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Consider the differential forms A∗(L) on a Lagrangian submani-
fold L ⊂ X. Following ideas of Fukaya-Oh-Ohta-Ono, we construct
a family of cyclic unital curved A∞ structures on A∗(L), parame-
terized by the cohomology of X relative to L. The family of A∞

structures satisfies properties analogous to the axioms of Gromov-
Witten theory. Our construction is canonical up to A∞ pseudoiso-
topy. We work in the situation that moduli spaces are regular and
boundary evaluation maps are submersions, and thus we do not
use the theory of the virtual fundamental class.
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1. Introduction

In the beautiful series of papers [4, 5, 7–9], Fukaya and Fukaya-Oh-Ohta-Ono
reworked and extended in the language of differential forms the theory of A∞

algebras associated to Lagrangian submanifolds from their book [6]. With
the help of this new tool, they obtained many striking results in Floer theory
and mirror symmetry. They work in a very general setting, and introduce
fundamental new ideas in the theory of the virtual fundamental class to
address the technical difficulties that arise.
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The present paper uses differential forms to construct a family of cyclic
unital curved A∞ algebras associated to a Lagrangian submanifold. We con-
sider Lagrangian submanifolds that satisfy an analog of the convex condition
in algebraic geometry [10], so the construction can be made without using
virtual fundamental class techniques.

Our family of A∞ algebras is parameterized by the cohomology of X
relative to L, as opposed to absolute cohomology of X as found in the
literature. The family satisfies differential equations analogous to the funda-
mental class and divisor axioms of Gromov-Witten theory. Our definition of
unitality is stronger than the standard one. The use of relative cohomology
is of crucial importance for proving unitality and the divisor equation.

We use the framework developed here in [20, 21] to define open Gromov-
Witten invariants and establish their properties. For this purpose, we also
include a discussion of the operator m−1 as defined in [5].

1.1. Setting

Consider a symplectic manifold (X,ω) with dimRX = 2n, and a connected
Lagrangian submanifold L with relative spin structure s = sL. For the defi-
nition of relative spin structure, see [6, Definition 8.1.2] and [23, Definition
3.1.2(c)]. Let J be an ω-tame [16, p.2] almost complex structure on X. De-
note by µ : H2(X,L) → Z the Maslov index as in [2, Section 2]. See also [1,
Appendix] and references therein. Let Π be a quotient of H2(X,L;Z) by
a possibly trivial subgroup contained in the kernel of the homomorphism
ω ⊕ µ : H2(X,L;Z) → R⊕ Z. Thus the homomorphisms ω, µ, descend to Π.
Denote by β0 the zero element of Π. We use a Novikov ring Λ which is a
completion of a subring of the group ring of Π. The precise definition fol-
lows. Denote by T β the element of the group ring corresponding to β ∈ Π,
so T β1T β2 = T β1+β2 . Then,

Λ =

{
∞∑

i=0

aiT
βi

∣∣∣∣ ai ∈ R, βi ∈ Π, ω(βi) ≥ 0, lim
i→∞

ω(βi) = ∞

}
.

A grading is defined on Λ by declaring T β to be of degree µ(β).
For k ≥ −1, denote by Mk+1,l(β) the moduli space of genus zero J-

holomorphic open stable maps to (X,L) of degree β ∈ Π with one boundary
component, k + 1 boundary marked points, and l interior marked points.
The boundary points are labeled according to their cyclic order. Denote by
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evbβi : Mk+1,l(β) → L, and eviβj : Mk+1,l(β) → X, the boundary and inte-
rior evaluation maps respectively, where i = 0, . . . , k, and j = 1, . . . , l. As-
sume that Mk+1,l(β) is a smooth orbifold with corners. Then it carries
a natural orientation induced by the relative spin structure on (X,L), as
in [6, Chapter 8]. Assume in addition that evbβ0 is a proper submersion. See
Example 1.5 and Remark 1.6 for a discussion and examples of when these
assumptions hold. See Section 2.1.1 for background on orbifolds with corners
and Section 2.2.1 for background on open stable maps.

For any manifoldM , possibly with corners, denote by A∗(M) the algebra
of smooth differential forms on M with coefficients in R. For m > 0, denote
by Am(X,L) the smooth differential m-forms on X that pull back to zero
on L, and denote by A0(X,L) the functions on X that are constant on L.
The exterior derivative d makes A∗(X,L) into a complex.

Let t0, . . . , tN , be formal variables with degrees in Z. Define graded-
commutative rings

R := Λ[[t0, . . . , tN ]], Q := R[t0, . . . , tN ],

thought of as differential graded algebras with trivial differential. Set

C := A∗(L)⊗R, and D := A∗(X,L)⊗Q,

where ⊗ is understood as the completed tensor product of differential
graded algebras. Write Ĥ∗(X,L;Q) = H∗(D). The gradings on C,D, and
Ĥ∗(X,L;Q), take into account the degrees of tj , T

β , and the degree of dif-
ferential forms.

Define a valuation

ν : R −→ R,

by

ν




∞∑

j=0

ajT
βj

N∏

i=0

t
lij
i


 = inf

j
aj ̸=0

(
ω(βj) +

N∑

i=0

lij

)
.

The valuation ν induces a valuation on Q,C,D, and their tensor products,
which we also denote by ν. Define IR := {α ∈ R | ν(α) > 0}, and similarly
IQ := {α ∈ Q | ν(α) > 0}. Let R := R/IR = R and

C := C/(IRC) = A∗(L).
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1.2. Statement of results

Let R be a differential graded algebra over R with valuation ςR and let C be
a graded module over R with valuation ςC .We implicitly assume elements of
graded rings and modules are of homogeneous degree and denote the degree
by | · |. Let δi,j denote the Kronecker delta.

Definition 1.1. An n-dimensional (curved) cyclic unital A∞ structure
on C is a triple ({mk}k≥0,≺ , ≻, e) of maps mk : C⊗k → C[2− k], a pairing
≺ , ≻ : C ⊗ C → R[−n], and an element e ∈ C with |e| = 0, satisfying the
following properties. We denote by α, possibly with subscripts, an element
of C, and by a an element of R.

1) The operations mk are R-multilinear in the sense that

mk(α1, . . . , αi−1, a · αi, . . . , αk)

= (−1)|a|·
(
i+

∑
i−1
j=1 |αj |

)
a ·mk(α1, . . . , αk) + δ1,k · da · α1.

2) The pairing ≺ , ≻ is R-bilinear in the sense that

≺a · α1, α2≻ = a≺α1, α2≻, ≺α1, a · α2≻ = (−1)|a|·(1+|α1|)a≺α1, α2≻.

3) The A∞ relations hold:

∑

k1+k2=k+1
1≤i≤k1

(−1)
∑

i−1
j=1(|αj |+1)

×mk1
(α1, . . . , αi−1,mk2

(αi, . . . , αi+k2−1), αi+k2
, . . . , αk) = 0.

4) ςC(mk(α1, . . . , αk)) ≥
∑k

j=1 ςC(αj) and ςC(m0) > 0.

5) ςR(≺α1, α2≻) ≥ ςC(α1) + ςC(α2).

6) ≺α1, α2≻ = (−1)(|α1|+1)(|α2|+1)+1≺α2, α1≻.

7) The pairing is cyclic:

≺mk(α1, . . . , αk), αk+1≻ = (−1)(|αk+1|+1)
∑

k
j=1(|αj |+1)

×≺mk(αk+1, α1, . . . , αk−1), αk≻+ δ1,k · d≺α1, α2≻.

8) mk(α1, . . . , αi−1, e, αi+1, . . . , αk) = 0 ∀k ̸= 0, 2.

9) ≺m0, e≻ = 0.
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10) m2(e, α) = α = (−1)|α|m2(α, e).

Remark 1.2. The intuition behind the signs of properties (1), (2), (3),
and (7), is that we consider the shifted degree of elements of C, and
the shifted degree of the operators mk, which is 1. Thus, “passing” a ∈ R
“through” α ∈ C contributes (−1)|a|·(|α|+1),“passing” a through mk adds
(−1)|a|, and “passing” mk through α adds (−1)|α|+1. The sign in property (6)
reflects the fact that the pairing is graded anti-symmetric.

Remark 1.3. Our definition differs from that of [4, 7, 8] in that m0 is
required to respect the unit e.

Equip R with the trivial differential dR = 0. Consider the R-module C.
For γ ∈ IQD with dγ = 0, |γ| = 2, and β ∈ Π, define maps

m
γ,β
k : C⊗k −→ C

by

m
γ,β0

1 (α) = dα,

and for k ≥ 0 when (k, β) ̸= (1, β0), by

m
γ,β
k (α1, . . . , αk) := (−1)

∑
k
j=1 j(|αj |+1)+1

×
∑

l≥0

1

l!
evbβ0 ∗(

k∧

j=1

(evbβj )
∗αj ∧

l∧

j=1

(eviβj )
∗γ).

Define also

m
γ
k : C⊗k −→ C

by

m
γ
k :=

∑

β∈Π

T βm
γ,β
k .

Denote by ⟨ , ⟩ the signed Poincaré pairing,

(1) ⟨ξ, η⟩ := (−1)|η|
∫

L

ξ ∧ η.

Denote by 1 the constant function 1 ∈ A0(L). The main results of the paper
are the following theorems.
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Theorem 1. The triple ({mγ
k}k≥0, ⟨ , ⟩, 1) is a cyclic unital A∞ structure

on C.

Set

R := A∗([0, 1];R),

C := A∗([0, 1]× L;R), and D := A∗([0, 1]×X, [0, 1]× L;Q).(2)

The valuation ν induces valuations on R,C, and D, which we still denote
by ν. For t ∈ [0, 1] and letting M be either L or the point, denote by

jt :M → [0, 1]×M

the inclusion jt(p) = (t, p).

Definition 1.4. Let S1 = (m,≺ , ≻, e) and S2 = (m′,≺ , ≻′, e′) be cyclic
unital A∞ structures on C. A cyclic unital pseudoisotopy from S1 to S2 is
a cyclic unital A∞ structure (m̃,≼ ,≽, ẽ) on the R-module C such that for
all α̃j ∈ C and all k ≥ 0,

j∗0m̃k(α̃1, . . . , α̃k) = mk(j
∗
0 α̃1, . . . , j

∗
0 α̃k),

j∗1m̃k(α̃1, . . . , α̃k) = m′
k(j

∗
1 α̃1, . . . , j

∗
1 α̃k),

and

j∗0≼α̃1, α̃2≽ = ≺j∗0 α̃1, j
∗
0 α̃2≻, j∗0 ẽ = e,

j∗1≼α̃1, α̃2≽ = ≺j∗1 α̃1, j
∗
1 α̃2≻

′, j∗1 ẽ = e′.

Theorem 2. Let γ, γ′ ∈ IQD be closed with |γ| = |γ′| = 2. If [γ] = [γ′] ∈
Ĥ∗(X,L;Q), then there exists a cyclic unital pseudoisotopy from (mγ , ⟨ , ⟩, 1)
to (mγ′

, ⟨ , ⟩, 1).

In Section 4 we also discuss pseudoisotopies arising from varying J, under
regularity assumptions on the family moduli spaces similar to those already
assumed for Mk+1,l(β).

By property (4), the maps mk descend to maps on the quotient

m̄k : C
⊗k

−→ C.

Theorem 3. Suppose ∂t0γ = 1 ∈ A0(X,L)⊗Q and ∂t1γ = γ1 ∈ A2(X,L)⊗
Q. Assume the map H2(X,L;Z) → Q given by β 7→

∫
β
γ1 descends to Π.

Then the operations m
γ
k satisfy the following properties.



✐

✐

“5-Tukachinsky” — 2023/3/7 — 17:38 — page 933 — #7
✐

✐

✐

✐

✐

✐

Differential forms, Fukaya A∞ algebras 933

1) (Fundamental class) ∂t0m
γ
k = −1 · δ0,k.

2) (Divisor) ∂t1m
γ,β
k =

∫
β
γ1 ·m

γ,β
k .

3) (Energy zero) The operations mγ
k are deformations of the usual differ-

ential graded algebra structure on differential forms. That is,

m̄
γ
1(α) = dα, m̄

γ
2(α1, α2) = (−1)|α1|α1 ∧ α2, m̄

γ
k = 0, k ̸= 1, 2.

In Section 2.2 we also construct a distinguished element m
γ
−1 ∈ R fol-

lowing [5]. In the subsequent sections, we prove its properties along with
the properties of mγ

k for k ≥ 0. In Section 4 we construct m̃
γ̃
−1, the analo-

gous structure for a pseudoisotopy. In Section 4.3 we reformulate the A∞

structure equations of the pseudoisotopy so that the structure equation for
m̃

γ̃
−1 fits more naturally. The reformulated A∞ structure equations are used

in [20] to prove that the superpotential is invariant under pseudoisotopy.

Example 1.5. Suppose J is integrable, and we are given a Lie group GX

with a transitive action α : GX ×X → X such that for each g ∈ G the dif-
feomorphism α(g, ·) is J-holomorphic. Moreover, suppose cX : X → X is an
anti-holomorphic involution with L = Fix(cX) and cG : G→ G is an invo-
lutive homomorphism such that α(cGg, cXx) = cXα(g, x). Then it is shown
in [24] that our assumptions that Mk,l(β) is a smooth orbifold with corners

and evbβ0 is a submersion are satisfied. Indeed, it is well-known that the
moduli space of closed genus zero stable maps to X is a complex orbifold in
the presence of a transitive group action [10, 19]. The moduli space of open
stable mapsMk,l(β) is constructed from the fixed points of the induced anti-
holomorphic involution of the moduli space of closed stable maps by cutting
along the compactification divisor. The subgroup GL = Fix(cG) ⊂ GX acts
on Mk,l(β) and acts transitively on L, and evb0 is GL equivariant. It follows
that evb0 is a submersion.

Thus, examples of (X,L) which satisfy our assumptions include
(CPn,RPn) with the standard complex and symplectic structures or, more
generally, flag varieties, Grassmannians, and products thereof.

Remark 1.6. More generally, suppose J is integrable, there exists a Lie
group GX that acts transitively on X by J-holomorphic diffeomorphisms,
and there exists a Lie subgroup GL ⊂ GX that preserves L and acts tran-
sitively on L. We outline an argument showing that Mk,l(β) is a smooth

orbifold with corners and evbβ0 is a submersion. Indeed, [16, Proposition
7.4.3] shows that all J-holomorphic genus zero stable maps to X without
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boundary are regular. A modification of the argument there shows that J-
holomorphic genus zero stable maps to (X,L) with one boundary component
are also regular. See [3, Lemma 3.2] for the special case where the domain
of the map is a disk under weaker assumptions. For regularity of holomor-
phic disks, instead of Grothendieck’s classification [11], one uses Oh’s work
on the Riemann-Hilbert problem [17]. The argument applies equally well
to maps that are not somewhere injective in the sense of [16, Section 2.5].
So, the fact that a J-holomorphic map from a domain with boundary need
not factor through a somewhere injective map [14, 15] does not affect the
argument. Once all stable maps are regular, it should be possible to modify
the techniques of [19] to include Lagrangian boundary conditions, and hence
conclude that the moduli space is a smooth orbifold with corners. Since GL

acts transitively on L, it follows that evb0 is a submersion.
Virtual fundamental class techniques should allow the extension of our

results to general target manifolds.

1.3. Outline

In Section 2.1 we review orientation conventions and properties of the push-
forward of differential forms. Sections 2.2-2.4 formulate and prove the A∞

structure relations for the closed-open maps qk,l for k ≥ −1. In Section 3 we
formulate and prove additional properties of the q operators. The section
closes with the proofs of Theorems 1 and 3. Section 4 constructs pseudo-
isotopies and uses them to prove Theorem 2. Section 4.3 reformulates the
A∞ structure relations in a way that incorporates m−1 more naturally.

1.4. Acknowledgments

The authors would like to thank D. Auroux and an anonymous referee for
many helpful comments, D. McDuff, K. Wehrheim, and A. Zernik, for helpful
conversations, and X. Chen for a sign correction. The authors were partially
supported by ERC starting grant 337560 and ISF Grant 1747/13. The first
author was partially supported by ISF Grant 569/18. The second author
was partially supported by the Canada Research Chairs Program and by
NSF grant No. DMS-163852.

1.5. Notation

We write I := [0, 1] for the closed unit interval.
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We denote by pt the map from any space to the point or, depending on
the context, the point itself.

Use i to denote the inclusion i : L →֒ X. By abuse of notation, we also
use i for Id×i : I × L→ I ×X. The meaning in each case should be clear
from the context.

Whenever a tensor product is written, we mean the completed tensor
product. For example, A∗(L)⊗R is the completion of the tensor product
A∗(L)⊗R R with respect to ν. The tensor product of differential graded
algebras is again a differential graded algebra in the standard way. In par-
ticular,

d(tj · α) = (−1)|tj |tj · dα, α · tj = (−1)|tj |·|α|tj · α,

∀α ∈ Υ, Υ = A∗(L), A∗(X,L).

Write A∗(L;R) for A∗(L)⊗R. Similarly, A∗(X;Q) and A∗(X,L;Q)
stand for A∗(X)⊗Q and A∗(X,L)⊗Q respectively.

For f :M → N a smooth map between orbifolds with corners, define the
relative dimension by

rdim f := dimM − dimN.

In particular, if f is a submersion, then rdim f is the dimension of the fiber
of f .

For two lists B1 = (v1, . . . , vn), B2 = (w1, . . . , wm), denote by B1 ◦B2

the concatenation (v1, . . . , vn, w1, . . . , wm).

2. Structure

2.1. Orientations and integration

2.1.1. Orbifolds with corners. We use the definition of orbifolds with
corners from [22]. We also use the definitions of smooth maps, strongly
smooth maps, boundary and fiber products of orbifolds with corners given
there. In particular, for M an orbifold with corners, ∂M is again an orb-
ifold with corners and comes with a natural map iM : ∂M →M. In the
special case of manifolds with corners, our definition of boundary coincides
with [12, Definition 2.6], our smooth maps coincide with weakly smooth
maps in [13, Definition 2.1(a)], and our strongly smooth maps are as in [13,
Definition 2.1(e)], which coincides with smooth maps in [12, Definition 3.1].
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We say a map of orbifolds is a submersion if it is a strongly smooth sub-
mersion in the sense of [22]. In the special case of manifolds with cor-
ners, our submersions coincide with submersions in [12, Definition 3.2(iv)]
and with strongly smooth horizontal submersions in [24, Definition 19(a)].
For a strongly smooth map f :M → N, we use the notion of the verti-
cal boundary ∂vfM ⊂ ∂M defined in [22, Section 2.1.1], which extends to
orbifolds with corners the definition of [12, Section 4] for manifolds with
corners. We write ivf : ∂vfM →M for the restriction of if to ∂vfM. When f
is a submersion, the vertical boundary is the fiberwise boundary, that is,
∂vfM =

∐
y∈N ∂(f−1(y)). If ∂N = ∅, then ∂vfM = ∂M. A strongly smooth

map of orbifolds f :M → N induces a strongly smooth map f |∂v
fM

= f ◦ ivf :
∂vfM → N, called the restriction to the vertical boundary. If f is a sub-
mersion, then the restriction f |∂v

fM
is also a submersion. As usual, diffeo-

morphisms are smooth maps with a smooth inverse. We use the notion of
transversality from [22, Section 3], which is induced from transversality of
maps of manifolds with corners as defined in [12, Definition 6.1]. In partic-
ular, any smooth map is tranverse to a submersion. Weak fiber products of
strongly smooth transverse maps exist by [22, Lemma 5.3]. Below, we omit
the adjective ‘weak’ for brevity.

2.1.2. Orientation conventions. For a diffeomorphism f :M → N of
oriented orbifolds with corners, we define sgn(f) to be 1 if f preserves ori-
entation and −1 if it reverses orientation. We use similar notation for iso-
morphisms of oriented vector spaces. We use the definition for orientations
of orbifolds with corners given in [22, Section 3]. We use the conventions of
Sections 2.2, 3, and 5.1 of [22] for orienting boundary and fiber products of
orbifolds with corners. For a submersion of orbifolds with corners h : Q→ S
and y ∈ S, we orient the fiber h−1(y) by identifying it with the fiber product,

(3) h−1(y) = {y} ×S Q.

For manifolds, our convention for orienting boundaries agrees with [12,
Convention 7.2(a)] and our convention for orienting fiber products agrees
with [12, Convention 7.2(b)]. For submersions of manifolds, our convention
for orienting fiber products agrees also with [6].

2.1.3. Integration properties. For a detailed discussion of differential
forms on orbifolds with corners we refer to [22]. Let f :M → N be a proper
submersion of oriented orbifolds with corners of relative dimension
rdim f = r, and let Υ be a graded-commutative algebra over R. Denote by
f∗ : A

∗(M ; Υ) → A∗(N ; Υ)[−r] the push-forward of forms along f as defined
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in [22, Section 4.1], that is, integration over the fiber. We will need the fol-
lowing properties of f∗ from [22, Theorem 1], where they were formulated for
Υ = R. Property (3) below allows the reduction of integrals with coefficients
in general Υ to integrals with coefficients in R. In the following, all orbifolds
are oriented.

Proposition 2.1.

1) Let M be compact and let f :M → pt. Let α ∈ Am(M)⊗Υ. Then

f∗α =

{∫
M
α, m = dimM,

0, otherwise.

2) Let g : P →M , f :M → N, be proper submersions. Then

f∗ ◦ g∗ = (f ◦ g)∗.

3) Let f :M → N be a proper submersion, α ∈ A∗(N ; Υ), β ∈ A∗(M ; Υ).
Then

f∗(f
∗α ∧ β) = α ∧ f∗β.

4) Let

M ×N P
p

//

q

��

P

g

��

M
f

// N

be a pull-back diagram of smooth maps, where g is a proper submersion.
Let α ∈ A∗(P ). Then

q∗p
∗α = f∗g∗α.

Furthermore, we have the following generalization of Stokes’ theorem,
also from [22, Theorem 1]. It uses the notion of vertical boundary from
Section 2.1.1.

Proposition 2.2 (Stokes’ theorem). Let f :M → N be a proper sub-
mersion with dimM = s, and let ξ ∈ At(M ; Υ). Then

d(f∗ξ) = f∗(dξ) + (−1)s+t
(
f
∣∣
∂v
fM

)
∗
ξ.
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Remark 2.3. Proposition 2.2 applied to f :M → pt yields the classical
Stokes’ theorem up to a sign,

(4)

∫

M

dξ = (−1)dimM+|ξ|+1

∫

∂M

ξ.

The sign arises from the possibly non-trivial grading of the coefficient ring.
To derive this sign, assume without loss of generality that ξ = tη, where
t ∈ Υ and η ∈ A∗(M). Then, the classical Stokes’ theorem gives

∫

M

dξ =

∫

M

d(tη) = (−1)|t|t

∫

M

dη = (−1)|t|t

∫

∂M

η = (−1)|t|
∫

∂M

ξ.

On the other hand, the integrals vanish unless |η| = dimM − 1. In this case,

|t| ≡ |ξ|+ |η| ≡ dimM + |ξ|+ 1 (mod 2).

2.1.4. Currents. For a detailed discussion of currents on orbifolds with
corners we refer to [22]. We recall below some key notation. Let M be an
oriented orbifold with corners. Denote by Ak(M) the space of currents of
cohomological degree k, that is, the dual space of compactly supported dif-
ferential forms AdimM−k

c (M). Differential forms are identified as a subspace
of currents by

φ : Ak(M) →֒Ak(M),

φ(η)(α) =

∫

M

η ∧ α, α ∈ AdimM−k
c (M).

Accordingly, for a general current ζ, we may use the notation

(5) ζ(α) =

∫

M

ζ ∧ α, α ∈ A∗
c(M).

Define

d :Ak(M) →Ak+1(M)

by dζ(α) = (−1)1+|ζ|ζ(dα). Thus, if M is closed, we have dφ(η) = φ(dη).
Currents are a bimodule over differential forms with

(η ∧ ζ)(γ) := (−1)|η|·|ζ|ζ(η ∧ γ), γ ∈ A∗
c(M), η ∈ A∗(M), ζ ∈A∗(M),

and

(ζ ∧ η)(γ) := ζ(η ∧ γ), γ ∈ A∗
c(M), η ∈ A∗(M), ζ ∈A∗(M).

This bimodule structure makes φ a bimodule homomorphism.
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Let f :M → N be a proper map of orbifolds. Define the push-forward

(6) f∗ :A
k(M) →Ak−rdim f (N)

by

(f∗ζ)(ξ) = (−1)m·rdim fζ(f∗ξ), ξ ∈ Am(N).

So, when f is a submersion, f∗φ(η) = φ(f∗η). Analogs of the integration
properties of Propositions 2.1 and 2.2 for currents are given in Proposi-
tions 6.1 and 6.5 of [22] respectively.

2.2. Formulation

In this section, we construct a family of A∞ structures following [4, 6, 9].

2.2.1. Open stable maps. A J-holomorphic genus-0 open stable map
to (X,L) of degree β ∈ Π with one boundary component, k + 1 boundary
marked points, and l interior marked points, is a quadruple (Σ, u, z⃗, w⃗) as
follows. The domain Σ is a genus-0 nodal Riemann surface with boundary
consisting of one connected component,

u : (Σ, ∂Σ) → (X,L)

is a continuous map, J-holomorphic on each irreducible component of Σ,
with

u∗([Σ, ∂Σ]) = β,

and

z⃗ = (z0, . . . , zk), w⃗ = (w1, . . . , wl),

with zj ∈ ∂Σ, wj ∈ int(Σ), distinct from one another and from the nodal
points. The labeling of the marked points zj respects the cyclic order given
by the orientation of ∂Σ induced by the complex orientation of Σ. Stabil-
ity means that if Σi is an irreducible component of Σ, then either u|Σi

is
nonconstant or it satisfies the following requirement: If Σi is a sphere, the
number of marked points and nodal points on Σi is at least 3; if Σi is a disk,
the number of marked and nodal boundary points plus twice the number
of marked and nodal interior points is at least 3. An isomorphism of open
stable maps (Σ, u, z⃗, w⃗) and (Σ′, u′, z⃗′, w⃗′) is a homeomorphism θ : Σ → Σ′,
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biholomorphic on each irreducible component, such that

u = u′ ◦ θ, z′j = θ(zj), j = 0, . . . , k, w′
j = θ(wj), j = 1, . . . , l.

Thus we obtain the category of stable maps, which has stable maps for
objects and isomorphisms of stable maps for morphisms. Since all morphisms
are isomorphisms, the category of stable maps is a groupoid.

Denote byMk+1,l(β) = Mk+1,l(β; J) the moduli space of J-holomorphic
genus zero open stable maps to (X,L) of degree β with one boundary com-
ponent, k + 1 boundary marked points, and l internal marked points. In
particular, Mk+1,l(β) is a topological groupoid that is equivalent to the
category of stable maps. Here, by topological groupoid, we mean a small
groupoid along with a topology on the sets of objects and morphisms such
that the structure maps of the groupoid are continuous. Denote by

evbβj : Mk+1,l(β) → L, j = 0, . . . , k,

eviβj : Mk+1,l(β) → X, j = 1, . . . , l,

the evaluation maps given by evbβj ((Σ, u, z⃗, w⃗)) = u(zj) and evi
β
j ((Σ, u, z⃗, w⃗))

= u(wj). We may omit the superscript β when the omission does not create
ambiguity.

As mentioned above in Section 1.1, Example 1.5, and Remark 1.6,
throughout the paper we assume that Mk+1,l(β) is a smooth orbifold with

corners and evbβ0 is a proper submersion. In particular, the spaces of ob-
jects and morphisms of Mk+1,l(β) are smooth manifolds with corners and
the groupoid structure maps are local diffeomorphisms. Corners of codimen-
sion m in Mk+1,l(β) consist of open stable maps (Σ, u, z⃗, w⃗) where Σ has
m boundary nodes. A precise description of corners of codimension m = 1
is given in Proposition 2.8 below. In the special case when k = −1 and β
belongs to the image of the map H2(X) → H2(X,L) → Π, an additional
boundary component arises from the collapse of the boundary of a disk to
a point. Alternatively, one can view this phenomenon as the bubbling of
a J-holomorphic sphere from a constant disk, which is unstable and thus
forgotten. The instability of the constant disk causes such bubbling to occur
in codimension 1. A precise description of this type of boundary component
is given in Proposition 2.11 below.
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2.2.2. Operators. For any list a = (a1, . . . , ak) ∈ Z
×k
≥0, define

ε(a) :=

k∑

j=1

j(aj + 1) + 1.

To simplify notation in the following, we allow differential forms as input,
in lieu of their degrees. In particular, for a list α ∈ C×k,

ε(α) =

k∑

j=1

j(|αj |+ 1) + 1.

For all β ∈ Π, k, l ≥ 0, (k, l, β) ̸∈ {(1, 0, β0), (0, 0, β0)}, define

q
β
k,l : C

⊗k ⊗A∗(X;Q)⊗l −→ C

by

q
β
k,l(α1 ⊗ · · · ⊗ αk; γ1 ⊗ · · · ⊗ γl)

:= (−1)ε(α)(evbβ0 )∗




l∧

j=1

(eviβj )
∗γj ∧

k∧

j=1

(evbβj )
∗αj


 .

The case q
β
0,0 is understood as −(evbβ0 )∗1. Furthermore, for l ≥ 0, (l, β) ̸=

(1, β0), (0, β0), define

q
β
−1,l : A

∗(X;Q)⊗l −→ R

by

q
β
−1,l(γ1 ⊗ · · · ⊗ γl) :=

∫

M0,l(β)

l∧

j=1

(eviβj )
∗γj .(7)

Define

q
β0

1,0(α) := dα, q
β0

0,0 := 0, q
β0

−1,1 := 0, q
β0

−1,0 := 0.

Set

qk,l :=
∑

β∈Π

T βq
β
k,l.

Lastly, define similar operations using spheres,

q∅,l : A
∗(X;Q)⊗l −→ A∗(X;R),
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as follows. For β ∈ H2(X;Z) let Ml+1(β) be the moduli space of stable
J-holomorphic spheres with l + 1 marked points indexed from 0 to l rep-
resenting the class β, and let evβj : Ml+1(β) → X be the evaluation maps.
Assume that all the moduli spaces Ml+1(β) are smooth orbifolds and ev0 is
a submersion. Let

(8) ϖ : H2(X;Z) → Π

denote the projection. Recall that the relative spin structure s determines a
class ws ∈ H2(X;Z/2Z) such that w2(TL) = i∗ws. By abuse of notation we
think of ws as acting on H2(X;Z).

For l ≥ 0, (l, β) ̸= (1, 0), (0, 0), set

q
β

∅,l(γ1, . . . , γl) := (−1)ws(β)(evβ0 )∗(∧
l
j=1(ev

β
j )

∗γj),

q∅,l(γ1, . . . , γl) :=
∑

β∈H2(X)

Tϖ(β)q
β

∅,l(γ1, . . . , γl),

and define

q0∅,1 := 0, q0∅,0 := 0.

The sign (−1)ws(β) is designed to compensate for the gluing sign in Propo-
sition 2.11, as in Lemma 2.12.

In Proposition 3.1 we prove that the q operators defined in this section
are R-linear in the proper sense.

2.2.3. Relations. In dealing with the next result, we will be using the
following notation conventions.

A list is a finite sequence. We write A ≤ B if A is a sublist of B. Denote
by [k] a fundamental list of integers, namely,

[k] := (1, . . . , k).

An ordered 3-partition of [k] is a partition of [k] to three sublists (1 : 3), (2 :
3), and (3 : 3), such that

(1 : 3) ◦ (2 : 3) ◦ (3 : 3) = [k].

For example, a possible ordered 3-partition of [7] is {(1, 2), (3, 4, 5, 6), (7)}, so
in the above notation (1 : 3) = (1, 2), (2 : 3) = (3, 4, 5, 6), and (3 : 3) = (7).
On the other hand, {(1, 2), (4, 3, 5, 6), (7)} and {(1, 3), (2, 4, 5, 6), (7)} are not
ordered 3-partition of [7], because the order in each is violated.
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Use |(i : 3)| to denote the length of the corresponding sub-list, i = 1, 2, 3.
So, if

(1 : 3) = (1, . . . , i1), (2 : 3) = (i1 + 1, . . . , i1 + i2),

(3 : 3) = (i1 + i2 + 1, . . . , k),

then |(1 : 3)| := i1, |(2 : 3)| = i2, and |(3 : 3)| = k − i1 − i2. We allow a sub-
list to be empty, in which case its length is 0.

Denote the set of all ordered 3-partitions of [k] by S3[k]. Similarly, denote
by S2[k] the set of ordered 2-partitions of [k].

For a list α = (α1, . . . , αk) and any (ordered) sub-list of indices I ≤ [k],
write αI for the ordered sub-list of α with indices in I. Write |αI | for∑

i∈I |αi|. In the special case I = [k] write simply |α| := |αI |.
Let I ⊔ J = [l] be a partition of [l] in the usual sense, not respecting

the order of [l]. Equip the subsets I and J with the order induced from [l].
Let γ = (γ1, . . . , γl) be a list of differential forms. Define sgn(σγI∪J) by the
equation ∧

i∈I

γi ∧
∧

j∈J

γj = (−1)sgn(σ
γ
I∪J)

∧

k∈[l]

γk,

where the wedge products are taken in the order of the respective lists.
Explicitly,

sgn(σγI∪J) ≡
∑

i∈I,j∈J
j<i

|γi| · |γj | (mod 2).

Proposition 2.4. For any fixed α = (α1, . . . , αk), γ = (γ1, . . . , γl),

0 =
∑

S3[l]
(2:3)={j}

(−1)|γ
(1:3)|+1qk,l(α; γ

(1:3) ⊗ dγj ⊗ γ(3:3))(9)

+
∑

P∈S3[k]
I⊔J=[l]

(−1)ι(α,γ;P,I)q|(1:3)|+|(3:3)|+1,|I|(α
(1:3)

⊗ q|(2:3)|,|J |(α
(2:3); γJ)⊗ α(3:3); γI),

where

ι(α, γ;P, I) ≡
(∑

j∈J

|γj |+ 1
)
·
∑

j∈(1:3)

(|αj |+ 1)

+
∑

j∈I

|γj |+ sgn(σγI∪J) (mod 2).
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Figure 1: The fat black dot represents a point of the chain Q “Poincaré
dual” to q2,3(α1, α2; γ1, γ2, γ3).

Intuitively, equation (9) describes the boundary of the chain Q “Poincaré
dual” to qk,l(α; γ). Indeed, the term of the second summand of equation (9)
with (|(1 : 3)|, |I|, β) = (1, 0, β0) corresponds to the boundary of Q. Think of

Figure 2: The fat black dot represents a point of the portion of the boundary
of Q arising from J-holomorphic disks passing through the boundary of the
constraint corresponding to α2.

Figure 3: The fat black dot represents a point of the portion of the boundary
of Q arising from the boundary of the moduli spaces M3,3(β).
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the chain Q as the union of the boundaries of J-holomorphic disks passing
through constraints “Poincaré dual” to α and γ. See Figure 1. One type of
contribution to the boundary of Q comes from J-holomorphic disks passing
through the boundary of the constraints corresponding to α and γ, as in
the first summand of equation (9) and the part of the second summand that
corresponds to (|(2 : 3)|, |J |, β) = (1, 0, β0). See Figure 2. The other type of
contribution to the boundary of Q comes from the boundaries of the moduli
spacesMk+1,l(β) arising from disk bubbling and is reflected in the remainder
of the second summand of equation (9). See Figure 3.

A proof of Proposition 2.4 is given in Section 2.3 below using Proposi-
tions 2.1 and 2.2 and the description of the boundary of Mk+1,l(β) in terms
of fiber-products.

Proposition 2.5. For any γ = (γ1, . . . , γl),

0 =
∑

(2:3)={j}

(−1)|γ
(1:3)|+1q−1,l(γ

(1:3) ⊗ dγj ⊗ γ(3:3))(10)

+
1

2

∑

I⊔J={1,...,l}

(−1)ι(γ;I)⟨q0,|I|(γ
I), q0,|J |(γ

J)⟩

+ (−1)|γ|+1

∫

L

i∗q∅,l(γ),

where

ι(γ; I) ≡
∑

j∈I

|γj |+ sgn(σγI∪J) (mod 2).

Intuitively, equation (10) describes the boundary of the 1-dimensional
part of the chain Q′ “Poincaré dual” to

∧l
j=1(evi

β
j )

∗γj , the integrand in
the definition of q−1,l(γ). Think of Q′ as the space of J-holomorphic disks
passing through constraints Poincaré dual to γ. One type of contribution
to the boundary of Q′ comes from J-holomorphic disks passing through the
boundary of the constraints corresponding to γ, as in the first summand of
equation (10). The second type of contribution to the boundary of Q′ comes
from the boundaries of the moduli spaces M0,l(β); disk bubbling is reflected
in the second summand of equation (10) and the collapse of the boundary
of the disk to a point is reflected in the third summand.

A proof of Proposition 2.5 is given in Section 2.4 below using Proposi-
tions 2.1 and 2.2 and the description of the boundary of M0,l(β) in terms
of fiber-products.
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Fix a closed form γ ∈ IQD with |γ| = 2. For α1, . . . , αk ∈ C, define

(11)

m
β,γ
k (⊗k

j=1αj) =
∑

l

1

l!
q
β
k,l(⊗

k
j=1αj ; γ

⊗l),

m
γ
k(⊗

k
j=1αj) =

∑

l

1

l!
qk,l(⊗

k
j=1αj ; γ

⊗l),

for all k ≥ −1, l ≥ 0. In particular, mβ,γ
k (⊗k

j=1αj) ∈ C and m
γ
−1 ∈ R. Observe

that this definition of mk agrees with the definition in Section 1.2 for k ≥ 0.

Proposition 2.6 (A∞ relations). The operations {mγ
k}k≥0 define an A∞

structure on C. That is,

∑

S3[k]

(−1)
∑

j∈(1:3)(|αj |+1)m
γ

|(1:3)|+|(3:3)|+1(α
(1:3) ⊗m

γ

|(2:3)|(α
(2:3))⊗ α(3:3)) = 0.

Proof. Since we have assumed dγ = 0 and |γ| = 2, this follows from equa-
tion (11) and Proposition 2.4. □

2.3. Proof for k ≥ 0

This section is devoted to the proof of Proposition 2.4.

Lemma 2.7. The map evb0 : Mk+1,l(β) → L satisfies

rdim(evbβ0 ) ≡ k (mod 2).

Proof. Since L is orientable, µ(β) is even. Therefore,

rdim(evbβ0 ) = n− 3 + µ(β) + k + 1 + 2l − n

= µ(β) + k + 2l − 2 ≡ k (mod 2).

□

For a list of indices I, denote by Mk+1,I(β) the moduli space diffeo-
morphic to Mk+1,|I|(β) with interior marked points labeled by I. It carries

evaluation maps evbβj with j ∈ {0, . . . , k} and eviβm with m taken from I.
Note that the diffeomorphism

Mk+1,I(β)
∼

−→ Mk+1,|I|(β)

preserves orientation, no matter how we identify I with [|I|].
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Proposition 2.8. Let k ∈ Z≥−1, l ∈ Z≥0, β ∈ Π. Let ki, βi, (i = 1, 2) be
such that k1 + k2 = k + 1 and β1 + β2 = β. Let I ⊔ J = [l] be a partition.
Let B ⊂ ∂Mk+1,l(β) be the boundary component where a disk bubbles off
at the i-th boundary point, with k2 of the boundary marked points and the
interior marked points labeled by J . See Figure 4. Then the canonical map

ϑ : Mk1+1, I(β1) evbβ1
i

×
evb

β2
0
Mk2+1, J(β2)

∼
−→ B

is a diffeomorphism unless k = −1, I = ∅ = J , and β1 = β2. In the excep-
tional case, ϑ is a 2 to 1 local diffeomorphism in the orbifold sense. In both
cases, ϑ changes orientation by the sign (−1)δ1 with

(12) δ1 := k2(k1 − i) + i− n.

Proof. The case i = 1 is [6, Proposition 8.3.3]. The proof for other values of
i is similar. See also [23, Theorem 4.3.3(b)] for an in-depth discussion of the
sign of gluing at a boundary node. □

Figure 4: The domain of an element of B ⊂ ∂M4,3(β), with k1 = 3, k2 = 1,
i = 2, I = {2}, and J = {1, 3}.

For k ∈ Z≥0 and a = (a1, . . . , am) ∈ Z×m, denote

ε′(k) :=

k∑

j=1

j + 1 =
k(k + 1)

2
+ 1, ε′′(a) :=

m∑

j=1

j · aj .

In particular, for a list a of length k, we have

ε(a) = ε′(k) + ε′′(a).

As with ε, we allow differential forms as input for ε′′ in lieu of their degrees.
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Lemma 2.9. Let α = (α1, . . . , αk) ∈ A∗(L;R)⊗k and γ = (γ1, . . . , γl) ∈
A∗(X;Q)⊗l. Fix an element of S3[k] and I ⊔ J a partition of [l], and set
k1 = |(1 : 3)|+ |(3 : 3)|+ 1, k2 = |(2 : 3)|, and i = |(1 : 3)|+ 1. Then

1) ε′(k1) + ε′(k2) ≡ ε′(k) + k + k1k2 (mod 2).

2)

ε′′(α(1:3), |α(2:3)|+ |γJ |+ k2, α
(3:3)) + ε′′(α(2:3))

≡ ε′′(α) + ik2 + k2|α
(3:3)|+ |α|+ |α(1:3)|+ i|γJ | (mod 2).

3)

ε(α(1:3), |α(2:3)|+ |γJ |+ k2, α
(3:3)) + ε(α(2:3))

≡ ε(α) + |α|+ k + |α(1:3)|+ i|γJ |+ k2|α
(3:3)|+ k1k2 + ik2 (mod 2).

Proof.

1) Recall that k1 + k2 = k + 1. Therefore,

ε′(k1) + ε′(k2) =
k1(k1 + 1) + k2(k2 + 1)

2
+ 2

≡
k21 + k22 + k + 1

2

=
(k1 + k2)

2 − 2k1k2 + k + 1

2

≡
(k + 1)(k + 1 + 1)

2
+ k1k2

≡
k(k + 1)

2
+ k + 1 + k1k2

=ε′(k) + k + k1k2 (mod 2).

2)

ε′′(α(1:3), |α(2:3)|+ |γJ |+ k2, α
(3:3)) + ε′′(α(2:3))

≡
i−1∑

j=1

j|αj |+ i(|α(2:3)|+ |γJ |+ k2) +

k1∑

j=i+1

j|αj+k2−1|+
k2∑

j=1

j|αj+i−1|

≡
i−1∑

j=1

j|αj |+ i(|α(2:3)|+ k2) +

k∑

j=i+k2

(j − k2 + 1)|αj |
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+

i+k2−1∑

j=i

(j − i+ 1)|αj |+ i|γJ |

≡
k∑

j=1

j|αj |+ ik2 − k2|α
(3:3)|+ |α(3:3)|+ |α(2:3)|+ i|γJ |

≡ ε′′(α) + ik2 + k2|α
(3:3)|+ |α|+ |α(1:3)|+ i|γJ | (mod 2).

3) This is the result of summing the two first statements. □

Lemma 2.10. Let B be the boundary component of Mk+1,l(β) described in
Proposition 2.8, and let δ1 be the sign of the gluing map given there. Fix the
ordered 3-partition of [k] such that i = |(1 : 3)|+ 1 and k2 = |(2 : 3)|. Write
l1 := |I|, l2 := |J |. Then

(evb0|B)∗
( l∧

j=1

evi∗jγj ∧
k∧

j=1

evb∗jαj

)

= (−1)∗qβ1

k1,l1
(α(1:3) ⊗ q

β2

k2,l2
(α(2:3); γJ)⊗ α(3:3); γI),

with

(13) ∗ = δ1 + |γJ | · |α(1:3)|+ rdim(evbβ2

0 ) · |α(3:3)|+

+ ε(α(1:3), (evbβ2

0 )∗ξ2, α
(3:3)) + ε(α(2:3)) + sgn(σγI∪J),

or, equivalently,

∗ = i+ n+ |γJ | · |α(1:3)|+ ε(α) + |α|(14)

+ k + |α(1:3)|+ i|γJ |+ sgn(σγI∪J).

Proof. Write

ξ =

l∧

j=1

evi∗jγj ∧
k∧

j=1

evb∗jαj .

Consider the pull-back diagram

Mk1+1, I(β1)×L Mk2+1, J(β2)
p2

//

p1

��

Mk2+1, J(β2)

evb
β2
0

��

Mk1+1, I(β1)
evb

β1
i

// L.
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We use the notation evbβi

j , evi
βi

j , for i = 1, 2, to denote the evaluation maps
on the spaces Mk1+1, I(β1),Mk2+1, J(β2), respectively. Set

ξ̄ := ϑ∗ξ,

with ϑ from Proposition 2.8, and

ξ1 :=
∧

j∈I

(eviβ1

j )∗γj ∧
i−1∧

j=1

(evbβ1

j )∗αj ∧
k1∧

j=i+1

(evbβ1

j )∗αj+k2−1,

ξ2 :=
∧

j∈J

(eviβ2

j )∗γj ∧
k2∧

j=1

(evbβ2

j )∗αj+i−1.

Note that

ξ̄ = (−1)δ2p∗1ξ1 ∧ p
∗
2ξ2,

with

δ2 := (|α(2:3)|+ |γJ |) · |α(3:3)|+ |γJ | · |α(1:3)|+ sgn(σγI∪J).

By property (4) of the push forward,

(evbβ1

i )∗(evbβ2

0 )∗ξ2 = p1∗p
∗
2ξ2.

Using in addition properties (2)-(3), we compute

(evb0|B)∗ξ = (−1)δ1(evbβ1

0 )∗p1∗ξ̄

= (−1)δ1+δ2(evbβ1

0 )∗p1∗ (p
∗
1ξ1 ∧ p

∗
2ξ2)

= (−1)δ1+δ2(evbβ1

0 )∗ (ξ1 ∧ p1∗p
∗
2ξ2)

= (−1)δ1+δ2(evbβ1

0 )∗

(
ξ1 ∧ (evbβ1

i )∗(evbβ2

0 )∗ξ2

)

= (−1)δ1+δ2+|(evb
β2
0 )∗ξ2|·|α(3:3)|(evbβ1

0 )∗

×

(
∧

j∈I

(eviβ1

j )∗γj ∧
i−1∧

j=1

(evbβ1

j )∗αj ∧ (evbβ1

i )∗(evbβ2

0 )∗ξ2

∧
k1∧

j=i+1

(evbβ1

j )∗αj+k2−1

)
,

and since (evbβ2

0 )∗ξ2 = (−1)ε(α
(2:3))q

β2

k2,l2
(α(2:3); γJ), we continue

= (−1)∗qβ1

k1,l1
(α(1:3) ⊗ q

β2

k2,l2
(α(2:3); γJ)⊗ α(3:3); γI)
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with

∗ = δ1 + δ2 + |(evbβ2

0 )∗ξ2| · |α
(3:3)|+ ε(α(1:3), (evbβ2

0 )∗ξ2, α
(3:3)) + ε(α(2:3)).

Note that

|(evbβ2

0 )∗ξ2| = |α(2:3)|+ |γJ | − rdim(evb0).

Therefore,

∗ ≡ δ1 + (|α(2:3)|+ |γJ |) · |α(3:3)|+ |γJ | · |α(1:3)|+ sgn(σγI∪J)

+ (|α(2:3)|+ |γJ |+ rdim(evb0))|α
(3:3)|

+ ε(α(1:3), (evbβ2

0 )∗ξ2, α
(3:3)) + ε(α(2:3))

≡ δ1 + |γJ | · |α(1:3)|+ sgn(σγI∪J) + rdim(evb0)|α
(3:3)|

+ ε(α(1:3), (evbβ2

0 )∗ξ2, α
(3:3)) + ε(α(2:3)) (mod 2).

This proves equation (13). By the definition (12) of δ1, Lemma 2.7, and
Lemma 2.9, we therefore have

∗ ≡ k1k2 + ik2 + i+ n+ |γJ | · |α(1:3)|+ sgn(σγI∪J) + k2|α
(3:3)|+ ε(α)

+ |α|+ k + |α(1:3)|+ i|γJ |+ k2|α
(3:3)|+ k1k2 + ik2

≡ i+ n+ |γJ | · |α(1:3)|+ sgn(σγI∪J) + ε(α)

+ |α|+ k + |α(1:3)|+ i|γJ | (mod 2).

This proves equation (14). □

Proof of Proposition 2.4. Apply Proposition 2.2 to the caseM = Mk+1,l(β),
f = evb0, and

ξ =

l∧

j=1

evi∗jγj ∧
k∧

j=1

evb∗jαj .

Let us see how each of the elements in Stokes’ theorem looks in terms of q.
First element: d(f∗ξ). This is

d((evb0)∗ξ) = (−1)ε(α)qβ0

1,0

(
q
β
k,l(α; γ)

)
.
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Second element: f∗(dξ). This gives

(evb0)∗(dξ) = (evb0)∗


d




l∧

j=1

evi∗jγj


 ∧

k∧

j=1

evb∗jαj




+ (−1)|γ|(evb0)∗




l∧

j=1

evi∗jγj ∧ d




k∧

j=1

evb∗jαj






=
∑

S3[l]
(2:3)={i}

(−1)ε(α)+|γ(1:3)|q
β
k,l(α; γ

(1:3) ⊗ dγi ⊗ γ(3:3))

+
∑

S3[k]
(2:3)={i}

(−1)|γ|+ε(α)+i+
∑

i−1
j=1 |αj |q

β
k,l(α

(1:3) ⊗ dαi ⊗ α(3:3); γ).

Further,

q
β
k,l(α

(1:3) ⊗ dαi ⊗ α(3:3); γ) = q
β
k,l(α

(1:3) ⊗ q
β0

1, 0(α
(2:3))⊗ α(3:3); γ).

Third element:
(
f
∣∣
∂M

)
∗
ξ.

Let B be a boundary component as in Proposition 2.8. Write l1 := |I|,
l2 := |J |.

The dimension of the domain of evb0 is

k + 1 + 2l + µ(β) + n− 3 = k − 2 + 2l + µ(β) + n ≡ k + n (mod 2),

and |ξ| = |α|+ |γ|. Therefore, the contribution of (f |B)∗ξ to Stokes’ theorem
comes with the sign (−1)|α|+|γ|+k+n. We claim that

− (−1)|α|+|γ|+k+n(f |B)∗ξ

= (−1)ε(α)+ι(α,γ;P,I)q
β1

k1,l1
(α(1:3) ⊗ q

β2

k2,l2
(α(2:3); γJ)⊗ α(3:3); γI).

Indeed, by Lemma 2.10, we have

∗+ |α|+ |γ|+ k + n+ 1 + ε(α)

≡ i+ n+ |γJ | · |α(1:3)|+ ε(α) + |α|+ k + |α(1:3)|+ i|γJ |+ sgn(σγI∪J)

+ |α|+ |γ|+ k + n+ 1 + ε(α)

≡ i+ |γJ | · |α(1:3)|+ |α(1:3)|+ i|γJ |+ sgn(σγI∪J) + |γ| − 1

≡ |γJ | · (|α(1:3)|+ (i− 1)) + (|α(1:3)|+ i− 1) + |γ|+ |γJ |+ sgn(σγI∪J)

≡ (|γJ |+ 1) · (|α(1:3)|+ (i− 1)) + |γI |+ sgn(σγI∪J)
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≡ι(α; γ;P, I) (mod 2).

Since there is one boundary node, k1 is at least 1. Also, the stability of
each of the disk components implies that

(β1, k1, l1) ̸= (β0, 1, 0), (β2, k2, l2) ̸= (β0, 1, 0), (β0, 0, 0).

So, the total contribution of the summand (−1)s+t+1
(
f
∣∣
∂M

)
∗
ξ in Stokes’

theorem is

(−1)ε(α)
∑

β1+β2=β
k1+k2=k+1, k1≥1

l1+l2=l
(β1,k1,l1) ̸=(β0,1,0)

(β2,k2,l2) ̸∈{(β0,0,0),(β0,1,0)}

(−1)ι(α,γ;P,I)qβ1

k1,l1
(α(1:3) ⊗ q

β2

k2,l2
(α(2:3); γJ)⊗ α(3:3); γI).

Deducing the equations. All that is left now is to plug the various ex-
pressions into Stokes’ formula. Let us rewrite it first:

0 = d(f∗ξ)− f∗(dξ)− (−1)s+t
(
f
∣∣
∂M

)
∗
ξ.

We showed that

0 = (−1)ε(α)
(
q01,0(q

β
k,l(α; γ)) + (−1)|γ

(1:3)|+1q
β
k,l(α; γ

(1:3), dγi, γ
(3:3))

+ (−1)|γ|+
∑

i−1
j=1 |αj |+i+1q

β
k,l(α

(1:3), dαi, α
(3:3); γ)

+
∑

β1+β2=β
k1+k2=k+1, k1≥1

l1+l2=l
(β1,k1,l1) ̸=(0,1,0)

(β2,k2,l2) ̸∈{(0,0,0),(0,1,0)}

(−1)ι(α,γ;i,I)qβ1

k1,l1
(α(1:3) ⊗ q

β2

k2,l2
(α(2:3); γJ)⊗ α(3:3); γI)

)

= (−1)ε(α)
(
(−1)|γ

(1:3)|+1q
β
k,l(α; γ

(1:3), dγi, γ
(3:3))

+
∑

β1+β2=β
k1+k2=k+1, k1≥1

l1+l2=l

(−1)ι(α,γ;P,I)qβ1

k1,l1
(α(1:3) ⊗ q

β2

k2,l2
(α(2:3); γJ)⊗ α(3:3); γI)

)
.

Dividing by (−1)ε(α) we get the desired equation. □
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2.4. Proof for k = −1

This section is devoted to the proof of Proposition 2.5. Recall the definition
of the projection ϖ from (8) and recall that ws ∈ H2(X;Z/2Z) is the class
with w2(TL) = i∗ws determined by the relative spin structure s.

Proposition 2.11. Let l ∈ Z≥0, β ∈ Π, and β̂ ∈ H2(X;Z) with ϖ(β̂) = β.
Let B ⊂ ∂M0,l(β) be the boundary component where a generic point is a

sphere of class β̂ intersecting L at a marked point. Such spheres arise when
the boundary of a disk collapses to a point. Equivalently, one can view this
as interior bubbling from a ghost disk component. Note that the ghost disk
is not stable. Then the map

ϑ : L×X Ml+1(β̂)
∼

−→ B

satisfies sgn(ϑ) = (−1)n+1+ws(β̂).

Proof. This is [6, Proposition 8.10.6], but with sign (−1)n+1+ws(β̂) instead
of (−1)n. The reason for the sign discrepancy of +1 is that in the notation of
the proof of [6, Proposition 8.10.6], we should have Rout = −R>0. The sign
is illustrated in Figure 5 in the case n = 0 and l = 2. The reason for the sign

discrepancy of (−1)ws(β̂) can be seen by following the construction of the
orientation associated to a relative spin structure [6, Theorem 8.1.1.]. □

Recall that pt is the map from any space to a point, and eviβj : M0,l(β) →
X is the evaluation map at the jth interior marked point.

Lemma 2.12. Let B be the boundary component of M0,l(β) described in
Proposition 2.11, and let γ = (γ1, . . . , γl). Then

pt∗
( l∧

j=1

(eviβj )
∗γj
)
|B = (−1)n+1

∫

L

i∗qβ̂∅,l(γ),

for β̂ as in Proposition 2.11.

Proof. Consider the following pullback diagram:

L×X Ml+1(β̂)
p2

//

p1

��

Ml+1(β̂)

ev
β̂
0

��

L
i

// X .
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Figure 5: M0,2, the moduli space of stable disks with two marked interior
points. Here, X and L are a point, so n = 0. Up to reparameterization, we
can fix w1 and the θ coordinate of w2. Then the orientation is given by the
positive direction of r. The boundary component of a sphere bubble has
the sign (−1)n+1 = −1 in agreement with Proposition 2.11. The boundary
component of two disks joined at a boundary node has the sign (−1)n = 1
in agreement with Proposition 2.8.

Recall that evβ̂j : Ml+1(β̂) → X is the evaluation map at the jth marked

point. Write ξ :=
∧l

j=1(evi
β
j )

∗γj , and define ξ′, ξ′′, by

ξ′ = ϑ∗ξ|B, ξ′′ =

l∧

j=1

(evβ̂j )
∗γj ,

where ϑ is the diffeomorphism from Proposition 2.11. The result now follows
from the fact that

pt∗ξ|B = (−1)n+1+ws(β̂)pt∗ξ
′,
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and

pt∗ξ
′ = pt∗p

∗
2ξ

′′ = pt∗(p1)∗p
∗
2ξ

′′ = pt∗i
∗(evβ̂0 )∗ξ

′′ = (−1)ws(β̂)

∫

L

i∗qβ̂∅,l(γ).

□

Lemma 2.13. Let l ∈ Z≥0, β ∈ Π. Let β1, β2 ∈ Π be such that β1 + β2 =
β. Let I ⊔ J = [l] be a partition of [l]. Let B ⊂ ∂M0,l(β) be the boundary
component where a generic point is a stable map with two disk components,
one carrying the interior marked points labeled by I and the other carrying
the points labeled by J . If β1 ̸= β2 or I ̸= ∅ or J ̸= ∅, then

∫

B

∧l
j=1evi

∗
jγj = (−1)sgn(σ

γ
I∪J)+|γJ |+n⟨qβ1

0,|I|(γ
I), qβ2

0,|J |(γ
J)⟩.

If β1 = β2 = β′ and I = ∅ = J, then

∫

B

∧l
j=1evi

∗
jγj =

(−1)n

2
⟨qβ

′

0,0, q
β′

0,0⟩.

Proof. First, consider the case β1 ̸= β2 or I ̸= ∅ or J ̸= ∅. By Proposition 2.8
applied to the case i = k1 = k2 = 0, the diffeomorphism

ϑ : M1, I(β1) evbβ1
0

×
evb

β2
0
M1, J(β2)

∼
−→ B

has sgn(ϑ) = (−1)n.
Let eviβi

j and evbβi

0 for i = 1, 2, be the evaluation maps of M1,I(β1),
M1,J(β2), respectively. Set

ξ̄ := ϑ∗
( l∧

j=1

evi∗jγj

)
, ξ1 :=

∧

j∈I

(eviβ1

j )∗γj , ξ2 :=
∧

j∈J

(eviβ2

j )∗γj .

Similarly to the proof of Lemma 2.10, consider the pull-back diagram

M1,I(β1)×L M1,J(β2)
p2

//

p1

��

M1,J(β2)

evb
β2
0

��

M1,I(β1)
evb

β1
0

// L.
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By properties (3)-(4) and Lemma 2.7, we compute

∫

M1,I(β1)×LM1,J(β2)
ξ̄ = pt∗(ξ̄)

= (−1)sgn(σ
γ
I∪J)pt∗p1∗(p

∗
1ξ1 ∧ p

∗
2ξ2)

= (−1)sgn(σ
γ
I∪J)pt∗(ξ1 ∧ p1∗p

∗
2ξ2)

= (−1)sgn(σ
γ
I∪J)pt∗(ξ1 ∧ (evbβ1

0 )∗(evbβ2

0 )∗ξ2)

= (−1)sgn(σ
γ
I∪J)pt∗(evb

β1

0 )∗(ξ1 ∧ (evbβ1

0 )∗(evbβ2

0 )∗ξ2)

= (−1)sgn(σ
γ
I∪J)+|ξ1||(evb

β2
0 )∗ξ2|pt∗(evb

β1

0 )∗((evb
β1

0 )∗(evbβ2

0 )∗ξ2 ∧ ξ1)

= (−1)sgn(σ
γ
I∪J)+|ξ1||(evb

β2
0 )∗ξ2|pt∗(((evb

β2

0 )∗ξ2 ∧ (evbβ1

0 )∗ξ1)

= (−1)sgn(σ
γ
I∪J)+|(evb

β2
0 )∗ξ2|(|ξ1|+|(evb

β1
0 )∗ξ1|)pt∗((evb

β1

0 )∗ξ1 ∧ (evbβ2

0 )∗ξ2)

= (−1)sgn(σ
γ
I∪J)+|(evb

β2
0 )∗ξ2|(|ξ1|+|ξ1|)pt∗((evb

β1

0 )∗ξ1 ∧ (evbβ2

0 )∗ξ2)

= (−1)sgn(σ
γ
I∪J)pt∗((evb

β1

0 )∗ξ1 ∧ (evbβ2

0 )∗ξ2)

= (−1)sgn(σ
γ
I∪J)+|q

β2
0,l2

(γJ)|+ε(∅)+ε(∅)⟨qβ1

0,l1
(γI), qβ2

0,l2
(γJ)⟩

= (−1)sgn(σ
γ
I∪J)+|γJ |⟨qβ1

0,l1
(γI), qβ2

0,l2
(γJ)⟩.

This proves the lemma in the case β1 ̸= β2 or I ̸= ∅ or J ̸= ∅. In the case
β1 = β2 = β′ and I = ∅ = J, the same argument applies except we must
divide the final result by 2 because the map ϑ of Proposition 2.8 is 2 to
1. □

Proof of Proposition 2.5. Stokes’ theorem, Proposition 2.2, gives

(15) 0 =

∫

M0,l(β)
d(∧l

j=1evi
∗
jγj) + (−1)n+1+|γ|

∫

∂M0,l(β)
∧l
j=1evi

∗
jγj .

We have

(16)

∫

M0,l(β)
d(∧l

j=1evi
∗
jγj) =

∑

(2:3)={j}

(−1)|γ
(1:3)|q

β
−1,l(γ

(1:3) ⊗ dγj ⊗ γ(3:3)).

The expression
∫
∂M0,l(β)

∧l
j=1evi

∗
jγj consists of two types of contributions.
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First type – disk bubbling. Let B ⊂ ∂M0,l(β) be a boundary component
of the type described in Lemma 2.13. By Lemma 2.13, we have

∫

B

∧l
j=1evi

∗
jγj =





(−1)sgn(σ
γ
I∪J)+|γJ |+n⟨qβ1

0,l1
(γI), qβ2

0,l2
(γJ)⟩,

β1 ̸= β2 or I ̸= ∅ or J ̸= ∅,
(−1)n

2 ⟨qβ
′

0,0, q
β′

0,0⟩,

β1 = β2 = β′ and I = ∅ = J,

so

(17) (−1)n+1+|γ|

∫

B

∧l
j=1evi

∗
jγj

=

{
(−1)sgn(σ

γ
I∪J)+|γI |+1⟨qβ1

0,l1
(γI), qβ2

0,l2
(γJ)⟩ β1 ̸= β2 or I ̸= ∅ or J ̸= ∅,

−1
2⟨q

β′

0,0, q
β′

0,0⟩, β1 = β2 = β′ and I = ∅ = J.

Second type – sphere bubbling from a ghost disk. Let B ⊂ ∂M̃0,l(β) be a
boundary component of the type described in Proposition 2.11. Lemma 2.12
gives ∫

B

∧l
j=1evi

∗
jγj = (−1)n+1

∫

L

i∗qβ̂∅,l(γ),

so

(18) (−1)n+1+|γ|

∫

B

∧l
j=1evi

∗
jγj = (−1)|γ|

∫

L

i∗qβ̂∅,l(γ).

Substituting equations (16), (17), and (18) into equation (15) and divid-
ing by −1, we get

0 =
∑

(2:3)={j}

(−1)|γ
(1:3)|+1q

β
−1,l(γ

(1:3) ⊗ dγj ⊗ γ(3:3))

+
1

2

∑

β1+β2=β
I⊔J=[l]

(−1)sgn(σ
γ
I∪J)+|γI |⟨qβ1

0,|I|(γ
I), qβ2

0,|J |(γ
J)⟩

+ (−1)|γ|+1
∑

ϖ(β̂)=β

∫

L

i∗qβ̂∅,l(γ),

with ϖ as in (8). The factor of 1/2 in the formula arises as follows. Each
summand with β1 ̸= β2 and I ̸= ∅ ≠ J appears twice while the correspond-
ing boundary component appears only once. The factor of 1/2 cancels this
discrepancy. The summands with β1 = β2 = β′ and I = ∅ = J appear only
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once, but the contribution of the corresponding boundary component in
equation (17) comes with a factor of 1/2. □

3. Properties

3.1. Linearity

Proposition 3.1. The q operators are multilinear, in the sense that for
a ∈ R we have

q
β
k,l(α1, . . . , αi−1, a · αi, . . . , αk; γ1, . . . , γl)

= (−1)|a|·
(
i+

∑
i−1
j=1 |αj |+

∑
l
j=1 |γj |

)
a · qβk,l(α1, . . . , αk; γ1, . . . , γl),

and for a ∈ Q we have

q
β
k,l(α1, . . . , αk; γ1, . . . , a · γi, . . . , γl)

= (−1)|a|·
∑

i−1
j=1 |γj |a · qβk,l(α1, . . . , αk; γ1, . . . , γl),

and

q
β

∅,l(γ1, . . . , a · γi, . . . , γl) = (−1)|a|·
∑

i−1
j=1 |γj |a · qβ∅,l(γ1, . . . , γl).

In addition, the pairing ⟨ , ⟩ defined by (1) is R-bilinear in the sense of
Definition 1.1(2).

Proof. For qβ0

1,0 = d, we have

d(aα) = (−1)|a|adα.

For (k, l, β) ̸= (1, 0, β0), we have

(evb0)∗(

l∧

j=1

evi∗jγj ∧
i−1∧

j=1

evb∗jαj ∧ evb
∗
i (aαi) ∧

k∧

j=i+1

evb∗jαj)

= (−1)|a|(
∑

l
j=1 |γj |+

∑
i−1
j=1 |αj |)a · (evb0)∗(

l∧

j=1

evi∗jγj ∧
k∧

j=1

evb∗jαj).

The corresponding change in ε is

ε(α1, . . . , αi−1, aαi, αi+1, . . . , αk)− ε(α1, . . . , αk) = i · |a|.
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Together, this gives the sign of the first identity. Similarly, for the second
identity,

(evb0)∗(

i−1∧

j=1

evi∗jγj ∧ evi
∗
i (aγi) ∧

l∧

j=i+1

evi∗jγj ∧
k∧

j=1

evb∗jαj)

= (−1)|a|·
∑

i−1
j=1 |γj |a · (evb0)∗(

l∧

j=1

evi∗jγj ∧
k∧

j=1

evb∗jαj),

while ε is not affected. If k = −1, we use pt instead of evb0, and the sign
computation is valid as before.

The third equation is immediate from definition.
To verify the linearity of the pairing, compute

⟨a · ξ, η⟩ = (−1)|η| a ·

∫

L

ξ ∧ η = a · ⟨ξ, η⟩,

⟨ξ, a · η⟩ = (−1)|a|+|η|

∫

L

ξ ∧ a · η

= (−1)|a|+|η|+|a|·|ξ| a ·

∫

L

ξ ∧ η = (−1)|a|(1+|ξ|)a · ⟨ξ, η⟩.

□

3.2. Unit of the algebra

We show that the constant form 1 ∈ A∗(L;R) is a unit of the A∞ algebra
(C, {mγ

k}k≥0).

Proposition 3.2. Fix f ∈ A0(L)⊗R, α1, . . . , αk ∈ C, and γ1, . . . , γl ∈
A∗(X;Q). Then

q
β
k,l(α1, . . . , αi−1, f, αi, . . . , αk−1;⊗

l
r=1γr)

=





df, (k, l, β) = (1, 0, β0),

(−1)|f |f · α1, (k, l, β) = (2, 0, β0),

i = 1,

(−1)|α1|(|f |+1)f · α1, (k, l, β) = (2, 0, β0),

i = 2,

0, otherwise.
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In particular, 1 ∈ A0(L) is a strong unit for the A∞ operations mγ:

m
γ
k(α1, . . . , αi−1, 1, αi, . . . , αk−1) =





0, k ≥ 3 or k = 1,

α1, k = 2, i = 1,

(−1)|α1|α1, k = 2, i = 2.

Proof. The case (k, l, β) = (1, 0, β0) is true by definition. We proceed with
the proof for other values of (k, l, β).

Let π : Mk+1,l(β) → Mk,l(β) be the map that forgets the ith marked
boundary point, shifts the labels of the following boundary points, and sta-
bilizes the resulting map. Thus, the map π is defined only when stabilization
is possible, that is, when (k, l, β) ̸= (2, 0, β0). Denote by evbk+1

j and evik+1
j

(resp. evbkj and evikj ) the evaluation maps for Mk+1,l(β) (resp. Mk,l(β)).
Set

ξ :=

l∧

j=1

(evikj )
∗γj ∧

k−1∧

j=1

(evbkj )
∗αj .

Note that

evik+1
j = evikj ◦ π, evbk+1

j =

{
evbkj ◦ π, j < i,

evbkj−1 ◦ π, j > i.

Thus, writing g := (evbk+1
i )∗f, we have

±q
β
k,l(α1, . . . , αi−1, f, αi, . . . , αk−1;⊗

l
r=1γr) = (evbk+1

0 )∗(π
∗ξ ∧ g)

whenever π is defined. Using the map φ from forms to currents given in Sec-
tion 2.1.4 together with the analog of the integration properties of Proposi-
tion 2.1 for currents given in [22, Proposition 6.1], we obtain

(19) φ
(
(evbk+1

0 )∗(π
∗ξ ∧ g)

)
= (evbk+1

0 )∗(π
∗ξ ∧ φ(g))

= (evbk0)∗(π∗(π
∗ξ ∧ φ(g))) = (evbk0)∗(ξ ∧ π∗φ(g)).

Since dimMk+1,l(β) > dimMk,l(β) and g has degree zero, it follows that
π∗φ(g) = 0, and the right-hand side of equation (19) vanishes. Since φ is
injective, the desired vanishing result for q

β
k,l follows. The reason for using

currents in this proof is that π need not be a submersion, so the push-forward
π∗ is not defined on differential forms.



✐

✐

“5-Tukachinsky” — 2023/3/7 — 17:38 — page 962 — #36
✐

✐

✐

✐

✐

✐

962 J. Solomon and S. Tukachinsky

Let us see what happens when (k, l, β) = (2, 0, β0). In that case, the
evaluation maps on M3,0(β0) satisfy evb0 = evb1 = evb2. So,

q
β0

2,0(f, α) = (−1)|f |+1+2(|α|+1)+1(evb0)∗evb
∗
0(f ∧ α),

q
β0

2,0(α, f) = (−1)|α|+1+2·(|f |+1)+1(evb0)∗evb
∗
0(α ∧ f).

Denote by Mk+1,l the moduli space of stable disks, that is, genus zero open
stable maps to a point, with k + 1 boundary marked points and l interior
marked points. Since β = β0, the evaluation map evb0 induces an identifica-
tion of Mk+1,l(β0) with Mk+1,l × L. Since k + 1 = 3 and l = 0, the space of
stable disks is a point. Hence, evb0 identifiesM3,0(β0) diffeomorphically with
L. This diffeomorphism preserves orientation by the argument on page 714
of [6] based on their Convention 8.3.1. Thus,

q
β0

2,0(f, α) = (−1)|f |fα and q
β0

2,0(α, f) = (−1)|α|+|α||f |fα.
□

3.3. Cyclic structure

Recall the definition of the pairing (1). Note that

⟨ξ, η⟩ := (−1)|η|
∫

L

ξ ∧ η = (−1)|η|+|η|·|ξ|

∫

L

η ∧ ξ(20)

= (−1)(|η|+1)(|ξ|+1)+1⟨η, ξ⟩.

Proposition 3.3. For any α1, . . . , αk+1 ∈ C and γ1, . . . , γl ∈ A∗(X;Q),

⟨qk,l(α1, . . . , αk; γ1, . . . γl), αk+1⟩

= (−1)(|αk+1|+1)
∑

k
j=1(|αj |+1) · ⟨qk,l(αk+1, α1, . . . , αk−1; γ1, . . . , γl), αk⟩.

In particular, (C, {mγ
k}k≥0) is a cyclic A∞ algebra for any γ.

Proof. For (k, l, β) ̸= (1, 0, β0), use Lemma 2.7 to compute

⟨qβk,l(α1, . . . , αk; γ1, . . . γl), αk+1⟩

(21)

= (−1)|αk+1|pt∗(q
β
k,l(α1, . . . , αk; γ1, . . . γl) ∧ αk+1)

= (−1)|αk+1|+ε(α)pt∗((evb0)∗(

l∧

j=1

evi∗jγj ∧
k∧

j=1

evb∗jαj) ∧ αk+1)



✐

✐

“5-Tukachinsky” — 2023/3/7 — 17:38 — page 963 — #37
✐

✐

✐

✐

✐

✐

Differential forms, Fukaya A∞ algebras 963

= (−1)|αk+1|+ε(α)+|αk+1|·(
∑

k
j=1 |αj |+|γ|+k)

· pt∗(αk+1 ∧ (evb0)∗(

l∧

j=1

evi∗jγj ∧
k∧

j=1

evb∗jαj))

= (−1)|αk+1|+ε(α)+|αk+1|·(
∑

k
j=1 |αj |+|γ|+k)

· pt∗(evb0)∗(evb
∗
0αk+1 ∧

l∧

j=1

evi∗jγj ∧
k∧

j=1

evb∗jαj)

= (−1)|αk+1|+ε(α)+|αk+1|·(
∑

k
j=1 |αj |+|γ|+k)+|αk|·(|αk+1|+|γ|+

∑
k−1
j=1 |αj |)+|αk+1||γ|

· (pt ◦ evb0)∗(evb
∗
kαk ∧

l∧

j=1

evi∗jγj ∧ evb
∗
0αk+1 ∧

k−1∧

j=1

evb∗jαj)

= (−1)|αk+1|+ε(α)+|αk+1|·(
∑

k
j=1 |αj |+k)+|αk|·(|αk+1|+|γ|+

∑
k−1
j=1 |αj |) ·

· (pt ◦ evbk)∗(evb
∗
kαk ∧

l∧

j=1

evi∗jγj ∧ evb
∗
0αk+1 ∧

k−1∧

j=1

evb∗jαj)

= (−1)|αk+1|+ε(α)+|αk+1|·(
∑

k
j=1 |αj |+k)+|αk|·(|αk+1|+|γ|+

∑
k−1
j=1 |αj |)

· pt∗(αk ∧ evbk∗(
l∧

j=1

evi∗jγj ∧ evb
∗
0αk+1 ∧

k−1∧

j=1

evb∗jαj))

= (−1)|αk+1|+ε(α)+|αk+1|·(
∑

k
j=1 |αj |+k)+|αk|·(|αk+1|+|γ|+

∑
k−1
j=1 |αj |)+|αk|·(|αk+1|+|γ|+

∑
k−1
j=1 |αj |+k)

· pt∗(evbk∗(
l∧

j=1

evi∗jγj ∧ evb
∗
0αk+1 ∧

k−1∧

j=1

evb∗jαj) ∧ αk)

= (−1)|αk+1|+ε(α)+|αk+1|·(
∑

k
j=1 |αj |+k)+k·|αk|

· pt∗(evbk∗(
l∧

j=1

evi∗jγj ∧ evb
∗
0αk+1 ∧

k−1∧

j=1

evb∗jαj) ∧ αk).

Let φ : Mk+1,l(β) → Mk+1,l(β) be given by

φ(Σ, u, (z0, . . . , zk), w⃗) = (Σ, u, (z1, . . . , zk, z0), w⃗).

So,

evij ◦ φ = evij , evbk ◦ φ = evb0, evbj ◦ φ = evbj+1, j = 0, . . . , k − 1,
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and sgn(φ) = k. Thus, property (3) of integration gives

pt∗(evbk∗(

l∧

j=1

evi∗jγj ∧ evb
∗
0αk+1 ∧

k−1∧

j=1

evb∗jαj) ∧ αk)

(22)

= (−1)kpt∗(evbk∗φ∗φ
∗(

l∧

j=1

evi∗jγj ∧ evb
∗
0αk+1 ∧

k−1∧

j=1

evb∗jαj) ∧ αk)

= (−1)kpt∗(evb0∗(

l∧

j=1

evi∗jγj ∧ evb
∗
1αk+1 ∧

k−1∧

j=1

evb∗j+1αj) ∧ αk)

= (−1)ε(αk+1,α1,...,αk−1)+k+|αk|⟨qβk,l(αk+1, α1, . . . , αk−1; γ1, . . . , γl), αk⟩.

Combining (21) and (22), we obtain

⟨qβk,l(α1, . . . , αk; γ1, . . . γl), αk+1⟩

= (−1)∗⟨qβk,l(αk+1, α1, . . . , αk−1; γ1, . . . , γl), αk⟩,

where

∗ = |αk+1|+
k∑

j=1

j(|αj |+ 1) + 1 + |αk+1| ·
( k∑

j=1

|αj |+ k
)
+ k · |αk|

+ 1 · (|αk+1|+ 1) +

k−1∑

j=1

(j + 1)(|αj |+ 1) + 1 + k + |αk|

=

k−1∑

j=1

(|αj |+ 1) + k(|αk|+ 1) + |αk+1| ·
( k∑

j=1

|αj |+ k
)

+ k · |αk|+ 1 + k + |αk|

=

k−1∑

j=1

(|αj |+ 1) + |αk+1| ·
k∑

j=1

(|αj |+ 1) + 1 + |αk|

= (|αk+1|+ 1)

k∑

j=1

(|αj |+ 1).

It remains to verify that d is also cyclic. Indeed,

⟨dα1, α2⟩ = (−1)|α2|

∫

L

dα1 ∧ α2
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=

∫

L

(
(−1)|α2|d(α1 ∧ α2) + (−1)|α2|+|α1|+1α1 ∧ dα2

)

= (−1)|α2|+|α1|+1+|α1|(|α2|+1)

∫

L

dα2 ∧ α1

= (−1)|α2|+1+|α1|(|α2|+1)⟨dα2, α1⟩

= (−1)(|α1|+1)(|α2|+1)⟨dα2, α1⟩.

□

Remark 3.4. Intuitively, pairing qk,l with αk+1 should be viewed as putting
the constraint αk+1 on z0. The cyclic property then translates to a symmetry
under cyclic relabeling of the boundary marked points.

3.4. Degree of structure maps

Proposition 3.5. For k ≥ 0 and γ1, . . . , γl ∈ A∗(X;Q) with |γj | = 2, the
map

qk,l( ; γ1, . . . , γl) : C
⊗k −→ C

is of degree 2− k.

Proof. It is enough to check that, for any β, the map

T βq
β
k,l( ; γ1, . . . , γl) : C

⊗k −→ C

is of degree 2− k. Indeed,

|T βq
β
k,l(α1, . . . , αk; γ1, . . . , γl)|

= µ(β) +

k∑

j=1

|αj |+ 2l − rdim(evb0)

= µ(β) +

k∑

j=1

|αj |+ 2l − (n− 3 + µ(β) + k + 1 + 2l − n)

=

k∑

j=1

|αj |+ 2− k.

The special case qβ0

1,0 = d also aligns with the above formula, being of degree
1 = 2− 1. □
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3.5. Symmetry

Proposition 3.6. Let k ≥ −1. For any permutation σ ∈ Sl,

qk,l(α1, . . . , αk; γ1, . . . , γl) = (−1)sσ(γ)qk,l(α1, . . . , αk; γσ(1), . . . , γσ(l)),

where

(23) sσ(γ) :=
∑

i<j
σ−1(i)>σ−1(j)

|γi| · |γj | =
∑

i>j
σ(i)<σ(j)

|γσ(i)| · |γσ(j)| (mod 2).

Proof. First note that ε(α) is independent from γ and thus is not influenced
by applying σ to γ. Besides, changing the labeling of interior marked points
does not affect the orientation of the moduli space. So, for k ≥ 0,

q
β
k,l(α1, . . . , αk; γ1, . . . , γl) = (−1)ε(α)(evbβ0 )∗




l∧

j=1

(eviβj )
∗γj ∧

k∧

j=1

(evbβj )
∗αj




= (−1)ε(α)+sσ(γ)(evbβ0 )∗




l∧

j=1

(eviβ
σ(j))

∗γσ(j) ∧
k∧

j=1

(evbβj )
∗αj




= (−1)sσ(γ)qβk,l(α1, . . . , αk; γσ(1), . . . , γσ(l)).

The case k = −1 is similar, with pt instead of evbβ0 and without ε(α). □

3.6. Fundamental class

Proposition 3.7. For k ≥ 0,

q
β
k,l(α1, . . . , αk; 1, γ1, . . . , γl−1) =

{
−1, (k, l, β) = (0, 1, β0),

0, otherwise.

Furthermore,

q
β
−1,l(1, γ1, . . . , γl−1) = 0.

Proof. Whenever defined, consider π : Mk+1,l(β) → Mk+1,l−1(β), the for-
getful map that forgets the first interior marked point, shifts the labeling of
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the rest, and stabilizes the resulting map. Similarly to the proof of Proposi-
tion 3.2, using the notation φ from Section 2.1.4, we get

φ(qβk,l(α1, . . . , αk; 1, γ1, . . . , γl−1))

= ±(evb0)∗(∧
l−1
j=1evi

∗
jγj ∧ ∧k

j=1evb
∗
jαj ∧ π∗φ(1)) = 0

whenever π is defined. So, since φ is injective, it follows that

q
β
k,l(α1, . . . , αk; 1, γ1, . . . , γl−1) = 0.

The forgetful map π is not defined only when forgetting the point will result
in a non-stabilizable curve. This happens exactly when β = β0 and (k, l) ∈
{(0, 1), (1, 1), (−1, 2)}.

The case (k, l, β) = (1, 1, β0) is treated as follows. Since the stable maps
in M2,1(β0) are constant, we have

evb0 = evb1, evi1 = i ◦ evb0.

So,

q
β0

1,1(α1; γ1) = (−1)|α1|+1+1(evb0)∗evb
∗
0(i

∗γ1 ∧ α1)

= (−1)|α1|i∗γ1 ∧ α1 ∧ (evb0)∗1.

But rdim(evb0) = n− 3 + µ(β0) + k + 1 + 2l − n > 0, so (evb0)∗1 = 0.
The case (k, l, β) = (−1, 2, β0) corresponds to the moduli spaceM0,2(β0).

Again,

evi1 = evi2 =: ev.

Moreover, there is a unique map evb : M0,2(β0) → L such that

ev = i ◦ evb.

Thus,

q
β0

−1,2(γ1, γ2) =pt∗ev
∗(γ1 ∧ γ2)

=pt∗ev∗ev
∗(γ1 ∧ γ2)

=pt∗((γ1 ∧ γ2) ∧ ev∗1)

=pt∗((γ1 ∧ γ2) ∧ i∗evb∗1).

But rdim(evb) = n− 3 + µ(β0) + 2l − n > 0, so evb∗1 = 0.
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The only case left is (0, 1, β0), which corresponds to the moduli space
M1,1(β0). As in the proof of Proposition 3.2, the evaluation map evb0 iden-
tifies the moduli space of maps with L, preserving orientation. Using this
identification, we see that

q
β0

0,1(1) = −(evb0)∗evb
∗
0i

∗1 = − Id∗ Id
∗ 1 = −1.

□

3.7. Energy zero

Proposition 3.8. For k ≥ 0,

q
β0

k,l(α1, . . . , αk; γ1, . . . , γl) =





dα1, (k, l) = (1, 0),

(−1)|α1|α1 ∧ α2, (k, l) = (2, 0),

−γ1|L, (k, l) = (0, 1),

0, otherwise.

Furthermore,

q
β0

−1,l(γ1, . . . , γl) = 0.

Proof. The case qβ0

1,0 = d is true by definition. Let us consider the cases where
q is defined by push-pull operations.

Since the stable maps in Mk+1,l(β0) are constant, we have

evb0 = · · · = evbk =: evb, evi1 = · · · = evil = i ◦ evb.

Thus, for k ≥ 0,

q
β0

k,l(α1, . . . , αk; γ1, . . . , γl) = (−1)ε(α)evb∗evb
∗(∧l

j=1i
∗γj ∧ ∧k

j=1αj)

= (−1)ε(α)(∧l
j=1γj |L ∧ ∧k

j=1αj) ∧ evb∗1.

For k = −1,

q
β0

−1,l(γ1, . . . , γl) = pt∗(i ◦ evb)∗(i ◦ evb)
∗(∧l

j=1γj)

= pt∗((∧
l
j=1γj) ∧ i∗evb∗1).

In order for evb∗1 to be nonzero, we need

0 = rdim(evb) = n− 3 + µ(β0) + k + 1 + 2l − n = k + 2l − 2.

Let us analyze when this equality is possible.
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If l = 1, then k = 0, and evb : M1,1(β0)
∼
→ L. This diffeomorphism pre-

serves orientation by the argument on page 739 of [6]. So, qβ0

k,l(γ1) = −γ1|L
by the above computation.

If l = 0, then k = 2, and evb : M3,0(β0)
∼
→ L. This diffeomorphism pre-

serves orientation by the argument on page 714 of [6] based on their Con-
vention 8.3.1. So, again by the computation above,

q
β0

k,l(α1, α2) = (−1)|α1|+1+2(|α2|+1)+1α1 ∧ α2.

□

3.8. Divisors

Proposition 3.9. Assume γ1 ∈ A2(X,L)⊗Q, dγ1 = 0, and the map
H2(X,L;Z) → Q given by β 7→

∫
β
γ1 descends to Π. Then

(24) q
β
k,l(⊗

k
j=1αj ;⊗

l
j=1γj) =

(∫

β

γ1

)
· qβk,l−1(⊗

k
j=1αj ;⊗

l
j=2γj)

for k ≥ −1.

The proof requires the following two results, which will be proved after
the main proposition.

Lemma 3.10. Let M be a connected oriented orbifold with corners and let
α be a degree-0 current on M. Suppose there is a current f on ∂M such that
for any η ∈ Atop−1

c (M),

α(dη) = f(i∗Mη), iM : ∂M −→M.

Then there is a constant κ ∈ R such that

α(γ) = κ ·

∫

M

γ ∀γ ∈ Atop
c (M).

In the following, we use the inclusion of forms in currents from Sec-
tion 2.1.4.

Lemma 3.11. Suppose either β ̸= β0 or β = β0 and (k, l) /∈ {(0, 1), (1, 1),
(−1, 2)}. Let π : Mk+1,l(β) → Mk+1,l−1(β) be the map that forgets the first
interior marked point, shifts the labels of the others down by one, and sta-
bilizes the resulting map. Denote by evi1 the evaluation map at the first
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interior point for Mk+1,l(β). Let γ ∈ A∗(X) such that γ|L = 0, |γ| = 2, and
dγ = 0. Assume the map H2(X,L;Z) → R given by β 7→

∫
β
γ descends to Π.

Then, the current π∗evi
∗
1γ coincides with the current corresponding to the

constant
∫
β
γ.

Proof of Proposition 3.9. When β = β0, the proposition follows from Propo-
sition 3.8, so we may assume β ̸= β0. Denote by π :Mk+1,l(β)→Mk+1,l−1(β)
the forgetful map as in Lemma 3.11. Denote by evblj , evi

l
j , the evaluation

maps for Mk+1,l(β), and denote by evbl−1
j , evil−1

j , the evaluation maps for
Mk+1,l−1(β).

For k ≥ 0, set ξ := ∧l
j=2(evi

l−1
j−1)

∗γj ∧ ∧k
j=1(evb

l−1
j )∗αj . Then, we have

the equality of currents,

q
β
k,l(α1, . . . , αk; γ1, . . . , γl)(25)

= (−1)ε(α)(evbl0)∗((evi
l
1)

∗γ1 ∧ π
∗ξ)

= (−1)ε(α)+|ξ|·|γ1|(evbl−1
0 )∗π∗(π

∗ξ ∧ (evil1)
∗γ1)

= (−1)ε(α)+|ξ|·|γ1|(evbl−1
0 )∗(ξ ∧ π∗(evi

l
1)

∗γ1)

= (−1)ε(α)+|ξ|·rdimπ(evbl−1
0 )∗(π∗(evi

l
1)

∗γ1 ∧ ξ)

= (−1)ε(α)(evbl−1
0 )∗(π∗(evi

l
1)

∗γ1 ∧ ξ).

Similarly, for k = −1, set ξ := ∧l
j=2(evi

l−1
j−1)

∗γj and compute

q
β
−1,l(γ1, . . . , γl) =pt∗(π∗(evi

l
1)

∗γ1 ∧ ξ).(26)

By Lemma 3.11, π∗(evi
l
1)

∗γ1 is the current corresponding to the constant∫
β
γ1. Substituting this value in (25), we get

q
β
k,l(α1, . . . , αk; γ1, . . . , γl) = (−1)ε(α)

∫

β

γ1 · (evb
l−1
0 )∗ξ =

=

∫

β

γ1 · q
β
k,l−1(α1, . . . , αk; γ2, . . . , γl).

Similarly, substituting
∫
β
γ1 in (26), we get

q
β
−1,l(γ1, . . . , γl) =

∫

β

γ1 · pt∗ξ =

∫

β

γ1 · q
β
−1,l−1(γ2, . . . , γl).

□

We return to the proof of the auxiliary lemmas.
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Proof of Lemma 3.10. Let γ, γ′ ∈ Atop
c (M). Then i∗Mγ = i∗Mγ

′ = 0 for degree

reasons. Assume [γ] = [γ′] ∈ Htop
c (M,∂M). Choose ζ ∈ Atop−1

c (M) such that
i∗Mζ = 0 and γ − γ′ = dζ. Then

α(γ)− α(γ′) = f(i∗Mζ) = 0,

so α(γ) = α(γ′). This shows α(γ) depends only on the relative cohomology
class of γ. On the other hand, by Poincaré duality, we have an isomorphism
Htop

c (M,∂M) → R given by integration over M.
□

Proof of Lemma 3.11. Since π is not a submersion, the push-forward of a
differential form along π is not defined as a differential form. Rather, for a
differential form ζ ∈ A∗(Mk+1,l(β)), we abbreviate π∗ζ for the push-forward
along π of the current corresponding to ζ as explained in Section 2.1.4.

Decompose the boundary,

∂Mk+1,l(β) = ∂horMk+1,l(β)
∐

∂vertMk+1,l(β),

where ∂horMk+1,l(β) is the part of the boundary that does not require stabi-
lization after forgetting w1, and ∂

vertMk+1,l(β) is the part of the boundary
that does. Generic points of ∂vertMk+1,l(β) are mapped by π to interior
points of Mk+1,l−1(β), whereas ∂

horMk+1,l(β) is mapped to ∂Mk+1,l−1(β).
Thus, we have the following commutative diagram:

∂horMk+1,l(β)
�

�

//

π∂

��

ihorl

++

∂Mk+1,l(β)
il

// Mk+1,l(β)

π

��

∂Mk+1,l−1(β)
il−1

// Mk+1,l−1(β) .

Take γ ∈ A∗(X) as in the statement of the lemma. For short, write M1 :=
Mk+1,l(β), M2 := Mk+1,l−1(β), and ζ := (evi1)

∗γ ∈ A∗(M1). By definition,

for arbitrary η ∈ Atop−1
c (Mk+1,l−1(β)), since |ζ| = rdimπ = 2, we have

(π∗ζ)(dη) = (−1)rdimπ·|dη|

∫

M1

ζ ∧ π∗dη

=

∫

M1

ζ ∧ d(π∗η) =

∫

M1

d(ζ ∧ π∗η) =

∫

∂M1

(il)
∗(ζ ∧ π∗η).
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Note that ζ|∂vertM1
= 0, because the interior marked point w1 is located on

a ghost bubble that maps entirely to L, and γ|L = 0. So, the computation
continues

(π∗ζ)(dη) =

∫

∂horM1

(ihorl )∗(ζ ∧ π∗η) =

∫

∂horM1

(ihorl )∗ζ ∧ (ihorl )∗π∗η

=

∫

∂horM1

(ihorl )∗ζ ∧ π∗∂(i
∗
l−1η) =

(
(π∂)∗((i

hor
l )∗ζ)

)
(i∗l−1η),

where the sign in the last equality is trivial again because rdimπ∂ = 2. Note
that if Mk+1,l−1(β) is not connected, the same computation is valid for each
connected component separately.

By Lemma 3.10, for each connected component B of Mk+1,l−1(β) there
is a constant κB such that

(π∗ζ)(η) = κB ·

∫

B

η, ∀η ∈ Atop
c (B).

To compute the value of κB, consider a point p = (Σ, u, z⃗, w⃗) ∈ B that is a
regular value of π. In a neighborhood of such p, we can calculate π∗ζ as the
push-forward of a differential form. Indeed, using identification (3) together
with properties (4) and (1) of integration, we obtain

(27) κB = (π∗ζ)p =

∫

π−1(p)
ζ =

∫

π−1(p)
evi∗1γ.

To continue, denote by v : Σ̃ → Σ the oriented real blowup of Σ at z0, . . . , zk.
As explained in the proof of [18, Lemma 4.5], there exists a canonical orien-
tation preserving isomorphism

ψ : Σ̃
∼

−→ π−1(p).

See Figure 6. Moreover, evi1 ◦ ψ = u ◦ v. Since u∗[Σ] = (u ◦ v)∗[Σ̃] ∈
H2(X,L;Z), using equation (27), we obtain

κB =

∫

π−1(p)
evi∗1γ =

∫

Σ̃
v∗u∗γ =

∫

β

γ.

Since the last value does not depend on the component B, this proves the
desired result. □
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Figure 6: The fiber of π over (Σ, u, z⃗, w⃗) is the oriented real blowup of the
domain at the boundary marked points. The exceptional locus of the blowup
is shown in orange.
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3.9. Top degree

Given α, a homogeneous differential form with coefficients in R, denote by
degd(α) the degree of the differential form, ignoring the grading of R. That
is, for α = T βtr11 · · · trNN α′ with α′ ∈ Aj(L), we have degd(α) = j.

Denote by (α)j the part of α that has degree j as a differential form,
ignoring the grading of R. In particular, degd((α)j) = j.

Proposition 3.12. Suppose (k, l, β) ̸∈ {(1, 0, β0), (0, 1, β0), (2, 0, β0)}. Then
(qβk,l(α; γ))n = 0 for all lists α, γ.

Proof. Assume without loss of generality that qβk,l(α; γ) is homogeneous with

respect to the grading degd . Let evbk+1
j , evik+1

j , be the evaluation maps for
Mk+1,l(β). Set

ξ :=

l∧

j=1

(evik+1
j )∗γj ∧

k∧

j=1

(evbk+1
j )∗αj ,

that is, qβk,l(α; γ) = (−1)ε(α)(evbk+1
0 )∗ξ. If

degd(qβk,l(α; γ)) = n,

then

n = degd(ξ)− rdim(evb0) = degd(ξ)− (dimMk+1,l(β)− n)

= degd(ξ)− dimMk+1,l(β) + n,

so degd(ξ) = dimMk+1,l(β).
On the other hand, if π : Mk+1,l(β) → Mk,l(β) is the map that forgets

z0, and evb
k
j , evi

k
j , are the evaluation maps for Mk,l(β), then ξ = π∗ξ′ where

ξ′ =

l∧

j=1

(evikj )
∗γj ∧

k∧

j=1

(evbkj−1)
∗αj ∈ A∗(Mk,l(β)).

In particular

degd(ξ′) = degd(ξ) = dimMk+1,l(β) > dimMk,l(β).

Therefore, ξ′ = 0 and so ξ = 0. □
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3.10. Chain map

Write

T (D) :=
⊕

l≥0

D⊗l.

This forms a complex with the inherited differential defined, for ηl =⊗l
j=1 η

j
l ∈ D⊗l, by

d(
⊕

l≥0

ηl) :=
⊕

l≥0




l∑

i=1

(−1)
∑

i−1
j=1 |η

j

l |

( i−1⊗

j=1

ηjl ⊗ dηil ⊗
l⊗

j=i+1

ηjl

)
 .

The operators q∅,l extend naturally to a map

q∅ : T (D) → A∗(X;Q)

given by

q∅(
⊕

l≥0

ηl) :=
∑

l≥0

q∅,l(ηl).

Proposition 3.13. The operator q∅ is a chain map on T (D). That is,

q∅(dη) = dq∅(η), ∀η ∈ T (D).

Proof. Since the fiber of ev0 : Ml(β) → X has no boundary, Stokes’ theorem
implies that (ev0)∗ commutes with d. □

3.11. Proofs of Theorems 1 and 3

Proof of Theorem 1. The degree of mγ
k is given by Proposition 3.5. Prop-

erties (1)-(2) follow from Lemma 3.1. Property (3) follows from Proposi-
tion 2.6. Properties (4) and (5) are immediate from the definitions. Prop-
erties (6) and (7) follow from equation (20) and Proposition 3.3 respec-
tively. Properties (8) and (10) follow from Proposition 3.2. Property (9)
follows from Proposition 3.12, Proposition 3.8, and because by assumption
⟨γ|L, 1⟩ =

∫
L
γ|L = 0. □

Proof of Theorem 3. Properties (1), (2), and (3), follow from Propositions 3.7,
3.9, and 3.8, respectively. □
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4. Pseudo-isotopies

4.1. Structure

Recall from Section 1.2 that C := A∗(I × L;R). We construct a family of A∞

structures on C. Fix a family of ω-tame almost complex structures {Jt}t∈I .
For each β, k, l, set

M̃k+1,l(β) := {(t,u) |u ∈ Mk+1,l(β; Jt)}.

The moduli space M̃k+1,l(β) comes with evaluation maps

ẽvbj : M̃k+1,l(β) −→ I × L, j ∈ {0, . . . , k},

ẽvbj(t, (Σ, u, z⃗, w⃗)) := (t, u(zj)),

and

ẽvij : M̃k+1,l(β) −→ I ×X, j ∈ {1, . . . , l},

ẽvij(t, (Σ, u, z⃗, w⃗)) := (t, u(wj)).

As with the usual moduli spaces, we assume all M̃k+1,l(β) are smooth orb-

ifolds with corners, and ẽvb0 is a proper submersion.

Example 4.1. In the special case when Jt is a constant family, that is,
Jt = J for all t ∈ I, we have

M̃k+1,l(β) = I ×Mk+1,l(β; J).

The evaluation maps in this case are ẽvbj = Id×evbj and ẽvij = Id×evij .

In particular, the smoothness assumptions for M̃k+1,l(β) follow from the
assumptions for Mk+1,l(β).

Even in this special case, we will see below that the moduli space
M̃k+1,l(β) allows one to prove that the A∞ algebra (C,mγ

k) for a fixed J is
determined up to pseudoisotopy by the cohomology class of γ.

Remark 4.2. The assumption that ẽvb0 is a submersion presumably im-
poses strong restrictions on the possible topology of M̃k+1,l(β). In particu-
lar, this limits significantly the possible changes in Jt. The main example is
where Jt = φ∗

tJ for a one-parameter family of symplectomorphisms φt and
J is as in Example 1.5 or Remark 1.6. See Example 4.1 above for a special
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case. Using virtual cycle techniques should allow the extension of the theory
to the general setting.

Let

p : I × L −→ I, pM : M̃k+1,l(β) −→ I,

denote the projections.
For all β ∈ Π, k, l ≥ 0, (k, l, β) ̸∈ {(1, 0, β0), (0, 0, β0)}, define

q̃
β
k,l : C

⊗k ⊗A∗(I ×X;Q)⊗l −→ C

by

q̃
β
k,l(⊗

k
j=1α̃j ;⊗

l
j=1γ̃j) := (−1)ε(α̃)(ẽvb0)∗(

l∧

j=1

ẽvi
∗

j γ̃j ∧
k∧

j=1

ẽvb
∗

j α̃j)).

For l ≥ 0, (l, β) ̸= (1, β0), (0, β0), define

q̃
β
−1,l : A

∗(I ×X;Q)⊗l −→ A∗(I;Q)

by

q̃
β
−1,l(⊗

l
j=1γ̃j) := (pM)∗ ∧

l
j=1 ẽvi

∗

j γ̃j .

Define also

q̃
β0

1,0(α̃) = dα̃, q̃
β0

0,0 := 0, q̃
β0

−1,1 := 0, q̃
β0

−1,0 := 0.

Denote by

q̃k,l : C
⊗k ⊗A∗(I ×X;Q)⊗l −→ C, q̃−1,l : A

∗(I ×X;Q)⊗l −→ R,

the sums over β:

q̃k,l(⊗
k
j=1α̃j ;⊗

l
j=1γ̃j) :=

∑

β∈Π

T β q̃
β
k,l(⊗

k
j=1α̃j ;⊗

l
j=1γ̃j),

q̃−1,l(⊗
l
j=1γ̃j) :=

∑

β∈Π

T β q̃−1,l(γ̃
l).

Lastly, define similar operations using spheres,

q̃∅,l : A
∗(I ×X;Q)⊗l −→ A∗(I ×X;R),
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as follows. For β ∈ H2(X;Z) let

M̃l+1(β) := {(t,u) |u ∈ Ml+1(β; Jt)}.

For j = 0, . . . , l, let

ẽvβj : M̃l+1(β) → I ×X,

ẽvβj (t, (Σ, u, w⃗)) := (t, u(wj)),

be the evaluation maps. Assume that all the moduli spaces M̃l+1(β) are
smooth orbifolds and ẽv0 is a submersion. Recall that ws ∈ H2(X;Z/2Z) is
the class with w2(TL) = i∗ws determined by the relative spin structure s.
For l ≥ 0, (l, β) ̸= (1, 0), (0, 0), set

q̃
β

∅,l(γ̃1, . . . , γ̃l) := (−1)ws(β)(ẽvβ0 )∗(

l∧

j=1

(ẽvβj )
∗γ̃j)

and

q̃0∅,1 := 0, q̃0∅,0 := 0.

Define

q̃∅,l(γ̃1, . . . , γ̃l) :=
∑

β∈H2(X)

Tϖ(β)q̃
β

∅,l(γ̃1, . . . , γ̃l).

Proposition 4.3. For any fixed α̃ = (α̃1, . . . , α̃k), γ̃ = (γ̃1, . . . , γ̃l),

0 =
∑

S3[l]
(2:3)={j}

(−1)|γ
(1:3)|+1q̃k,l(α̃; γ̃

(1:3) ⊗ dγ̃j ⊗ γ̃(3:3))

+
∑

P∈S3[k]
I⊔J=[l]

(−1)ι(α̃,γ̃;P,I)q̃|(1:3)|+|(3:3)|+1,|I|(α̃
(1:3)

⊗ q̃|(2:3)|,|J |(α̃
(2:3); γ̃J)⊗ α̃(3:3); γ̃I).

Proof. The proof is similar to that of Proposition 2.4. The gluing sign δ1 from
Proposition 2.8 becomes δ̃1 = δ1 + 1, and the contribution of s = dimM to
the sign of Proposition 2.2 becomes dimM̃k+1,l(β) = dimMk+1,l(β) + 1, so
the total computation of ι results in the same value. □
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Define a pairing

⟨⟨ , ⟩⟩ : C⊗ C −→ R

by

⟨⟨ξ̃, η̃⟩⟩ := (−1)|η̃|p∗(ξ̃ ∧ η̃).

Note that

⟨⟨ξ̃, η̃⟩⟩ = (−1)|η̃|p∗(ξ̃ ∧ η̃) = (−1)|η̃|+|η̃|·|ξ̃|p∗(η̃ ∧ ξ̃)(28)

= (−1)(|η̃|+1)(|ξ̃|+1)+1⟨⟨η̃, ξ̃⟩⟩.

Proposition 4.4. For any fixed γ̃ = (γ̃1, . . . , γ̃l),

− dq̃−1,l(γ̃) =
∑

(2:3)={j}

(−1)|γ̃
(1:3)|+1q̃−1,l(γ̃

(1:3) ⊗ dγ̃j ⊗ γ̃(3:3))

+
1

2

∑

I⊔J={1,...,l}

(−1)ι(γ̃;I)⟨⟨q̃0,|I|(γ̃
I), q̃0,|J |(γ̃

J)⟩⟩+ (−1)|γ̃|+1p∗i
∗q̃∅,l(γ̃).

Proof. The proof uses the generalization of Stokes’ theorem given in Propo-
sition 2.2 applied to

f := pM : M̃0,l(β) −→ I, ξ̃ :=

l∧

j=1

ẽvi
∗

j γ̃j ,

in a way similar to the proof of Proposition 2.4.
Contribution from d(f∗ξ̃). By definition,

d(f∗ξ̃) = dq̃β−1,l(γ̃).

Contribution from f∗(dξ̃). Again, by definition,

f∗(dξ̃) =
∑

(2:3)={j}

(−1)|γ̃
(1:3)|q̃

β
−1,l(γ̃

(1:3) ⊗ dγ̃j ⊗ γ̃(3:3)).

Contributions from (f |
∂M̃

)∗ξ̃ – first type (disk bubbling). Let B ⊂

∂M̃0,l(β) be a boundary component of the type described in Lemma 2.13.
Note that the gluing sign corresponding to (12) in this case is δ̃1 := n+ 1.
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Similarly to Lemma 2.13, we find that

(pM|B)∗ξ̃ = (−1)n+1+sgn(σγ̃
I⊔J)+|γ̃J |⟨⟨q̃β1

0,|I|(γ̃
I), q̃β2

0,|J |(γ̃
J)⟩⟩.

The contribution to Stokes’ theorem is therefore

(−1)s+t(f |B)∗ξ̃ = (−1)|γ̃|+n+n+sgn(σγ̃
I⊔J)+|γ̃J |+1

∑

I⊔J=[l]

⟨⟨q̃β1

0,|I|(γ̃
I), q̃β2

0,|J |(γ̃
J)⟩⟩

= (−1)sgn(σ
γ̃
I⊔J)+|γ̃I |+1

∑

I⊔J=[l]

⟨⟨q̃β1

0,|I|(γ̃
I), q̃β2

0,|J |(γ̃
J)⟩⟩

= (−1)ι(γ̃;I)+1
∑

I⊔J=[l]

⟨⟨q̃β1

0,|I|(γ̃
I), q̃β2

0,|J |(γ̃
J)⟩⟩.

Contributions from (f |
∂M̃

)∗ξ̃ – second type (sphere bubbling from a ghost

disk). Let B ⊂ ∂M̃0,l(β) be a boundary component of the type described
in Proposition 2.11. Note that the gluing sign in this case is (−1)n+ws(β).
Similarly to Lemma 2.12, we find that

(f |B)∗ξ̃ = (pM)∗ξ̃ = (−1)np∗i
∗q̃

β̂

∅,l(γ̃).

The total contribution to Stokes’ theorem is therefore

(−1)s+t(f |B)∗ξ̃ = (−1)|γ̃|+n+np∗i
∗q̃

β̂

∅,l(γ̃)

= (−1)|γ̃|p∗i
∗q̃

β̂

∅,l(γ̃).

□

For each closed γ̃ ∈ IQD with |γ̃| = 2, define structure maps

m
γ̃,β
k , m̃γ̃

k : C⊗k −→ C

by

m
γ̃,β
k (⊗k

j=1α̃j) :=
∑

l

1

l!
q̃k,l(⊗

k
j=1α̃j ; γ̃

⊗l),

m̃
γ̃
k(⊗

k
j=1α̃j) :=

∑

l

1

l!
q̃k,l(⊗

k
j=1α̃j ; γ̃

⊗l),

and define

m̃
γ̃
−1 :=

∑

l

1

l!
q̃−1,l(γ̃

⊗l) ∈ R.
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Denote

(29) G̃W :=
∑

l≥0

1

l!
p∗i

∗q̃∅,l(γ̃
⊗l).

Proposition 4.5. The maps m̃γ̃ define an A∞ structure on C. That is,

∑

k1+k2=k+1
k1,k2≥0
1≤i≤k1

(−1)
∑

i−1
j=1(|α̃j |+1)

· m̃γ̃
k1
(α̃1, . . . , α̃i−1, m̃

γ̃
k2
(α̃i, . . . , α̃i+k2−1), α̃i+k2

, . . . , α̃k) = 0

for all α̃j ∈ C.

Proof. Since dγ̃ = 0 and |γ̃| = 2, this is a special case of Proposition 4.3. □

4.2. Properties

The properties formulated for the q-operators can be equally well formulated
for the q̃-operators, with similar proofs. Below we discuss them explicitly,
and add a few properties that are specific to the pseudoisotopy context.

4.2.1. Linearity. Observe that C is an R module with the action

f · α := p∗f ∧ α, f ∈ R, α ∈ C.

Similarly, let pX : I ×X → I be the projection. Then R acts on A∗(I ×
X;Q) via

f · γ := p∗Xf ∧ γ, f ∈ R, γ ∈ A∗(I ×X;Q).

Proposition 4.6. The operations q̃ are R-multilinear in the sense that for
f ∈ R,

q̃
β
k,l(α̃1, . . . , α̃i−1, f · α̃i, . . . , α̃k; γ̃1, . . . , γ̃l)

= (−1)|f |·
(
i+

∑
i−1
j=1 |α̃j |+

∑
l
j=1 |γ̃j |

)
f · q̃βk,l(α̃1, . . . , α̃k; γ̃1, . . . , γ̃l) + δ1,k · df · α̃1,

and for f ∈ A∗(I;Q),

q̃
β
k,l(α̃1, . . . , α̃k; γ̃1, . . . , f · γ̃i, . . . , γ̃l)

= (−1)|f |·
∑

i−1
j=1 |γ̃j |f · q̃βk,l(α̃1, . . . , α̃k; γ̃1, . . . , γ̃l),
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and

q̃
β

∅,l(γ̃1, . . . , f · γ̃i, . . . , γ̃l) = (−1)|f |·
∑

i−1
j=1 |γ̃j |f · q̃β∅,l(γ̃1, . . . , γ̃l).

In addition, the pairing ⟨⟨ , ⟩⟩ is R-bilinear in the sense of Definition 1.1(2).

Proof. For q̃β0

1,0 = d we have

d(f.α̃) = d(p∗f ∧ α̃) = d(p∗f) ∧ α̃+ (−1)|f |p∗f ∧ dα̃ = (df).α̃+ (−1)|f |f.dα̃.

For q̃βk,l with (k, l, β) ̸= (1, 0, β0), we have

(ẽvb0)∗(

l∧

j=1

ẽvi
∗

j γ̃j ∧
i−1∧

j=1

ẽvb
∗

j α̃j ∧ ẽvb
∗

i (p
∗f ∧ α̃i) ∧

k∧

j=i+1

ẽvb
∗

j α̃j)

= (ẽvb0)∗(

l∧

j=1

ẽvi
∗

j γ̃j ∧
i−1∧

j=1

ẽvb
∗

j α̃j ∧ (p ◦ ẽvbi)
∗f ∧

k∧

j=i

ẽvb
∗

j α̃j)

= (−1)|f |·
(∑

i−1
j=1 |α̃j |+

∑
l
j=1 |γ̃j |

)
(ẽvb0)∗((p ◦ ẽvbi)

∗f ∧
l∧

j=1

ẽvi
∗

j γ̃j ∧
k∧

j=1

ẽvb
∗

j α̃j)

= (−1)|f |·
(∑

i−1
j=1 |α̃j |+

∑
l
j=1 |γ̃j |

)
(ẽvb0)∗((p ◦ ẽvb0)

∗f ∧
l∧

j=1

ẽvi
∗

j γ̃j ∧
k∧

j=1

ẽvb
∗

j α̃j)

= (−1)|f |·
(∑

i−1
j=1 |α̃j |+

∑
l
j=1 |γ̃j |

)
(p∗f)

∧ (ẽvb0)∗(

l∧

j=1

ẽvi
∗

j γ̃j ∧ ẽvb
∗

1α̃1 ∧
k∧

j=2

ẽvb
∗

j α̃j).

Taking into consideration the sign ε(α̃), we see that

q̃k,l(α̃1, . . . , f · α̃i, . . . , α̃k; γ̃1, . . . , γ̃l)

= (−1)|f |·
(
i+

∑
i−1
j=1 |α̃j |+

∑
l
j=1 |γ̃j |

)
f q̃k,l(α̃1, . . . , α̃k; γ̃1, . . . , γ̃l).

The second equality for k ≥ 0 follows from

(ẽvb0)∗(

i−1∧

j=1

ẽvi
∗

j γ̃j ∧ ẽvi
∗

i (p
∗
Xf ∧ γ̃i) ∧

l∧

j=i+1

ẽvi
∗

j γ̃j ∧
k∧

j=1

ẽvb
∗

j α̃j)

= (−1)|f |·
∑

i−1
j=1 |γ̃j |(ẽvb0)∗(ẽvi

∗

i p
∗
Xf ∧

l∧

j=1

ẽvi
∗

j γ̃j ∧
k∧

j=1

ẽvb
∗

j α̃j)
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= (−1)|f |·
∑

i−1
j=1 |γ̃j |(ẽvb0)∗((pX ◦ ẽvij)

∗f ∧
l∧

j=1

ẽvi
∗

j γ̃j ∧
k∧

j=1

ẽvb
∗

j α̃j)

= (−1)|f |·
∑

i−1
j=1 |γ̃j |(ẽvb0)∗((p ◦ ẽvb0)

∗f ∧
l∧

j=1

ẽvi
∗

j γ̃j ∧
k∧

j=1

ẽvb
∗

j α̃j)

= (−1)|f |·
∑

i−1
j=1 |γ̃j |(p∗f) ∧ (ẽvb0)∗(

l∧

j=1

ẽvi
∗

j γ̃j ∧
k∧

j=1

ẽvb
∗

j α̃j),

while ε is not affected. For k = −1, note that pM = pX ◦ ẽvii. So,

(−1)|f |·
∑

i−1
j=1 |γ̃j |(pM)∗((pX ◦ ẽvij)

∗f ∧
l∧

j=1

ẽvi
∗

j γ̃j ∧
k∧

j=1

ẽvb
∗

j α̃j)

= (−1)|f |·
∑

i−1
j=1 |γ̃j |(pM)∗(p

∗
Mf ∧

l∧

j=1

ẽvi
∗

j γ̃j ∧
k∧

j=1

ẽvb
∗

j α̃j)

= (−1)|f |·
∑

i−1
j=1 |γ̃j |f ∧ (pM)∗(

l∧

j=1

ẽvi
∗

j γ̃j ∧
k∧

j=1

ẽvb
∗

j α̃j),

and again the required equality follows.
For q̃β∅,l, we have

q̃
β

∅,l(γ̃1, . . . , f · γ̃i, . . . , γ̃l)

= (−1)ws(β)(ẽvβ0 )∗(

i−1∧

j=1

(ẽvβj )
∗γ̃j ∧ (ẽvβi )

∗(p∗Xf ∧ γ̃i) ∧
l∧

j=i+1

(ẽvβj )
∗γ̃j)

= (−1)ws(β)+|f |·
∑

i−1
j=1 |γ̃j |(ẽvβ0 )∗((pX ◦ ẽvβi )

∗f ∧
l∧

j=1

(ẽvβj )
∗γ̃j)

= (−1)ws(β)+|f |·
∑

i−1
j=1 |γ̃j |(ẽvβ0 )∗((pX ◦ ẽvβ0 )

∗f ∧
l∧

j=1

(ẽvβj )
∗γ̃j)

= (−1)ws(β)+|f |·
∑

i−1
j=1 |γ̃j |(ẽvβ0 )∗((ẽv

β
0 )

∗p∗Xf ∧
l∧

j=1

(ẽvβj )
∗γ̃j)

= (−1)ws(β)+|f |·
∑

i−1
j=1 |γ̃j |p∗Xf ∧ (ẽvβ0 )∗

( l∧

j=1

(ẽvβj )
∗γ̃j
)

= (−1)ws(β)+|f |·
∑

i−1
j=1 |γ̃j |f · q̃β∅,l(γ̃1, . . . , γ̃l).
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For the pairing, compute

⟨⟨p∗f ∧ α̃1, α̃2⟩⟩ = (−1)|α̃2|p∗(p
∗f ∧ α̃1 ∧ α̃2)

= (−1)|α̃2|f ∧ p∗(α̃1 ∧ α̃2) = f ∧ ⟨⟨α̃1, α̃2⟩⟩,

⟨⟨α̃1, p
∗f ∧ α̃2⟩⟩ = (−1)|f |+|α̃2|+|f |·|α̃1|p∗(p

∗f ∧ α̃1 ∧ α̃2)

= (−1)|f |+|α̃2|+|f |·|α̃1|f ∧ p∗(α̃1 ∧ α̃2)

= (−1)|f |·(1+|α̃1|)f ∧ ⟨⟨α̃1, α̃2⟩⟩.

□

4.2.2. Pseudoisotopy. For t ∈ I and M = pt, L,X, denote by jt :M →֒
I ×M the inclusion p 7→ (t, p). Denote by qtk,l the q-operators associated to
the complex structure Jt.

Proposition 4.7. For t ∈ I, we have

j∗t q̃k,l(α̃1, . . . , α̃k; γ̃1, . . . , γ̃l) = qtk,l(j
∗
t α̃1, . . . , j

∗
t α̃k; j

∗
t γ̃1, . . . , j

∗
t γ̃l).

Proof. Consider the pull-back diagrams

Mk+1,l(β; Jt)
jt

//

evbi

��

M̃k+1,l(β)

ẽvbi
��

L
jt

// I × L

, Mk+1,l(β; Jt)
jt

//

evii

��

M̃k+1,l(β)

ẽvii
��

X
jt

// I ×X

.

By property (4) of integration, we have

j∗t (ẽvb0)∗(

l∧

i=1

ẽvi
∗

i γ̃i ∧
k∧

i=1

ẽvb
∗

i α̃i) = (evb0)∗(jt)
∗(

l∧

i=1

ẽvi
∗

i γ̃i ∧
k∧

i=1

ẽvb
∗

i α̃i)

= (evb0)∗(

l∧

i=1

evi∗i j
∗
t γ̃i ∧

k∧

i=1

evb∗i j
∗
t α̃i).

□

The next result relates the cyclic structure ⟨⟨ , ⟩⟩ on C with ⟨ , ⟩ on C.

Proposition 4.8. For t ∈ I, we have

j∗t ⟨⟨α̃1, α̃2⟩⟩ = ⟨j∗t α̃1, j
∗
t α̃2⟩.
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Proof. Consider the pullback diagram

L
jt

//

pt

��

I × L

p

��

{t}
jt

// I

By property (4) of integration, we have

j∗t ⟨⟨α̃1, α̃2⟩⟩ = (−1)|α̃2|j∗t p∗(α̃1 ∧ α̃2)

= (−1)|α̃2|pt∗(j
∗
t α̃1 ∧ j

∗
t α̃2) = ⟨j∗t α̃1, j

∗
t α̃2⟩.

□

Lemma 4.9. For any ξ̃, η̃ ∈ C,

(−1)|ξ̃|+|η̃|+n

∫

I

d⟨⟨ξ̃, η̃⟩⟩ = ⟨j∗1 ξ̃, j
∗
1 η̃⟩ − ⟨j∗0 ξ̃, j

∗
0 η̃⟩.

Proof. By Proposition 4.8 and Stokes’ theorem, Proposition 2.2, we have

⟨j∗1 ξ̃, j
∗
1 η̃⟩ − ⟨j∗0 ξ̃, j

∗
0 η̃⟩ = j∗1⟨⟨ξ̃, η̃⟩⟩ − j∗0⟨⟨ξ̃, η̃⟩⟩

=

∫

∂I

⟨⟨ξ̃, η̃⟩⟩

=(−1)|ξ̃|+|η̃|+n

∫

I

d⟨⟨ξ̃, η̃⟩⟩.

□

4.2.3. Unit of the algebra.

Proposition 4.10. Let f ∈ A0(I × L)⊗R, α̃1, . . . , α̃k ∈ C, and γ̃1, . . . , γ̃l ∈
A∗(I ×X;Q). Then

q̃
β
k,l(α̃1, . . . , α̃i−1, f, α̃i, . . . , α̃k−1;⊗

l
r=1γ̃r)

=





df, (k, l, β) = (1, 0, β0),

(−1)|f |f · α̃1, (k, l, β) = (2, 0, β0),

i = 1,

(−1)|α̃1|(|f |+1)f · α̃1, (k, l, β) = (2, 0, β0),

i = 2,

0, otherwise.
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In particular, 1 ∈ A0(I × L) is a strong unit for the A∞ operations m̃γ̃:

m̃
γ̃
k(α̃1, . . . , α̃i−1, 1, α̃i, . . . , α̃k−1) =





0, k ≥ 3 or k = 1,

α̃1, k = 2, i = 1,

(−1)|α̃1|α̃1, k = 2, i = 2.

Proof. Repeat the proof of Proposition 3.2 with M̃, ẽvij , ẽvbj , and q̃, instead
of M, evij , evbj , and q, respectively. In the case (k, l, β) = (2, 0, β), the map

ẽvb0 gives an orientation preserving identification of M̃3,0(β0) with I × L,
and the rest of the computation is again the same. □

4.2.4. Cyclic structure.

Proposition 4.11. The q̃ are cyclic with respect to the inner product ⟨⟨ , ⟩⟩.
That is,

⟨⟨q̃k,l(α̃1, . . . , α̃k; γ̃1, . . . γ̃l), α̃k+1⟩⟩

= (−1)(|α̃k+1|+1)
∑

k
j=1(|α̃j |+1) · ⟨⟨q̃k,l(α̃k+1, α̃1, . . . , α̃k−1; γ̃1, . . . , γ̃l), α̃k⟩⟩

+ δ1,k · d⟨⟨α̃1, α̃2⟩⟩.

In particular,

⟨⟨dα̃1, α̃2⟩⟩ = d⟨⟨α̃1, α̃2⟩⟩+ (−1)(|α̃1|+1)(|α̃2|+1)⟨⟨dα̃2, α̃1⟩⟩.

Proof. For (k, l, β) ̸= (1, 0, β0), the proof of Proposition 3.3 can be repeated

with q, evbj , and evij , replaced by q̃, ẽvbj , and ẽvij , respectively, since

rdim(evbj) = rdim(ẽvbj). The appropriate relabeling automorphism is now
given by

φ̃(t,Σ, u, (z0, . . . , zk), w⃗) = (t,Σ, u, (z1, . . . , zk, z0), w⃗),

and its sign is still sgn(φ̃) = k.
For (k, l, β) = (1, 0, β0), we compute

⟨⟨dα̃1, α̃2⟩⟩ = (−1)|α̃2|p∗(dα̃1 ∧ α̃2)

= p∗
(
(−1)|α̃2|d(α̃1 ∧ α̃2)− (−1)|α̃1|+|α̃2|α̃1 ∧ dα̃2

)

= (−1)|α̃2|d(p∗(α̃1 ∧ α̃2)) + (−1)|α̃1|+|α̃2|+1+|α̃1|(|α̃2|+1)p∗(dα̃2 ∧ α̃1)

= d⟨⟨α̃1, α̃2⟩⟩+ (−1)(|α̃1|+1)(|α̃2|+1)⟨⟨dα̃2, α̃1⟩⟩.

□
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4.2.5. Degree of structure maps.

Proposition 4.12. For k ≥ 0 and γ̃1, . . . , γ̃l ∈ A∗(I ×X;Q) with |γ̃j | = 2,
the map

q̃k,l( ; γ̃1, . . . , γ̃l) : C
⊗k −→ C

is of degree 2− k.

Proof. Note that rdim(evb0) = rdim(ẽvb0). Therefore, the proof of Propo-
sition 3.5 is valid verbatim in our case, with q replaced by q̃ and evb0 by
ẽvb0. □

4.2.6. Symmetry.

Proposition 4.13. Let k ≥ −1. For any permutation σ ∈ Sl,

q̃k,l(α̃1, . . . , α̃k; γ̃1, . . . , γ̃l) = (−1)sσ(γ)q̃k,l(α̃1, . . . , α̃k; γ̃σ(1), . . . , γ̃σ(l)),

where sσ(γ) is as in (23).

Proof. The proof of Proposition 3.6 is valid verbatim, with q̃, ẽvbj , and ẽvij ,
instead of q, evbj , and evij , respectively. □

4.2.7. Fundamental class.

Proposition 4.14. For k ≥ 0,

q̃
β
k,l(α̃1, . . . , α̃k; 1, γ̃1, . . . , γ̃l−1) =

{
−1, (k, l, β) = (0, 1, β0),

0, otherwise.

Furthermore,

q̃
β
−1,l(1, γ̃1, . . . , γ̃l−1) = 0.

Proof. Since rdim ẽvb0 = rdim evb0, we can repeat the proof of Proposi-
tion 3.7 with M̃, ẽvbj , ẽvij , and q̃, instead of M, evbj , evij , and q, re-

spectively. In the case (k, l, β) = (0, 1, β0) the map ẽvb0 now identifies the
moduli space with I × L. □
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4.2.8. Energy zero.

Proposition 4.15. For k ≥ 0,

q̃
β0

k,l(α̃1, . . . , α̃k; γ̃1, . . . , γ̃l) =





dα̃1, (k, l) = (1, 0),

(−1)|α̃1|α̃1 ∧ α̃2, (k, l) = (2, 0),

−γ̃1|I×L, (k, l) = (0, 1),

0, otherwise.

Furthermore,

q̃
β0

−1,l(γ̃1, . . . , γ̃l) = 0.

Proof. Note that rdim(evij) = rdim(ẽvij) and rdim(evbj) = rdim(ẽvbj) for
any j. Therefore the proof of Proposition 3.8 is valid verbatim in our case,
with q replaced by q̃ everywhere. □

4.2.9. Divisors. Note that H2(X,L;Z) ≃ H2(I ×X, I × L;Z). Therefore,
the integral

∫
β
γ̃ is defined for γ̃ ∈ A2(I ×X, I × L) and β ∈ H2(X,L;Z).

Proposition 4.16. Assume γ̃1 ∈ A2(I ×X, I × L)⊗Q, dγ̃1 = 0, and the
map H2(X,L;Z) → Q given by β 7→

∫
β
γ̃1 descends to Π. Then

(30) q̃
β
k,l(⊗

k
j=1α̃j ;⊗

l
j=1γ̃j) =

(∫

β

γ̃1

)
· q̃βk,l−1(⊗

k
j=1α̃j ;⊗

l
j=2γ̃j)

for k ≥ −1.

Proof. The proof or Proposition 3.9 holds verbatim with M̃, ẽvij , ẽvbj , and
q̃, instead of M, evij , evbj , and q, respectively. □

4.2.10. Top degree. In this section, we use the notation introduced in
Section 3.9.

Proposition 4.17. Assume (k, l, β) ̸∈ {(1, 0, β0), (0, 1, β0), (2, 0, β0)}. Then
(q̃βk,l(α̃; γ̃))n+1 = 0 for all lists α̃, γ̃.

Proof. Follow the proof of Proposition 3.12 with q replaced by q̃ and evb0
by ẽvb0. In this case, rdim ẽvb0 = dimM̃k+1,l(β)− n− 1, so the assumption

degd(q̃βk,l(α̃; γ̃)) = n+ 1 is what implies degd(ξ) = dimM̃k+1,l(β). The rest
of the proof is then valid. □
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Proposition 4.18. For all lists γ̃ = (γ̃1, . . . , γ̃l), we have

⟨⟨q̃0,l(γ̃), 1⟩⟩ =

{
0, l ̸= 1,

−p∗(γ̃1|I×L), l = 1.

Proof. By Proposition 4.17, the only possible contribution to (⟨⟨q̃0,l(γ̃), 1⟩⟩)1
is from q̃

β0

0,1, but q̃
β0

0,1(γ̃1) = −γ̃1|I×L and ⟨⟨γ̃1|I×L, 1⟩⟩ = p∗(γ̃1|I×L). It remains
to compute (⟨⟨q̃0,l(γ̃), 1⟩⟩)0. To do this, we evaluate at an arbitrary point t ∈
I. For clarity, denote by jptt : pt→ I, jLt : L→ I × L, and jXt : X → I ×X,
the inclusions. Consider the pull-back diagram

L
jLt

//

��

I × L

p

��

pt
j
pt
t

// I.

By property (4) of integration and Proposition 4.7 we have

(⟨⟨q̃0,l(γ̃), 1⟩⟩)0(t) = (jptt )∗(p∗q̃0,l(γ̃))0 = (jptt )∗p∗(q̃0,l(γ̃))n

=

∫

L

(jLt )
∗(q̃0,l(γ̃))n =

∫

L

(qt0,l((j
X
t )∗γ̃)).

By Proposition 3.12, this can only be nonzero when l = 1, and then

(⟨⟨q̃0,l(γ̃), 1⟩⟩)0(t) =

∫

L

(qt0,l((j
X
t )∗γ̃)) =

∫

L

q
t,β0

0,1 ((jXt )∗γ̃)

= −

∫

L

i∗(jXt )∗γ̃ = −(pt)∗(j
L
t )

∗(Id×i)∗γ̃1 = −(jptt )∗p∗(Id×i)
∗γ̃1.

□

4.2.11. Chain map. As in Section consider the complex

T (D) :=
⊕

l≥0

D⊗l

with the differential inherited from D. Then the operators q̃∅,l extend natu-
rally to a map

q̃∅ : T (D) → A∗(I ×X;Q).

Proposition 4.19. The operator q̃∅ is a chain map on T (D). That is,

q̃∅(dη) = dq̃∅(η), ∀η ∈ T (D).
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Proof. The proof is the same as for Proposition 3.13, with ẽv0 instead of
ev0. □

4.2.12. Proof of Theorem 2.

Proof of Theorem 2. Choose η ∈ D with |η| = 1 such that γ′ − γ = dη. Take

γ̃ := γ + t(γ′ − γ) + dt ∧ η ∈ D.

Then |γ̃| = 2 and

dγ̃ = dt ∧ (γ′ − γ)− dt ∧ dη = 0,

j∗0 γ̃ = γ, j∗1 γ̃ = γ′.

From Propositions 4.5, 4.6, 4.7, 4.8, 4.10, 4.11, 4.12, 4.18, and equa-
tion (28), it follows that (C, m̃γ̃) is a cyclic unital pseudoisotopy from (C,mγ)
to (C,mγ′

). □

4.2.13. Relaxed assumptions. Define a subcomplex of A∗(X) by

Â∗(X,L) :=

{
η ∈ A∗(X)

∣∣∣∣
∫

L

i∗η = 0

}
.

Then Theorems 1 and 2 hold for γ ∈ Â∗(X,L) by verbatim the same proof
as for γ ∈ A∗(X,L). Specifically, for closed γ ∈ (IQÂ

∗(X,L))2, we have that
({mγ

k}k≥0, ⟨ , ⟩, 1) is a cyclic unital A∞ structure on C. Moreover, set

Â∗(I ×X, I × L) :=

{
η̃ ∈ A∗(I ×X)

∣∣∣∣ p∗(Id×i)
∗η̃ = 0

}
.

Then given closed γ, γ′ ∈ (IQÂ
∗(X,L))2 with [γ] = [γ′] ∈ H∗(Â∗(X,L), d),

there exists a cyclic unital pseudoisotopy m̃γ̃ from mγ to mγ′

with γ̃ ∈ Â∗(I ×
X, I × L).

As for Theorem 3, the fundamental class and zero properties are satisfied
for mγ . Namely, if γ ∈ (IQÂ

∗(X,L))2 is closed and ∂t0γ = 1, then ∂t0m
γ
k =

−1 · δ0,k and m̄γ is a deformation of the standard differential graded algebra
structure. However, the divisor property is not necessarily satisfied.

4.3. Uniform formulation of structure equations

Using the cyclic structure ⟨⟨ , ⟩⟩, the A∞ relations can be rephrased so the

case k = −1 fits more uniformly. Recall the definition of G̃W from (29).
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Proposition 4.20. For k ≥ 0,

d⟨⟨m̃γ̃
k(α̃1, . . . , α̃k), α̃k+1⟩⟩

=
∑

k1+k2=k+1
k1≥1,k2≥0
1≤i≤k1

(−1)ν(α̃;k1,k2,i)

· ⟨⟨m̃γ̃
k1
(α̃i+k2

, . . . , α̃k+1, α̃1, . . . , α̃i−1), m̃
γ̃
k2
(α̃i, . . . , α̃k2+i−1)⟩⟩

with

ν(α̃; k1, k2, i) :=

i−1∑

j=1

(|α̃j |+ 1)

+

k+1∑

j=i+k2

(|α̃j |+ 1)
( ∑

m ̸=j
1≤m≤k+1

(|α̃m|+ 1) + 1
)
+ 1

For k = −1,

dm̃γ̃
−1 = −

1

2
⟨⟨m̃γ̃

0 , m̃
γ̃
0⟩⟩+ G̃W.

Proof. For k ≥ 0, we use Propositions 4.11 and 4.5 to obtain

d⟨⟨m̃γ̃
k(α̃1, . . . , α̃k), α̃k+1⟩⟩

= ⟨⟨dm̃γ̃
k(α̃1, . . . , α̃k), α̃k+1⟩⟩

− (−1)(|α̃k+1|+1)(|m̃γ̃

k(α̃1,...,α̃k)|+1)⟨⟨dα̃k+1, m̃
γ̃
k(α̃1, . . . , α̃k)⟩⟩

= −
∑

k1+k2=k+1
(k1,β) ̸=(1,β0)

1≤i≤k1

(−1)
∑

i−1
j=1(|α̃j |+1)

· ⟨⟨T βm̃
γ̃,β
k1

(α̃1, . . . , α̃i−1, m̃
γ̃
k2
(α̃i, . . . , α̃i+k2−1), α̃i+k2

, . . . , α̃k), α̃k+1⟩⟩

+ (−1)(|α̃k+1|+1)(|m̃γ̃

k(α̃1,...,α̃k)|+1)+1⟨⟨dα̃k+1, m̃
γ̃
k(α̃1, . . . , α̃k)⟩⟩

=
∑

k1+k2=k+1
(k1,β) ̸=(1,β0)

1≤i≤k1

(−1)1+
∑

i−1
j=1(|α̃j |+1)+ν′

· ⟨⟨T βm̃
γ̃,β
k1

(α̃i+k2
, . . . , α̃k, α̃k+1α̃1, . . . , α̃i−1), m̃

γ̃
k2
(α̃i, . . . , α̃i+k2−1)⟩⟩

+ (−1)(|α̃k+1|+1)(
∑

k
j=1(|α̃j |+1)+1)+1⟨⟨dα̃k+1, m̃

γ̃
k(α̃1, . . . , α̃k)⟩⟩,
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with the sign ν ′ as follows:

ν ′ =

k+1∑

j=i+k2

(|α̃j |+ 1)
( ∑

m ̸=j
1≤m≤k+1

m ̸∈{i,...,k2+i−1}

(|α̃m|+ 1) + (|m̃γ̃(α̃i, . . . , α̃i+k2−1)|+ 1)
)

≡
k+1∑

j=i+k2

(|α̃j |+ 1)
( ∑

m ̸=j
1≤m≤k+1

(|α̃m|+ 1) + 1
)

(mod 2).

For k = −1, note that |γ̃| = 2, so sgn(σγ̃I∪J) ≡ 0 (mod 2). This implies
that Proposition 4.4 reads

−dm̃γ̃
−1 =

1

2
⟨⟨m̃γ̃

0 , m̃
γ̃
0⟩⟩ − G̃W.

□
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