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Let g be a semisimple Lie algebra, h ⊂ g a reductive subalgebra
such that the orthogonal complement h⊥ is a complementary h-
submodule of g. In 1983, Bogoyavlenski claimed that one obtains
a Poisson commutative subalgebra of the symmetric algebra S(g)
by taking the subalgebra Z generated by the bi-homogeneous com-
ponents of all H ∈ S(g)g taken w.r.t. g = h⊕ h⊥. But this is false,
and we present a counterexample. We also provide a criterion for
the Poisson commutativity of such subalgebras Z. As a by-product,
we prove that Z is Poisson commutative if h is abelian and describe
Z in the special case when h is a Cartan subalgebra. In this case,
Z appears to be polynomial and has the maximal transcendence
degree b(g) = 1

2
(dim g+ rk g).

Introduction

0.1.

The ground field k is algebraically closed and char(k) = 0. For any finite-di-
mensional Lie algebra q, the dual space q∗ is a Poisson variety. The algebra
of polynomial functions on q∗, k[q∗], is isomorphic to the graded symmetric
algebra S(q) and the Lie–Poisson bracket { , } on S(q) is defined on the
elements of degree one by {ξ, η} = [ξ, η] for ξ, η ∈ q. There is a method for
constructing “large” Poisson commutative subalgebras of S(q) that exploits
pairs of compatible Poisson brackets, see [4, Sect. 10], [9]. To apply this, one
needs a suitable second Poisson bracket { , }II beside { , } = { , }q, here
suitable (= compatible) means that the sum { , }+ { , }II , as well as any
linear combination of { , } and { , }II , is again a Poisson bracket. Let us

The first author is partially supported by R.F.B.R. grant } 20-01-00515. The
second author is funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) — project number 454900253.

911



✐

✐

“4-Yakimova” — 2023/3/5 — 1:14 — page 912 — #2
✐

✐

✐

✐

✐

✐

912 D. Panyushev and O. S. Yakimova

recall some situations, where this ”general method” (=method of compatible
Poisson brackets) works.

I. The celebrated “argument shift method” goes back to [7] (if q is
semisimple). It employs an arbitrary γ ∈ q∗ and the Poisson bracket { , }γ ,
where {x, y}γ = γ([x, y]) for x, y ∈ q. The brackets { , } and { , }γ are com-
patible, and the general method produces the Mishchenko–Fomenko subal-

gebra (=MF-subalgebra) (MF)γ ⊂ S(q). Let S(q)q be the Poisson centre of
(S(q), { , }), i.e.,

S(q)q = {H ∈ S(q) | {H,x} = 0 ∀x ∈ q}.

For F ∈ S(q), let ∂γF be the directional derivative of F with respect to
γ ∈ q∗, i.e.,

∂γF (x) =
d

dt
F (x+ tγ)

∣

∣

∣

t=0
for all x ∈ q∗.

By the original definition of the MF-subalgebras [7], (MF)γ is generated by
all ∂kγF with k ⩾ 0 and F ∈ S(q)q. Since then, the algebras (MF)γ and their
quantum counterparts attracted a great deal of attention, see e.g. [3, 8, 15]
and references therein. If q is reductive and γ is regular in q∗, then (MF)γ is a
maximal Poisson commutative subalgebra in S(q) of maximal transcendence
degree [12].

II. Let q = q0 ⊕ q1 be a Z2-grading, i.e., we have [qi, qj ] ⊂ qi+j (mod 2).
Then q admits the Inönu–Wigner contraction to the semi-direct product q̃ =
q0 ⋉ qab1 , and the second bracket is the Lie–Poisson bracket of q̃. (Here q and
q̃ are identified as vector spaces.) The compatibility of { , }q and { , }q̃ stems
from the presence of Z2-grading, cf. Section 1.1. The sum q = q0 ⊕ q1 de-
termines the bi-homogeneous decomposition S(q) =

⊕

i,j⩾0 S
i(q0)⊗ S

j(q1).
Here the general method yields the Poisson commutative subalgebra gener-
ated by the bi-homogeneous components of allH ∈ S(q)q. This case has been
studied in [6] and recently in our article [14]. For substantial applications,
one has to assume, of course, that q is semisimple.

0.2.

Soon after [14] has been accepted, we came across an article of Bogoyavlen-
ski [1]. He claims that if g is semisimple, f ⊂ g is reductive and the Killing
form of g is non-degenerate on f, then the direct sum g = f⊕m, wherem = f⊥

is the orthogonal complement of f w.r.t. the Killing form, allows to construct
similarly a Poisson commutative subalgebra of S(g). Namely, a special case
of [1, Theorem 1] (with n = k = j = 1 in the original notation) asserts that
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Reductive subalgebras and Poisson commutativity 913

the bi-homogeneous components of all F ∈ S(g)g generate a Poisson commu-
tative subalgebra. However, this is false and we provide a counterexample to
that claim. An explanation for that error is that here one can also consider
the contraction g̃ = f⋉mab and the Poisson bracket { , }g̃ on the vector
space g ≃ g̃, but the brackets { , }g and { , }g̃ are not necessarily compati-
ble. One can also notice that Bogoyavlenski did not properly distinguish a
Lie algebra and its dual, and his usage of differentials of elements of S(g) is
sloppy.

Our main motivation for writing this note was just to clarify and remedy
this situation. However, we also discovered some exciting new phenomena.
Let g = Lie(G) be semisimple and g = f⊕m as above. Let Z(g,f) be the
subalgebra of S(g) generated by the bi-homogeneous components of all F
belonging to S(g)g. The results of this note are:

1) we provide a criterion for Z(g,f) to be Poisson commutative;

2) using our criterion we prove that Z(sl4,sl2) is not Poisson commutative
for the standard embedding sl2 ⊂ sl4;

3) a corollary of our criterion is that Z(g,f) is Poisson commutative when-
ever f is abelian (e.g. if f is the Lie algebra of a torus in G);

4) it is proved that if f = t is a Cartan subalgebra of g, then Z(g,t) is
polynomial, tr.degZ(g,t) = b(g) = (dim g+ rk g)/2, and Z(g,t) is com-

plete on every regular G-orbit in g.

5) We point out an algebraic extension Z̃ ⊃ Z(g,t) such that Z̃ is a max-

imal Poisson commutative subalgebra of S(g) (w.r.t. inclusion) and is
still polynomial.

Our criterion for the equality {Z(q,f),Z(q,f)} = 0 works also for non-
reductive Lie algebras q, see Theorem 2.1.

1. Preliminaries on the coadjoint representation

Let Q be a connected affine algebraic group with Lie(Q) = q. The symmet-
ric algebra S(q) over k is identified with the graded algebra of polynomial
functions on q∗, and we also write k[q∗] for it.

Let qξ denote the stabiliser in q of ξ ∈ q∗. The index of q, ind q, is the
minimal codimension of Q-orbits in q∗. Equivalently, ind q = minξ∈q∗ dim qξ.
By Rosenlicht’s theorem [2, I.6], one also has ind q = tr.deg k(q∗)Q. The
Lie–Poisson bracket for k[q∗] is defined on the elements of degree 1 (i.e.,
on q) by {x, y} := [x, y]. Set further γ̂(x, y) = γ([x, y]) for γ ∈ q∗. For any
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914 D. Panyushev and O. S. Yakimova

F1, F2 ∈ S(q) and γ ∈ q∗, we have

(1·1) {F1, F2}(γ) = γ̂(dγF1, dγF2),

where dγF ∈ q is the differential of F ∈ S(q) at γ. As Q is connected, we
have S(q)q = S(q)Q = k[q∗]Q. The set of Q-regular elements of q∗ is

(1·2) q∗reg = {η ∈ q∗ | dim qη = ind q}.

Set q∗sing = q∗ \ q∗reg. We say that q has the codim–n property if codim q∗sing ⩾

n. By [5], the semisimple algebras g have the codim–3 property.
Set b(q) = (dim q+ ind q)/2. Since the coadjoint orbits are even-

dimensional, this number is an integer. If q is reductive, then ind q equals
the rank rk q of q and b(q) equals the dimension of a Borel subalgebra. A
subalgebra A ⊂ S(q) is said to be Poisson commutative if {A,A} = 0. If
A ⊂ S(q) is Poisson commutative, then tr.degA ⩽ b(q), see e.g. [15, 0.2].

Definition 1. A Poisson commutative subalgebra A ⊂ S(q) is said to be
complete on a coadjoint orbit Qγ ⊂ q∗ if tr.deg (A|Qγ) =

1
2 dim(Qγ).

The notion of completeness originates from the theory of integrable systems.
For a subalgebra A ⊂ S(q) and γ ∈ q∗, set dγA = ⟨dγF | F ∈ A⟩

k
.

1.1. Decompositions and compatibility

Let q = f⊕ V be a vector space decomposition, where f is a subalgebra.
For any s ∈ k

×, define a linear map ϕs : q → q by setting ϕs|f = id, ϕs|V =
s·id. Then ϕsϕs′ = ϕss′ and ϕ−1

s = ϕs−1 , i.e., this yields a one-parameter
subgroup of GL(q). For each s, the formula

(1·3) [x, y](s) = ϕ−1
s ([ϕs(x), ϕs(y)])

defines a modified Lie algebra structure on the vector space q. All these struc-
tures are isomorphic to the initial one. The corresponding Poisson bracket
is denoted by { , }(s). We naturally extend ϕs to an automorphism of S(q).
Then the centre of the Poisson algebra (S(q), { , }(s)) equals ϕ

−1
s (S(q)q). For

x ∈ q, write x = xf + xV with xf ∈ f, xV ∈ V .
If q = f⊕ V is a Z2-grading, i.e., [f, V ] ⊂ V and [V, V ] ⊂ f, then { , }(0) =

lim
s→0

{ , }(s) is a Poisson bracket; furthermore { , }(s) = { , }(−s) and { , }(s) +

{ , }(s′) = 2{ , }(s̃) with 2s̃2 = s2 + (s′)2. The brackets { , }(s) are pairwise
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Reductive subalgebras and Poisson commutativity 915

compatible and together with the line k({ , } − { , }(0)) build a two-
dimensional pencil.

Lemma 1.1. Suppose that q = f⊕ V , where f ⊂ q is a subalgebra and

[f, V ] ⊂ V . For any x = xf + xV , y = yf + yV ∈ q, we have

(1·4) [x, y](s) = [xf, yf] + [xf, yV ] + [xV , yf] + s[xV , yV ]V + s2[xV , yV ]f.

Proof. The statement is verified by a straightforward computation. □

Assume that q = f⊕ V is an f-stable decomposition. One of the crucial
properties of [ , ](s) is that if x ∈ f and y ∈ q, then [x, y](s) = [x, y] for all
s ∈ k. Then (1·4) shows also that if [f, q] ̸= 0 and [V, V ] is not contained
in either f or V , then the brackets { , }(s) do not build a two-dimensional
pencil.

2. A criterion for commutativity

Let f be a subalgebra of q. Suppose that there is an f-stable decomposition
q = f⊕m, i.e., [f,m] ⊂ m. This yields a bi-homogeneous structure for S(q):

S(q) =
⊕

i,j⩾0

S
i(f)⊗ S

j(m).

For any H ∈ S(q), we have H =
∑

i,j⩾0H(i,j), where H(i,j) ∈ S
i(f)⊗ S

j(m)
are the bi-homogeneous components of H. Let Z(q,f) be the subalgebra of
S(q) generated by the bi-homogeneous components of all H ∈ S(q)q. Since
each bi-homogeneous component ofH ∈ S(q)q is f-invariant, we have Z(q,f) ⊂
S(q)f. It is claimed in [1, Theorem1] that if q is semisimple and the Killing
form of g is non-degenerate on f (so that an f-stable decomposition of q does
exist), then Z(q,f) is Poisson commutative. However, this is false! Below,
we give a criterion for the Poisson commutativity of Z(q,f) and provide a
counterexample to the assertion of [1]. On the positive side, we deduce from
our criterion that Z(q,f) is Poisson commutative whenever f is an abelian
subalgebra.

Given γ ∈ q∗, we decompose it as γ = γf + γm, where γf|m = 0 and γm|f =
0. Let ϕs : q → q be the same as in Section 1.1 with V = m. Set ϕs(γ) =
γf + sγm. It is well known and easily verified that, for any H ∈ S(q)q and
ξ ∈ q∗, one has dξH ∈ z(qξ), where z(qξ) is the centre of qξ. A standard
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calculation with differentials shows that

(2·1) dγ(ϕs(F )) = ϕs(dϕs(γ)F )

for any F ∈ S(q).

Theorem 2.1. The subalgebra Z = Z(q,f) is Poisson commutative if and

only if

γ̂f
(

(dϕs(γ)H)f, (dϕs′ (γ)H
′)f
)

= 0

for each γ ∈ q∗, all nonzero s, s′ ∈ k, and all H,H ′ ∈ S(q)q.

Proof. It suffices to prove the assertion for homogeneous H,H ′ ∈ S(q)q.
Note that ifH ∈ S

d(q) andH =
∑d

j=0H(d−j,j), then ϕs(H) =
∑

j s
jH(d−j,j).

Therefore, employing the standard argument with the Vandermonde deter-
minant, one shows that

(2·2) Z = alg⟨ϕs(H) | H ∈ S(q)q, s ∈ k
×⟩.

Hence the algebra Z is Poisson commutative if and only if for all H,H ′ ∈
S(q)q, all nonzero s, s′ ∈ k, and any γ ∈ q∗, by (1·1), we have

As,s′ = As,s′,H,H′,γ := γ̂(dγϕs(H), dγϕs′(H
′)) = {ϕs(H), ϕs′(H

′)}(γ) = 0.

Suppose that H, H ′ and γ are fixed. Then there is no ambiguity in the use
of As,s′ .

Set ξ = dϕs(γ)H and η = dϕs′ (γ)H
′. Since ϕs(H) belongs to the Poisson

centre of (S(q), { , }(s−1)), we derive from (2·1) that

γ([dγϕs(H), dγϕs′(H
′)](s−1)) = γ([ϕs(ξ), ϕs′(η)](s−1))

= γ([ξf + sξm, ηf + s′ηm](s−1)) = 0.

Similarly, ϕs′(H
′) belongs to the Poisson centre of (S(q), { , }((s′)−1)) and

hence

γ([ξf + sξm, ηf + s′ηm]((s′)−1)) = 0.

For all s̃ ∈ k
× and H̃ ∈ S(q)q, we have γ̂(f, dγϕs̃(H̃)) = 0, since Z ⊂ S(q)f.

Therefore, γ̂(ϕs(ξ), ηf) = γ̂(ξf, ϕs′(η)) = 0. Thus,

C := γ̂f((dϕs(γ)H)f, (dϕs′ (γ)H
′)f)(2·3)

= γ̂(ξf, ηf) = −s′γ̂(ξf, ηm) = −sγ̂(ξm, ηf).
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Reductive subalgebras and Poisson commutativity 917

Let us substitute this into the formulas

γ([ϕs(ξ), ϕs′(η)](s−1)) = γ̂(ξf, ηf) + sγ̂(ξm, ηf) + s′γ̂(ξf, ηm)

+
s′

s
γf([ξm, ηm]f) + s′γm([ξm, ηm]m) = 0,

γ([ϕs(ξ), ϕs′(η)]((s′)−1)) = γ̂(ξf, ηf) + sγ̂(ξm, ηf) + s′γ̂(ξf, ηm)

+
s

s′
γf([ξm, ηm]f) + sγm([ξm, ηm]m) = 0,

obtaining the equalities

C − C − C + s−1s′γf([ξm, ηm]f) + s′γm([ξm, ηm]m) = 0,

C − C − C + s(s′)−1γf([ξm, ηm]f) + sγm([ξm, ηm]m) = 0.

Furthermore As,s′ = −C + ss′γf([ξm, ηm]f) + ss′γm([ξm, ηm]m).
Suppose that C = 0, then

s−1γf([ξm, ηm]f) + γm([ξm, ηm]m) = 0,

(s′)−1γf([ξm, ηm]f) + γm([ξm, ηm]m) = 0.

Thereby (s−1 − (s′)−1)γf([ξm, ηm]f) = 0 and (s− s′)γm([ξm, ηm]m) = 0. If
s ̸= s′, then necessarily As,s′ = 0. Since As,s′ is a polynomial in s and s′

with constant coefficients, As,s′ = 0 for all nonzero s, s′. This settles the ‘if’
part.

In order to prove the ‘only if’ implication, suppose that As,s′ = 0 for
all s, s′ ∈ k

×. Then x = γf([ξm, ηm]f) and y = γm([ξm, ηm]m) satisfy s
−1s′x+

s′y = s(s′)−1x+ sy = ss′(x+ y) = C. Assume that s ̸= s′ and that s, s′ ̸= 1.
Then

{

s′+s
ss′

·x+ y = 0;
s+1
s
·x+ y = 0,

and the only solution of this system is x = y = 0. Hence C = 0. Since C is
a polynomial in s and s′ with constant coefficients, the equality

γ̂f((dϕs(γ)H)f, (dϕs′ (γ)H
′)f) = 0

holds for all s, s′ ∈ k
×. □

Corollary 2.2. If f is an abelian Lie algebra, then Z(q,f) is Poisson com-

mutative.
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Proof. Since [f, f] = 0, we have [(dϕs(γ)H)f, (dϕs′ (γ)H
′)f] = 0 for each

γ ∈ q∗, all nonzero s, s′ ∈ k, and all H,H ′ ∈ S(q)q. Hence Z(q,f) is Poisson-
commutative by Theorem 2.1. □

Let g = Lie(G) be a reductive Lie algebra. Then g is identified with g∗

via a G-invariant non-degenerate symmetric bilinear form ( , ) and S(g)g is
a polynomial ring. Let {H1, . . . , Hl} be a set of homogeneous algebraically
independent generators of S(g)g with degHj =: dj . By the Kostant regularity

criterion for g [5, Theorem 9],

(2·4) ⟨dξHj | 1 ⩽ j ⩽ l⟩k = gξ if and only if ξ ∈ g∗reg.

Recall that gξ = z(gξ) if and only if ξ ∈ g∗reg [10, Theorem3.3].

Example 2.3. If g = gln, then x
k ∈ gx for any x ∈ g and k ∈ N. (Here xk is

the usual matrix power.) Moreover, if we identify g and g∗, then dxS(g)
g =

⟨xk | 0 ⩽ k < n⟩k.
Consider the pair (g, f) = (gl4, sl2) with sl2 embedded in the right lower

corner.

Take γ =









1 0 0 1
0 0 1 0
1 0 1 0
0 1 0 −1









. Then γf + sγm =









s 0 0 s
0 0 s 0
s 0 1 0
0 s 0 −1









.

Note that γf ̸= 0. For any k ⩾ 0, (ϕs(γ))
k = (γf + sγm)

k belongs to
dϕs(γ)S(g)

g. Hence ((γf + sγm)
k)f ∈ (dϕs(γ)S(g)

g)f. Let us do calculations for
k = 2, 3:

(γf + sγm)
2 =









s2 s2 0 s2−s
s2 0 s 0
s2+s 0 1 s2

0 −s s2 1









and

(γf + sγm)
3 =









∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ 1 s3

∗ ∗ 0 −1









.

Let e =
(

0 1
0 0

)

, h =
(

1 0
0 −1

)

, and f =
(

0 0
1 0

)

form the standard basis of sl2.
Then

γf = h, ((γf + sγm)
2)f = s2(e+ f), and ((γf + sγm)

3)f = s3e+ h.

Therefore, if s ̸= 0, then
〈

(dϕs(γ)H)f | H ∈ S(g)g
〉

k
= f. Since (h, [f, f]) ̸= 0,
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Reductive subalgebras and Poisson commutativity 919

we conclude that

γ̂f((dϕs(γ)H)f, (dϕs′ (γ)H
′)f) ̸= 0

for all nonzero s, s′. Thus, by Theorem 2.1, Z(g,f) is not Poisson commutative.

Remark 2.4. Example 2.3 also implies that Z(g,sl2) is not Poisson commu-
tative if g = gl4 is replaced with sl4. For, gl4 = z⊕ sl4 with z = kI4, hence
S(gl4)

gl
4 is generated by S(sl4)

sl4 and z. For any reductive f ⊂ sl4, the al-
gebra Z(gl

4
,f) = alg⟨Z(sl4,f), z⟩ is Poisson commutative if and only if Z(sl4,f)

is.

Example 2.3 easily generalises to the pairs (gln, glm) with n ⩾ m+ 2.
On the other hand, one can prove that the algebra Z(gl

3
,sl2) or Z(sl3,sl2) is

still Poisson commutative.

Example 2.5. Let us show that, for a special choice of f, the algebra Z(g,f)

is rather close to an MF -subalgebra.
Let h ∈ g be a semisimple element such that (h, h) ̸= 0. Set f = ⟨h⟩ =

⟨h⟩k. Then m ⊂ g is the orthogonal complement of h with respect to ( , )
and the bi-homogeneous decomposition of Hj ∈ S(g)g is

Hj = Hj,0h
dj +Hj,1h

dj−1 + . . .+Hj,kh
dj−k + . . .+Hj,dj

,

where Hj,k ∈ S
k(m). By definition, Z(g,⟨h⟩) is generated by Hj,kh

dj−k with
1 ⩽ j ⩽ l and 0 ⩽ k ⩽ dj . On the one hand, we had f = ⟨h⟩. On the other
hand, let γ ∈ g∗ be such that γ(m) = 0 and γ(h) = 1. Actually, γ = h

(h,h)
under the identification of g and g∗. Then

∂kγHj =

dj
∑

r=k

r(r − 1) . . . (r − k + 1)hr−kHj,dj−r.

If H ∈ S
2(g)g is the quadratic form corresponding to ( , ), then ∂γH = ch

for some c ∈ k
×. Hence h ∈ (MF)γ . Arguing by induction on k, we obtain

Hj,k ∈ (MF)γ for k ⩽ dj . Thus

Z(g,⟨h⟩) ⊂ (MF)γ = (MF)h ⊂ alg
〈

Z(g,⟨h⟩), h, h
−1

〉

= alg
〈

Z(g,⟨h⟩), h
−1

〉

,

where the last equality holds, because h2 ∈ Z(g,⟨h⟩).
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3. Properties of the algebra Z(g,t)

Suppose that g is semisimple. Let t be a Cartan subalgebra of g and ∆
the root system of (g, t). By Corollary 2.2, the algebra Z(g,t) is Poisson
commutative, and our goal is to prove that this algebra has a number of
remarkable properties. Let gγ be the root space corresponding to γ ∈ ∆ and
let eγ ∈ gγ be a nonzero vector. Then m = t⊥ =

⊕

γ∈∆ gγ .
Recall that {H1, . . . , Hl} is a set of homogeneous algebraically indepen-

dent generators of S(g)g and degHj = dj . One has
∑l

j=1 dj = b(g). The
vector space decomposition g = t⊕m provides the bi-homogeneous decom-
position of each Hj :

Hj =

dj
∑

i=0

(Hj)(i,dj−i),

where (Hj)(i,dj−i) ∈ S
i(t)⊗ S

dj−i(m) ⊂ S
dj (g). Recall that Z := Z(g,t) is the

algebra generated by

(3·1) {(Hj)(i,dj−i) | j = 1, . . . , l; i = 0, 1, . . . , dj}.

Since each Hj is g-invariant, all the bi-homogeneous components in (3·1)
are t-invariant. Hence Z ⊂ S(g)t. The total number of these functions is
∑l

j=1(dj + 1) = b(g) + l, but some of them are identically equal to zero.

Indeed, (Hj)(dj−1,1) ∈ S
dj−1(t)⊗m and mt = {0}, hence (Hj)(dj−1,1) ≡ 0 for

j = 1, . . . , l. Therefore, the number of nonzero generators of Z is at most
b(g).

The bi-homogeneous component (Hj)(dj ,0) ∈ S
dj (t) is the restriction of

Hj to t ≃ t∗. Therefore, by the Chevalley restriction theorem, the polynomi-
als (Hj)(dj ,0), j = 1, . . . , l, are the free generators of S(t)W , where W is the
Weyl group of t. This means that having replaced (H1)(d1,0), . . . , (Hl)(dl,0)

with a basis of t and keeping intact all other bi-homogeneous components
(generators of Z), we obtain a larger subalgebra Z̃, which is an algebraic
extension of Z (i.e. tr.deg Z̃ = tr.degZ). Furthermore, since Z ⊂ S(g)t, Z̃ is
still Poisson commutative.

Once again, we use the map ϕs defined in Section 1.1. By (2·4), if ϕs(γ) ∈
g∗reg, then dϕs(γ)S(g)

g = gϕs(γ) ; and by (2·1), we have

(3·2) dγϕs(S(g)
g) = ϕs(g

ϕs(γ)).

As before, we identify g and g∗.
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Lemma 3.1. Let h ∈ t and x ∈ m be such that (h+ kx) ∩ g∗reg ̸= ∅. Then

dh+xZ̃ = t+ dh((MF)x). Moreover, if h ∈ g∗reg, then dh+xZ̃ = dh((MF)x) =
dx((MF)h).

Proof. The assumption (h⊕ kx) ∩ g∗reg ̸= ∅ implies that

Ω := {s ∈ k
× | h+ sx ∈ g∗reg}

is a nonempty open subset of k×. Since Ω is infinite, we can strengthen (2·2)
as

(3·3) Z = alg⟨ϕs(H) | H ∈ S(g)g, s ∈ Ω⟩.

Combining this with (3·2), we obtain

dh+xZ̃ = t+
∑

s∈Ω

dh+xϕs(S(g)
g) = t+

∑

s∈Ω

ϕs(g
h+sx) = t+

∑

s∈Ω

gh+sx.

Set Ω′ = Ω ⊔ {0} if h ∈ g∗reg and Ω′ = Ω otherwise. Then the equality
∑

s∈Ω′ gh+sx = dh((MF)x) follows from [13, Lemma 1.3], see also the proof
of Lemma 2.1 in [13, Sect. 2]. If h ̸∈ g∗reg, we are done. If h ∈ g∗reg, then gh = t

and t+
∑

s∈Ω gh+sx =
∑

s∈Ω′ gh+sx.
Finally, we recall that dh((MF)x) = dx((MF)h) for any x, h ∈ g by [13,

Eq. (2·3)]. □

Theorem 3.2. For Z = Z(g,t) and Z̃ as above, we have

(i) tr.degZ = tr.deg Z̃ = b(g) and both algebras Z and Z̃ are polynomial;

(ii) both Z and Z̃ are complete on each regular orbit;

(iii) Z̃ is a maximal Poisson commutative subalgebra of S(g).

Proof. (i) Since Z ⊂ Z̃ is an algebraic extension, the first equality follows.
Take a principal sl2-triple {e, h, f} ⊂ g such that h ∈ t and e, f ∈ m. Note
that any nonzero element of ⟨e, h, f⟩k is regular in g ≃ g∗. Pick a nonzero
x ∈ ⟨e, f⟩k ⊂ m and consider the subspace

dh+xZ̃ := {dh+xF | F ∈ Z̃} ⊂ g.

Because ϕs(h+ x) = h+ sx ∈ g∗reg for all s, we have dh+xZ̃ = dh((MF)x) by
Lemma 3.1.
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One of the properties of MF-subalgebras is that dim dh((MF)x) = b(g),
if

(kx⊕ kh) ∩ gsing = {0},

see [12], [13, Cor. 1.6&Lemma 2.1]. Thus dim dh+xZ̃ = b(g). It follows that
tr.deg Z̃ ⩾ b(g), and since tr.degA ⩽ b(g) for any Poisson commutative sub-
algebra, we actually get the equality. As both Z and Z̃ have at most b(g)
generators, they are polynomial. Therefore, Z is freely generated by

{(Hj)(i,dj−i) | 1 ⩽ j ⩽ l; i = 0, 1, . . . , dj − 2, dj},

while Z̃ is freely generated by a basis of t and the components (Hj)(i,dj−i),
where 1 ⩽ j ⩽ l and i = 0, 1, . . . , dj − 2.

(ii) In part (i), we proved that dim dh+xZ̃ = b(g). Then [13, Lemma1.2]
implies that Z̃ is complete on the orbit G(h+ x). For an appropriate choice
of x ∈ ⟨e, f⟩, we obtain a nilpotent element h+ x ∈ ⟨e, h, f⟩k ≃ sl2. Hence
Z̃ is complete on the regular nilpotent orbit. Then a standard deformation
argument, see [13, Cor. 2.6], shows that Z̃ is complete on every regular orbit.
The same line of argument applies to Z, since dh+xS(t)

W = dhS(g)
g = t and

dh+xZ = dh+xZ̃.
(iii) The maximality of Z̃ will follow from the fact that the subvari-

ety Y = {γ ∈ g∗ | dim dγZ̃ < b(g)} is of codimension ⩾2 in g∗ (see below).
We identify g and g∗ via the Killing form and regard Y as a subvariety
of g. Write γ = h′ + x′ with h′ ∈ t, x′ ∈ m. If ⟨h′, x′⟩k ∩ gsing = {0}, then
dim dh′((MF)x′) = b(g) [12, Theorem2.5] and dim dγZ̃ = b(g) by Lemma 3.1.

Consider the map ψ : gsing × k → g defined by ψ(ξ, s) = ξt + sξm and let
Ỹ be the closure of Im (ψ). Set tsing := t ∩ gsing and msing := m ∩ gsing. Then

Y ⊂ Ỹ ∪ (tsing ×m) ∪ (t×msing).

• Since codim gsing = 3, we have dim Ỹ ⩽ dim g− 2.
• As msing is conical and ⟨e, f⟩k ∩msing = {0}, we have dimmsing ⩽

dimm− 2. Therefore, t×msing ⊂ g does not contain divisors.
• We prove below that dim(Y ∩ (tsing ×m)) ⩽ dim g− 2, which yields

the required estimate of codimY .
The subset tsing ⊂ t is the union of all reflection hyperplanes in t. That

is, if

Hγ = {x ∈ t | (γ, x) = 0},
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then tsing =
⋃

γ∈∆Hγ . (Of course, Hγ = H−γ .) Suppose that h′ ∈ Hν is
generic, i.e., h′ ∈ Hν \

⋃

γ ̸=±ν Hγ . Then h
′ ∈ g is subregular and

gh
′

= t⊕ gν ⊕ g−ν = Hν ⊕ ⟨eν , hν , e−ν⟩k ≃ Hν ⊕ sl2,

where hν = [eν , e−ν ] and Hν is the centre of gh
′

. Note also that Hν =
dh′S(g)g ⊂ t, cf. [14, Lemma 4.9]. Without loss of generality, we may as-
sume that ν is a simple root with respect to some choice of ∆+ ⊂ ∆. Let
Π ⊂ ∆+ be the corresponding set of simple roots and m = u⊕ u−. We may
also assume that e =

∑

α∈Π cαeα ∈ u with cα ∈ k
× and f =

∑

α∈Π e−α ∈ u−

for a principal sl2-triple {e, h, f} with h ∈ t, cf. [5, Theorem4]. For b = t⊕ u,
we have f + b ⊂ greg by [5, Lemma10]. In particular, h′ + sf ∈ greg for any
s ∈ k

×.

Lemma 3.3. If h′ ∈ Hν is generic, then gh
′+sf ⊂ Hν ⊕ u− for any s ̸= 0.

Proof. As is well known, (gh
′+sf )⊥ = [g, h′ + sf ]. Hence it suffices to prove

that [g, h′ + sf ] ⊃ (Hν ⊕ u−)⊥ = ⟨hν⟩k ⊕ u−.
Since h′ + sf ∈ t⊕ u− =: b− is regular in g, we have gh

′+sf ⊂ b−. Hence
[g, h′ + sf ] ⊃ (b−)⊥ = u−. Next, [eν , h

′ + sf ] = [eν , sf ] = s[eν , e−ν ] = s·hν ∈
[g, h′ + sf ]. □

Now, set

V := dh′((MF)f ) =
∑

s ̸=0

gh
′+sf ,

where the last equality stems from [13, Lemma 1.3]. On the one hand, V ⊂
Hν ⊕ u− by the above lemma. On the other hand, dimV = b(g)− 1 in view
of [13, proof of Theorem 2.4]. Hence V = Hν ⊕ u−.

The differentials dh′+f ((Hj)(dj ,0)) = dh′((Hj)(dj ,0)) = dh′Hj with 1 ⩽

j ⩽ l are linearly dependent, because they are contained in Hν , hence
dim dh′+fZ ⩽ b(g)− 1. Recall that h′ + sf ∈ greg for any s ∈ k

×. Combin-
ing (3·3) with (3·2), we obtain

VZ := dh′+fZ ⊃
∑

s ̸=0

ϕs(g
h′+sf ) = ϕs(V) = Hν ⊕ u−.

Thus VZ = Hν + u−. Next dh′+f Z̃ ̸= dh′+fZ, since t ̸⊂ VZ. We obtain
dim dh′+f Z̃ = b(g), which means that dim dγZ̃ = b(g) on a dense open subset
of Hν ×m. Since ν ∈ ∆ is arbitrary, this implies that dim(Y ∩ (tsing ×m)) ⩽
dim g− 2.

Thus, we have proved that dimY ⩽ dim g− 2.
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Since Z̃ is generated by algebraically independent homogeneous polyno-
mials and codimY ⩾ 2, it follows from [11, Theorem 1.1] that Z̃ is an alge-
braically closed subalgebra of S(g) (i.e., if F ∈ S(g) is algebraic over the quo-
tient field of Z̃, then F ∈ Z̃). An inclusion Z̃ ⊂ A ⊂ S(g), where {A,A} = 0,
is only possible if A is an algebraic extension of Z̃, because tr.deg Z̃ = b(g)
and tr.degA ⩽ b(g). Therefore we must have Z̃ = A. □

Remark 3.4. We know that Z̃ ⊂ S(g)t and tr.deg Z̃ = b(g). If h ∈ t∗reg, then

these two properties are also satisfied for (MF)h [12]. One may say that Z̃,
as well as Z, resembles all such MF-subalgebras. However, there is no choice
of h ∈ t∗ involved in the construction of Z̃ and Z ⊂ S(g)NG(t) unlike any of
(MF)h with h ∈ t∗reg.

Furthermore, by Lemma 3.1, we have dh+xZ̃ = dh((MF)x) = dx((MF)h)
for any x ∈ m and h ∈ t∗reg. It is tempting to further investigate this rela-
tionship.

Another intriguing task is to produce a quantisation of Z̃, i.e., a commu-
tative subalgebra of the enveloping algebra U(g) such that its graded image
in S(g) is Z̃.

References

[1] O. I. Bogoyavlenski. Integrable Euler equations associated with filtra-
tions of Lie algebras, Matem. Sbornik, 121, no. 2 (1983), 233–242 (Rus-
sian). English transl.: Math. USSR-Sb., 49:1 (1984), 229–238.

[2] M. Brion. Invariants et covariants des groupes algébriques réductifs,
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