claim 2. P0 intersects φ(∂M).

Proof of Claim 2. By Remark 48 we have ∂M ̸= ∅. Since by hypothesis, M ′

is connected, there exists a continuous path x′ : [0, 1] →M ′ that starts in
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P0 and ends at φ(∂M). Since M is compact, the same holds for ∂M , and
hence for φ(∂M). Hence the minimum

t0 := min
{
t ∈ [0, 1]

∣∣x′(t) ∈ φ(∂M)
}

exists. By Remark 48 the set φ(IntM) is open inM ′. It follows that x′(t0) ̸∈
φ(IntM), and hence x′([0, t0]) ⊆ P =M ′ \ φ(IntM). (In the case t0 = 0 this
holds, since x′(0) ∈ P0 ⊆ P .) It follows that x′(t0) ∈ P0. Since also x′(t0) ∈
φ(∂M), it follows that P0 ∩ φ(∂M) ̸= ∅. This proves Claim 2. □

Claim 2 implies that the set Jφ(P0) (defined as in (49)) is nonempty. Hence
by Remark 46 we have

(51)
∣∣{path-component of P

}∣∣ = |Pφ|.

By M. Brown’s Collar Neighbourhood Theorem [2] (see also [4, Theorem,
p. 180]) there exists an open subset V of M and a (strong) deformation
retraction h of V onto ∂M . We define

A := φ(M), B :=M ′ \ φ(M \ V ).

Extending φ ◦ ht ◦ φ−1 : φ(V ) → φ(V ) by the identity, we obtain a map h′ :
[0, 1]×B → B. Since by Remark 48, the restriction of φ to IntM is open,
the map h′ is continuous, and therefore a deformation retraction of B onto
P .

We choose a field F as in the hypothesis, and denote by Hi singular
homology in degree i with coefficients in F . Since P is a deformation retract
of B, these spaces have isomorphic H0. Combining this with (51), it follows
that

|Pφ| =
∣∣{path-component of P

}∣∣
= dimH0(P )

= dimH0(B).(52)

The interiors of A and B cover M ′. Therefore, the Mayer-Vietoris Theorem
implies that there is an exact sequence

. . .→ H1(M
′) → H0(A ∩B) → H0(A)⊕H0(B) → H0(M

′) → 0.

Since by hypothesis, H1(M
′) = 0, it follows that

(53) dimH0(B) = dimH0(A ∩B) + dimH0(M
′)− dimH0(A).
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Since A ∩B = φ(V ) and φ is a homeomorphism onto its image, we have
H0(A ∩B) ∼= H0(V ). Since V deformation retracts onto ∂M , we have
H0(V ) ∼= H0(∂M), hence H0(A ∩B) ∼= H0(∂M). Since ∂M is a topologi-
cal manifold, its path-components are precisely its connected components.
Recalling the definition (47) of I, it follows that

(54) dimH0(A ∩B) = |I|.

Since by hypothesis M ′ is connected, we have

(55) dimH0(M
′) = 1.

Since A := φ(M), we have H0(A) ∼= H0(M), and therefore

dimH0(A) = k.

Combining this with (52,53,54,55), equality (50) follows. This proves Claim 1.
□

Remark 46 and Claim 2 imply that every element of Pφ intersects I.
We prove (i). Assume that M is connected. Then by Claim 1, we have

|Pφ| = |I|. It follows that |J ∩ I| = 1, for every J ∈ Pφ. Hence Pφ is an
(I, I ′)-partition. This proves (i).

Assume now that M± are as in the hypothesis of (ii). By Claim 1 we
have |Pφ| = |I| − 1. Since every element of Pφ intersects I, it follows that
there exists a unique J0 ∈ Pφ, such that |J0 ∩ I| = 2, and

(56) |J ∩ I| = 1, ∀J ∈ Pφ \ {J0}.

By Remark 46 there exists a unique path-component P0 of P , such that
J0 = Jφ(P0).

Claim 3. We have

J0 ∩ I− ̸= ∅ ≠ J0 ∩ I+.

Proof of Claim 3. We denote by P+
0 the path-component ofM ′ \ φ(Int(M+))

containing P0. Assume by contradiction that P+
0 ∩ φ(M−) = ∅. Then we
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have

P+
0 = P0, Jφ|M+

(P+
0 ) = Jφ(P0) = J0, J0 ∩ I = J0 ∩ I+.

Since |J0 ∩ I| = 2, we obtain a contradiction with (i), with I, φ replaced by
I+, φ|M+. Hence we have

P+
0 ∩ φ(M−) ̸= ∅.

It follows that there exists a continuous path x′ : [0, 1] →M ′ \ φ(Int(M+))
that starts at P0 and ends at φ(M−). Since M is compact, the same holds
for φ(M−). Hence the minimum

t0 := min
{
t ∈ [0, 1]

∣∣x′(t) ∈ φ(M−)
}

exists. By Remark 48 the set φ(IntM−) is open. It follows that x′(t0) ̸∈
φ(IntM−), hence x′([0, t0]) ⊆ P , and therefore

(57) x′(t0) ∈ P0.

On the other hand x′(t0) ∈ φ(M−) ⊆ φ(IntM−), and therefore

x′(t0) ∈ ∂M
′

φ(IntM−) = φ(∂M−).

Here we used Remark 48. Combining this with (57), it follows that P0 ∩
φ(∂M−) ̸= ∅, and therefore J0 ∩ I− ̸= ∅.

An analogous argument shows that J0 ∩ I+ ̸= ∅. This proves Claim 3.
□

By Claim 3 and (56) Pφ is an
(
I+, I−, I ′

)
-partition. This proves (ii) and

completes the proof of Lemma 47. □

The second ingredient of the proof of Theorem 43 is the following. Let
k, n ∈ N0 with n ≥ 2, M,M ′ be compact (smooth) manifolds of dimension
kn, ω, ω′ exact maxipotent k-forms on M,M ′, c ∈ (0,∞), and φ :M →M ′

a (smooth) orientation preserving embedding that intertwines cω and ω′.
We denote by O,O′ the orientations of M,M ′ induced by ω, ω′. Recall Def-
initions 30,37 of (boundary) helicity.

Lemma 49 (helicity inequality). Condition (20) holds with P = Pφ,
f = hM,O,ω, f

′ = hM ′,O′,ω′, and C := cn.
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The reason for this is that the left hand side of (20) is the volume of the
path-component of the complement of φ(IntM), determined by J . To make
this precise, we need the following.

Remark 50. Let X and X ′ be topological spaces and f : X → X ′ be con-
tinuous. Recall the definitions (45,46) of CX and ∼X .

(i) The map

f∗ : CX → CX′ , f∗(A) := f(A),

is well-defined. Furthermore, we have

f∗ × f∗(∼X) ⊆∼X′ .

(ii) Assume that X = X ′ and for every x ∈ X there exists a continuous
path from x to f(x). Then for every pair A,B ∈ CX we have

f∗(A) ∼f(X) f∗(B) ⇒ A ∼X B.

This follows from transitivity of ∼X .

Proof of Lemma 49. LetM,O, ω,M ′, O′, ω′, c, φ be as in the hypothesis. We
define I = IM , I

′ = IM ′ as in (47). Consider first the case in which

(58) φ(∂M) ∩ ∂M ′ = ∅.

Then the set

P :=M ′ \ φ(IntM)

is a smooth submanifold of M ′. Let i ∈ I. We denote î := φ(i). We define
OM

N as in (17), and abbreviate

Oi := OM
i , O

î
:= (O′)P

î
.

Recall that O denotes the orientation opposite to O. Since φ intertwines
O,O′, and P,φ(M) lie on opposite sides of î, we have

(59) (φ|i)∗Oi = (φ|i)∗Oi = O
î
.

Recall the definition (16) of ωN . Since φ intertwines cω, ω′, we have

(60) (φ|i)∗cωi = ω′
î
.
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We have

− cnh(i, Oi, ωi) = cnh(i, Oi, ωi) (by Remark 32)

= h
(
i, Oi, cωi

)
(by Remark 33)

= h
(
(φ|i)∗

(
i, Oi, cωi

))
(by Remark 34)

= h
(̂
i, O

î
, ω′

î

)
(using î = φ(i), (59,60)).(61)

Let P0 be a path-component of P . We define J := Jφ(P0) as in (49). Using
hM,O,ω(i) = h(i, Oi, ωi) and (61), we have

− cn
∑

i∈J∩I

hM,O,ω(i) +
∑

i′∈J∩I′

hM ′,O′,ω′(i′)

=
∑

î∈IP0

hP0,O′|P0,ω′|P0
(̂i)

=

∫

P0,O′|P0

ω′n (using Corollary 38)

≥ 0.

Hence the statement of Lemma 49 holds in the case (58).
Consider now the general situation. Let (Ki, ri)i∈I be a collection, where

for each i ∈ I, Ki is a compact connected neighbourhood of i that is a
(smooth) submanifold ofM (with boundary), and ri : Ki → i is a continuous
retraction, such that the sets Ki, i ∈ I, are disjoint. We denote by int(Ki)
the interior of Ki in M . We define

M̃ :=M \⋃i∈I int(Ki),

φ̃ := φ|M̃,

Ĩi := IKi
\ {i}, ∀i ∈ I, Ĩ := I

M̃
.

We define

(62) ˜ : P(I ⊔ I ′) → P
(
Ĩ ⊔ I ′

)
, J̃ := (J \ I) ∪

⋃

i∈J∩I

Ĩi.

The set M̃ is a submanifold of M , and

(63) φ̃(∂M̃) ∩ ∂M ′ = ∅.



✐

✐

“3-Ziltener” — 2023/3/4 — 1:17 — page 886 — #50
✐

✐

✐

✐

✐

✐

886 D. Joksimović and F. Ziltener

Claim 1.

(64) P φ̃ = P̃φ :=
{
J̃
∣∣ J ∈ Pφ

}
.

Proof of Claim 1. We define

P̃ :=M ′ \ φ(Int(M̃)), r : P̃ → P,

by setting

r :=

{
φ ◦ ri ◦ φ−1 on φ(Ki), with i ∈ I,
r = id on M ′ \ φ(M).

Since the sets Ki are disjoint, the map r is well-defined. Since by hypothesis,
φ is an embedding between two manifolds of the same dimension, the map
r is continuous. Let i ∈ I. Since Ki is path-connected and ri is a retraction
onto the subset i of Ki, the hypotheses of Remark 50(ii) are satisfied with
f = r. Applying this remark, it follows that for every pair Ã, B̃ of path-
connected subsets of P̃ we have

Ã ∼
P̃
B̃ ⇐⇒ r(Ã) ∼

r(P̃ )=P
r(B̃).

This implies that if i0, i1 ∈ I, ĩk ∈ Ĩik , for k = 0, 1, and i′0, i
′
1 ∈ I ′ then

ĩ0 ∼φ̃ ĩ1 ⇐⇒ i0 ∼φ i1, i′0 ∼φ̃ i
′
1 ⇐⇒ i′0 ∼φ i

′
1, ĩ0 ∼φ̃ i

′
0 ⇐⇒ i0 ∼φ i

′
0.

Equality (64) follows. This proves Claim 1. □

We abbreviate

hM := hM,O,ω.

Recall the definition (19). Using (63), by what we already proved, condition
(20) holds with I replaced by Ĩ, P := P φ̃, f := h

M̃
, f ′ := hM ′ , and C := cn.

Using Claim 1, it follows that

(65)
∑

J̃ ,h
M̃
,hM′ ,cn

≥ 0, ∀J ∈ Pφ.

We denote by ∂XS the boundary of a subset S of a topological space X.
For every i ∈ I Remark 32 and Lemma 36 imply that

h
M̃
(∂MKi) = −hKi

(∂MKi)

= hM (i)−
∫

Ki

ω∧n,(66)
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where the integral is w.r.t. the orientation O|Ki. Let J ∈ Pφ. Recalling the
definition (62) of ˜ and using (66), we have

∑

ĩ∈J̃∩Ĩ

h
M̃
(̃i) =

∑

i∈J∩I

(
hM (i)−

∫

Ki

ω∧n

)
.

Combining this with (65) and recalling the definition (19), it follows that

∑
J,hM ,hM′ ,cn

≥ −cn
∑

i∈J∩I

∫

Ki

ω∧n.

Since this holds for every choice of (Ki)i∈I , it follows that
∑

J,hM ,hM′ ,cn ≥ 0.
Hence condition (20) holds with P := Pφ, f := hM , f ′ := hM ′ , and C := cn.
This proves Lemma 49. □

Remark (helicity inequality). Under the hypotheses of this lemma, the
set M ′ \ φ(Int(M)) need not be a submanifold of M ′, since φ(∂M) may

intersect ∂M ′. This is the reason for the construction of M̃ in the proof of
this lemma.

We are now ready for the proof of Theorem 43.

Proof of Theorem 43. Assume that there exist A0, (Ma, ωa)a∈A0
as in the

hypothesis of (i). Let a ∈ A0 ∩ (0,∞). We define

(Wa, ηa) := (Ma ⊔M−a, ωa ⊔ ω−a) .

Let A ∈ P
(
A0 ∩ (0,∞)

)
. Recall the definition (2) of O0. We define the func-

tion

cA := sup
a∈A

cWa,ηa
: O0 → [0,∞].

If k = 2 and the ball B lies in O, then we define the function c̃A : by

(67) c̃A := max {cA, w} : O0 → [0,∞].

The functions cA and c̃A are generalized capacities on C.

Claim 1. (i) The map P
(
A0 ∩ (0,∞)

)
∋ A 7→ cA ∈ Cap(C) is injective.

Assume now that the hypotheses of Theorem 43(ii) are satisfied.

(ii) The map P
(
A0 ∩ (0,∞)

)
∋ A 7→ c̃A ∈ Cap(C) is injective.
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(iii) For every A ∈ P
(
A0 ∩ (0,∞)

)
the capacity c̃A is normalized.

Proof of Claim 1. We denote

hM := hM,O,ω, fa := hMa
, f := (fa)a∈A0

,

and define Cf
0 , C

f
1 as in (21,22). Let a ̸= a′ ∈ A0 ∩ (0,∞), and c ∈ (0,∞),

such that there exists a C-morphism φ from (Wa, cηa) to (Wa′ , ηa′).
Case A: There exist such a φ and b ∈ {a,−a}, b′ ∈ {a′,−a′}, such that

b > b′ and φ(Mb) ⊆Mb′ . We denote

M :=Mb, ω := ωb, M ′ :=Mb′ , ω′ := ωb′ , I := IM , I ′ := IM ′ .

Let d ∈ A0. By hypothesesMd is nonempty, compact, and 1-connected. Since
by hypothesis n ≥ 2 > 0 and ωd is maxipotent and exact, we have ∂Md ̸= ∅.
Hence the hypotheses of Lemma 47(i) are satisfied. Applying this lemma,
it follows that Pφ is an (I, I ′)-partition. By Lemma 49 the set Pφ is an(
hM , hM ′ , cn

)
-partition. It follows that

(68) cn ≤ Cf
0 .

Consider now the case that is complementary to Case A. Then a <
a′ and there exists a morphism φ from (Wa, cηa) to (Wa′ , ηa′), such that
φ(Wa) ⊆Ma′ . Lemmata 47(ii) and 49 imply that Pφ is an

(
hMa

, hM−a
, hMa′

,

cn
)
-partition. It follows that cn ≤ Cf

1 . Combining this with (68), in any case
we have

cn ≤ C := max
{
Cf
0 , C

f
1

}
.

It follows that

sup
{
c ∈ (0,∞)

∣∣ ∃a ̸= a′ ∈ A0 ∩ (0,∞) ∃ morphism (Wa, cηa) → (Wa′ , ηa′)
}

≤ n
√
C

< 1 (using our hypothesis (ib) and Definition 42).

It follows that

(69) cA(Wa′ , ηa′) < 1, ∀A ∈ P
(
A0 ∩ (0,∞)

)
, a′ ∈ A0 ∩ (0,∞) \A.49
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Let A ̸= A′ ∈ P
(
A0 ∩ (0,∞)

)
. Assume first that A′ \A ̸= ∅. We choose a′ ∈

A′ \A. Since cA′(Wa′ , ηa′) ≥ 1,50 inequality (69) implies that cA ̸= cA′ . This
also holds in the case A \A′ ̸= ∅, by an analogous argument. This proves
statement (i).

We prove (ii). Combining inequality (69) with our hypothesis (iia), we
have

c̃A(Wa′ , ηa′) < 1, ∀A ∈ P
(
A0 ∩ (0,∞)

)
, a′ ∈ A0 ∩ (0,∞) \A.

Hence an argument as above shows that the map P
(
A0 ∩ (0,∞)

)
∋ A 7→ c̃A

is injective. This proves (ii).

We prove (iii). Let A ∈ P
(
A0 ∩ (0,∞)

)
. By our definition (67) we have

(70) π = w(B) ≤ c̃A(B).

Since B symplectically embeds into Z, we have cM,ω(B) ≤ cM,ω(Z) for every
object (M,ω) of C. It follows that

(71) c̃A(B) ≤ c̃A(Z).

Our hypothesis (iib) and Gromov’s Nonsqueezing Theorem imply that
c̃A(Z) ≤ π. Combining this with (70,71), it follows that c̃A is normalized.
This proves (iii) and therefore Claim 1. □

Claim 1(i) implies that

(72) |Cap(C)| ≥
∣∣P
(
A0 ∩ (0,∞)

)∣∣ = ℶ2,

where in the second inequality we used our hypothesis that A0 is an interval
of positive length. On the other hand, by Corollary 58 in the appendix the
set O0 has cardinality at most ℶ1. It follows that

|Cap(C)| ≤
∣∣[0,∞]O0

∣∣ ≤ ℶ
ℶ1

1 = ℶ2.

Combining this with (72), the statement of Theorem 43(i) follows.
The statement of Theorem 43(ii) follows from an analogous argument,

using parts (ii,iii) of Claim 1. This completes the proof of Theorem 43. □

49A priori the function c := cA is only defined on the set O0. For a general
(M,ω) ∈ O we define c(M,ω) := c(M0, ω0), where (M0, ω0) is an arbitrary object
of O0 isomorphic to (M,ω).

50In fact equality holds, but we do not use this.
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5. Proof of Proposition 44 (sufficient conditions for being an
I-collection)

Proof of Proposition 44. Let I = (Ia), f = (fa) be as in the hypothesis. To
simplify notation, we canonically identify the collection f with its disjoint
union

⊔
f :
⊔
I → R.

Claim 1. Let a, a′ ∈ A0. If a > a′ then for every partition P of Ia ⊔ Ia′

there exists J ∈ P, such that

(73)
∑

i∈J∩Ia

f(i) >
∑

i′∈J∩Ia′

f(i′).

Proof of Claim 1. This follows from hypothesis (31). □

By hypothesis (26) there exists k, such that |Ia| = k + 1, for every a ∈ A0.
By hypothesis (29) for every a ∈ A0 the set f−1

a ((0,∞)) contains a unique
element pa. Hypotheses (30,27) imply that

(74) f(pa) ≤ k + 1, ∀a ∈ A0.

Recalling the notation (25), we have

inf
a∈A0

∑
fa > 0, (using (32,28))(75)

f(pa) > 1, ∀a ∈ A0 (using (75,28)).(76)

Claim 2. If k = 1 or 2 then the inequality (33) holds.

Proof. For every a ∈ A0 we have

f(pa) =
∑

fa −
∑

n∈Ia\{pa}

f(n)

≥ inf
b

∑
fb + 1− (k − 1) sup

(
im(f) ∩ (−∞, 0]

)
(using (28))

> k + (2− k) inf
b

∑
fb (using (32))

≥ k (using that k = 1 or 2, and (75)).

Using (74), it follows that (33) holds. This proves Claim 2. □

We now check the conditions (23,24) of Definition 42.
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Condition (23): Let a, a′ ∈ A0 be such that a > a′, C ∈ (0,∞) and
P be an

(
fa, fa′ , C

)
-partition. If C ≥ 1 then Claim 1 implies that condition

(20) in Definition 39 with I := Ia, I
′ := Ia′ is violated. It follows that C < 1.

We denote by J0 the unique element of P containing pa.

Claim 3. We have pa′ ∈ J0.

Proof of Claim 3. By Definition 39 we have |J0 ∩ Ia| = 1. It follows that
J0 ∩ Ia = {pa}. Therefore, by condition (20) applied to J := J0, we have

Cf(pa) ≤
∑

i′∈J0∩Ia′

f(i′).

Since Cf(pa) > 0 and pa′ is the only point in Ia′ at which f is positive,
Claim 3 follows. □

Claim 4. We have f−1
a′ (−1) ⊆ J0.

Proof of Claim 4. Let J ∈ P \ {J0}. By (18) the set J ∩ Ia consists of a
unique element i. Hypothesis (27) and the inequality C < 1 imply that
Cf(i) > −1. Combining this with (20), it follows that

(77)
∑

i′∈J∩Ia′

f(i′) > −1.

Since J and J0 are disjoint, Claim 3 implies that pa′ ̸∈ J . Therefore, (77)
implies that J ∩ Ia′ ∩ f−1(−1) = ∅. Since this holds for every J ∈ P \ {J0},
and P covers Ia′ , it follows that Ia′ ∩ f−1(−1) ⊆ J0. This proves Claim 4. □

Claims 3,4 and hypothesis (28) imply that |J0 ∩ Ia′ | ≥ 2. Since |Ia| = |Ia′ | =
k + 1 and pa ∈ J0 ∩ Ia, it follows that

(78)
∣∣(Ia ⊔ Ia′

)
\ J0

∣∣ ≤ 2k − 1.

The condition (18) implies that
∣∣P \ {J0}

∣∣ = |Ia| − 1 = k. Since the elements
of P \ {J0} are disjoint and their union is contained in

(
Ia ⊔ Ia′

)
\ J0, using

(78), it follows that there exists J1 ∈ P \ {J0} satisfying |J1| ≤ 1. Since |J1 ∩
Ia| = 1, it follows that

(79) J1 ∩ Ia′ = ∅.

The facts J1 ̸= J0, and that pa lies in J0 and is the only point of Ia at which
f is positive, imply that

∑
i∈J1∩Ia

f(i) ≤ sup
(
im(f) ∩ (−∞, 0]

)
. Using (79)
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and recalling the definition (19), it follows that

(80)
∑

J1,fa,fa′ ,C
≥ −C sup

(
im(f) ∩ (−∞, 0]

)
.

Summing up the inequality (20) over all J ∈ P \ {J1} and adding (80), we
obtain

−C
∑

fa +
∑

fa′ ≥ −C sup
(
im(f) ∩ (−∞, 0]

)
.

It follows that

C
(
− sup

(
im(f) ∩ (−∞, 0]

)
+ inf

a

∑
fa

)
≤
∑

fa′

≤ 1 (using hypothesis (30)).

Combining this with hypothesis (32), it follows that Cf
0 < 1. Hence f satis-

fies (23).

Condition (24): Let a, a′ ∈ (0,∞), such that a < a′, C ∈ (0,∞) and P
be an

(
fa, f−a, fa′ , C

)
-partition. We denote by J0 ∈ P the unique element

that contains pa. We will show that P and J0 look like in Figure 5.

Figure 5: The dots in the first row constitute the set Ia, which contains the
point pa, and similarly for I−a and Ia′ . The blue and black sets denote the
elements of the partition P. We show below that except for pa, the blue set
J0 also contains p−a, pa′ , and an element of Ia′ at which f takes on the value
−1. Note that J0 intersects both Ia and I−a in exactly one point, and that
the other elements of P intersect Ia ⊔ I−a in exactly one point.

Claim 5. We have pa′ , p−a ∈ J0.

Proof of Claim 5. We show that pa′ ∈ J0. Conditions (a,b) of Definition 40
with I± := I±a imply that J0 ∩ I±a is empty or a singleton. Combining this
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with the fact that pa ∈ J0, hypothesis (27), and (76), we obtain

∑

i∈J0∩(Ia⊔I−a)

f(i) > 0.

Using condition (20) with J = J0, it follows that pa′ ∈ J0.
To show that p−a ∈ J0, let J ∈ P \ {J0}. Since pa′ ∈ J0, it does not lie in

J . It follows that
∑

i′∈J∩Ia′
f(i′) ≤ 0. Using (20) with I = Ia ⊔ I−a, it follows

that

(81)
∑

i∈J∩(Ia⊔I−a)

f(i) ≤ 0.

Conditions (a,b) of Definition 40 with I± := I±a imply that J ∩ I±a is empty
or a singleton. Using hypothesis (27) and (81), it follows that J ∩ I−a is
empty or consists of one element i, satisfying f(i) ≤ 1. Using (76), it follows
that p−a ̸∈ J . Since this holds for every J ∈ P \ {J0}, it follows that p−a ∈
J0. This proves Claim 5. □

Claim 6. We have C < 1.

Proof of Claim 6. By Remark 41 we have |P| = 2k + 1. Since |Ia′ | = k + 1,
k ≥ 1, and the elements of P are disjoint, it follows that there exists J1 ∈ P,
such that

(82) J1 ∩ Ia′ = ∅.

Claim 5 implies that J1 ̸= J0, and hence that pa, p−a ̸∈ J1. By Definition
40(b) we have

(83) J1 ∩ Ia ⊔ I−a = {n}, for some point n.

By (32) we have

(84) f(n) < −1 + inf
b∈A0

∑
fb.

Denoting
∑

J
:=

∑

i∈J∩(Ia⊔I−a)

f(i),
∑′

J
:=

∑

i′∈J∩Ia′

f(i′),
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we have

1 ≥
∑

fa′ (using 30)

=
∑

J∈P

∑′

J

=
∑

J∈P

(
−C

∑
J
+
∑′

J

)
+ C

∑(
fa + f−a

)

≥ −C
∑

J1

+
∑′

J1

+2C inf
b∈A0

∑
fb (using (20) with J ∈ P \ {J1})

> C

(
1 + inf

b∈A0

∑
fb

)
(using (83,84,82)).

Using (75), it follows that C < 1. This proves Claim 6. □

Claim 7. We have f−1
a′ (−1) ⊆ J0.

Proof of Claim 7. Let J ∈ P \ {J0}. By Claim 5 we have p−a ∈ J0. Since
also pa ∈ J0, by Definition 40(b), it follows that

∣∣J ∩ (Ia ⊔ I−a)
∣∣ = 1. Using

hypothesis (27) and (20), it follows that

∑

i′∈J∩Ia′

f(i′) ≥ −C

> −1 (by Claim 6).(85)

By Claim 5 we have pa′ ∈ J0. Hence this point does not lie in J . There-
fore, (85) implies that J ∩ Ia′ ∩ f−1(−1) = ∅. Since this holds for every
J ∈ P \ {J0}, and P covers Ia′ , it follows that Ia′ ∩ f−1(−1) ⊆ J0. This
proves Claim 7. □

Claim 5 and Definition 40(a) imply that J0 ∩
(
Ia ⊔ I−a

)
= {pa, p−a}, and

therefore,

(86)
∑

i∈J0∩
(
Ia⊔I−a

)
f(i) = f(pa) + f(p−a).

Claim 7 and hypothesis (28) imply that

∑

i′∈J0∩Ia′

f(i′) ≤ f(pa′)− 1.
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Combining this with (86) and (20) with J = J0, it follows that

C(f(pa) + f(p−a)) ≤ f(pa′)− 1.

It follows that

C ≤ f(pa′)− 1

f(pa) + f(p−a)

≤ supb f(pb)− 1

2 infb f(pb)

< 1 (using (33)).

Here in the case k = 1 or 2 we use Claim 2. It follows that Cf
1 < 1. Hence f

satisfies (24). This completes the proof of Proposition 44. □

6. Proof of Theorem 17(iii) (cardinality of a generating set)

The proof of Theorem 17(iii) is based on the following lemma. For every set
S we denote by P(S) its power set. For every subcollection C ⊆ P(X) we
denote by σ(C) the σ-algebra generated by C. It is given by

σ(C) :=
⋂

Aσ-algebra on X: C⊆A

A.

A measurable space is a pair (X,A), where X is a set and A a σ-algebra on
X. Let (X,A), (X ′,A′) be measurable spaces. A map f : X → X ′ is called
(A,A′)-measurable iff f−1(A′) ∈ A, for all A′ ∈ A′. We denote

M(A,A′) :=
{
(A,A′)-measurable map: X → X ′

}
.

Lemma 51 (cardinality of the set of measurable maps). Let X,X ′

be sets and C ⊆ P(X), C′ ⊆ P(X ′) be subcollections. Assume that |C| ≤ ℶ1,
|C′| ≤ ℶ0 = ℵ0, and

(87) ∀x′ ∈ X ′ :
⋂

C′∈C′:x′∈C′

C ′ = {x′}.

We define A := σ(C), A′ := σ(C′). Then M(A,A′) has cardinality at most
ℶ1.

For the proof of this lemma we need the following.
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Lemma 52 (cardinality of σ-algebra). Let X be a set and C ⊆ P(X) be
a subcollection of cardinality at most ℶ1. Then σ(C) has cardinality at most
ℶ1.

The proof of this lemma is based on the following. Let S be a set, F :
P(S) → P(S), such that

(88) A ⊆ F (A), ∀A ∈ P(S).

Let A ∈ P(S). We define ⟨F,A⟩, the set generated by F,A, to be the smallest
fixed point of F containing A. This is the set given by

⟨F,A⟩ =
⋂{

B ∈ P(S)
∣∣A ⊆ B = F (B)

}
.51

Lemma 53 (cardinality of generated set). The set ⟨F,A⟩ has cardi-
nality at most ℶ1, if the following conditions are satisfied:

(a) F is monotone, i.e., B ⊆ C implies that F (B) ⊆ F (C).

(b) |A| ≤ ℶ1.

(c) If |B| ≤ ℶ1 then |F (B)| ≤ ℶ1, for every B ∈ P(S).

(d) If B ∈ P(S) satisfies

(89) F (C) ⊆ B, ∀ countable subset C ⊆ B,

then B is a fixed point of F .

Proof of Lemma 53. We denote by ω1 the smallest uncountable (von Neu-
mann) ordinal, i.e., the set of countable ordinals. We define A0 := A, and
using transfinite recursion, for every α ≤ ω1, we define

(90) Aα :=

{
F (Aβ), if α = β + 1,⋃

β<αAβ , if α ̸= 0 is a limit ordinal.

(A limit ordinal is an ordinal for which there does not exist any ordinal β
for which α = β + 1.)

51This intersection is well-defined, since the collection of all admissible B is
nonempty. It contains B = S.
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Claim 1. We have

⟨F,A⟩ ⊆ Aω1
.

Proof of Claim 1. Since A0 ⊆ Aω1
, it suffices to show that Aω1

is a fixed
point of F .

Claim 2. Condition (89) is satisfied with B = Aω1
.

Proof of Claim 2. Let C ⊆ Aω1
be a countable subset. The definition (90),

condition (88), and transfinite induction imply that for every pair α, β of
ordinals, we have

(91) α ≤ β ⇒ Aα ⊆ Aβ .

We choose a collection (αc)c∈C of countable ordinals, such that c ∈ Aαc
, for

every c ∈ C. The ordinal

α := sup
c∈C

αc :=
⋃

c∈C

αc

is countable, and therefore less than ω1. For every c ∈ C, we have αc ≤ α,
and thus by (91), Aαc

⊆ Aα. It follows that C ⊆ Aα, and therefore,

F (C) ⊆ F (Aα) (using (a))

= Aα+1 (using (90))

⊆ Aω1
(using α+ 1 < ω1 and (91)).

This proves Claim 2. □

By this claim and (d) the set Aω1
is a fixed point of F . This proves Claim 1.

□

For every ordinal α we denote by P (α) the statement “|Aα| ≤ ℶ1”.

Claim 3. The statement P (α) is true for all α ≤ ω1.

Proof of Claim 3. We prove this by transfinite induction. Let α ≤ ω1 and
assume that the statement holds for all β < α. If α = 0 then P (0) holds by
our hypothesis (b). If α = β + 1 for some β then P (α) holds by (90) and
our hypothesis (c). If α ̸= 0 is a limit ordinal, then P (α) holds by (90),
our induction hypothesis, and the fact |α| ≤ |ω1| ≤ ℶ1. This completes the
inductive step. Claim 3 now follows from transfinite induction. □
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Lemma 53 follows from Claims 1 and 3. □

Proof of Lemma 52. This follows from Lemma 53 with

S := P(X), A := C, F (D) :=
{⋃

E
∣∣∣ E ⊆ D countable

}
∪
{
X \ E

∣∣E ∈ D
}
.

To see that (d) holds, let B = D ∈ P(S) be such that (89) holds. It suffices to
show that D is closed under countable unions and complements. Let E ⊆ D
be a countable subcollection. We have

⋃
E ∈ F (E)
⊆ D (using (89)).

Hence D is closed under countable unions. Let now E ∈ D. We have

X \ E ∈ F ({E})
⊆ D (using (89)).

Hence D is closed under complements. It follows that D is a fixed point of
F . This proves (d) and completes the proof of Lemma 52. □

Proof of Lemma 51. Recall that for every pair of sets S, S′ we denote by S′S

the set of maps from S to S′. Let f ∈ M(A,A′) and x′ ∈ X ′. Our hypothesis
that |C′| ≤ ℵ0 and (87) imply that the set {x′} is a countable intersection of
elements of C′. Hence it lies in A′. It follows that f−1(x′) ∈ A. The following
map is therefore well-defined:

ι : M(A,A′) → AX′

, ι(f)(x′) := f−1(x′).

We define the map

φ : M(A,A′) → AC′

, φ(f)(C ′) := f−1(C ′),

ψ : AC′ → AX′

, ψ(A)(x′) :=
⋂

C′∈C′:x′∈C′

A(C ′).

Our hypothesis |C′| ≤ ℵ0 implies that ψ(A)(x′) is a countable intersection of
elements of A, hence an element of A. It follows that ψ is well-defined. For
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every f ∈ M(A,A′) and x′ ∈ X ′, we have

ι(f)(x′) = f−1(x′)

= f−1

(
⋂

C′∈C′:x′∈C′

C ′

)
(by (87))

=
⋂

C′∈C′:x′∈C′

f−1(C ′)

=
(
ψ(φ(f))

)
(x′).

Hence the equality ι = ψ ◦ φ holds. Since ι is injective, it follows that φ
is injective. Our hypothesis that |C| ≤ ℶ1 and Lemma 52 imply that

∣∣A =
σ(C)

∣∣≤ℶ1. Since |C′|≤ℵ0, it follows that
∣∣AC′

∣∣≤ℶ1. Since φ maps M(A,A′)
to AC′

, it follows that
∣∣M(A,A′)

∣∣ ≤ ℶ1. This proves Lemma 51. □

In the proof of Theorem 17(iii) we will also use the following.

Remarks 54.

(i) Every countable product of second countable topological spaces is sec-
ond countable.

(ii) Let (X, τ) be a topological space and B a basis of τ . Then the following
inequality holds:

|τ | ≤ 2|B|

Proof of Theorem 17(iii). Let G0 be a countable subset ofX
S . We equipXG0

with the product topology τG0
. We define AG0

,A to be the Borel σ-algebras
of τG0

, τ .

Claim 1. The set M(AG0
,A) has cardinality at most ℶ1.

Proof of Claim 1. Our assumption that τ is separable and metrizable, im-
plies that it is second countable. Hence by Remark 54(i), the same holds for
τG0

. Hence by Remark 54(ii), we have

(92) |τG0
| ≤ 2ℵ0 = ℶ1.

We have AG0
= σ(τG0

). Since τ is separable, there exists a countable τ -dense
subset A of X. We define C to be the collection of all open balls with rational
radius around points in A. Since A is dense, every element of τ is a union
of elements of C. Since A is countable, the set C is countable. It follows that
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A = σ(τ) = σ(C). Since τ is separable and metrizable, the condition (87)
with C′ replaced by C is satisfied. Using (92), it follows that the hypotheses
of Lemma 51 are satisfied with C, C′ replaced by τG0

, C. Applying this lemma,
it follows that

∣∣M(AG0
,A)

∣∣ ≤ ℶ1. This proves Claim 1. □

Let G be a subset of XS of cardinality at most ℶ1. By Definition 16 the set
countably Borel-generated by G is given by

⟨G⟩ :=
{
f ◦ evG0

| G0 ⊆ G countable, f ∈ M(AG0
,A)

}
.

The set of all countable subsets of G has cardinality at most ℶℵ0

1 = ℶ1. Using
Claim 1, it follows that

|⟨G⟩| ≤ ℶ
2
1 = ℶ1.

This proves Theorem 17(iii). □

7. Proof of Theorem 25 (uncountability of every generating
set under a mild hypothesis)

Proof of Theorem 25. Let C = (O,M), A,M be as in the hypothesis.
W.l.o.g. we may assume that A is open. Our hypothesis (9) implies that
the function Vol

1

n ◦M : A→ R is continuous and strictly increasing. Hence
it is injective with image Ã given by an interval. We define

M̃ :=M ◦
(
Vol

1

n ◦M
)−1

: Ã→ O.

Let ã0 ∈ Ã. We define

gã0
:= c

M̃ã0

◦ M̃ : Ã→ R.

Claim 1. This function is not differentiable at ã0.

Proof of Claim 1. We have

Vol
1

n ◦M̃ = id.

It follows that

(93) gã0
(ã) ≤ ã

ã0
, ∀ã ∈ Ã ∩ (0, ã0).
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Our hypothesis (10) implies that

gã0
(ã) = 1, ∀ã ∈ Ã ∩ [ã0,∞).

Combining this with (93), it follows that gã0
is not differentiable at ã0. This

proves Claim 1. □

Let now G be a countable subset of Cap(C). Let c ∈ G. The inequality “≥” in
our hypothesis (10) implies that the function c ◦M is increasing. It follows

that the same holds for c ◦ M̃ . Therefore, by Lebesgue’s Monotone Differ-
entiation Theorem the function c ◦ M̃ is differentiable52 almost everywhere,
see e.g. [16, p. 156, Theorem 1.6.25]. Since G is countable, it follows that

the set of all points in Ã at which the function c ◦ M̃ is differentiable, for
every c ∈ G, has full Lebesgue measure. Since A has positive length, the
same holds for Ã. It follows that there exists a point ã0 ∈ Ã at which c ◦ M̃
is differentiable, for every c ∈ G.

Let G0 be a finite subset of G, and f : [0,∞]G0 → [0,∞] a differentiable

function. We define evG0
as in (4). Since c ◦ M̃ is differentiable at ã0 for

every c ∈ G0, the same holds for the map evG0
◦M̃ : Ã→ [0,∞]G0 . It follows

that the composition f ◦ evG0
◦M̃ is differentiable at ã0. Using Claim 1, it

follows that

f ◦ evG0
◦M̃ ̸= gã0

= c
M̃ã0

◦ M̃,

and therefore that f ◦ evG0
̸= c

M̃ã0

. Hence G0 does not finitely differentiably

generate c
M̃ã0

. This proves Theorem 25. □

Appendix A. Cardinality of the set of equivalence classes of
pairs of manifolds and forms

In this section we prove that the set of diffeomorphism types of smooth
manifolds has cardinality at most ℶ1. We also prove that the same holds for
the set of all equivalence classes of pairs (M,ω), whereM is a manifold, and
ω is a differential form on M . We used this in the proof of Theorem 43, to
estimate the cardinality of the set of (normalized) capacities from above.

In order to deal with a certain set-theoretic issue, we explain how to make
the class of all diffeomorphism types a set. Let A,B be sets and S : A→ B
a map. Let a ∈ A. We denote Sa := S(a). Recall that in ZFC “everything”

52in the usual sense
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is a set, in particular Sa. Recall also that the disjoint union of S is defined
to be ⊔

S :=
{
(a, s)

∣∣ s ∈ Sa
}
.

We denote

Hn :=
{
x ∈ R

n
∣∣xn ≥ 0

}
.

Let S be a set. By an atlas on S we mean a subset

A ⊆
⊔

U∈P(S)

(Hn)U ,

such that ⋃

(U,φ)∈A

U = S,

for every (U,φ) ∈ A the map φ is injective, and for all (U,φ), (U ′, φ′) ∈ A
the set φ(U ∩ U ′) is open (in Hn) and the transition map

φ′ ◦ φ−1 : φ(U ∩ U ′) → Hn

is smooth. We call an atlas maximal iff it is not contained in any strictly
larger atlas. By a (smooth finite-dimensional real) manifold (with boundary)
we mean a pair M = (S,A), where S is a set and A is a maximal atlas on
S, such that the induced topology is Hausdorff and second countable. We
denote by ℶ1 the (von Neumann) cardinal 2ℶ0=ℵ0 , and by ∼ the diffeomor-
phism relation on

(A.1) M0 :=
{
(S,A)

∣∣S ⊆ ℶ1, (S,A) is a manifold
}
.

This means that M ∼M ′ iff M and M ′ are diffeomorphic. We define the
set of diffeomorphism types (of manifolds) to be

M :=
{
∼ -equivalence class

}
.

Remarks 55 (diffeomorphism types).

• The above definition overcomes the set-theoretic issue that the “set”
of diffeomorphism classes of all manifolds (without any restriction on
the underlying set) is not a set (in ZFC).

• Every manifold M is diffeomorphic to one whose underlying set is
a subset of ℶ1. To see this, note that using second countability and
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the axiom of choice, the set underlying M has cardinality ≤ ℶ1. This
means that there exists an injective map f :M → ℶ1. Pushing forward
the manifold structure via f , we obtain a manifold whose underlying
set is a subset of ℶ1, as claimed.

• By the last remark, heuristically, there is a canonical bijection between
M and the “set” of diffeomorphism classes of all manifolds.

• One may understand M in a more general way as follows. Let M be a
set consisting of manifolds, such that every manifold is diffeomorphic
to some element of M. For example, let S be a set of cardinality at
least ℶ1 and define M to be the set of all manifolds whose underlying
set is a subset of S. The set M is in bijection with the set of all
diffeomorphism classes of elements of M.

Proposition 56. The set M has cardinality at most ℶ1.

In the proof of this result we will use the following.

Remark 57 (Whitney’s Embedding Theorem). Let n ∈ N0 and M
be a (smooth) manifold of dimension n. There exists a (smooth) embedding

of M into R2n+1 with closed image. To see this, consider the double M̃ of
M , which is obtained by gluing two copies of M along the boundary. By
Whitney’s Embedding Theorem there exists an embedding of M̃ into R2n+1

with closed image, see e.g. [7, 2.14. Theorem, p. 55]53. Composing such an

embedding with one of the two canonical inclusions of M in M̃ , we obtain
an embedding of M into R2n+1 with closed image, as desired.

Proof of Proposition 56. We define

M :=
⊔

m∈N0

{
submanifold of Rm

}
.

Claim 1. We have |M| ≤ ℶ1.

53In this section of Hirsch’s book manifolds are not allowed to have boundary.
This is the reason for considering M̃ , rather than M .
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Proof. Let n,m ∈ N0. The topological space N0 ×Hn is separable. Since
|Rm| ≤ ℶ1, it follows that

(A.2)
∣∣C
(
N0 ×Hn,Rm

)∣∣ ≤ ℶ1.

Let n ∈ N0 and (m,M) ∈ M, such that M is of dimension n. Since M is
second countable, there exists a surjective map ψ : N0 ×Hn →M whose
restriction to {i} ×Hn is an embedding, for every i ∈ N0. It follows that M
lies in the image of the map

C
(
N0 ×Hn,Rm

)
→ P(Rm), f 7→ im(f).

Combining this with (A.2), it follows that |M| ≤ ℶ1. This proves Claim 1.
□

Let n ∈ N0. We choose an injection α : R2n+1 → ℶ1, and consider the push-
forward map

α∗ : M → M, α∗(S,A) :=
[
α(S), α∗A

]
.

Remark 57 implies that this map is surjective. Using Claim 1, it follows that
|M| ≤ ℶ1. This proves Proposition 56. □

We define M0 as in (A.1),

Ω(M) :=
{
differential form on M

}
,

Ω0 :=
⊔

M∈M0
Ω(M),

the equivalence relation ≈ on Ω0 by

(M,ω) ≈ (M ′, ω) : ⇐⇒ ∃ diffeomorphism φ :M →M ′ : φ∗ω′ = ω,

and Ω := Ω0/ ≈ .

Remark. Philosophically, this is the “set” of all equivalence classes of pairs
(M,ω), where M is an arbitrary manifold and ω is a differential form on M .
The above definition makes this idea precise.

Corollary 58. The set Ω has cardinality at most ℶ1.
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Proof of Corollary 58. If M,M ′ are manifolds and φ :M →M ′ is a diffeo-
morphism then

(A.3) φ∗ : Ω(M ′) → Ω(M) is a bijection.

We denote by Π : Ω0 → Ω and π : M0 → M the canonical projections, and
by f : Ω0 → M0, f((M,ω)) :=M , the forgetful map. We define F : Ω → M

to be the unique map satisfying F ◦Π = π ◦ f . Let M ∈ M. Choosing M ∈
M, we have

F−1(M) = Π
(
(F ◦Π)−1(M)

)

= Π
(
(π ◦ f)−1(M)

)

= Π
(
f−1(M)

)
(using that π−1(M) = M)

= Π
(
f−1(M) = Ω(M)

)
(using (A.3)).(A.4)

Since M is separable and |TM | ≤ ℶ1, we have |C(M,TM)| ≤ ℶ1. Using
Ω(M) ⊆ C(M,TM), (A.4), and Proposition 56, it follows that

∣∣∣∣∣Ω =
⋃

M∈M

F−1(M)

∣∣∣∣∣ ≤ ℶ
2
1 = ℶ1.

This proves Corollary 58. □

Remark. Let n ≥ 2. Then the set of diffeomorphism types of manifolds of
dimension n has cardinality equal to ℶ1. To see this, we choose a countable
set M of nondiffeomorphic connected n-manifolds. The map

{0, 1}M ∋ u 7→
⊔

M∈M:u(M)=1

M ∈ {n-manifold}

is injective. Hence the set of diffeomorphism types of manifolds of dimension
n has cardinality ≥ ℶ1. Combining this with Proposition 56, it follows that
this cardinality equals ℶ1, as claimed.

Appendix B. Proof of Theorem 29 (monotone generation for
ellipsoids)

Theorem 29 follows from McDuff’s characterization of the existence of sym-
plectic embeddings between ellipsoids, and the fact that monotone gener-
ation is equivalent to almost order-reflexion. To explain this, let (S,≤) be
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a preordered set. We fix an order-preserving (0,∞)-action on S. We define
the order-capacity function c≤ : S × S → [0,∞] by

c≤(s, s′) := sup
{
a ∈ (0,∞)

∣∣ as ≤ s′
}
.

Remark 59. For every s ∈ S the function c≤(s, ·) is a capacity, as defined
in (14).

Let G ⊆ Cap(S). We call G almost order-reflecting iff for all s, s′ ∈ S the
following holds:

c(s) ≤ c(s′), ∀c ∈ G ⇒ c≤(s, s′) ≥ 1.

Remark. A map f between two preordered sets is called order-reflecting
if f(s) ≤ f(s′) implies that s ≤ s′. The set G is almost order-reflecting iff
its evaluation map is “almost” order-reflecting, in the sense that evG(s) ≤
evG(s

′) implies that for every a0 ∈ (0, 1) there exists an a ∈ [a0,∞), such
that as ≤ s′.

Proposition 60 (characterization of monotone generation). The set
G monotonely generates if and only if it is almost order-reflecting.

In the proof of this result we use the following. Let (X,≤), (X ′,≤′) be
preordered sets, X0 ⊆ X, and f : X0 → X ′. We define the monotonization
of f to be the map F : X → X ′ given by

F (x) := sup
{
f(x0)

∣∣x0 ∈ X0 : x0 ≤ x
}
.

Remarks 61 (monotonization).

(i) The map F is monotone.

(ii) If X and X ′ are equipped with order-preserving (0,∞)-actions and f
is homogeneous, then its monotonization is homogeneous.

(iii) If f is monotone then it agrees with the restriction of F to X0.

Proof of Proposition 60. “⇒”: Assume that G monotonely generates. Let
s, s′ ∈ S be such that c(s) ≤ c(s′), for every c ∈ G. This means that

(B.5) evG(s) ≤ evG(s
′).
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By Remark 59 and our assumption there exists a monotone function F :
[0,∞]G → [0,∞], such that

cs := c≤(s, ·) = F ◦ evG .

We have

1 ≤ cs(s) (since ≤ is reflexive and hence s ≤ s)

= F ◦ evG(s)
≤ F ◦ evG(s′) (using (B.5) and monotonicity of F )

= cs(s
′).

Hence G is almost order-reflecting. This proves “⇒”.

To prove the implication “⇐”, assume that G is almost order-reflecting.
Let c0 ∈ Cap(S).

Claim 1. For every pair of points s, s′ ∈ S, satisfying evG(s) ≤ evG(s
′), we

have c0(s) ≤ c0(s
′).

Proof. Since c(s) ≤ c(s′), for every c ∈ G, by assumption, we have cs(s
′) ≥ 1.

Let a0 ∈ (0, 1). It follows that there exists a ∈ [a0,∞), such that as ≤ s′. It
follows that

a0c0(s) ≤ ac0(s) = c0(as) ≤ c0(s
′).

Since this holds for every a0 ∈ (0, 1), it follows that c0(s) ≤ c0(s
′). This

proves Claim 1. □

We define f : im(evG) → [0,∞] by setting f(x) := c0(s), where s is an arbi-
trary point in ev−1

G (x) ⊆ S. By Claim 1 this function is well-defined, i.e., it
does not depend on the choice of s. It satisfies

(B.6) f ◦ evG = c0.

It follows from this equality and Claim 1 that f is monotone. By Remark
61(i,iii) and equality (B.6) the monotonization F of f is a monotone function
on [0,∞]G that satisfies F ◦ evG = c0. This proves “⇐” and completes the
proof of Proposition 60. □

Proof of Theorem 29. We equip the set of ellipsoids in (V, ω) with the pre-
order E ≤ E′ iff there exists a symplectic embedding of E into E′. By The-
orem 1.1 in D. McDuff’s article [11] the condition cVj (E) ≤ cVj (E

′), for all
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j ∈ N0, implies that E symplectically embeds into E′. It follows that the set
of all cVj (with j ∈ N0) is almost order-reflecting. Hence by Proposition 60
this set monotonely generates. This proves Theorem 29. □
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