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1. Introduction

Suppose that Σn,g is a surface of genus g with n boundary circles (or n
punctures), and G is either a complex reductive affine algebraic group or
compact Lie group. The moduli space of representations of the fundamental
group π1(Σn,g) into G, the G-character variety of π1(Σn,g), has a natural
Poisson structure. This structure was given by Goldman [Gol1] in the closed
case, and extended in [La3] to the case of surfaces with boundary. The
representation space also has an equivalent interpretation as a space of flat
connections, and from this point of view one can define the Poisson structure
with an approach pioneered by Atiyah and Bott [AB] when the surface is
compact, and extended by Jeffrey in [Je] to punctured surfaces (see also
[BJ]). In this paper we consider the effect of mappings between surfaces.
Given an appropriate mapping between two surfaces f : Σ1 −→ Σ2, there
is a natural morphism between their character varieties:

Φ : XΣ2
(G) −→ XΣ1

(G) .

We will see that this is a Poisson map, both from the point of view of
representations (Theorem 2.8) and from the point of view of flat connections
(Theorem 4.2). Precisely, we prove:

Theorem A. Let G be either a compact Lie group, or a complex reductive
affine algebraic group. Let q : Σ1 −→ Σ2 be a continuous map between
compact orientable surfaces that preserves transversality of based loops, and
double points. Then the induced map

q∗ : XΣ2
(G) −→ XΣ1

(G)

is Poisson whenever q preserves orientation, and is anti-Poisson if q reverses
orientation.

Next, we review past computations of Poisson bi-vectors on character va-
rieties and show that the bi-vector determines the underlying surface (The-
orem 2.6). In particular, we prove:

Theorem B. There is a homeomorphism between compact, connected ori-
entable surfaces Σn1,g1

∼= Σn2,g2 if and only if there is an equivalence of
Poisson varieties Xn1,g1(G) ∼= Xn2,g2(G).
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We then extend (Theorem 2.7) the known examples of explicitly com-
puted bi-vectors on character varieties by determining the case of the 5-holed
sphere Σ5,0 and G = SL(2,C).

Theorem C. For any n, g ≥ 0, there is an effective algorithm to compute
the Poisson bi-vector of Xn,g(SL(2,C)). The bi-vector of X5,0(SL(2,C)) is:

a5,0(SL(2,C)) = a1324
∂

∂t{1,3}
∧ ∂

∂t{2,4}
+Σ1

(
a1214

∂

∂t{1,2}
∧ ∂

∂t{1,4}

)

+Σ2

(
a12314

∂

∂t{1,2,3}
∧ ∂

∂t{1,4}
+ a12324

∂

∂t{1,2,3}
∧ ∂

∂t{2,4}

+ a12334
∂

∂t{1,2,3}
∧ ∂

∂t{3,4}

)

+Σ2

(
a123124

∂

∂t{1,2,3}
∧ ∂

∂t{1,2,4}

)

+Σ3

(
a123134

∂

∂t{1,2,3}
∧ ∂

∂t{1,3,4}

)
,

where Σi are symmetry operators defined by the mapping class group of the
surface and ax are explicit polynomials (see Section 7).

Remark 1.1. We give only one new example in Theorem C since all cases
of less complexity exist in the literature (references in Subsection 2.5) and
this is the first (and most tractable) example of a bi-vector for an Euler char-
acteristic -3 surface. Other examples are possible to compute by following
the general algorithm we describe, however such examples are significantly
more onerous to determine in detail.

In Sections 3 and 4, we provide an analytic point of view on Theorem A.
In Section 5 we give simple examples, in which we “cap” some of the bound-
ary circles of a surface Σ1 (with a disk, a cylinder, a genus one surface,
etc.) to obtain a surface Σ2, and see what we obtain with Φ. By capping all
the boundaries, we obtain symplectic character varieties mapping to Pois-
son character varieties. In Section 6, we discuss gluing maps via symplectic
quotients. The final section (Section 7) is devoted to the computer aided
proof of Theorem 2.7.
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2. Poisson structure on character varieties:

Betti point-of-view

2.1. Reductive groups

Let G be a connected reductive affine algebraic group over C. By the cen-
tral isogeny theorem, G ∼= DG×F T , where DG = [G, G] is the derived
subgroup, T ∼= (C∗)s is the maximal central torus, and F = T ∩DG. The
group G acts on itself by conjugation and the geometric invariant theoretic
quotient G//G is isomorphic to T/W , where T ⊂ G is a maximal torus
and W is the Weyl group NG(T)/T. By potentially enlarging F , we can
assume DG is simply connected. With that assumption made, by results of
Steinberg [St], we can say more:

G//G ∼= T//W ∼= C
r ×F (C∗)s,

where r is the rank of DG. Therefore, the coordinate ring C[G//G] is iso-
morphic to

C[t1, . . . , tr, d1, . . . , ds+1]
F /(d1 · · · ds+1 − 1).

We denote points in G//G by (τ1, . . . , τr, δ1, . . . , δs).

Example 2.1. If G is SL(n,C), then G//G ∼= Cn−1. Therefore, if G =
GL(n,C), then G//G ∼= Cn−1 ×Z/nZ C∗, where Z/nZ arises as the group of
scalar matrices of determinant 1. The coordinates describing points are the
coefficients of the characteristic polynomial which can take any value freely,
except the determinant which can take any value except 0.

2.2. Character varieties of surfaces

Let Σn,g be a compact connected orientable surface of genus g ≥ 0 with n ≥
0 boundary components; we assume that n ≥ 2 if g = 0 since otherwise
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the surface is simply-connected and the moduli spaces we will consider are
trivial. Pick a base point ∗ in the interior of Σn,g. The fundamental group
of Σn,g admits the presentation:

π1(Σn,g, ∗) ∼= ⟨a1, b1, . . . , ag, bg, c1, . . . , cn
∣∣∣

g∏

i=1

[ai, bi]

n∏

j=1

cj = 1⟩,

where [x, y] = xyx−1y−1 is the commutator.
The set of homomorphisms Hom(π1(Σn,g, ∗), G) is naturally an affine

algebraic subvariety of G2g+n by evaluating a homomorphisms at generators.
The group G acts rationally on Hom(π1(Σn,g, ∗), G) by conjugation, that
is, g · ρ = gρg−1. The geometric invariant theoretic quotient of this action
is denoted

Xn,g(G) := Hom(π1(Σn,g, ∗), G)//G,

and is called the G-character variety of Σn,g. More generally, if (Σ, x0) is
any (pointed) compact orientable surface we will denote the G-character
variety of π1(Σ, x0) by XΣ,x0

(G).
Note that the conjugation action of the center Z(G) of G is trivial and

thus it suffices to consider the conjugation action of PG := G/Z(G); making
it an effective action. The following lemma overlaps with [Sik1, Proposition
49].

Lemma 2.2. Assume G is non-abelian. The (complex) dimension of
Xn,g(G) is

−χ(Σn,g) dimG+ ζn,g,

where

• ζn,g = s if n > 0 and 2g + n ≥ 3,

• ζn,g = r + s if n > 0 and 2g + n = 2,

• ζn,g = 2s if n = 0 and g ≥ 2, and

• ζn,g = 2(r + s) if n = 0 and g = 1.

Proof. Recall our standing assumption that n ≥ 2 if g = 0, which rules out
only the 2-sphere and the disk (both simply-connected).

If n > 0, then Σn,g deformation retracts to a 1-complex whose fun-
damental group is free of rank 2g + n− 1. In this case χ(Σn,g) = 1−
(2g + n− 1) = 2− 2g − n and so the rank of π1(Σn,g, ∗) is 1− χ(Σn,g).
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If n = 0, then the Euler characteristic is 1− 2g + 1 = 2− 2g. Either way,
χ(Σn,g) = 2− 2g − n.

When n > 0 then π1(Σn,g, ∗) is a free group of rank 2g + n− 1 which is
greater than or equal to 2 if and only if g ≥ 1 or n ≥ 3. Thus, π1(Σn,g, ∗)
surjects onto a rank 2 free group F2, and so Hom(F2, G) injects into
Hom(π1(Σn,g, ∗), G). The generic dimension of a PG-conjugation stabilizer
of Hom(F2, G) is 0 since a generic pair of elements in G generates a Zariski
dense subgroup; hence the same is true for Hom(π1(Σn,g, ∗), G).

Thus, since Hom(π1(Σn,g, ∗), G) ∼= G2g+n−1 the dimension of
Xn,g(G) is (2g + n− 1) dimG− dimPG = (2g + n− 1) dimG− dimG+
dimZ(G) = −χ(Σn,g) dim(G) + s.

Now, still assuming n > 0, if π1(Σn,g, ∗) is a free group of rank 1 (only
occurring when g = 0 and n = 2), then the character variety is isomorphic
to G//G which we have already seen is of dimension r + s which is also the
dimension of a generic G-conjugation stabilizer.

Likewise, if n = 0 and g ≥ 2 then π1(Σn,g, ∗) surjects onto a free group
of rank 2. Thus, we have that generic dimension of a stabilizer is the di-
mension of Z(G), which is s. Moreover, the commutator map G2g −→ DG
(defining the relation in π1(Σ0,g, ∗)) is dominant (and hence a generic
submersion), and therefore dimHom(π1(Σ0,g, ∗), G) = 2g dimG− dimDG
which then implies dimX0,g(G) = 2g dimG− dimDG− dimPG =
−χ(Σ0,g) dimG+ 2dimZ(G) = −χ(Σ0,g) dimG+ 2s.

Lastly, when n = 0 and g = 1, then the identity component of X0,1(G)
satisfies X0

0,1(G) ∼= T2/W which has dimension 2(r + s), see [FL3]. We note
that if G is simply connected then X0,1(G) is connected but otherwise it has
smaller dimensional components. Regardless, in this case χ(Σ0,1) = 0, and
so we have established the formula. □

Remark 2.3. If G is abelian then the conjugation action is trivial, and so

Xn,g(G) = Hom(π1(Σn,g, ∗), G)

= Hom(π1(Σn,g, ∗)/[π1(Σn,g, ∗), π1(Σn,g, ∗)], G)

= Hom(Zϵn,g , G) = Gϵn,g ,

where ϵ0,g = 2g and ϵn,g = 2g + n− 1 if n > 0. The dimension in these
cases is obvious. In the cases when g = 0 and n = 0 or 1, then the character
variety is a point and so has dimension 0.
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The algebraic structure of Xn,g(G), up to biregular mappings, does not
depend on the presentation of the fundamental group of Σn,g. In fact, it only
depends on the Euler characteristic χ(Σn,g).

Proposition 2.4. There is a biregular morphism Xn1,g1(G) ∼= Xn1,g2(G) if
and only if both n1, n2 are either positive or 0, and χ(Σn1,g1) = χ(Σn2,g2).

Proof. Assume first that Xn1,g1(G) ∼= Xn2,g2(G). Then their dimensions are
equal. Suppose n1 > 0 and n2 = 0. Then Xn1,g1(G) strong deformation re-
tracts onto Xn1,g1(K), where K is a maximal compact subgroup of G, while
X0,g2(G) is not even homotopy equivalent to X0,g2(K) as long as g2 ≥ 2 by
[FL1, BF, FL4]. Thus, if Xn1,g1(G) ∼= Xn1,g2(G), then both surfaces are open
or both are closed. From Lemma 2.2 we conclude that χ(Σn1,g1) = χ(Σn2,g2).
Note that this deduction holds without the assumptions on n1 and n2.

Conversely, assume that χ(Σn1,g1) = χ(Σn2,g2). There are three cases to
consider: (1) n1n2 > 0, (2) n1 = 0 = n2, and (3) n1n2 = 0 but n1 + n2 ̸=
0.

In Case (1), both the fundamental groups π1(Σn1,g1 , ∗) and π1(Σn2,g2 , ∗)
are free of the same rank, and hence the character varieties are isomorphic
(note that the surfaces need not be homeomorphic, but they will be homo-
topic).

In Case (2), the Euler characteristics being equal implies the surfaces are
homeomorphic and hence their fundamental groups are isomorphic. Hence
the character varieties too are isomorphic.

Case (3) does occur since the Euler characteristics can be equal (with
one surface open and the other closed) since 2− 2g1 − n1 = 2− 2g2 requires
only that n1 = 2(g1 − g2). In this situation (without loss of generality as-
sume n1 > 0 and n2 = 0), as noted in the first paragraph of this proof,
Xn1,g1(G) is homotopic to Xn1,g1(K), while X0,g2(G) is not homotopic to
X0,g2(K) for g2 ≥ 2. So the converse (without additional assumptions on n1

and n2) does not hold.
To exhaust the possibilities with Case (3), suppose g2 = 1, then 2−

2g1 − n1 = 0 and hence 2g1 + n1 = 2 and so we have that Xn1,g1(G) ∼=
G//G of dimension s+ t while X0,g2(G) has dimension 2(s+ t), and so they
are not isomorphic. In short, every time Case (3) arises we have simultane-
ously that the Euler characteristics are equal yet the character varieties are
not isomorphic. □

Remark 2.5. Proposition 2.4 is non-trivial in the sense that in general
if two character varieties are isomorphic it does not imply the underlying
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groups are isomorphic. As a simple example of this observe that

Hom(Z/2Z, SL(2,C))//SL(2,C) ∼= Hom(Z/3Z, SL(2,C))//SL(2,C)

as each is a set of two points.

2.3. Relative character varieties

When n > 0, for every 1 ≤ i ≤ n define the boundary map

bi : Xn,g(G) −→ G//G

by sending a representation class [ρ] to [ρ|ci ]. Subsequently, we define

bn,g := (b1, . . . , bn) : Xn,g(G) −→ (G//G)n.

We emphasize that the map bn,g depends on the surface, not only its fun-
damental group.

Let τ ∈ bn,g (Xn,g(G)) ⊂ (G//G)n be a point in the image of the bound-
ary map and define Lτ = b−1

n,g(τ). The singular locus of Xn,g(G) is a proper
closed sub-variety; denote its complement by Xn,g(G). So Xn,g(G) is a com-
plex manifold that is dense in Xn,g(G). Since bn,g is dominant, its regular
values are generic. Thus, at such a point, Lτ := Lτ ∩ Xn,g(G) is a subman-
ifold of dimension

χ(Σn,g) dimG+ ζn,g − n(r + s).

It is shown in [La3] that ∪τLτ foliate Xn,g(G) by complex symplectic
submanifolds, making Xn,g(G) a complex Poisson manifold. This structure
continuously extends over all of Xn,g(G) making it a Poisson variety; a vari-
ety whose sheaf of regular functions is a sheaf of Poisson algebras (see [BLR]
for details).

We now review the explicit definition of this structure.

2.4. Poisson structure

For an affine variety V defined over C, a Poisson structure on V is a Lie
bracket operation { , } on its coordinate ring C[V ] that acts as a formal
derivation (satisfies the Leibniz rule).

The smooth stratum of V , denoted V, is a complex Poisson manifold
in the usual sense by the Stone-Weierstrass Theorem. For any holomorphic
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function f on V, there is a Hamiltonian vector field Hf := {f, ·} on V de-
fined in terms of the Poisson bracket. There exists an exterior bi-vector field
a ∈ H0(V, ∧2 TV) whose restriction to symplectic leaves (with (2, 0)-form
ω) is given by {f, g} = ω(Hg, Hf ). Let f, g ∈ C[V ]. Then with respect to
interior multiplication {f, g} = a · (df ∧ dg) = (df ∧ dg)(a). In local coor-
dinates (z1, . . . , zk) it takes the form

a =
∑

i,j

ai,j
∂

∂zi
∧ ∂

∂zj

and so

{f, g} =
∑

i,j

(
ai,j

∂

∂zi
∧ ∂

∂zj

)
·
(
∂f

∂zi
dzi ∧

∂g

∂zj
dzj

)

=
∑

i,j

ai,j

(
∂f

∂zi

∂g

∂zj
− ∂f

∂zj

∂g

∂zi

)
.

Any reductive G has a symmetric, non-degenerate bilinear form B on
its Lie algebra g that is invariant under the adjoint representation. Fix such
an invariant form B : g× g −→ C. If G is semisimple B is a multiple of
the Killing form.

Returning to our varieties Xn,g(G), in [GHJW] it is established that
ω, in the following commutative diagram, defines a symplectic form on the
leaf Lτ :

H1(Σn,g, ∂Σn,g; gAdρ
)×H1(Σn,g; gAdρ

)
∪ // H2(Σn,g, ∂Σn,g; gAdρ

⊗ gAdρ
)

B∗

��
H2(Σn,g, ∂Σn,g; C)

∩[Z]

��
H1

par(Σn,g; gAdρ
)×H1

par(Σn,g; gAdρ
)

OO

ω // H0(Σn,g; C) ∼= C.

Note that H1
par(Σn,g; gAdρ

) is a model for the tangent space at a class [ρ]
in Lτ .

With respect to this 2-form, in [La3], it is shown that Goldman’s proof
[Gol1, Gol2] of the Poisson bracket in the closed surface case generalizes di-
rectly to relative and parabolic cohomology and establishes a Poisson bracket
on the coordinate ring C[Xn,g(G)].
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Let α, β ∈ π1(Σn,g, ∗). Up to homotopy, we can always arrange for α
and β to intersect at worst in transverse double points. Let α ∩ β be the
set of (transverse) double point intersections of α and β. Let ϵ(p, α, β) be
the oriented intersection number at p ∈ α ∩ β and let αp ∈ π1(Σ, p) be the
curve α based at p.

For a given f ∈ C[G//G] we obtain fα : Xn,g(G) −→ C defined by
fα([ρ]) = f(ρ(α)). Define the variation F of an invariant function f by

B(F (A), X) =
d

dt

∣∣∣
t=0

f(exp(tX)A).

In special cases, F can be computed explicitly; see [Gol2] for further details.
In these terms the bracket is defined on C[Xn,g(G)] by:

{fα([ρ]), gβ([ρ])} =
∑

p∈α∩β

ϵ(p, α, β)B(Fαp
([ρ]), Gβp

([ρ])).(2.1)

See [La3, Sections 3 and 4] for further details when n > 0, [Gol2] when
n = 0 and g ≥ 2, and [Sik2] for n = 0 and g = 1. We will denote the
bi-vector associated to this Poisson bracket on Xn,g(G) by an,g(G).

Note that when α represents one of the boundary curves in Σn,g, it can
be chosen to not intersect any of the other generators of the fundamental
group. Consequently, Formula (2.1) implies that fα Poisson commutes with
all other functions; such functions are called Casimirs.

2.5. Bi-vectors on character varieties

In contrast to Proposition 2.4, the Poisson bi-vector completely determines
the isomorphism class of the underlying surface.

Theorem 2.6. There is a homeomorphism Σn1,g1
∼= Σn2,g2 if and only if

there is an equivalence of Poisson varieties Xn1,g1(G) ∼= Xn2,g2(G).

Proof. The forward direction is obvious. We break the converse direction
into three cases.

First, assume n1, n2 > 0. Then the Casimir subalgebra of C[Xn1,g1(G)]
differs from the Casimir subalgebra of C[Xn1,g1(G)] unless n1 = n2. In that
case, the Euler characteristic, which is read off the dimension of Xn,g(G),
determines the genus and so g1 = g2 and we are done.

Second, assume n1 = 0 but n2 > 0 (which implies that the two surfaces
are not isomorphic). In that case, Xn1,g1(G) is symplectic but Xn2,g2(G) is
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not (non-trivial Casimirs). Thus, their bi-vectors could not be equivalent
either.

Lastly, assume that n1 = 0 = n2. Then Proposition 2.4 tells us that
since the dimensions of Xn1,g1(G) and Xn2,g2(G) are the same the Euler
characteristics of the surfaces are the same. But since each surface is closed,
they are isomorphic. □

We next consider some examples. Since the character variety is a point
when (n, g) = (0, 0) or (1, 0) these cases are trivial for any G. Likewise,
for any G the (2, 0) case has 0 dimensional symplectic leaves and so the
bi-vector is trivial.

The next simplest example is the 3-holed sphere. For G = SL(2,C), we
have X3,0(G) ∼= C3 with coordinates trc1 , trc2 , and trc1c2 (see [ABL] for a
proof). Since the boundary curves are disjoint, they have no intersections
and thus the Poisson bracket is trivial. Alternatively, the symplectic leaves
are the level sets obtained by fixing the three boundary invariants. But since
each point in X3,0(G) is uniquely determined by trc1 , trc2 , and trc1c2 , each
symplectic leaf is a point.

When G = SL(3,C) the bi-vector for Σ3,0 was worked out in [La1, La3].
Unlike the case of SL(2,C) where the symplectic leaves are 0 dimensional,
the symplectic leaves in X3,0(SL(3,C)) are 2 dimensional.

To describe it we need to briefly review the structure of
Hom(F2, SL(3,C))//SL(3,C) from [La1, La2]. The SL(3,C)-character va-
riety of a free group F2 of rank 2 is a hypersurface in C9, which is a
branched double cover of C8 under projection. The coordinate ring is gen-
erated by 9 trace functions of simple closed curves (in the 1-holed torus)
denoted {t(±1), . . . , t(±4), t(5)}, and satisfies a single relation of the form
t2(5) − Pt(5) +Q where P, Q ∈ C[t(±1), . . . , t(±4)]. Let ai,j = {t(i), t(j)}. In
these terms, the Poisson bi-vector is:

a3,0(G) = (P − 2t(5))
∂

∂t(4)
∧ ∂

∂t(−4)
+ (1− i)

(
a4,5

∂

∂t(4)
∧ ∂

∂t(5)

)
,

where a4,5 = ∂
∂t(−4)

(Q− t(5)P ), and i ∈ Out(F2) is the outer automorphism

of F2 = ⟨a, b⟩ defined by a 7−→ a−1 and b 7−→ b−1.
The other surface with Euler −1 is the 1-holed torus. In this case, the

bi-vector for SL(2,C) is computed in [Gol3], and for SL(3,C) it is computed
in [La3, La4]. Additionally, in [Gol3] the bi-vector is computed for SL(2,C)
and the Euler characteristic −2 open surfaces: the 4-holed sphere and the
2-holed torus. No other examples have been computed.
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In Section 7 we add to the known examples by computing the bi-vector
for the 5-holed sphere (one of three Euler characteristic −3 orientable sur-
faces). This computation uses the computational program in [ABL] that al-
lows one to compute the generators and relations of any SL(2,C)-character
variety. There are 45 required computations and diagrams. In fact, the al-
gorithm we describe and use is effective, that is, the algorithm terminates
after a finite number of steps that can in principle be done “by hand,” and
always produces a correct answer if the steps are correctly followed. Here is
the theorem:

Theorem 2.7. For any n, g ≥ 0, there is an effective algorithm to compute
the Poisson bi-vector of Xn,g(SL(2,C)) The bi-vector of X5,0(SL(2,C)) is:

a5,0(SL(2,C)) = a1324
∂

∂t{1,3}
∧ ∂

∂t{2,4}
+Σ1

(
a1214

∂

∂t{1,2}
∧ ∂

∂t{1,4}

)

+Σ2

(
a12314

∂

∂t{1,2,3}
∧ ∂

∂t{1,4}
+ a12324

∂

∂t{1,2,3}
∧ ∂

∂t{2,4}

+ a12334
∂

∂t{1,2,3}
∧ ∂

∂t{3,4}

)

+Σ2

(
a123124

∂

∂t{1,2,3}
∧ ∂

∂t{1,2,4}

)

+Σ3

(
a123134

∂

∂t{1,2,3}
∧ ∂

∂t{1,3,4}

)
,

where Σi are symmetry operators defined by the mapping class group of
the surface and ax are explicit polynomials; both are described in detail in
Section 7. Moreover, the polynomial coefficients do not exhibit any further
mapping class group symmetry from boundary permutation.

We remark again that this is the first explicit example of the Poisson
structure on a character variety of an Euler characteristic -3 surface.

2.6. Mappings between surfaces

Let Σ1 and Σ2 be compact orientable surfaces (possibly with boundary), and
G, as before, is a reductive affine algebraic group over C. If q : Σ1 −→ Σ2

is a continuous map and q(x) = y, then there is an induced homomorphism

q# : π1(Σ1, x) −→ π1(Σ2, y).
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In turn, we have an induced continuous map

q∗ : Hom(π1(Σ2, y), G) −→ Hom(π1(Σ1, x), G)

given by q∗(ρ) = ρ ◦ q#. This function is equivariant with respect to G-
conjugation, and thus there is a morphism

q∗ : Hom(π1(Σ2, y), G)//G −→ Hom(π1(Σ1, x), G)//G

given by q∗([ρ]) = [ρ ◦ q#]. Lastly, we have an algebra morphism between
coordinate rings

q∗ : C[Hom(π1(Σ1, x), G)]G −→ C[Hom(π1(Σ2, y), G)]G

given by q∗(f)(ρ) = f(ρ ◦ q#).

Theorem 2.8. Let q : Σ1 −→ Σ2 be a continuous map between compact
orientable surfaces that preserves transversality of based loops, and dou-
ble points. Then the induced algebra morphism of coordinate rings q∗ :
C[XΣ1,x(G)] −→ C[XΣ2,y(G)] is a morphism of Poisson algebras if q pre-
serves orientation and is an anti-Poisson morphism if q reverses orientation.
Regardless, the image of q∗ is a Poisson subalgebra.

Proof. The first part of the theorem implies the second, so we only prove
that. Since q∗ is an algebra morphism and the bracket is a derivation, it is
enough to verify the claim on all generators of the algebra.

Since q preserves transversality of based loops, double points, and either
preserves or reverses (globally) orientation, it follows that for any two based
loops α and β in Σ1 used in computing the bi-vector aΣ1

(G) we have from
Equation (2.1):

q∗ ({fα([ρ]), gβ([ρ])})(2.2)

=
∑

q(p)∈q(α)∩q(β)

ϵ(q(p), q(α), q(β))B(Fq(α)q(p)([q#(ρ)]), Gq(β)q(p)([q#(ρ)])

= ± {fq(α)([q#(ρ)]), gq(β)([q#(ρ)])}
= ± {q∗(fα([ρ])), q∗(gβ([ρ]))}.

However, the intersection numbers ϵ(q(p), q(α), q(β)) and ϵ(p, α, β) will
be reversed if q reverses orientation and will be preserved if q preserves
orientation. □
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Corollary 2.9. The map between character varieties induced by q in The-
orem 2.8

q∗ : XΣ2,y(G) −→ XΣ1,x(G)

is Poisson whenever q preserves transversality of based loops, double points
and orientation.

Proof. Whenever there is a morphism of Poisson algebras, the dual map,
between spaces, is always Poisson [LGPV, Chapter 1]. Thus, the corollary
follows from Theorem 2.8. □

Remark 2.10. For K a compact Lie group, Xn,g(K) =
Hom(π1(Σn,g),K)/K is semi-algebraic. As the complexification of K
is a reductive algebraic group G, Xn,g(K) naturally embeds into the R-locus
of Xn,g(G) by [FL2, Theorem 4.3]. Consequently, Equation (2.1) defines a
Poisson bracket on the real coordinate ring of Xn,g(K) by restriction of
scalars. Thus, Theorem 2.8 and its corollary remain valid in this context as
well. The proof is exactly the same.

Remark 2.11. More generally, for a real form H of G, the map Xn,g(H)→
Xn,g(G) need not be an embedding (as it is for the compact real form), but
it will be a finite map by the paragraph following [CFLO, Proposition 6.1].
It would be interesting to explore if the above theorems remain valid in this
context.

Example 2.12. For any two surfaces Σn1,g1 and Σn2,g2 with n1 > n2 > 0
and χ(Σn1,g1) = χ(Σn2,g2), there is a quotient mapping q : Σn1,g1 −→ Σn2,g2

identifying one or more pairs of boundary components. Both π1(Σn1,g1 , ∗)
and π1(Σn2,g2 , q(∗)) are isomorphic to a free group of rank 1− χ(Σn1,g1).
Since q satisfies the conditions of Theorem 2.8, the induced gluing map

q∗ : Xn2,g2(G) −→ Xn1,g1(G)

is Poisson. Since Xn2,g2(G) ∼= Xn1,g1(G) we have Poisson morphisms between
isomorphic varieties with different Poisson structures. For a detailed example
of this phenomenon see [La4].

Example 2.13. Another natural example that satisfies the conditions of
Theorem 2.8 is the inclusion ι : Σ1 →֒ Σ2 of a subsurface Σ1 into a surface
Σ2. In this case, the induced map on character varieties q∗ : XΣ2,y(G) −→
XΣ1,x(G), which is Poisson, is the restriction map. In the case when Σ2
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is closed and Σ1 has boundary, we have a Poisson map whose domain is
symplectic.

3. Poisson structure on character varieties:

De Rham point-of-view

Let, almost as before, Σn,g be a connected orientable surface of genus g ≥ 0
with n ≥ 0 punctures, the differences being that:

1) the surface is C∞, not just topological, and

2) unlike in the previous case where we had surfaces with boundary, we
only consider here their interior, so that we have open surfaces when
n > 0.

Let now G be connected Lie group such that either:

• G is compact, or

• G is a reductive affine algebraic group defined over the field of complex
numbers.

Note that the reductive affine algebraic group defined over C are complexi-
fications of compact connected Lie groups.

Fix a base point x0 ∈ Σn,g. When G is a reductive affine algebraic
group defined over C, a homomorphism ρ : π1(Σn,g, x0) −→ G is called
reductive if the Zariski closure of ρ(π1(Σn,g, x0)) in G is a reductive sub-
group. We note that ρ is reductive if and only if satisfies the following con-
dition: if P is a parabolic subgroup of G such that ρ(π1(Σn,g, x0)) ⊂ P ,
then ρ(π1(Σn,g, x0)) is contained in a Levi factor of P (see [Bo, 11.2] and
[Hu, p. 184] for parabolic subgroups and their Levi factors).

If G is a compact Lie group, then all homomorphisms ρ :
π1(Σn,g, x0) −→ G are reductive.

Let

Rr
G(Σn,g) ⊂ Hom(π1(Σn,g, x0), G)

be the space of all reductive homomorphisms. The adjoint action of G on
itself produces an action of G on Rr

G(Σn,g). The corresponding quotient
space

(3.1) Xn,g(G) := Rr
G(Σn,g)/G
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is again the character variety, this time with G either reductive over the
complex numbers or compact. Note that Xn,g(G) is actually independent
of the choice of the base point x0. When G is a reductive affine algebraic
group defined over C, then, as we have seen, Hom(π1(Σn,g, x0), G) is a
complex affine variety, because G is a complex affine variety and the group
π1(Σn,g, x0) is finitely generated. In this case, restricting to reductive rep-
resentations and taking the ordinary quotient coincides with the geometric
invariant theoretic quotient Hom(π1(Σn,g, x0), G)//G (in the analytic topol-
ogy) by [FL3, Theorem 2.1], and so inherits a natural algebraic structure.
It is also homotopic to the non-Hausdorff quotient Hom(π1(Σn,g, x0), G)/G
by [FLR, Proposition 3.4].

A G–connection on Σn,g is a C∞ principal G–bundle on Σn,g equipped
with a connection. If the curvature of a connection vanishes identically, then
it is called a flat G–connection. A flat G–connection on Σn,g is called re-
ductive if the corresponding monodromy homomorphism is reductive. The
character variety is identified with the moduli space of reductive flat G–
connections on Σn,g. This identification sends a flat G–connection to the
monodromy homomorphism corresponding to the flat connection.

Let EG be a C∞ principal G–bundle on Σn,g, and let ∇ be a reductive
flat connection on EG. So (EG, ∇) gives a point

(3.2) (EG, ∇) := z ∈ Xn,g(G) ,

where Xn,g(G) is constructed in (3.1).
As before, the Lie algebra of G will be denoted by g. The adjoint bundle

ad(EG) = EG ×G g

is the vector bundle over Σn,g associated to EG for the adjoint action of G on
g. So the fibers of ad(EG) are Lie algebras identified with g uniquely up to
automorphisms of g given by conjugations. Fix a nondegenerate G–invariant
symmetric bilinear form

(3.3) B ∈ Sym2(g∗)G

on g; the assumptions on G ensure that such a form B exists. Since B in (3.3)
is G–invariant, it produces a C∞ pairing

(3.4) B : ad(EG)⊗ ad(EG) −→ Σn,g × k ,

where k = R (respectively, k = C) when G is compact (respectively, com-
plex reductive). Since B in (3.3) is also nondegenerate, the pairing B in (3.4)
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is fiberwise nondegenerate. Therefore, B produces an isomorphism of vector
bundles

(3.5) ad(EG)
∼−→ ad(EG)

∗ .

The flat connection ∇ on EG induces a flat connection on ad(EG); this
induced connection on ad(EG) will be denoted by ∇ad. We note that ∇ad

is self-dual with respect to the isomorphism in (3.5); this means that the
connection on ad(EG)

∗ given by∇ad using the isomorphism in (3.5) coincides
with the connection on ad(EG)

∗ induced by ∇ad using the duality pairing.
Let ad(EG) be the local system on Σn,g given by the sheaf of flat sections

of ad(EG) for the connection ∇ad. We have

(3.6) TzXn,g(G) = H1(Σn,g, ad(EG)) ,

where z is the point in (3.2) (for example [Gol1, Section 1.8]). Therefore,
the Poincare–Verdier duality gives that

(3.7) T ∗
zXn,g(G) = H1(Σn,g, ad(EG))

∗ = H1
c (Σn,g, ad(EG)) ,

where H i
c denotes the compactly supported i-th cohomology. We have a

natural homomorphism

T ∗
zXn,g(G) = H1

c (Σn,g, ad(EG)) −→ H1(Σn,g, ad(EG)) = TzXn,g(G) .

As z moves over Xn,g(G), these point-wise homomorphisms together produce
a C∞ homomorphism

(3.8) Θ : T ∗Xn,g(G) −→ TXn,g(G) .

A Poisson structure on a C∞ manifold A is a section θA ∈
C∞(A,

∧2 TA) such that the Schouten–Nijenhuis bracket [θA, θA] vanishes
identically [Ar]. The condition that [θA, θA] = 0 is equivalent to the follow-
ing condition: given a pair of C∞ locally defined functions f1 and f2 on A,
consider the locally defined C∞ function

{f1, f2}θA := θA((df1) ∧ (df2)) ;

then

{f1, {f2, f3}θA}θA + {f2, {f3, f1}θA}θA + {f3, {f1, f2}θA}θA = 0

for all C∞ locally defined functions f1, f2, f3.
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The C∞ homomorphism Θ in (3.8) is a Poisson structure on Xn,g(G)
(see [BJ]).

When Σn,g is a compact oriented surface (n = 0), then Θ is an isomor-
phism, so the Poisson structure given by it is actually a symplectic struc-
ture. In that case, it coincides with the symplectic structure constructed by
Atiyah–Bott [AB] and Goldman [Gol1].

4. Open subsets and Poisson structure

Let Σ1 = Σn1,g1 be embedded as a connected open subset of Σ2 = Σn2,g2 .
Take the base point x0 ∈ Σ2 such that x0 ∈ Σ1.

Restricting the flat G–connections on Σ2 to the open subset Σ1 we obtain
a map

(4.1) Φ : XΣ2
(G) −→ XΣ1

(G) .

Indeed, as above, the natural homomorphism π1(Σ1, x0) −→ π1(Σ2, x0)
produces a map

Hom(π1(Σ2, x0), G) −→ Hom(π1(Σ1, x0), G) ;

it in turn gives the map Φ in (4.1) by taking geometric invariant
theoretic quotient for the actions of G on Hom(π1(Σ2, x0), G) and
Hom(π1(Σ1, x0), G).

As in (3.2), take any (EG, ∇) := z ∈ XΣ2
(G). Consider the local system

ad(EG) on Σ2 (see (3.6), (3.7)). Its restriction to Σ1 will be denoted by
ad(EG)Σ1

. The inclusion map Σ1 →֒ Σ2 produces homomorphisms

(4.2) β : H1(Σ2, ad(EG)) −→ H1(Σ1, ad(EG)Σ1
) ,

and

(4.3) γ : H1
c (Σ1, ad(EG)Σ1

) −→ H1
c (Σ2, ad(EG))

(see (3.7)). We note that β is the pullback by the inclusion map of Σ1 in Σ2,
while γ is the push-forward by the inclusion map.

For the map Φ in (4.1), let

dΦ(z) : TzXΣ2
(G) −→ TΦ(z)XΣ1

(G)

be its differential at the point z in (3.2). Let

(dΦ)∗(z) : T ∗
Φ(z)XΣ1

(G) −→ T ∗
zXΣ2

(G)
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be its dual homomorphism.

Proposition 4.1. Invoke the isomorphism in (3.6) (respectively, (3.7)) for
TzXΣ2

(G) and TΦ(z)XΣ1
(G) (respectively, T ∗

zXΣ2
(G) and T ∗

Φ(z)XΣ1
(G) ).

1) The homomorphism dΦ(z) coincides with the homomorphism β in
(4.2).

2) The homomorphism (dΦ)∗(z) coincides with the homomorphism γ in
(4.3).

Proof. The first statement is standard.
To prove the second statement, take any ad(EG)–valued one-form

ω ∈ C∞(Σ2, ad(EG)⊗ T ∗Σ2)

such that ∇ad(ω) = 0, where ∇ad, as before, is the connection on ad(EG)
induced by the connection ∇ (see (3.2)). Also take a compactly supported
ad(EG)–valued one-form ωc ∈ C∞

c (Σ1, (ad(EG)|Σ1
)⊗ T ∗Σ1) on Σ1 such

that ∇ad(ωc) = 0. Let ι : Σ1 →֒ Σ2 be the inclusion map. Then we have

(4.4)

∫

Σ1

B(ωc ∧ (ι∗ω)) =

∫

Σ2

B((ι∗ωc) ∧ ω) ,

where B is the pairing in (3.4), and ι∗ω
c is the push-forward of the compactly

supported form ωc using the inclusion map ι; note that both B(ωc ∧ (ι∗ω))
and B((ι∗ωc) ∧ ω) are compactly supported 2-forms on Σ1, and moreover
they coincide. The second statement in the proposition follows from (4.4).

□

A smooth map F : A −→ B between Poisson manifolds (A, θA) and
(B, θB) is called Poisson if

F ◦ {f, g}θB = {F ◦ f, F ◦ g}θA

for all locally defined C∞ functions f and g on B. This is equivalent to our
usage in Corollary 2.9. We note that F is Poisson if and only if the following
diagram is commutative

(4.5)

T ∗
F (x)B

(dF )∗(x)=dF (x)∗−−−−−−−−−−−→ T ∗
xAyθB(F (x))
yθA(x)

TF (x)B
dF (x)←−−− TxA
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for every point x ∈ A, where dF : TA −→ F ∗TB is the differential of the
map F while (dF )∗ is its dual.

Theorem 4.2. The map Φ in (4.1) is Poisson.

Proof. In view of Proposition 4.1 it is straight-forward to check that the
diagram in (4.5) for F = Φ commutes. To explain this, take any

(EG, ∇) := z ∈ XΣ1
(G)

as in (3.2). Take any compactly supported form

ω ∈ C∞
c (Σ1, (ad(EG)|Σ1

)⊗ T ∗Σ1)

such that ∇ad(ω) = 0, where ∇ad is the connection on ad(EG) induced by
the connection ∇ (see (3.2)). Let ι∗ω ∈ C∞

c (Σ2, ad(EG)⊗ T ∗Σ2) be the
push-forward of ω using the inclusion map ι : Σ1 →֒ Σ2. Now consider ι∗ω
as an element of C∞(Σ2, ad(EG)⊗ T ∗Σ2); finally, restrict this element of
C∞(Σ2, ad(EG)⊗ T ∗Σ2) to Σ1. This restriction is evidently ω itself. Hence
the diagram in (4.5) commutes for F = Φ. □

The theorem was stated for one surface embedded in another; it holds
more generally for suitable ramified covers. Let Σ1 and Σ2 be compact con-
nected oriented C∞ surfaces and

φ1 : Σ1 −→ Σ2

a possibly ramified covering map which is oriented. Let

S2 ⊂ Σ2 and S1 ⊂ Σ1

be finite subsets such that φ−1
1 (S2) ⊂ S1. Define

Σ2 := Σ2 \ S2 and Σ1 := Σ1 \ S1 ;

let

φ := φ1|Σ1
: Σ1 −→ Σ2

be the restriction of φ1 to the open subset Σ1.
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Consider the character varieties XΣ1
(G) and XΣ2

(G). Let

(4.6) Ψ : XΣ2
(G) −→ XΣ1

(G)

be the map that sends any flat principal G–bundle (EG, ∇) on Σ2 to the
flat principal G–bundle (φ∗EG, φ

∗∇) on Σ1. This map Ψ coincides with the
map of character varieties given by the homomorphism

φ∗ : π1(Σ1, y0) −→ π1(Σ2, φ(y0))

induced by φ.

Proposition 4.3. The map Ψ in (4.6) is Poisson.

Proof. Take any

(EG, ∇) := z ∈ XΣ2
(G) .

Let ∇ad be the flat connection on ad(EG) induced by ∇. Let ad(EG) be
the local system on Σ2 given by the sheaf of flat sections of ad(EG) for the
connection∇ad. From (3.6) we know that TzXΣ2

(G) = H1(Σ2, ad(EG)) and

TΨ(z)XΣ1
(G) = H1(Σ1, ad(φ

∗EG)) = H1(Σ1, φ
∗ad(EG)) ,

where ad(φ∗EG) is the local system on Σ1 given by the sheaf of flat sections of
ad(φ∗EG) for the flat connection on ad(φ∗EG) induced by the flat connection
φ∗∇ on φ∗EG. Note that this induced flat connection on ad(φ∗EG) coincides
with the flat connection φ∗∇ad on ad(φ∗EG) = φ∗ad(EG).

The differential dΨ at z

dΨ(z) : H1(Σ2, ad(EG)) = TzXΣ2
(G)

−→ TΨ(z)XΣ1
(G) = H1(Σ1, φ

∗ad(EG))

coincides with the homomorphism H1(Σ2, ad(EG)) −→ H1(Σ1, φ
∗ad(EG))

that sends any cohomology class µ to its pullback φ∗µ.
The dual homomorphism

(dΨ)∗(z) : T ∗
Ψ(z)XΣ1

(G) = H1
c (Σ1, φ

∗ad(EG))

−→ H1
c (Σ2, ad(EG)) = T ∗

zXΣ2
(G)

(see (3.7)) coincides with the trace map. To explain the trace map, take any
compactly supported φ∗ad(EG)–valued 1–form

(4.7) ω ∈ C∞
c (Σ1, φ

∗ad(EG)⊗ T ∗Σ1) = C∞
c (Σ1, ad(φ

∗EG)⊗ T ∗Σ1)
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such that φ∗∇ad(ω) = 0. Now construct

ω̂ ∈ C∞(Σ2, ad(EG)⊗ T ∗Σ2)

as follows: For any x ∈ Σ2 such that φ is unramified over x, take any v ∈
TxΣ2. Define

ω̂(x)(v) =
∑

y∈φ−1(x)

ω(y)((dφ(y))−1(v)) ∈ ad(EG)x ,

where dφ(y) is the differential of the map φ at y. It is straight-forward to
check the following:

• The above form ω̂ extends to entire Σ2 as a C∞ section of ad(EG)⊗
T ∗Σ2; this section of ad(EG)⊗ T ∗Σ2 over Σ2 will be denoted by ω̂.

• The form ω̂ on Σ2 is compactly supported. In fact, the support of ω̂
is contained in the image of the support of ω under the map φ. This
implies that ω̂ is compactly supported.

• ∇ad(ω̂) = 0.

The trace map

H1
c (Σ1, φ

∗ad(EG)) −→ H1
c (Σ2, ad(EG))

mentioned earlier is constructed by sending any ω as in (4.7) to ω̂ constructed
above from it.

From the above construction of ω̂ we conclude that ω̂ has the following
property: For any ω′ ∈ C∞(Σ2, ad(EG)⊗ T ∗Σ2),

(4.8)

∫

Σ2

B(ω̂ ∧ ω′) =

∫

Σ1

B(ω ∧ (φ∗ω′)) ,

where B is the pairing in (3.4).
Using (4.8) it is straightforward to check that the diagram in (4.5) com-

mutes for F = Ψ. Hence the map Ψ is Poisson. □

5. Capping: symplectic and Poisson extensions of Poisson

character varieties

For a given Σ1 = Σn1,g1 with a non-empty boundary, we consider different
Σ2 we can obtain by gluing onto the boundary components of Σ1. This yields



✐

✐

“2-Lawton” — 2023/4/24 — 15:18 — page 1277 — #23
✐

✐

✐

✐

✐

✐

Poisson maps between character varieties 1277

Poisson maps of the character varieties:

(5.1) Φ : XΣ2
(G) −→ XΣ1

(G) ,

and we will examine the images and fibres of these maps. When Σ2 is closed,
this gives us in some sense symplectic completions of the character varieties.

Number the n1 boundary components of Σ1 = Σn1,g1 . Choose a base
point x1 on the first boundary component γ1 of Σ1. For every 2 ≤ i ≤ n1, fix
a path pi from x1 to base point xi on the i-th boundary component γi of Σ1.
With parametrizations µi respecting the orientations of the γi and the right
choice of paths, we get some standard generators c1 = µ1, ci = piµip

−1
i of

the fundamental group π1(Σ1, x1).

5.1. Case 1: Capping with disks

We consider first the case when Σ2 is obtained from Σ1 = Σn1,g1 by gluing
in k ≤ n1 disks, identifying the boundaries γ̃i of disks Di with γi, so that Σ2

has k of the holes of Σ1 filled in. In this case, it is straightforward to see that
Φ is an injection, with image the representations ρ with ρ(ci) = 1. This is
a union of a family of symplectic leaves, and if k = n1, a single symplectic
leaf.

5.2. Case 2: Capping with a cylinder

Now consider the situation where one glues in a cylinder, attaching the
boundary circles γ̃1, γ̃2 of a cylinder to boundary circles γ1, γ2 of Σ1. The
resulting Σ2 has two less boundary components and genus one more.

One can again ask what the image and fibres of Φ are in this case. For
a flat connection on Σ1, choose a flat trivialization along the path p2. We
then, for the circles γi, have holonomies Ci. For these to lie in the image of
the flat connections on Σ2, we need to be able to glue a flat connection on
Σ1 to a flat connection on the cylinder.

On the cylinder, choose base points on the circles γ̃1, γ̃2, and a path
β from γ̃1 to γ̃2. On the cylinder, we have the relation in the fundamental
groupoid:

γ̃1β
−1γ̃−1

2 β = 1.

Once one trivializes at the two base points, a flat connection determines
corresponding holonomies C̃i, B, satisfying

C̃1B
−1C̃−1

2 B = 1.
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The gluing, on the level of connections matches Ci with C̃i. We then
must have:

C1B
−1C−1

2 B = 1

for some matrix B, which is the image of an extra cycle created by the
gluing. Thus the image in XΣ1

(G) of XΣ2
(G), is the union of symplectic

leaves for which the conjugacy class along γ1 is the inverse of the conjugacy
class along γ2, while the fibre is isomorphic to the stabilizer of C2 under
conjugation. Note that XΣ1

(G) and XΣ2
(G) have the same dimension.

5.3. Case 3: Capping with a k-holed sphere

We now consider the case of gluing a k-holed sphere (k ≥ 3) with boundary
circles γ̃i, i = 1, . . . , k, to the boundary circles γi, i = 1, . . . , k, of Σ1. The
resulting Σ2 will have k less boundary components, and genus k − 1 more.

On the sphere, choose base points on the circles γ̃i, i = 1, . . . , k, and
paths βi, i = 1, . . . , k, from γ̃1 to γ̃i. We have the relation in the funda-
mental group:

γ̃−1
1 β−1

2 γ̃−1
2 β2 · · ·β−1

i γ̃−1
i βi · · ·β−1

k γ̃−1
k βk = 1.

A flat connection on the punctured sphere, once one trivializes at the base
points, gives corresponding holonomies C̃i, Bi, satisfying:

C̃−1
1 B−1

2 C̃−1
2 B2 · · ·B−1

i C̃−1
i Bi · · ·B−1

k C̃−1
k Bk = 1.

The gluing, on the level of connections matches Ci with C̃−1
i , and so

(5.2) C1B
−1
2 C2B2 . . . B

−1
i CiBi . . . B

−1
k CkBk = 1.

So one needs to be able to find matrices Bi which make this relation true.
In short, given k conjugacy classes, we have to be able to find elements in
them whose product is one. There are choices for which this is not the case;
for example, if one takes C1 = · · · = Ck−1 = 1, Ck = −1.

The general question of when Equation (5.2) has a solution is known as
the Deligne-Simpson Problem, which is only solved when G is of type An

[Sim, Ko, Cr].
The map Φ : XΣ2

(G) −→ XΣ1
(G) is not surjective.

If g is at least two, XΣ2
(G) has dimension (k − 2) dim(G) greater than

XΣ1
(G). This would then be the dimension of the generic fibres when there

is a solution to Equation (5.2).
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5.4. Case 4: Capping one circle with a genus 1 curve, n1 ≥ 2

Now let us glue a punctured genus 1 curve with one boundary circle γ̃ to
the boundary circle γ1 of Σ1, when n1 ≥ 2. The resulting Σ2 will have 1 less
boundary components, and genus 1 more.

On the (closed) genus 1 curve, take a standard basis α, β of the funda-
mental group. In the fundamental group of the punctured curve:

γ̃αβα−1β−1 = 1.

Lemma 5.1. Take G as before. Every element of the group [G, G] can be
expressed as

[A, B] := ABA−1B−1

for some A, B ∈ [G, G]. Thus elements of the commutator subgroup can be
written as a single commutator.

Proof. First assume that G is compact. Then [G, G] is a connected com-
pact semisimple Lie group. A theorem of Gotô says that for every element
C ∈ [G, G], there are elements A, B ∈ [G, G] such that C = [A, B] :=
ABA−1B−1 [Got, p. 270, Lemma].

Next assume that G is a reductive affine algebraic group defined over C.
Then [G, G] is a connected semisimple affine algebraic group defined over
C. Then for every element C ∈ [G, G], there are elements A, B ∈ [G, G]
such that C = [A, B] := ABA−1B−1 [PW, p. 908], [Re, p. 457]. □

We then have:

Proposition 5.2. The image in XΣ1
(G) of XΣ2

(G) consists of the repre-
sentations with the image of γ1 in [G, G]. In particular, if G is semisimple,
meaning G = [G, G], then the map XΣ2

(G) −→ XΣ1
(G) is surjective.

If G = [G, G], then by capping successively the boundaries of Σ1 we get
a symplectic manifold XΣ2

(G) and a Poisson map XΣ2
(G) −→ XΣ1

(G). If
g is at least two, each cap increases the genus by one and diminishes the
number of punctures by one, and so adds dim(G) dimensions.

5.5. Case 5: Capping with an n-punctured genus 1 curve

We now glue a genus 1 curve C with n boundary circles to the n bound-
ary circles of Σ1 so that the resulting curve Σ2 has no punctures, but the
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genus is increased by n. Again, for G semisimple, g1 ≥ 2, this increases the
dimensions of the representation space by n dimG.

We have the fundamental groups

π1(Σ1) = ⟨a1, b1, . . . , ag1 , bg1 , c1, . . . , cn
∣∣∣

g1∏

i=1

[ai, bi]

n∏

j=1

cj⟩

where g1 is the genus of Σ1, and

π1(C) = ⟨a, b, c1, . . . , cn
∣∣∣ [a, b]

n∏

j=1

cj⟩.

We then have similar relations for their representations into G.

Proposition 5.3. The map Φ : XΣ2
(G) −→ XΣ1

(G) is surjective and
Poisson.

Proof. For the surjectivity, for a representation of π1(Σ1) into G, we have
images Ai, Bi, Cj of the generators ai, bi, cj giving an element

∏g0
i=1[Ai, Bi]

of the commutator subgroup of G. Now Lemma 5.1 tells us that this is
equal to a single commutator [A, B], giving a representation A, B, Cj of
π1(C). Inverting, this can be glued to the representation of π1(Σ1) to obtain
a representation of π1(Σ2). Consequently, the map Φ : XΣ2

(G) −→ XΣ1
(G)

is surjective. We have already seen that Φ is Poisson. □

Thus we have a symplectic “completion” of XΣ1
(G).

5.6. Case 6: Capping with a mirror image

We note that we can also glue a copy of Σ1 to itself. Again, the resulting
Σ2 will give a symplectic character variety mapping surjectively onto that of
Σ1, albeit with an enormous redundancy; the dimension gets doubled. We
note that for the representations on one of the copies of Σ2, we must invert
the matrices Ai, Bi, Cj before gluing. This involves changing the generating
set of the fundamental group somewhat, but it can be done.

6. Gluing via symplectic quotients

The symplectic extensions obtained by capping boundary components are,
as we have seen, often somewhat inefficient in terms of the dimensions they
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add. We close by recalling two classical constructions which accomplish the
same task, essentially by adding a trivialisation to our connections on a
base point on each boundary circle. The first, due to Alekseev, Malkin and
Meinrenken [AMM], takes us outside of the symplectic domain, into quasi-
Hamiltonian territory; the second involves the extended moduli spaces of
Jeffrey [Je]. The reduction to the flat connection spaces are then group
quotients. We note that there is an “imploded” version of the construction
of [AMM], considered in [HJ].

6.1. q-Hamiltonian spaces

q-Hamiltonian spaces were defined by Alekseev, Malkin and Meinrenken in
[AMM]. They play a role analogous to the symplectic quotient of the space
of all connections by the based gauge group (in other words the extended
moduli space [Je]).

We quote the following definitions from [AMM].

Definition 6.1 ([AMM, Definition 2.2]). Let G be a compact Lie
group. Assume further that G is connected and simply connected. A quasi-
Hamiltonian (or q-Hamiltonian) G-space is a G-manifold M together with
an invariant 2-form ω ∈ Ω2(M)G and a G-equivariant map µ ∈ C∞(M, G)
(where G acts on itself by conjugation) such that:

(B1) The differential of ω is given by

dω = −µ∗χ,

where χ is the closed bi-invariant 3-form on G given by χ =
1
12(θ, [θ, θ]). Here θ ∈ Ω1(G)⊗ g is the left invariant Maurer-Cartan
form (where g is the Lie algebra of G) and θ is the right invariant
Maurer-Cartan form. This is often denoted θ = g−1dg if g : U → G is
a coordinate on a coordinate chart U for G. Similarly θ̄ is denoted
dgg−1.

(B2) The map µ satisfies:

i(vξ)ω =
1

2
µ∗(θ + θ, ξ),

where vξ is the fundamental vector field on G associated to an element
ξ in g.
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(B3) At each x ∈ M , the kernel of ωx is given by:

ker(ωx) = vξ, ξ ∈ Ker(Adµ(x) + 1).

We will refer to µ as a moment map.
The q-Hamiltonian space whose q-Hamiltonian quotient is the character

variety for a 2-manifold of genus g with no boundary is the space denoted
Mg, which is isomorphic to G2g . The moment map for the diagonal action
of G on Mg by conjugation is the product of commutators

(6.1) µ(x1, x2, . . . , x2g) =

g∏

j=1

x2j−1x2jx
−1
2j−1x

−1
2j .

Here xj ∈ G.
The q-Hamiltonian space whose q-Hamiltonian quotient is the character

variety for a 2-manifold which has genus g and r boundary components is
the space

(6.2) Mg,r := G2g+2r.

See Section 6.2 below.
If X1 and X2 are two q-Hamiltonian G-spaces with moment maps µ1

and µ2, then the fusion product X1 ×X2 is also a q-Hamiltonian G-space
with moment map µ1 · µ2, where · is multiplication in G. See for example
[Me], §3.2. This is analogous to the fact that the product of two Hamiltonian
G-spaces Y1 and Y1 is also a Hamiltonian G-space and its moment map is
the sum of the moment maps for the Hamiltonian G actions on Y1 and Y2.

It follows that if Mg is the q-Hamiltonian space associated to a genus
g surface Σg and Mh is the q-Hamiltonian space associated with a genus h
surface Σh, then the q-Hamiltonian quotient of Mg ×Mh by the diagonal
action of G is a symplectic manifold. It is the character variety of a surface
of genus g + h without boundary.

This quotient construction is defined in Section 6.2 below. For complete-
ness, we include the following material from Section 6 of [AMM]. The 2-form
on the double D(G) := G×G is given in [AMM, Section 3.2]:

ωD =
1

2
(a∗θ, b∗θ) +

1

2
(a∗θ, b∗θ),

where a, b : G×G −→ G are projections to the first and second factors
respectively. Here θ, θ̄ were introduced in Definition 6.1.
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Now let us consider the construction for a surface of genus g and r + 1
boundary components (r ≥ 0). This construction creates a 2-form on a space
called the internal fusion of the double and denotedD(G) = G×G ([AMM,
Example 6.1]):

ω =
1

2
(a∗θ, b∗θ) +

1

2
(a∗θ, b∗θ) +

1

2
((ab)∗θ, (a−1b−1)∗θ).

The space Mg,r = G2g+2r with coordinates (ai, bi, uj , vj) for i =
1, . . . , g and j = 1, . . . , r. The action of (z0, . . . , zr) ∈ Gr+1 is given by
(see [AMM], Equation (38))

(6.3) ai 7−→ Adz0ai,

bi 7−→ Adz0bi,

uj 7−→ z0ujz
−1
j

vj 7−→ Adzjvj

(for i, j in the ranges listed above). Here, we often use a to denote the tuple
(a1, . . . , ag) (similarly for b). We also use u to denote (u1, . . . , ur) (similarly
for v).

Our earlier notation Mg is an abbreviation for Mg,1.
The components of the moment map µ are (see [AMM], Equation (39))

(6.4) µj(a, b, u , v) = (vj)
−1 (j = 1, . . . , r)

µ0(a, b, u, v) = Adu1
(v1) · · ·Adur

(vr)[a1, b1] · · · [ag, bg].
We point out to the reader that the capping constructions described in

the previous section are special cases of the quotient of q-Hamiltonian spaces
described in this section (see Remarks (6.4) and (6.5)).

For example:

1) §5.2: Case 2 corresponds to the q-Hamiltonian quotient of Mg,2 ×M0,2

by the diagonal action of G×G.

2) §5.3: Case 3 corresponds to the q-Hamiltonian quotient of Mg,k ×M0,k

by the diagonal action of Gk.

3) §5.4: Case 4 corresponds to the q-Hamiltonian quotient of Mg,1 ×M1,1

by the diagonal action of G.
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4) §5.5: Case 5 corresponds to the q-Hamiltonian quotient of Mg,n ×M1,n

by the diagonal action of Gn.

5) §5.6: Case 6 corresponds to the q-Hamiltonian quotient of Mg,n ×Mg,n

by the diagonal action of Gn.

6.2. Fusion

We continue to assume that G and H are compact, connected, simply con-
nected Lie groups.

Theorem 6.2 ([AMM, Theorem 6.1]). Let M be a q-Hamiltonian
(G×G×H)-space with moment map (µ1, µ2, µ3). Let (M,ω) be a q-
Hamiltonian (G×G×H)-space with moment map (µ1, µ2, µ3), so µ1 :
M → G and µ2 : M → G, while µ3 : M → H. Let G×H act by the diag-
onal embedding (y, z) 7−→ (y, y, z). Then M with 2-form

ω + (µ∗
1θ, µ

∗
2θ)/2

and moment map µ̃ = (µ1 · µ2, µ3) : M −→ G×H is a q-Hamiltonian
(G×H)-space. Here · denotes multiplication in G.

Internal fusion means replacing the (G×G×H)-action on a q-
Hamiltonian G×G×H-space with a (G×H)-action. The space remains
the same but the group that acts on it is different. The 2-form also changes:
see §3.2 of [Me].

Example 6.3 ([AMM, Example 6.1]). Internal fusion turns the q-
Hamiltonian G×G-space D(G) into a q-Hamiltonian G-space denoted
D(G).

The space D(G) = G×G has coordinates (u, v) ∈ G×G. There may
be r copies of the double which are indexed by variables uj , vj , j = 1, . . . , r.

The internal fusionD(G) is alsoG×G with coordinates (a, b) (a, b ∈ G).
There may be g copies of the internal fusion, which are denoted (ai, bi) (i =
1, . . . , g). The space D(G) is a q-Hamiltonian (G×G)-space with moment
maps (v−1

j , Aduj
vj), while D(G) is a G-space with moment map [ai, bi].

A quasi-Poisson manifold is a special type of q-Hamiltonian space
(see [AKM]). This is in fact the type of q-Hamiltonian space that we re-
duce to construct character varieties (see [AKM]). For relations between
q-Hamiltonian spaces and Poisson geometry, we refer the reader to [AMM].

The fusion product of (D(G))r and (D(G))g is G2g+2r with the q-
Hamiltonian action of Gr+1 given by Equation (6.3) and moment maps given
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by Equation (6.4). If we take the q-Hamiltonian quotient of this space with
respect to the Gr+1 action, we obtain a symplectic manifold. The 2-form ω
on D(G)r × (D(G))g restricts on the level set of moment maps to a form
whose quotient under the action of Gr+1 is a symplectic form.

Remark 6.4. For example, the q-Hamiltonian quotient of the product of
the spaces Mg and Mh is the subset

{(x, y) ∈ Mg ×Mh

∣∣µg(x) = µh(y)}/G,

where G acts on Mg ×Mh by conjugation and µg : Mg −→ G and µh :
Mh −→ G are the respective q-Hamiltonian moment maps. Recall that Mg

and Mh are equipped with q-Hamiltonian actions of G. The q-Hamiltonian
quotient ofMg ×Mh with respect to the diagonal action ofG is the character
variety of a surface of genus g + h. The 2-forms on Mg and Mh restrict to
the level set

A := {(x, y) ∈Mg ×Mh|µg(x) = µh(y)},

giving a 2-form which is the pullback of a symplectic form on the quotient
of A by the G action. This procedure is the gluing procedure corresponding
to gluing together the boundaries of two different surfaces, each with one
boundary component.

Remark 6.5. To take the q-Hamiltonian quotient of the diagonal action of
G on the j1-th and j2-th copies of G, we set µj1(a, b, u, v) = µj2(a, b, u, v)
and then take the quotient by the diagonal action of G on these copies of G.
In other words, we require that vj1 = vj2 . This operation corresponds to glu-
ing together the j1-th and j2-th boundary components of a connected surface
with r + 1 boundary components. This procedure is the gluing procedure
corresponding to gluing together two boundary components of a connected
surface. Again, the 2-form on the level set

B := {a, b, u, v|µj1(a, b, u, v) = µj2(a, b, u, v)}

is the pullback of a symplectic form on the quotient of B by the diagonal G
action.

6.3. Extended moduli spaces

For reference, see [Je] and also [GHJW, H1, H2]).
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Let G = SU(2). The extended moduli space [Je] for a genus g surface Σg

with one boundary component was developed for the same purpose as the
quasi-Hamiltonian G-space from [AMM]. It has a symplectic structure and
a Hamiltonian action of G. Its symplectic quotient (at a specific coadjoint
orbit of G) is the moduli space of parabolic bundles associated to that orbit.
It has real dimension 6g.

6.3.1. Extended moduli space for general G. Let G be a compact
Lie group with maximal torus T .

We define

(6.5) N g = {(a1, b1, . . . , ag, bg) ∈ G2g,Λ ∈ g

∣∣∣
g∏

j=1

[aj , bj ] = exp(Λ)}.

The real dimension of this space is 2g dim(G).

6.3.2. More than one boundary component. The generalization to
r boundary components (where r ≥ 2) is given in (5.6) of [Je]:
(6.6)

N g,r = {(a1, . . . , ag, b1, . . . , bg, k2, . . . , kr, λ1, . . . , λr)
∣∣∣ aj , bj , kj ∈ G,

λi ∈ g,

g∏

i=1

[ai, bi] = eλ1k2e
λ2k−1

2 . . . kre
λrk−1

r }.

There is a two-form defined on this space whose restriction to an open
dense subset is symplectic. This subject may also be described in terms
of connections on the 2-manifold rather than elements of products of G –
see [Je]. The (r ≥ 2)-boundary component case of the extended moduli space
is also treated in [HJ].

6.4. Gauge theory version of extended moduli space

There is a description of the extended moduli space in terms of connections.
The space Ag

F parametrizes connections A ∈ Ω1(Σ, g) with curvature
FA = 0 and A having the form λds on a neighbourhood of the boundary
(where s ∈ [0, 2π] is a coordinate on the boundary and λ is a constant
in g). Then Mg(Σ) consists of the quotient of Ag

F by the group of gauge
transformations equal to the identity on a neighbourhood of the boundary.
The spaceMg(Σ) is homeomorphic to N g (see [Je, Proposition 2.5]).
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6.4.1. Symplectic form of extended moduli space. For the SU(2)
extended moduli space, the symplectic form is given in [Je], Section 3.1 (see
also Definition 3.2). It is

ωΣ(a, b) =

∫

Σ
Tr(a ∧ b),

where a, b ∈ Ω1(Σ)⊗ g are flat G-connections on Σ. For general G, the
symplectic form of this space also has this form (see Section 5.2 of [Je]).
This is a simple generalization of the symplectic form defined by Atiyah and
Bott [AB].

Let G = SU(2). By [Je], Proposition 3.1, the symplectic form onMg is
nondegenerate provided Λ = 0 or Λ /∈ πZH, where H is the diagonal 2× 2
matrix with entries (

√
−1, −

√
−1). (a generator of the weight lattice of G).

6.4.2. Moment map for extended moduli space. The moment map
for the extended moduli space N g described above (corresponding to a sur-
face of genus g with one boundary component) is the map

((a1, . . . , a2g) ∈ G2g, Λ ∈ g) 7−→ Λ.

6.5. Relation with Poisson geometry

As above, let G be a compact connected simply connected semisimple Lie
group. According to §8 of [AMM], there is a bijective correspondence be-
tween q-Hamiltonian G-spaces and Hamiltonian LG-spaces. The key result is
Theorem 8.3 in that paper. The following section of [AMM], §9, uses this ma-
chinery to exhibit spaces of flat connections on oriented 2-manifold as sym-
plectic quotient of Hamiltonian LG-spaces, or equivalently q-Hamiltonian
quotients of q-Hamiltonian spaces.

The extended moduli spaces of [Je] represent a choice of a gauge for the
LG variables. Any g-valued 1-form α on S1 is gauge equivalent to a 1-form
of a particular type: γ∗α = λds where λ ∈ g is a constant and γ : S1 → G
is a gauge transformation. By means of this construction, one no longer
needs to use the infinite-dimensional group LG. The price one pays is the
(non-canonical) choice of a gauge.

If one takes the symplectic quotient of such a Hamiltonian LG-space
by (LG)r+1 , one recovers the space of gauge equivalence classes of flat
connections on an oriented 2-manifold, with fixed values of the holonomy
around each boundary component. This means one fixes a value in Lg (the
Lie algebra of LG) for each of the r + 1 boundary components of the surface.
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This value represents the holonomy of the connection around that boundary
component. Taking the quotient by (LG)r+1 gives a symplectic manifold.

If one takes the quotient by (LG)r+1 but does not fix the holonomy
for the boundary components, the result is a Poisson manifold. If one then
fixes the holonomies around the r + 1 boundary components, this gives a
restriction map from this Poisson manifold to one of its symplectic leaves.

7. Proof of Theorem 2.7

The coordinate ring C[Xn,g(SL(2,C))] is finitely generated by traces of curves
in Σn,g. Since the Poisson bracket is a derivation and a Lie bracket, it is
determined by the pairings of the generators of the coordinate ring.

When G = SL(n,C), Equation (2.1) simplifies to:

{tr(ρ(α)), tr(ρ(β))}(7.1)

=
∑

p∈α∩β

ϵ(p, α, β)

(
tr(ρ(αpβp))−

1

n
tr(ρ(α))tr(ρ(β))

)
.

As is apparent from this formula, to compute the requisite pairings,
one need only draw the required curves and compute the traces of the re-
sulting words. The algorithm in [ABL] that computes traces of words in
C[Xn,g(SL(2,C))] is effective. Therefore, the algorithm to compute the Pois-
son bracket is likewise effective.

We now demonstrate this algorithm with a new non-trivial, but
tractable, example. In principle, many other such examples could be com-
puted with a fully automated implementation of our algorithm. However,
we do this computation by hand with the aid of a compute program imple-
menting the algorithm in [ABL], and verify the computation is correct with
Mathematica.

There are three open surfaces with Euler characteristic −3: the 5-holed
sphere, the 3-holed torus, and the 1-holed genus 2 surface. In all three cases,
the fundamental group is a free group F4 = ⟨c1, c2, c3, c4⟩ of rank 4. Let
t{i} = trci , t{i,j} = trcicj , and t{i,j,k} = trcicjck .

Then, the coordinate ring of Hom(F4, SL(2,C))//SL(2,C) is generated
by the 14 trace functions

{
t{1}, t{2}, t{3}, t{4}, t{1,2}, t{1,3},

t{1,4}, t{2,3}, t{2,4}, t{3,4}, t{1,2,3}, t{1,2,4}, t{1,3,4}, t{2,3,4}
}
,
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and its ideal of relations is generated by 14 polynomials in these variables
(see [ABL] for details).

To compute the bi-vector for the 5-holed sphere, we need to compute the
14× 14 = 196 pairings of the form {tx, ty}. Since Poisson brackets are anti-
symmetric and t{1}, t{2}, t{3}, t{4} are Casimirs, we are left with 45 pairings.
These come in three types: (a) 15 of {t{i,j}, t{k,l}}, (b) 24 of {t{i,j}, t{k,l,m}},
and (c) 6 of {t{i,j,k}, t{l,m,n}}.

The topological model of Σ5,0 we will use is in Figure 1, and we will use
Equation (7.1) in the following subsections without explicit mention.

Figure 1: Σ5,0 with c1c2c3c4c5 = 1.

7.0.1. Type (a) pairings. There are 15 pairings of type {t{i,j}, t{k,l}}.
Since c1c2 and c3c4 are disjoint, {t{1,2}, t{3,4}} = 0. Likewise,

{t{1,4}, t{2,3}} = 0.
The first non-trivial1 computation will be for {t{1,3}, t{2,4}}. We draw the

curves c1c3 and c2c4 in the 5-holed sphere (see Figure 2). Then we simplify
the trace functions in the formula using the algorithm in [ABL] implemented
in Mathematica.

1One might be tempted to thinking that these curves can be drawn disjoint by
drawing c2c4 “going out around” c3, but the resulting curve would be homotopic
to c2c3c4c

−1

3
which is not homotopic to c2c4.
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Figure 2: {t{1,3}, t{2,4}}.

{t{1,3}, t{2,4}} = (+1)(tr(c1c3c2c4)−
1

2
tr(c1c3)tr(c2c4))

+ (−1)(tr(c3c1c2c4)−
1

2
tr(c1c3)tr(c2c4))

+ (+1)(tr(c3c1c4c2)−
1

2
tr(c1c3)tr(c2c4))

+ (−1)(tr(c1c3c4c2)−
1

2
tr(c1c3)tr(c2c4))

= t{3}t{4}t{1,2} − 2t{3,4}t{1,2} − t{2}t{3}t{1,4} − t{1}t{4}t{2,3}

+ 2t{1,4}t{2,3} + t{1}t{2}t{3,4}.

The next non-trivial computation will be for {t{1,2}, t{1,4}}. We draw
the curves c1c2 and c1c4 in Figure 3.



�

�

“2-Lawton” — 2023/4/24 — 15:18 — page 1291 — #37
�

�

�

�

�

�

Poisson maps between character varieties 1291

Figure 3: {t{1,2}, t{1,4}}.

{t{1,2}, t{1,4}} = (+1)(tr(c1c2c1c4)−
1

2
tr(c1c2)tr(c1c4))

+ (−1)(tr(c1c2c4c1)−
1

2
tr(c1c2)tr(c1c4))

= t{1,2}t{1,4} + 2t{2,4} − t{1}t{1,2,4} − t{2}t{4}.

Likewise, by permuting the indices 3 and 4, we have:

{t{1,2}, t{1,3}} = t{1,2}t{1,3} + 2t{2,3} − t{1}t{1,2,3} − t{2}t{3},

and by permuting 2 and 3, we have:

{t{1,3}, t{1,4}} = t{1,3}t{1,4} + 2t{3,4} − t{1}t{1,3,4} − t{3}t{4}.
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We next draw the curves c1c2 and c2c3 in Figure 4 and compute the
resulting bracket.

Figure 4: {t{1,2}, t{2,3}}.

{t{1,2}, t{2,3}} = (+1)(tr(c1c2c2c3)−
1

2
tr(c1c2)tr(c2c3))

+ (−1)(tr(c1c2c3c2)−
1

2
tr(c1c2)tr(c2c3))

= −2t{1,3} − t{1,2}t{2,3} + t{2}t{1,2,3} + t{1}t{3}.

Again, permuting the indices 3 and 4 we obtain

{t{1,2}, t{2,4}} = −2t{1,4} − t{1,2}t{2,4} + t{2}t{1,2,4} + t{1}t{4},

and by permuting 1 and 4 we obtain

{t{2,4}, t{2,3}} = −t{2,3}t{2,4} − 2t{3,4} + t{2}t{2,3,4} + t{3}t{4}.
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We next draw the curves c1c4 and c3c4 in Figure 5 and compute the
resulting bracket.

Figure 5: {t{1,4}, t{3,4}}.

{t{1,4}, t{3,4}} = (−1)(tr(c4c1c3c4)−
1

2
tr(c1c4)tr(c3c4))

+ (+1)(tr(c4c1c4c3)−
1

2
tr(c1c4)tr(c3c4))

= 2t{1,3} + t{1,4}t{3,4} − t{4}t{1,3,4} − t{1}t{3}.

Permuting the indices 1 and 2 we obtain

{t{2,4}, t{3,4}} = 2t{2,3} + t{2,4}t{3,4} − t{4}t{2,3,4} − t{2}t{3},
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and by permuting 2 and 3 we obtain

{t{1,4}, t{2,4}} = 2t{1,2} + t{1,4}t{2,4} − t{4}t{1,2,4} − t{1}t{2}.

We next draw the curves c2c3 and c3c4 in Figure 6 and compute the
resulting bracket.

Figure 6: {t{2,3}, t{3,4}}.

{t{2,3}, t{3,4}} = (+1)(tr(c2c3c3c4)−
1

2
tr(c2c3)tr(c3c4))

+ (−1)(tr(c2c3c4c3)−
1

2
tr(c2c3)tr(c3c4))

= −2t{2,4} − t{2,3}t{3,4} + t{3}t{2,3,4} + t{2}t{4}.

Permuting the indices 1 and 2 we obtain

{t{1,3}, t{3,4}} = −2t{1,4} − t{1,3}t{3,4} + t{3}t{1,3,4} + t{1}t{4},
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and by permuting 1 and 4 we obtain

{t{2,3}, t{1,3}} = −2t{1,2} − t{1,3}t{2,3} + t{3}t{1,2,3} + t{1}t{2}.

7.0.2. Type (b) pairings. There are 24 pairings of type {t{i,j}, t{k,l,m}}.

Figure 7: {t{1,2,3}, t{1,4}}.

{t{1,2,3}, t{1,4}} = (+1)(tr(c1c2c3c1c4)−
1

2
tr(c1c2c3)tr(c1c4))

+ (−1)(tr(c1c2c3c4c1)−
1

2
tr(c1c2c3)tr(c1c4))

=
1

2
t{4}t

2
{1}t{2,3} +

1

2
t{2}t

2
{1}t{3,4} −

1

2
t2{1}t{2,3,4}

+
1

2
t{3}t{4}t{1}t{1,2} +

1

2
t{2}t{3}t{1}t{1,4} −

1

2
t{1}t{1,4}t{2,3}

+
1

2
t{1}t{1,3}t{2,4} −

1

2
t{1}t{1,2}t{3,4} −

1

2
t{4}t{1}t{1,2,3}

− 1

2
t{3}t{1}t{1,2,4} −

1

2
t{2}t{1}t{1,3,4}

− t{4}t{2,3} + t{1,4}t{1,2,3} + 2t{2,3,4} −
1

2
t{2}t{3}t{4}t

2
{1}.
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One finds similar diagrams for {t{1,2,3}, t{2,4}}, and {t{1,2,3}, t{3,4}}.
Indeed, we have:

{t{1,2,3}, t{2,4}} = (+1)(tr(c1c2c3c2c4)−
1

2
tr(c1c2c3)tr(c2c4))

+ (−1)(tr(c1c2c3c4c2)−
1

2
tr(c1c2c3)tr(c2c4))

= −t{3}t{1,4} + t{1}t{3,4} + t{2,3}t{1,2,4} − t{1,2}t{2,3,4},

and

{t{1,2,3}, t{3,4}} = (+1)(tr(c1c2c3c3c4)−
1

2
tr(c1c2c3)tr(c3c4))

+ (−1)(tr(c1c2c3c4c3)−
1

2
tr(c1c2c3)tr(c3c4))

= −1

2
t{4}t

2
{3}t{1,2} −

1

2
t{2}t

2
{3}t{1,4} +

1

2
t2{3}t{1,2,4}

− 1

2
t{1}t{4}t{3}t{2,3} +

1

2
t{3}t{1,4}t{2,3} −

1

2
t{3}t{1,3}t{2,4}

− 1

2
t{1}t{2}t{3}t{3,4} +

1

2
t{3}t{1,2}t{3,4} +

1

2
t{4}t{3}t{1,2,3}

+
1

2
t{2}t{3}t{1,3,4} +

1

2
t{1}t{3}t{2,3,4} + t{4}t{1,2}

− t{3,4}t{1,2,3} − 2t{1,2,4} +
1

2
t{1}t{2}t{4}t

2
{3}.

Since the curves are disjoint (Figure 8), we have: {t{1,2,3}, t{1,2}} = 0,
{t{1,2,3}, t{1,3}} = 0 and {t{1,2,3}, t{2,3}} = 0.

Figure 8: {t{1,2,3}, t{1,2}} = 0.

So we see, that for each diagram like Figure 7, which there are 4, we
obtain the data for 6 pairings.

Now on to the next diagram (Figure 9).
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Figure 9: {t{1,2,4}, t{1,3}}.

{t{1,2,4}, t{1,3}} = (+1)(tr(c4c1c2c1c3)−
1

2
tr(c1c2c4)tr(c1c3))

+ (−1)(tr(c4c1c2c3c1)−
1

2
tr(c1c2c4)tr(c1c3))

= t{4}t{2,3} − t{2}t{3,4} − t{1,4}t{1,2,3} + t{1,2}t{1,3,4}.

Again, one finds similar diagrams for {t{1,2,4}, t{2,3}}, and
{t{1,2,4}, t{3,4}}.

Indeed, we have:

{t{1,2,4}, t{2,3}} = (+1)(tr(c4c1c2c2c3)−
1

2
tr(c1c2c4)tr(c2c3))

+ (−1)(tr(c4c1c2c3c2)−
1

2
tr(c1c2c4)tr(c2c3))
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= −1

2
t{3}t

2
{2}t{1,4} −

1

2
t{1}t

2
{2}t{3,4} +

1

2
t2{2}t{1,3,4}

− 1

2
t{3}t{4}t{2}t{1,2} −

1

2
t{1}t{4}t{2}t{2,3} +

1

2
t{2}t{1,4}t{2,3}

− 1

2
t{2}t{1,3}t{2,4} +

1

2
t{2}t{1,2}t{3,4} +

1

2
t{4}t{2}t{1,2,3}

+
1

2
t{3}t{2}t{1,2,4} +

1

2
t{1}t{2}t{2,3,4} + t{3}t{1,4}

− t{2,3}t{1,2,4} − 2t{1,3,4} +
1

2
t{1}t{3}t{4}t

2
{2},

and

{t{1,2,4}, t{3,4}} = (+1)(tr(c4c1c2c4c3)−
1

2
tr(c1c2c4)tr(c3c4))

+ (−1)(tr(c4c1c2c3c4)−
1

2
tr(c1c2c4)tr(c3c4))

=
1

2
t{3}t

2
{4}t{1,2} +

1

2
t{1}t

2
{4}t{2,3} −

1

2
t2{4}t{1,2,3}

+
1

2
t{2}t{3}t{4}t{1,4} −

1

2
t{4}t{1,4}t{2,3} +

1

2
t{4}t{1,3}t{2,4}

+
1

2
t{1}t{2}t{4}t{3,4} −

1

2
t{4}t{1,2}t{3,4} −

1

2
t{3}t{4}t{1,2,4}

− 1

2
t{2}t{4}t{1,3,4} −

1

2
t{1}t{4}t{2,3,4} − t{3}t{1,2}

+ 2t{1,2,3} + t{3,4}t{1,2,4} −
1

2
t{1}t{2}t{3}t

2
{4}.

Since the curves are disjoint, we have: {t{1,2,4}, t{1,2}} = 0,
{t{1,2,4}, t{1,4}} = 0 and {t{1,2,4}, t{2,4}} = 0.

Next we have Figure 10.

{t{1,3,4}, t{2,3}} = (−1)(tr(c3c4c1c2c3)−
1

2
tr(c1c3c4)tr(c2c3))

+ (+1)(tr(c3c4c1c3c2)−
1

2
tr(c1c3c4)tr(c2c3))

=
1

2
t{4}t

2
{3}t{1,2} +

1

2
t{2}t

2
{3}t{1,4} −

1

2
t2{3}t{1,2,4}

+
1

2
t{1}t{4}t{3}t{2,3} −

1

2
t{3}t{1,4}t{2,3} +

1

2
t{3}t{1,3}t{2,4}

+
1

2
t{1}t{2}t{3}t{3,4} −

1

2
t{3}t{1,2}t{3,4} −

1

2
t{4}t{3}t{1,2,3}

− 1

2
t{2}t{3}t{1,3,4} −

1

2
t{1}t{3}t{2,3,4} − t{2}t{1,4}

+ 2t{1,2,4} + t{2,3}t{1,3,4} −
1

2
t{1}t{2}t{4}t

2
{3}.
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Figure 10: {t{1,3,4}, t{2,3}}.

Again, one finds similar diagrams for {t{1,3,4}, t{2,4}} and
{t{1,3,4}, t{1,2}}.

Indeed, we have:

{t{1,3,4}, t{2,4}} = (−1)(tr(c3c4c1c2c4)−
1

2
tr(c1c3c4)tr(c2c4))

+ (+1)(tr(c3c4c1c4c2)−
1

2
tr(c1c3c4)tr(c2c4))

= t{3}t{1,2} − t{1}t{2,3} − t{3,4}t{1,2,4} + t{1,4}t{2,3,4},

and

{t{1,3,4}, t{1,2}} = (−1)(tr(c3c4c1c2c1)−
1

2
tr(c1c3c4)tr(c1c2))

+ (+1)(tr(c3c4c1c1c2)−
1

2
tr(c1c3c4)tr(c1c2))
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= −1

2
t{4}t

2
{1}t{2,3} −

1

2
t{2}t

2
{1}t{3,4} +

1

2
t2{1}t{2,3,4} −

1

2
t{3}t{4}t{1}t{1,2}

− 1

2
t{2}t{3}t{1}t{1,4} +

1

2
t{1}t{1,4}t{2,3} −

1

2
t{1}t{1,3}t{2,4}

+
1

2
t{1}t{1,2}t{3,4} +

1

2
t{4}t{1}t{1,2,3} +

1

2
t{3}t{1}t{1,2,4}

+
1

2
t{2}t{1}t{1,3,4} + t{2}t{3,4} − t{1,2}t{1,3,4}

− 2t{2,3,4} +
1

2
t{2}t{3}t{4}t

2
{1}.

Since the curves are disjoint, we have: {t{1,3,4}, t{1,4}} = 0,
{t{1,3,4}, t{1,3}} = 0 and {t{1,3,4}, t{3,4}} = 0.

Figure 11 depicts the final diagram for this type of pairing.

Figure 11: {t{2,3,4}, t{1,4}}.
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{t{2,3,4}, t{1,4}} = (−1)(tr(c2c3c4c1c4)−
1

2
tr(c2c3c4)tr(c1c4))

+ (+1)(tr(c2c3c4c4c1)−
1

2
tr(c2c3c4)tr(c1c4))

= −1

2
t{3}t

2
{4}t{1,2} −

1

2
t{1}t

2
{4}t{2,3} +

1

2
t2{4}t{1,2,3}

− 1

2
t{2}t{3}t{4}t{1,4} +

1

2
t{4}t{1,4}t{2,3} −

1

2
t{4}t{1,3}t{2,4}

− 1

2
t{1}t{2}t{4}t{3,4} +

1

2
t{4}t{1,2}t{3,4} +

1

2
t{3}t{4}t{1,2,4}

+
1

2
t{2}t{4}t{1,3,4} +

1

2
t{1}t{4}t{2,3,4} + t{1}t{2,3}

− 2t{1,2,3} − t{1,4}t{2,3,4} +
1

2
t{1}t{2}t{3}t

2
{4}

Again, one finds similar diagrams for {t{2,3,4}, t{1,3}}, and
{t{2,3,4}, t{1,2}}.

Indeed, we have:

{t{2,3,4}, t{1,3}} = (−1)(tr(c2c3c4c1c3)−
1

2
tr(c2c3c4)tr(c1c3))

+ (+1)(tr(c2c3c4c3c1)−
1

2
tr(c2c3c4)tr(c1c3))

= −t{4}t{1,2} + t{2}t{1,4} + t{3,4}t{1,2,3} − t{2,3}t{1,3,4},

and

{t{2,3,4}, t{1,2}} = (−1)(tr(c2c3c4c1c2)−
1

2
tr(c2c3c4)tr(c1c2))

+ (+1)(tr(c2c3c4c2c1)−
1

2
tr(c2c3c4)tr(c1c2))

=
1

2
t{3}t

2
{2}t{1,4} +

1

2
t{1}t

2
{2}t{3,4} −

1

2
t2{2}t{1,3,4}

+
1

2
t{3}t{4}t{2}t{1,2} +

1

2
t{1}t{4}t{2}t{2,3} −

1

2
t{2}t{1,4}t{2,3}

+
1

2
t{2}t{1,3}t{2,4} −

1

2
t{2}t{1,2}t{3,4} −

1

2
t{4}t{2}t{1,2,3}

− 1

2
t{3}t{2}t{1,2,4} −

1

2
t{1}t{2}t{2,3,4} − t{1}t{3,4}

+ 2t{1,3,4} + t{1,2}t{2,3,4} −
1

2
t{1}t{3}t{4}t

2
{2}.

Since the curves are disjoint, we have: {t{2,3,4}, t{3,4}} = 0,
{t{2,3,4}, t{2,3}} = 0 and {t{2,3,4}, t{2,4}} = 0.
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7.0.3. Type (c) pairings. There are 6 pairings of type {t{i,j,k}, t{l,m,n}}.
Figure 12 is the first one of this type.

Figure 12: {t{1,2,3}, t{1,3,4}}.

{t{1,2,3}, t{1,3,4}} = (+1)(tr(c1c2c3c1c3c4)−
1

2
tr(c1c2c3)tr(c1c3c4))

+ (−1)(tr(c1c2c3c3c4c1)−
1

2
tr(c1c2c3)tr(c1c3c4))

+ (+1)(tr(c1c2c3c3c4c1)−
1

2
tr(c1c2c3)tr(c1c3c4))

+ (−1)(tr(c1c2c3c4c1c3)−
1

2
tr(c1c2c3)tr(c1c3c4))
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=
1

2
t{2,4}t

2
{1,3} −

1

2
t{1}t{2}t{3}t{4}t{1,3} +

1

2
t{3}t{4}t{1,2}t{1,3}

+
1

2
t{2}t{3}t{1,4}t{1,3} +

1

2
t{1}t{4}t{2,3}t{1,3} −

1

2
t{1,4}t{2,3}t{1,3}

+
1

2
t{1}t{2}t{3,4}t{1,3} −

1

2
t{1,2}t{3,4}t{1,3} −

1

2
t{4}t{1,2,3}t{1,3}

− 1

2
t{3}t{1,2,4}t{1,3} −

1

2
t{2}t{1,3,4}t{1,3} −

1

2
t{1}t{2,3,4}t{1,3} − 2t{2,4}

− 2t{2,3}t{3,4} + t{1,2,3}t{1,3,4} + 2t{3}t{2,3,4} + t{2}t{4}.

Similarly, we have:

{t{1,2,3}, t{1,2,4}} = (+1)(tr(c1c2c3c1c2c4)−
1

2
tr(c1c2c3)tr(c1c2c4))

+ (−1)(tr(c1c2c3c4c1c2)−
1

2
tr(c1c2c3)tr(c1c2c4))

=
1

2
t{3}t{4}t

2
{1,2} −

1

2
t{3,4}t

2
{1,2} −

1

2
t{1}t{2}t{3}t{4}t{1,2}

+
1

2
t{2}t{3}t{1,4}t{1,2} +

1

2
t{1}t{4}t{2,3}t{1,2}

− 1

2
t{1,4}t{2,3}t{1,2} +

1

2
t{1,3}t{2,4}t{1,2}

+
1

2
t{1}t{2}t{3,4}t{1,2} −

1

2
t{4}t{1,2,3}t{1,2}

− 1

2
t{3}t{1,2,4}t{1,2} −

1

2
t{2}t{1,3,4}t{1,2}

− 1

2
t{1}t{2,3,4}t{1,2} + 2t{3,4} + t{1,2,3}t{1,2,4} − t{3}t{4},

and

{t{1,2,3}, t{2,3,4}} = (+1)(tr(c1c2c3c2c3c4)−
1

2
tr(c1c2c3)tr(c2c3c4))

+ (−1)(tr(c1c2c3c4c2c3)−
1

2
tr(c1c2c3)tr(c2c3c4))

= −1

2
t{1}t{4}t

2
{2,3} +

1

2
t{1,4}t

2
{2,3} +

1

2
t{1}t{2}t{3}t{4}t{2,3}

− 1

2
t{3}t{4}t{1,2}t{2,3} −

1

2
t{2}t{3}t{1,4}t{2,3}

− 1

2
t{1,3}t{2,4}t{2,3} −

1

2
t{1}t{2}t{3,4}t{2,3}

+
1

2
t{1,2}t{3,4}t{2,3} +

1

2
t{4}t{1,2,3}t{2,3} +

1

2
t{3}t{1,2,4}t{2,3}

+
1

2
t{2}t{1,3,4}t{2,3} +

1

2
t{1}t{2,3,4}t{2,3} − 2t{1,4}

− t{1,2,3}t{2,3,4} + t{1}t{4}.
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Next, and very similarly, we have Figure 13.

Figure 13: {t{1,2,4}, t{1,3,4}}.

{t{1,2,4}, t{1,3,4}} = (−1)(tr(c4c1c2c3c4c1)−
1

2
tr(c1c2c4)tr(c1c3c4))

+ (+1)(tr(c4c1c2c4c1c3)−
1

2
tr(c1c2c4)tr(c1c3c4))

=
1

2
t{2}t{3}t

2
{1,4} −

1

2
t{2,3}t

2
{1,4} −

1

2
t{1}t{2}t{3}t{4}t{1,4}

+
1

2
t{3}t{4}t{1,2}t{1,4} +

1

2
t{1}t{4}t{2,3}t{1,4}

+
1

2
t{1,3}t{2,4}t{1,4} +

1

2
t{1}t{2}t{3,4}t{1,4}

− 1

2
t{1,2}t{3,4}t{1,4} −

1

2
t{4}t{1,2,3}t{1,4} −

1

2
t{3}t{1,2,4}t{1,4}

− 1

2
t{2}t{1,3,4}t{1,4} −

1

2
t{1}t{2,3,4}t{1,4} + 2t{2,3}

+ t{1,2,4}t{1,3,4} − t{2}t{3}.
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Similarly,

{t{1,2,4}, t{2,3,4}} = (−1)(tr(c4c1c2c3c4c2)−
1

2
tr(c1c2c4)tr(c2c3c4))

+ (+1)(tr(c4c1c2c4c2c3)−
1

2
tr(c1c2c4)tr(c2c3c4))

=
1

2
t{1,3}t

2
{2,4} −

1

2
t{1}t{2}t{3}t{4}t{2,4}

+
1

2
t{3}t{4}t{1,2}t{2,4} +

1

2
t{2}t{3}t{1,4}t{2,4}

+
1

2
t{1}t{4}t{2,3}t{2,4} −

1

2
t{1,4}t{2,3}t{2,4}

+
1

2
t{1}t{2}t{3,4}t{2,4} −

1

2
t{1,2}t{3,4}t{2,4}

− 1

2
t{4}t{1,2,3}t{2,4} −

1

2
t{3}t{1,2,4}t{2,4}

− 1

2
t{2}t{1,3,4}t{2,4} −

1

2
t{1}t{2,3,4}t{2,4}

− 2t{1,3} − 2t{1,2}t{2,3} + 2t{2}t{1,2,3}

− 1

2
t{1,2,3}t{2,3,4} +

3

2
t{1,2,4}t{2,3,4} + t{1}t{3}.

Lastly, we consider Figure 14.

{t{1,3,4}, t{2,3,4}} = (−1)(tr(c3c4c1c2c3c4)−
1

2
tr(c1c3c4)tr(c2c3c4))

+ (+1)(tr(c3c4c1c3c4c2)−
1

2
tr(c1c3c4)tr(c2c3c4))

=
1

2
t{1}t{2}t

2
{3,4} −

1

2
t{1,2}t

2
{3,4} −

1

2
t{1}t{2}t{3}t{4}t{3,4}

+
1

2
t{3}t{4}t{1,2}t{3,4} +

1

2
t{2}t{3}t{1,4}t{3,4}

+
1

2
t{1}t{4}t{2,3}t{3,4} −

1

2
t{1,4}t{2,3}t{3,4}

+
1

2
t{1,3}t{2,4}t{3,4} −

1

2
t{4}t{1,2,3}t{3,4}

− 1

2
t{3}t{1,2,4}t{3,4} −

1

2
t{2}t{1,3,4}t{3,4}

− 1

2
t{1}t{2,3,4}t{3,4} + 2t{1,2}

+ t{1,3,4}t{2,3,4} − t{1}t{2}.



�

�

“2-Lawton” — 2023/4/24 — 15:18 — page 1306 — #52
�

�

�

�

�

�

1306 Biswas, Hurtubise, Jeffrey, and Lawton

Figure 14: {t{1,3,4}, t{2,3,4}}.

7.0.4. The bi-vector and symmetry. Let µσ be the mapping class that
corresponds to the permutation σ of the boundary components of Σ5,0;
we will use cycle notation for permutations. We consider formal sums of
such permutations in the integral group ring associated to the mapping
class group of Σ5,0, and observe that elements in the group ring acts on
the coordinate ring of X5,0(SL(2,C)) since the mapping class group acts on
X5,0(SL(2,C)).

Let

Σ1 = µ(1) + µ(34) + µ(23) + µ(123) + µ(124) + µ(142) + µ(143)

+ µ(13)(24) + µ(1234) + µ(1342) + µ(1324) + µ(1432),

Σ2 = µ(1) + µ(1234) + µ(13)(24) + µ(1432)

and Σ3 = µ(1) + µ(1432).
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The above calculations, after observing symmetry (verified using Math-
ematica), establish the following form for the bi-vector:

a5,0(SL(2,C)) = a1324
∂

∂t{1,3}
∧ ∂

∂t{2,4}
+Σ1

(
a1214

∂

∂t{1,2}
∧ ∂

∂t{1,4}

)

+Σ2

(
a12314

∂

∂t{1,2,3}
∧ ∂

∂t{1,4}
+ a12324

∂

∂t{1,2,3}
∧ ∂

∂t{2,4}

+ a12334
∂

∂t{1,2,3}
∧ ∂

∂t{3,4}

)

+Σ2

(
a123124

∂

∂t{1,2,3}
∧ ∂

∂t{1,2,4}

)

+Σ3

(
a123134

∂

∂t{1,2,3}
∧ ∂

∂t{1,3,4}

)
,

where:

a1324 = t{3}t{4}t{1,2} − 2t{3,4}t{1,2} − t{2}t{3}t{1,4} − t{1}t{4}t{2,3}

+ 2t{1,4}t{2,3} + t{1}t{2}t{3,4},

a1214 = t{1,2}t{1,4} + 2t{2,4} − t{1}t{1,2,4} − t{2}t{4},

a12314 =
1

2
t{4}t

2
{1}t{2,3} +

1

2
t{2}t

2
{1}t{3,4} −

1

2
t2{1}t{2,3,4} +

1

2
t{3}t{4}t{1}t{1,2}

+
1

2
t{2}t{3}t{1}t{1,4} −

1

2
t{1}t{1,4}t{2,3} +

1

2
t{1}t{1,3}t{2,4}

− 1

2
t{1}t{1,2}t{3,4} −

1

2
t{4}t{1}t{1,2,3} −

1

2
t{3}t{1}t{1,2,4}

− 1

2
t{2}t{1}t{1,3,4} − t{4}t{2,3} + t{1,4}t{1,2,3}

+ 2t{2,3,4} −
1

2
t{2}t{3}t{4}t

2
{1},

a12324 = −t{3}t{1,4} + t{1}t{3,4} + t{2,3}t{1,2,4} − t{1,2}t{2,3,4},

a12334 = −
1

2
t{4}t

2
{3}t{1,2} −

1

2
t{2}t

2
{3}t{1,4} +

1

2
t2{3}t{1,2,4} −

1

2
t{1}t{4}t{3}t{2,3}

+
1

2
t{3}t{1,4}t{2,3} −

1

2
t{3}t{1,3}t{2,4} −

1

2
t{1}t{2}t{3}t{3,4}

+
1

2
t{3}t{1,2}t{3,4} +

1

2
t{4}t{3}t{1,2,3} +

1

2
t{2}t{3}t{1,3,4}

+
1

2
t{1}t{3}t{2,3,4} + t{4}t{1,2} − t{3,4}t{1,2,3}

− 2t{1,2,4} +
1

2
t{1}t{2}t{4}t

2
{3},
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a123124 =
1

2
t{3}t{4}t

2
{1,2} −

1

2
t{3,4}t

2
{1,2} −

1

2
t{1}t{2}t{3}t{4}t{1,2}

+
1

2
t{2}t{3}t{1,4}t{1,2} +

1

2
t{1}t{4}t{2,3}t{1,2} −

1

2
t{1,4}t{2,3}t{1,2}

+
1

2
t{1,3}t{2,4}t{1,2} +

1

2
t{1}t{2}t{3,4}t{1,2} −

1

2
t{4}t{1,2,3}t{1,2}

− 1

2
t{3}t{1,2,4}t{1,2} −

1

2
t{2}t{1,3,4}t{1,2} −

1

2
t{1}t{2,3,4}t{1,2}

+ 2t{3,4} + t{1,2,3}t{1,2,4} − t{3}t{4},

a123134 =
1

2
t{2,4}t

2
{1,3} −

1

2
t{1}t{2}t{3}t{4}t{1,3} +

1

2
t{3}t{4}t{1,2}t{1,3}

+
1

2
t{2}t{3}t{1,4}t{1,3} +

1

2
t{1}t{4}t{2,3}t{1,3} −

1

2
t{1,4}t{2,3}t{1,3}

+
1

2
t{1}t{2}t{3,4}t{1,3} −

1

2
t{1,2}t{3,4}t{1,3} −

1

2
t{4}t{1,2,3}t{1,3}

− 1

2
t{3}t{1,2,4}t{1,3} −

1

2
t{2}t{1,3,4}t{1,3} −

1

2
t{1}t{2,3,4}t{1,3}

− 2t{2,4} − 2t{2,3}t{3,4} + t{1,2,3}t{1,3,4} + 2t{3}t{2,3,4} + t{2}t{4}.

Moreover, using all boundary permutations in the mapping class group
(including the permutations of the fifth boundary C5), we show there do not
exist any further symmetries of this type. In other words, the above sym-
metry is sharp. We used a Mathematica notebook for a proof by exhaustion
(we checked all 120 induced mappings explicitly).
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