Reductive subalgebras of semisimple Lie algebras and Poisson commutativity

DMITRI I. PANYUSHEV AND OKSANA S. YAKIMOVA

Let \mathfrak{g} be a semisimple Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a reductive subalgebra such that the orthogonal complement \mathfrak{h}^{\perp} is a complementary \mathfrak{h} submodule of \mathfrak{g} . In 1983, Bogoyavlenski claimed that one obtains a Poisson commutative subalgebra of the symmetric algebra $S(\mathfrak{g})$ by taking the subalgebra \mathfrak{Z} generated by the bi-homogeneous components of all $H \in S(\mathfrak{g})^{\mathfrak{g}}$ taken w.r.t. $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{h}^{\perp}$. But this is false, and we present a counterexample. We also provide a criterion for the Poisson commutativity of such subalgebras \mathfrak{Z} . As a by-product, we prove that \mathfrak{Z} is Poisson commutative if \mathfrak{h} is abelian and describe \mathfrak{Z} in the special case when \mathfrak{h} is a Cartan subalgebra. In this case, \mathfrak{Z} appears to be polynomial and has the maximal transcendence degree $b(\mathfrak{g}) = \frac{1}{2}(\dim \mathfrak{g} + \operatorname{rk} \mathfrak{g})$.

Introduction

0.1.

The ground field k is algebraically closed and char(k) = 0. For any finite-dimensional Lie algebra \mathfrak{q} , the dual space \mathfrak{q}^* is a Poisson variety. The algebra of polynomial functions on \mathfrak{q}^* , $k[\mathfrak{q}^*]$, is isomorphic to the graded symmetric algebra $S(\mathfrak{q})$ and the Lie–Poisson bracket $\{ , \}$ on $S(\mathfrak{q})$ is defined on the elements of degree one by $\{\xi, \eta\} = [\xi, \eta]$ for $\xi, \eta \in \mathfrak{q}$. There is a method for constructing "large" Poisson commutative subalgebras of $S(\mathfrak{q})$ that exploits pairs of *compatible Poisson brackets*, see [4, Sect. 10], [9]. To apply this, one needs a *suitable* second Poisson bracket $\{ , \}_{II}$ beside $\{ , \} = \{ , \}_{\mathfrak{q}}$, here suitable (=compatible) means that the sum $\{ , \} + \{ , \}_{II}$, as well as any linear combination of $\{ , \}$ and $\{ , \}_{II}$, is again a Poisson bracket. Let us

The first author is partially supported by R.F.B.R. grant \mathbb{N} 20-01-00515. The second author is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — project number 454900253.

recall some situations, where this "general method" (= method of compatible Poisson brackets) works.

I. The celebrated "argument shift method" goes back to [7] (if \mathfrak{q} is semisimple). It employs an arbitrary $\gamma \in \mathfrak{q}^*$ and the Poisson bracket $\{ , \}_{\gamma}$, where $\{x, y\}_{\gamma} = \gamma([x, y])$ for $x, y \in \mathfrak{q}$. The brackets $\{ , \}$ and $\{ , \}_{\gamma}$ are compatible, and the general method produces the *Mishchenko–Fomenko subalgebra* (= \mathcal{MF} -subalgebra) (\mathcal{MF})_{$\gamma \subset S(\mathfrak{q})$}. Let $S(\mathfrak{q})^{\mathfrak{q}}$ be the *Poisson centre* of $(S(\mathfrak{q}), \{ , \})$, i.e.,

$$\mathbb{S}(\mathfrak{q})^{\mathfrak{q}} = \{ H \in \mathbb{S}(\mathfrak{q}) \mid \{H, x\} = 0 \ \forall x \in \mathfrak{q} \}.$$

For $F \in S(\mathfrak{q})$, let $\partial_{\gamma} F$ be the directional derivative of F with respect to $\gamma \in \mathfrak{q}^*$, i.e.,

$$\partial_{\gamma}F(x) = \frac{d}{dt}F(x+t\gamma)\Big|_{t=0}$$
 for all $x \in \mathfrak{q}^*$.

By the original definition of the \mathcal{MF} -subalgebras [7], $(\mathcal{MF})_{\gamma}$ is generated by all $\partial_{\gamma}^{k}F$ with $k \ge 0$ and $F \in S(\mathfrak{q})^{\mathfrak{q}}$. Since then, the algebras $(\mathcal{MF})_{\gamma}$ and their quantum counterparts attracted a great deal of attention, see e.g. [3, 8, 15] and references therein. If \mathfrak{q} is reductive and γ is regular in \mathfrak{q}^{*} , then $(\mathcal{MF})_{\gamma}$ is a maximal Poisson commutative subalgebra in $S(\mathfrak{q})$ of maximal transcendence degree [12].

II. Let $\mathbf{q} = \mathbf{q}_0 \oplus \mathbf{q}_1$ be a \mathbb{Z}_2 -grading, i.e., we have $[\mathbf{q}_i, \mathbf{q}_j] \subset \mathbf{q}_{i+j \pmod{2}}$. Then \mathbf{q} admits the Inönu–Wigner contraction to the semi-direct product $\tilde{\mathbf{q}} = \mathbf{q}_0 \ltimes \mathbf{q}_1^{ab}$, and the second bracket is the Lie–Poisson bracket of $\tilde{\mathbf{q}}$. (Here \mathbf{q} and $\tilde{\mathbf{q}}$ are identified as vector spaces.) The compatibility of $\{ \ , \ \}_{\mathbf{q}}$ and $\{ \ , \ \}_{\tilde{\mathbf{q}}}$ stems from the presence of \mathbb{Z}_2 -grading, cf. Section 1.1. The sum $\mathbf{q} = \mathbf{q}_0 \oplus \mathbf{q}_1$ determines the bi-homogeneous decomposition $S(\mathbf{q}) = \bigoplus_{i,j \ge 0} S^i(\mathbf{q}_0) \otimes S^j(\mathbf{q}_1)$. Here the general method yields the Poisson commutative subalgebra generated by the bi-homogeneous components of all $H \in S(\mathbf{q})^{\mathbf{q}}$. This case has been studied in [6] and recently in our article [14]. For substantial applications, one has to assume, of course, that \mathbf{q} is semisimple.

0.2.

Soon after [14] has been accepted, we came across an article of Bogoyavlenski [1]. He claims that if \mathfrak{g} is semisimple, $\mathfrak{f} \subset \mathfrak{g}$ is reductive and the Killing form of \mathfrak{g} is non-degenerate on \mathfrak{f} , then the direct sum $\mathfrak{g} = \mathfrak{f} \oplus \mathfrak{m}$, where $\mathfrak{m} = \mathfrak{f}^{\perp}$ is the orthogonal complement of \mathfrak{f} w.r.t. the Killing form, allows to construct similarly a Poisson commutative subalgebra of $\mathfrak{S}(\mathfrak{g})$. Namely, a special case of [1, Theorem 1] (with n = k = j = 1 in the original notation) asserts that the bi-homogeneous components of all $F \in S(\mathfrak{g})^{\mathfrak{g}}$ generate a Poisson commutative subalgebra. However, this is false and we provide a counterexample to that claim. An explanation for that error is that here one can also consider the contraction $\tilde{\mathfrak{g}} = \mathfrak{f} \ltimes \mathfrak{m}^{ab}$ and the Poisson bracket $\{ \ , \}_{\tilde{\mathfrak{g}}}$ on the vector space $\mathfrak{g} \simeq \tilde{\mathfrak{g}}$, but the brackets $\{ \ , \}_{\mathfrak{g}}$ and $\{ \ , \}_{\tilde{\mathfrak{g}}}$ are not necessarily compatible. One can also notice that Bogoyavlenski did not properly distinguish a Lie algebra and its dual, and his usage of differentials of elements of $S(\mathfrak{g})$ is sloppy.

Our main motivation for writing this note was just to clarify and remedy this situation. However, we also discovered some exciting new phenomena. Let $\mathfrak{g} = \mathsf{Lie}(G)$ be semisimple and $\mathfrak{g} = \mathfrak{f} \oplus \mathfrak{m}$ as above. Let $\mathcal{Z}_{(\mathfrak{g},\mathfrak{f})}$ be the subalgebra of $\mathfrak{S}(\mathfrak{g})$ generated by the bi-homogeneous components of all Fbelonging to $\mathfrak{S}(\mathfrak{g})^{\mathfrak{g}}$. The results of this note are:

- 1) we provide a criterion for $\mathcal{Z}_{(\mathfrak{g},\mathfrak{f})}$ to be Poisson commutative;
- using our criterion we prove that Z_(sl4,sl2) is not Poisson commutative for the standard embedding sl₂ ⊂ sl₄;
- 3) a corollary of our criterion is that $\mathcal{Z}_{(\mathfrak{g},\mathfrak{f})}$ is Poisson commutative whenever \mathfrak{f} is abelian (e.g. if \mathfrak{f} is the Lie algebra of a torus in G);
- 4) it is proved that if f = t is a Cartan subalgebra of g, then Z_(g,t) is polynomial, tr.deg Z_(g,t) = b(g) = (dim g + rk g)/2, and Z_(g,t) is complete on every regular G-orbit in g.
- 5) We point out an algebraic extension Z̃ ⊃ Z_(g,t) such that Z̃ is a maximal Poisson commutative subalgebra of S(g) (w.r.t. inclusion) and is still polynomial.

Our criterion for the equality $\{\mathcal{Z}_{(\mathfrak{q},\mathfrak{f})},\mathcal{Z}_{(\mathfrak{q},\mathfrak{f})}\}=0$ works also for non-reductive Lie algebras \mathfrak{q} , see Theorem 2.1.

1. Preliminaries on the coadjoint representation

Let Q be a connected affine algebraic group with $\text{Lie}(Q) = \mathfrak{q}$. The symmetric algebra $\mathfrak{S}(\mathfrak{q})$ over \Bbbk is identified with the graded algebra of polynomial functions on \mathfrak{q}^* , and we also write $\Bbbk[\mathfrak{q}^*]$ for it.

Let \mathfrak{q}^{ξ} denote the stabiliser in \mathfrak{q} of $\xi \in \mathfrak{q}^*$. The *index of* \mathfrak{q} , ind \mathfrak{q} , is the minimal codimension of Q-orbits in \mathfrak{q}^* . Equivalently, ind $\mathfrak{q} = \min_{\xi \in \mathfrak{q}^*} \dim \mathfrak{q}^{\xi}$. By Rosenlicht's theorem [2, I.6], one also has ind $\mathfrak{q} = \operatorname{tr.deg} \Bbbk(\mathfrak{q}^*)^Q$. The Lie–Poisson bracket for $\Bbbk[\mathfrak{q}^*]$ is defined on the elements of degree 1 (i.e., on \mathfrak{q}) by $\{x, y\} := [x, y]$. Set further $\hat{\gamma}(x, y) = \gamma([x, y])$ for $\gamma \in \mathfrak{q}^*$. For any

 $F_1, F_2 \in \mathcal{S}(\mathfrak{q})$ and $\gamma \in \mathfrak{q}^*$, we have

(1.1)
$$\{F_1, F_2\}(\gamma) = \hat{\gamma}(d_{\gamma}F_1, d_{\gamma}F_2),$$

where $d_{\gamma}F \in \mathfrak{q}$ is the differential of $F \in S(\mathfrak{q})$ at γ . As Q is connected, we have $S(\mathfrak{q})^{\mathfrak{q}} = S(\mathfrak{q})^Q = \Bbbk[\mathfrak{q}^*]^Q$. The set of Q-regular elements of \mathfrak{q}^* is

(1.2)
$$\mathfrak{q}_{\mathsf{reg}}^* = \{\eta \in \mathfrak{q}^* \mid \dim \mathfrak{q}^\eta = \operatorname{ind} \mathfrak{q}\}.$$

Set $\mathfrak{q}_{sing}^* = \mathfrak{q}^* \setminus \mathfrak{q}_{reg}^*$. We say that \mathfrak{q} has the *codim-n* property if codim $\mathfrak{q}_{sing}^* \ge n$. By [5], the semisimple algebras \mathfrak{g} have the *codim-3* property.

Set $b(q) = (\dim q + \operatorname{ind} q)/2$. Since the coadjoint orbits are evendimensional, this number is an integer. If q is reductive, then $\operatorname{ind} q$ equals the rank $\operatorname{rk} q$ of q and b(q) equals the dimension of a Borel subalgebra. A subalgebra $\mathcal{A} \subset S(q)$ is said to be *Poisson commutative* if $\{\mathcal{A}, \mathcal{A}\} = 0$. If $\mathcal{A} \subset S(q)$ is Poisson commutative, then tr.deg $\mathcal{A} \leq b(q)$, see e.g. [15, 0.2].

Definition 1. A Poisson commutative subalgebra $\mathcal{A} \subset S(\mathfrak{q})$ is said to be *complete* on a coadjoint orbit $Q\gamma \subset \mathfrak{q}^*$ if tr.deg $(\mathcal{A}|_{Q\gamma}) = \frac{1}{2} \dim(Q\gamma)$.

The notion of completeness originates from the theory of integrable systems.

For a subalgebra $A \subset S(\mathfrak{q})$ and $\gamma \in \mathfrak{q}^*$, set $d_{\gamma}A = \langle d_{\gamma}F \mid F \in A \rangle_{\Bbbk}$.

1.1. Decompositions and compatibility

Let $\mathbf{q} = \mathbf{f} \oplus V$ be a vector space decomposition, where \mathbf{f} is a subalgebra. For any $s \in \mathbb{k}^{\times}$, define a linear map $\varphi_s : \mathbf{q} \to \mathbf{q}$ by setting $\varphi_s|_{\mathbf{f}} = \mathrm{id}, \varphi_s|_V = s \cdot \mathrm{id}$. Then $\varphi_s \varphi_{s'} = \varphi_{ss'}$ and $\varphi_s^{-1} = \varphi_{s^{-1}}$, i.e., this yields a one-parameter subgroup of $\mathrm{GL}(\mathbf{q})$. For each s, the formula

(1.3)
$$[x, y]_{(s)} = \varphi_s^{-1}([\varphi_s(x), \varphi_s(y)])$$

defines a modified Lie algebra structure on the vector space \mathfrak{q} . All these structures are isomorphic to the initial one. The corresponding Poisson bracket is denoted by $\{ , \}_{(s)}$. We naturally extend φ_s to an automorphism of $S(\mathfrak{q})$. Then the centre of the Poisson algebra $(S(\mathfrak{q}), \{ , \}_{(s)})$ equals $\varphi_s^{-1}(S(\mathfrak{q})^{\mathfrak{q}})$. For $x \in \mathfrak{q}$, write $x = x_{\mathfrak{f}} + x_V$ with $x_{\mathfrak{f}} \in \mathfrak{f}, x_V \in V$.

If $\mathfrak{q} = \mathfrak{f} \oplus V$ is a \mathbb{Z}_2 -grading, i.e., $[\mathfrak{f}, V] \subset V$ and $[V, V] \subset \mathfrak{f}$, then $\{ \ , \ \}_{(0)} = \lim_{s \to 0} \{ \ , \ \}_{(s)}$ is a Poisson bracket; furthermore $\{ \ , \ \}_{(s)} = \{ \ , \ \}_{(-s)}$ and $\{ \ , \ \}_{(s)} + \{ \ , \ \}_{(s')} = 2\{ \ , \ \}_{(\tilde{s})}$ with $2\tilde{s}^2 = s^2 + (s')^2$. The brackets $\{ \ , \ \}_{(s)}$ are pairwise

914

compatible and together with the line $\Bbbk(\{\ ,\ \}-\{\ ,\ \}_{(0)})$ build a two-dimensional pencil.

Lemma 1.1. Suppose that $q = f \oplus V$, where $f \subset q$ is a subalgebra and $[f, V] \subset V$. For any $x = x_f + x_V, y = y_f + y_V \in q$, we have

$$(1\cdot4) \qquad [x,y]_{(s)} = [x_{\mathfrak{f}},y_{\mathfrak{f}}] + [x_{\mathfrak{f}},y_V] + [x_V,y_{\mathfrak{f}}] + s[x_V,y_V]_V + s^2[x_V,y_V]_{\mathfrak{f}}.$$

Proof. The statement is verified by a straightforward computation. \Box

Assume that $\mathbf{q} = \mathbf{f} \oplus V$ is an \mathbf{f} -stable decomposition. One of the crucial properties of $[,]_{(s)}$ is that if $x \in \mathbf{f}$ and $y \in \mathbf{q}$, then $[x, y]_{(s)} = [x, y]$ for all $s \in \mathbf{k}$. Then (1.4) shows also that if $[\mathbf{f}, \mathbf{q}] \neq 0$ and [V, V] is not contained in either \mathbf{f} or V, then the brackets $\{, \}_{(s)}$ do not build a two-dimensional pencil.

2. A criterion for commutativity

Let \mathfrak{f} be a subalgebra of \mathfrak{q} . Suppose that there is an \mathfrak{f} -stable decomposition $\mathfrak{q} = \mathfrak{f} \oplus \mathfrak{m}$, i.e., $[\mathfrak{f}, \mathfrak{m}] \subset \mathfrak{m}$. This yields a bi-homogeneous structure for $S(\mathfrak{q})$:

$$\mathbb{S}(\mathfrak{q}) = igoplus_{i,j \geqslant 0} \mathbb{S}^i(\mathfrak{f}) \otimes \mathbb{S}^j(\mathfrak{m}).$$

For any $H \in S(\mathfrak{q})$, we have $H = \sum_{i,j \ge 0} H_{(i,j)}$, where $H_{(i,j)} \in S^i(\mathfrak{f}) \otimes S^j(\mathfrak{m})$ are the *bi-homogeneous components* of H. Let $\mathcal{Z}_{(\mathfrak{q},\mathfrak{f})}$ be the subalgebra of $S(\mathfrak{q})$ generated by the bi-homogeneous components of all $H \in S(\mathfrak{q})^{\mathfrak{q}}$. Since each bi-homogeneous component of $H \in S(\mathfrak{q})^{\mathfrak{q}}$ is \mathfrak{f} -invariant, we have $\mathcal{Z}_{(\mathfrak{q},\mathfrak{f})} \subset$ $S(\mathfrak{q})^{\mathfrak{f}}$. It is claimed in [1, Theorem 1] that if \mathfrak{q} is semisimple and the Killing form of \mathfrak{g} is non-degenerate on \mathfrak{f} (so that an \mathfrak{f} -stable decomposition of \mathfrak{q} does exist), then $\mathcal{Z}_{(\mathfrak{q},\mathfrak{f})}$ is Poisson commutative. However, this is **false**! Below, we give a criterion for the Poisson commutativity of $\mathcal{Z}_{(\mathfrak{q},\mathfrak{f})}$ and provide a counterexample to the assertion of [1]. On the positive side, we deduce from our criterion that $\mathcal{Z}_{(\mathfrak{q},\mathfrak{f})}$ is Poisson commutative whenever \mathfrak{f} is an abelian subalgebra.

Given $\gamma \in \mathfrak{q}^*$, we decompose it as $\gamma = \gamma_{\mathfrak{f}} + \gamma_{\mathfrak{m}}$, where $\gamma_{\mathfrak{f}}|_{\mathfrak{m}} = 0$ and $\gamma_{\mathfrak{m}}|_{\mathfrak{f}} = 0$. Let $\varphi_s : \mathfrak{q} \to \mathfrak{q}$ be the same as in Section 1.1 with $V = \mathfrak{m}$. Set $\varphi_s(\gamma) = \gamma_{\mathfrak{f}} + s\gamma_{\mathfrak{m}}$. It is well known and easily verified that, for any $H \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$ and $\xi \in \mathfrak{q}^*$, one has $d_{\xi}H \in \mathfrak{z}(\mathfrak{q}^{\xi})$, where $\mathfrak{z}(\mathfrak{q}^{\xi})$ is the centre of \mathfrak{q}^{ξ} . A standard

calculation with differentials shows that

(2.1)
$$d_{\gamma}(\varphi_s(F)) = \varphi_s(d_{\varphi_s(\gamma)}F)$$

for any $F \in \mathcal{S}(\mathfrak{q})$.

Theorem 2.1. The subalgebra $\mathbb{Z} = \mathbb{Z}_{(q,\mathfrak{f})}$ is Poisson commutative if and only if

$$\hat{\gamma}_{\mathfrak{f}}\big((d_{\varphi_s(\gamma)}H)_{\mathfrak{f}}, (d_{\varphi_{s'}(\gamma)}H')_{\mathfrak{f}}\big) = 0$$

for each $\gamma \in \mathfrak{q}^*$, all nonzero $s, s' \in \mathbb{k}$, and all $H, H' \in \mathfrak{S}(\mathfrak{q})^{\mathfrak{q}}$.

Proof. It suffices to prove the assertion for homogeneous $H, H' \in S(\mathfrak{q})^{\mathfrak{q}}$. Note that if $H \in S^d(\mathfrak{q})$ and $H = \sum_{j=0}^d H_{(d-j,j)}$, then $\varphi_s(H) = \sum_j s^j H_{(d-j,j)}$. Therefore, employing the standard argument with the Vandermonde determinant, one shows that

(2·2)
$$\mathcal{Z} = \mathsf{alg}\langle \varphi_s(H) \mid H \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}, s \in \mathbb{k}^{\times} \rangle.$$

Hence the algebra \mathcal{Z} is Poisson commutative if and only if for all $H, H' \in S(\mathfrak{q})^{\mathfrak{q}}$, all nonzero $s, s' \in \mathbb{k}$, and any $\gamma \in \mathfrak{q}^*$, by (1.1), we have

$$A_{s,s'} = A_{s,s',H,H',\gamma} := \hat{\gamma}(d_{\gamma}\varphi_s(H), d_{\gamma}\varphi_{s'}(H')) = \{\varphi_s(H), \varphi_{s'}(H')\}(\gamma) = 0.$$

Suppose that H, H' and γ are fixed. Then there is no ambiguity in the use of $A_{s,s'}$.

Set $\xi = d_{\varphi_s(\gamma)}H$ and $\eta = d_{\varphi_{s'}(\gamma)}H'$. Since $\varphi_s(H)$ belongs to the Poisson centre of $(\mathfrak{S}(\mathfrak{q}), \{ , \}_{(s^{-1})})$, we derive from (2·1) that

$$\begin{aligned} \gamma([d_{\gamma}\varphi_{s}(H), d_{\gamma}\varphi_{s'}(H')]_{(s^{-1})}) &= \gamma([\varphi_{s}(\xi), \varphi_{s'}(\eta)]_{(s^{-1})}) \\ &= \gamma([\xi_{\mathfrak{f}} + s\xi_{\mathfrak{m}}, \eta_{\mathfrak{f}} + s'\eta_{\mathfrak{m}}]_{(s^{-1})}) = 0. \end{aligned}$$

Similarly, $\varphi_{s'}(H')$ belongs to the Poisson centre of $(\mathbb{S}(\mathfrak{q}),\{\ ,\ \}_{((s')^{-1})})$ and hence

$$\gamma([\xi_{\mathfrak{f}} + s\xi_{\mathfrak{m}}, \eta_{\mathfrak{f}} + s'\eta_{\mathfrak{m}}]_{((s')^{-1})}) = 0.$$

For all $\tilde{s} \in \mathbb{k}^{\times}$ and $\tilde{H} \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$, we have $\hat{\gamma}(\mathfrak{f}, d_{\gamma}\varphi_{\tilde{s}}(\tilde{H})) = 0$, since $\mathcal{Z} \subset \mathcal{S}(\mathfrak{q})^{\mathfrak{f}}$. Therefore, $\hat{\gamma}(\varphi_{s}(\xi), \eta_{\mathfrak{f}}) = \hat{\gamma}(\xi_{\mathfrak{f}}, \varphi_{s'}(\eta)) = 0$. Thus,

(2.3)
$$C := \hat{\gamma}_{\mathfrak{f}}((d_{\varphi_s(\gamma)}H)_{\mathfrak{f}}, (d_{\varphi_{s'}(\gamma)}H')_{\mathfrak{f}}) = \hat{\gamma}(\xi_{\mathfrak{f}}, \eta_{\mathfrak{f}}) = -s'\hat{\gamma}(\xi_{\mathfrak{f}}, \eta_{\mathfrak{m}}) = -s\hat{\gamma}(\xi_{\mathfrak{m}}, \eta_{\mathfrak{f}})$$

Let us substitute this into the formulas

$$\begin{split} \gamma([\varphi_s(\xi),\varphi_{s'}(\eta)]_{(s^{-1})}) &= \hat{\gamma}(\xi_{\mathfrak{f}},\eta_{\mathfrak{f}}) + s\hat{\gamma}(\xi_{\mathfrak{m}},\eta_{\mathfrak{f}}) + s'\hat{\gamma}(\xi_{\mathfrak{f}},\eta_{\mathfrak{m}}) \\ &+ \frac{s'}{s}\gamma_{\mathfrak{f}}([\xi_{\mathfrak{m}},\eta_{\mathfrak{m}}]_{\mathfrak{f}}) + s'\gamma_{\mathfrak{m}}([\xi_{\mathfrak{m}},\eta_{\mathfrak{m}}]_{\mathfrak{m}}) = 0, \\ \gamma([\varphi_s(\xi),\varphi_{s'}(\eta)]_{((s')^{-1})}) &= \hat{\gamma}(\xi_{\mathfrak{f}},\eta_{\mathfrak{f}}) + s\hat{\gamma}(\xi_{\mathfrak{m}},\eta_{\mathfrak{f}}) + s'\hat{\gamma}(\xi_{\mathfrak{f}},\eta_{\mathfrak{m}}) \\ &+ \frac{s}{s'}\gamma_{\mathfrak{f}}([\xi_{\mathfrak{m}},\eta_{\mathfrak{m}}]_{\mathfrak{f}}) + s\gamma_{\mathfrak{m}}([\xi_{\mathfrak{m}},\eta_{\mathfrak{m}}]_{\mathfrak{m}}) = 0, \end{split}$$

obtaining the equalities

$$C - C - C + s^{-1}s'\gamma_{\mathfrak{f}}([\xi_{\mathfrak{m}},\eta_{\mathfrak{m}}]_{\mathfrak{f}}) + s'\gamma_{\mathfrak{m}}([\xi_{\mathfrak{m}},\eta_{\mathfrak{m}}]_{\mathfrak{m}}) = 0,$$

$$C - C - C + s(s')^{-1}\gamma_{\mathfrak{f}}([\xi_{\mathfrak{m}},\eta_{\mathfrak{m}}]_{\mathfrak{f}}) + s\gamma_{\mathfrak{m}}([\xi_{\mathfrak{m}},\eta_{\mathfrak{m}}]_{\mathfrak{m}}) = 0.$$

Furthermore $A_{s,s'} = -C + ss'\gamma_{\mathfrak{f}}([\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}]_{\mathfrak{f}}) + ss'\gamma_{\mathfrak{m}}([\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}]_{\mathfrak{m}}).$ Suppose that C = 0, then

$$s^{-1}\gamma_{\mathfrak{f}}([\xi_{\mathfrak{m}},\eta_{\mathfrak{m}}]_{\mathfrak{f}}) + \gamma_{\mathfrak{m}}([\xi_{\mathfrak{m}},\eta_{\mathfrak{m}}]_{\mathfrak{m}}) = 0,$$

$$(s')^{-1}\gamma_{\mathfrak{f}}([\xi_{\mathfrak{m}},\eta_{\mathfrak{m}}]_{\mathfrak{f}}) + \gamma_{\mathfrak{m}}([\xi_{\mathfrak{m}},\eta_{\mathfrak{m}}]_{\mathfrak{m}}) = 0.$$

Thereby $(s^{-1} - (s')^{-1})\gamma_{\mathfrak{f}}([\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}]_{\mathfrak{f}}) = 0$ and $(s - s')\gamma_{\mathfrak{m}}([\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}]_{\mathfrak{m}}) = 0$. If $s \neq s'$, then necessarily $A_{s,s'} = 0$. Since $A_{s,s'}$ is a polynomial in s and s' with constant coefficients, $A_{s,s'} = 0$ for all nonzero s, s'. This settles the 'if' part.

In order to prove the 'only if' implication, suppose that $A_{s,s'} = 0$ for all $s, s' \in \mathbb{k}^{\times}$. Then $x = \gamma_{\mathfrak{f}}([\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}]_{\mathfrak{f}})$ and $y = \gamma_{\mathfrak{m}}([\xi_{\mathfrak{m}}, \eta_{\mathfrak{m}}]_{\mathfrak{m}})$ satisfy $s^{-1}s'x + s'y = s(s')^{-1}x + sy = ss'(x+y) = C$. Assume that $s \neq s'$ and that $s, s' \neq 1$. Then

$$\begin{cases} \frac{s'+s}{ss'} \cdot x + y = 0;\\ \frac{s+1}{s} \cdot x + y = 0, \end{cases}$$

and the only solution of this system is x = y = 0. Hence C = 0. Since C is a polynomial in s and s' with constant coefficients, the equality

$$\hat{\gamma}_{\mathfrak{f}}((d_{\varphi_s(\gamma)}H)_{\mathfrak{f}},(d_{\varphi_{s'}(\gamma)}H')_{\mathfrak{f}})=0$$

holds for all $s, s' \in \mathbb{k}^{\times}$.

Corollary 2.2. If \mathfrak{f} is an abelian Lie algebra, then $\mathfrak{Z}_{(\mathfrak{q},\mathfrak{f})}$ is Poisson commutative.

Proof. Since $[\mathfrak{f},\mathfrak{f}] = 0$, we have $[(d_{\varphi_s(\gamma)}H)_{\mathfrak{f}}, (d_{\varphi_{s'}(\gamma)}H')_{\mathfrak{f}}] = 0$ for each $\gamma \in \mathfrak{q}^*$, all nonzero $s, s' \in \mathbb{k}$, and all $H, H' \in \mathcal{S}(\mathfrak{q})^{\mathfrak{q}}$. Hence $\mathcal{Z}_{(\mathfrak{q},\mathfrak{f})}$ is Poisson-commutative by Theorem 2.1.

Let $\mathfrak{g} = \operatorname{Lie}(G)$ be a reductive Lie algebra. Then \mathfrak{g} is identified with \mathfrak{g}^* via a *G*-invariant non-degenerate symmetric bilinear form (,) and $\mathfrak{S}(\mathfrak{g})^{\mathfrak{g}}$ is a polynomial ring. Let $\{H_1, \ldots, H_l\}$ be a set of homogeneous algebraically independent generators of $\mathfrak{S}(\mathfrak{g})^{\mathfrak{g}}$ with deg $H_j =: d_j$. By the Kostant regularity criterion for \mathfrak{g} [5, Theorem 9],

(2.4)
$$\langle d_{\xi}H_j \mid 1 \leqslant j \leqslant l \rangle_{\mathbb{k}} = \mathfrak{g}^{\xi}$$
 if and only if $\xi \in \mathfrak{g}_{\mathsf{reg}}^*$.

Recall that $\mathfrak{g}^{\xi} = \mathfrak{z}(\mathfrak{g}^{\xi})$ if and only if $\xi \in \mathfrak{g}^*_{\mathsf{reg}}$ [10, Theorem 3.3].

Example 2.3. If $\mathfrak{g} = \mathfrak{gl}_n$, then $x^k \in \mathfrak{g}^x$ for any $x \in \mathfrak{g}$ and $k \in \mathbb{N}$. (Here x^k is the usual matrix power.) Moreover, if we identify \mathfrak{g} and \mathfrak{g}^* , then $d_x \mathcal{S}(\mathfrak{g})^{\mathfrak{g}} = \langle x^k \mid 0 \leq k < n \rangle_{\mathbb{k}}$.

Consider the pair $(\mathfrak{g},\mathfrak{f}) = (\mathfrak{gl}_4,\mathfrak{sl}_2)$ with \mathfrak{sl}_2 embedded in the right lower corner.

Take
$$\gamma = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$
. Then $\gamma_{\mathfrak{f}} + s\gamma_{\mathfrak{m}} = \begin{pmatrix} s & 0 & 0 & s \\ 0 & 0 & s & 0 \\ s & 0 & 1 & 0 \\ 0 & s & 0 & -1 \end{pmatrix}$.

Note that $\gamma_{\mathfrak{f}} \neq 0$. For any $k \geq 0$, $(\varphi_s(\gamma))^k = (\gamma_{\mathfrak{f}} + s\gamma_{\mathfrak{m}})^k$ belongs to $d_{\varphi_s(\gamma)} \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}$. Hence $((\gamma_{\mathfrak{f}} + s\gamma_{\mathfrak{m}})^k)_{\mathfrak{f}} \in (d_{\varphi_s(\gamma)} \mathcal{S}(\mathfrak{g})^{\mathfrak{g}})_{\mathfrak{f}}$. Let us do calculations for k = 2, 3:

$$(\gamma_{\mathfrak{f}} + s\gamma_{\mathfrak{m}})^{2} = \begin{pmatrix} s^{2} & s^{2} & 0 & s^{2} - s \\ s^{2} & 0 & s & 0 \\ s^{2} + s & 0 & 1 & s^{2} \\ 0 & -s & s^{2} & 1 \end{pmatrix} \quad \text{and}$$
$$(\gamma_{\mathfrak{f}} + s\gamma_{\mathfrak{m}})^{3} = \begin{pmatrix} * & * & * & * \\ * & * & s & * \\ * & * & 1 & s^{3} \\ * & * & 0 & -1 \end{pmatrix}.$$

Let $e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, and $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ form the standard basis of \mathfrak{sl}_2 . Then

$$\begin{split} \gamma_{\mathfrak{f}} &= h, \ ((\gamma_{\mathfrak{f}} + s\gamma_{\mathfrak{m}})^2)_{\mathfrak{f}} = s^2(e+f), \ \text{and} \ ((\gamma_{\mathfrak{f}} + s\gamma_{\mathfrak{m}})^3)_{\mathfrak{f}} = s^3e+h. \\ \text{Therefore, if } s \neq 0, \ \text{then} \ \left\langle (d_{\varphi_s(\gamma)}H)_{\mathfrak{f}} \mid H \in \mathbb{S}(\mathfrak{g})^{\mathfrak{g}} \right\rangle_{\Bbbk} = \mathfrak{f}. \ \text{Since} \ (h, [\mathfrak{f}, \mathfrak{f}]) \neq 0, \end{split}$$

we conclude that

$$\hat{\gamma}_{\mathfrak{f}}((d_{\varphi_s(\gamma)}H)_{\mathfrak{f}}, (d_{\varphi_{s'}(\gamma)}H')_{\mathfrak{f}}) \neq 0$$

for all nonzero s, s'. Thus, by Theorem 2.1, $\mathcal{Z}_{(\mathfrak{q},\mathfrak{f})}$ is not Poisson commutative.

Remark 2.4. Example 2.3 also implies that $\mathcal{Z}_{(\mathfrak{g},\mathfrak{sl}_2)}$ is not Poisson commutative if $\mathfrak{g} = \mathfrak{gl}_4$ is replaced with \mathfrak{sl}_4 . For, $\mathfrak{gl}_4 = \mathfrak{z} \oplus \mathfrak{sl}_4$ with $\mathfrak{z} = \Bbbk I_4$, hence $\mathcal{S}(\mathfrak{gl}_4)^{\mathfrak{gl}_4}$ is generated by $\mathcal{S}(\mathfrak{sl}_4)^{\mathfrak{sl}_4}$ and \mathfrak{z} . For any reductive $\mathfrak{f} \subset \mathfrak{sl}_4$, the algebra $\mathcal{Z}_{(\mathfrak{gl}_4,\mathfrak{f})} = \mathsf{alg}\langle \mathcal{Z}_{(\mathfrak{sl}_4,\mathfrak{f})},\mathfrak{z}\rangle$ is Poisson commutative if and only if $\mathcal{Z}_{(\mathfrak{sl}_4,\mathfrak{f})}$ is.

Example 2.3 easily generalises to the pairs $(\mathfrak{gl}_n, \mathfrak{gl}_m)$ with $n \ge m+2$. On the other hand, one can prove that the algebra $\mathcal{Z}_{(\mathfrak{gl}_3,\mathfrak{sl}_2)}$ or $\mathcal{Z}_{(\mathfrak{sl}_3,\mathfrak{sl}_2)}$ is still Poisson commutative.

Example 2.5. Let us show that, for a special choice of \mathfrak{f} , the algebra $\mathfrak{Z}_{(\mathfrak{g},\mathfrak{f})}$ is rather close to an $\mathcal{M}F$ -subalgebra.

Let $h \in \mathfrak{g}$ be a semisimple element such that $(h, h) \neq 0$. Set $\mathfrak{f} = \langle h \rangle = \langle h \rangle_{\mathbb{k}}$. Then $\mathfrak{m} \subset \mathfrak{g}$ is the orthogonal complement of h with respect to (,) and the bi-homogeneous decomposition of $H_j \in \mathfrak{S}(\mathfrak{g})^{\mathfrak{g}}$ is

$$H_j = H_{j,0}h^{d_j} + H_{j,1}h^{d_j-1} + \ldots + H_{j,k}h^{d_j-k} + \ldots + H_{j,d_j},$$

where $H_{j,k} \in S^k(\mathfrak{m})$. By definition, $\mathcal{Z}_{(\mathfrak{g},\langle h\rangle)}$ is generated by $H_{j,k}h^{d_j-k}$ with $1 \leq j \leq l$ and $0 \leq k \leq d_j$. On the one hand, we had $\mathfrak{f} = \langle h \rangle$. On the other hand, let $\gamma \in \mathfrak{g}^*$ be such that $\gamma(\mathfrak{m}) = 0$ and $\gamma(h) = 1$. Actually, $\gamma = \frac{h}{(h,h)}$ under the identification of \mathfrak{g} and \mathfrak{g}^* . Then

$$\partial_{\gamma}^{k}H_{j} = \sum_{r=k}^{d_{j}} r(r-1)\dots(r-k+1)h^{r-k}H_{j,d_{j}-r}.$$

If $H \in S^2(\mathfrak{g})^{\mathfrak{g}}$ is the quadratic form corresponding to (,), then $\partial_{\gamma}H = ch$ for some $c \in \mathbb{k}^{\times}$. Hence $h \in (\mathcal{MF})_{\gamma}$. Arguing by induction on k, we obtain $H_{j,k} \in (\mathcal{MF})_{\gamma}$ for $k \leq d_j$. Thus

$$\mathcal{Z}_{(\mathfrak{g},\langle h\rangle)} \subset (\mathcal{MF})_{\gamma} = (\mathcal{MF})_{h} \subset \mathsf{alg}\left\langle \mathcal{Z}_{(\mathfrak{g},\langle h\rangle)}, h, h^{-1} \right\rangle = \mathsf{alg}\left\langle \mathcal{Z}_{(\mathfrak{g},\langle h\rangle)}, h^{-1} \right\rangle,$$

where the last equality holds, because $h^2 \in \mathcal{Z}_{(\mathfrak{g}, \langle h \rangle)}$.

3. Properties of the algebra $\mathfrak{Z}_{(\mathfrak{g},\mathfrak{t})}$

Suppose that \mathfrak{g} is semisimple. Let \mathfrak{t} be a Cartan subalgebra of \mathfrak{g} and Δ the root system of $(\mathfrak{g}, \mathfrak{t})$. By Corollary 2.2, the algebra $\mathcal{Z}_{(\mathfrak{g}, \mathfrak{t})}$ is Poisson commutative, and our goal is to prove that this algebra has a number of remarkable properties. Let \mathfrak{g}_{γ} be the root space corresponding to $\gamma \in \Delta$ and let $e_{\gamma} \in \mathfrak{g}_{\gamma}$ be a nonzero vector. Then $\mathfrak{m} = \mathfrak{t}^{\perp} = \bigoplus_{\gamma \in \Delta} \mathfrak{g}_{\gamma}$.

Recall that $\{H_1, \ldots, H_l\}$ is a set of homogeneous algebraically independent generators of $S(\mathfrak{g})^{\mathfrak{g}}$ and $\deg H_j = d_j$. One has $\sum_{j=1}^l d_j = \boldsymbol{b}(\mathfrak{g})$. The vector space decomposition $\mathfrak{g} = \mathfrak{t} \oplus \mathfrak{m}$ provides the bi-homogeneous decomposition of each H_j :

$$H_j = \sum_{i=0}^{d_j} (H_j)_{(i,d_j-i)},$$

where $(H_j)_{(i,d_j-i)} \in S^i(\mathfrak{t}) \otimes S^{d_j-i}(\mathfrak{m}) \subset S^{d_j}(\mathfrak{g})$. Recall that $\mathfrak{Z} := \mathfrak{Z}_{(\mathfrak{g},\mathfrak{t})}$ is the algebra generated by

(3.1)
$$\{(H_j)_{(i,d_j-i)} \mid j = 1, \dots, l; i = 0, 1, \dots, d_j\}$$

Since each H_j is g-invariant, all the bi-homogeneous components in $(3\cdot 1)$ are t-invariant. Hence $\mathcal{Z} \subset S(\mathfrak{g})^{\mathfrak{t}}$. The total number of these functions is $\sum_{j=1}^{l} (d_j + 1) = \mathbf{b}(\mathfrak{g}) + l$, but some of them are identically equal to zero. Indeed, $(H_j)_{(d_j-1,1)} \in S^{d_j-1}(\mathfrak{t}) \otimes \mathfrak{m}$ and $\mathfrak{m}^{\mathfrak{t}} = \{0\}$, hence $(H_j)_{(d_j-1,1)} \equiv 0$ for $j = 1, \ldots, l$. Therefore, the number of nonzero generators of \mathcal{Z} is at most $\mathbf{b}(\mathfrak{g})$.

The bi-homogeneous component $(H_j)_{(d_j,0)} \in S^{d_j}(\mathfrak{t})$ is the restriction of H_j to $\mathfrak{t} \simeq \mathfrak{t}^*$. Therefore, by the Chevalley restriction theorem, the polynomials $(H_j)_{(d_j,0)}, j = 1, \ldots, l$, are the free generators of $S(\mathfrak{t})^W$, where W is the Weyl group of \mathfrak{t} . This means that having replaced $(H_1)_{(d_1,0)}, \ldots, (H_l)_{(d_l,0)}$ with a basis of \mathfrak{t} and keeping intact all other bi-homogeneous components (generators of \mathfrak{Z}), we obtain a larger subalgebra $\tilde{\mathfrak{Z}}$, which is an algebraic extension of \mathfrak{Z} (i.e. tr.deg $\tilde{\mathfrak{Z}} = \text{tr.deg } \mathfrak{Z}$). Furthermore, since $\mathfrak{Z} \subset S(\mathfrak{g})^{\mathfrak{t}}, \tilde{\mathfrak{Z}}$ is still Poisson commutative.

Once again, we use the map φ_s defined in Section 1.1. By (2.4), if $\varphi_s(\gamma) \in \mathfrak{g}^*_{\mathsf{reg}}$, then $d_{\varphi_s(\gamma)} \mathcal{S}(\mathfrak{g})^{\mathfrak{g}} = \mathfrak{g}^{\varphi_s(\gamma)}$; and by (2.1), we have

(3·2)
$$d_{\gamma}\varphi_s(\mathfrak{S}(\mathfrak{g})^{\mathfrak{g}}) = \varphi_s(\mathfrak{g}^{\varphi_s(\gamma)}).$$

As before, we identify \mathfrak{g} and \mathfrak{g}^* .

Lemma 3.1. Let $h \in \mathfrak{t}$ and $x \in \mathfrak{m}$ be such that $(h + \Bbbk x) \cap \mathfrak{g}^*_{\mathsf{reg}} \neq \emptyset$. Then $d_{h+x}\tilde{\mathfrak{Z}} = \mathfrak{t} + d_h((\mathfrak{MF})_x)$. Moreover, if $h \in \mathfrak{g}^*_{\mathsf{reg}}$, then $d_{h+x}\tilde{\mathfrak{Z}} = d_h((\mathfrak{MF})_x) = d_x((\mathfrak{MF})_h)$.

Proof. The assumption $(h \oplus \Bbbk x) \cap \mathfrak{g}^*_{\mathsf{reg}} \neq \emptyset$ implies that

$$\Omega := \{ s \in \mathbb{k}^{\times} \mid h + sx \in \mathfrak{g}^*_{\mathsf{reg}} \}$$

is a nonempty open subset of \mathbb{k}^{\times} . Since Ω is infinite, we can strengthen (2.2) as

$$(3\cdot3) \qquad \qquad \mathcal{Z} = \mathsf{alg}\langle \varphi_s(H) \mid H \in \mathcal{S}(\mathfrak{g})^{\mathfrak{g}}, s \in \Omega \rangle.$$

Combining this with $(3 \cdot 2)$, we obtain

$$d_{h+x}\tilde{\mathcal{Z}} = \mathfrak{t} + \sum_{s \in \Omega} d_{h+x}\varphi_s(\mathfrak{S}(\mathfrak{g})^{\mathfrak{g}}) = \mathfrak{t} + \sum_{s \in \Omega} \varphi_s(\mathfrak{g}^{h+sx}) = \mathfrak{t} + \sum_{s \in \Omega} \mathfrak{g}^{h+sx}.$$

Set $\Omega' = \Omega \sqcup \{0\}$ if $h \in \mathfrak{g}_{\mathsf{reg}}^*$ and $\Omega' = \Omega$ otherwise. Then the equality $\sum_{s \in \Omega'} \mathfrak{g}^{h+sx} = d_h((\mathcal{MF})_x)$ follows from [13, Lemma 1.3], see also the proof of Lemma 2.1 in [13, Sect. 2]. If $h \notin \mathfrak{g}_{\mathsf{reg}}^*$, we are done. If $h \in \mathfrak{g}_{\mathsf{reg}}^*$, then $\mathfrak{g}^h = \mathfrak{t}$ and $\mathfrak{t} + \sum_{s \in \Omega} \mathfrak{g}^{h+sx} = \sum_{s \in \Omega'} \mathfrak{g}^{h+sx}$.

Finally, we recall that $d_h((\mathcal{MF})_x) = d_x((\mathcal{MF})_h)$ for any $x, h \in \mathfrak{g}$ by [13, Eq. (2·3)].

Theorem 3.2. For $\mathcal{Z} = \mathcal{Z}_{(\mathfrak{g},\mathfrak{t})}$ and $\tilde{\mathcal{Z}}$ as above, we have

- (i) $\operatorname{tr.deg} \mathfrak{Z} = \operatorname{tr.deg} \tilde{\mathfrak{Z}} = \boldsymbol{b}(\mathfrak{g})$ and both algebras \mathfrak{Z} and $\tilde{\mathfrak{Z}}$ are polynomial;
- (ii) both \mathcal{Z} and $\tilde{\mathcal{Z}}$ are complete on each regular orbit;
- (iii) $\tilde{\mathcal{Z}}$ is a maximal Poisson commutative subalgebra of $S(\mathfrak{g})$.

Proof. (i) Since $\mathcal{Z} \subset \tilde{\mathcal{Z}}$ is an algebraic extension, the first equality follows. Take a principal \mathfrak{sl}_2 -triple $\{e, h, f\} \subset \mathfrak{g}$ such that $h \in \mathfrak{t}$ and $e, f \in \mathfrak{m}$. Note that any nonzero element of $\langle e, h, f \rangle_{\mathbb{k}}$ is regular in $\mathfrak{g} \simeq \mathfrak{g}^*$. Pick a nonzero $x \in \langle e, f \rangle_{\mathbb{k}} \subset \mathfrak{m}$ and consider the subspace

$$d_{h+x}\tilde{\mathcal{Z}} := \{ d_{h+x}F \mid F \in \tilde{\mathcal{Z}} \} \subset \mathfrak{g}.$$

Because $\varphi_s(h+x) = h + sx \in \mathfrak{g}^*_{\mathsf{reg}}$ for all s, we have $d_{h+x}\tilde{\mathcal{Z}} = d_h((\mathcal{MF})_x)$ by Lemma 3.1.

One of the properties of MF-subalgebras is that $\dim d_h((M\mathcal{F})_x) = \boldsymbol{b}(\mathfrak{g}),$ if

$$(\Bbbk x \oplus \Bbbk h) \cap \mathfrak{g}_{\mathsf{sing}} = \{0\},\$$

see [12], [13, Cor. 1.6 & Lemma 2.1]. Thus dim $d_{h+x}\tilde{\mathcal{Z}} = \boldsymbol{b}(\mathfrak{g})$. It follows that tr.deg $\tilde{\mathcal{Z}} \geq \boldsymbol{b}(\mathfrak{g})$, and since tr.deg $\mathcal{A} \leq \boldsymbol{b}(\mathfrak{g})$ for any Poisson commutative subalgebra, we actually get the equality. As both \mathcal{Z} and $\tilde{\mathcal{Z}}$ have at most $\boldsymbol{b}(\mathfrak{g})$ generators, they are polynomial. Therefore, \mathcal{Z} is freely generated by

$$\{(H_j)_{(i,d_j-i)} \mid 1 \leq j \leq l; \ i = 0, 1, \dots, d_j - 2, d_j\},\$$

while $\tilde{\mathcal{Z}}$ is freely generated by a basis of \mathfrak{t} and the components $(H_j)_{(i,d_j-i)}$, where $1 \leq j \leq l$ and $i = 0, 1, \ldots, d_j - 2$.

(ii) In part (i), we proved that dim $d_{h+x}\tilde{\mathcal{Z}} = \boldsymbol{b}(g)$. Then [13, Lemma 1.2] implies that $\tilde{\mathcal{Z}}$ is complete on the orbit G(h+x). For an appropriate choice of $x \in \langle e, f \rangle$, we obtain a nilpotent element $h + x \in \langle e, h, f \rangle_{\mathbb{k}} \simeq \mathfrak{sl}_2$. Hence $\tilde{\mathcal{Z}}$ is complete on the regular nilpotent orbit. Then a standard deformation argument, see [13, Cor. 2.6], shows that $\tilde{\mathcal{Z}}$ is complete on every regular orbit. The same line of argument applies to \mathcal{Z} , since $d_{h+x}\mathcal{S}(\mathfrak{t})^W = d_h\mathcal{S}(\mathfrak{g})^{\mathfrak{g}} = \mathfrak{t}$ and $d_{h+x}\mathcal{Z} = d_{h+x}\tilde{\mathcal{Z}}$.

(iii) The maximality of $\tilde{\mathcal{Z}}$ will follow from the fact that the subvariety $Y = \{\gamma \in \mathfrak{g}^* \mid \dim d_{\gamma} \tilde{\mathcal{Z}} < \boldsymbol{b}(\mathfrak{g})\}$ is of codimension ≥ 2 in \mathfrak{g}^* (see below). We identify \mathfrak{g} and \mathfrak{g}^* via the Killing form and regard Y as a subvariety of \mathfrak{g} . Write $\gamma = h' + x'$ with $h' \in \mathfrak{t}$, $x' \in \mathfrak{m}$. If $\langle h', x' \rangle_{\Bbbk} \cap \mathfrak{g}_{\mathsf{sing}} = \{0\}$, then $\dim d_{h'}((\mathcal{MF})_{x'}) = \boldsymbol{b}(\mathfrak{g})$ [12, Theorem 2.5] and $\dim d_{\gamma} \tilde{\mathcal{Z}} = \boldsymbol{b}(\mathfrak{g})$ by Lemma 3.1.

Consider the map $\psi : \mathfrak{g}_{sing} \times \mathbb{k} \to \mathfrak{g}$ defined by $\psi(\xi, s) = \xi_{\mathfrak{t}} + s\xi_{\mathfrak{m}}$ and let \tilde{Y} be the closure of Im (ψ) . Set $\mathfrak{t}_{sing} := \mathfrak{t} \cap \mathfrak{g}_{sing}$ and $\mathfrak{m}_{sing} := \mathfrak{m} \cap \mathfrak{g}_{sing}$. Then

$$Y \subset Y \cup (\mathfrak{t}_{\mathsf{sing}} \times \mathfrak{m}) \cup (\mathfrak{t} \times \mathfrak{m}_{\mathsf{sing}}).$$

• Since $\operatorname{codim} \mathfrak{g}_{\operatorname{sing}} = 3$, we have $\dim \tilde{Y} \leq \dim \mathfrak{g} - 2$.

• As \mathfrak{m}_{sing} is conical and $\langle e, f \rangle_{\mathbb{k}} \cap \mathfrak{m}_{sing} = \{0\}$, we have dim $\mathfrak{m}_{sing} \leq \dim \mathfrak{m} - 2$. Therefore, $\mathfrak{t} \times \mathfrak{m}_{sing} \subset \mathfrak{g}$ does not contain divisors.

• We prove below that $\dim(Y \cap (\mathfrak{t}_{sing} \times \mathfrak{m})) \leq \dim \mathfrak{g} - 2$, which yields the required estimate of codim Y.

The subset $\mathfrak{t}_{sing} \subset \mathfrak{t}$ is the union of all reflection hyperplanes in $\mathfrak{t}.$ That is, if

$$\mathcal{H}_{\gamma} = \{ x \in \mathfrak{t} \mid (\gamma, x) = 0 \},\$$

then $\mathfrak{t}_{sing} = \bigcup_{\gamma \in \Delta} \mathcal{H}_{\gamma}$. (Of course, $\mathcal{H}_{\gamma} = \mathcal{H}_{-\gamma}$.) Suppose that $h' \in \mathcal{H}_{\nu}$ is generic, i.e., $h' \in \mathcal{H}_{\nu} \setminus \bigcup_{\gamma \neq \pm \nu} \mathcal{H}_{\gamma}$. Then $h' \in \mathfrak{g}$ is subregular and

$$\mathfrak{g}^{h'} = \mathfrak{t} \oplus \mathfrak{g}_{
u} \oplus \mathfrak{g}_{-
u} = \mathfrak{H}_{
u} \oplus \langle e_{
u}, h_{
u}, e_{-
u}
angle_{\Bbbk} \simeq \mathfrak{H}_{
u} \oplus \mathfrak{sl}_2,$$

where $h_{\nu} = [e_{\nu}, e_{-\nu}]$ and \mathcal{H}_{ν} is the centre of $\mathfrak{g}^{h'}$. Note also that $\mathcal{H}_{\nu} = d_{h'}\mathfrak{S}(\mathfrak{g})^{\mathfrak{g}} \subset \mathfrak{t}$, cf. [14, Lemma 4.9]. Without loss of generality, we may assume that ν is a **simple** root with respect to some choice of $\Delta^+ \subset \Delta$. Let $\Pi \subset \Delta^+$ be the corresponding set of simple roots and $\mathfrak{m} = \mathfrak{u} \oplus \mathfrak{u}^-$. We may also assume that $e = \sum_{\alpha \in \Pi} c_\alpha e_\alpha \in \mathfrak{u}$ with $c_\alpha \in \Bbbk^{\times}$ and $f = \sum_{\alpha \in \Pi} e_{-\alpha} \in \mathfrak{u}^-$ for a principal \mathfrak{sl}_2 -triple $\{e, h, f\}$ with $h \in \mathfrak{t}$, cf. [5, Theorem 4]. For $\mathfrak{b} = \mathfrak{t} \oplus \mathfrak{u}$, we have $f + \mathfrak{b} \subset \mathfrak{g}_{\mathsf{reg}}$ by [5, Lemma 10]. In particular, $h' + sf \in \mathfrak{g}_{\mathsf{reg}}$ for any $s \in \Bbbk^{\times}$.

Lemma 3.3. If $h' \in \mathfrak{H}_{\nu}$ is generic, then $\mathfrak{g}^{h'+sf} \subset \mathfrak{H}_{\nu} \oplus \mathfrak{u}^{-}$ for any $s \neq 0$.

Proof. As is well known, $(\mathfrak{g}^{h'+sf})^{\perp} = [\mathfrak{g}, h'+sf]$. Hence it suffices to prove that $[\mathfrak{g}, h'+sf] \supset (\mathcal{H}_{\nu} \oplus \mathfrak{u}^{-})^{\perp} = \langle h_{\nu} \rangle_{\mathbb{k}} \oplus \mathfrak{u}^{-}$.

Since $h' + sf \in \mathfrak{t} \oplus \mathfrak{u}^- =: \mathfrak{b}^-$ is regular in \mathfrak{g} , we have $\mathfrak{g}^{h'+sf} \subset \mathfrak{b}^-$. Hence $[\mathfrak{g}, h' + sf] \supset (\mathfrak{b}^-)^\perp = \mathfrak{u}^-$. Next, $[e_\nu, h' + sf] = [e_\nu, sf] = s[e_\nu, e_{-\nu}] = s \cdot h_\nu \in [\mathfrak{g}, h' + sf]$.

Now, set

$$\mathbb{V} := d_{h'}((\mathcal{MF})_f) = \sum_{s \neq 0} \mathfrak{g}^{h' + sf},$$

where the last equality stems from [13, Lemma 1.3]. On the one hand, $\mathbb{V} \subset \mathcal{H}_{\nu} \oplus \mathfrak{u}^{-}$ by the above lemma. On the other hand, dim $\mathbb{V} = \boldsymbol{b}(\mathfrak{g}) - 1$ in view of [13, proof of Theorem 2.4]. Hence $\mathbb{V} = \mathcal{H}_{\nu} \oplus \mathfrak{u}^{-}$.

The differentials $d_{h'+f}((H_j)_{(d_j,0)}) = d_{h'}((H_j)_{(d_j,0)}) = d_{h'}H_j$ with $1 \leq j \leq l$ are linearly dependent, because they are contained in \mathcal{H}_{ν} , hence $\dim d_{h'+f}\mathcal{Z} \leq \mathbf{b}(\mathfrak{g}) - 1$. Recall that $h' + sf \in \mathfrak{g}_{\mathsf{reg}}$ for any $s \in \mathbb{k}^{\times}$. Combining (3·3) with (3·2), we obtain

$$\mathbb{V}_{\mathcal{Z}} := d_{h'+f} \mathcal{Z} \supset \sum_{s \neq 0} \varphi_s(\mathfrak{g}^{h'+sf}) = \varphi_s(\mathbb{V}) = \mathcal{H}_{\nu} \oplus \mathfrak{u}^-.$$

Thus $\mathbb{V}_{\mathcal{Z}} = \mathcal{H}_{\nu} + \mathfrak{u}^-$. Next $d_{h'+f}\tilde{\mathcal{Z}} \neq d_{h'+f}\mathcal{Z}$, since $\mathfrak{t} \not\subset \mathbb{V}_{\mathcal{Z}}$. We obtain $\dim d_{h'+f}\tilde{\mathcal{Z}} = \boldsymbol{b}(\mathfrak{g})$, which means that $\dim d_{\gamma}\tilde{\mathcal{Z}} = \boldsymbol{b}(\mathfrak{g})$ on a dense open subset of $\mathcal{H}_{\nu} \times \mathfrak{m}$. Since $\nu \in \Delta$ is arbitrary, this implies that $\dim(Y \cap (\mathfrak{t}_{sing} \times \mathfrak{m})) \leq \dim \mathfrak{g} - 2$.

Thus, we have proved that $\dim Y \leq \dim \mathfrak{g} - 2$.

Since $\tilde{\mathcal{X}}$ is generated by algebraically independent homogeneous polynomials and codim $Y \ge 2$, it follows from [11, Theorem 1.1] that $\tilde{\mathcal{X}}$ is an algebraically closed subalgebra of $S(\mathfrak{g})$ (i.e., if $F \in S(\mathfrak{g})$ is algebraic over the quotient field of $\tilde{\mathcal{X}}$, then $F \in \tilde{\mathcal{X}}$). An inclusion $\tilde{\mathcal{X}} \subset \mathcal{A} \subset S(\mathfrak{g})$, where $\{\mathcal{A}, \mathcal{A}\} = 0$, is only possible if \mathcal{A} is an algebraic extension of $\tilde{\mathcal{X}}$, because tr.deg $\tilde{\mathcal{X}} = \boldsymbol{b}(\mathfrak{g})$ and tr.deg $\mathcal{A} \leq \boldsymbol{b}(\mathfrak{g})$. Therefore we must have $\tilde{\mathcal{X}} = \mathcal{A}$.

Remark 3.4. We know that $\tilde{\mathcal{Z}} \subset \mathcal{S}(\mathfrak{g})^{\mathfrak{t}}$ and tr.deg $\tilde{\mathcal{Z}} = \boldsymbol{b}(\mathfrak{g})$. If $h \in \mathfrak{t}_{\mathsf{reg}}^*$, then these two properties are also satisfied for $(\mathcal{MF})_h$ [12]. One may say that $\tilde{\mathcal{Z}}$, as well as \mathcal{Z} , resembles all such \mathcal{MF} -subalgebras. However, there is no choice of $h \in \mathfrak{t}^*$ involved in the construction of $\tilde{\mathcal{Z}}$ and $\mathcal{Z} \subset \mathcal{S}(\mathfrak{g})^{N_G(\mathfrak{t})}$ unlike any of $(\mathcal{MF})_h$ with $h \in \mathfrak{t}_{\mathsf{reg}}^*$.

Furthermore, by Lemma 3.1, we have $d_{h+x}\tilde{\mathcal{Z}} = d_h((\mathcal{MF})_x) = d_x((\mathcal{MF})_h)$ for any $x \in \mathfrak{m}$ and $h \in \mathfrak{t}^*_{\mathsf{reg}}$. It is tempting to further investigate this relationship.

Another intriguing task is to produce a quantisation of $\tilde{\mathcal{Z}}$, i.e., a commutative subalgebra of the enveloping algebra $\mathcal{U}(\mathfrak{g})$ such that its graded image in $S(\mathfrak{g})$ is $\tilde{\mathcal{Z}}$.

References

- O. I. Bogoyavlenski. Integrable Euler equations associated with filtrations of Lie algebras, *Matem. Sbornik*, **121**, no. 2 (1983), 233–242 (Russian). English transl.: *Math. USSR-Sb.*, **49**:1 (1984), 229–238.
- [2] M. Brion. Invariants et covariants des groupes algébriques réductifs, Dans: "Théorie des invariants et géometrie des variétés quotients" (Travaux en cours, t. 61), 83–168, Paris: Hermann, 2000.
- [3] B. Feigin, E. Frenkel, and L. Rybnikov. Opers with irregular singularity and spectra of the shift of argument subalgebra, *Duke Math. J.*, 155 (2010), no. 2, 337–363.
- [4] I. M. Gelfand and I. S. Zakharevich. Webs, Lenard schemes, and the local geometry of bi-Hamiltonian Toda and Lax structures, *Selecta Math.*, *New Ser.*, 6 (2000), 131–183.
- [5] B. Kostant. Lie group representations on polynomial rings, Amer. J. Math., 85 (1963), 327–404.
- [6] I. V. Mikityuk. Integrability of Euler equations connected with filtrations of semisimple Lie algebras, *Matem. Sb.*, **125**, no. 4 (1984), 539–546 (Russian). English transl.: *Math. USSR-Sb.*, **53**:2 (1986), 541–549.

- [7] A. S. Mishchenko and A. T. Fomenko. Euler equation on finitedimensional Lie groups, *Izv. AN SSSR. Ser. Matem.* 42, no. 2 (1978), 396–415 (Russian). English transl.: *Math. USSR-Izv.* 12 (1978), 371– 389.
- [8] A. Molev and O. Yakimova. Quantisation and nilpotent limits of Mishchenko–Fomenko subalgebras, *Represent. Theory*, 23 (2019), 350– 378.
- [9] A. Panasyuk. Veronese webs for bi-Hamiltonian structures of higher corank. *Poisson geometry* (Warszawa, 1998), 251–261, Banach Center Publ., 51, Polish Acad. Sci. Inst. Math., Warszawa, 2000.
- [10] D. Panyushev. The index of a Lie algebra, the centraliser of a nilpotent element, and the normaliser of the centraliser, *Math. Proc. Camb. Phil.* Soc., 134, Part 1 (2003), 41–59.
- [11] D. Panyushev, A. Premet and O. Yakimova. On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra, 313 (2007), 343–391.
- [12] D. Panyushev and O. Yakimova. The argument shift method and maximal commutative subalgebras of Poisson algebras, *Math. Res. Letters*, 15, no. 2 (2008), 239–249.
- [13] D. Panyushev and O. Yakimova. Poisson commutative subalgebras and complete integrability on non-regular coadjoint orbits and flag varieties, *Math. Zeitschrift*, **295** (2020), 101–127.
- [14] D. Panyushev and O. Yakimova. Poisson commutative subalgebras of S(g) associated with involutions, Int. Math. Res. Notices, 2021, no. 23 (2021), 18367–18406.
- [15] Э.Б. ВИНБЕРГ. О некоторых коммутативных подалгебрах универсальной обертывающей алгебры, Изв. АН СССР. Сер. Матем. 54, № 1 (1990), 3–25 (Russian). English translation: E. B. Vinberg. On certain commutative subalgebras of a universal enveloping algebra, Math. USSR-Izv. 36 (1991), 1–22.
- [16] O. Yakimova. Symmetric invariants of Z₂-contractions and other semidirect products, Int. Math. Res. Notices, (2017) 2017 (6): 1674–1716.

D. Panyushev and O. S. Yakimova

INSTITUTE FOR INFORMATION TRANSMISSION PROBLEMS OF THE R.A.S. BOLSHOI KARETNYI PER. 19, MOSCOW 127051, RUSSIA *E-mail address*: panyushev@iitp.ru

INSTITUT FÜR MATHEMATIK, FRIEDRICH-SCHILLER-UNIVERSITÄT JENA JENA, 07737, GERMANY *E-mail address*: oksana.yakimova@uni-jena.de

RECEIVED DECEMBER 18, 2020 ACCEPTED NOVEMBER 19, 2021

926