Reductive subalgebras of semisimple Lie algebras and Poisson commutativity

Dmitri I. Panyushev and Oksana S. Yakimova

Abstract

Let \mathfrak{g} be a semisimple Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a reductive subalgebra such that the orthogonal complement \mathfrak{h}^{\perp} is a complementary \mathfrak{h} submodule of \mathfrak{g}. In 1983, Bogoyavlenski claimed that one obtains a Poisson commutative subalgebra of the symmetric algebra $\mathcal{S}(\mathfrak{g})$ by taking the subalgebra Z generated by the bi-homogeneous components of all $H \in \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ taken w.r.t. $\mathfrak{g}=\mathfrak{h} \oplus \mathfrak{h}^{\perp}$. But this is false, and we present a counterexample. We also provide a criterion for the Poisson commutativity of such subalgebras z. As a by-product, we prove that Z is Poisson commutative if \mathfrak{h} is abelian and describe z in the special case when \mathfrak{h} is a Cartan subalgebra. In this case, z appears to be polynomial and has the maximal transcendence degree $\boldsymbol{b}(\mathfrak{g})=\frac{1}{2}(\operatorname{dim} \mathfrak{g}+\mathrm{rk} \mathfrak{g})$.

Introduction

0.1.

The ground field \mathbb{k} is algebraically closed and $\operatorname{char}(\mathbb{k})=0$. For any finite-dimensional Lie algebra \mathfrak{q}, the dual space \mathfrak{q}^{*} is a Poisson variety. The algebra of polynomial functions on $\mathfrak{q}^{*}, \mathbb{k}\left[\mathfrak{q}^{*}\right]$, is isomorphic to the graded symmetric algebra $\mathcal{S}(\mathfrak{q})$ and the Lie-Poisson bracket $\{$,$\} on \mathcal{S}(\mathfrak{q})$ is defined on the elements of degree one by $\{\xi, \eta\}=[\xi, \eta]$ for $\xi, \eta \in \mathfrak{q}$. There is a method for constructing "large" Poisson commutative subalgebras of $\mathcal{S}(\mathfrak{q})$ that exploits pairs of compatible Poisson brackets, see [4, Sect. 10], [9]. To apply this, one needs a suitable second Poisson bracket $\{,\}_{I I}$ beside $\{\}=,\{,\}_{\mathfrak{q}}$, here suitable ($=$ compatible) means that the sum $\{\}+,\{,\}_{I I}$, as well as any linear combination of $\{$,$\} and \{,\}_{I I}$, is again a Poisson bracket. Let us

[^0]recall some situations, where this "general method" ($=$ method of compatible Poisson brackets) works.
I. The celebrated "argument shift method" goes back to [7] (if \mathfrak{q} is semisimple). It employs an arbitrary $\gamma \in \mathfrak{q}^{*}$ and the Poisson bracket $\{,\}_{\gamma}$, where $\{x, y\}_{\gamma}=\gamma([x, y])$ for $x, y \in \mathfrak{q}$. The brackets $\{$,$\} and \{,\}_{\gamma}$ are compatible, and the general method produces the Mishchenko-Fomenko subalgebra $(=\mathcal{M} \mathcal{F}$-subalgebra $)(\mathcal{M F})_{\gamma} \subset \mathcal{S}(\mathfrak{q})$. Let $\mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$ be the Poisson centre of $(\mathcal{S}(\mathfrak{q}),\{\}$,$) , i.e.,$
$$
\mathcal{S}(\mathfrak{q})^{\mathfrak{q}}=\{H \in \mathcal{S}(\mathfrak{q}) \mid\{H, x\}=0 \quad \forall x \in \mathfrak{q}\}
$$

For $F \in \mathcal{S}(\mathfrak{q})$, let $\partial_{\gamma} F$ be the directional derivative of F with respect to $\gamma \in \mathfrak{q}^{*}$, i.e.,

$$
\partial_{\gamma} F(x)=\left.\frac{d}{d t} F(x+t \gamma)\right|_{t=0} \text { for all } x \in \mathfrak{q}^{*}
$$

By the original definition of the $\mathcal{N} \mathcal{F}$-subalgebras [7], $(\mathcal{M F})_{\gamma}$ is generated by all $\partial_{\gamma}^{k} F$ with $k \geqslant 0$ and $F \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$. Since then, the algebras $(\mathcal{M F})_{\gamma}$ and their quantum counterparts attracted a great deal of attention, see e.g. [3, 8, 15] and references therein. If \mathfrak{q} is reductive and γ is regular in \mathfrak{q}^{*}, then $(\mathcal{M \mathcal { F }})_{\gamma}$ is a maximal Poisson commutative subalgebra in $\mathcal{S}(\mathfrak{q})$ of maximal transcendence degree [12].
II. Let $\mathfrak{q}=\mathfrak{q}_{0} \oplus \mathfrak{q}_{1}$ be a \mathbb{Z}_{2}-grading, i.e., we have $\left[\mathfrak{q}_{i}, \mathfrak{q}_{j}\right] \subset \mathfrak{q}_{i+j}(\bmod 2)$. Then \mathfrak{q} admits the Inönu-Wigner contraction to the semi-direct product $\tilde{\mathfrak{q}}=$ $\mathfrak{q}_{0} \ltimes \mathfrak{q}_{1}^{\text {ab }}$, and the second bracket is the Lie-Poisson bracket of $\tilde{\mathfrak{q}}$. (Here \mathfrak{q} and $\tilde{\mathfrak{q}}$ are identified as vector spaces.) The compatibility of $\{,\}_{\mathfrak{q}}$ and $\{,\}_{\tilde{\mathfrak{q}}}$ stems from the presence of \mathbb{Z}_{2}-grading, cf. Section 1.1. The sum $\mathfrak{q}=\mathfrak{q}_{0} \oplus \mathfrak{q}_{1}$ determines the bi-homogeneous decomposition $\mathcal{S}(\mathfrak{q})=\bigoplus_{i, j \geqslant 0} \mathcal{S}^{i}\left(\mathfrak{q}_{0}\right) \otimes \mathcal{S}^{j}\left(\mathfrak{q}_{1}\right)$. Here the general method yields the Poisson commutative subalgebra generated by the bi-homogeneous components of all $H \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$. This case has been studied in [6] and recently in our article [14]. For substantial applications, one has to assume, of course, that \mathfrak{q} is semisimple.

0.2.

Soon after 14 has been accepted, we came across an article of Bogoyavlenski [1]. He claims that if \mathfrak{g} is semisimple, $\mathfrak{f} \subset \mathfrak{g}$ is reductive and the Killing form of \mathfrak{g} is non-degenerate on \mathfrak{f}, then the direct sum $\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{m}$, where $\mathfrak{m}=\mathfrak{f}^{\perp}$ is the orthogonal complement of \mathfrak{f} w.r.t. the Killing form, allows to construct similarly a Poisson commutative subalgebra of $\mathcal{S}(\mathfrak{g})$. Namely, a special case of [1, Theorem 1] (with $n=k=j=1$ in the original notation) asserts that
the bi-homogeneous components of all $F \in \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ generate a Poisson commutative subalgebra. However, this is false and we provide a counterexample to that claim. An explanation for that error is that here one can also consider the contraction $\tilde{\mathfrak{g}}=\mathfrak{f} \ltimes \mathfrak{m}^{\mathrm{ab}}$ and the Poisson bracket $\{,\}_{\tilde{\mathfrak{g}}}$ on the vector space $\mathfrak{g} \simeq \tilde{\mathfrak{g}}$, but the brackets $\{,\}_{\mathfrak{g}}$ and $\{,\}_{\tilde{\mathfrak{g}}}$ are not necessarily compatible. One can also notice that Bogoyavlenski did not properly distinguish a Lie algebra and its dual, and his usage of differentials of elements of $\mathcal{S}(\mathfrak{g})$ is sloppy.

Our main motivation for writing this note was just to clarify and remedy this situation. However, we also discovered some exciting new phenomena. Let $\mathfrak{g}=\operatorname{Lie}(G)$ be semisimple and $\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{m}$ as above. Let $\mathcal{Z}_{(\mathfrak{g}, \mathfrak{f})}$ be the subalgebra of $\mathcal{S}(\mathfrak{g})$ generated by the bi-homogeneous components of all F belonging to $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$. The results of this note are:

1) we provide a criterion for $\mathcal{Z}_{(\mathfrak{g}, \mathfrak{f})}$ to be Poisson commutative;
2) using our criterion we prove that $\mathcal{Z}_{\left(\mathfrak{s l}_{4}, \mathfrak{s l}_{2}\right)}$ is not Poisson commutative for the standard embedding $\mathfrak{s l}_{2} \subset \mathfrak{s l}_{4}$;
3) a corollary of our criterion is that $\mathcal{Z}_{(\mathfrak{g}, \mathfrak{f})}$ is Poisson commutative whenever \mathfrak{f} is abelian (e.g. if \mathfrak{f} is the Lie algebra of a torus in G);
4) it is proved that if $\mathfrak{f}=\mathfrak{t}$ is a Cartan subalgebra of \mathfrak{g}, then $\mathcal{Z}_{(\mathfrak{g}, \mathfrak{t})}$ is polynomial, $\operatorname{tr} . \operatorname{deg}{\underset{z}{(\mathfrak{g}, \mathfrak{t})}}=\boldsymbol{b}(\mathfrak{g})=(\operatorname{dim} \mathfrak{g}+\mathrm{rk} \mathfrak{g}) / 2$, and ${\underset{z}{(\mathfrak{g}, \mathfrak{t})}}$ is complete on every regular G-orbit in \mathfrak{g}.
5) We point out an algebraic extension $\tilde{z} \supset z_{(\mathfrak{g}, \mathfrak{t})}$ such that \tilde{z} is a maximal Poisson commutative subalgebra of $\mathcal{S}(\mathfrak{g})$ (w.r.t. inclusion) and is still polynomial.

Our criterion for the equality $\left\{z_{(\mathfrak{q}, \mathfrak{f})}, \mathcal{Z}_{(\mathfrak{q}, \mathfrak{f})}\right\}=0$ works also for nonreductive Lie algebras \mathfrak{q}, see Theorem 2.1.

1. Preliminaries on the coadjoint representation

Let Q be a connected affine algebraic group with $\operatorname{Lie}(Q)=\mathfrak{q}$. The symmetric algebra $\mathcal{S}(\mathfrak{q})$ over \mathbb{k} is identified with the graded algebra of polynomial functions on \mathfrak{q}^{*}, and we also write $\mathbb{k}\left[\mathfrak{q}^{*}\right]$ for it.

Let \mathfrak{q}^{ξ} denote the stabiliser in \mathfrak{q} of $\xi \in \mathfrak{q}^{*}$. The index of \mathfrak{q}, ind \mathfrak{q}, is the minimal codimension of Q-orbits in \mathfrak{q}^{*}. Equivalently, ind $\mathfrak{q}=\min _{\xi \in \mathfrak{q}^{*}} \operatorname{dim} \mathfrak{q}^{\xi}$. By Rosenlicht's theorem [2, I.6], one also has ind $\mathfrak{q}=\operatorname{tr} . \operatorname{deg} \mathbb{k}\left(\mathfrak{q}^{*}\right)^{Q}$. The Lie-Poisson bracket for $\mathbb{k}\left[\mathfrak{q}^{*}\right]$ is defined on the elements of degree 1 (i.e., on $\mathfrak{q})$ by $\{x, y\}:=[x, y]$. Set further $\hat{\gamma}(x, y)=\gamma([x, y])$ for $\gamma \in \mathfrak{q}^{*}$. For any
$F_{1}, F_{2} \in \mathcal{S}(\mathfrak{q})$ and $\gamma \in \mathfrak{q}^{*}$, we have

$$
\left\{F_{1}, F_{2}\right\}(\gamma)=\hat{\gamma}\left(d_{\gamma} F_{1}, d_{\gamma} F_{2}\right)
$$

where $d_{\gamma} F \in \mathfrak{q}$ is the differential of $F \in \mathcal{S}(\mathfrak{q})$ at γ. As Q is connected, we have $\mathcal{S}(\mathfrak{q})^{\mathfrak{q}}=\mathcal{S}(\mathfrak{q})^{Q}=\mathbb{k}\left[\mathfrak{q}^{*}\right]^{Q}$. The set of Q-regular elements of \mathfrak{q}^{*} is

$$
\mathfrak{q}_{\mathrm{reg}}^{*}=\left\{\eta \in \mathfrak{q}^{*} \mid \operatorname{dim} \mathfrak{q}^{\eta}=\operatorname{ind} \mathfrak{q}\right\} .
$$

Set $\mathfrak{q}_{\text {sing }}^{*}=\mathfrak{q}^{*} \backslash \mathfrak{q}_{\text {reg }}^{*}$. We say that \mathfrak{q} has the codim-n property if codim $\mathfrak{q}_{\text {sing }}^{*} \geqslant$ n. By [5], the semisimple algebras \mathfrak{g} have the codim- 3 property.

Set $\boldsymbol{b}(\mathfrak{q})=(\operatorname{dim} \mathfrak{q}+\operatorname{ind} \mathfrak{q}) / 2$. Since the coadjoint orbits are evendimensional, this number is an integer. If \mathfrak{q} is reductive, then ind \mathfrak{q} equals the rank $r k \mathfrak{q}$ of \mathfrak{q} and $\boldsymbol{b}(\mathfrak{q})$ equals the dimension of a Borel subalgebra. A subalgebra $\mathcal{A} \subset \mathcal{S}(\mathfrak{q})$ is said to be Poisson commutative if $\{\mathcal{A}, \mathcal{A}\}=0$. If $\mathcal{A} \subset \mathcal{S}(\mathfrak{q})$ is Poisson commutative, then $\operatorname{tr} . \operatorname{deg} \mathcal{A} \leqslant \boldsymbol{b}(\mathfrak{q})$, see e.g. [15, 0.2].

Definition 1. A Poisson commutative subalgebra $\mathcal{A} \subset \mathcal{S}(\mathfrak{q})$ is said to be complete on a coadjoint orbit $Q \gamma \subset \mathfrak{q}^{*}$ if $\operatorname{tr} \cdot \operatorname{deg}\left(\left.\mathcal{A}\right|_{Q \gamma}\right)=\frac{1}{2} \operatorname{dim}(Q \gamma)$.

The notion of completeness originates from the theory of integrable systems.
For a subalgebra $A \subset \mathcal{S}(\mathfrak{q})$ and $\gamma \in \mathfrak{q}^{*}$, set $d_{\gamma} A=\left\langle d_{\gamma} F \mid F \in A\right\rangle_{\mathbb{k}}$.

1.1. Decompositions and compatibility

Let $\mathfrak{q}=\mathfrak{f} \oplus V$ be a vector space decomposition, where \mathfrak{f} is a subalgebra. For any $s \in \mathbb{K}^{\times}$, define a linear map $\varphi_{s}: \mathfrak{q} \rightarrow \mathfrak{q}$ by setting $\left.\varphi_{s}\right|_{\mathfrak{f}}=\mathrm{id},\left.\varphi_{s}\right|_{V}=$ s.id. Then $\varphi_{s} \varphi_{s^{\prime}}=\varphi_{s s^{\prime}}$ and $\varphi_{s}^{-1}=\varphi_{s^{-1}}$, i.e., this yields a one-parameter subgroup of $\operatorname{GL}(\mathfrak{q})$. For each s, the formula

$$
[x, y]_{(s)}=\varphi_{s}^{-1}\left(\left[\varphi_{s}(x), \varphi_{s}(y)\right]\right)
$$

defines a modified Lie algebra structure on the vector space \mathfrak{q}. All these structures are isomorphic to the initial one. The corresponding Poisson bracket is denoted by $\{,\}_{(s)}$. We naturally extend φ_{s} to an automorphism of $\mathcal{S}(\mathfrak{q})$. Then the centre of the Poisson algebra $\left(\mathcal{S}(\mathfrak{q}),\{,\}_{(s)}\right)$ equals $\varphi_{s}^{-1}\left(\mathcal{S}(\mathfrak{q})^{\mathfrak{q}}\right)$. For $x \in \mathfrak{q}$, write $x=x_{\mathfrak{f}}+x_{V}$ with $x_{\mathfrak{f}} \in \mathfrak{f}, x_{V} \in V$.

If $\mathfrak{q}=\mathfrak{f} \oplus V$ is a \mathbb{Z}_{2}-grading, i.e., $[\mathfrak{f}, V] \subset V$ and $[V, V] \subset \mathfrak{f}$, then $\{,\}_{(0)}=$ $\lim _{s \rightarrow 0}\{,\}_{(s)}$ is a Poisson bracket; furthermore $\{,\}_{(s)}=\{,\}_{(-s)}$ and $\{,\}_{(s)}+$ $\{,\}_{\left(s^{\prime}\right)}=2\{,\}_{(\tilde{s})}$ with $2 \tilde{s}^{2}=s^{2}+\left(s^{\prime}\right)^{2}$. The brackets $\{,\}_{(s)}$ are pairwise
compatible and together with the line $\mathbb{k}\left(\{\}-,\{,\}_{(0)}\right)$ build a twodimensional pencil.

Lemma 1.1. Suppose that $\mathfrak{q}=\mathfrak{f} \oplus V$, where $\mathfrak{f} \subset \mathfrak{q}$ is a subalgebra and $[\mathfrak{f}, V] \subset V$. For any $x=x_{\mathfrak{f}}+x_{V}, y=y_{\mathfrak{f}}+y_{V} \in \mathfrak{q}$, we have

$$
[x, y]_{(s)}=\left[x_{\mathfrak{f}}, y_{\mathfrak{f}}\right]+\left[x_{\mathfrak{f}}, y_{V}\right]+\left[x_{V}, y_{\mathfrak{f}}\right]+s\left[x_{V}, y_{V}\right]_{V}+s^{2}\left[x_{V}, y_{V}\right]_{\mathfrak{f}}
$$

Proof. The statement is verified by a straightforward computation.

Assume that $\mathfrak{q}=\mathfrak{f} \oplus V$ is an \mathfrak{f}-stable decomposition. One of the crucial properties of $[,]_{(s)}$ is that if $x \in \mathfrak{f}$ and $y \in \mathfrak{q}$, then $[x, y]_{(s)}=[x, y]$ for all $s \in \mathbb{k}$. Then (1•4) shows also that if $[\mathfrak{f}, \mathfrak{q}] \neq 0$ and $[V, V]$ is not contained in either \mathfrak{f} or V, then the brackets $\{,\}_{(s)}$ do not build a two-dimensional pencil.

2. A criterion for commutativity

Let \mathfrak{f} be a subalgebra of \mathfrak{q}. Suppose that there is an \mathfrak{f}-stable decomposition $\mathfrak{q}=\mathfrak{f} \oplus \mathfrak{m}$, i.e., $[\mathfrak{f}, \mathfrak{m}] \subset \mathfrak{m}$. This yields a bi-homogeneous structure for $\mathcal{S}(\mathfrak{q})$:

$$
\mathcal{S}(\mathfrak{q})=\bigoplus_{i, j \geqslant 0} \mathcal{S}^{i}(\mathfrak{f}) \otimes \mathcal{S}^{j}(\mathfrak{m})
$$

For any $H \in \mathcal{S}(\mathfrak{q})$, we have $H=\sum_{i, j \geqslant 0} H_{(i, j)}$, where $H_{(i, j)} \in \mathcal{S}^{i}(\mathfrak{f}) \otimes \mathcal{S}^{j}(\mathfrak{m})$ are the bi-homogeneous components of H. Let $\mathcal{Z}_{(\mathfrak{q}, \mathfrak{f})}$ be the subalgebra of $\mathcal{S}(\mathfrak{q})$ generated by the bi-homogeneous components of all $H \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$. Since each bi-homogeneous component of $H \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$ is \mathfrak{f}-invariant, we have $\mathcal{z}_{(\mathfrak{q}, \mathfrak{f})} \subset$ $\mathcal{S}(\mathfrak{q})^{\mathfrak{f}}$. It is claimed in [1, Theorem 1] that if \mathfrak{q} is semisimple and the Killing form of \mathfrak{g} is non-degenerate on \mathfrak{f} (so that an \mathfrak{f}-stable decomposition of \mathfrak{q} does exist), then $\mathcal{Z}_{(\mathfrak{q}, \mathfrak{f})}$ is Poisson commutative. However, this is false! Below, we give a criterion for the Poisson commutativity of $\mathcal{Z}_{(\mathfrak{q}, \mathfrak{f})}$ and provide a counterexample to the assertion of [1]. On the positive side, we deduce from our criterion that $\mathcal{z}_{(\mathfrak{q}, \mathfrak{f})}$ is Poisson commutative whenever \mathfrak{f} is an abelian subalgebra.

Given $\gamma \in \mathfrak{q}^{*}$, we decompose it as $\gamma=\gamma_{\mathfrak{f}}+\gamma_{\mathfrak{m}}$, where $\left.\gamma_{\mathfrak{f}}\right|_{\mathfrak{m}}=0$ and $\left.\gamma_{\mathfrak{m}}\right|_{\mathfrak{f}}=$ 0 . Let $\varphi_{s}: \mathfrak{q} \rightarrow \mathfrak{q}$ be the same as in Section 1.1 with $V=\mathfrak{m}$. Set $\varphi_{s}(\gamma)=$ $\gamma_{\mathfrak{f}}+s \gamma_{\mathfrak{m}}$. It is well known and easily verified that, for any $H \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$ and $\xi \in \mathfrak{q}^{*}$, one has $d_{\xi} H \in \mathfrak{z}\left(\mathfrak{q}^{\xi}\right)$, where $\mathfrak{z}\left(\mathfrak{q}^{\xi}\right)$ is the centre of \mathfrak{q}^{ξ}. A standard
calculation with differentials shows that

$$
d_{\gamma}\left(\varphi_{s}(F)\right)=\varphi_{s}\left(d_{\varphi_{s}(\gamma)} F\right)
$$

for any $F \in \mathcal{S}(\mathfrak{q})$.
Theorem 2.1. The subalgebra $\mathcal{Z}=\mathcal{Z}_{(\mathfrak{q}, \mathfrak{f})}$ is Poisson commutative if and only if

$$
\hat{\gamma}_{\mathfrak{f}}\left(\left(d_{\varphi_{s}(\gamma)} H\right)_{\mathfrak{f}},\left(d_{\varphi_{s^{\prime}}(\gamma)} H^{\prime}\right)_{\mathfrak{f}}\right)=0
$$

for each $\gamma \in \mathfrak{q}^{*}$, all nonzero $s, s^{\prime} \in \mathbb{k}$, and all $H, H^{\prime} \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$.
Proof. It suffices to prove the assertion for homogeneous $H, H^{\prime} \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$. Note that if $H \in \mathcal{S}^{d}(\mathfrak{q})$ and $H=\sum_{j=0}^{d} H_{(d-j, j)}$, then $\varphi_{s}(H)=\sum_{j} s^{j} H_{(d-j, j)}$. Therefore, employing the standard argument with the Vandermonde determinant, one shows that

$$
\mathcal{Z}=\operatorname{alg}\left\langle\varphi_{s}(H) \mid H \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}, s \in \mathbb{k}^{\times}\right\rangle .
$$

Hence the algebra \mathcal{Z} is Poisson commutative if and only if for all $H, H^{\prime} \in$ $\mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$, all nonzero $s, s^{\prime} \in \mathbb{k}$, and any $\gamma \in \mathfrak{q}^{*}$, by (1•1), we have

$$
A_{s, s^{\prime}}=A_{s, s^{\prime}, H, H^{\prime}, \gamma}:=\hat{\gamma}\left(d_{\gamma} \varphi_{s}(H), d_{\gamma} \varphi_{s^{\prime}}\left(H^{\prime}\right)\right)=\left\{\varphi_{s}(H), \varphi_{s^{\prime}}\left(H^{\prime}\right)\right\}(\gamma)=0
$$

Suppose that H, H^{\prime} and γ are fixed. Then there is no ambiguity in the use of $A_{s, s^{\prime}}$.

Set $\xi=d_{\varphi_{s}(\gamma)} H$ and $\eta=d_{\varphi_{s^{\prime}}(\gamma)} H^{\prime}$. Since $\varphi_{s}(H)$ belongs to the Poisson centre of $\left(\mathcal{S}(\mathfrak{q}),\{,\}_{\left(s^{-1}\right)}\right)$, we derive from (2•1) that

$$
\begin{aligned}
\gamma\left(\left[d_{\gamma} \varphi_{s}(H), d_{\gamma} \varphi_{s^{\prime}}\left(H^{\prime}\right)\right]_{\left(s^{-1}\right)}\right) & =\gamma\left(\left[\varphi_{s}(\xi), \varphi_{s^{\prime}}(\eta)\right]_{\left(s^{-1}\right)}\right) \\
& =\gamma\left(\left[\xi_{\mathfrak{f}}+s \xi_{\mathfrak{m}}, \eta_{\mathfrak{f}}+s^{\prime} \eta_{\mathfrak{m}}\right]_{\left(s^{-1}\right)}\right)=0
\end{aligned}
$$

Similarly, $\varphi_{s^{\prime}}\left(H^{\prime}\right)$ belongs to the Poisson centre of $\left(\mathcal{S}(\mathfrak{q}),\{,\}_{\left(\left(s^{\prime}\right)^{-1}\right)}\right)$ and hence

$$
\gamma\left(\left[\xi_{\mathfrak{f}}+s \xi_{\mathfrak{m}}, \eta_{\mathfrak{f}}+s^{\prime} \eta_{\mathfrak{m}}\right]_{\left(\left(s^{\prime}\right)^{-1}\right)}\right)=0
$$

For all $\tilde{s} \in \mathbb{k}^{\times}$and $\tilde{H} \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$, we have $\hat{\gamma}\left(\mathfrak{f}, d_{\gamma} \varphi_{\tilde{s}}(\tilde{H})\right)=0$, since $\mathbb{Z} \subset \mathcal{S}(\mathfrak{q})^{\mathfrak{f}}$. Therefore, $\hat{\gamma}\left(\varphi_{s}(\xi), \eta_{\mathfrak{f}}\right)=\hat{\gamma}\left(\xi_{\mathfrak{f}}, \varphi_{s^{\prime}}(\eta)\right)=0$. Thus,

$$
\begin{align*}
C & :=\hat{\gamma}_{\mathfrak{f}}\left(\left(d_{\varphi_{s}(\gamma)} H\right)_{\mathfrak{f}},\left(d_{\varphi_{s^{\prime}}(\gamma)} H^{\prime}\right)_{\mathfrak{f}}\right) \\
& =\hat{\gamma}\left(\xi_{\mathfrak{f}}, \eta_{\mathfrak{f}}\right)=-s^{\prime} \hat{\gamma}\left(\xi_{\mathfrak{f}}, \eta_{\mathfrak{m}}\right)=-s \hat{\gamma}\left(\xi_{\mathfrak{m}}, \eta_{\mathfrak{f}}\right)
\end{align*}
$$

Let us substitute this into the formulas

$$
\begin{aligned}
\gamma\left(\left[\varphi_{s}(\xi), \varphi_{s^{\prime}}(\eta)\right]_{\left(s^{-1}\right)}\right)= & \hat{\gamma}\left(\xi_{\mathfrak{f}}, \eta_{\mathfrak{f}}\right)+s \hat{\gamma}\left(\xi_{\mathfrak{m}}, \eta_{\mathfrak{f}}\right)+s^{\prime} \hat{\gamma}\left(\xi_{\mathfrak{f}}, \eta_{\mathfrak{m}}\right) \\
& +\frac{s^{\prime}}{s} \gamma_{\mathfrak{f}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{f}}\right)+s^{\prime} \gamma_{\mathfrak{m}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{m}}\right)=0, \\
\gamma\left(\left[\varphi_{s}(\xi), \varphi_{s^{\prime}}(\eta)\right]_{\left(\left(s^{\prime}\right)^{-1}\right)}\right)= & \hat{\gamma}\left(\xi_{\mathfrak{f}}, \eta_{\mathfrak{f}}\right)+s \hat{\gamma}\left(\xi_{\mathfrak{m}}, \eta_{\mathfrak{f}}\right)+s^{\prime} \hat{\gamma}\left(\xi_{\mathfrak{f}}, \eta_{\mathfrak{m}}\right) \\
& +\frac{s}{s^{\prime}} \gamma_{\mathfrak{f}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{f}}\right)+s \gamma_{\mathfrak{m}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{m}}\right)=0,
\end{aligned}
$$

obtaining the equalities

$$
\begin{aligned}
& C-C-C+s^{-1} s^{\prime} \gamma_{\mathfrak{f}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{f}}\right)+s^{\prime} \gamma_{\mathfrak{m}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{m}}\right)=0 \\
& C-C-C+s\left(s^{\prime}\right)^{-1} \gamma_{\mathfrak{f}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{f}}\right)+s \gamma_{\mathfrak{m}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{m}}\right)=0 .
\end{aligned}
$$

Furthermore $A_{s, s^{\prime}}=-C+s s^{\prime} \gamma_{\mathfrak{f}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{f}}\right)+s s^{\prime} \gamma_{\mathfrak{m}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{m}}\right)$.
Suppose that $C=0$, then

$$
\begin{gathered}
s^{-1} \gamma_{\mathfrak{f}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{f}}\right)+\gamma_{\mathfrak{m}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{m}}\right)=0 \\
\left(s^{\prime}\right)^{-1} \gamma_{\mathfrak{f}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{f}}\right)+\gamma_{\mathfrak{m}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{m}}\right)=0 .
\end{gathered}
$$

Thereby $\left(s^{-1}-\left(s^{\prime}\right)^{-1}\right) \gamma_{\mathfrak{f}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{f}}\right)=0$ and $\left(s-s^{\prime}\right) \gamma_{\mathfrak{m}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{m}}\right)=0$. If $s \neq s^{\prime}$, then necessarily $A_{s, s^{\prime}}=0$. Since $A_{s, s^{\prime}}$ is a polynomial in s and s^{\prime} with constant coefficients, $A_{s, s^{\prime}}=0$ for all nonzero s, s^{\prime}. This settles the 'if' part.

In order to prove the 'only if' implication, suppose that $A_{s, s^{\prime}}=0$ for all $s, s^{\prime} \in \mathbb{k}^{\times}$. Then $x=\gamma_{\mathfrak{f}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{f}}\right)$ and $y=\gamma_{\mathfrak{m}}\left(\left[\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}\right]_{\mathfrak{m}}\right)$ satisfy $s^{-1} s^{\prime} x+$ $s^{\prime} y=s\left(s^{\prime}\right)^{-1} x+s y=s s^{\prime}(x+y)=C$. Assume that $s \neq s^{\prime}$ and that $s, s^{\prime} \neq 1$. Then

$$
\left\{\begin{array}{l}
\frac{s^{\prime}+s}{s s^{\prime}} \cdot x+y=0 \\
\frac{s+1}{s} \cdot x+y=0
\end{array}\right.
$$

and the only solution of this system is $x=y=0$. Hence $C=0$. Since C is a polynomial in s and s^{\prime} with constant coefficients, the equality

$$
\hat{\gamma}_{\mathfrak{f}}\left(\left(d_{\varphi_{s}(\gamma)} H\right)_{\mathfrak{f}},\left(d_{\varphi_{s^{\prime}}(\gamma)} H^{\prime}\right)_{\mathfrak{f}}\right)=0
$$

holds for all $s, s^{\prime} \in \mathbb{k}^{\times}$.

Corollary 2.2. If \mathfrak{f} is an abelian Lie algebra, then $\mathcal{Z}_{(\mathfrak{q}, \mathfrak{f})}$ is Poisson commutative.

Proof. Since $[\mathfrak{f}, \mathfrak{f}]=0$, we have $\left[\left(d_{\varphi_{s}(\gamma)} H\right)_{\mathfrak{f}},\left(d_{\varphi_{s^{\prime}}(\gamma)} H^{\prime}\right)_{\mathfrak{f}}\right]=0$ for each $\gamma \in \mathfrak{q}^{*}$, all nonzero $s, s^{\prime} \in \mathbb{k}$, and all $H, H^{\prime} \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$. Hence $\mathcal{z}_{(\mathfrak{q}, \mathfrak{f})}$ is Poissoncommutative by Theorem 2.1.

Let $\mathfrak{g}=\operatorname{Lie}(G)$ be a reductive Lie algebra. Then \mathfrak{g} is identified with \mathfrak{g}^{*} via a G-invariant non-degenerate symmetric bilinear form (,) and $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ is a polynomial ring. Let $\left\{H_{1}, \ldots, H_{l}\right\}$ be a set of homogeneous algebraically independent generators of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ with deg $H_{j}=: d_{j}$. By the Kostant regularity criterion for \mathfrak{g} [5, Theorem 9],

$$
\left\langle d_{\xi} H_{j} \mid 1 \leqslant j \leqslant l\right\rangle_{\mathbb{k}}=\mathfrak{g}^{\xi} \text { if and only if } \xi \in \mathfrak{g}_{\mathrm{reg}}^{*} .
$$

Recall that $\mathfrak{g}^{\xi}=\mathfrak{z}\left(\mathfrak{g}^{\xi}\right)$ if and only if $\xi \in \mathfrak{g}_{\text {reg }}^{*}$ [10, Theorem 3.3].
Example 2.3. If $\mathfrak{g}=\mathfrak{g l}_{n}$, then $x^{k} \in \mathfrak{g}^{x}$ for any $x \in \mathfrak{g}$ and $k \in \mathbb{N}$. (Here x^{k} is the usual matrix power.) Moreover, if we identify \mathfrak{g} and \mathfrak{g}^{*}, then $d_{x} \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}=$ $\left\langle x^{k} \mid 0 \leqslant k<n\right\rangle_{\mathfrak{k}}$.

Consider the pair $(\mathfrak{g}, \mathfrak{f})=\left(\mathfrak{g l}_{4}, \mathfrak{S l}_{2}\right)$ with $\mathfrak{s l}_{2}$ embedded in the right lower corner.

$$
\text { Take } \gamma=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right) \text {. Then } \gamma_{\mathfrak{f}}+s \gamma_{\mathfrak{m}}=\left(\begin{array}{cccc}
s & 0 & 0 & s \\
0 & 0 & s & 0 \\
s & 0 & 1 & 0 \\
0 & s & 0 & -1
\end{array}\right)
$$

Note that $\gamma_{\mathfrak{f}} \neq 0$. For any $k \geqslant 0,\left(\varphi_{s}(\gamma)\right)^{k}=\left(\gamma_{\mathfrak{f}}+s \gamma_{\mathfrak{m}}\right)^{k}$ belongs to $d_{\varphi_{s}(\gamma)} \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$. Hence $\left(\left(\gamma_{\mathfrak{f}}+s \gamma_{\mathfrak{m}}\right)^{k}\right)_{\mathfrak{f}} \in\left(d_{\varphi_{s}(\gamma)} \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}\right)_{\mathfrak{f}}$. Let us do calculations for $k=2,3$:

$$
\begin{aligned}
\left(\gamma_{\mathfrak{f}}+s \gamma_{\mathfrak{m}}\right)^{2} & =\left(\begin{array}{cccc}
s^{2} & s^{2} & 0 & s^{2}-s \\
s^{2} & 0 & s & 0 \\
s^{2}+s & 0 & 1 & s^{2} \\
0 & -s & s^{2} & 1
\end{array}\right) \quad \text { and } \\
\left(\gamma_{\mathfrak{f}}+s \gamma_{\mathfrak{m}}\right)^{3} & =\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & 1 & s^{3} \\
* & * & 0 & -1
\end{array}\right)
\end{aligned}
$$

Let $e=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), h=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, and $f=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ form the standard basis of $\mathfrak{s l}_{2}$. Then

$$
\gamma_{\mathfrak{f}}=h, \quad\left(\left(\gamma_{\mathfrak{f}}+s \gamma_{\mathfrak{m}}\right)^{2}\right)_{\mathfrak{f}}=s^{2}(e+f), \quad \text { and }\left(\left(\gamma_{\mathfrak{f}}+s \gamma_{\mathfrak{m}}\right)^{3}\right)_{\mathfrak{f}}=s^{3} e+h .
$$

Therefore, if $s \neq 0$, then $\left\langle\left(d_{\varphi_{s}(\gamma)} H\right)_{\mathfrak{f}} \mid H \in \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}\right\rangle_{\mathfrak{k}}=\mathfrak{f}$. Since $(h,[\mathfrak{f}, \mathfrak{f}]) \neq 0$,
we conclude that

$$
\hat{\gamma}_{\mathfrak{f}}\left(\left(d_{\varphi_{s}(\gamma)} H\right)_{\mathfrak{f}},\left(d_{\varphi_{s^{\prime}}(\gamma)} H^{\prime}\right)_{\mathfrak{f}}\right) \neq 0
$$

for all nonzero s, s^{\prime}. Thus, by Theorem 2.1. $\mathcal{Z}_{(\mathfrak{g}, \mathfrak{f})}$ is not Poisson commutative.
Remark 2.4. Example 2.3 also implies that $\mathcal{Z}_{\left(\mathfrak{g}, \mathfrak{s l}_{2}\right)}$ is not Poisson commutative if $\mathfrak{g}=\mathfrak{g l}_{4}$ is replaced with $\mathfrak{s l}_{4}$. For, $\mathfrak{g l}_{4}=\mathfrak{z} \oplus \mathfrak{s l}_{4}$ with $\mathfrak{z}=\mathbb{k} I_{4}$, hence $\mathcal{S}\left(\mathfrak{g l}_{4}\right)^{\mathfrak{g l}_{4}}$ is generated by $\mathcal{S}\left(\mathfrak{s l}_{4}\right)^{\mathfrak{s l}_{4}}$ and \mathfrak{z}. For any reductive $\mathfrak{f} \subset \mathfrak{s l}_{4}$, the algebra $\mathcal{Z}_{\left(\mathfrak{g l}_{4}, \mathfrak{f}\right)}=\operatorname{alg}\left\langle\mathcal{Z}_{\left(\mathfrak{s l}_{4}, \mathfrak{f}\right)}, \mathfrak{z}\right\rangle$ is Poisson commutative if and only if $\mathcal{Z}_{\left(\mathfrak{s l}_{4}, \mathfrak{f}\right)}$ is.

Example 2.3 easily generalises to the pairs $\left(\mathfrak{g l}_{n}, \mathfrak{g l}_{m}\right)$ with $n \geqslant m+2$. On the other hand, one can prove that the algebra $Z_{\left(\mathfrak{g l}_{3}, \mathfrak{s l}_{2}\right)}$ or $Z_{\left(\mathfrak{s l}_{3}, \mathfrak{s l}_{2}\right)}$ is still Poisson commutative.

Example 2.5. Let us show that, for a special choice of \mathfrak{f}, the algebra $\mathcal{Z}_{(\mathfrak{g}, \mathfrak{f})}$ is rather close to an $\mathcal{M} F$-subalgebra.

Let $h \in \mathfrak{g}$ be a semisimple element such that $(h, h) \neq 0$. Set $\mathfrak{f}=\langle h\rangle=$ $\langle h\rangle_{\mathfrak{k}}$. Then $\mathfrak{m} \subset \mathfrak{g}$ is the orthogonal complement of h with respect to (,) and the bi-homogeneous decomposition of $H_{j} \in \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ is

$$
H_{j}=H_{j, 0} h^{d_{j}}+H_{j, 1} h^{d_{j}-1}+\ldots+H_{j, k} h^{d_{j}-k}+\ldots+H_{j, d_{j}}
$$

where $H_{j, k} \in \mathcal{S}^{k}(\mathfrak{m})$. By definition, $\mathcal{Z}_{(\mathfrak{g},\langle h\rangle)}$ is generated by $H_{j, k} h^{d_{j}-k}$ with $1 \leqslant j \leqslant l$ and $0 \leqslant k \leqslant d_{j}$. On the one hand, we had $\mathfrak{f}=\langle h\rangle$. On the other hand, let $\gamma \in \mathfrak{g}^{*}$ be such that $\gamma(\mathfrak{m})=0$ and $\gamma(h)=1$. Actually, $\gamma=\frac{h}{(h, h)}$ under the identification of \mathfrak{g} and \mathfrak{g}^{*}. Then

$$
\partial_{\gamma}^{k} H_{j}=\sum_{r=k}^{d_{j}} r(r-1) \ldots(r-k+1) h^{r-k} H_{j, d_{j}-r}
$$

If $H \in \mathcal{S}^{2}(\mathfrak{g})^{\mathfrak{g}}$ is the quadratic form corresponding to (,), then $\partial_{\gamma} H=c h$ for some $c \in \mathbb{k}^{\times}$. Hence $h \in(\mathcal{M F})_{\gamma}$. Arguing by induction on k, we obtain $H_{j, k} \in(\mathcal{M F})_{\gamma}$ for $k \leqslant d_{j}$. Thus

$$
\mathcal{z}_{(\mathfrak{g},\langle h\rangle)} \subset(\mathcal{M} \mathcal{F})_{\gamma}=(\mathcal{M} \mathcal{F})_{h} \subset \operatorname{alg}\left\langle z_{(\mathfrak{g},\langle h\rangle)}, h, h^{-1}\right\rangle=\operatorname{alg}\left\langle z_{(\mathfrak{g},\langle h\rangle)}, h^{-1}\right\rangle
$$

where the last equality holds, because $h^{2} \in \mathcal{Z}_{(\mathfrak{g},\langle h\rangle)}$.

3. Properties of the algebra ${\underset{\mathcal{Z}}{(\mathfrak{g}, \mathfrak{t})}}$

Suppose that \mathfrak{g} is semisimple. Let \mathfrak{t} be a Cartan subalgebra of \mathfrak{g} and Δ the root system of $(\mathfrak{g}, \mathfrak{t})$. By Corollary 2.2 , the algebra $\mathcal{Z}_{(\mathfrak{g}, \mathfrak{t})}$ is Poisson commutative, and our goal is to prove that this algebra has a number of remarkable properties. Let \mathfrak{g}_{γ} be the root space corresponding to $\gamma \in \Delta$ and let $e_{\gamma} \in \mathfrak{g}_{\gamma}$ be a nonzero vector. Then $\mathfrak{m}=\mathfrak{t}^{\perp}=\bigoplus_{\gamma \in \Delta} \mathfrak{g}_{\gamma}$.

Recall that $\left\{H_{1}, \ldots, H_{l}\right\}$ is a set of homogeneous algebraically independent generators of $\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$ and $\operatorname{deg} H_{j}=d_{j}$. One has $\sum_{j=1}^{l} d_{j}=\boldsymbol{b}(\mathfrak{g})$. The vector space decomposition $\mathfrak{g}=\mathfrak{t} \oplus \mathfrak{m}$ provides the bi-homogeneous decomposition of each H_{j} :

$$
H_{j}=\sum_{i=0}^{d_{j}}\left(H_{j}\right)_{\left(i, d_{j}-i\right)}
$$

where $\left(H_{j}\right)_{\left(i, d_{j}-i\right)} \in \mathcal{S}^{i}(\mathfrak{t}) \otimes \mathcal{S}^{d_{j}-i}(\mathfrak{m}) \subset \mathcal{S}^{d_{j}}(\mathfrak{g})$. Recall that $\mathbb{Z}:=\mathcal{Z}_{(\mathfrak{g}, \mathfrak{t})}$ is the algebra generated by

$$
\left\{\left(H_{j}\right)_{\left(i, d_{j}-i\right)} \mid j=1, \ldots, l ; i=0,1, \ldots, d_{j}\right\}
$$

Since each H_{j} is \mathfrak{g}-invariant, all the bi-homogeneous components in (3•1) are \mathfrak{t}-invariant. Hence $\mathcal{Z} \subset \mathcal{S}(\mathfrak{g})^{\mathfrak{t}}$. The total number of these functions is $\sum_{j=1}^{l}\left(d_{j}+1\right)=\boldsymbol{b}(\mathfrak{g})+l$, but some of them are identically equal to zero. Indeed, $\left(H_{j}\right)_{\left(d_{j}-1,1\right)} \in S^{d_{j}-1}(\mathfrak{t}) \otimes \mathfrak{m}$ and $\mathfrak{m}^{\mathfrak{t}}=\{0\}$, hence $\left(H_{j}\right)_{\left(d_{j}-1,1\right)} \equiv 0$ for $j=1, \ldots, l$. Therefore, the number of nonzero generators of Z is at most $\boldsymbol{b}(\mathfrak{g})$.

The bi-homogeneous component $\left(H_{j}\right)_{\left(d_{j}, 0\right)} \in \mathcal{S}^{d_{j}}(\mathfrak{t})$ is the restriction of H_{j} to $\mathfrak{t} \simeq \mathfrak{t}^{*}$. Therefore, by the Chevalley restriction theorem, the polynomials $\left(H_{j}\right)_{\left(d_{j}, 0\right)}, j=1, \ldots, l$, are the free generators of $\mathcal{S}(\mathfrak{t})^{W}$, where W is the Weyl group of \mathfrak{t}. This means that having replaced $\left(H_{1}\right)_{\left(d_{1}, 0\right)}, \ldots,\left(H_{l}\right)_{\left(d_{l}, 0\right)}$ with a basis of \mathfrak{t} and keeping intact all other bi-homogeneous components (generators of \mathcal{Z}), we obtain a larger subalgebra \tilde{z}, which is an algebraic extension of \mathcal{Z} (i.e. $\operatorname{tr} \cdot \operatorname{deg} \tilde{\mathcal{Z}}=\operatorname{tr} . \operatorname{deg} \mathcal{Z}$). Furthermore, since $\mathcal{Z} \subset \mathcal{S}(\mathfrak{g})^{\mathfrak{t}}, \tilde{\mathcal{Z}}$ is still Poisson commutative.

Once again, we use the $\operatorname{map} \varphi_{s}$ defined in Section 1.1. By $(\sqrt{2 \cdot 4})$, if $\varphi_{s}(\gamma) \in$ $\mathfrak{g}_{\text {reg }}^{*}$, then $d_{\varphi_{s}(\gamma)} \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}=\mathfrak{g}^{\varphi_{s}(\gamma)}$; and by (2•1), we have

$$
d_{\gamma} \varphi_{s}\left(\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}\right)=\varphi_{s}\left(\mathfrak{g}^{\varphi_{s}(\gamma)}\right)
$$

As before, we identify \mathfrak{g} and \mathfrak{g}^{*}.

Lemma 3.1. Let $h \in \mathfrak{t}$ and $x \in \mathfrak{m}$ be such that $(h+\mathbb{k} x) \cap \mathfrak{g}_{\text {reg }}^{*} \neq \varnothing$. Then $d_{h+x} \tilde{\sim}=\mathfrak{t}+d_{h}\left((\mathcal{M F})_{x}\right)$. Moreover, if $h \in \mathfrak{g}_{\text {reg }}^{*}$, then $d_{h+x} \tilde{\mathcal{z}}=d_{h}\left((\mathcal{M F})_{x}\right)=$ $d_{x}\left((\mathcal{M F})_{h}\right)$.

Proof. The assumption $(h \oplus \mathbb{k} x) \cap \mathfrak{g}_{\text {reg }}^{*} \neq \varnothing$ implies that

$$
\Omega:=\left\{s \in \mathbb{K}^{\times} \mid h+s x \in \mathfrak{g}_{\mathrm{reg}}^{*}\right\}
$$

is a nonempty open subset of \mathbb{k}^{\times}. Since Ω is infinite, we can strengthen $2 \cdot 2$ as

$$
\mathcal{Z}=\operatorname{alg}\left\langle\varphi_{s}(H) \mid H \in \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}, s \in \Omega\right\rangle
$$

Combining this with $(3 \cdot 2)$, we obtain

$$
d_{h+x} \tilde{z}=\mathfrak{t}+\sum_{s \in \Omega} d_{h+x} \varphi_{s}\left(\mathcal{S}(\mathfrak{g})^{\mathfrak{g}}\right)=\mathfrak{t}+\sum_{s \in \Omega} \varphi_{s}\left(\mathfrak{g}^{h+s x}\right)=\mathfrak{t}+\sum_{s \in \Omega} \mathfrak{g}^{h+s x}
$$

Set $\Omega^{\prime}=\Omega \sqcup\{0\}$ if $h \in \mathfrak{g}_{\text {reg }}^{*}$ and $\Omega^{\prime}=\Omega$ otherwise. Then the equality $\sum_{s \in \Omega^{\prime}} \mathfrak{g}^{h+s x}=d_{h}\left((\mathcal{M F})_{x}\right)$ follows from [13, Lemma 1.3], see also the proof of Lemma 2.1 in [13, Sect. 2]. If $h \notin \mathfrak{g}_{\text {reg }}^{*}$, we are done. If $h \in \mathfrak{g}_{\text {reg }}^{*}$, then $\mathfrak{g}^{h}=\mathfrak{t}$ and $\mathfrak{t}+\sum_{s \in \Omega} \mathfrak{g}^{h+s x}=\sum_{s \in \Omega^{\prime}} \mathfrak{g}^{h+s x}$.

Finally, we recall that $d_{h}\left((\mathcal{M F})_{x}\right)=d_{x}\left((\mathcal{M F})_{h}\right)$ for any $x, h \in \mathfrak{g}$ by [13, Eq. (2.3)].

Theorem 3.2. For $\mathcal{Z}=\mathcal{Z}_{(\mathfrak{g}, \mathfrak{t})}$ and $\tilde{\mathcal{z}}$ as above, we have
(i) $\operatorname{tr} \cdot \operatorname{deg} \mathcal{Z}=\operatorname{tr} \cdot \operatorname{deg} \tilde{\mathcal{Z}}=\boldsymbol{b}(\mathfrak{g})$ and both algebras \mathcal{Z} and $\tilde{\mathcal{Z}}$ are polynomial;
(ii) both \mathcal{Z} and $\tilde{\mathcal{Z}}$ are complete on each regular orbit;
(iii) \tilde{z} is a maximal Poisson commutative subalgebra of $\mathcal{S}(\mathfrak{g})$.

Proof. (i) Since $z \subset \tilde{z}$ is an algebraic extension, the first equality follows. Take a principal $\mathfrak{s l}_{2}$-triple $\{e, h, f\} \subset \mathfrak{g}$ such that $h \in \mathfrak{t}$ and $e, f \in \mathfrak{m}$. Note that any nonzero element of $\langle e, h, f\rangle_{\mathfrak{k}}$ is regular in $\mathfrak{g} \simeq \mathfrak{g}^{*}$. Pick a nonzero $x \in\langle e, f\rangle_{\mathfrak{k}} \subset \mathfrak{m}$ and consider the subspace

$$
d_{h+x} \tilde{z}:=\left\{d_{h+x} F \mid F \in \tilde{z}\right\} \subset \mathfrak{g} .
$$

Because $\varphi_{s}(h+x)=h+s x \in \mathfrak{g}_{\text {reg }}^{*}$ for all s, we have $d_{h+x} \tilde{\mathcal{L}}=d_{h}\left((\mathcal{M F})_{x}\right)$ by Lemma 3.1.

One of the properties of $\mathcal{M} \mathcal{F}$-subalgebras is that $\operatorname{dim} d_{h}\left((\mathcal{M F})_{x}\right)=\boldsymbol{b}(\mathfrak{g})$, if

$$
(\mathbb{k} x \oplus \mathbb{k} h) \cap \mathfrak{g}_{\text {sing }}=\{0\}
$$

see [12, [13, Cor. $1.6 \&$ Lemma 2.1]. Thus $\operatorname{dim} d_{h+x} \tilde{z}=\boldsymbol{b}(\mathfrak{g})$. It follows that $\operatorname{tr} . \operatorname{deg} \tilde{\mathcal{z}} \geqslant \boldsymbol{b}(\mathfrak{g})$, and since $\operatorname{tr} . \operatorname{deg} \mathcal{A} \leqslant \boldsymbol{b}(\mathfrak{g})$ for any Poisson commutative subalgebra, we actually get the equality. As both \mathcal{Z} and \tilde{z} have at most $\boldsymbol{b}(\mathfrak{g})$ generators, they are polynomial. Therefore, Z is freely generated by

$$
\left\{\left(H_{j}\right)_{\left(i, d_{j}-i\right)} \mid 1 \leqslant j \leqslant l ; i=0,1, \ldots, d_{j}-2, d_{j}\right\}
$$

while $\tilde{\mathcal{z}}$ is freely generated by a basis of \mathfrak{t} and the components $\left(H_{j}\right)_{\left(i, d_{j}-i\right)}$, where $1 \leqslant j \leqslant l$ and $i=0,1, \ldots, d_{j}-2$.
(ii) In part (i), we proved that $\operatorname{dim} d_{h+x} \tilde{\sim}=\boldsymbol{b}(g)$. Then [13, Lemma 1.2] implies that \tilde{z} is complete on the orbit $G(h+x)$. For an appropriate choice $\underset{\tilde{z}}{\text { of }} x \in\langle e, f\rangle$, we obtain a nilpotent element $h+x \in\langle e, h, f\rangle_{\mathrm{k}} \simeq \mathfrak{s l}_{2}$. Hence \tilde{z} is complete on the regular nilpotent orbit. Then a standard deformation argument, see [13, Cor. 2.6], shows that $\tilde{\mathcal{Z}}$ is complete on every regular orbit. The same line of argument applies to \mathcal{Z}, since $d_{h+x} \mathcal{S}(\mathfrak{t})^{W}=d_{h} \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}=\mathfrak{t}$ and $d_{h+x} \mathcal{Z}=d_{h+x} \tilde{z}$.
(iii) The maximality of \tilde{z} will follow from the fact that the subvariety $Y=\left\{\gamma \in \mathfrak{g}^{*} \mid \operatorname{dim} d_{\gamma} \tilde{z}<\boldsymbol{b}(\mathfrak{g})\right\}$ is of codimension $\geqslant 2$ in \mathfrak{g}^{*} (see below). We identify \mathfrak{g} and \mathfrak{g}^{*} via the Killing form and regard Y as a subvariety of \mathfrak{g}. Write $\gamma=h^{\prime}+x^{\prime}$ with $h^{\prime} \in \mathfrak{t}, x^{\prime} \in \mathfrak{m}$. If $\left\langle h^{\prime}, x_{\tilde{z}}^{\prime}\right\rangle_{\mathfrak{k}} \cap \mathfrak{g}_{\text {sing }}=\{0\}$, then $\operatorname{dim} d_{h^{\prime}}\left((\mathcal{M F F})_{x^{\prime}}\right)=\boldsymbol{b}(\mathfrak{g})$ [12, Theorem 2.5] and $\operatorname{dim} d_{\gamma} \tilde{\mathcal{L}}=\boldsymbol{b}(\mathfrak{g})$ by Lemma 3.1.

Consider the map $\psi: \mathfrak{g}_{\text {sing }} \times \mathbb{k} \rightarrow \mathfrak{g}$ defined by $\psi(\xi, s)=\xi_{\mathfrak{t}}+s \xi_{\mathfrak{m}}$ and let \tilde{Y} be the closure of $\operatorname{Im}(\psi)$. Set $\mathfrak{t}_{\text {sing }}:=\mathfrak{t} \cap \mathfrak{g}_{\text {sing }}$ and $\mathfrak{m}_{\text {sing }}:=\mathfrak{m} \cap \mathfrak{g}_{\text {sing }}$. Then

$$
Y \subset \tilde{Y} \cup\left(\mathfrak{t}_{\text {sing }} \times \mathfrak{m}\right) \cup\left(\mathfrak{t} \times \mathfrak{m}_{\text {sing }}\right)
$$

- Since codim $\mathfrak{g}_{\text {sing }}=3$, we have $\operatorname{dim} \tilde{Y} \leqslant \operatorname{dim} \mathfrak{g}-2$.
- As $\mathfrak{m}_{\text {sing }}$ is conical and $\langle e, f\rangle_{\mathfrak{k}} \cap \mathfrak{m}_{\text {sing }}=\{0\}$, we have $\operatorname{dim} \mathfrak{m}_{\text {sing }} \leqslant$ $\operatorname{dim} \mathfrak{m}-2$. Therefore, $\mathfrak{t} \times \mathfrak{m}_{\text {sing }} \subset \mathfrak{g}$ does not contain divisors.
- We prove below that $\operatorname{dim}\left(Y \cap\left(\mathfrak{t}_{\text {sing }} \times \mathfrak{m}\right)\right) \leqslant \operatorname{dim} \mathfrak{g}-2$, which yields the required estimate of codim Y.

The subset $\mathfrak{t}_{\text {sing }} \subset \mathfrak{t}$ is the union of all reflection hyperplanes in \mathfrak{t}. That is, if

$$
\mathcal{H}_{\gamma}=\{x \in \mathfrak{t} \mid(\gamma, x)=0\}
$$

then $\mathfrak{t}_{\text {sing }}=\bigcup_{\gamma \in \Delta} \mathcal{H}_{\gamma}$. (Of course, $\mathcal{H}_{\gamma}=\mathcal{H}_{-\gamma}$.) Suppose that $h^{\prime} \in \mathcal{H}_{\nu}$ is generic, i.e., $h^{\prime} \in \mathcal{H}_{\nu} \backslash \bigcup_{\gamma \neq \pm \nu} \mathcal{H}_{\gamma}$. Then $h^{\prime} \in \mathfrak{g}$ is subregular and

$$
\mathfrak{g}^{h^{\prime}}=\mathfrak{t} \oplus \mathfrak{g}_{\nu} \oplus \mathfrak{g}_{-\nu}=\mathcal{H}_{\nu} \oplus\left\langle e_{\nu}, h_{\nu}, e_{-\nu}\right\rangle_{\mathfrak{k}} \simeq \mathcal{H}_{\nu} \oplus \mathfrak{s l}_{2}
$$

where $h_{\nu}=\left[e_{\nu}, e_{-\nu}\right]$ and \mathcal{H}_{ν} is the centre of $\mathfrak{g}^{h^{\prime}}$. Note also that $\mathcal{H}_{\nu}=$ $d_{h^{\prime}} \mathcal{S}(\mathfrak{g})^{\mathfrak{g}} \subset \mathfrak{t}$, cf. [14, Lemma 4.9]. Without loss of generality, we may assume that ν is a simple root with respect to some choice of $\Delta^{+} \subset \Delta$. Let $\Pi \subset \Delta^{+}$be the corresponding set of simple roots and $\mathfrak{m}=\mathfrak{u} \oplus \mathfrak{u}^{-}$. We may also assume that $e=\sum_{\alpha \in \Pi} c_{\alpha} e_{\alpha} \in \mathfrak{u}$ with $c_{\alpha} \in \mathbb{k}^{\times}$and $f=\sum_{\alpha \in \Pi} e_{-\alpha} \in \mathfrak{u}^{-}$ for a principal $\mathfrak{s l}_{2}$-triple $\{e, h, f\}$ with $h \in \mathfrak{t}, \operatorname{cf}$. [5, Theorem 4]. For $\mathfrak{b}=\mathfrak{t} \oplus \mathfrak{u}$, we have $f+\mathfrak{b} \subset \mathfrak{g}_{\text {reg }}$ by [5, Lemma 10]. In particular, $h^{\prime}+s f \in \mathfrak{g}_{\text {reg }}$ for any $s \in \mathbb{k}^{\times}$.

Lemma 3.3. If $h^{\prime} \in \mathcal{H}_{\nu}$ is generic, then $\mathfrak{g}^{h^{\prime}+s f} \subset \mathcal{H}_{\nu} \oplus \mathfrak{u}^{-}$for any $s \neq 0$.
Proof. As is well known, $\left(\mathfrak{g}^{h^{\prime}+s f}\right)^{\perp}=\left[\mathfrak{g}, h^{\prime}+s f\right]$. Hence it suffices to prove that $\left[\mathfrak{g}, h^{\prime}+s f\right] \supset\left(\mathcal{H}_{\nu} \oplus \mathfrak{u}^{-}\right)^{\perp}=\left\langle h_{\nu}\right\rangle_{\mathfrak{k}} \oplus \mathfrak{u}^{-}$.

Since $h^{\prime}+s f \in \mathfrak{t} \oplus \mathfrak{u}^{-}=: \mathfrak{b}^{-}$is regular in \mathfrak{g}, we have $\mathfrak{g}^{h^{\prime}+s f} \subset \mathfrak{b}^{-}$. Hence $\left[\mathfrak{g}, h^{\prime}+s f\right] \supset\left(\mathfrak{b}^{-}\right)^{\perp}=\mathfrak{u}^{-}$. Next, $\left[e_{\nu}, h^{\prime}+s f\right]=\left[e_{\nu}, s f\right]=s\left[e_{\nu}, e_{-\nu}\right]=s \cdot h_{\nu} \in$ $\left[\mathfrak{g}, h^{\prime}+s f\right]$.

Now, set

$$
\mathbb{V}:=d_{h^{\prime}}\left((\mathcal{M F})_{f}\right)=\sum_{s \neq 0} \mathfrak{g}^{h^{\prime}+s f}
$$

where the last equality stems from [13, Lemma 1.3]. On the one hand, $\mathbb{V} \subset$ $\mathcal{H}_{\nu} \oplus \mathfrak{u}^{-}$by the above lemma. On the other hand, $\operatorname{dim} \mathbb{V}=\boldsymbol{b}(\mathfrak{g})-1$ in view of [13, proof of Theorem 2.4]. Hence $\mathbb{V}=\mathcal{H}_{\nu} \oplus \mathfrak{u}^{-}$.

The differentials $d_{h^{\prime}+f}\left(\left(H_{j}\right)_{\left(d_{j}, 0\right)}\right)=d_{h^{\prime}}\left(\left(H_{j}\right)_{\left(d_{j}, 0\right)}\right)=d_{h^{\prime}} H_{j}$ with $1 \leqslant$ $j \leqslant l$ are linearly dependent, because they are contained in \mathcal{H}_{ν}, hence $\operatorname{dim} d_{h^{\prime}+f} Z \leqslant \boldsymbol{b}(\mathfrak{g})-1$. Recall that $h^{\prime}+s f \in \mathfrak{g}_{\text {reg }}$ for any $s \in \mathbb{k}^{\times}$. Combining (3.3) with (3.2), we obtain

$$
\mathbb{V}_{\mathcal{Z}}:=d_{h^{\prime}+f} \mathcal{Z} \supset \sum_{s \neq 0} \varphi_{s}\left(\mathfrak{g}^{h^{\prime}+s f}\right)=\varphi_{s}(\mathbb{V})=\mathcal{H}_{\nu} \oplus \mathfrak{u}^{-}
$$

Thus $\mathbb{V}_{\mathcal{Z}}=\mathcal{H}_{\nu}+\mathfrak{u}^{-}$. Next $d_{h^{\prime}+f} \tilde{\mathcal{Z}} \neq d_{h^{\prime}+f} \mathcal{Z}$, since $\mathfrak{t} \not \subset \mathbb{V}_{\mathcal{Z}}$. We obtain $\operatorname{dim} d_{h^{\prime}+f} \tilde{\sim}=\boldsymbol{b}(\mathfrak{g})$, which means that $\operatorname{dim} d_{\gamma} \tilde{\mathcal{Z}}=\boldsymbol{b}(\mathfrak{g})$ on a dense open subset of $\mathcal{H}_{\nu} \times \mathfrak{m}$. Since $\nu \in \Delta$ is arbitrary, this implies that $\operatorname{dim}\left(Y \cap\left(\mathfrak{t}_{\text {sing }} \times \mathfrak{m}\right)\right) \leqslant$ $\operatorname{dim} \mathfrak{g}-2$.

Thus, we have proved that $\operatorname{dim} Y \leqslant \operatorname{dim} \mathfrak{g}-2$.

Since \tilde{z} is generated by algebraically independent homogeneous polynomials and $\operatorname{codim} Y \geqslant 2$, it follows from [11, Theorem 1.1] that \tilde{z} is an algebraically closed subalgebra of $\mathcal{S}(\mathfrak{g})$ (i.e., if $F \in \mathcal{S}(\mathfrak{g})$ is algebraic over the quotient field of $\tilde{\mathcal{Z}}$, then $F \in \tilde{\mathcal{Z}})$. An inclusion $\tilde{\mathcal{Z}} \subset \mathcal{A} \subset \mathcal{S}(\mathfrak{g})$, where $\{\mathcal{A}, \mathcal{A}\}=0$, is only possible if \mathcal{A} is an algebraic extension of $\tilde{\mathcal{Z}}$, because $\operatorname{tr} \cdot \operatorname{deg} \tilde{\mathcal{z}}=\boldsymbol{b}(\mathfrak{g})$ and $\operatorname{tr} \cdot \operatorname{deg} \mathcal{A} \leqslant \boldsymbol{b}(\mathfrak{g})$. Therefore we must have $\tilde{\mathcal{z}}=\mathcal{A}$.

Remark 3.4. We know that $\tilde{\mathcal{Z}} \subset \mathcal{S}(\mathfrak{g})^{\mathfrak{t}}$ and $\operatorname{tr} \cdot \operatorname{deg} \tilde{\mathcal{Z}}=\boldsymbol{b}(\mathfrak{g})$. If $h \in \mathfrak{t}_{\text {reg }}^{*}$, then these two properties are also satisfied for $(\mathcal{M} \mathcal{F})_{h}$ [12]. One may say that \tilde{z}, as well as \mathcal{Z}, resembles all such $\mathcal{N} \mathcal{F}$-subalgebras. However, there is no choice of $h \in \mathfrak{t}^{*}$ involved in the construction of $\tilde{\mathcal{Z}}$ and $\mathcal{Z} \subset \mathcal{S}(\mathfrak{g})^{N_{G}(\mathfrak{t})}$ unlike any of $(\mathcal{M F})_{h}$ with $h \in \mathfrak{t}_{\text {reg }}^{*}$.

Furthermore, by Lemma3.1, we have $d_{h+x} \tilde{z}=d_{h}\left((\mathcal{M F})_{x}\right)=d_{x}\left((\mathcal{M F})_{h}\right)$ for any $x \in \mathfrak{m}$ and $h \in \mathfrak{t}_{\text {reg }}^{*}$. It is tempting to further investigate this relationship.

Another intriguing task is to produce a quantisation of \tilde{z}, i.e., a commutative subalgebra of the enveloping algebra $\mathcal{U}(\mathfrak{g})$ such that its graded image in $\mathcal{S}(\mathfrak{g})$ is \tilde{Z}.

References

[1] O. I. Bogoyavlenski. Integrable Euler equations associated with filtrations of Lie algebras, Matem. Sbornik, 121, no. 2 (1983), 233-242 (Russian). English transl.: Math. USSR-Sb., 49:1 (1984), 229-238.
[2] M. Brion. Invariants et covariants des groupes algébriques réductifs, Dans: "Théorie des invariants et géometrie des variétés quotients" (Travaux en cours, t. 61), 83-168, Paris: Hermann, 2000.
[3] B. Feigin, E. Frenkel, and L. Rybnikov. Opers with irregular singularity and spectra of the shift of argument subalgebra, Duke Math. J., 155 (2010), no. 2, 337-363.
[4] I. M. Gelfand and I. S. Zakharevich. Webs, Lenard schemes, and the local geometry of bi-Hamiltonian Toda and Lax structures, Selecta Math., New Ser., 6 (2000), 131-183.
[5] B. Kostant. Lie group representations on polynomial rings, Amer. J. Math., 85 (1963), 327-404.
[6] I. V. Mikityuk. Integrability of Euler equations connected with filtrations of semisimple Lie algebras, Matem. Sb., 125, no. 4 (1984), 539-546 (Russian). English transl.: Math. USSR-Sb., 53:2 (1986), 541-549.
[7] A. S. Mishchenko and A. T. Fomenko. Euler equation on finitedimensional Lie groups, Izv. AN SSSR. Ser. Matem. 42, no. 2 (1978), 396-415 (Russian). English transl.: Math. USSR-Izv. 12 (1978), 371389.
[8] A. Molev and O. Yakimova. Quantisation and nilpotent limits of Mishchenko-Fomenko subalgebras, Represent. Theory, 23 (2019), 350378.
[9] A. Panasyuk. Veronese webs for bi-Hamiltonian structures of higher corank. Poisson geometry (Warszawa, 1998), 251-261, Banach Center Publ., 51, Polish Acad. Sci. Inst. Math., Warszawa, 2000.
[10] D. Panyushev. The index of a Lie algebra, the centraliser of a nilpotent element, and the normaliser of the centraliser, Math. Proc. Camb. Phil. Soc., 134, Part 1 (2003), 41-59.
[11] D. Panyushev, A. Premet and O. Yakimova. On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra, 313 (2007), 343-391.
[12] D. Panyushev and O. Yakimova. The argument shift method and maximal commutative subalgebras of Poisson algebras, Math. Res. Letters, 15, no. 2 (2008), 239-249.
[13] D. Panyushev and O. Yakimova. Poisson commutative subalgebras and complete integrability on non-regular coadjoint orbits and flag varieties, Math. Zeitschrift, 295 (2020), 101-127.
[14] D. Panyushev and O. Yakimova. Poisson commutative subalgebras of $\mathcal{S}(\mathfrak{g})$ associated with involutions, Int. Math. Res. Notices, 2021, no. 23 (2021), 18367-18406.
[15] Э.Б. ВИнБЕрг. О некоторых коммутативных подалгебрах универсальной обертывающей алгебры, Изв. АН СССР. Сер. Матем. 54, № 1 (1990), 3-25 (Russian). English translation: E. B. Vinberg. On certain commutative subalgebras of a universal enveloping algebra, Math. USSR-Izv. 36 (1991), 1-22.
[16] O. Yakimova. Symmetric invariants of \mathbb{Z}_{2}-contractions and other semidirect products, Int. Math. Res. Notices, (2017) 2017 (6): 1674-1716.

Institute for Information Transmission Problems of the R.A.S. Bolshoi Karetnyi per. 19, Moscow 127051, Russia
E-mail address: panyushev@iitp.ru

Institut für Mathematik, Friedrich-Schiller-Universität Jena Jena, 07737, Germany
E-mail address: oksana.yakimova@uni-jena.de
Received December 18, 2020
Accepted November 19, 2021

[^0]: The first author is partially supported by R.F.B.R. grant № 20-01-00515. The second author is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - project number 454900253.

