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An embedding φ : (M1, ω1) → (M2, ω2) (of symplectic manifolds of
the same dimension) is called ϵ-symplectic if the difference φ∗ω2 −
ω1 is ϵ-small with respect to a fixed Riemannian metric on M1.
We prove that if a sequence of ϵ-symplectic embeddings converges
uniformly (on compact subsets) to another embedding, then the
limit is E-symplectic, where the number E depends only on ϵ,
and E(ϵ) → 0 as ϵ→ 0. This generalizes C0-rigidity of symplec-
tic embeddings, and answers a question in topological quantum
computing by Michael Freedman.

As in the symplectic case, this rigidity theorem can be deduced
from the existence and properties of symplectic capacities. An ϵ-
symplectic embedding preserves capacity up to an ϵ-small error,
and linear ϵ-symplectic maps can be characterized by the property
that they preserve the symplectic spectrum of ellipsoids (centered
at the origin) up to an error that is ϵ-small. We also sketch an
alternative proof using the shape invariant, which gives rise to an
analogous characterization and rigidity theorem for ϵ-contact em-
beddings.

1. Introduction and main results

In this paper, we consider smooth manifolds M equipped with a symplec-
tic structure ω and a Riemannian metric g. We do not necessarily assume
that the metric is compatible with the symplectic structure, or that the in-
duced volume forms coincide (up to a constant multiple), though some of
the estimates in this article are more explicit in those cases, in particular in
dimension two.

Definition 1.1 (Epsilon-symplectic and epsilon-anti-symplectic).
Let (M1, ω1) and (M2, ω2) be two symplectic manifolds of the same dimen-
sion, g be a Riemannian metric on M1, and ϵ ≥ 0. An embedding φ : M1 →
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M2 is called ϵ-symplectic if ∥φ∗ω2 − ω1∥2 ≤ ϵ, and ϵ-anti-symplectic if
∥φ∗ω2 + ω1∥2 ≤ ϵ.

See section 2 for the definition of the norm ∥ · ∥2 and a number of general
related results. A goal of this paper is to prove the following rigidity theorem.

Theorem 1.2. Let (M1, ω1) and (M2, ω2) be two symplectic manifolds of
the same dimension, and g be a Riemannian metric on M1. Then there are
constants δ = δ(ω1, g) > 0 and E = E(ω1, g, ϵ) ≥ 0 with E → 0+ as ϵ→ 0+

so that, if ϵ < δ and φk : M1 →M2 is a sequence of ϵ-symplectic embeddings
that converges uniformly (on compact subsets) to an embedding φ : M1 →
M2, then φ is E-symplectic.

In case (M1, ω1) and (M2, ω2) are both subsets of (R2n, ω0) with its
standard symplectic structure and standard flat metric, an explicit lower
bound for δ and explicit upper bound for E can be derived from the proof
given in this paper.

Corollary 1.3. Let (M1, ω1) and (M2, ω2) be two symplectic manifolds of
the same dimension, and ϵk ≥ 0 be a sequence of non-negative numbers so
that ϵk → 0+ as k → ∞. Suppose that φk : M1 →M2 is a sequence of embed-
dings that converges uniformly (on compact subsets) to another embedding
φ : M1 →M2, and that each φk is ϵk-symplectic. Then the limit φ is a sym-
plectic embedding.

The choice of Riemannian metric on M1 is not relevant for the corol-
lary. See Remark 4.9. Analogous to the symplectic case, we show that an
embedding is ϵ-symplectic or ϵ-anti-symplectic if and only if it preserves the
capacity of ellipsoids up to an ϵ-small error. Most of the paper is devoted to
establishing its linear version on R2n with its standard symplectic structure
and Riemannian metric.

Proposition 1.4. Let 0 ≤ ϵ < 1/
√
2, and ϵ′ =

√
2 ϵ. Then an ϵ-symplectic

linear map Φ: R2n → R2n is ϵ′-non-squeezing and ϵ′-non-expanding.

The constant 1/
√
2 is not optimal; see section 2 for details. By Re-

mark 5.5 below, there is no form of non-squeezing for ϵ-symplectic embed-
dings with ϵ ≥ 1.

Theorem 1.5. Suppose a linear map Φ: R2n → R2n has the linear ϵ-non-
squeezing and linear ϵ-non-expanding property. Then for ϵ ≥ 0 sufficiently
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small, Φ is either ϵ′-symplectic or ϵ′-anti-symplectic, where ϵ′ = K(ϵ) → 0+

as ϵ→ 0+.

See sections 4 and 5 for details. Symplectic capacities are discussed in
section 6. A geometric expression of ϵ-symplectic rigidity is the following
generalization of Gromov’s non-squeezing theorem. Consider again R2n with
its standard symplectic structure ω0. Denote by B2n

r ⊂ R2n the (closed)
ball of radius r > 0 (centered at the origin), and by Z2n

R = B2
R × R2n−2 the

(symplectic) cylinder of radius R > 0.

Proposition 1.6 (Epsilon-non-squeezing). If there is an ϵ-symplectic

embedding of B2n
r into Z2n

R , with 0 ≤ ϵ < 1/
√
2, then r ≤ (1−

√
2 ϵ)−

√
2nR.

Recall that Gromov’s non-squeezing theorem (the case ϵ = 0) can be
considered as a geometric expression of the uncertainty principle [6, page
458]. Given a point (x1, y1, . . . , xn, yn) in R2n = T ∗Rn, think of xj as the
j-th position coordinate and yj as the j-th momentum coordinate of some
Hamiltonian system. If the state of the system is measured to lie somewhere
in a subset U ⊂ R2n that is (or contains) a ball of radius r, then the range of
uncertainty (to the extent of our knowledge) of the values of the conjugate
pair (xj , yj) is the area πr2. Proposition 1.6 then means that if the system
is transformed by an ϵ-symplectic diffeomorphism, this range of uncertainty
can be decreased by a factor of at most (1−

√
2 ϵ)2n.

The results of this paper are of interest in symplectic integrator methods
and topological quantum computing, where computations can be performed
up to any prescribed level of accuracy only. The question by Michael Freed-
man [4] was the starting point of this paper. Corollary 1.3 is also relevant
in C0-symplectic topology.

For most of the paper, we assume that M is compact or a relatively
compact subset U of R2n. In the latter case, we also assume that there
exists a Riemannian metric g defined on a neighborhood of U such that
g|U = g. In particular, all of the supremums considered below are in fact
maximums, and in particular, are finite. See the (first paragraph of the)
proof of Theorem 1.2 in section 6 for the case of non-compact manifolds. An
alternate argument using the shape invariant, and ϵ-contact embeddings,
are discussed in the final section 7.
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2. Norms of vector fields and differential forms

The Riemannian metric g induces a norm on each tangent space TxM given
by ∥v∥2 =

√

g(v, v) for v ∈ TxM . The norm of a vector field X onM is then
defined by ∥X∥2 = supx∈M ∥X(x)∥2. Let ⋆ denote the Hodge star of the
metric g. Then for a k-covector v∗ ∈ Λk(TxM), let ∥v∗∥2 =

√

⋆(v∗ ∧ ⋆v∗),
and for a differential form β, define ∥β∥2 = supx∈M ∥β(x)∥2. We can also
define the comass norms

∥v∗∥C = sup{v∗(v1, . . . , vk) | ∥v1∥2 = · · · = ∥vk∥2 = 1}

and ∥β∥C = supx∈M ∥β(x)∥C . The norms ∥ · ∥2 and ∥ · ∥C are in fact equiv-
alent. We sketch a proof to the degree necessary for our purposes. See [3,
Chapter 1], for instance, for details.

Lemma 2.1. Let m = dimM . Then ∥ · ∥C ≤ ∥ · ∥2 ≤
√

(

m
k

)

∥ · ∥C for any

k-covector and any k-form, and ∥v∗∥C = ∥v∗∥2 if and only if the k-covector
v∗ is simple.

Sketch of proof. Note that it suffices to prove the lemma for covectors. The
natural isomorphism γ : TxM → T ∗

xM given by γ(v) = g(v, ·) extends to an
isomorphism γ : Λk(TxM) → Λk(TxM) for each k, and thus the metric g
extends to a metric on the space of k-vectors given by (v, w) 7→ γ(v)(w). The
induced norm ∥ · ∥2 on k-vectors is dual to the norm ∥ · ∥2 for k-covectors.
In particular,

∥v∗∥2 = sup{v∗(v) | v ∈ Λk(TxM) with ∥v∥2 = 1},

whereas

∥v∗∥C = sup{v∗(v1 ∧ . . . ∧ vk) | ∥v1 ∧ . . . ∧ vk∥2 = 1},

i.e., the latter supremum is over all simple unit k-vectors only, where a k-
(co-)vector is called simple if it is the (alternating) product of 1-(co-)vectors.
That proves the first inequality, and the claim that the two norms coincide
on simple k-covectors.

To prove the second inequality, choose an orthonormal basis e1, . . . , em
of TxM , with dual orthonormal basis α1, . . . , αm. Let v∗ be a k-covector,
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and write

v∗ =
∑

σ

fσ ασ(1) ∧ . . . ∧ ασ(k),(1)

where the sum is over all strictly increasing functions σ : {1, . . . , k} →
{1, . . . ,m}. Let d =

(

m
k

)

, and choose some order on the set (with d elements)
of such functions. Denote by fv∗ the vector (fσ1

, . . . , fσd
) in Rd, equipped

with the standard metric g0 = ⟨·, ·⟩. Then it follows immediately from the
definitions that ∥v∗∥2 = ∥fv∗∥2.

Let vj =
∑m

i=1 λijei, 1 ≤ j ≤ k, be unit vectors in TxM , and consider
the (m× k)-matrix Λ = [λij ]1≤i≤m,1≤j≤k. Then

v∗(v1, . . . , vk) = ⟨(fσ1
, . . . , fσd

), (det(Mσ1
), . . . , det(Mσd

))⟩ ,

where Mσ is the (k × k)-minor obtained from Λ by deleting all but the rows
in the image of the function σ. (Geometrically, the minor Mσ represents the
linear transformation Λ ◦Πσ : R

k → Rk, where Πσ : R
m → Rk denotes the

projection to the components that belong to the image of σ. In particular,
the absolute value of its determinant can be interpreted as the hyper-volume
of the image of a k-dimensional face of the unit cube.) Let N ≤ d be the
number of non-zero terms in (1). If we choose λij = δiσ(j) for some σ, then
v∗(v1, . . . , vk) = fσ. Therefore ∥v∗∥C ≥ maxσ |fσ|, and in particular, ∥v∗∥2 ≤√
N ∥v∗∥C ≤

√
d ∥v∗∥C . □

We point out the following immediate consequence of the preceding
proof.

Lemma 2.2. For every k-covector v∗ and every orthonormal basis B of
TxM , there exist vectors v1, . . . , vk ∈ B such that

∥v∗∥C ≥ |v∗(v1, v2, . . . , vk)| ≥
(

m

k

)−1/2

∥v∗∥2.

Remark 2.3. The inequalities in Lemma 2.1 are not necessarily sharp for
all pairs of positive integers m and k. Below we find optimal constants in
the two cases k = 1 or 2 of interest in this paper.

Lemma 2.4. ∥ · ∥C = ∥ · ∥2 for any k-covector and any k-form if k = 1 or
m− 1.
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Proof. The proof is an immediate consequence of Lemma 2.1, since any 1-
covector and (m− 1)-covector is simple. We also give a direct argument. It
again suffices to prove the lemma for covectors.

If k = 1, write v∗ = γ(v) for a (unique) vector v ∈ TxM . Then by def-
inition, ∥v∗∥C ≥ γ(v)(v/∥v∥2) = ∥v∥2 = ∥v∗∥2. Conversely, for u ∈ TxM a
unit vector, |γ(v)(u)| = |g(v, u)| ≤ ∥v∥2 by the Cauchy-Schwarz inequality,
so ∥v∗∥C ≤ ∥v∥2.

For k = m− 1 the proof is similar, once we observe that (det(Mσ1
), . . . ,

det(Mσm
)) is the cross product of v1, . . . , vm−1, and v

∗(v1, . . . , vm−1) is the
determinant of the matrix with columns the vectors fv∗ , v1, . . . , vm−1. (Geo-
metrically, the latter is, up to sign, the volume of the parallelepiped spanned
by these vectors.) □

A key ingredient in our argument in section 5 is the following lemma.
We state and prove it in this section for its corollary.

Lemma 2.5. Let ω be a two-form on an inner product space V . Then there
exists an orthonormal basis B for V , S = {u1, . . . , un, v1, . . . , vn} ⊂ B, 2n ≤
dimV , and positive numbers 0 < λ1 ≤ . . . ≤ λn, such that ω(uj , vk) = λ2jδjk
and ω(uj , uk) = ω(vj , vk) = 0 for 1 ≤ j, k ≤ n, and ω vanishes on B \S. In
other words, ω can be written in the form ω =

∑n
j=1 λ

2
j αj ∧ βj with one-

forms αj and βj dual to the elements of S. Moreover, ω is non-degenerate
if and only if 2n = dimV .

Corollary 2.6. ∥ · ∥C ≤ ∥ · ∥2 ≤ (
⌊

m
2

⌋

)1/2∥ · ∥C for any two-covector and
two-form on an m-dimensional Riemannian manifold M , and these inequal-
ities are sharp.

Proof of Corollary. See the last three sentences of the proof of Lemma 2.1.
To verify that the second inequality is also sharp, suppose that ω is non-
degenerate, and that J is an almost complex structure that is compatible
with g so that ω = g(J ·, ·). Then ∥ω∥C = ∥g(J ·, ·)∥C = 1. On the other hand,
∥ω0∥2 =

√
n for the standard symplectic structure ω0 and standard Rieman-

nian metric on R2n. □

Proof of Lemma 2.5. The argument here is taken from [3, Section 1.7.3].
Let A be the skew-symmetric matrix so that ω(v, w) = g(Av,w). Decom-
pose V into a direct sum of mutually orthogonal and A-invariant subspaces
W1, . . . ,Ws with dimWj ≤ 2 (which exists since V has a basis of eigenvec-
tors of the symmetric matrix A2), and observe that ω(v, w) = 0 whenever
v ∈Wj and w ∈Wk with j ̸= k. Choose an orthonormal basis uj , vj for
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each Wj that is two-dimensional, and extend to any orthonormal basis for
V if rank(A) = 2n < dimV . Note that g(Aui, ui) = ω(ui, ui) = 0, so we may
choose vi parallel to Aui, and then ω(ui, vi) = ∥Aui∥. Reorder theWj if nec-
essary. □

Remark 2.7. Alternatively, one may argue as in [6, Lemma 2.4.5] in case
ω is non-degenerate. Here one observes that the matrix iA : C2n → C2n is
Hermitian, and obtains the same basis vectors uj and vj (up to rescaling) as
real and imaginary parts of the eigenvectors corresponding to the eigenvalues
iλ2j of A. Note that the signs in the proof of [6, Lemma 2.4.5] are different
because A is defined there with the opposite sign choice compared to the
proof given above. The argument easily extends to degenerate ω.

For v a vector, denote by ιv the interior multiplication (or contraction) of
a co-vector v∗ (of degree k ≥ 1) by v, i.e., ιvv

∗ = v∗(v, ·, . . . , ·), and similarly,
for a vector field X, write ιX for interior multiplication of a differential form
by X.

Lemma 2.8. ∥ιvv∗∥C ≤ ∥v∥2∥v∗∥C and ∥ιvv∗∥2 ≤
√
k ∥v∥2∥v∗∥2 for a k-

covector v∗, and thus ∥ιXβ∥C ≤ ∥X∥2∥β∥C and ∥ιXβ∥2 ≤
√
k ∥X∥2∥β∥2 for

a k-form β.

Proof. It is again enough to prove the lemma for covectors. For the norm
∥ · ∥C , the lemma follows immediately from the definition by writing ιvv

∗ =
∥v∥2 · ι(v/∥v∥2)v

∗. For the norm ∥ · ∥2, the claim follows from the identity
∥v∗∥2 = ∥fv∗∥2 established in the course of the proof of Lemma 2.1 and the
Cauchy-Schwarz inequality. □

Remark 2.9. The inequalities in the previous lemma are sharp for the
comass norm, but not for the norm ∥ · ∥2 when 1 < k < dimM .

3. Epsilon-symplectic embeddings

Let (M1, ω1) and (M2, ω2) be symplectic manifolds of the same dimension,
g be a Riemannian metric on M1, and ϵ ≥ 0. Recall that an embedding
φ : M1 →M2 is called ϵ-symplectic if ∥φ∗ω2 − ω1∥2 ≤ ϵ.

Remark 3.1. Let g2 be a Riemannian metric on M2, and φ : M1 →M2 be
an ϵ1-symplectic diffeomorphism. Let β = φ∗ω2 − ω1. Then (φ−1)∗ω1 − ω2 =
−(φ−1)∗β. Thus if ϵ1 > 0 and n > 1, the inverse diffeomorphism φ−1 is not
necessarily ϵ2-symplectic for some ϵ2 ≥ 0 that depends only on ϵ1 and the



✐

✐

“5-Muller” — 2023/3/31 — 0:32 — page 1142 — #8
✐

✐

✐

✐

✐

✐

1142 Stefan Müller

metric g2. If Φ is a linear map, a similar remark holds for its transpose ΦT .
See the following example.

Example 3.2. Let n ≥ 2, and ω0 =
∑n

j=1 dxj ∧ dyj be the standard sym-

plectic structure on R2n = R4 × R2n−4. Let K ̸= 0. Consider the isomor-
phism Ψ of R4 defined by Ψ(x1, y1, x2, y2) = (x1, y1 + ϵx2,−K−1x2,−Ky2),
and let Φ = Ψ× id. Then Φ∗ω0 − ω0 = ϵ dx1 ∧ dx2. On the other hand,
(Φ−1)∗ω0 − ω0 = (Kϵ) dx1 ∧ dx2 and (ΦT )∗ω0 − ω0 = (−Kϵ) dy1 ∧ dy2.

The preceding remark and example mean that our proof of Theorem 1.5
cannot follow too closely the standard proof in the symplectic case given,
for instance, in [6, Section 2.4]. We include the following result solely for the
sake of completeness.

Lemma 3.3. Let φ : M1 →M2 be an embedding, and suppose that ψ1 and
ψ2 are symplectic diffeomorphisms of M1 and M2, respectively. Then there
exists a constant C(ψ1) so that ∥(ψ2 ◦ φ ◦ ψ1)

∗ω2 − ω1∥ ≤ C(ψ1)∥φ∗ω2 −
ω1∥ for both the norm ∥ · ∥2 and the comass norm ∥ · ∥C . In fact, we may
choose C(ψ1) = ∥(ψ1)∗∥2, where ∥ψ∗∥ = supx∈M ∥dψ(x)∥, and ∥Ψ∥ =
max{∥Ψv∥2 | ∥v∥2 = 1}.

Proof. The lemma follows from the identity (ψ2 ◦ φ ◦ ψ1)
∗ω2 − ω1 =

ψ∗
1(φ

∗ω2 − ω1). See [3, Section 1.7.6] for the estimate ∥ψ∗
1(φ

∗ω2 − ω1)∥2 ≤
C(ψ1)∥φ∗ω2 − ω1∥2. (It is sufficient to prove this for two-covectors or a dual
inequality for two-vectors.) The analogous inequality is obvious for the co-
mass norm. □

We will use the following obvious remark in our argument in section 5.

Remark 3.4. If ψ is an (anti-)symplectic diffeomorphism of (M2, ω2), then
an embedding φ : M1 →M2 is ϵ-(anti-)symplectic if and only if the compo-
sition ψ ◦ φ is ϵ-symplectic.

4. Epsilon-symplectic embeddings into Euclidean space

In this section, we consider the case M = Rm with its standard Riemannian
metric g0 = ⟨·, ·⟩. If m = 2n, we also equip R2n with its standard symplectic
structure ω0 =

∑n
j=1 dxj ∧ dyj . Recall that ω0 = g0(J0·, ·), where J0 is the

standard (almost) complex structure on R2n.
Let U ⊂ Rm be an open subset that is star-shaped with respect to the

origin. The following lemma is an immediate consequence of (the proof of)
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the Poincaré Lemma [10, 4.18]. Let Ωk = Ωk(U) = Ωk(U,R) be the space
of (differential) k-forms on U , and write as usual d : Ωk−1 → Ωk for the
differential. The cases of greatest interest to us are the open ball Bm

r ⊂
Rm of radius r > 0 (centered at the origin) and ellipsoids (centered at the
origin), but we also have in mind the open polydisk P (r1, . . . , rn) = B2

r1 ×
· · · ×B2

rn ⊂ R2n.

Lemma 4.1 (Quantitative Poincaré Lemma). For each k ≥ 1, there
is a bounded and R-linear (and hence continuous) transformation hk : Ω

k →
Ωk−1 such that hk+1 ◦ d+ d ◦ hk = id, and in particular, the restriction of
hk to the space of closed k-forms is a right inverse to the differential d. In
fact,

∥hk(β)(x)∥2 ≤
∥x∥2
k − 1

√

k

(

m

k − 1

)

max
0≤t≤1

∥β(tx)∥2 ≤
s

k − 1

√

k

(

m

k − 1

)

∥β∥2

for k > 1, and ∥hk(β)(x)∥2 ≤ ∥x∥2
√
mmax0≤t≤1 ∥β(tx)∥2 ≤ s

√
m∥β∥2 if k =

1, where s = supx∈U ∥x∥2.

Proof. Let hk = αk−1 ◦ ιX = ιX ◦ αk, whereX denotes the radial vector field
∑m

i=1 xi · (∂/∂xi), and where for each k ≥ 0, αk is defined by

αk

(

fσ(x) dxσ(1) ∧ . . . ∧ dxσ(k)
)

=

(
∫ 1

0
tk−1fσ(tx) dt

)

dxσ(1) ∧ . . . ∧ dxσ(k),

and then extended linearly to all of Ωk. More explicitly, for each k ≥ 1,

hk
(

fσ(x) dxσ(1) ∧ . . . ∧ dxσ(k)
)

=

∫ 1

0
tk−1fσ(tx) dt

·
k

∑

j=1

(−1)j+1xσ(j)dxσ(1) ∧ . . . ∧ dxσ(j−1) ∧ dxσ(j+1) ∧ . . . ∧ dxσ(k).

This definition is given in [10, 4.18] only for the unit ball Bm
1 . However,

the definition is the same for Bm
r and arbitrary star-shaped U . In fact,

if Dr : R
m → Rm denotes the dilation x 7→ r · x, then we can define hrk =

(D−1
r )∗ ◦ hk ◦D∗

r on Ωk(B
m
r ), and the definitions of αk, ιX , and hk are in-

variant under conjugation by the induced isomorphism D∗
r . See [10, 4.18] for

a proof that hk+1 ◦ d+ d ◦ hk = id.
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To verify the claimed estimates, first note that by Lemma 2.8,

∥(ιXβ)(x)∥2 ≤
√
k ∥x∥2 ∥β(x)∥2 ≤

√
k s ∥β∥2.

Moreover, with the notation from section 2,

∥αk(β)(x)∥2 =

√

√

√

√

∑

σ

(
∫ 1

0
tk−1fσ(tx)dt

)2

≤ 1

k

√

∑

σ

max
0≤t≤1

f2σ(tx)(2)

≤ 1

k

√

(

m

k

)

max
σ

max
0≤t≤1

|fσ(tx)|(3)

≤ 1

k

√

(

m

k

)

max
0≤t≤1

∥β(tx)∥2,(4)

which yields the inequality for hk = αk−1 ◦ ιX if k > 1 and for h1 = ιX ◦
α1. □

Corollary 4.2. If all of the coefficients fσ of a differential k-form β, k ≥ 1,
are constant along rays through the origin, then

∥hk(β)(x)∥2 ≤
∥x∥2√
k
∥β(x)∥2 ≤

s√
k
∥β∥2.

Proof. Apply the argument in the previous proof to hk = ιX ◦ αk and ob-
serve that ∥αk(β)(x)∥2 = 1

k∥β(x)∥2. □

Remark 4.3. Note that the following estimates in the course of the proof
of Lemma 4.1 are sharp: (2), for example, when all fσ are constant and
equal, (3) when all fσ are equal and nonzero, and (4) when at most one fσ
is nonzero. The combination of the inequalities however may not be sharp
(as in Corollary 4.2).

Remark 4.4. On a general closed and oriented Riemannian manifold,
one has the Hodge decomposition d ◦ δ ◦G+ δ ◦G ◦ d+H = id, where δ =
± ⋆ d⋆, G is Green’s operator, and H is the projection to harmonic forms
[10, Chapter 6]. An explicit estimate as in Lemma 4.1 for the norm of
(δ ◦G)(β) = (G ◦ δ)(β) in terms of the norm of an exact form β is much
more challenging than on Euclidean space.
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Remark 4.5. In general, a family of linear transformations σk : d(Ω
k−1) →

Ωk−1 such that d ◦ σk = id for all k ≥ 1 is called a splitting (of the de Rham
complex). In that language, the maps hk in Lemma 4.1 and δ ◦G in Re-
mark 4.4 are splittings. These splittings are smooth in the sense that the
constructions depend smoothly on the differential form. A splitting also ex-
ists in the case of non-compact manifolds (that are countable at infinity),
see [1, Section 1.5] for a summary.

Remark 4.6. Even more generally, given two maps φ and ψ between
smooth manifolds, a family of linear transformations hk : Ω

k → Ωk−1 such
that φ∗ − ψ∗ = hk+1 ◦ d+ d ◦ hk is called a homotopy operator between φ
and ψ. In that language, the linear transformations in Lemma 4.1 define
a homotopy operator between the identity map and a constant map [10,
Remark 4.19].

A. Banyaga [1, Section 3.1] constructed a homotopy operator I{ϕt} be-
tween a (compactly supported) diffeomorphism that is isotopic to the iden-
tity and the identity: let {φt}0≤t≤1 be an isotopy with φ0 = id and φ1 =
φ, and X = {Xt}0≤t≤1 the unique vector field that generates this isotopy.

Then I{ϕt}(β) =
∫ 1
0 φ

∗
t (ιXt

β)dt. In particular, if β is a closed k-form, then
φ∗β − β = dI{ϕt}(β). However, the (k − 1)-form I{ϕt}(β) is not necessarily
small when β is small, unless the isotopy {φt} is already known to be C1-
small (or k = 1 and the C0-norm ∥X∥ is small).

Lemma 4.7. Suppose that φ : B2n
r → R2n is an ϵ-symplectic embedding

such that 0 ≤ ϵ < 1/
√
2, and define ρ > 0 by

ρ = (1−
√
2 ϵ)

√
2n ≤ 1.

Then there exists an embedding ψ : B2n
ρr → B2n

r such that B2n
ρs ⊂ ψ(B2n

s ) ⊂
B2n

ρ−1s for all s ≤ ρr, ∥ψ(x)− x∥2 ≤ (ρ−1 − 1)∥x∥2 for all x ∈ B2n
ρr , and (φ ◦

ψ)∗ω0 = ω0. Moreover, ψ is isotopic to the canonical inclusion. If φ is (the
restriction of) a linear map R2n → R2n, then we may choose

ρ =

√

1−
√
2ϵ ≤ 1.

Proof. We construct the embedding ψ as the time-one map of an isotopy ψt

defined on the smaller ball B2n
ρr and with ψ0 = id using Moser’s argument,

and so that (φ ◦ ψ)∗ω0 = ψ∗(φ∗ω0) = ω0.
Let ωt = ω0 + t(φ∗ω0 − ω0). Since ϵ < 1, each two-form ωt is symplectic,

and d
dtωt = φ∗ω0 − ω0 is a closed (and hence exact) two-form. Let h2 be



✐

✐

“5-Muller” — 2023/3/31 — 0:32 — page 1146 — #12
✐

✐

✐

✐

✐

✐

1146 Stefan Müller

the linear transformation in Lemma 4.1, and consider the one-form σ =
h2(φ

∗ω0 − ω0). By Lemma 4.1 and by hypothesis,

∥σ(x)∥2 ≤ 2
√
n ∥x∥2∥φ∗ω0 − ω0∥2 ≤ 2

√
n ϵ∥x∥2.

Following Moser’s idea, define a family of vector fields Xt by ιXt
ωt = −σ.

Then

∥(ιXt
ωt)(x)∥2 ≥ ∥(ιXt

ω0)(x)∥2 − t ∥(ιXt
(φ∗ω0 − ω0))(x)∥2

≥ ∥(ιXt
ω0)(x)∥2 −

√
2 t ∥Xt(x)∥2∥φ∗ω0 − ω0∥2

= ∥Xt(x)∥2 −
√
2 t ∥Xt(x)∥2∥φ∗ω0 − ω0∥2

≥ (1−
√
2 ϵ t)∥Xt(x)∥2.

We used Lemma 2.8 for the second inequality. Thus ∥Xt(x)∥2 ≤ C(t)∥x∥2,
where

C(t) =

√
2n ·

√
2 ϵ

1−
√
2 ϵ t

.

The trajectories x : [0, 1] → R2n of Xt therefore satisfy (away from the fixed
point at the origin) the differential inequality

∣

∣

∣

∣

d

dt
∥x(t)∥2

∣

∣

∣

∣

=
|2⟨x(t), x′(t)⟩|

2∥x(t)∥2
≤ ∥x′(t)∥2 = ∥Xt(x(t))∥2 ≤ C(t)∥x(t)∥2,

and thus ∥x(0)∥2 (1−
√
2 ϵ t)

√
2n ≤ ∥x(t)∥2 ≤ ∥x(0)∥2 (1−

√
2 ϵ t)−

√
2n. Fi-

nally,

∥x(1)− x(0)∥ ≤
∫ 1

0
∥x′(t)∥dt ≤

∫ 1

0

C(t)∥x(0)∥
(1−

√
2ϵt)

√
2n
dt

= ∥x(0)∥((1−
√
2ϵ)−

√
2n − 1),

where we dropped the subscript from the norm ∥ · ∥2 for better readability.
Thus the map ψ has all of the stated properties. For the statement about
linear maps, substitute the estimate in Corollary 4.2 into the above argu-
ment. □
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Example 4.8. Suppose φ∗ω0 =
∑n

j=1 c
2
j dxj ∧ dyj , cj > 0. Then the con-

struction in the previous lemma yields

ψ(r1, θ1, . . . , rn, θn) = (c1r1, θ1, . . . , cnrn, θn),

where xj = rj cos θj and yj = rj sin θj are polar coordinates on each R2-
factor.

Remark 4.9. Suppose that g = ⟨·, A(x)·⟩ is a Riemannian metric on Rm,
where A(x) is a non-singular symmetric matrix that depends smoothly on
x ∈ Rm. Then

∥A−1(x)∥−k/2∥v∗∥g0 ≤ ∥v∗∥g ≤ ∥A(x)∥k/2∥v∗∥g0

for any k-covector v∗ ∈ Λk(TxR
m), where ∥A(x)∥ = sup{∥A(x)v∥2 | ∥v∥2 =

1}, and
∥A−1∥−k/2∥β∥g0 ≤ ∥β∥g ≤ ∥A∥k/2∥β∥g0

for any k-form β, where ∥A∥ = supx∈U ∥A(x)∥. In particular, all estimates
with respect to the standard metric g0 hold for an arbitrary Riemannian
metric g up to a constant factor that depends on the metric g only.

5. Linear epsilon-non-squeezing and non-expanding

We will show in this section that linear ϵ-symplectic maps are characterized
by the property that they preserve the linear symplectic width of ellipsoids
up to an error that depends continuously on ϵ and converges to zero as
ϵ→ 0+. The key observation is that the failure to be symplectic can be
expressed quantitatively in terms of the symplectic spectrum of ellipsoids
(centered at the origin).

We identify R2n with Cn in the usual way with z = (x, y) correspond-
ing to x+ iy for x, y ∈ Rn. Recall that with this identification, Sp(2n) ∩
O(2n) = U(n), where Sp(2n), O(2n), and U(n) denote the groups of sym-
plectic, orthogonal, and unitary matrices, respectively. We do not distinguish
between a matrix and the linear map R2n → R2n or Cn → Cn it represents.

Remark 5.1. For a singular matrix Φ we have ∥Φ∗ω0 − ω0∥2 ≥ 1 (cf. the
proof of Lemma 4.7). Thus an ϵ-symplectic matrix with ϵ < 1 is always non-
singular.

For a non-singular matrix A, denote the ellipsoid AB2n
1 (the image of

the closed unit ball) by E(A) = {z ∈ R2n | ⟨z, ((A−1)TA−1) z⟩ ≤ 1}. For 0 <
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r1 ≤ · · · ≤ rn, consider the diagonal matrix ∆(r1, . . . , rn) : C
n → Cn whose

diagonal entries are r1, . . . , rn (in that order), and abbreviate E(r1, . . . , rn) =
E(∆(r1, . . . , rn)), i.e.,

E(r1, . . . , rn) =







z ∈ C
n |

n
∑

j=1

∣

∣

∣

∣

zj
rj

∣

∣

∣

∣

2

≤ 1







.

Recall that for each ellipsoid E(A), there exists a symplectic matrix Ψ
such that ΨE(A) = E(r1, . . . , rn) for some n-tuple (r1, . . . , rn) with 0 < r1 ≤
· · · ≤ rn, and that is uniquely determined by A. It is called the symplectic
spectrum of E(A), and the number r1 is its linear symplectic width [6, Sec-
tion 2.4]. In fact, r2j = αj , where ±iαj are the (purely imaginary) eigenvalues

(counted with multiplicities) of the matrix ATJ0A [6, Lemma 2.4.6]. Recall
in this context that A is symplectic if and only if ATJ0A = J0, and the lat-
ter has eigenvalues ±i (with multiplicity n). We will generalize the following
lemma to a quantitative result for ϵ-symplectic matrices.

Theorem 5.2 ([6]). A linear map Φ: R2n → R2n is symplectic or anti-
symplectic if and only if it preserves the symplectic spectrum of ellipsoids
(centered at the origin).

Proof. By [6, Theorem 2.4.4], a linear map is symplectic or anti-symplectic
if and only if it preserves the linear symplectic width of ellipsoids (centered
at the origin). Moreover, a linear symplectic map in fact preserves the entire
symplectic spectrum of ellipsoids (centered at the origin) [6, Lemma 2.4.6],
and the same is true for a linear anti-symplectic map, since for each ellipsoid
there exists an anti-symplectic linear map to itself (compose with complex
conjugation on E(r1, . . . , rn)). □

We will later make use of the following lemma.

Lemma 5.3. If A is a non-singular matrix, E(A) has linear symplectic
width r1, and a > 0, then the ellipsoid E(aA) has linear symplectic width
ar1.

Proof. The linear map x 7→ ax is conformally symplectic. □

The following definitions of ϵ-non-squeezing and ϵ-non-expanding are
motivated by Lemma 4.7 and Example 4.8. Their meaning is that such a
linear map has a non-squeezing property for ellipsoids up to a (small) error
that depends on ϵ and the ellipsoid. This error is made precise in the next
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definition, and is tailored to the proofs of Propositions 1.4 and 6.2 below.
In light of Remark 3.1, ϵ-non-expanding is a substitute for a non-squeezing
property of the inverse.

Definition 5.4 (Epsilon-non-squeezing and non-expanding). Let 0 ≤
ϵ < 1, and 0 < ρ =

√
1− ϵ ≤ 1. For a non-singular matrix A, let

sA = (1 + ∥A−1∥∥A∥(ρ−1 − 1))−1 ≤ ρ ≤ 1.

Note that sA = ρ if (and only if) E(A) is a ball (or ϵ = 0). If ∥A−1∥∥A∥(ρ−1 −
1) < 1, define eA = (1− ∥A−1∥∥A∥(ρ−1 − 1))−1 ≥ 1.

(a) A linear map Φ has the linear ϵ-non-squeezing property if for each
ellipsoid E(A) with linear symplectic width r1 such that the image ellipsoid
ΦE(A) has linear symplectic width R1, the inequality sA r1 ≤ R1 holds.

(b) The linear map Φ has the linear ϵ-non-expanding property if (for
r > 0) the linear symplectic width of the ellipsoid ΦB2n

r is at most ρ−1r,
and moreover, for each ellipsoid E(A) with linear symplectic width r1 and
∥A−1∥∥A∥(ρ−1 − 1) < 1, the linear symplectic width R1 of the image ellip-
soid ΦE(A) satisfies the inequality R1 ≤ eA r1.

Proof of Proposition 1.4. Let ρ =
√
1− ϵ′, and ψ : R2n → R2n be the embed-

ding from Lemma 4.7, so that the composition Φ ◦ ψ is symplectic. Let E(A)
be as in Definition 5.4(a) with ϵ replaced by ϵ′ everywhere. Then x ∈ E(sAA)
implies

∥A−1(ψ(x))∥2 ≤ ∥A−1x∥2 + ∥A−1∥∥ψ(x)− x∥2
≤ sA + ∥A−1∥∥A∥(ρ−1 − 1)sA = 1,

i.e., ψ(E(sAA)) ⊂ E(A), and in particular, (Φ ◦ ψ)E(sAA) ⊂ ΦE(A). Note
that ψ need not be linear in general. However, the restriction of any (relative)
symplectic capacity to ellipsoids (centered at the origin) equals (up to a
factor π) the square of the linear symplectic width [6, Example 12.1.7] (see
also section 6), and hence the above inclusion implies sA r1 ≤ R1. Thus Φ is
ϵ′-non-squeezing.

In the two situations of Definition 5.4(b), ψ(B2n
ρ−1r) ⊃ B2n

r , and x ∈
∂E(eAA) implies ∥A−1(ψ(x))∥2 ≥ 1, respectively. The argument for ϵ′-non-
expanding is then analogous to the above argument for ϵ′-non-squeezing. □
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Remark 5.5. There exists no non-squeezing result in any form for ϵ ≥ 1.
Indeed, for any δ > 0, the linear map

(x1, y1, . . . , xn, yn) 7→ (δx1, δy1, x2, y2, . . . , xn, yn)

is 1-symplectic and maps the unit ball to a (symplectic) cylinder of radius
δ. More generally, let ω be a symplectic form and δ be the non-degeneracy
radius around ω, i.e., the supremum over all numbers d so that ∥ω′ − ω∥2 ≤ d
implies that ω′ is non-degenerate. Again use Moser’s argument for any d < δ.
Thus ϵ-symplectic does not guarantee any form of non-squeezing beyond
(and at) the threshold ϵ = δ.

We will use the following obvious remark in the proof of Theorem 1.2
below.

Remark 5.6. Let Φ be a linear map, and Ψ be a symplectic or anti-
symplectic linear map. Then Φ has the linear ϵ-non-squeezing (ϵ-non-
expanding) property if and only if Ψ ◦ Φ does. Compare to Remark 3.4.

Lemma 5.7. A bounded subset U ⊂ R2n that is contained in a hyperplane
H is contained in an ellipsoid of arbitrarily small linear symplectic width.
In particular, a singular matrix Φ does not have the linear ϵ-non-squeezing
property for any ϵ.

Proof. Let u be a vector that is orthogonal to H, and v be a vector that be-
longs toH so that ω0(u, v) > 0. After rescaling v if necessary, we may assume
U is contained in the ball {w ∈ R2n | ∥w∥ ≤ ∥v∥}. Let R > 0. After rescal-
ing u if necessary, we may assume that ω0(u, v) = R2. Choose a symplectic
basis {u1, . . . , un, v1, . . . , vn} of R2n so that u1 = R−1u and v1 = R−1v, and
a symplectic matrix Ψ that maps this basis to the standard basis of R2n.
Then ΨU ⊂ Z2n

R = B2
R × R2n−2. That proves the first claim. The second

claim follows by considering U = ΦB2n
1 (so in Definition 5.4 (a), A is the

identity matrix) and any positive number R < ρ. □

Proof of Theorem 1.5. The proof is given in six steps.
Step 1. Apply Lemma 2.5 to the two-form ω = Φ∗ω0 to find an orthonor-

mal basisB = {u1, . . . , un, v1, . . . , vn} of R2n and numbers 0 ≤ λ1 ≤ · · · ≤ λn
so that (Φ∗ω0)(uj , vk) = δjkλ

2
j and (Φ∗ω0)(uj , uk) = (Φ∗ω0)(vj , vk) = 0 for

1 ≤ j, k ≤ n. (Note that the matrix that is called A in the proof of Lemma 2.5
is ΦTJ0Φ here.) By Lemma 5.7, we may assume that λ1 > 0, and therefore
ΦB is (up to rescaling) a symplectic basis of R2n. By composing Φ (on
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the left) with a symplectic matrix, we may assume that Φuj = λjej and
Φvj = λjfj , where {e1, . . . , en, f1, . . . , fn} denotes the standard symplectic
basis of R2n. In particular, Φ maps the unit ball B2n

1 = E(I2n), where I2n = I
denotes the identity matrix, to the standard ellipsoid E(λ1, . . . , λn). The hy-
potheses imply that ρ = sI ≤ λ1 ≤ ρ−1.

Step 2. For j = 1, . . . , n, write µj =
√

|ω0(uj , vj)| ≤ 1. Fix an index j
with 1 ≤ j ≤ n, and abbreviate u = uj , v = vj , λ = λj , and µ = µj . Let 0 <
a ≤ 1. For the remainder of this proof, let A denote the linear map defined
by Au = au, Av = av, and A is the identity on S = span(B\{u, v}). Write
r1 for the linear symplectic width of the ellipsoid E(A). The volume of
E(A) yields the constraints a ≤ r1 ≤ n

√
a. We will improve these estimates

to symplectic estimates and in terms of the number 0 ≤ µ ≤ 1 as follows.
There exists a unit vector w ∈ S and 0 ≤ s, t ≤ 1 with s2 + t2 = 1 so

that the vectors u and J0u = sv + tw span a unitary disk D ⊂ B2n
1 of radius

1, and in particular, |ω0(u, sv + tw)| = 1. By the Cauchy-Schwarz inequal-
ity, the latter implies that s = |ω0(u, v)| = µ and t = |ω0(u,w)| =

√

1− µ2.
Therefore

a2 ≤ r21 = |ω0(au, aµv +
√

1− µ2w)| = a2µ2 + a(1− µ2) ≤ a.(5)

On the other hand, the linear symplectic width R1 of the ellipsoid ΦE(A)
is the smaller of the two numbers λ1 and aλ.

Step 3. By the ϵ-non-expanding hypothesis, min(λ1, aλ) ≤ eAr1 for all
numbers a with ρ−1 − 1 < a ≤ 1 (so that the number eA is well-defined).
We will show that for appropriate choices of a, ρ > eA

√
a, and thus by

step 1 and by (5), λ1 ≥ ρ > eA
√
a ≥ eAr1. Then aλ ≤ eAr1 ≤ eAa. Therefore

λj ≤ eA < ρa−1/2 for all j = 1, . . . , n and for all numbers a as above.
Consider the function f(a) = a3/2 − ρa+ 1− ρ, ρ−1 − 1 < a ≤ 1. Then

the condition ρ > eA
√
a translates to the inequality f(a) < 0. The (absolute)

minimum of the function f(a) is achieved at the point a = 4
9ρ

2. Therefore the
inequality f(a) < 0 has a solution if and only if f(49ρ

2) = − 4
27ρ

3 + 1− ρ < 0.

The cubic equation z3 + 27
4 z =

27
4 has a single real root z0 =

3
2((1 +

√
2)1/3 +

(1−
√
2))1/3). Thus for ϵ < 1− z20 , the inequality ρ > eA

√
a can be solved

for some a ≥ 4
9ρ

2. Note that 4
9ρ

2 > ρ−1 − 1 is equivalent to 4
9ρ

3 + ρ− 1 > 0,
and the latter is greater or equal to −f(49ρ2) and thus indeed is positive.

The equation f(a) = 0 can be solved in closed form by making the substi-
tution a = (cρ)2, which leads to the cubic equation c3 − c2 + ρ−3(1− ρ) = 0.
Since f(49ρ

2) < 0, f(ρ2) = 1− ρ ≥ 0, and f ′(a) > 0 for a > 4
9ρ

2, there ex-
ists a single real root cρ with 2/3 < cρ ≤ 1. By the last sentence of the
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first paragraph of this step, λj ≤ c−1
ρ for all j = 1, . . . , n. For a more ex-

plicit estimate in terms of ρ, observe that f(ρ6) = (ρ7(ρ+ 1)− 1)(ρ− 1),
and ρ7(ρ+ 1)− 1 ≥ 2ρ8 − 1 > 0, provided that ρ > (12)

1/8. Therefore if ϵ <

1− (12)
1/4, then λj ≤ ρ−2 for all j = 1, . . . , n. In particular, cρ → 1− as

ρ→ 1−.
Step 4. As in step 2, fix an index j, and drop the subscripts from the

notation. We will prove in this step that µ→ 1− as ρ→ 1−.
Define the function g(a) = (µ2 − λ2)a2 + (1− µ2 − 2λ2(ρ−1 − 1))a−

(λ(ρ−1 − 1))2. Again by (5), the ϵ-non-squeezing hypothesis sAr1 ≤
min(λ1, aλ) ≤ aλ for all a > 0 guarantees that g(a) ≤ 0 for all 0 < a ≤ 1.
If µ ≥ λ, then µ ≥ ρ→ 1− as ρ→ 1−, and there is nothing more to prove.
Thus we assume henceforth that µ < λ.

The (absolute) maximum of g(a) is achieved at the point

a0 =
1− µ2 − 2λ2(ρ−1 − 1)

2(λ2 − µ2)
.

We derive at a contradiction if the maximum g(a0) is positive and 0 < a0 ≤
1. We distinguish three cases:

Case (i). a0 ≤ 0. Since µ < λ, this is equivalent to 1− µ2 − 2λ2(ρ−1 −
1) ≤ 0. Then µ ≥

√

1− 2λ2(ρ−1 − 1) → 1− as ρ→ 1− since λ is bounded
by step 3.

Case (ii). a0 > 1, or equivalently, µ >
√

2λ2ρ−1 − 1. Since λ ≥ λ1 ≥ ρ,
the latter is bounded from below by

√
2ρ− 1 → 1− as ρ→ 1−.

Case (iii). 0 < a0 ≤ 1 and g(a0) ≤ 0. The latter is equivalent to the in-
equality

µ2 − 2λ(ρ−1 − 1)
√

λ2 − µ2 ≥ 1− 2λ2(ρ−1 − 1),

and in particular, µ ≥
√

1− 2λ2(ρ−1 − 1) → 1− as ρ→ 1− as in case (i).
In particular, from cases (i) to (iii) we deduce that µ > 0; since cρ > 2/3,

it suffices that the condition ϵ < 1− z20 from step 3 implies that ρ ≥ 9/11.
Step 5. In this step, we use a standard non-squeezing argument to show

that the numbers ω0(uj , vj) = ±µ2j all have the same sign for 1 ≤ j ≤ n.
By composing Φ (on the left) with a diagonal matrix Ψ with entries equal

to ±1, we may assume that for each j the pairs of numbers ω0(uj , vj) and
ω0(Φuj ,Φvj) have the same sign, and by rearranging the basis B from step
1 if necessary, that these numbers are all positive. We will see in the next
step that then Ψ ◦ Φ is ϵ′-symplectic for some ϵ′ ≥ 0 with ϵ′ → 0+ as ϵ→ 0+.
In particular, for ϵ′ < 1/

√
2, Ψ ◦ Φ is ϵ′′-non-squeezing for some ϵ′′ ≥ 0 by

Proposition 1.4. But by a standard squeezing argument (see the proof of [6,
Theorem 2.4.2]), Ψ squeezes the unit ball B2n

1 into a symplectic cylinder of
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arbitrarily small radius unless its diagonal entries all have the same sign.
That shows that Ψ must be symplectic or anti-symplectic.

Step 6. By post-composing with the anti-symplectic matrix Ψ from the
previous step if necessary, we may assume that ω0(uj , vj) = µ2j for all 1 ≤
j ≤ n. Recall that ∥ω0∥2 =

√
n. Thus

∥Φ∗ω0 − ω0∥22 =
n
∑

j=1

(λ2j − µ2j )
2 + (n−

n
∑

j=1

µ4j ) → 0+

as ρ→ 1−, or equivalently, as ϵ→ 0+. That proves the theorem. □

Remark 5.8. Let the matrix A and basis B be as in the preceding proof,
and also write B for the matrix with columns the vectors in B. Since B is
orthogonal, it is symplectic if and only if it is also complex, i.e., commutes
with J0. The deviation of A from being conformally symplectic is measured
by the symplectic spectrum of E(A), see (5). A measure of the failure of
Φ to be symplectic is therefore the collection of numbers λj (conformality)
and ±µj (failure to commute with J0).

6. Symplectic capacities and rigidity

In this section we prove Theorem 1.2. The proof follows closely the argument
in the symplectic case (ϵ = 0) given in [6, Section 12.2].

Recall (from [6, Section 12.1]) that a (normalized symplectic) capacity
on R2n is a functor c that assign to an (arbitrary) subset U ⊂ R2n a non-
negative (possibly infinite) number c(U) such that the following axioms hold:

• (monotonicity) if there exists a symplectic embedding ψ : U → R2n

such that ψ(U) ⊂ V , then c(U) ≤ c(V ),

• (conformality) c(aU) = a2c(U), and

• (normalization) c(B2n
1 ) = π = c(Z2n

1 ).

Moreover, the restriction of any capacity c to ellipsoids (centered at the
origin) equals c(E) = πr21, where r1 denotes as before the linear symplectic
width of E [6, Example 12.1.7]. By the monotonicity and conformality ax-
ioms, if a ≥ 1 and U ⊂ R2n are such that a−1E ⊂ U ⊂ aE, then a−2c(E) ≤
c(U) ≤ a2c(E). More generally, the restriction of a capacity to compact
convex sets is continuous with respect to the Hausdorff metric [6, Exer-
cise 12.1.8]. Therefore, an ϵ-symplectic embedding preserves the capacity
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of ellipsoids up to an error that converges to zero as ϵ→ 0+, see Propo-
sition 6.2. Note that translations in R2n are symplectic and thus preserve
capacity, so we can consider ellipsoids with arbitrary center.

On the other hand, different capacities can have different values on non-
ellipsoids, and thus it is necessary for the remainder of the argument to fix
a capacity. From now on, denote by c the Gromov width.

Definition 6.1. Let U ⊂ R2n and φ : U → R2n be an embedding. Let ϵ ≥ 0,
and sA ≤ 1 and eA ≥ 1 be as in Definition 5.4. Then φ is said to preserve
the capacity of ellipsoids up to ϵ if s2Ac(E) ≤ c(φ(E)) ≤ e2Ac(E) for every
ellipsoid E = E(A) ⊂ U (where the second inequality holds whenever the
number eA is defined).

Proposition 6.2. Let 0 ≤ ϵ ≤ 1/
√
2, and ϵ′ = 1− (1−

√
2ϵ)2

√
2n. Then an

ϵ-symplectic embedding preserves the capacity of ellipsoids up to ϵ′.

Proof. The proof is verbatim the same as the proof of Proposition 1.4, but
with the constant ρ from Lemma 4.7 for embeddings instead of for linear
maps. □

Proposition 6.3. Let φk : B
2n
r → R2n be embeddings that preserve the ca-

pacity of ellipsoids up to ϵ, and converge uniformly (on compact subsets) to
an embedding φ : B2n

r → R2n. Then the limit φ again preserves the capacity
of ellipsoids up to ϵ.

Proof. This follows from the definition and the continuity properties of sym-
plectic capacities. Indeed, let E = E(A) be an ellipsoid and a > 1, and
choose k sufficiently large so that φ(E) ⊂ φk(aE). Then

c(φ(E)) ≤ c(φk(aE)) ≤ e2Ac(aE) = a2e2Ac(E).

Since this holds for all a > 1, we have c(φ(E)) ≤ e2Ac(E) as claimed. The
proof of the other inequality is similar. □

Remark 6.4. It is actually not necessary to assume that the maps φk in
the preceding proposition are embeddings. See [6, Lemma 12.2.3].

Proposition 6.5. Suppose that an embedding φ : B2n
r → R2n preserves the

capacity of ellipsoids up to ϵ. Then for ϵ ≥ 0 sufficiently small, φ is ϵ′-
symplectic or ϵ′-anti-symplectic, where ϵ′ = K(ϵ) is as in Theorem 1.5 (and
converges to zero as ϵ→ 0+).
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Proof. Let x ∈ B2n
r . By composing with translations (which are symplec-

tic), we may assume that φ(x) = x = 0 is the origin in R2n. Recall that
Dh : R

2n → R2n denotes rescaling by the factor h ̸= 0. Note that for |h| < 1,
the numbers sA and eA in Definition 5.4 are rescaling invariant, i.e., shA = sA
and ehA = eA. Thus (D−1

h ◦ φ ◦Dh) preserves the capacity of ellipsoids up
to ϵ. By Proposition 6.2, the derivative dφ(0) = limh→0(D

−1
h ◦ φ ◦Dh) also

preserves the capacity of ellipsoids up to ϵ. Then by Theorem 1.5, dφ(0) is
either ϵ′-symplectic or ϵ′-anti-symplectic. Since ϵ′ < 1, continuity of dφ(x)
implies that the latter is either ϵ′-symplectic for all x or ϵ′-anti-symplectic
for all x. □

Proof of Theorem 1.2. Suppose that φk : (M1, ω1) → (M2, ω2) is a sequence
of ϵ-symplectic embeddings that converges uniformly (on compact subsets)
to the smooth embedding φ : (M1, ω1) → (M2, ω2). Let x ∈M1. Since ϵ-
symplectic is a pointwise condition, we may assume that (M1, ω1) = B2n

r

is a (symplectic) ball in (R2n, ω0) centered at the origin (corresponding to
x), for some small r > 0, and (M2, ω2) = (R2n, ω0). We will prove the the-
orem for the restriction of φ to B2n

r and two constants δ(x) and E(x) that
depend continuously on x (by Remark 4.9). If M1 is compact, let δ and E
be the minimum and maximum, respectively, over all x ∈M1. The theorem
continues to hold for non-compact manifolds if one replaces the constant ϵ
in the definition of ϵ-symplectic by a continuous positive function ϵ(x) on
M1, and likewise for the constants δ and E of the theorem.

By Proposition 6.2, the limit φ preserves the capacity of ellipsoids up to
ϵ′. Then by Proposition 6.5, φ is E-symplectic or E-anti-symplectic, where
E = K(ϵ′) → 0+ as ϵ→ 0+. It only remains to show that the former alter-
native holds.

We observe that for ϵ sufficiently small, φk is orientation preserving, and
thus so is the limit φ. If n is odd, and E is sufficiently small, then φ cannot
be E-anti-symplectic. If n is even, the same argument applies to the map
φ× id : M1 × R2 →M2 × R2. □

Proof of Corollary 1.3. Since E → 0 as ϵ→ 0, taking a subsequence of the
sequence φk and applying Theorem 1.2 shows that φ is E-symplectic for any
E > 0. □

7. Shape invariant and epsilon-contact embeddings

This section outlines an alternative proof of Theorem 1.2 and Corollary 1.3
using the shape invariant, and an adaptation of the proof to ϵ-contact em-
beddings. See [2, 7–9] for details on the shape invariant.
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Let (M,ω = dλ) be an exact symplectic manifold of dimension 2n, and
Tn be an n-dimensional torus. An embedding ι : Tn →֒M is called La-
grangian if ι∗ω = 0; the cohomology class [ι∗λ] ∈ H1(Tn,R) = Rn is called
its λ-period.

Definition 7.1 (Shape invariant [2]). Let τ : H1(M,R) → H1(L,R) be
a homomorphism. Then the shape I(M,ω, τ) is the subset of H1(Tn,R)
that consists of all points z ∈ H1(Tn,R) such that there exists a Lagrangian
embedding ι : Tn →֒M with ι∗ = τ and z = [ι∗λ], defined up to translation.

Theorem 7.2 ([2, 9]). For A ⊂ Rn open and connected, I(Tn ×A, λcan, ι
∗
0)

= A.

The role of ellipsoids E(r1, . . . , rn) in this paper can therefore be re-
placed by products of annuli A(a1, b1, . . . , an, bn) = (S1 × [a1, b1])× · · · ×
(S1 × [an, bn]), 0 < ai < bi, and the spectrum (r1, . . . , rn) of the ellipsoid
E(r1, . . . , rn) by the shape [a1, b1]× · · · × [an, bn] of the annulus A(a1, b1, . . . ,
an, bn). Similar to the proof given above, ϵ-symplectic embeddings preserve
the shape invariant up to an error that converges to zero as ϵ→ 0+, and
this property is preserved by uniform limits (on compact subsets). See [7]
for the ϵ = 0 case. Details are forthcoming.

We indicate how to prove Corollary 1.3 based on properties of the shape
invariant. An embedding ι : Tn →֒M is non-Lagrangian if ι∗ω ̸= 0 (at at
least one point), or equivalently, its image is a non-Lagrangian submanifold.

Theorem 7.3 ([5, 7]). Let ι : Tn →֒ (R2n, ω0) be a non-Lagrangian embed-
ding. Then there exists a tubular neighborhood N of ι(Tn) that admits no La-
grangian embedding ȷ : Tn →֒ N so that the homomorphism ȷ∗ : H1(T

n,R) →
H1(N,R) is injective. In particular, the shape I(N,Tn, ι∗) is empty.

Sketch of proof of Corollary 1.3. Let ι : Tn →֒M1 be a Lagrangian torus,
and N be an arbitrary tubular neighborhood of (φ ◦ ι)(Tn). Let ψk be as in
Lemma 4.7 (defined on a polydisk P (r1, . . . , rn)) so that φk ◦ ψk is symplec-
tic. Then for k sufficiently large, the torus (φk ◦ ψk ◦ ι)(Tn) is Lagrangian
and contained in N , and φk ◦ ψk is homotopic to φ. By Theorem 7.3,
(φ ◦ ι)(Tn) must be Lagrangian. Thus φmaps Lagrangian tori to Lagrangian
tori, and hence must be conformally symplectic [7], i.e., φ∗ω2 = c ω1. That
c = 1 can be proved using [7, Proposition 2.29]. □

Let (M1, ξ1) and (M2, ξ2) be cooriented contact manifolds of the same di-
mension, and g1 be a Riemannian metric onM1. An embedding φ : M1 →M2
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is called ϵ-contact if there are contact forms α1 on M1 and α2 on M2 so that
∥φ∗α2 − α1∥ ≤ ϵ and ∥φ∗dα2 − dα1∥ ≤ ϵ. This definition allows the Moser
argument in the proof of Lemma 4.7 to go through in the contact setting [6,
page 135f], and the proof of C0-rigidity of ϵ-symplectic embeddings in this
section can be adapted to ϵ-contact embeddings. Note that the proof using
capacities does not generalize, since the capacity of the symplectization of
a contact manifold is infinite. Compare to [7].
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