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We study the relation between spectral invariants of disjointly sup-
ported Hamiltonians and of their sum. On aspherical manifolds,
such a relation was established by Humilière, Le Roux and Seyfad-
dini. We show that a weaker statement holds in a wider setting,
and derive applications to Polterovich’s Poisson bracket invariant
and to Entov and Polterovich’s notion of superheavy sets.
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1. Introduction and results

Hamiltonian spectral invariants on closed symplectic manifolds were intro-
duced by Oh and Schwartz [13, 19]. These invariants assign to each Hamilto-
nianH :M × S1 → R and a non-zero quantum homology class α ∈ QH∗(M)
a real number, denoted by c(H;α). In this paper we consider only spectral
invariants with respect to the fundamental class, and therefore abbreviate
c(·) := c(·; [M ]). Spectral invariants have been widely studied and have many
applications in symplectic geometry. One relevant application concerns lower
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bounds for Polterovich’s Poisson bracket invariant, which was introduced in
[15, 16]. Given a finite open cover {Ui}Ni=1 of a closed symplectic manifold,
the Poisson bracket invariant of {Ui} is defined by

pb({Ui}) := inf
{fi}

max
|xj |,|yk|≤1




∑

j

xjfj ,
∑

k

ykfk



 ,

where the infimum is taken over all smooth partitions of unity that are
subordinate1 to the cover {Ui}. Polterovich explained the relation of this
invariant to quantum mechanics and conjectured a lower bound for it, in
terms of the displacement energies of the sets. Moreover, he showed how
upper bounds for the spectral invariants of sums of disjointly supported
Hamiltonians can be used to establish lower bounds for pb. This inspired
several works studying upper bounds for the spectral invariant of a sum
of disjointly supported Hamiltonians: In [16], Polterovich produced upper
bounds for Hamiltonians supported in certain domains on symplectically
aspherical manifolds, namely when both the symplectic form ω and the
first Chern class c1 vanish on π2(M). Later, in [20], Seyfaddini constructed
so called spectral killers and bounded the spectral invariant of a sum of
Hamiltonians supported in disjoint small balls on monotone manifolds, i.e.,
when ω is proportional to c1. In [11], Ishikawa considered Hamiltonians
supported in symplectic embeddings of strongly convex sets in R2n, into
monotone manifolds. Finally, in [10], Humilière, Le Roux and Seyfaddini
proved that, on symplectically aspherical manifolds, the spectral invariant
of a sum of Hamiltonians supported in certain disjoint domains, is equal to
the maximum over the spectral invariants of the Hamiltonians:

Theorem (Humilière-Le Roux-Seyfaddini, [10]). Let H1, . . . , HN be

Hamiltonians supported in disjoint incompressible Liouville domains in a

symplectically aspherical manifold. Then,

c(H1 + · · ·+HN ) = max{c(H1), . . . , c(HN )}.

This result is referred to as the “max formula” for spectral invariants. An
alternative proof for the max formula, as well as an inequality for spectral
invariants with respect to a general homology class, were given in [6]. Hu-
milière, Le Roux and Seyfaddini also showed that the max formula does not

1A partition of unity is a collection of non-negative functions that sum up to 1.
We say that {fi} is subordinate to {Ui} if supp(fi) ⊂ Ui for each i.
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hold on the sphere, by constructing Hamiltonians H1 and H2, supported in
disjoint disks on S2, for which c(H1 +H2) < max{c(H1), c(H2)}. A natural
question is whether an inequality holds in general. In what follows, we con-
sider disjointly supported Hamiltonians H1, . . . , HN on a closed connected
symplectic manifold (M,ω), and show that under certain conditions one has

(1) c(H1 + · · ·+HN ) ≤ max{c(H1), . . . , c(HN )}.

The main ingredient of the proof is the construction of spectral killers, in
the spirit of Seyfaddini [20]. We change Seyfaddini’s construction in order
to prove a max inequality, as well as extend it to a more general setting.

1.1. The max inequality for disjointly supported Hamiltonians

Let (M,ω) be a closed symplectic manifold. Throughout the paper, we
consider Hamiltonians supported in domains satisfying certain conditions.
These domains include, for example, symplectic embeddings into M of star-
shaped domains in R2n with smooth boundaries and such that the radial
vector field is transverse to the boundary (following [8], we call such do-
mains “nice star-shaped domains”). In order to describe the class of relevant
domains in full generality, let us recall a few standard notions. A domain
U ⊂M has a contact type boundary if there exists a vector field Y , called
the Liouville vector field, that is defined on a neighborhood of the boundary
∂U , satisfies LY ω = ω, is transverse to the boundary, and points outwards.
In this case, λ := ιY ω is a primitive of ω and its restriction to ∂U is called
the contact form associated to Y . The Reeb vector field R on ∂U is defined
by the equations

ω(Y,R) = 1, ω(R, ·)|T∂U = 0.

The flow φtR : ∂U → ∂U of R is called the Reeb flow, and we denote the set
of its contractible periodic orbits (of any period) by P(∂U). The action of a
periodic Reeb orbit γ ∈ P(∂U) is given by

∫
γ λ. The action spectrum of ∂U

is

Spec(∂U) :=

{∫

γ
λ : γ ∈ P(∂U)

}
.

Finally, the boundary ∂U ⊂M is called incompressible if the map π1(∂U)→
π1(M) induced by the inclusion is injective. In particular, when ∂U is simply
connected, it is incompressible.

We prove that the max inequality (1) holds for Hamiltonians supported
in disjoint domains with incompressible contact type boundaries, under ad-
ditional conditions on the Hamiltonians and the domains, which depend on



✐

✐

“6-Tanny” — 2023/3/31 — 23:11 — page 1162 — #4
✐

✐

✐

✐

✐

✐

1162 Shira Tanny

whether the symplectic manifold is positively monotone, negatively mono-
tone or rational. Roughly speaking, we study Hamiltonians whose 1-periodic
orbits near the boundary are in correspondence with the Reeb orbits on
the boundary. The incompressibility of the boundary is used in order to
relate the actions2 of the Hamiltonian orbits to those of the Reeb orbits
(see Lemma 3.4). For the sake of convenience we assume from now on that
dimM = 2n is greater than 2, unless stated otherwise. The max formula
proved by Humilière, Le Roux and Seyfaddini holds for all symplectic sur-
faces other than the sphere. We discuss the max inequality on the sphere in
Section 1.1.3 which concerns positively monotone manifolds. Let us start by
describing the results on rational symplectic manifolds.

1.1.1. Rational manifolds. Let (M,ω) be a closed rational symplectic
manifold, namely ω(π2(M)) = κZ for some κ ∈ R. It is simpler to establish
a max inequality if the disjoint supports are “far enough” from one another.
In order to make this condition precise consider the following definition.

Definition 1.1. Let U ⊂M be a domain with a contact type boundary.
We say that U is σ-extendable, for σ > 0, if the flow ψτ of the Liouville
vector field Y exists for all time 0 < τ < log(1 + σ). The σ-extension of such
a domain U is defined to be

(1 + σ)U := U ∪


 ⋃

τ∈[0,log(1+σ)]

ψτ∂U


 .

See Figure 1 for an illustration of a σ-extendable domain. We remark
that for every domain U with a contact type boundary, there exists ε > 0
such that U is ε-extendable, see Section 2.3.

Example 1.2. Suppose that the ball B of radius r around the origin in
R2n (endowed with the standard symplectic form) embeds intoM . Then the
restriction of this embedding to the ball of radius r/

√
2 in B is a 1-extendable

domain.

The following theorem asserts that the max inequality holds for Hamil-
tonians which are supported in extendable domains with disjoint extensions
(see Figure 2), and whose spectral invariants are small compared to the
“size” of the extensions.

2We also use the incompressibility assumption to relate the Conley-Zehnder in-

dices of the Hamiltonian and Reeb orbits. See Section 2.1.1 and Lemma 3.9
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∂U ψlog(1+σ)∂U

U

Figure 1: An illustration of a σ-extendable domain with a contact type
boundary.

H1 H2

Figure 2: An illustration of Hamiltonians supported in extendable domains,
such that the extensions are disjoint.

Theorem 1. Let Ui be σi-extendable domains with incompressible contact

type boundaries, such that the extensions {(1 + σi)Ui} are pairwise disjoint.

Then, for Hamiltonians Hi supported in Ui, such that c(Hi) < min{κ, σi ·
min Spec(∂Ui)} it holds that

c(H1 + · · ·+HN ) ≤ max{c(H1), . . . , c(HN )}.

When the domains containing the supports are not necessarily “far” from
each other, we assume that the action spectrum of the contact boundaries,
Spec(∂U), is contained in a lattice TZ, such that T divides κ. Examples for
such domains are symplectic embeddings of balls of radius r in R2n such
that πr2 divides κ.

Theorem 2. Let Ui be disjoint domains with incompressible contact type

boundaries such that Spec(∂Ui) ⊂ TiZ and Ti|κ for all i. Then, for Hamil-

tonians Hi supported in Ui such that c(Hi) < Ti, it holds that

(2) c(H1 + · · ·+HN ) ≤ max{c(H1), . . . , c(HN )}.
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1.1.2. Negatively monotone manifolds. On negatively monotone man-
ifolds, namely when ω|π2(M) = κ · c1|π2(M) for κ ≤ 0, we show that the max
inequality (1) holds for Hamiltonians supported in disjoint domains with
incompressible contact type boundaries, if we assume in addition that the
contact Conley-Zehnder index of every Reeb orbit is non-negative. The con-
tact Conley-Zehnder index assigns an integer, which we denote by CZR(γ, u),
to every periodic Reeb orbit γ ∈ P(∂U) and a capping disk u ⊂ ∂U . This
index is well defined when the Reeb flow is non-degenerate3, and is reviewed
in Section 2 together with other preliminaries from symplectic and contact
geometry. It is well known that when U is a symplectic embedding of a
strictly convex domain in R2n into M , the CZ index of every Reeb orbit is
non-negative4.

Theorem 3. Let (M,ω) be a negatively monotone symplectic manifold

and suppose Ui ⊂M are disjoint domains with incompressible contact type

boundaries, such that the contact Conley-Zehnder index of every Reeb orbit

is non-negative. Then, for any collection of Hamiltonians Hi :M × S1 → R

supported in Ui respectively,

c(H1 + · · ·+HN ) ≤ max{c(H1), . . . , c(HN )}.

1.1.3. Positively monotone manifolds. When the symplectic manifold
is positively monotone, namely ω|π2(M) = κ · c1|π2(M) for κ ≥ 0, we need to
impose additional assumptions on the domains Ui and the Hamiltonians
Hi, in order prove the max inequality (1). The first requirement is that Ui
are dynamically convex 5, namely, that the contact Conley-Zehnder index
of every Reeb orbit (with respect to a capping disk that is contained in
the boundary) is at least n+ 1, where n is half the dimension of M . It is
known that every strictly convex domain in R2n with a smooth boundary
is dynamically convex, see, e.g., [9]. Secondly, we require that the spectral
invariants of the Hamiltonians are smaller than the monotonicity constant,
namely, c(Hi) < κ. Finally, we assume that the domains Ui are “not too big”

3We remark that one can perturb the Liouville vector field to make the Reeb
flow non-denegerate, see Section 2.

4In [9], Hofer, Wysocki and Zehnder proved that for every strictly convex domain
in R

2n with a smooth boundary, the contact CZ index of every Reeb orbit is at
least n+ 1, and in particular is positive (the definitions and proofs are written for
n = 2, see the remark on p.222 for the general case).

5In fact, it is sufficient to assume that the contact CZ index of every Reeb orbit
is at least n.
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compared to the monotonicity constant κ. The size of a domain is measured
by maximizing the action-index ratio over all Reeb orbits on the boundary:

Definition 1.3. Let U ⊂M be a domain with an incompressible contact
type boundary, such that the Reeb flow is non-degenerate. We define
(3)

C(U) := sup

{
2
∫
γ λ

CZR(γ, u0)− n+ 1
: γ ∈ P(∂U), u0 ⊂ ∂U

}
∈ R ∪ {+∞}.

Remark 1.4. The above definition can be extended to disjoint unions of
domains U = ⊔iUi. In this case, the invariant will be equal to the maximum
over the invariants of the connected components, C(U) = maxiC(Ui). Def-
inition 1.3 can be also extended to domains with degenerate Reeb flows,
see Definition 6.2. The invariant C is not a symplectic capacity, as it is
not monotone with respect to inclusions. This is shown in Example 6.7. In
Section 6 we estimates of the invariant C on certain classes of domains:

• Using results from [8], we show that for concave toric domains (and, in
particular, ellipsoids) C(U) coincides with the Gromov width6, cG(U).
For convex toric domains, cG(U) ≤ C(U) ≤ cG(B) for every ball B
whose image under the moment map µ : Cn ∼= R2n → Rn contains the
image of U , namely µ(B) ⊃ µ(U). We review the definitions of convex
and concave toric domains in Section 6.

• Using a result by Ishikawa from [11], we show that for strictly con-
vex domains, C(U) can be bounded in terms of the curvature of the
boundary ∂U .

Theorem 4. Let (M,ω) be a positively monotone symplectic manifold of

dimension greater than 2, and with monotonicity constant κ > 0. Suppose
that Ui ⊂M are disjoint domains with incompressible dynamically convex

boundaries, such that C(Ui) ≤ κ for all i. For Hamiltonians Hi :M × S1 →
R supported in Ui respectively, such that c(Hi) < κ, we have

c(H1 + · · ·+HN ) ≤ max{c(H1), . . . , c(HN )}.

The condition c(Hi) < κ in the above theorem can be guaranteed if,
for example, the supports are displaceable with small displacement energy,

6The Gromov width of U is defined to be the supremum of πr2 over all radii r
such that the ball of radius r in R

2n (equipped with the standard symplectic form)
can be symplectically embedded into U .
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as follows from the energy-capacity inequality. This inequality, as well as
the definitions for displaceability and displacement energy, are stated in
Section 2. Theorem 5 below states that, in the setting of Theorem 4, the
condition c(Hi) < κ holds if we assume in addition that Ui are portable

Liouville domains:

Definition 1.5 (Following [16]). • A domain U with a contact type
boundary is called a Liouville domain if the Liouville vector field Y
extends to U and satisfies LY ω = ω there.

• The core of a Liouville domain U is defined to be Q := ∩s∈(0,1]ψlog sU ,
where {ψτ}τ≤0 is the flow of the Liouville vector field.

• A Liouville domain U is called portable if Q is displaceable in U .

• The portability number of U is defined to be

(4) p(U) := lim
s→0

e(ψlog sU ;U)/s,

where e(ψlog sU ;U) is the displacement energy of ψlog sU inside U .

Example 1.6. Every nice star-shaped domain in (R2n, ω0) is a portable
Liouville domain, and its portability number is equal to its displacement
energy, p(U) = e(U ;R2n).

The next corollary follows from Theorem 4 together with Theorem 5
below, which gives an upper bound for the spectral invariants of Hamil-
tonians supported in portable Liouville domains with dynamically convex
incompressible boundaries.

Corollary 1.7. Let (M,ω) be a positively monotone manifold with mono-

tonicity constant κ, of dimension greater than 2. Suppose that Ui ⊂M are

disjoint portable Liouville domains with incompressible dynamically convex

boundaries, such that C(Ui) ≤ κ for all i. Then, for any collection of Hamil-

tonians Hi supported in Ui respectively, the max inequality holds:

c(H1 + · · ·+HN ) ≤ max{c(H1), . . . , c(HN )}.

The last statement of this section establishes the max inequality for
Hamiltonians supported in certain disks on the sphere.
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Claim 1.8. Let (S2, ω) be the sphere with area normalized to 1. Let Hi

be Hamiltonians supported on disjoint disks Di ⊂ S2 such that area(Di) /∈
(1/3, 1/2) for each i. Then,

c(H1 + · · ·+HN ) ≤ max{c(H1), . . . , c(HN )}.

The method of our proof of the claim does not apply when the condition
on the area of the disks is not satisfied. To deduce the max inequality we need
to bound the actions of certain Reeb orbits on the boundary of the domain
away from the spectral invariants of the considered Hamiltonians. The area
of the disk determines the actions of the Reeb orbits on its boundary. We
remark that in [20], Seyfaddini considered balls in monotone manifolds whose
displacement energy is bounded by half the monotonicity constant. On S2

(with total area normalized to 1) this amounts to disks of area less than
1/4. In this setting Seyfaddini proved that the spectral invariant of a sum of
Hamiltonians supported in such balls is bounded by the maximal capacity
of these balls. Corollary 1.7 and Claim 1.8 together with Theorem 5 can be
thought of as an extension of the results from [20] for positively monotone
manifolds, where Theorems 3 and 6 extend the results to the setting of
negatively monotone manifolds.

1.2. Applications for the Poisson bracket invariant

The main application of the max inequality (1) concerns the Poisson bracket
invariant of covers, which was defined by Polterovich in [16]. As explained
above, this invariant assigns a non-negative number, pb(U), to a finite open
cover U = {Ui} of a closed symplectic manifold. The Poisson bracket invari-
ant is known to be strictly positive when the cover consists of displaceable
sets. Polterovich conjectured a lower bound for the Poisson bracket invari-
ant:

Conjecture 1.9 (Polterovich, [16]). Let (M,ω) be a closed symplectic
manifold. There exists a constant cM , depending only on the symplectic
manifold (M,ω), such that for every finite open cover U = {Ui} of M ,

pb(U) ≥ cM
e(U) ,

where e(U) := maxi e(Ui) is the maximal displacement energy of a set from
U .
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This conjecture was proved for the case where M is a surface in [2], and
for surfaces other than the sphere in [14]. In higher dimensions the conjecture
is still open and all known lower bounds for pb decay with the degree of the
cover [11, 16, 20]. The degree of an open cover U := {Ui}Ni=1 is defined to be
the maximal number of sets intersected by a single set:

d(U) := max
i

#{j : Ūi ∩ Ūj ̸= ∅}.

In [16], Polterovich proved that on symplectically aspherical manifolds

pb(U) ≥ cM/(d(U)2 ·max
i
p(Ui))

for every cover U consisting of portable Liouville domains. Here p(Ui) is
the portability number of Ui, from Definition 1.5. Later, Seyfaddini in [20]
proved that on monotone manifolds, i.e. when ω|π2(M) = κc1|π2(M), one has
pb(U) ≥ 1/(2d(U)2 ·maxi cG(Ui)) ≥ 1/(2d(U)2 · e(U)) for every cover U by
balls that are displaceable with energy smaller than |κ|/2. Finally, in [11],
Ishikawa gave a lower bound for covers consisting of embeddings of strictly
convex sets into monotone manifolds, which decays quadratically in the de-
gree and depends on the curvature of the boundaries. The max inequality
yields lower bounds in terms of the displacement energies of the sets, still
decaying with the degree. The following corollary follows from Theorems 3
and 4 together with Corollary 1.7, by arguments that appear in [16, 17, 20].
More specifically, we refer the reader to the proof of [20, Theorem 9].

Corollary 1.10. Let (M,ω) be a monotone symplectic manifold with mono-

tonicity constant κ, and let U := {Ui}Ni=1 be a finite open cover of M by

domains with incompressible dynamically convex boundaries. Assume in ad-

dition that one of the following holds:

• κ ≤ 0

• κ > 0, C(Ui) ≤ κ for all i and, for each i, either e(Ui) < κ or Ui is a

portable Liouville domain.

Then,

(5) pb(U) ≥ 1

2 · d(U)2 · e(U) .

Remark 1.11. When the cover U consists of portable Liouville domains
with incompressible dynamically convex boundaries, the maximal displace-
ment energy, e(U), in the lower bound (5) can be replaced by maxi p(Ui) if
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κ ≤ 0, and by maxiC(Ui) otherwise. This follows from the proof of [20, The-
orem 9] together with Theorems 5 and 6 below, which give uniform bounds
for the spectral invariants of Hamiltonians supported in such sets. In this
case, one obtains a positive lower bound for the Poisson bracket invariant
when the cover does not necessarily consist of displaceable sets.

We can use Theorem 1 to deduce a lower bound for pb for certain covers
on rational manifolds. Following the notations of Definition 1.1 above, as-
sume that U is a cover by 1-extendable balls and notice that 2U := {2Ui} is
also a cover of M by symplectically embedded balls. When the symplectic
manifold (M,ω) is rational and the capacity of each ball in the cover is not
greater than the rationality constant κ, the Poisson bracket invariant of U
can be bounded from below using the degree of the cover 2U .

Corollary 1.12. Let (M,ω) be a rational manifold with rationality constant

κ, and let U be a cover by 1-extendable balls, such that cG(Ui) ≤ κ. Then,

pb(U) ≥ 1

2 · d(2U)2 · e(U) .

Corollary 1.12 can be deduced from Theorem 1 in the same way that [20,
Theorem 9] is deduced from Theorem 2 there, together with the following
observation. Every 1-extendable ball U is displaceable with energy e(U) =
cG(U). Every Hamiltonian H that is compactly supported in U is also sup-
ported in a slightly smaller ball U ′, of capacity strictly less than cG(U). By
the energy capacity inequality, c(H) ≤ e(U ′) = cG(U

′) < cG(U) = min{κ, 1 ·
min Spec(∂U)}, which guarantees the requirements of Theorem 1.

1.3. Uniform bounds on spectral invariants and super heavy sets

Theorem 4 above states that, on positively monotone manifolds, the max
inequality holds for Hamiltonians supported in certain domains, assuming
that their spectral invariants are smaller than the monotonicity constant κ.
The following theorem guarantees that this bound on the spectral invariants
holds under additional conditions on the domains containing the supports.

Theorem 5. Let (M,ω) be a positively monotone symplectic manifold and

suppose U ⊂M is a disjoint union of portable Liouville domains with dy-

namically convex incompressible boundaries. If C(U) ≤ κ, then for every

Hamiltonian H :M × S1 → R supported in U , c(H) < C(U).
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The next result can be seen as a generalization to negatively monotone
manifolds of [16, Proposition 5.4], which states that the spectral invariant
of every Hamiltonian supported in a portable Liouville domain on a sym-
plectically aspherical manifold is bounded by the portability number.

Theorem 6. Let (M,ω) be a negatively monotone symplectic manifold and

suppose that U ⊂M is a disjoint union of portable Liouville domains with

dynamically convex incompressible boundaries. Then for every Hamiltonian

H :M × S1 → R supported in U , its spectral invariant is bounded by the

portability number of U , namely c(H) ≤ p(U).

Here the portability number of a disjoint union of portable Liouville do-
mains is defined to be the maximal portability number of a connected compo-
nent, namely p(U) := maxi p(Ui). Theorems 5 and 6 can be seen as versions
of Ishikawa’s result, [11, Proprosition 4.4], with different upper bounds and
constraints. Ishikawa proved that, on negatively monotone manifolds, the
spectral invariant of every Hamiltonian supported in a disjoint union of em-
beddings of strictly convex sets intoM , is bounded by a constant depending
on the curvature of the boundary. On positively monotone manifolds, he
gave a different upper bound which also depends on the curvature, under
the assumption that the minimal curvature is not too small, compared to
the monotonicity constant. As explained in [11], an immediate corollary of
Theorems 5 and 6 concerns the notion of a superheavy set, which was in-
troduced by Entov and Polterovich in [4]: A closed subset X ⊂M is called
superheavy if

(6) lim
k→∞

c(kH)

k
≤ sup

X×S1

H, ∀H ∈ C∞(M × S1).

Corollary 1.13. Let (M,ω) be a monotone symplectic manifold with mono-

tonicity constant κ. Let U ⊂M be a portable Liouville domain with a dynam-

ically convex incompressible boundary, and assume in addition that either

κ ≤ 0 or C(U) ≤ κ. Then, M \ U is superheavy.

Organization of the paper

Section 2 contains an overview of the necessary preliminaries and fixes some
notations. In Section 3, we construct “spectral killers” for Hamiltonians
supported in a domain with incompressible contact type boundary, under
a certain condition involving the Reeb dynamics on the boundary and the
spectral invariant of the Hamiltonian. We also explain how the existence of



✐

✐

“6-Tanny” — 2023/3/31 — 23:11 — page 1171 — #13
✐

✐

✐

✐

✐

✐

A max inequality for spectral invariants 1171

spectral killers implies the max inequality and prove Theorem 1. In Section 4
we show that the aforementioned condition holds in various settings, and
thus prove Theorems 2, 3 and 4. Section 5 concerns uniform bounds on
spectral invariants and contains the proofs of Theorems 5 and 6. Finally, in
Section 6 we estimate the invariant C(U) on certain classes of domains.
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2. Preliminaries

Let us review the necessary preliminaries and fix some notations. Note that
throughout the paper we assume (M,ω) to be a rational closed symplectic
manifold, namely, ω(π2(M)) is a discrete subgroup of R.

2.1. Hamiltonian Floer homology

Given a Hamiltonian H :M × S1 → R, its symplectic gradient is the vector
field defined by the equation ω(XH , ·) = −dH and the flow φtH of this vector
field is called the Hamiltonian flow of H. The set of 1-periodic orbits of φtH
is denoted by P(H). The Hamiltonian H is called non-degenerate if the
graph of dφ1

H is transversal to the diagonal in TM × TM . Equivalently, H
is non-degenerate if every γ ∈ P(H) is non-degenerate, that is, if 1 is not an
eigenvalue of dφ1

H(γ(0)) for every γ ∈ P(H).
We denote by LM the space of contractible loops inM . A capping disk of

γ ∈ LM is a map u : D →M from the unit disk to M , satisfying u|∂D = γ.
Two capping disks u1, u2 of γ are equivalent if [u1#(−u2)] ∈ kerω ∩ ker c1.

We denote by L̃M the space of equivalence classes of capped loops, (γ, u).
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The action functional corresponding to H is defined on the space L̃M by

AH(γ, u) =
∫ 1

0
H(γ(t), t) dt−

∫

u
ω.

The critical points of the action functional are (equivalence classes of) capped
1-periodic orbits of φtH and the set of their values is denoted by Spec(H). For
a non-degenerate Hamiltonian H and a generic ω-compatible almost com-
plex structure J , the Floer chain complex CF∗(H, J) is generated by these
critical points and its differential is defined by counting certain negative
gradient flow lines of AH (with respect to a metric induced by J on L̃M).
For more details, see, e.g., [12, 17]. The chain complex CF∗(H, J) is graded
by the Conley-Zehnder (abbreviated to CZ) index, whose definition is re-
called below. More formally, CFk(H, J) is generated by (equivalence classes
of) capped 1-periodic orbits whose index7, CZH(γ, u), is equal to −k. For
k ∈ Z, we denote by Speck(H) the set of action values of the generators of
CFk(H, J).

2.1.1. The Conley-Zehnder and Robbin-Salamon indices. The
Conley-Zehnder index is defined for non-degenerate capped 1-periodic or-
bits, through an index of a path of symplectic matrices which is obtained
from the linearized flow after trivializing the tangent bundle. In [18], Rob-
bin and Salamon defined a Maslov-type index for possibly degenerate orbits,
that coincides with the Conley-Zehnder index on non-degenerate ones. Since
we will consider degenerate Hamiltonians as well, we give here the definition
of the Robbin-Salamon index, following the exposition in [7].

• Let Φ = {Φ(t)}t∈[0,T ] ⊂ Sp(2n) be a path of symplectic matrices. A
number t ∈ [0, T ] is called a crossing if det(Φ(t)− 1l) = 0. The cross-

ing form Γt = Γt(Φ) is the quadratic form obtained by restricting the
symmetric matrix S(t) := −J0Φ̇(t)Φ−1(t) to ker(Φ(t)− 1l). A crossing
t0 is called regular if the crossing form Γt0 is non-degenerate.

• For a path Φ = {Φ(t)}t∈[0,T ] having only regular crossings, the Robbin-
Salamon index (abbreviated to RS) is defined to be

(7) RS(Φ) :=
1

2
sign (Γ0) +

∑

0<t<T

sign (Γt) +
1

2
sign (ΓT ),

7We add the subscript H to the notation in order to distinguish this index from
the contact CZ index, which will be discussed later.
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where the sum is taken over all crossings t ∈ (0, T ). The definition of
the RS index for general paths of symplectic matrices is given in [7].
This index admits several useful properties:
– (homotopy) The RS index is invariant under homotopies with fixed

ends.
– (products) RS(Φ1 ⊕ Φ2) = RS(Φ1) + RS(Φ2).
– (conjugation) RS(ΨΦΨ−1) = RS(Φ) for every path Ψ of symplectic

matrices.
– (concatenation) RS(Φ|[t1,t3]) = RS(Φ|[t1,t2]) + RS(Φ|[t2,t3]).
– (inverse) RS(Φ̄) = RS(ΦT ) = −RS(Φ), where Φ̄(t) := Φ(−t) and ΦT

is the path of transposed matrices.
Given a general path we may perturb it with fixed ends to obtain a
path with only regular crossings, and use (7) to compute the index. For
a path Φ with only regular crossings such that Φ(0) = 1l, and t = 1 is
not a crossing, the RS index coincides with the Conley-Zehnder index
of the path.

• To define the index of a capped periodic orbit (γ, u), consider a trivial-
ization of the tangent bundle TM along u. Then, the differential of the
flow φtH along the loop γ is identified with a path of symplectic matri-
ces, dφtH(γ(0)) 7→ Φ(t) ∈ Sp(2n). The RS index of the capped orbit is
given by RS(γ, u) := RS(Φ). Throughout the paper, we use the nota-
tion CZ for non-degenerate orbits and RS for degenerate ones. A useful
property of the CZ index is that the indices with respect to different
capping disks differ by twice the first Chern class of the connected sum.
More formally, let γ ∈ P(H) be a non-degenerate 1-periodic orbit of
a Hamiltonian H and let u, v : D →M be two different capping disks
for γ. Then, for A := u#(−v) ∈ π2(M),

(8) CZH(γ, u) = CZH(γ, v#A) = CZH(γ, v) + 2c1(A),

where c1 denotes the first Chern class of M , see, e.g., [12, Sections
2.6-7].

We remark that there are texts choosing an opposite sign for the CZ index,
such as [20]. In our sign convention, the index of a critical point p of a C2-
small Morse function with a constant capping disk, up(D) = {p}, is related
to the Morse index via CZH(p, up) = n− iMorse(p).
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2.2. Spectral invariants

The Floer complex admits a natural filtration by the action value. Let
CF a∗ (H, J) be the sub-complex generated by (equivalence classes of) capped
1-periodic orbits whose action is bounded by a from above. Since the Floer
differential is action decreasing, it restricts to the sub-complex CF a∗ (H, J)
and the homology HF a∗ (H, J) is well defined. The spectral invariant with
respect to the fundamental class is defined to be the smallest value of a for
which the fundamental class appears in HF a∗ (H, J), namely,

(9) c(H) := inf{a : [M ] ∈ Im (ιa∗)},

where ιa∗ : HF a∗ (H, J)→ HF∗(H, J) is the map induced by the inclusion ιa :
CF a∗ (H, J) →֒ CF∗(H, J). We remark that spectral invariants are defined
for general quantum homology classes, but we consider only the spectral
invariant with respect to the fundamental class. Spectral invariants have
several useful properties, let us state the relevant ones:

• (stability) For any Hamiltonians H and G,

∫ 1

0
min
x∈M

(H(x, t)−G(x, t))dt ≤ c(H)− c(G) ≤
∫ 1

0
max
x∈M

(H(x, t)−G(x, t))dt.

In particular, c : C∞(M × S1)→ R is a continuous functional and is
extended by continuity to degenerate Hamiltonians. Moreover, this
implies that the spectral invariant is monotone: If G(x, t) ≤ H(x, t)
for all (x, t) ∈M × S1, then c(G) ≤ c(H).

• (spectrality) c(H) ∈ Spec(H). Moreover, ifH is non-degenerate, c(H) ∈
Specn(H).

• (subadditivity) For every Hamiltonians H and G, one has c(H#G) ≤
c(H) + c(G), where H#G := H +G ◦ (φtH)−1. In particular, if H and
G are disjointly supported then c(H +G) ≤ c(H) + c(G).

• (energy-capacity inequality) If the support of H is displaceable, its
spectral invariant is bounded by the displacement energy of the sup-
port, namely, c(H) ≤ e(supp(H)). We remind that a subset X ⊂M is
displaceable if there exists a Hamiltonian G such that φ1

G(X) ∩X = ∅.
In this case, the displacement energy of X is given by

(10) e(X) := inf
G:φ1

G(X)∩X=∅

∫ 1

0

(
max
M

G(·, t)−min
M

G(·, t)
)
dt.
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For a wider exposition see, for example, [12, 17]. A standard method for
estimating the spectral invariant of a Hamiltonian H is through a bifurcation

diagram. Given a continuous deformation {Hτ}τ of H, the corresponding
bifurcation diagram is the set ∪τ ({τ} × Spec(Hτ )) ⊂ R2. By the spectrality
and stability properties, the spectral invariant of Hτ moves continuously
in the diagram as τ varies. Therefore, if we construct a deformation such
that the value of the spectral invariant is known at a certain point of the
deformation, we can study the bifurcation diagram in order to estimate
c(H). This approach was used by Polterovich in [16], by Seyfaddini in [20]
and by Ishikawa in [11], and is frequently used in the present paper as well.

2.3. Contact hyper-surfaces, the Reeb flow and Liouville domains

As mentioned earlier, a domain U ⊂M has a contact type boundary if there
exists a vector field Y , called the Liouville vector field, that is defined on a
neighborhood of the boundary ∂U , satisfies LY ω = ω, is transverse to the
boundary and points outwards. The flow ψs of Y defines a radial coordinate,
called the Liouville coordinate, on a tubular neighborhood of the boundary,
by

(11) ∂U × (1− ϵ, 1 + ϵ) ∼= N (∂U), (y, s) 7→ x = ψlog(s)y.

Note that the Liouville flow expands the symplectic form, namely(
ψlog(s)

)∗
ω = s · ω. The 1-form λ := ιY ω is a primitive of ω and the ker-

nel of its restriction to T∂U , namely ξ := kerλ|T∂U , is called the contact

distribution. We denote by R the Reeb vector field, which is defined on a
neighborhood of ∂U by

(12) λ(R) = 1, R(y,s) ∈ ker dλ(y,s)|Tψlog(s)∂U .

We remark that the Liouville vector field is not unique (and hence so are the
1-form λ and the Reeb vector field). In fact, for every C1-small Hamiltonian
H defined near ∂U , Y ′ := Y −XH is also a Liouville vector field. If the
vector field Y extends to U (and satisfies LY ω = ω there), we say that U is
a Liouville domain.

Denote by φtR : ∂U → ∂U the flow of the Reeb vector field, and let P(∂U)
be the set of all contractible periodic orbits of φtR (of any period). The
action of such orbits is defined to be the integral of the 1-form λ along the
orbit, and coincides with the period. The set of action values is called the

Reeb spectrum of ∂U and is denoted by Spec(∂U). We say that the Reeb
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flow is non-degenerate if the graph of the restriction of dφtR to the contact
distribution ξ intersects the diagonal in ξ × ξ transversely. In this case, for
each orbit γ ∈ P(∂U) and a capping disk u ⊂ ∂U , one can assign an integer,
which we call the contact Conley-Zehnder index and denote8 by CZR(γ, u),
in the following way. Trivializing the contact distribution ξ along the disk
u, the restriction of the linearized flow dφtR to ξ along γ is identified with a
path of symplectic matrices, dφtR|ξ(γ(0)) 7→ Φ(t) ∈ Sp(2n− 2), see e.g., [1].
The index CZR(γ, u) is defined to be the RS index of the path Φ, as in (7).

2.3.1. Portable Liouville domains. As mentioned earlier, a Liouville
domain U is called portable if its core, which is given byQ := ∩s∈(0,1]ψlog(s)U ,

is displaceable in U . In this case, the displacement energy of ψlog(s)U is ar-
bitrarily small as s approaches zero, as explained in [16, p.499]. This fact
will be used in the proof of Theorem 5 which asserts a uniform bound for
spectral invariants of Hamiltonians supported in portable Liouville domains
with incompressible dynamically convex boundaries on positively monotone
manifolds, see Section 5.1.

3. Constructing spectral killers

In [20], Seyfaddini presented a construction of certain functions, called spec-

tral killers, which can be used to produce upper bounds for the spectral
invariant of a sum of disjointly supported Hamiltonians. A spectral killer
for a Hamiltonian H supported in a domain U is a function K :M → R

supported in U such that c(H +K) = 0.

Claim 3.1 (Seyfaddini). Let H1, . . . , HN be Hamiltonians supported in

pairwise disjoint domains U1, . . . , UN ⊂M and suppose there exist Hamil-

tonians Ki supported in Ui, such that c(Hi +Ki) = 0. Then,

(13) c(H1 + · · ·+HN ) ≤ max
i
∥Ki∥C0 .

Proof. The following argument is taken from [20]. Using the stability and
subadditivity properties of spectral invariants and noticing that {Hi +Ki}

8We add the subscript R to the notation in order to distinguish the contact CZ
index from the Hamiltonian CZ index that appeared earlier.
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are all disjointly supported, we have

c(H1 + · · ·+HN ) ≤ c
(
∑

i

(Hi +Ki)

)
+
∥∥∥−

∑

i

Ki

∥∥∥
C0

≤
∑

i

c(Hi +Ki) +
∥∥∥
∑

i

Ki

∥∥∥
C0

=
∑

i

0 + max
i
∥Ki∥C0 .

□

In [20], Seyfaddini constructed spectral killers for Hamiltonians sup-
ported in displaceable balls having small displacement energies in monotone
manifolds. The norms of the spectral killers are bounded by the capacities
of the balls.

In order to obtain the max inequality (1) we will construct spectral killers
whose norms are equal to the spectral invariants of the Hamiltonians {Hi}
whenever c(Hi) > 0. Note that for Hamiltonians with non-positive spectral
invariants the max inequality follows from the subadditivity property of
spectral invariants. In this section we show that under a certain condition
on the domain U and the spectral invariant c(H) of H, there exists such a
spectral killer K. We begin with a simpler construction of what we call a
“slow spectral killer”, which is supported on a domain larger than U .

3.1. A simpler case: “slow spectral killers”

In this section we use the notion of σ-extendable domains from Definition 1.1.
Our goal is to prove the following statement.

Proposition 3.2. Let (M,ω) be a rational symplectic manifold, namely

ω(π2(M)) = κ · Z, and let U ⊂M be a σ-extendable domain with an incom-

pressible contact type boundary. Then, for every Hamiltonian H supported

in U such that

(14) 0 ≤ c(H) < min{κ, σ ·min Spec(∂U)}

there exists K :M → R supported in (1 + σ)U with ∥K∥C0 = c(H) such that

c(H +K) = 0.

The above proposition guarantees that the max inequality (1) holds for
Hamiltonians supported in disjoint extendable domains that satisfy (14),
only if we assume in addition that the supports (1 + σi)Ui of the spectral
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killers are disjoint. In particular, Theorem 1 is an immediate consequence of
Proposition 3.2 and Claim 3.1:

Proof of Theorem 1. Let {Hi} be Hamiltonians supported in domains {Ui}
with incompressible contact type boundaries such that Ui is σi-extendable,
the sets {(1 + σi)Ui} are pairwise disjoint, and

c(Hi) < min{κ, σi ·min Spec(∂Ui)}.

By Proposition 3.2 there existKi :M → R supported in (1 + σi)Ui such that
∥Ki∥C0 = c(Hi) and c(Hi +Ki) = 0. Applying Claim 3.1 to {Hi} and {Ki}
with the disjoint domains {(1 + σi)Ui}, we conclude that the max inequality
(1) holds for {Hi}. □

In order to prove Proposition 3.2 we need some preliminary notations
and calculations. We use the notations of Section 2 and, in particular, the
Liouville coordinate s defined in (11), using the Liouville vector field. The
spectral killer K will be a function of the Liouville coordinate. This will
enable us to relate its 1-periodic orbits to the Reeb orbits on ∂U .

Definition 3.3. We say that an autonomous Hamiltonian H is radial if
there exists χ : R→ R such that H = χ(s) wherever the Liouville coordinate
is defined, and is locally constant elsewhere.

Radial Hamiltonians and their periodic orbits were studied in [9, 11] for
the case where U is a strictly convex domain in R2n. The following lemma
states a correspondence between the non-constant 1-periodic orbits of radial
Hamiltonians and the Reeb orbits on ∂U .

Lemma 3.4. Let H = χ(s) be a radial Hamiltonian, then the Hamiltonian

flow of H is conjugated to the Reeb flow up to a time reparametrization:

(15) φtH = ψlog s ◦ φχ
′(s)·t
R ◦ ψ− log s.

In particular, every non-constant 1-periodic orbit γ of H is contained in a

level set of the Liouville coordinate s = s(γ) and is conjugated to a periodic

Reeb orbit, γ̂ ∈ P(∂U), via γ̂(χ′(s) · t) = ψ− log sγ(t). Moreover, the Reeb ac-

tion of γ̂ is equal to the absolute value of the derivative of χ at s = s(γ):

(16)

∫

γ̂
λ = |χ′(s)|.

In particular, |χ′(s)| belongs to the Reeb spectrum of ∂U .



✐

✐

“6-Tanny” — 2023/3/31 — 23:11 — page 1179 — #21
✐

✐

✐

✐

✐

✐

A max inequality for spectral invariants 1179

Proof of Lemma 3.4. Let us prove the following relation between the Hamil-
tonian vector field XH of H and the Reeb vector field:

(17) dψ− log sXH ◦ ψlog s = χ′(s) ·R.

Note that (15) will follow from uniqueness of solutions of ODEs. Let us show
that the LHS of (17) satisfies the equations defining the Reeb vector field
with a factor of χ′(s). Given any vector v ∈ TxM for x ∈ ∂U ,

ωx(v, dψ
− log sXH ◦ ψlog s(x)) = (ψ− log s

x )∗ωψlog sx(dψ
log sv,XH)

= s−1 · ωψlog sx(dψ
log sv,XH)

= s−1dHψlog sx(dψ
log sv).(18)

When v ∈ T∂U , its image under the linearized Liouville flow, dψlog sv, is
tangent to a level set of the Liouville coordinate s and hence to a level set
of H. In this case,

ωx(v, dψ
− log sXH ◦ ψlog s(x)) = s−1dHψlog sx(dψ

log sv) = 0

On the other hand, taking v to be the Liouville vector field, equation (18)
implies:

ωx(Y, dψ
− log sXH ◦ ψlog s(x)) = s−1dHψlog sx(dψ

log sY )

= s−1 · d
dτ

∣∣∣
τ=0

H ◦ ψlog(s)ψτ (x)

= s−1 · d
dτ

∣∣∣
τ=0

H ◦ ψlog(s·eτ )(x)

= s−1 · d
dτ

∣∣∣
τ=0

χ(s · eτ ) = χ′(s).

Having established the conjugation of the Hamiltonian and the Reeb
flows (15), we turn to prove the relation between the Reeb action and the
derivative of χ stated in equation (16). For a 1-periodic orbit γ of H lying in
level s, let γ̂ ⊂ ∂U be the curve defined by γ̂(χ′(s) · t) = ψ− log sγ(t). Then,
using (15) we find

d

dt
γ̂(t) =

d

dt

(
ψ− log sγ(t/χ′(s))

)
=

d

dt

(
ψ− log sφ

t/χ′(s)
H γ(0)

)

=
d

dt

(
φ
t·χ′(s)/χ′(s)
R ψ− log sγ(0)

)
= R.

We conclude that γ̂ is a periodic Reeb orbit whose period, and therefore
action, is equal to |χ′(s)|. □
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s = 1

s = 1− 2ϵ

Hτ

s

H = H0

s = 1 + σ − ϵ

s = 1 + σ

Figure 3: An illustration of the graphs of Hτ (solid line) and H (dashed
line) in the radial coordinate s.

We are now ready to prove Proposition 3.2.

Proof of Proposition 3.2. Let U be a σ-extendable domain with an incom-
pressible contact type boundary and let H be a Hamiltonian supported in U .
Let N (∂U) ∼= ∂U × (1− 3ϵ, 1 + σ) be a tubular neighborhood of the bound-
ary on which the Liouville coordinate is defined, and assume that ϵ is small
enough so that H|N (∂U) = 0. Consider the autonomous radial Hamiltonian
defined by

(19) K1(x) :=





−1 x ∈ U \
(
∂U × (1− 2ϵ, 1)

)
,

χ1(s(x)) x ∈ ∂U × (1− 2ϵ, 1 + σ − ϵ),
0 elsewhere

where χ1 : R→ R is a smooth approximation of the continuous piecewise
linear function taking the value −1 for s ≤ 1− 2ϵ and 0 for s ≥ 1 + σ − ϵ.
We choose χ1 such that its derivative is bounded by 1/σ and that, for
s > 1− 2ϵ, its derivative vanishes only in the “flat region”, i.e. where χ1

itself vanishes. For each τ ∈ [0, c(H)], set Kτ := τ ·K1, then {Kτ}τ is a con-
tinuous family of radial Hamiltonians. Denoting χτ := τ · χ1, its derivative
is bounded by τ/σ, and therefore Kτ has no non-constant 1-periodic orbits
as long as τ/σ < min Spec(∂U). This follows from Lemma 3.4, which states
that non-constant 1-periodic orbits of radial Hamiltonians appear only for s
such that |χ′(s)| ∈ Spec(∂U). Assumption (14) in Proposition 3.2 states that
c(H) < σ ·min Spec(∂U) and therefore Kτ has no non-constant 1-periodic
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spec(Hτ)

τ

c(H)

κ

2κ

0

−κ

Figure 4: An illustration of the n-spectrum of a non-degenerate perturbation
of Hτ . The dashed lines correspond to actions of orbits in U \ N (∂U) while
the solid lines correspond to actions of constant orbits in the complement of
(1 + σ)U .

orbits for all τ ∈ [0, c(H)]. We will show that Kc(H), which is supported in
(1 + σ)U , is a spectral killer for H, namely, that c(H +Kc(H)) = 0. Consider
the deformation of the Hamiltonian H given by {Hτ = H +Kτ}τ∈[0,c(H)],
which is illustrated in Figure 3, and let us study the corresponding bifurca-
tion diagram. We remind that by the stability and spectrality properties, the
spectral invariant moves continuously in this diagram. Let us show that the
bifurcation diagram consists of lines with slope −1, corresponding to orbits
in U , and of horizontal lines with values in κZ, corresponding to constant
orbits outside of U , as illustrated in Figure 4. Indeed:

• Orbits in {s > 1− 2ϵ}: In this region Hτ coincides with Kτ which
has only constant 1-periodic orbits. Their actions are given by χτ (s)−
ω(A) for some A ∈ π2(M) and s such that χ′

τ (s) = 0. When s > 1− 2ϵ,
the derivative of χτ vanishes if and only if s ≥ 1 + σ − ϵ, in which case
χτ (s) = 0. Overall, the 1-periodic orbits of Hτ in this region all have
actions lying in κZ and do not change with τ .

• Orbits in {s ≤ 1− 2ϵ}: Here Hτ = H − τ . Therefore, the 1-periodic
orbits of Hτ do not change with τ but their actions decrease linearly:

AHτ
(γ, τ) =

∫ 1

0
Hτ (γ(t), t) dt−

∫

u
ω =

∫ 1

0
H(γ(t), t) dt− τ −

∫

u
ω.

We conclude that the bifurcation diagram consists of decreasing lines of
slope −1 and of horizontal lines with values in κZ. By assumption (14),
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c(H) < κ and thus there are no horizontal lines between 0 and c(H). It
follows that the spectral invariant c(Hτ ) moves along a single decreasing line
and hence c(H +Kτ ) = c(Hτ ) = c(H)− τ for τ ∈ [0, c(H)]. In particular,
c(H +Kc(H)) = 0 and Kc(H) is the required spectral killer. □

3.2. Spectral killers that are supported in U

In order to construct spectral killers that are supported in U , rather than
on a larger domain, we must consider radial Hamiltonians with arbitrarily
large slopes. Such Hamiltonians may have a lot of non-constant 1-periodic
orbits which correspond to Reeb orbits on the boundary of U , as stated
in Lemma 3.4. In this case, we need to impose certain assumptions on the
spectral invariant of the Hamiltonian considered and the Reeb dynamics on
the boundary. Let us fix a domain U with an incompressible contact type
boundary such that the Reeb flow is non-degenerate. The non-degeneracy
of the Reeb flow can be achieved by a small perturbation of the Liouville
vector field (or, equivalently, the contact form), see, e.g., [1, p.47]. For a non
degenerate domain we define the relative n-spectrum of the boundary ∂U in
M :

Definition 3.5. • For k ∈ Z, we denote by

Speck(∂U) :=

{∫

γ
λ :

γ ∈ P(∂U),
∃u : D → ∂U, u|∂D = γ, CZR(γ, u) = −k

}

the action spectrum of ∂U of index −k.
• Denote

Specn(0) :=
{
− ω(A) : A ∈ π2(M), c1(A) ∈ {−n, . . . , 0}

}
.

Morally speaking, Specn(0) is the “n-spectrum of the zero function”,
namely, the set of actions that can be attained by index −n capped
orbits of a non-degenerate perturbation of the zero function.

• We define the relative n-spectrum of ∂U inside M to be

Specn(∂U ;M) := Specn(0) ∪
⋃

k ∈ Z, A ∈ π2(M),

c1(A) = ⌈ k−n
2

⌉

{−Speck(∂U)− ω(A)} .

We will show that the relative n-spectrum Specn(∂U ;M) is related to the
n-spectrum of radial Hamiltonians (see Definition 3.3). The sets Speck(∂U)
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and Specn(∂U ;M) depend on the choice of a Liouville vector field (or, equiv-
alently, a contact form). We omit the Liouville vector field from the notation
for the sake of brevity. Our main goal for this section is to prove the following
statement.

Proposition 3.6. Let H :M × S1 → R be a Hamiltonian supported in a

domain U with an incompressible contact type boundary such that the Reeb

flow is non-degenerate. Assume that c(H) > 0 and

(20) Specn(∂U ;M) ∩ (0, c(H)] = ∅.

Then, there exists a Hamiltonian K :M → R supported in U such that

∥K∥C0 = c(H) and c(H +K) = 0.

Remark 3.7. The non-degeneracy of the Reeb flow on ∂U is required for
the contact CZ to be defined. However, for possibly degenerate domains one
can define a relative spectrum by

Spec(∂U ;M) := {−T − ω(A) : T ∈ {0} ∪ Spec(∂U), A ∈ π2(M)}.

and construct spectral killers for Hamiltonians satisfying Spec(∂U ;M) ∩
(0, c(H)] = ∅. The proof in this case is simpler than that of Proposition 3.6
and does not require Lemma 3.9 below. This observation will be used in the
proof of Theorem 2 which concerns the max inequality on rational manifolds.

We start by stating a simple corollary of Lemma 3.4 from the previous
section.

Corollary 3.8. For a radial Hamiltonian H = χ(s), the action of a capped

non-constant 1-periodic orbit (γ, u) is given by

(21) AH(γ, u) = χ(s)− s · χ′(s)− ω(A),

where s = s(γ) is the Liouville coordinate of the level set containing γ and

A ∈ π2(M) is such that u = u0#A for a capping disk u0 ⊂ {s = s(γ)}.

Proof. Recall that Lemma 3.4 states that every non-constant 1-periodic orbit
γ of a radial Hamiltonian H = χ(s) corresponds to a Reeb orbit γ̂ ∈ P(∂U)
whose action is

∫
γ̂ λ = |χ′(s)|. Notice that γ̂ and ψ− log sγ have the same

orientation if χ′(s) > 0 and opposite orientation if χ′(s) < 0. Let û0 be a
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capping disk of γ̂ whose image coincides with ψ− log su0. Then,

AH(γ, u) = H(γ)−
∫

u
ω = χ(s)−

∫

u0

ω − ω(A)

= χ(s)−
∫

ψ− log su0

(
ψlog s

)∗
ω − ω(A)

= χ(s)− s ·
∫

ψ− log su0

ω − ω(A)

= χ(s)− s ·
∫

∂(ψ− log su0)
λ− ω(A)

= χ(s)− s · signχ′(s) ·
∫

γ̂
λ− ω(A)

= χ(s)− s · χ′(s)− ω(A),

where in the last equality we used equation (16) from Lemma 3.4. □

Since radial Hamiltonians are degenerate, we will perturb them into non-
degenerate Hamiltonians. After the perturbation, there may appear several
periodic orbits, {γi}, in a small neighborhood of every degenerate orbit γ.
In this case, the CZ index of the non-degenerate perturbed orbits is close to
the RS index of the original degenerate orbit:

(22) |CZH(γi, ui)− RS(γ, u)| ≤ 1

2
dimker((dφ1

H)γ(0) − 1l),

see, for example, section 3 of [11]. The next lemma relates the RS indices
of 1-periodic orbits of radial Hamiltonians to the CZ indices of Reeb or-
bits. Moreover, it shows that generically, the kernel of (φ1

H)γ(0) − 1l is 1-
dimensional.

Lemma 3.9. Let H = χ(s) be a radial Hamiltonian. For every non-constant

1-periodic orbit γ of H and a capping disk u0 ⊂ {s = s(γ)} of γ,

(23) RS(γ, u0) = sign (χ′(s)) · CZR(γ̂, û0) +
1

2
sign

(
χ′′(s)

)

where γ̂(t) := ψ− log sγ(t/χ′(s)) ∈ P(∂U) is the Reeb orbit conjugate to γ, û0
is a capping disk of γ̂ whose image coincides with ψ− log su0 ⊂ ∂U and the

sign of zero is considered to be zero. Moreover, if χ′′(s) ̸= 0 for s = s(γ),
then dimker((dφ1

H)γ(0) − 1l) = 1.
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Proof. In order to relate the two different indices we show that the restric-
tions of the linearized flows to the contact distribution are conjugated. This
can be done by differentiating the conjugation of the Hamiltonian and Reeb
flows, given in (15). Extending the contact distribution ξ to a neighborhood
of ∂U using the Liouville flow ψlog s, we have

dφtH |ξ = d
(
ψlog s ◦ φχ

′(s)·t
R ◦ ψ− log s

) ∣∣∣
ξ

= dψlog sdφ
χ′(s)·t
R dψ− log s|ξ,

where the last equality follows from the contact distribution ξ is tangent to
level sets of the Liouville coordinate s. We therefore conclude that the lin-
earized Hamiltonian and Reeb flows are conjugated on the contact distribu-
tion. By the conjugation property of the RS index for paths of matrices, the
RS index of the restriction of dφtH to ξ is equal to sign (χ′(s)) · CZR(γ̂, û0).
By the product property of the RS index, it remains to compute the in-
dex of the restriction of the linearized Hamiltonian flow to span{Y,R}. We
remind that the Reeb vector field is defined wherever the Liouville vec-
tor field is, by equations (12). Since XH is proportional to R, and since
H is autonomous, the linearized Hamiltonian flow preserves R: dφtH(R) =
dφtH(

1
χ′(s)XH) =

1
χ′(s)XH ◦ φtH = R ◦ φtH . In order to compute the linearized

Hamiltonian flow on the Liouville vector field, let us first compute the con-
jugation of φtH under the Liouville flow. Let x ∈ U and abbreviate s = s(x).
Using the conjugation between the Hamiltonian and the Reeb flows (15)
from Lemma 3.4, we have

ψ−τ ◦ φtH ◦ ψτ (x) = ψ−τψlog(seτ )φ
χ′(seτ )·t
R ψ− log(seτ )ψτ (x)

= ψlog sφ
χ′(seτ )·t
R ψ− log s(x)

= φ
χ′(seτ )

χ′(s)
·t

H (x).(24)

Using the above,

dφtH(Y ) =
d

dτ

∣∣∣
τ=0

φtH ◦ ψτ
(24)
=

d

dτ

∣∣∣
τ=0

ψτ ◦ φ
χ′(seτ )

χ′(s)
·t

H

= Y ◦ φtH + dψτXH ·
seτχ′′(seτ )

χ′(s)
· t
∣∣
τ=0

= Y ◦ φtH + t · sχ
′′(s)

χ′(s)
·XH = Y ◦ φtH + t · sχ′′(s) ·R.
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Fix a trivialization T̂ : Im (û0)× R2n−2 → ξ|Im (û0) of the contact dis-

tribution ξ along Im (û0) ⊂ ∂U , then dψlog sT̂ is a trivialization of ξ along
the image of u0. We can complete it to a trivialization T : Im (u0)× R2n →
TM |Im (u0) of TM along the image of u0, using the vector fields Y and
R, namely T (x, e2n−1) = Y (x), T (x, e2n) = R(x). It follows from the above
computations that in this trivialization the matrices ΦH(t) representing dφ

t
H

along γ are

ΦH(t) =




ΦR(sχ
′(s) · t) 0 0
0 1 0
0 t · sχ′′(s) 1


 ,

where ΦR(t) are the matrices representing the restriction of dφtR to ξ in T .
By the product property of the RS index, we have

(25) RS(ΦH) = sign (χ′(s)) · RS(ΦR) + RS(Ψ),

where

Ψ(t) :=

(
1 0

t · sχ′′(s) 1

)
.

The path of symplectic matrices Ψ(t) is degenerate. By Proposition 4.9 from
[7], the RS index of Ψ is9

RS(Ψ) = sign
(
sχ′′(s)

)
/2 = sign (χ′′(s))/2.

Together with equation (25), this implies that

RS(γ, u0) = sign (χ′(s)) · CZR(γ̂, û0) +
1

2
sign (χ′′(s)).

This proves formula (23). It remains to prove that, if χ′′(s) ̸= 0, the kernel of
(dφ1

H)γ(0) − 1l is one-dimensional. Indeed, since γ̂ is non-degenerate, the ker-
nel of ΦH(1)− 1l coincides with that of Ψ(1)− 1l, which is one-dimensional
when χ′′(s) ̸= 0. □

Having established Lemma 3.9, we are now ready to prove Proposi-
tion 3.6.

Proof of Proposition 3.6. Let H be a Hamiltonian supported in U . In what
follows, we construct a continuous deformation Hτ of the Hamiltonian H

9More accurately, one should apply Proposition 4.9 from [7] to the path of trans-
posed matrices ΨT and use the inverse property of the RS index.
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s = 1− ϵs = 1− 2ϵ

Hτ

s

H = H0

s = 1

Figure 5: An illustration of the graphs of Hτ (solid line) and H (dashed
line) in the radial coordinate s.

and, after perturbing into non-degenerate Hamiltonians, follow the corre-
sponding bifurcation diagram of the n-spectrum (that is, the actions of
capped orbits of index −n). We remind that by the spectrality property for
non-degenerate Hamiltonians, the spectral invariant lies in the n-spectrum.

Let N (∂U) ∼= ∂U × (1− 3ϵ, 1 + ϵ) be a small enough neighborhood of
the boundary on which the Liouville coordinate is defined and such that
H|N (∂U) = 0. Consider the autonomous radial Hamiltonians defined by

(26) K1(x) :=





−1 x ∈ U \
(
∂U × (1− 2ϵ, 1)

)
,

χ1(s(x)) x ∈ ∂U × (1− 2ϵ, 1− ϵ),
0 elsewhere.

where χ1 : R→ R is a smooth approximation of the continuous piecewise
linear function taking the value −1 for s ≤ 1− 2ϵ and 0 for s ≥ 1− ϵ, and
which coincides with the piecewise linear function outside of a neighborhood
of the corners at 1− 2ϵ and 1− ϵ. We also require that χ′′

1(s) will be strictly
negative near the corner 1− ϵ. Consider the family of radial Hamiltonians
given by {Kτ := τ ·K1}τ∈[0,c(H)] and set χτ := τ · χ1. Note that since the
Reeb spectrum is a discrete set, for a generic τ ∈ [0, c(H)] non-constant 1-
periodic orbits of Kτ appear only near s = 1− 2ϵ and s = 1− ϵ. We define
the deformation of the Hamiltonian H to be {Hτ := H +Kτ}[0,c(H)], see
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Figure 5. Let us follow the change of the n-spectrum of a non-degenerate
perturbation of {Hτ}τ≥0. We will show that the corresponding bifurcation
diagram is (approximately) composed of horizontal lines, corresponding to
orbits appearing for s > 1− 3ϵ/2, and of lines with slope −1, corresponding
to capped orbit with s < 1− 3ϵ/2, see Figure 6. Let us split into four regions:

• In M \ U : Here the Hτ is zero for all τ . After perturbing into non-
degenerate Hamiltonians, the actions of capped orbits with CZ index
−n in this region are contained in a small neighborhood of Specn(0) ⊂
Specn(∂U ;M) and do not change with τ .

• In U \ N (∂U): Here Hτ = H − τ , and therefore the periodic orbits
remain the same as τ changes, and the action of each orbit decreases
linearly:

AHτ
(γ, u) =

∫ 1

0
Hτ ◦ γ dt−

∫

u
ω =

∫ 1

0
H ◦ γ dt− τ −

∫

u
ω = AH(γ, u)− τ.

Therefore, the action spectrum of Hτ in this region changes linearly
in τ , with slope −1. After perturbing H into a non-degenerate Hamil-
tonian in this region Hτ = H − τ are non-degenerate as well, and the
action spectrum consists of lines with slope −1.
• Near s = 1− 2ϵ: Here Hτ coincides with the radial Hamiltonian Kτ =
χτ (s). Lemma 3.4 states that every non-constant 1-periodic orbit γ of
Kτ corresponds to a Reeb orbit of action χ′

τ (s(γ)). Since χ
′
τ (s) takes

values between 0 and τ/ϵ in this region, Hτ may admit more 1-periodic
orbits as τ grows. The action of each orbit, once it appeared, decreases
approximately linearly in τ , since the value of Hτ does. Indeed, by
Corollary 3.8 the action with respect to a radial Hamiltonian is given
by

AHτ
(γ, u) = χτ (s)− χ′

τ (s) · s− ω(A) ≈ −τ − (1− 2ϵ) ·
∫

γ̂
λ− ω(A),

where s = s(γ), γ̂(t) = ψ− log sγ(t/χ′(s)) ∈ P(∂U) and A := u#ū0 ∈
π2(M). After perturbing Hτ into non-degenerate Hamiltonians, the
actions attained by orbits in this region remain in a neighborhood of
lines with slope −1 with respect to τ .

• Near s = 1− ϵ: Here again Hτ coincides with the radial Hamiltonian
Kτ = χτ (s) and by Lemma 3.4, non-constant 1-periodic orbits corre-
spond to Reeb orbits of action χ′

τ (s), which takes values between 0
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specn(H
τ)

τ

c(H)

Figure 6: An illustration of the n-spectrum of a non-degenerate perturbation
of Hτ . The dashed lines correspond to actions of orbits in {s < 1− 3ϵ/2, 1}
while the solid lines correspond to actions of orbits in {s > 1− 3ϵ/2}.

and τ/ϵ. As before, Hτ may admit more 1-periodic orbits as τ grows,
but this time the action of each orbit, once it appeared, remains ap-
proximately constant when τ varies:

AHτ
(γ, u) = χτ (s)− χ′

τ (s) · s− ω(A) ≈ 0− (1− ϵ) ·
∫

γ̂
λ− ω(A),

where again s = s(γ), γ̂(t) = ψ− log sγ(t/χ′(s)) ∈ P(∂U) and A :=
u#ū0 ∈ π2(M). Let us now show that, after perturbing Hτ into non-
degenerate Hamiltonians, the actions of capped orbits with index −n
lie in a small neighborhood of the relative n-spectrum Specn(∂U ;M).
For this end, we need to compare the RS index of 1-periodic orbits
of Hτ with the contact CZ indices of the corresponding Reeb or-
bits. By our choice of χτ , its first derivative is strictly decreasing in
this region, namely, χ′′

τ < 0, we can use Lemma 3.9 to conclude that
the RS index of (γ, u0) and the contact CZ index of (γ̂, û0) are re-
lated by RS(γ, u0) = CZR(γ̂, û0)− 1

2 . After perturbing Hτ into a non-
degenerate Hamiltonian, every non-degenerate capped orbit (γ′, u′0)
must have CZ index close to the RS index of (γ, u0). More accurately,
since χ′′

τ ̸= 0, Lemma 3.9 guarantees that the kernel of dφtH(γ(0))− 1l
is one-dimensional and, by (22), |CZH(γ′, u′0)− RS(γ, u0)| ≤ 1

2 . We
therefore conclude that capped orbits of index −n could appear only
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for a capping u′ = u′0#A for A ∈ π2(M) such that

1

2
≥ |CZH(γ′, u′0)− RS(γ, u0)| = | − n− 2c1(A)− RS(γ, u0)|

=
∣∣∣− n− 2c1(A)− CZR(γ̂, û0) +

1

2

∣∣∣.

Since c1 and CZR take integer values, this is equivalent to

c1(A) =
⌈−CZR(γ̂, û0)− n

2

⌉
,

which implies that the action of the index −n orbit (γ′, u′) is approx-
imately −

∫
γ̂ λ− ω(A) ∈ Specn(∂U ;M).

This analysis shows that the bifurcation diagram corresponding to the n-
spectrum of a non-degenerate perturbation of {Hτ}τ is composed of (neigh-
borhoods of) decreasing lines of slope −1, corresponding to orbits in {s <
1− 3ϵ/2}, and of (neighborhoods of) horizontal lines with values in
Specn(∂U ;M), corresponding to orbits in {s > 1− 3ϵ/2}, as illustrated in
Figure 6.

The condition that Specn(∂U ;M) does not intersect (0, c(H)], namely,
(20), guarantees that there are no horizontal lines in the action window
(0, c(H)]. As a consequence, the bifurcation diagram contains no intersec-
tions in this window. By the continuity of c(Hτ ) (with respect to the pa-
rameter τ) the spectral invariant c(Hτ ) must move along a single line, which
implies that c(Hτ ) = c(H)− τ for τ ≤ τ0 := c(H). In particular, c(Hτ0) = 0.
This proves the proposition for K := Kτ0 , as c(H +K) = c(Hτ0) = 0 and
∥K∥C0 = τ0 = c(H). □

4. Deducing the max inequality for various settings

Proposition 3.6, together with Claim 3.1, imply that the max inequality
(1) holds for any collection of Hamiltonians H1, . . . , HN , supported in dis-
joint domains U1, . . . , UN with incompressible contact type boundaries, re-
spectively, provided that condition (20) is satisfied for each pair (Hi, Ui).
Namely, that for each i, the relative n-spectrum Specn(∂Ui;M) does not
intersect the interval (0, c(Hi)]. In this section we prove Theorems 2, 3 and
4, by showing that condition (20) is satisfied under the assumptions stated
in the theorems. Before that, let us show that condition (20) always holds
on symplectically aspherical manifolds.
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4.1. Symplectically aspherical manifolds

When (M,ω) is symplectically aspherical, namely, ω|π2(M) = 0, the max in-
equality (1) holds for every Hamiltonians H1, . . . , HN , supported in disjoint
domains U1, . . . , UN with incompressible contact type boundaries. Indeed,
given a domain U with incompressible contact type boundary, the fact that
ω vanishes on π2(M) implies that

Specn(∂U ;M) ⊂ −Spec(∂U) ∪ {0} ⊂ (−∞, 0]

and in particular Specn(∂U ;M) does not intersect the interval (0, c(H)] for
any Hamiltonian H with c(H) > 0. Therefore condition (20) is satisfied with
no additional assumptions on U .

We remind that the max inequality is a weaker statement than the max
formula proved by Humilière, Le Roux and Seyfaddini in [10], which states
that the spectral invariant of the sum of Hamiltonians supported in disjoint
incompressible Liouville domains on symplectically aspherical manifolds is
equal to the maximal spectral invariant of the summands.

4.2. Rational manifolds

Let (M,ω) be a rational symplectic manifold, namely ω(π2(M)) = κZ for
some κ ∈ R. In this section we prove that the max inequality (1) holds
for Hamiltonians Hi supported in disjoint domains Ui with incompressible
contact type boundaries, if Spec(∂Ui) ⊂ TiZ for some Ti|κ and c(Hi) < Ti,
respectively.

Proof of Theorem 2. Let U ⊂M be a domain with an incompressible con-
tact type boundary and suppose there exists T |κ such that Spec(∂U) ⊂ TZ.
In order to be able to apply Proposition 3.6 and Remark 3.7, we need to
show that the relative spectrum Spec(∂U ;M) does not intersect the inter-
val (0, c(H)] for every Hamiltonian H supported in U with c(H) < T . The
max inequality for such Hamiltonians will then follow from Claim 3.1. When
Spec(∂U) ⊂ TZ, the relative spectrum Spec(∂U ;M) is contained in the set
−{0} ∪ Spec(∂U) + κZ ⊂ TZ+ κZ. Since T |κ, the relative spectrum is con-
tained in the lattice TZ, and the intersection Spec(∂U ;M) ∩ (0, c(H)] is
empty for every Hamiltonian with c(H) < T . □
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4.3. Negatively monotone manifolds

Let (M,ω) be a negatively monotone symplectic manifold, namely, ω = κ · c1
on π2(M) for some κ ≤ 0. We now prove Theorem 3, which states that the
max inequality (1) holds for Hamiltonians supported in disjoint domains
with incompressible contact type boundaries, such that the contact CZ in-
dices of the Reeb orbits are all non-negative.

Proof of Theorem 3. Let U ⊂M be a domain with an incompressible con-
tact type boundary, such that the contact CZ index of every Reeb orbit on
∂U is non-negative, namely

CZR(γ, u0) ≥ 0 for all γ ∈ P(∂U) and u0 ⊂ ∂U.

In what follows we show that the relative n-spectrum Specn(∂U ;M) is
non-positive and in particular does not intersect the interval (0, c(H)] for
every Hamiltonian H supported in U . This will establish condition (20)
and will enable us to conclude the max inequality from Proposition 3.6
and Claim 3.1. The relative n-spectrum Specn(∂U ;M) contains terms com-
ing from the action spectrum of the zero function, Specn(0), and terms
coming from actions of Reeb orbits. Starting with Specn(0), it is com-
posed of −ω(A) for A ∈ π2(M) such that c1(A) ∈ {−n, . . . , 0}. In this case,
−ω(A) = −κc1(A) ≤ 0, and the spectrum is indeed non-positive. The rest
of the elements in the relative n-spectrum are of the form −

∫
γ λ− ω(A),

where A is such that c1(A) =
⌈
k−n
2

⌉
and k = −CZR(γ, u0) for some Reeb

orbit γ ∈ P(∂U) with respect to a capping disk u0 ⊂ ∂U . Since we assumed
that the contact CZ index of every capped Reeb orbit is non-negative, k
is non-positive. Therefore, the Chern class of A is non-positive as well, i.e.,
c1(A) ≤ 0. We conclude that −

∫
γ λ− ω(A) = −

∫
γ λ− κ · c1(A) ≤ 0 as re-

quired. □

4.4. Positively monotone manifolds

Let (M,ω) be a positively monotone symplectic manifold, namely, ω = κ ·
c1 on π2(M) for some κ > 0, and assume in addition that its dimension
is greater than 2. We now prove Theorem 4, which states that the max
inequality (1) holds for Hamiltonians Hi supported in disjoint domains Ui
with incompressible dynamically convex boundaries, such that for each i,
C(Ui) ≤ κ and c(Hi) < κ.



✐

✐

“6-Tanny” — 2023/3/31 — 23:11 — page 1193 — #35
✐

✐

✐

✐

✐

✐

A max inequality for spectral invariants 1193

Proof of Theorem 4. Let U ⊂M be a domain with an incompressible dy-
namically convex boundary, such that C(U) ≤ κ, where C(U) is the in-
variant from Definition 1.3. In what follows we show that Specn(∂U ;M)
does not intersect the interval (0, κ). As a consequence, condition (20) will
follow for every Hamiltonian H supported in U , such that c(H) < κ. Start-
ing with Specn(0), which is the first component of Specn(∂U ;M), we see
that −ω(A) = −κc1(A) ∈ {0, κ, . . . , nκ}, and therefore Specn(0) ∩ (0, κ) =
∅. The rest of the elements of the relative spectrum Specn(∂U ;M) are of
the form −

∫
γ λ− ω(A), where γ is a periodic Reeb orbit and A ∈ π2(M) is

such that

c1(A) =
⌈−CZR(γ, u0)− n

2

⌉
,

for a capping disk u0 ⊂ ∂U of γ. Recalling that the invariant C(U) was
defined to be the supremum over ratios of the form 2

∫
γ λ/(CZR(γ, u0)−

n+ 1), we can use it to bound the absolute value of c1(A) from below:

−c1(A) ≥
CZR(γ, u0) + n− 1

2

=
CZR(γ, u0)− n+ 1

2
+ n− 1 ≥

∫
γ λ

C(U)
+ n− 1,

where, in the last inequality, we used our assumption that ∂U is dynamically
convex, and hence CZR(γ, u0)− n+ 1 > 0. In light of this observation, the
action can be bounded as follows:

−
∫

γ
λ− ω(A) = −

∫

γ
λ− c1(A) · κ ≥ −

∫

γ
λ+ κ ·

( ∫
γ λ

C(U)
+ n− 1

)

= −
∫

γ
λ+

κ

C(U)
·
∫

γ
λ+ (n− 1)κ ≥ (n− 1)κ,

where the last inequality follows from our assumption that C(U) ≤ κ. Since
the dimension ofM is 2n and is assumed to greater than 2, we conclude that
the action −

∫
γ λ− ω(A) is bounded from below by κ. As a result, the rel-

ative spectrum, Specn(∂U ;M), does not intersect the interval (0, κ), which,
by our assumption, contains (0, c(H)]. Having established condition (20),
Proposition 3.6 together with Claim 3.1 guarantee that the max inequality
holds in this setting. □

We end this section with a proof of Claim 1.8, which states that the max
inequality holds for Hamiltonians supported in certain disjoint disks on the
sphere.
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Proof of Claim 1.8. We assume that the area form ω is normalized so that
the total area of the sphere is 1. In this case, the monotonicity constant is
κ = 1

2 . Let U ⊂ S2 be a disk of area a and let H be a Hamiltonian supported
in U . In what follows we show that if a /∈ (1/3, 1/2), one can construct a
spectral killer for H. Claim 3.1 will then guarantee that the max inequality
(1) holds for such Hamiltonians. Consider the family of radial Hamiltonians
Kτ := τ ·K1 that was constructed in the proof of Proposition 3.6. Recall
that K1 is supported in U , constant and equal to −1 for s < 1− 2ϵ, and is
approximately linearly increasing for s ∈ (1− 2ϵ, 1− ϵ). Here and in what
follows s is the Liouville coordinate on the disk U . In order to conclude
that Kc(H) is a spectral killer for H, we need to show that the actions of
index −n capped periodic orbits of Kτ for s ≥ 1− 3ϵ/2 do not intersect the
interval (0, c(H)]. After perturbing Kτ into a non-degenerate Hamiltonian,
its 1-periodic orbits for s ≥ 1− 3ϵ/2 are {γk1 , γk2}k and p, where γki rotates
k times around ∂U and p ∈ U c is a maximum point of action approximately
zero. When paired with capping disks uki,0 ⊂ U , the actions of γki are ap-
proximately −k · area(U) = −k · a, and their CZ indices are

CZH(γ
k
1 , u

k
1,0) = 2k, CZH(γ

k
2 , u

k
2,0) = 2k − 1.

See, for example, [20, p.11]10. Therefore, there exists a capping disk uki such
that CZH(γ

k
i , u

k
i ) = −n = −1 if and only if i = 2 and uk2 = uk2,0#A

k, for

Ak ∈ π2(S2) such that c1(A
k) = −k. In this case, the action of the index −1

capped orbit is approximately

−k · a− ω(Ak) = −k · a− κ · c1(Ak) = −k · a− 1/2 · c1(Ak) = k · (1/2− a).

Overall, the actions of non-degenerate orbits of index −1 are {0, k · (1/2−
a)}, and we can construct a spectral killer for H if these actions do not
intersect the interval (0, c(H)]. Let us show that this holds whenever a /∈
(1/3, 1/2). Clearly, if the area a of U is greater than or equal to 1/2, then
k(1/2− a) is non-positive and does not lie in the interval (0, c(H)]. Any
open disk in S2 of area less than 1/2 is known to be displaceable, and its
displacement energy coincides with the area. The Hamiltonian H is com-
pactly supported in U , and therefore is also supported in a slightly smaller
disk. Applying the energy-capacity inequality to the smaller disk we con-
clude that c(H) < a. Therefore, (0, c(H)] ⊂ (0, 1/3) when a ≤ 1/3. On the
other hand, recalling that the minimal Chern number on S2 is 2 and that

10Note that the sign choice for the CZ index in [20] is opposite to ours.
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k = −c1(Ak), we conclude that k(1/2− a) ≥ 2(1/2− a) ≥ 2 · (1/2− 1/3) =
1/3 and in particular k(1/2− a) does not lie in (0, c(H)]. □

5. Uniform bounds on spectral invariants

In this section we prove Theorems 5 and 6, which state uniform bounds
for the spectral invariants of Hamiltonians supported in portable Liouville
domains with dynamically convex incompressible boundaries, in monotone
manifolds. When the manifold is positively monotone, one has to add a
condition regarding the “size” of the domain containing the support, as
seen in the following example.

Example 5.1. Let (M,ω) be the two-dimensional sphere, endowed with
an area form. It is known that the equator E ⊂ S2 is superheavy, see, e.g.,
[17]. In [3], Entov and Polterovich proved that the spectral invariant of
any Hamiltonian is not smaller than the minimal value the Hamiltonian
attains on a superheavy set. Therefore, when U is a large disk containing
the equator, there is no uniform upper bound for the spectral invariant of
Hamiltonians supported in U .

In order to bound the spectral invariant of a general Hamiltonian sup-
ported in a Liouville domain U , it is enough to consider simple, arbitrarily
large radial Hamiltonians and use the monotonicity property of spectral in-
variants. Note that, on Liouville domains, we may consider radial Hamilto-
nian (in the sense of Definition 3.3) that are not necessarily locally constant
outside of a neighborhood of the boundary, but are locally constant on a
small neighborhood of the core.

5.1. Positively monotone manifolds

Let (M,ω) be a positively monotone symplectic manifold, namely, ω = κ · c1
on π2(M) for κ > 0. Let us prove Theorem 5, which states that for every
Hamiltonian supported in a disjoint union U of portable Liouville domains
with incompressible dynamically convex boundaries such that C(U) ≤ κ,
the spectral invariant is smaller than C(U). In what follows we concern
the Liouville coordinate of U , by which we mean the coordinate on each
connected component.

Proof of Theorem 5. As mentioned above, in order to prove upper bounds
for spectral invariants of Hamiltonians supported in U , it is enough to con-
sider (non-degenerate perturbations of) non-increasing radial Hamiltonians.
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0 11− δ

H = χ(s)Hτ = χτ(s)

τ(1− δ)
s

ε

Figure 7: The deformation of the radial HamiltonianH is given by shrinking
its support, using the Liouville flow. Generically, non-constant 1-periodic
orbits appear near the “corners”, namely near s = τε and s = τ(1− δ).

The claim for general Hamiltonians will then follow from the monotonic-
ity property of spectral invariants. Let H := χ(s) where s is the Liouville
coordinate on U and χ : R→ R is a smooth approximation of a piecewise
linear function that is constant for s ≤ ε, vanishes for s ≥ 1− δ (here δ > 0
is arbitrarily small) and is linearly decreasing in between. We choose χ such
that, outside of a neighborhood of the “corners” s = ε and s = 1− δ, its
derivative is constant and does not lie in the Reeb spectrum of ∂U . We also
assume that χ′′ is strictly positive near s = 1− δ outside of the regions in
which χ′ is constant (in particular, χ′′ is positive on all of the non-constant
1-periodic orbits near the ”corner” s = 1− δ). Finally, we choose ε to be
arbitrarily smaller than maxχ

1−δ , so that ε · χ′ is arbitrarily small. Let us prove
that c(H) < C(U) in two steps. First we use a continuous deformation of
H to show that c(H) is bounded by the maximal action that can be pos-
sibly attained by index −n capped orbits near s = 1− δ for Hamiltonians
of this shape, and then we show that these actions are all smaller than C(U).

Step 1: In this step we consider a continuous deformation of the Hamiltonian
H, and describe the bifurcation diagram of its spectrum. The deformation



✐

✐

“6-Tanny” — 2023/3/31 — 23:11 — page 1197 — #39
✐

✐

✐

✐

✐

✐

A max inequality for spectral invariants 1197

is given by composing H on the inverse Liouville flow:

(27) Hτ :=

{
H ◦ ψ− log τ on ψlog τU,

0 on (ψlog τU)c

for τ ∈ (0, 1], see Figure 7 for an illustration. Notice that Hτ = χτ (s) :=
χ(s/τ) is a radial Hamiltonian for each τ , its non-constant 1-periodic orbits
are in correspondence with the Reeb orbits on ∂U and we can use Lemmas
3.4, 3.9 to relate their actions and indices. Abbreviating s = s(γ), Lemma 3.4
states that γ̂(t) := ψ− log sγ(t/χ′(s)) ⊂ ∂U is a Reeb orbit of action −χ′

τ (s) ∈
Spec(∂U). Recalling that the Reeb spectrum is a discrete set, we conclude
that for generic τ ∈ (0, 1], non-constant 1-periodic orbits of Hτ appear only
near the “corners” s = τε and s = τ(1− δ). As stated in Corollary 3.8, the
action of a capped 1-periodic orbit (γ, u) of Hτ is given by

AHτ
(γ, u) = χτ (s)− s · χ′

τ (s)− ω(A),

where A ∈ π2(M) is such that u = u0#A and u0 ⊂ {s = s(γ)}. Let us de-
scribe the bifurcation diagram of the spectrum of Hτ as τ varies. When τ
decreases, more 1-periodic orbits may appear near the corners s = τε and
s = τ(1− δ). The action of a capped orbit with s = s(γ) near τε, once it
appeared, is approximately

χτ (τε)− ετχ′
τ (s)− ω(A) = χ(ε)− ετ 1

τ
χ′(s/τ)− ω(A) ≈ χ(0)− ω(A),

where the last approximation is due to our assumption that ε is arbitrary
small compared to the derivative of χ. In particular, the action of orbits
near s = τε remains approximately constant as τ varies. This is also the
case for capped constant 1-periodic orbits (namely, pairs of a critical point
of Hτ and a sphere A ∈ π2(M)) in the region s ≥ τ(1− δ), in which case
the action is approximately −ω(A). On the other hand, the action of a
non-constant 1-periodic orbit near s = τ(1− δ), once it appeared, is ap-
proximately 0− τ(1− δ) · χ′

τ (s)− ω(A) and, in particular, changes linearly
in τ with slope −(1− δ)χ′

τ (s) ∈ (1− δ) · Spec(∂U). We conclude that the
bifurcation diagram is (approximately) composed of horizontal lines, cor-
responding to orbits near s = τε, as well as constant orbits, and of lines
with positive slopes, corresponding to orbits near s = τ(1− δ), see Figure 8.
When τ is very small, Hτ is supported in ψ− log τU which is displaceable
with small displacement energy, as explained in Section 2.3.1 above. By the
energy-capacity inequality, c(Hτ ) is bounded by the displacement energy of
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0← τ τ = 1

Figure 8: The bifurcation diagram corresponding to the n-spectrum of Hτ .
Since the spectral invariant starts close to zero and moves continuously on
the diagram, its value is bounded by the maximal height attained by a non-
horizontal line.

the support and hence is very small. Following the bifurcation diagram of
the spectrum of Hτ , it is clear that c(H) cannot be larger than the maximal
point on a non-horizontal line. After perturbing {Hτ} into non-degenerate
Hamiltonians, their spectral invariants lie in the n-spectrum. Repeating the
arguments above for the n-spectrum we see that c(H) is not greater than
the maximal point on a non-horizontal line in the diagram corresponding to
the n-spectrum.

Step 2: In this step we show that, for every τ ∈ (0, 1], the action of ev-
ery index −n capped orbit of a non-degenerate perturbation of Hτ that
appears near s = τ(1− δ) is not greater than C(U)− δ ·min Spec(∂U). To-
gether with the previous step, this will imply that c(H) < C(U) as required.
Let (γ, u) be a 1-periodic orbit of Hτ such that one of the non-degenerate
capped orbits, (γ′, u′), appearing after perturbing Hτ into a non-degenerate
Hamiltonian, is of CZ index −n. In what follows we compute the Chern
class of A ∈ π2(M) for which u = u0#A, where u0 is a capping disk of γ
that is contained in the level set {s = s(γ)}. Since the manifold M is mono-
tone, we will use this computation when estimating the action of (γ, u). As
mentioned above, γ̂(t) := ψ− log sγ(t/χ′(s)) ⊂ ∂U is a Reeb orbit of action
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−χ′
τ (s) ∈ Spec(∂U). Let û0 ⊂ ∂U be a capping disk of γ̂ whose image coin-

cides with ψ− log su0. Due to our assumption that χ′′(s) > 0 for every level
s that contains 1-periodic orbits, Lemma 3.9 guarantees that

(28) RS(γ, u0) = −CZR(γ̂, û0) +
1

2
.

Having a non-degenerate orbit (γ′, u′) of index −n appearing after the per-
turbation, we can estimate RS(γ, u0) using inequality (22), which states that
the index difference between the perturbed and original orbits is bounded
by 1

2 dimker(dφ1
H(γ(0))− 1l). The second assertion of Lemma 3.9 states

that the kernel of dφ1
H(γ(0))− 1l is 1-dimensional if χ′′(s) ̸= 0. Therefore,

|CZH(γ′, u′0)− RS(γ, u0)| ≤ 1
2 , where u

′
0 is a capping disk of γ′ that is con-

tained in a small neighborhood of u0. We conclude that

−n = CZH(γ
′, u′) = CZH(γ

′, u′0) + 2c1(A) ≤ RS(γ, u0) +
1

2
+ 2c1(A),

and, together with (28), this yields that

c1(A) ≥
CZR(γ̂, û0)− n− 1

2
.

Having a lower bound for the Chern class of A, it remains to use the mono-
tonicity of M to bound the action of the index −n capped orbit (γ′, u′).
Since the action (γ′, u′) is close to AHτ

(γ, u), we will estimate the latter.
Recalling the formula for the action of orbits of radial Hamiltonians, which
was established in Corollary 3.8, we have

AHτ
(γ, u) = χτ (s)− s · χ′

τ (s)− ω(A) ≈ 0− τ(1− δ) · χ′
τ (s)− ω(A)

= τ(1− δ) ·
∫

γ̂
λ− ω(A) ≤ (1− δ) ·

∫

γ̂
λ− ω(A)

= (1− δ) ·
∫

γ̂
λ− κ · c1(A)

≤(1− δ) ·
∫

γ̂
λ− κ ·

(
CZR(γ̂, û0)− n− 1

2

)
.

Our assumption that ∂U is dynamically convex implies that CZR(γ̂, û0) ≥
n+ 1. Since C(U) is assumed to be not-greater than κ, this yields

AHτ
(γ, u) ≤ (1− δ)

∫

γ̂
λ− C(U) ·

(
CZR(γ̂, û0)− n− 1

2

)
.
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The next step is to bound the contact CZ index by the Reeb action di-
vided by C(U). Recall that C(U) was defined as the supremum over ratios
2
∫
γ̂ λ/ (CZR(γ̂, û0)−n+1). Therefore, CZR(γ̂, û0)−n−1 ≥ 2

∫
γ̂ λ/C(U)−2,

and we can bound the action by

AHτ
(γ, u) ≤ (1− δ)

∫

γ̂
λ− C(U) ·

(
CZR(γ̂, û0)− n− 1

2

)

≤ (1− δ)
∫

γ̂
λ− C(U) · 1

2
·
(
2
∫
γ̂ λ

C(U)
− 2

)

= (1− δ)
∫

γ̂
λ−

∫

γ̂
λ+ C(U) ≤ C(U)− δmin Spec(∂U).

This finishes the proof, as the first step guaranteed that the spectral invariant
c(H) is not-greater than the maximal action of such a capped orbit. In
particular, we conclude that c(H) < C(U) as required. □

5.2. Negatively monotone manifolds

In [16, Proposition 5.4] Polterovich proved that on an aspherical manifold
M , the spectral invariant of every Hamiltonian supported in a disjoint union
U of portable Liouville domains is bounded by the portability number p(U).
Theorem 6 asserts that this holds true for negatively monotone manifolds, if
one demands in addition that ∂U is dynamically convex. As before, the Liou-
ville coordinate of the disjoint union is defined to be the Liouville coordinate
on each connected component.

Proof of Theorem 6. Following [16], the idea is to use symplectic contraction

and follow the spectral invariant in the corresponding bifurcation diagram.
The symplectic contraction of a Hamiltonian H supported in the Liouville
domain U is defined to be

Hτ :=

{
τ ·H ◦ ψ− log τ on ψlog τU,

0 on M \ ψlog τU

for τ ∈ [0, 1], see Figure 9 for an illustration. The flow of the contracted
HamiltonianHτ is the composition of the Liouville flow on flow ofH, namely,
φtHτ

= ψlog τφtH . In the aspherical case there are no intersections in the bifur-
cation diagram corresponding to this deformation, and the spectral invariant
changes linearly, c(Hτ ) = τ · c(H). However, on monotone manifolds, there
could be a lot of intersections and the change of c(Hτ ) is in general more
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0 1

H = χ(s)

Hτ = χτ(s)

s

Figure 9: Symplectic contraction of a radial non-increasing Hamiltonian H.

complicated. To simplify the situation, we consider only non-increasing ra-
dial Hamiltonians. The claim for general Hamiltonians will follow from the
monotonicity property of spectral invariants. Let H := χ(s) where s is the
Liouville coordinate on U and χ : R→ R is a non-increasing function that
vanishes on s ≥ 1 and is constant near s = 0. We assume that the second
derivative of χ does not vanish on level sets containing 1-periodic orbits,
i.e., whenever |χ′(s)| ∈ Spec(∂U). Let us compute the change in the action
spectrum when symplectically contracting H. The non-constant 1-periodic
orbits of H and Hτ are in bijection: for γ ∈ P(H), its image ψlog τγ un-
der the Liouville flow is a 1-periodic orbit of Hτ . Given a capping disk
u0 ⊂ {s = s(γ)} of γ, its image ψlog τu0 is a capping disk of ψlog τγ. The
action of (ψlog τγ, ψlog τu0) with respect to Hτ is

AHτ
(ψlog τγ, ψlog τu0) = Hτ (ψ

log τγ)−
∫ (

ψlog τu0

)∗
ω

= τ ·H(γ)− τ ·
∫
u∗0ω = τ · AH(γ, u0).

In addition, the RS indices of these capped orbits are equal. Indeed, given
a trivialization T : u∗0TM → D2 × R2n, we can define a trivialization along
ψlog τu0 by T ◦ dψ− log τ . Under these trivializations, the differentials of the
flows coincide and thus they have the same RS index. More generally, if
u is any capping of γ, we may write u = u0#A for A ∈ π2(M) and then
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τ

specn(Hτ )

−|κ|

0

|κ|

2|κ|

3|κ|

c(Hτ )

Figure 10: An illustration of the bifurcation diagram for symplectic contrac-
tion of a non-increasing radial Hamiltonian on a dynamically convex domain.
When all slopes and starting points are non-negative, the spectral invariant
c(Hτ ) can only move along lines of slope not greater than the initial slope.

(ψlog τu0)#A is a capping of ψlog τγ. In that case,

AHτ
(ψlog τγ, (ψlog τu0)#A) = AHτ

(ψlog τγ, ψlog τu0)− ω(A)
= τ · AH(γ, u0)− ω(A).

If follows that the corresponding bifurcation diagram consists of lines whose
slopes equal to AH(γ, u0) for γ ∈ P(H) and u0 ⊂ {s = s(γ)} and whose
starting points (that is, the values at τ = 0) are −ω(A). After perturbing H
into a non-degenerate Hamiltonian, it is possible to choose non-degenerate
perturbations of Hτ such that 1-periodic orbits will still be in bijection with
the same relations for the actions and indices. After this perturbation the
spectral invariant will lie in the spectrum of index −n capped orbits. Our
next goal is to show that the slopes and the starting points are all non-
negative, as illustrated in Figure 10. This will allow us to estimate the path
of the spectral invariant in the bifurcation diagram. We start with the slopes,
which corresponds to actions of orbits γ ∈ P(H) with capping disks u0 that
are contained in the Liouville level set:

• AH(γ, u0) ≥ 0: Since we assumed χ to be non-increasing, the non-
negativity of the slopes in the bifurcation diagram follows immediately
from the formula for actions of orbits of radial Hamiltonians, that was
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stated in Corollary 3.8, when applied for u = u0, A = 0:

AH(γ, u0) = χ(s)− s · χ′(s) ≥ 0.

• −ω(A) ≥ 0: The non-negativity of the stating points requires index
computations. We start by recalling that the index difference between
the perturbed and original orbits is bounded by half the dimension
of ker(dφ1

H(γ(0))− 1l), as stated in (22). Due to our choice of χ, its
second derivative χ′′(s) does not vanish whenever −χ′(s) ∈ Spec(∂U)
and Lemma 3.9 guarantees that the kernel of dφ1

H(γ(0))− 1l is 1-
dimensional. Thus

|CZH(γ′, u′0)− RS(γ, u0)| ≤
1

2
,

where u′0 is a capping disk of γ′, obtained as a perturbation of u0 ⊂
{s = s(γ)}. We therefore conclude that capped orbits (γ′, u′) of index
−n can appear only for (γ, u) such that

1

2
≥ |RS(γ, u0)− CZH(γ

′, u′0)|
= |RS(γ, u0)− CZH(γ

′, u′) + 2c1(A)|
= |RS(γ, u0) + n+ 2c1(A)|,(29)

where A ∈ π2(M) is such that u′ = u′0#A. Next, we use Lemma 3.9
in order to replace the RS index of (γ, u0) by the contact CZ in-
dex of the corresponding capped Reeb orbit (γ̂, û0). Here, γ̂(t) :=
ψ− log sγ(t/χ′(s)) ∈ P(∂U) and û0 is a capping disk whose image co-
incides with that of ψ− log su0. Recalling that χ′(s) ≤ 0, Lemma 3.9
states that the RS index of the capped 1-periodic orbit (γ, u0) of the
radial Hamiltonian H is given by

RS(γ, u0) = −CZR(γ̂, û0) +
1

2
sign (χ′′(s)) ≤ −CZR(γ̂, û0) +

1

2
.

Therefore, capped 1-periodic orbits of CZ index −n can appear only
for (γ, u) with u = u0#A such that

c1(A) ≥
−RS(γ, u0)− n− 1

2

2
≥ CZR(γ̂, û0)− n− 1

2
,
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for some Reeb orbit γ̂ ∈ P(∂U) with a capping û0 ⊂ ∂U . Since ∂U
is dynamically convex, CZR(γ̂, û0) ≥ n+ 1 for every capped Reeb or-
bit. As a consequence, c1(A) ≥ 0 and, recalling that M is negatively
monotone, −ω(A) = −κc1(A) ≥ 0 as required.

Having proved that the spectral invariant lies in a diagram consisting of
lines with non-negative slopes and non-negative starting points, let us ex-
plain how the upper bound c(H) ≤ p(U) follows. We follow c(Hτ ) along the
diagram as τ grows from 0 to 1. When τ = 0, H0 = 0 and by the stability
property of spectral invariants, c(H0) = 0. When τ > 0 is very small, there
are no intersections in the diagram yet. As a result, c(Hτ ) moves along
a single line, ℓ, that starts at zero and whose slope we denote by a ≥ 0:
c(Hτ ) = a · τ for τ < ϵ. We claim that c(Hτ ) ≤ a · τ for all τ ≤ 1. Indeed,
since the line ℓ starts at the lowest possible point (zero), every line ℓ′ of
slope bigger than a is completely contained in the upper region bounded by
ℓ, namely ℓ′ ⊂ {y > a · τ}. Thus, when starting on the line ℓ, the spectral
invariant c(Hτ ) can only move along lines of slope ≤ a, see Figure 10 for an
illustration. Therefore, c(Hτ ) ≤ a · τ for all τ ≤ 1. To conclude a bound for
the spectral invariant of H = H1, it remains to bound the slope a of ℓ. This
argument is identical to that in the aspherical case, presented by Polterovich
in [16]: The contracted Hamiltonian Hτ is supported in ψlog τU . When τ is
very small, this set is displaceable in U with energy e(ψlog τU ;U). By the
energy-capacity inequality, c(Hτ ) ≤ e(ψlog τU ;M) ≤ e(ψlog τU ;U) for τ close
enough to zero. Since c(Hτ ) lies on ℓ there, we conclude that the slope is
bounded by the ratio a ≤ e(ψlog τU ;U)/τ . Taking the limit τ → 0 we obtain
c(H) ≤ a · 1 ≤ p(U). □

6. Estimating the invariant C(U) in special cases

In this section we provide upper bounds for the invariant C from Defini-
tion 1.3 on several classes of domains. The domains considered here
are all topological balls, which means that their boundaries are aspheri-
cal, π2(S

2n−1) = 0. As a consequence, the contact CZ index is independent
of the choice of a capping disk, and we will use the notation CZR(γ). Let us
start with the simplest example, a generic ellipsoid.

Example 6.1. Let U = E(a1, . . . , an) = {z ∈ Cn :
∑n

j=1
π|zj |2

aj
≤ 1} be an

ellipsoid such that ai/aj is irrational when i ̸= j. The periodic Reeb orbits on
∂E are γk,ℓ := {e2πit/akzk}t∈[0,akℓ] for k = 1, . . . , n and ℓ ∈ N>0. The action
(or period) of γk,ℓ is akℓ and its CZ index (with respect to any capping disk
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u0 ⊂ ∂E) is

CZR(γk,ℓ) = n− 1 + 2

n∑

j=1

⌊
ℓ · ak
aj

⌋
,

see e.g. [8, p.16]. A simple computation shows that in this case C(E) =
minj aj = cG(E).

Wider classes of examples that are considered below are convex and
concave toric domains. Since the Reeb flow on toric domains is degenerate
(unless the domain is an ellipsoid), we need to extend Definition 1.3 of the
invariant C(U) to degenerate domains. A natural way to extend it is by tak-
ing a liminf over non-degenerate domains approximating the degenerate one.
However, since for such approximations the non-degenerate orbits generally
approximate the degenerate ones only below some finite action threshold, it
makes sense to define the extension of C in the following way.

Definition 6.2. Let U ⊂M be a domain with an incompressible contact
type boundary.

• Assume that the Reeb flow on ∂U is non-degenerate. For every T > 0,
define

CT (U) := sup

{
2
∫
γ λ

CZR(γ, u0)− n+ 1
: γ ∈ P(U),

∫

γ
λ ≤ T, u0 ⊂ ∂U

}
,

and notice that C(U) = supT>0CT (U).

• When the Reeb flow on ∂U is degenerate, we define

CT (U) := lim inf
U ′→U

CT (U
′), C(U) := sup

T>0
CT (U),

where the limit is over domains U ′ with incompressible contact type
boundaries and non-degenerate Reeb flows that C1-converge to U .

6.1. Convex and concave toric domains

Denote by Rn≥0 the set of points x ∈ Rn with non-negative entries, xi ≥ 0.
Consider the moment map µ : Cn → Rn≥0 defined by µ(z1, . . . , zn) =
π(|z1|2, . . . , |zn|2). We say that a domain U ⊂M with a contact type bound-
ary is a toric domain if it is symplectomorphic to XΩ := µ−1(Ω) ⊂ Cn, for
some domain Ω ⊂ Rn≥0 (that is, a connected set that is open in the topology
of Rn≥0). Moreover,
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• If Ω̂ := {(x1, . . . , xn) ∈ Rn : (|x1|, . . . , |xn|) ∈ Ω} is convex, we say that
XΩ is a convex toric domain.

• If Ω̄ is compact and Rn≥0 \ Ω is convex, we say that XΩ is a concave

toric domain.

In [8], Gutt and Hutchings estimate actions and Conley-Zehnder indices
of periodic Reeb orbits for convex and concave toric domains, in order to
compute the capacities ck coming from positive S1-equivariant symplectic
homology. Using their calculations, we give upper bounds for the invariant
C(U) from Definition 1.3 when U is a concave or convex toric domain.

Proposition 6.3. Suppose that U ⊂M is a domain with an incompressible

contact type boundary that is symplectomorphic to a concave toric domain.

Then, C(U) = cG(U).

Proposition 6.4. Suppose that U ⊂M is a domain with an incompressible

contact type boundary that is symplectomorphic to a convex toric domain,

U ∼= XΩ. Then, cG(U) ≤ C(U) ≤ cG(B), for every ball B that contains XΩ.

The lower bounds in the above claims actually hold for general nice star-
shaped domains, and follow from a comparison between the invariant C(U)
and certain invariants defined by Gutt and Hutchings in [8].

Lemma 6.5. Let U ⊂ R2n be a nice star shaped domain, then C(U) ≥
cG(U).

Proof. The proof uses the first capacity c1 coming from positive S1-
equivariant symplectic homology11, which was introduced by Gutt and Hutch-
ings in [8]. This capacity is defined for nice star-shaped domains and admits
several useful properties. Let us state the properties that will be of use for
us (see [8, Theorem 1.1]):

1) c1(U) ≥ cG(U) for every nice star-shaped domain U .

2) c1 is continuous with respect to the Hausdorff metric.

3) For a non-degenerate nice star-shaped domain U , c1(U) belongs to the
action spectrum of Reeb orbits with contact Conley-Zehnder index
equal to n+ 1.

11Alternatively, one can use the capacity coming from symplectic homology [5].
Similar arguments imply that C(U) is greater or equal to this capacity as well.
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We remark that property 1 follows directly from the monotonicity and nor-
malization properties stated in [8, Theorem 1.1]. We conclude that for every
non-degenerate nice star-shaped domain, C(U) ≥ c1(U)/1 ≥ cG(U). For de-
generate domains, the inequality C(U) ≥ cG(U) now follows from the fact
that cG is continuous in the Hausdorff metric. □

Having the established the lower bound, it remains to bound the invari-
ant C from above. Let us start with convex toric domains.

Proof of Proposition 6.4. By Definition 6.2, it is enough to prove the upper
bound for CT (U), for arbitrary T > 0. In [8, p.18-20], Gutt and Hutchings
show that one can perturb any convex toric domain U into a domain with a
contact type boundary and non-degenerate Reeb flow, such that, after the
perturbation, every Reeb orbit γ ∈ P(∂U) whose action is not greater than
T corresponds to a vector with non-negative integer entries v ∈ Nn (here N

denotes the set of natural numbers including zero) satisfying

(30)

∫

γ
λ ≈ ∥v∥∗Ω and Z(v) + 2

n∑

i=1

vi ≤ CZR(γ) ≤ n− 1 + 2

n∑

i=1

vi,

where ∥v∥∗Ω := sup{⟨v, w⟩ : w ∈ Ω} is the support function associated to Ω
and Z(v) is the number of elements of v that are equal to zero. As a conse-
quence,

(31) CT (U) ≤ sup

{
∥v∥∗Ω + ε

∑n
i=1 vi −

n−1−Z(v)
2

∣∣∣ v ∈ N
n

}
,

where ε > 0 is arbitrarily small. Let us show that the right hand side of (31)
is bounded, up to ε, by supw∈Ω ∥w∥∞. Indeed,

∥v∥∗Ω∑n
i=1 vi −

n−1−Z(v)
2

= sup
w∈Ω

⟨v, w⟩
∑n

i=1 vi −
n−1−Z(v)

2

= sup
w∈Ω

∑n
i=1 viwi∑n

i=1 vi −
n−1−Z(v)

2

≤ sup
w∈Ω

(max
i
wi) ·

∑n
i=1 vi∑n

i=1 vi −
n−1−Z(v)

2

≤ sup
w∈Ω
∥w∥∞.(32)

Let B = B(a) ⊂ R2n be a ball of capacity a that contains XΩ, then µ(B) ⊃
Ω. As a consequence, supw∈Ω ∥w∥∞ ≤ supw∈µ(B) ∥w∥∞ = a. □

Remark 6.6. In fact we proved a stronger upper bound for the invariant
C(U) than the one stated in Proposition 6.4. Inequality (32) implies that
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a1

a2

∂Ω

∂µ(E)

a′2

Figure 11: The dashed line is the image of the boundary of E under the
moment map and the solid line is ∂Ω, which intersects the axes at almost
right angles.

C(XΩ) ≤ supw∈Ω ∥w∥∞. In particular, the invariant C(XΩ) can be bounded
by the minimal a such that the polydisk D(a)n contains XΩ.

The following example shows that invariant C is not continuous with
respect to the Hausdorff metric and is not monotone with respect to inclu-
sion.

Example 6.7. Given an ellipsoid E = E(a2, a1) ⊂ C2 with a1 < a2, then
it is a convex toric domain. As mentioned in the proof of Proposition 6.4,
Gutt and Hutchings showed in [8, p.18-20] that there exists a perturbation
of E(a2, a1) for which the periodic Reeb orbit correspond to vectors v ∈ N2

whose actions and indices are given by (30). Let us describe this perturba-
tion. Let XΩ be a convex toric domain such that Ω is Hausdorff-close to
µ(E), and such that the curve ∂Ω is almost perpendicular to the axes, see
Figure 11. Denote by a′2 the intersection point of ∂Ω with the x-axis and
note that a′2 is close to a2 and, in particular, is greater than a1. The next
step is to perturb XΩ into a non-degenerate domain. After this perturba-
tion there exists a periodic Reeb orbit γ corresponding to v = (1, 0) ∈ N2.
Recalling (30), the action of γ is approximately ∥v∥∗Ω = a′2 and its index is
CZR(γ) = 1 + 2 = 3. As a result, we obtain a domain U with a contact type
boundary and non-degenerate flow, that is contained in E and is Hausdorff-
close to it, such that

C(U) ≥
2
∫
γ λ

CZR(γ)− n+ 1
≈ 2a′2

3− 2 + 1
= a′2 ≈ a2.
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By Example 6.1, C(E) = a1 and we conclude that C is neither monotone
nor Hausdorff-continuous.

We turn to prove Proposition 6.3.

Proof of Proposition 6.3. By Definition 6.2, it is enough to prove the upper
bound for CT (U), for arbitrary T > 0. In [8, p.22-23], Gutt and Hutchings
show that one can perturb U into a domain with a contact type boundary
and non-degenerate flow, such that, after the perturbation, every Reeb orbit
γ ∈ P(∂U) either has a large contact CZ index (in which case, either the
action is larger than T , or the ratio in the definition of C(U) is small) or
corresponds to a vector v ∈ Nn>0, such that

∫

γ
λ ≤ [v]Ω + ε and 1− n+ 2

n∑

i=1

vi ≤ CZR(γ) ≤ 2

n∑

i=1

vi,

where [v]Ω := inf{⟨v, w⟩ : w ∈ Rn≥0 \ Ω} and ε > 0 is arbitrarily small. As a
consequence,

(33) CT (U) ≤ sup

{
[v]Ω + ε∑n

i=1 vi − n+ 1

∣∣∣ v ∈ N
n
>0

}
.

Fix v̂ ∈ Nn>0 such that CT (U) ≤ [v̂]Ω∑
n
i=1 v̂i−n+1 + 2ε. Consider the ellipsoid de-

fined by

E := µ−1
(
{x ∈ R

n
≥0 : ⟨x, v̂⟩ < [v̂]Ω}

)
,

then E ⊂ U and [v̂]µ(E) = [v̂]Ω. Let 0 < a1 ≤ · · · ≤ an such that E =
E(a1, . . . , an), then

CT (U) ≤ [v̂]Ω∑n
i=1 v̂i − n+ 1

+ 2ε =
[v̂]µ(E)∑n

i=1 v̂i − n+ 1
+ 2ε

=
mini aiv̂i∑n
i=1 v̂i − n+ 1

+ 2ε ≤ mini aiv̂i
maxi v̂i

+ 2ε ≤ a1 + 2ε

= cG(E) + 2ε ≤ cG(U) + 2ε.

□

6.2. Strictly convex domains: comparison to Ishikawa’s constant

In this section, we show that when U is strictly convex, C(U) <∞. This
follows from computations carried by Ishikawa in [11]. On strictly convex
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domains, Ishikawa bounded the ratio between the action and CZ index of
1-periodic orbits of radial Hamiltonians in terms of the sectional curvatures
of the boundary.

Definition 6.8 ([11, Definition 4.1]). Let U ⊂ R2n be a strictly convex
open set with a smooth boundary, such that 0 ∈ U . Denote by f : R2n → R

the squared semi-norm associated to U , namely f(ty) = t2 for y ∈ ∂U . Define

Ĉ0(U) := inf
V⊂R2n,a>0

2π

a

where the infimum is taken over all one-dimensional complex subspaces V ⊂
Cn ∼= R2n and a > 0 such that D2f(x) > a|V×V ⊕ 0|V ⊥×V ⊥ , for every x ∈
R2n \ {0}.

Roughly speaking, Ĉ0(U) is 2π over the maximum over all complex
planes of the minimal sectional curvature in ∂U , restricted to the plane.
In particular, it is finite for every strictly convex domain.

Proposition 6.9. Let U ⊂ R2n be a strictly convex open set with a smooth

boundary, such that 0 ∈ U . Then, C(U) ≤ Ĉ0(U).

Proof. Let γ̂ ∈ P(∂U) be a periodic Reeb orbit and denote its action by α :=∫
γ̂ λ > 0. In what follows we show that the ratio 2

∫
γ̂ λ/ (CZR(γ̂)− n+ 1) in

the definition of C(U) is bounded by Ĉ0(U). The argument goes through
radial Hamiltonians in order to use a result from [11]. Consider a radial
Hamiltonian H that is linear with slope −α with respect to the Liouville
coordinate near the boundary of U , i.e., H|N (∂U) = −α · s = −α · f , where
f is the squared semi-norm associated to U , as in Definition 6.8. Lemma 3.4
states that γ(t) = γ̂(χ′(s) · t) = γ̂(−α · t) is a 1-periodic orbit of the Hamilto-
nian flow of H. The linearized flow Φ(t) := dφtH(γ(0)) of H along γ satisfies
the equation

d

dt
Φ(t) = J0D

2H(γ(t)) · Φ(t) = −αJ0D2f(γ(t)) · Φ(t).

Lemma 3.1, item (ii) from [11] states that, given a complex plane V ⊂ Cn

and a path {Φ(t)} of symplectic matrices satisfying d
dtΦ(t) = J0S(t)Φ(t) for
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S(t) ≤ −c|V×V ⊕ 0|V ⊥×V ⊥ , its RS index is bounded by12

RS(Φ) ≤ −n− 2[c/2π]< − 1,

where [x]< stands for the largest integer that is smaller than x. Applying this
statement to S(t) = −αD2f(γ(t)) and c = α · a, it follows that the RS index
of the orbit γ, with respect to a capping disk u0 ⊂ {s = s(γ)} is bounded by

(34) RS(γ, u0) ≤ −n− 2
[α · a
2π

]<
− 1 ≤ −n− 2

[ α

Ĉ0(U)

]<
− 1.

By Lemma 3.9, the RS index of (γ, u0) is equal to minus the contact CZ
index of γ̂. Therefore, inequality (34) yields

CZR(γ̂) ≥ n+ 2
[ α

Ĉ0(U)

]<
+ 1 = n+ 2

[ ∫
γ̂ λ

Ĉ0(U)

]<
+ 1.

As the above inequality holds for every Reeb orbit, we can use it to bound
the invariant C(U) as follows:

C(U) = sup
γ̂

2
∫
γ̂ λ

CZR(γ̂, û0)− n+ 1
≤ sup

γ̂

2
∫
γ̂ λ

n+ 2
[ ∫

γ̂
λ

Ĉ0(U)

]<
+ 1− n+ 1

≤ sup
γ̂

2
∫
γ̂ λ

2 ·
∫
γ̂
λ

Ĉ0(U)
− 2 + 2

= Ĉ0(U),

where the last inequality follows from the fact that [x]< ≥ x− 1. □
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