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Let M be a smooth, closed, orientable manifold and P(M) the set
of Poisson structures on M . We construct a Poisson bracket for a
class of admissible functions on P(M), depending on a choice of
volume form for M . The Hamiltonian flow of the bracket acts on
P(M) by volume-preserving diffeomorphisms of M , corresponding
to exact gauge transformations. Fixed points of the flow equation
define a sub-algebra of Poisson vector fields, which are computed
for Poisson structures on 2 and 3-manifolds. On the space of sym-
plectic manifolds with a symplectic volume form (up to scaling)
we define a further, related Poisson bracket and show that the be-
haviour of the induced flow on symplectic structures is described
naturally in terms of the ddΛ and d+ dΛ symplectic cohomology
groups defined by Tseng and Yau[19].

1. Introduction and summary of the construction

This paper is concerned with the collection of all distinct Poisson structures
that can be defined on a given smooth, closed, orientable manifold M . We
show that the set of all Poisson structures on M , denoted P(M), has, itself,
a family of Poisson brackets, {·, ·}µ, depending on a choice of volume form
µ for M . The bracket {·, ·}µ is defined on a particular class of admissible
functions on P(M). It is non-linear, depending cubically on the Poisson
tensor.

Along with a choice of admissible function on P(M) acting as a Hamilto-
nian, the bracket {·, ·}µ induces a Hamiltonian flow on the space of Poisson
structures, which acts to deform any given Poisson structure, π, on M . This
flow is formulated as a PDE on M , and acts by volume-preserving diffeomor-
phisms. The vector fields generating these diffeomorphisms lie tangent to the
(singular) foliation Fπ defined by π, and so equivalently the flow on P(M)
acts by exact gauge transformations. While Fπ is invariant under the flow
of the bracket, its global properties nevertheless play a role. For example,
the additional structure carried by a Poisson manifold with a volume form
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µ is the modular vector field [8, 9, 21], denoted ϕµ. We show that Poisson
structure on a 3-manifold appears as a non-trivial steady state in the flow
equation if and only if it is unimodular (ϕµ is Hamiltonian), equivalent to
the condition that Fπ can be defined by a closed 1-form.

More generally, a non-trivial steady solution of the flow equation is given
by a Poisson vector field, and we show that the set of all such steady solutions
forms a subalgebra of Poisson vector fields with respect to the Lie bracket.
This subalgebra is an invariant of the Poisson structure; it is the space of
Poisson vector fields that arise from Hamiltonian flow of the bracket {·, ·}µ,
and we compute it for two and three-dimensional Poisson manifolds.

The set of unimodular Poisson structures for which the modular vector
field ϕµ vanishes is a Poisson subspace of the bracket {·, ·}µ. This allows us to
define a further, related Poisson bracket on the space of symplectic structures
on M whose symplectic volume form is equal to µ (up to a constant factor).
Deformations of these symplectic structures under the flow of this bracket are
naturally described in terms of the d+ dΛ and ddΛ symplectic cohomology
groups defined by Tseng and Yau [19].

The motivation for this work came from studying the Lie-Poisson bracket
of ideal fluid hydrodynamics [1, 18] on 1-forms modulo exact forms, which is
associated to the group of volume-preserving diffeomorphisms of the man-
ifold M . This bracket restricts naturally to the space of integrable 1-forms
modulo exact forms [12]. An integrable 1-form and volume form on a 3-
manifold together define a Poisson structure, hence one finds a Poisson
bracket on Poisson structures for 3-manifolds (which is different from the
bracket defined here). The present work is the result of trying to extend the
idea of a ‘Poisson bracket on the space of Poisson structures’ to arbitrary
Poisson manifolds. A follow-up paper extends this construction to a number
of additional settings [14].

I would like to acknowledge contributions of the two anonymous referees,
whose comments and corrections greatly improved the manuscript.

1.1. Summary of the construction

Let π ∈ A2(M) be an integrable 2-vector field defining a Poisson structure on
a closed manifoldM , and let P(M) denote the space of Poisson structures on
M . Define the differential on forms δπ,µ : Ωp(M) → Ωp−1(M) as the adjoint
of the Lichnerowicz differential [11] in Poisson cohomology X 7→ [π,X] with
respect to the natural pairing between p-forms β and p-vectors defined by a
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choice of volume form µ,

(β, [π,X])µ =

∫

M

(ι[π,X]β)µ =

∫

M

(ιXδπ,µβ)µ = (δπ,µβ,X)µ.

Now let F : A2(M) → R be a function on 2-vector fields that can be written
as an integral

(1) F (π) =

∫

M

f(jrπ)µ

of some smooth function f : Jr(Λ
2TM) → R, for arbitrary finite r. The

derivative of F with respect to a deformation of the Poisson structure will
be a 2-form βF,π, so that

dF

dt

∣

∣

∣

∣

t=0

= (βF,π, π̇)µ,

where π̇ = (dπ/dt)|t=0. Then for two such functions F and G we define the
bracket

(2) {F,G}µ = (δπ,µβF,π ∧ δπ,µβG,π, π)µ,

which is once again a function of the form (1). If F is replaced with another
function which agrees with F when restricted to P(M), the value of the
bracket is unchanged, becoming a well-defined operation on P(M). In fact,
(2) defines a Poisson bracket on the space of admissible functions on P(M)
(defined precisely in Section 4).

Given an admissible function H, playing the role of Hamiltonian, the
bracket (2) generates a flow on the space of Poisson structures, which acts
by gauge transformations by the exact 2-form γt with dγt/dt = dδπ,µβH,π.
Considered as a diffeomorphism, the deformation of π is given by flow along
the vector field VH,π = π♯(δπ,µβH,π), which preserves the the volume form
µ. Of interest are the Poisson vector fields arising this way i.e. functions F
for which [VF,π, π] = 0. These form a subalgebra, for two functionals F and
G giving Poisson vector fields, V{F,G}µ

is also Poisson, and we have

[VF,π, VG,π] = V{F,G}µ
,

which can be compared with the relation [Hf , Hg] = H{f,g}π
for Hamiltonian

vector fields of functions f and g. We compute this set of Poisson vector fields
for Poisson 2-manifolds, where it is characterized by functions f satisfying
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{f, ιπµ}π = 0, where {·, ·}π is the Poisson bracket on M defined by π. On
regular Poisson 3-manifolds we show that the set of Poisson vector fields
arising from the bracket (2) is non-trivial if and only if the Poisson structure
is unimodular.

Several subsets of Poisson structures arise as ‘Poisson subspaces’ of the
bracket (2). We consider in detail the subspace Sµ(M) of symplectic Pois-
son structures for which dιπµ = 0. Because the deformation of symplectic
Poisson structures is unobstructed in Poisson cohomology (see Ref. [4] Sec-
tion 18.6) we can give a more complete characterization of the bracket in
terms of operations on appropriately defined tangent and cotangent spaces
to Sµ(M). In this case the flow equation of the bracket becomes

∂tω = ddΛβH,π,

where ω is the symplectic form defined by π. dΛ = [d,Λ], with Λ the dual
Lefschetz operator, is the symplectic derivative (see Ref. [16] Section 1). In
this context the finite-dimensional ddΛ and d+ dΛ symplectic cohomology
groups defined by Tseng and Yau [19] arise naturally. H2

d+dΛ characterizes
deformations of symplectic structures in Sµ(M) that preserve the symplectic
volume form, modulo those arising from the flow of the bracket on Sµ(M).
In the dual picture the group H2

ddΛ characterizes distinct elements of the
cotangent space of Sµ(M) that yield symplectic vector fields.

2. Preliminaries

Throughout, M will be a smooth, closed, orientable manifold of dimension
n, and we will use ‘manifold’ as such. Let A(M) be the space of multivector
fields, and Ω(M) the space of differential forms onM . A Poisson structure on
M is specified by a 2-vector π ∈ A2(M) satisfying the integrability condition

(3) [π, π] = 0,

where [·, ·] is the Schouten-Nijenhuis bracket (see Refs.[10, 20] for more de-
tails on Poisson structures). The Poisson bracket determined by π is given
by {f, g}π = π(df, dg). A Poisson structure π defines a (possibly singular)
foliation Fπ of M , whose leaves carry a symplectic form. π also defines the
cotangent Lie algebroid (M, [·, ·]π, π

♯) on T ∗(M) (see Ref. [4], Section 17)
with the corresponding Lie bracket [·, ·]π on 1-forms

[α, β]π = Lπ♯αβ − Lπ♯βα− dπ(α, β),
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where the anchor map π♯ : T ∗M → TM is given by α 7→ π(α, ·). The bracket
[·, ·]π can be rewritten as the Koszul bracket (Ref. [8] Section 1.4, Ref. [9]
Section 3)

(4) [α, β]π = (δKBα)β − (δKBβ)α− δKB(α ∧ β)

where δKB = [ιπ, d] is the Koszul-Brylinski differential and [·, ·] is the graded
commutator of linear endomorphisms on Ω(M). The interior product ιXα :
Ap(M)× Ωq(M) → Ωq−p(M) will act on the right, so that for vector fields
X and Y , ιY ιXα = ιX∧Y α.

Proposition 1. The Koszul-Brylinski differential can be ‘twisted’ by the
addition of a Poisson vector field V (so [V, π] = 0) as δKB + ιV .

Proof. We require (δKB + ιV )
2 = 0. Using Cartan’s formula (see Ref. [10]

Proposition 3.6)

(5) ι[P,Q] = [[ιP , d], ιQ],

shows that this is the case if and only if V is a Poisson vector field. □

The differential δπ,µ we define in Section 3 is such a twisted Koszul-Brylinski
differential. Since the interior product acts as a derivation on Ω(M), δKB

may be replaced in (4) with any twisted differential. We can then define a
natural subset of Ω1(M) closed under [·, ·]π.

Lemma 1. For a Koszul-Brylinski differential δ = δKB + ιV , twisted by the
Poisson vector field V , the 1-forms δΩ2(M) ⊂ Ω1(M) are closed under the
Lie algebroid bracket [·, ·]π with explicit formula

[δα, δβ]π = −δ(δα ∧ δβ).

Proof. This follows by replacing δKB with δ in (4) and using the fact that
δ2 = 0 since V is Poisson. □

Finally, a frequently occurring object in the construction is the modular
vector field [21] ϕµ, defined by the equation

dιπµ = ιϕµ
µ.

The modular vector field ϕµ preserves both the volume form and the Poisson
structure, i.e. Lϕµ

π = [ϕµ, π] = 0 and divϕµ = 0. A Poisson structure is uni-
modular if there is a volume form making the modular vector field vanish. If
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the modular vector field vanishes for the volume form µ, we say the Poisson
structure is µ-unimodular.

3. The differential δπ,µ

The Poisson bracket we construct relies heavily on the differential δπ,µ. To
define δπ,µ we first note that the volume form µ defines a pairing between
any p-form β and p-vector field X given by

(6) (β,X)µ =

∫

M

(ιXβ)µ.

Definition 1. δπ,µ : Ω∗(M) → Ω∗−1(M) is the adjoint of the Lichnerowicz
differential in Poisson cohomology [11], X 7→ [π,X], on multivectors with
respect to the pairing (6).

An explicit formula for δπ,µ can be given in terms of the Koszul-Brylinski
differential δKB = [ιπ, d].

Lemma 2. The differential δπ,µ is given by

(7) δπ,µ = (−1)p(δKB − ιϕµ
),

Proof.

(β, [π,X])µ =

∫

M

ι[π,X]βµ =

∫

M

β ∧ ι[π,X]µ.

Using Cartan’s formula (5), this is given by

∫

M

β ∧ ιπdιXµ− β ∧ dιπιXµ+ (−1)p−1β ∧ ιXιϕµ
µ.

Now for α ∈ Ωp(M), β ∈ Ωn−p+q(M), X ∈ Aq(M), q ≤ p, we have

ιXα ∧ β = (−1)(p+1)qα ∧ ιXβ.

Using Stokes’ theorem and the above formula on each of the three terms
yields

∫

M

(−1)p+1ιXdιπβ ∧ µ− (−1)p+1ιXιπdβµ+ (−1)p−1ιXιϕµ
βµ.

□



✐

✐

“4-Machon” — 2023/4/12 — 17:13 — page 1113 — #7
✐

✐

✐

✐

✐

✐

A Poisson bracket on the space of Poisson structures 1113

It follows immediately from Lemma 1 that the 1-forms δKBΩ
2(M) are closed

under the bracket [·, ·]π. Of use will be the observation that the differential
δπ,µ can be used to compute the divergence of a vector field π♯(α).

Lemma 3. The divergence of the vector field π♯(α) with respect to the
volume form µ is given by

div π♯(α) = δπ,µα.

Proof. The divergence of a vector field V is defined as (divV )µ = dιV µ.
By standard manipulations of interior products (see e.g. Ref. [10], Proposi-
tion 3.4), ιπ♯(α)µ = −α ∧ ιπµ. Then

divπ(α, ·) = −dα ∧ ιπµ+ α ∧ dιπµ = (δπ,µα)µ.

□

Remark 1. To avoid confusion we note that a very similar, but differ-
ent, differential has been considered previously [5, 22]. The volume form
µ induces an isomorphism ∗ : Aq(M) → Ωn−q(M) given by ∗ : X 7→ ιXµ. A
differential operator can then be defined as δL = ∗[π, ∗−1·]. A short calcu-
lation shows that this operator is given by [ιπ, d] + ιϕµ

. Note that, ignoring
the factor of (−1)p, the sign of ιϕµ

differs between δπ,µ and δL, and they are
not the same differential when ϕµ ̸= 0.

4. Admissible functions and the space of Poisson structures

Definition 2. The space of Poisson structures, P(M), on M is the set

P(M) = {X ∈ A2(M) | [X,X] = 0}.

In order to define a Poisson bracket on P(M) we need an appropriate
notion of function and derivative on the space of Poisson structures. We
define the vector space A (over R) as functions F : A2(M) → R that can be
written as an integral

F (π) =

∫

M

f(jrπ)µ

of some smooth function f : Jr(Λ
2TM) → R, for finite r ≥ 0. We define the

subspace A0 ⊂ A as those functions that restrict to zero on P(M),

A0 = {F ∈ A |π ∈ P(M) ⇒ F (π) = 0}.



✐

✐

“4-Machon” — 2023/4/12 — 17:13 — page 1114 — #8
✐

✐

✐

✐

✐

✐

1114 Thomas Machon

Definition 3. A primitive admissible function F : P(M) → R is an element
of the quotient space A/A0. Admissible functions are the subalgebra of
functions P(M) → R generated by the primitive admissible functions.

Given a differentiable one-parameter family of 2-vectors π(t) ∈ A2(M)
(not necessarily Poisson structures), the derivative of an element F̃ ∈ A is
the 2-form βF̃ ,π given by

(8)
dF̃

dt

∣

∣

∣

∣

∣

t=0

= (βF̃ ,π, π̇)µ,

where π̇ = (dπ/dt)|t=0. Now for any primitive admissible function F , the set
of representative elements of A all differ by an element of A0. That is, given
a primitive admissible function F with two representatives F̃1 and F̃2, we
have G̃ = F̃1 − F̃2 ∈ A0.

Lemma 4. Let G̃ be a function in A0, then

π ∈ P(M) ⇒ δπ,µβG̃,π = 0.

Proof. Consider the one-parameter family of Poisson structures πt, t ≥ 0,
generated by the flow of an arbitrary vector field V , so that ∂tπt = [V, πt].
As πt is a one-parameter family of Poisson structures and G̃ ∈ A0 we have

0 =
dG̃

dt

∣

∣

∣

∣

∣

t=0

= (βG̃,π0
, π̇)µ = (βG̃,π0

, [π0, V ])µ = (δπ,µβG̃,π, V )µ,

where π̇ = (∂tπ)t=0. Since V is arbitrary, the fundamental lemma of the
calculus of variations implies δπ,µβG̃,π = 0. □

Corollary 1. Let F be a primitive admissible function, then the 1-form
δπ,µβF̃ ,π does not depend on the choice of representative element F̃ ∈ A.

Henceforth we will write βF,π to denote the derivative of an arbitrary repre-
sentative of an admissible function F , as we only use the expression δπ,µβF,π.

Example 1. A useful class of primitive admissible functions on P(M) are
linear functions. Given some fixed 2-form β these are given as

∫

M

(ιπβ)µ.

The derivative of such a linear function can be represented by the 2-form β.
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We now consider the case of general admissible functions. Let F and
G be two primitive admissible functions, then the value of the product on
P(M) is independent of the choice of representatives for F and G. Given
two such representatives F̃ and G̃, the Leibniz rule gives the derivative of
the product as

βF̃ G̃,π = F̃ βG̃,π + G̃βF̃ ,π.

We then have the following.

Lemma 5. For an admissible function FG with F and G primitive, the
1-form

δπ,µβF̃ G̃,π = F̃ δπ,µβG̃,π + G̃δπ,µβF̃ ,π,

does not depend on the choice of representatives F̃ and G̃.

Proof. Observe that the values of both F̃ and δπ,µβF̃ ,π do not depend on
the choice of representative for F (similarly for G). □

By extension, the one-form δπ,µβF,π is well-defined for any admissible func-
tion F .

Corollary 2. There is a well-defined map

Admissible functions → Ω1(M)× P(M),

given by taking the derivative δπ,µ of the differential of any representative of
an admissible function.

5. The Poisson bracket {·, ·}µ

Recall that a commutative algebra is a Poisson algebra if it is equipped with a
Lie bracket, {·, ·}, which is a derivation, so that {fg, h} = f{g, h}+ g{f, h}.

Theorem 1. The bracket on admissible functions P(M) → R given by

(9) {F,G}µ = (δπ,µβF,π ∧ δπ,µβG,π, π)µ ,

for two admissible functions F and G, makes the commutative algebra of
admissible functions on P(M) a Poisson algebra.

{F,G}µ is once again an admissible function, and by Lemmas 4 and 5,
does not depend on the choice of representative 2-forms βF,π and βG,π. To
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prove we now show (9) obeys the axioms of a Poisson bracket. R-bilinearity
and the Leibniz formula follow from properties of the derivative of admissi-
ble functions. Anti-commutativity follows from the properties of the wedge
product. All that remains is to establish the Jacobi identity. To do so we first
introduce a characteristic vector field associated to an admissible function F .

Proposition 2. Let F be an admissible function, and denote by VF,π ∈
A1(M) the vector field VF,π = π♯(δπ,µβF,π). Then VF,π has the following
properties:

VF,π is tangent to the symplectic foliation defined by π,
VF,π is volume preserving with respect to µ (dιVF,π

µ = 0),
[VF,π, π] = π(dδπ,µβF,π)π − 1

2π ∧ π(dδπ,µβF,π, ·),
[VF,π, ϕµ] = −π♯(Lϕµ

δπ,µβF,π),
For two functions F , G, the corresponding vector fields satisfy

[VF,π, VG,π] = −π♯(δπ,µ(δπ,µβF,π ∧ δπ,µβG,π)).

Proof. The first property follows as VF,π is of the form π(α, ·) for some 1-
form α. The second property is a consequence of Lemma 3. To see the third
observe that

[VF,π, π] = [π(♯δπ,µβF,π), π].

Now for P,Q ∈ A2(M), α ∈ Ω1(M), the following identity holds

[P,Q](α) = −[P (α), Q]− [Q(α), P ]− (P ∧Q)(dα) + P (dα)Q+ PQ(dα).

Along with the fact that [π, π] = 0, this gives the third property. The fourth
follows from observing that

ι[VF,π,ϕµ]µ = −Lϕµ
ιVF,π

µ = Lϕµ
(δπ,µβF,π ∧ ιπµ) = −ιπ♯(Lϕµδπ,µβF,π)µ,

along with the property Lϕµ
π = 0. The fifth is a consequence of (4) and the

fact that the anchor map π♯ of the cotangent Lie algebroid preserves Lie
brackets (see e.g. Ref. [4], Proposition 17.1). □

With these vector fields we may rewrite the Poisson bracket in a number
of different ways

{F,G}µ = (δπ,µβF,π ∧ δπ,µβG,π, π)µ(10)

= (δπ,µβG,π, VF,π)µ = (βG,π, [π, VF,π])µ =
(

LVF,π
βG,π, π

)

µ
.

Now we compute the derivative of {F,G}µ.
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Lemma 6. The derivative of {F,G}µ with respect to π is represented by
the 2-form β{F,G}µ,π, given by

β{F,G}µ,π = (δπ,µβF,π ∧ δπ,µβG,π)

+
(

LVF,π
βG,π − LVG,π

βF,π
)

+ (γG([π, VF,π], ·)− γF ([π, VG,π], ·)) ,

(11)

where the operator γF,π : A2(M)×A2(M) → C∞(M) is a linear differential
operator in the first argument and linear in the second with symmetry

(γF,π(X, ·), Y )µ = (γF,π(Y, ·), X)µ

for all 2-vector fields X and Y .

Proof. Using dot to denote time derivative, we have

d{F,G}µ
dt

∣

∣

∣

∣

t=0

= (δπ,µβF,π ∧ δπ,µβG,π, π̇)µ

+
(

δπ,µβF,π ∧ ( ˙δπ,µβG,π + δπ,µ ˙βG,π)− δπ,µβG,π ∧ ( ˙δπ,µβF,π + δπ,µ ˙βF,π), π
)

µ
.

The first term in the above equation gives the first term in (11). Now we
compute the ˙δπ,µβG,π term. This is given by

(δπ,µβF,π ∧ ˙δπ,µβG,π, π)µ = ( ˙δπ,µβG,π, VF,π)µ

= (βG,π, [π̇, VF,π])µ = (LVF,π
βG,π, π̇)µ.

Finally we must compute β̇G,π, the second variation of G with respect to
π. Given a 1-parameter family of Poisson structures π(t) and an admissible
function F the second derivative is given by

d2F

dt2

∣

∣

∣

∣

t=0

=

∫

M

β̇F,π(π̇, π̇)µ =

∫

M

γF,π(π̇, π̇)µ,

where γF,π : A2(M)×A2(M) → C∞(M) is a linear differential operator in
the first argument and linear in the second. The symmetries of γ (see
Ref. [18], page 478) imply

∫

M

γF,π(X,Y )µ =

∫

M

γF,π(Y,X)µ
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for any 2-vector fields X, Y ∈ A2(M). This can be rewritten as

(γF,π(X, ·), Y )µ = (γF,π(Y, ·), X)µ.

We note that the tensor γF,π depends on the choice of representative in A of
the function F , this is dealt with in Lemma 8. Antisymmetry in F,G gives
all terms in (11). □

We need one more technical lemma before we establish the Jacobi identity

Lemma 7. Let α, β, γ ∈ Ω1(M). Then

δπ,µ(α ∧ β ∧ γ) = −δπ,µ(α ∧ β) ∧ γ − (δπ,µγ)α ∧ β+ ⟳,

where ⟳ denotes the sum of cyclic permutations with respect to α, β, γ.

Proof. We have

δπ,µ(α ∧ β ∧ γ) = −(ιπd− dιπ − ιϕµ
)α ∧ β ∧ γ

= d(π(α, β)γ)− ιπ(dα ∧ β ∧ γ) + (ιϕµ
γ)α ∧ β+ ⟳

We then find

δπ,µ(α ∧ β ∧ γ) = (dπ(α, β) + ιπ♯(α)dβ − ιπ♯(β)dα) ∧ γ

+ α ∧ β(−ιπdγ + ιϕµ
γ)+ ⟳ .

Using δπ,µα = −ιπdα+ ιϕµ
α and the relation

δπ,µ(α ∧ β) = −(δπ,µα)β + (δπ,µβ)α− dιπ(α ∧ β) + ιπ♯βdα− ιπ♯αdβ

gives the result. □

Lemma 8. The bracket (9) satisfies the Jacobi identity.

Proof. We must show that the Jacobiator {{F,G}, H}+ {{G,H}, F}+
{{H,F}, G} = {{F,G}, H}+ ⟳ vanishes. The terms in the Jacobiator in-
volving the γ tensors from Lemma 6 are dealt with separately first. We find
these are given by

(12) (γG,π([π, VF,π], ·), [π, VH,π])µ − (γF,π([π, VG,π], ·), [π, VH,π])µ+ ⟳= 0,

where we use the symmetries of γ. The tensor γF depends upon the choice
of representative in A of the function F , and we can choose a different



✐

✐

“4-Machon” — 2023/4/12 — 17:13 — page 1119 — #13
✐

✐

✐

✐

✐

✐

A Poisson bracket on the space of Poisson structures 1119

representative of F for each term in the Jacobiator. However, by Lemmas 4
and 5, δπ,µβ{F,G}π,µ

is well-defined, and hence the Jacobiator cannot depend
on this choice, so we obtain zero in (12) for all choices of representatives.
Now consider terms in the Jacobiator involving the first line of (11). Using
(10) these are given by

(δπ,µβH,π, π
♯(δπ,µ(δπ,µβF,π ∧ δπ,µβG,π)))µ+ ⟳

= −(δπ,µβH,π, [VF,π, VG,π])µ+ ⟳,

where we have used Proposition 2. Cyclic permutations of terms in the
Jacobiator involving the second line of (11) give

(LVH,π
LVG,π

βF,π − LVH,π
LVF,π

βG,π, π)µ+ ⟳= (L[VG,π,VF,π]βH,π, π)+ ⟳,

and we have used LXLY − LY LX = L[X,Y ]. Manipulating the above expres-
sion gives

(δπ,µβH,π,−[VF,π, VG,π])µ+ ⟳,

which equals the contribution from the first line of (11). Using the formula
(4) for δπ,µ and the fact that the anchor π♯ preserves Lie brackets we can
write the remaining expression as

2(δπ,µβH,π,−[VF,π, VG,π])µ+ ⟳

= 2

∫

M

π(δπ,µ(δπ,µβF,π ∧ δπ,µβG,π), δπ,µβH,π)µ+ ⟳ .

We then use Lemma 7, finding

2

∫

M

π(δπ,µ(δπ,µβF,π ∧ δπ,µβG,π), δπ,µβH,π)µ+ ⟳

= −2(δπ,µ(δπ,µβF,π ∧ δπ,µβG,π ∧ δπ,µβH,π), π)µ.

Using the definition of δπ,µ this is given by

−2(δπ,µβF,π ∧ δπ,µβG,π ∧ δπ,µβH,π, [π, π])µ,

which vanishes by the integrability of π. □

This completes the proof of Theorem 1.
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5.1. Varying the volume form

The Poisson bracket {F,G}µ depends on the volume form, which we have
thus far held fixed. We now consider varying the volume form. Let ν = fµ,
for nowhere-zero f ∈ C∞(M), be an another volume form. The modular
vector field ϕν satisfies dιπν = ιϕν

ν, and is related to ϕµ by

ϕν = ϕµ −Hlog f ,

where Hf is the Hamiltonian vector field of f . The value of an admissible
function F does not change under the replacement µ → ν, but its derivate
βF,π does. An examination of (8) shows that the derivative is replaced with
β′
F = βF,π/f . We then find the following.

Lemma 9. The differential δνβ
′
F is given by

δνβ
′
F = f−1δπ,µβF,π.

Proof.

δνβ
′
F = δπ,µβ

′
F − ιHlog f

β′
F = δπ,µβ

′
F + ιH1/f

βF,π.

□

We then have the following corollary of Theorem 1 giving the form of brack-
ets arising from different choices of volume form.

Corollary 3. The family of brackets on P(M) given by

∫

M

g ((δπ,µβF,π ∧ δπ,µβG,π) ∧ ιπµ) ,

with g ∈ C∞(M) a nowhere-zero function are all Poisson.

Proof. Using Lemma 9, under a change of volume form µ → ν = fµ the
Poisson bracket {F,G}ν is given by

{F,G}ν =

∫

M

(δνβ
′
F,π ∧ δνβ

′
G,π) ∧ ιπν =

∫

M

1

f
((δπ,µβF,π ∧ δπ,µβG,π) ∧ ιπµ) .

Setting g = 1/f gives the result. □
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6. Gauge transformations and the flow on P(M)

Given a choice of an admissible Hamiltonian H, we obtain a Hamiltonian
flow on the space of Poisson structures. By (10) this flow is given by

∂tπ = [VH,π, π] = LVH,π
π.

Let πt, t ≥ 0 be a one-parameter family of Poisson structures generated by
such a flow, then we have the following.

Proposition 3. Assuming the solution exists, the Hamiltonian flow on
P(M) of the bracket {·, ·}µ with Hamiltonian function H acts by exact gauge
transformations on π as

πt = πγt

0 ,
dγt
dt

= dδπt,µβH,πt
.

Proof. This follows from the Moser argument for Poisson manifolds. We
recall the definition of an exact gauge transformation of a Poisson structure
(see Ref. [15] Section 2.3). Let γt, t ≥ 0 be a one-parameter family of exact
2-forms with γ0 = 0 and dγt/dt = −dat. Then the gauge transformation πt =
πγt is defined as

ϕ∗
t (π

γt) = π,

where ϕt is the family of diffeomorphisms generated by the vector fields
π♯
t(at). The result follows. □

Example 2. In the case of a linear function

F =

∫

M

(ιπβ)µ,

with fixed 2-form β, the evolution of the Poisson structure can be explicitly
calculated as πt = π

tdδπ,µβ
0 (see Ref. [6], Lemma 4).

The observation that the flow acts by gauge transformations implies
that the foliation Fπ does not change under the flow of the bracket {·, ·}µ.
It allows us to define several natural ‘Poisson subsets’ of P(M) with respect
to the bracket {·, ·}µ.

Theorem 2. The following subsets and their intersections are Poisson sub-
sets of the bracket {·, ·}µ:
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Regular Poisson structures of rank 2r,
Poisson structures with a fixed foliation,
Unimodular Poisson structures,
µ-unimodular Poisson structures.

Remark 2. Note that the set of µ-unimodular Poisson structures is not,
in general, a Poisson subspace of the bracket {·, ·}ν for ν ̸= µ.

Of interest are steady solutions to the flow equation, that is, the set of
Poisson vector fields VF,π satisfying [VF,π, π] = 0 for vector fields VF,π arising
from the bracket {·, ·}µ.

Proposition 4. The set of Poisson vector fields arising from the bracket
{·, ·}µ form a Lie subalgebra of Poisson vector fields, denoted X (µ, π) and
satisfy

[VF,π, VG,π] = V{F,G}µ,π.

Proof. Using Proposition 2 we have

[VF,π, VG,π] = −π♯(δπ,µ(δπ,µβF,π ∧ δπ,µβG,π)).

Now we have [VF,π, π] = 0 and [VF,π, ϕµ] = 0 which implies [δπ,µ,LVF,π
] = 0,

and that [VF,π, π
♯(α)] = π♯(LVF,π

α). This allows us to write

[VF,π, VG,π] = π♯(LVF,π
δπ,µβG,π) = π♯(δπ,µLVF,π

βG,π) = −π♯(δπ,µLVG,π
βF,π),

where the last equality follows from antisymmetry of the Lie bracket. Finally,
using Lemma 6, and noting that the γ-terms vanish by our assumption
[VF,π, π] = [VG,π, π] = 0, we have

V{F,G}µ,π = π♯(δπ,µ(δπ,µβF,π ∧ δπ,µβG,π + LVF,π
βG,π − LVG,π

βF,π)).

Which is rewritten as

V{F,G}µ,π = −[VF,π, VG,π] + [VF,π, VG,π] + [VF,π, VG,π] = [VF,π, VG,π].

□

This subalgebra of Poisson vector fields is a natural object associated to the
pair (π, µ). We now characterize it for Poisson structures on 2-manifolds and
regular Poisson structures on 3-manifolds.
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Proposition 5. On a Poisson 2-manifold with volume form µ, let C(π, µ)
be the set of functions f satisfying

{f, g}π = 0,

where g = ιπµ and {·, ·}π is the Poisson bracket defined by π. Then the
surjective map f 7→ −π♯(fd g + d(fg)) sends C(π, µ) to the set of Poisson
vector fields arising from the bracket {·, ·}µ.

Proof. In this case the modular vector field satisfies ιϕµ
µ = dg. The deriva-

tive of an admissible function F is given by βF,π = fµ, for some function
f . Then we find δπ,µβF,π = −d(fg)− fdg, so that VF,π = −π♯(d(fg) + fdg).
Then using Proposition 2 we find

∂tπ = −π(df ∧ dg)π = −{f, g}ππ

setting ∂tπ to zero gives the result. □

Proposition 6. On a regular Poisson 3-manifold, the set of Poisson vector
fields arising from the bracket {·, ·}µ is non-trivial if and only if the Poisson
structure is unimodular.

Remark 3. This is equivalent to the foliation Fπ being defined by a closed
1-form.

Proof. Consider the subset of regular Poisson structures on a 3-manifold M ,
for a given π we obtain the 1-form α = ιπµ, with the integrability condition
[π, π] = 0 now written as α ∧ dα = 0. We now seek steady solutions of the
flow equation. This implies there is a function f = π(βF,π) satisfying Lϕµ

f =
0. Now consider the modular form [21] η, defined by ιϕµ

µ = ιπµ ∧ η. The
modular form is defined only up to addition of a term of the form gα for a
function g, and dη = α ∧ γ for some 1-form γ, so that the restriction of η to
the leaves of the symplectic foliation Fπ is closed. Hence η defines a class [η]
in the foliated cohomology group H1(Fπ) [3]. Now the existence of a non-
trivial steady solution to the flow equation implies f satisfies π(df, η) = 0,
and furthermore that the Hamiltonian vector field Hf commutes with the
modular vector field, i.e. [ϕµ, Hf ] = 0. In particular, this implies η = df +
gα. We then find that dα = α ∧ df so that d(efα) = df ∧ efα+ efα ∧ df =
0, hence the form ιπe

fµ is closed and the Poisson structure is unimodular
with respect to the volume form efµ.
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Now suppose π is unimodular then the modular vector field is Hamil-
tonian, given by ϕµ = Hlog g for some nowhere-zero function g. Then note
that the modular form can be chosen as η = d log g. We may write βF,π =
fgσ + ρ, where α ∧ ρ = 0 and σ is a symplectic form on the leaves of Fπ,
satisfying ιπσ = 1. Then the flow equation becomes

∂tπ = {f, g}ππ.

We may then choose any function f Poisson commuting with g to obtain a
non-trivial steady solution with a given βF,π, and hence a linear admissible
function yielding said steady solution. □

Remark 4. Since there are no foliations on S3 defined by closed 1-forms,
this implies that there are no non-trivial steady solutions to the flow equation
of the bracket {·, ·}µ for regular Poisson structures on S3.

Remark 5. Recall the definition of the Godbillon-Vey invariant GV (see
Example 4). It is easy to see that GV = 0 if η = df + gα, hence GV ̸= 0 is
an obstruction to the existence of non-trivial steady solutions to the flow
equation of the bracket {·, ·}µ for regular Poisson structures on 3-manifolds.
It is known that the Godbillon-Vey invariant obstructs unimodularity on
Poisson 3-manifolds [7, 21], here we find that it obstructs the existence of
steady solutions of the flow equation. This mirrors its application in ideal
fluids, where under certain conditions it provides an obstruction to steady
flow [13].

7. Casimirs

A Casimir of the bracket is an admissible function C satisfying {C,F}µ = 0
for all admissible functions F . From (10) we see that the condition for C to
be a Casimir is for VC,π to be Poisson,

[VC,π, π] = 0.

We now give two examples of Casimir invariants.

Example 3. Symplectic volume. Let M be a 2m-dimensional manifold,
and take the bracket on the Poisson subspace S(M), the space of symplec-
tic structures on M , i.e. non-degenerate closed 2-forms ω. This defines the
Poisson structure via the relation ω♯(π♯(·)) = −Id, where ω♯ : TM → T ∗M
is the map induced by the symplectic form. The symplectic volume form ν is
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related to our chosen volume form µ by the function f , ν = ωm/(m!) = fµ.
Then the symplectic volume is given as

S =

∫

M

ωm

(m!)
.

Since the symplectic volume is invariant under volume diffeomorphism, and
the flow of the bracket acts by diffeomorphism, it must be preserved (and
is hence a Casimir). However, we can give an explicit calculation. First
note that the equation ιπ(ω) = −m implies ιπ̇ω + ιπω̇ = 0. Finally note that
ιπω

m = −m2ωm−1. This implies that the derivative is given by βS = fω/m.
We then have the short calculation

δν,πβS,π = ιπdβS,π − dιπβS,π = df.

Since π is ν-unimodular, the modular vector field for µ must be Hamiltonian
with respect to ω, hence ιϕµ

ω = dg for some function g, and we have

δπ,µβS,π = df − dg.

This implies that VS is a Hamiltonian vector field, hence [VS,π, π] = 0 and
so S is a Casimir.

Example 4. Godbillon-Vey invariant. Since a Poisson structure π defines
a foliation Fπ, diffeomorphism invariants of Fπ are also invariants of π. The
Godbillon-Vey invariant is one such example (as considered by Mikami [17]).
Let M be a 3-manifold, and P2(M) the space of regular (rank 2) Poisson
structures on M . Then the nowhere-zero 1-form α = ιπµ defines the foliation
Fπ, satisfying the integrability condition α ∧ dα = 0. This implies that there
is a 1-form η such that dα = α ∧ η and then

GV =

∫

M

η ∧ dη,

is the Godbillon-Vey invariant [3], depending only on the foliation defined
by α (under the transformations α → fα for f a nowhere-zero function, and
η → η + hα for h a function, η ∧ dη changes by an exact form). In order to
formulate GV as an admissible function we need to extend it to all nowhere-
zero 2-vector fields in A2(M). To this we pick a Riemannian metric g, and



✐

✐

“4-Machon” — 2023/4/12 — 17:13 — page 1126 — #20
✐

✐

✐

✐

✐

✐

1126 Thomas Machon

let ∗ be the associated Hodge star. Then we may pick η as

(13) ηg =
∗(∗dα ∧ α)

|α|2
.

When α ∧ dα = 0, ηg serves as a choice of η for the Godbillon-Vey invariant,
when α ∧ dα ̸= 0, the integral of ηg ∧ dηg is a metric-dependent number. In
what follows we restrict to P(M), so may use η without direct reference
to (13) To compute the derivative of GV we consider two variations of
the Poisson structure (see also [12] for a discussion of this calculation).
The variation of GV with respect to π can be computed by first noting
that dη = α ∧ γ for some 1-form γ. Then observe that dα = α ∧ β implies
˙dα = α̇ ∧ η + α ∧ η̇. This allows us to write

ĠV = 2

∫

M

η̇ ∧ dη = 2

∫

M

η̇ ∧ α ∧ γ

= 2

∫

M

(α̇ ∧ η − ˙dα) ∧ γ = 2

∫

M

α̇ ∧ (η ∧ γ − dγ)

So that the derivative of GV can be identified with the 2-form χ = 2(η ∧
γ − dγ). Now we compute the derivative δπ,µ of χ. Note that χ satisfies
dχ = η ∧ σ and α ∧ χ = 0, the second of these implies ιπχ = 0. A direct
computation then shows that

δπ,µχ = ιπ(η ∧ χ)− ιϕµ
χ = 0

which follows as ϕµ is defined as π♯(η) for a regular Poisson 3-manifold.
Hence GV is a Casimir of the bracket {·, ·}. Note that while the Godbillon-
Vey invariant can be defined for any corank 1 Poisson structure, it gives an
element in the third de Rham cohomology group in all cases. In order to
define it as an admissible function for dimensions n > 3, we pick a fixed de
Rham cohomology class [τ ] ∈ Hn−3(M ;R) with representative n− 3 form
τ . Then if π is a regular corank 1 Poisson structure of rank 2m = n− 1, the
1-form α = ιπmµ defines a codimension-1 foliation of M . Then we can define
the admissible function

GVτ =

∫

M

ηg ∧ dηg ∧ τ

which computes the de Rham class GV ⌣ [τ ] ∈ Hn(M,R). While we do not
give a direct proof, this will be a Casimir. More generally there are further
Godbillon-Vey invariants of codimension q foliations, living in the de Rham
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cohomology group H1+2q. For these to give Casimirs of Poisson structures
akin to the case 3-manifolds we require n = 1 + 2q, and n− q = 2s. Hence we
find Casimirs of regular rank 2s Poisson structures on manifolds of dimension
4s− 1. In other dimensions one can take the cup product with some fixed
cohomology class.

8. The symplectic case

When π defines a symplectic structure additional phenomena arise. Theo-
rem 2 tells us that Poisson structures which are µ-unimodular are a Poisson
subset of the bracket {·, ·}µ. It further tells us that non-degenerate (symplec-
tic) µ-unimodular Poisson structures form a Poisson subset of the bracket
{·, ·}µ. In this section we explore the bracket on this subset. Let S(M) be
the space of Poisson structures on M that are symplectic, i.e. for a 2m-
dimensional manifold M , we have

S(M) = {π ∈ P(M) |πm ̸= 0}.

Now define Sµ(M) as the subspace of S(M) of those π ∈ S(M) which are
µ-unimodular.

Sµ(M) = {π ∈ S(M) | d(ιπµ) = 0}.

This can be characterised in terms of the symplectic volume form induced by
π. For a given π ∈ Sµ(M) let ω be the associated symplectic form, defined
as before by π♯ ◦ ω♯ = −Id.

Lemma 10. For a Poisson structure π ∈ Sµ(M), the associated symplectic
volume form ν = ωm/m! is equal to cµ, where c ∈ R is constant.

Proof. The volume form µ is equal to fν, where f is a nowhere-zero smooth
function. We then have

ιπµ = fιπν = fωm−1/(m− 1)!

Hence

dιπµ = df ∧ ωm−1/(m− 1)! = ιπ♯(df)µ

This vanishes only if the Hamiltonian vector field Hf = π♯(df) vanishes.
Since π is symplectic, this implies df = 0, hence f = 1/c is a (non-zero)
constant. □
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In the symplectic language, the operators we have been using are known
differently. The derivative δπ,µ is equal to the symplectic derivative dΛ de-
fined in terms of the Lefschetz operator Λ = ιπ : Ωk(M) → Ωk−2(M) by
contraction with the Poisson tensor (for more detail see, for example [19],
though note sign conventions differ). The symplectic derivative is defined as
dΛ = [d,Λ], with sign conventions

δπ,µ = (−1)kdΛ,

where we consider the action of δπ,µ on k-forms. Henceforth we will replace
δπ,µ with dΛ. For a given π ∈ S(M), any X ∈ A2(M) satisfying [π,X] = 0
arises as the linear term in a formal deformation of π (when π is not symplec-
tic this is not always true, and there are obstructions in Poisson cohomology,
see for example Ref. [4] Section 18.6). Moreover, a given infinitesimal defor-
mation X ∈ A2(M) will preserve µ-unimodularity provided dιXµ = 0. This
lack of obstruction allows us to define the tangent space of Sµ(M) at π as

TπSµ(M) = {X ∈ A2(M) | [π,X] = 0, d(ιXµ) = 0}.

We once again define the space of admissible functions analogously to Sec-
tion 4. Recalling the definition of the vector spaces A and A0 of functions,
we define the subspace AS ⊂ A as those functions that restrict to zero on
2-vector fields X that satisfy dιXµ = 0. Let D(µ) ⊂ A2(M) be the space of
such 2-vector fields. Then we define

Aµ = {F ∈ A |X ∈ D(µ) ⇒ F (X) = 0}.

Definition 4. A primitive admissible function F : Sµ(M) → R is an el-
ement of the quotient space A/(A0 +Aµ). An admissible function is an
element of the commutative algebra generated by the primitive admissible
functions.

The additional structure of the symplectic case allows us to character-
ize the derivatives of admissible functions with greater precision. We start
by defining the admissible cotangent space T ∗

πSµ(M) as the vector space
spanned by the possible derivatives of admissible functions.

Proposition 7. The admissible cotangent space can be identified as

T ∗
πSµ(M) ∼= Ω2(M)/(dΩ1(M) + dΛΩ3(M)).
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We prove in three steps. Firstly, by considering linear functions of π, it is
clear that any 2-form may arise as the derivative of an admissible function.
It remains to characterize the derivatives of functions in A0 and Aµ.

Lemma 11. Evaluated at a symplectic structure, the space of derivatives
βG,π of functions in A0 can be identified with the space dΛΩ3(M).

Proof. From Lemma 4 we know that βG,π is dΛ closed, hence defines a ho-
mology class in H2(M,dΛ). In the symplectic case this group is isomorphic
to the de Rahm cohomology group H2m−2(M) with explicit map given by
the ‘symplectic star’ operator (see e.g. [2] Cor. 2.2.2). Moreover, since anyX
satisfying [X,π] = 0 can arise as a deformation of the symplectic structure
π, we have

(14) 0 =

∫

M

ιXβG,πµ

for all X satisfying [X,π] = 0. Any 2-vector X satisfying [X,π] = 0 defines
an element of the second Poisson cohomology group, which in the symplectic
case is isomorphic to the de Rham cohomology group H2(M) with explicit
isomorphism given by (π♯)−1 : TM → T ∗M extended to all of Λ•TM . Under
the mapping to de Rham cohomology, the pairing (14) is just the cup product
pairing between the de Rham cohomology groups H2 and H2m−2 on a closed
2m manifold. By Poincaré duality this pairing is non-degenerate. Therefore
βG,π must be null-homologous in the homology group H2(M,dΛ), hence it is
dΛ exact. By constructing a linear function, any dΛ exact 2-form may arise
as a derivative. □

Recall D(µ) ⊂ A2(M) as the set of non-degenerate 2-vector fields satis-
fying dιXµ = 0 for X ∈ D(µ).

Lemma 12. Evaluated at an element of D(µ), the space of derivatives βG,π

of functions in Aµ can be identified with the space dΩ1(M).

Proof. The condition for a deformation Y to induce zero infinitesimal change
in µ is dιY µ = 0. For any function in Aµ, the derivative βG,π must satisfy

0 =

∫

M

ιY βG,πµ

for all Y satisfying dιY µ = 0. Equivalently, ιY µ is an arbitrary closed n−
2 form. By analogous reasoning to Lemma 11, βG,π must be d-exact. By
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constructing a linear function, any exact 2-form may arise as a derivative.
□

This completes the proof of Proposition 7. We now define the Poisson bracket
on Sµ(M) entirely analogously to Theorem 1.

Theorem 3. The bracket on admissible functions Sµ(M) → R given by

(15) {F,G}µ =
(

dΛβF,π ∧ dΛβG,π, π
)

µ
,

for two admissible functions F and G, is Poisson.

Proof. We only need to show that the value of the bracket does not depend
on the choice of representative forms of the derivative, as the remainder of
the proof is completely analogous to Theorem 1. Following Lemma 12 we
may add an arbitrary exact 2-form to each derivative. Suppose we add dα
to βF,π, then dΛdα = ddΛα = −d(ιπdα), and we can compute

(ddΛα ∧ dΛβG,π, π)µ = (dΛβG,π, Hιπdα)µ,

where Hιπdα is the Hamiltonian vector field of the function ιπdα. Then we
find

(dΛβG,π, Hιπdα)µ = (βG,π, [π,Hιπdα])µ = 0.

□

9. Steady points of the flow and symplectic cohomology

The flow equation of the bracket on Sµ(M) is given once again by

∂tπ = [VF,π, π],

but now VF,π is not uniquely specified by the function F , VF,π is defined only
up to Hamiltonian vector fields associated to functions of the form ιπdα, for
arbitrary 1-forms α, which does not affect the flow. This becomes clearer
from the alternate form of the flow equation (see Proposition 2).

∂tπ = π(ddΛβF,π)π −
1

2
π ∧ π(ddΛβF,π),

as βF,π is defined only up to the exact 1-form dα and ddΛα = dΛdα, the
1-form ddΛβF,π does not depend on α. In this case the flow equation is more
naturally given in terms of the symplectic form ω.
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Proposition 8. On S(M)µ, the flow equation of the bracket {·, ·}µ is

(16) ∂tω = ddΛβF,π.

where ω is the symplectic form corresponding to π.

Proof. Since the flow equation acts by diffeomorphisms preserving the sym-
plectic volume, we have

∂tω = LVF,π
ω = dιVF,π

ω.

Now

ιVF,π
ω = ω(π(−dΛβF,π, ·), ·) = dΛβF,π,

which gives the result. □

We now show how the family of symplectic cohomology groups, the d+
dΛ and ddΛ groups defined by Tseng and Yau [19] arise naturally when
considering symplectic structures and their deformations using the bracket
{·, ·}µ. Recall that these cohomology groups are defined as

Hk
d+dΛ(M) =

ker dk ∩ ker dΛk
Im ddΛk

, Hk
ddΛ(M) =

ker ddΛk
Im dk−1 + Im dΛk+1

.

These cohomology groups satisfy a number of useful properties, in particular
there is a Hodge-type decomposition of k forms (Ref. [19] Theorems 3.5, 3.16)
for both ddΛ and d+ dΛ cohomologies.

Lemma 13. A 2-form η is the derivative at t = 0 of a 1-parameter family
of symplectic forms ωt ∈ Sµ(M) if and only if

dη = dΛη = 0.

Proof. The requirement dη = 0 is immediate, and since the deformation the-
ory of symplectic forms is unobstructed, any such closed η is the derivative
of a 1-parameter family of symplectic forms. The condition that the volume
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form change by a simple scale factor is

η ∧ ωn−1 = constµ.

Observing that η ∧ ωn−1 = (ιπη)µ we find

ιπη = Λη = const.

Now suppose that dΛη = 0. This is written explicitly as

dΛη − Λdη = 0.

since η must be closed, dΛ = 0 implies dΛη = 0, which implies Λη is constant.
□

Theorem 4. For a symplectic structure ω with symplectic volume form
µ, the group H2

d+dΛ(M) characterizes infinitesimal deformations of ω in
Sµ(M), modulo those arising from the Hamiltonian flow of the bracket {·, ·}µ
on Sµ(M). The group H2

ddΛ(M) characterizes distinct element of the space
T ∗
πSµ(M) that preserve ω.

Proof. The condition for a 2-form β to be an infinitesimal deformation of a
symplectic structure is dβ = 0. A short calculation shows that it preserves
the symplectic volume form if and only if dΛβ = 0. Deformations arising
as flow of the bracket {·, ·}µ are of the form dΛβF,π by Proposition 8. This
yields the first statement. The second follows directly from Proposition 8
and Proposition 7. □

Remark 6. The first part of Theorem 4 can be compared to the interpreta-
tion of the de Rham comology group H2(M,R) as the space of infinitesimal
deformations of a symplectic structure, modulo diffeomorphisms.

Remark 7. Suppose the symplectic structure defined by π satisfies the
strong Lefschetz property (equivalently the ddΛ Lemma [16]), which states
that the map on de Rham Cohomology

Hk(M) → H2n−k, α 7→ ωn−k ∧ α,

is an isomorphism for all k ≤ n. Then in this case we have (Ref. [19] Propo-
sition 3.13),

Hk
d+dΛ(M) ∼= Hk(M,R),

where Hk is the kth de Rham cohomology group.
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131 (1985), 257–271.

[10] Camille Laurent-Gengoux, Anne Pichereau, and Pol Vanhaecke. Pois-
son structures, volume 347. Springer Science & Business Media, 2012.

[11] A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie as-
sociées, J. Differential Geom. 12 (1977), 253–300.

[12] T. Machon, The Godbillon-Vey invariant as a restricted Casimir of
three-dimensional ideal fluids, J. Phys. A Math. Theor. 53 (2020),
235701.

[13] T. Machon, The Godbillon-Vey invariant as topological vorticity com-
pression and obstruction to steady flow in ideal fluids, Proc. R. Soc. A
476 (2020), 20190851.



✐

✐

“4-Machon” — 2023/4/12 — 17:13 — page 1134 — #28
✐

✐

✐

✐

✐

✐

1134 Thomas Machon

[14] T. Machon, Poisson structures on sets of Maurer-Cartan elements,
arXiv:2203.02310 [Math.DG], (2022)

[15] E. Meinrenken, Poisson geometry from a Dirac perspective, Lett. Math.
Phys. 108 (2018), 447–498.

[16] S.A. Merkulov, Formality of canonical symplectic complexes and Frobe-
nius manifolds, Int. Math. Res. Not. IMRN 1998 (1998), 727–733.

[17] K. Mikami, Godbillon-Vey classes of symplectic foliations, Pacific J.
Math., 194 (2000), 165–174.

[18] P.J. Morrison, Hamiltonian description of the ideal fluid, Rev. Mod.
Phys. 70 (1998), 467–521.

[19] L-S. Tseng and S-T. Yau, Cohomology and hodge theory on symplectic
manifolds: I, J. Differential Geom. 91 (2012), 383–416.

[20] I. Vaisman, Lectures on the geometry of Poisson manifolds, Progress in
Mathematics 118, Birkhäuser, Basel, 1994.
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