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Every real 3-manifold is real contact

Merve Cengı̇z and Ferı̇t Öztürk

A real 3-manifold is a smooth 3-manifold together with an orienta-
tion preserving smooth involution, which is called a real structure.
A real contact 3-manifold is a real 3-manifold with a contact dis-
tribution that is antisymmetric with respect to the real structure.
We show that every real 3-manifold can be obtained via surgery
along invariant knots starting from the standard real S3 and that
this operation can be performed in the contact setting too. Us-
ing this result we prove that any real 3-manifold admits a real
contact structure. As a corollary we show that any oriented over-
twisted contact structure on an integer homology real 3-sphere can
be isotoped to be real. Finally we give construction examples on
S1 × S2 and lens spaces. For instance on every lens space there
exists a unique real structure that acts on each Heegaard torus as
hyperellipic involution. We show that any tight contact structure
on any lens space is real with respect to that real structure.
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1. Introduction

A real structure on a smooth oriented 2k- (respectively (2k − 1)-) dimen-
sional manifold is a smooth involution which is orientation preserving if k
is even and orientation reversing if k is odd, with its fixed point set having
dimension k (respectively k − 1), if not empty. The idea behind this defi-
nition is to mimic the complex conjugation on a complex analytic variety
given by functions with real coefficients. For cM a real structure on M , we
call the pair (M, cM ) a real manifold and the fixed point set of cM the real
part, denoted below by Fix (cM ).

In this work we will heavily be interested in the 3-dimensional case: a
real structure on a smooth, closed, oriented 3-manifold is an orientation
preserving smooth involution with the fixed point set being either empty or
1-dimensional. The standard example for a real 3-manifold is the 3-sphere
S3 ⊂ C2 with the standard real structure cst = conj|S3 where conj denotes
the complex conjugation on C2. This involution is known to be the unique
real structure with nonempty real part on S3 up to equivariant isotopy. This
fact is a result of the culminated work on masse on the resolution of the
Smith conjecture that states originally that a finite-order diffeomorphism
of S3 cannot have a knotted 1-dimensional fixed point set. See [26] for a
PL topological solution of that conjecture for even periods and [17] for a
detailed exposition of the generalizations and the related work.

Now let ξ be an oriented contact structure on a smooth, compact, ori-
ented real (M, cM ). If (cM )∗(ξ) = −ξ, then ξ is said to be cM -real and the
triple (M, cM , ξ) is called a cM -real contact manifold (see [21], [22] for defi-
nitions and discussion). The obvious example is S3 ⊂ C2 with the real struc-
ture cst and the unique tight contact structure ξst on S

3. More generally real
contact 3-manifolds appear naturally as link manifolds of isolated complex
analytic singularities defined by analytic functions with real coefficients: the
natural tight contact structure induced on the link manifold by the com-
plex tangencies is real with respect to the real structure determined by the
complex conjugation. Even more generally, there are various basic condi-
tions for a hypersurface in a real symplectic manifold (i.e. a real smooth
manifold with an antisymmetric symplectic form) which makes it naturally
a real contact manifold (see e.g. [7], notably for the observation there in
Proposition 1.2.4, and for more examples.)

The positive contact structures on a closed, oriented 3-manifold are as-
sociated with the open book decompositions on the manifold via the Giroux
correspondence; indeed open books and contact structures are in one-to-one
correspondence up to positive stabilizations and contact isotopy respectively
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[9]. Similarly on a real 3-manifold one can introduce the notion of a real
open book decomposition. In [22] we have taken several first steps towards
a Giroux correspondence between the real open books and the real contact
structures. Namely it has been proven there that every real open book sup-
ports a real contact structure, that every real contact structure is supported
by a real open book, and that two real contact structures supported by the
same real open book are equivariantly isotopic (see [22] for definitions and
the exact statements).

Nevertheless it remained an open question whether real open books and
real contact structures always exist on a given real 3-manifold, for example
whether every real 3-manifold has a contact structure at all that is real with
respect to the given real structure. This last question, which was raised in
[22] and [7], can be considered as the real version of J. Martinet’s result
on the existence of contact structures on closed 3-manifolds [16]. The main
purpose of the present work is to answer that question affirmatively:

Theorem 1.1. Every real 3-manifold admits a real contact structure.

One of the standard ways to prove Martinet’s theorem is to recall that
every closed 3-manifold can be obtained via a surgery on a link in S3 and
then to argue that this surgery can be performed in the contact setting.
A usual expression of the former fact is through the well-known Lickorish-
Wallace theorem, which states that every closed orientable 3-manifold may
be obtained by a surgery along a link in S3 where each Dehn surgery coef-
ficient is an integer (see e.g. [23]).

In order to follow this track in the equivariant contact setting, we first
define and investigate in Section 2 the notion of Dehn surgery in the equiv-
ariant and contact equivariant setup in real contact 3-manifolds. Among
others we detect explicitly when equivariant contact (1/l)-surgery (l ∈ Z)
along equivariant Legendrian knots is possible (Theorem 2.4). One of the
direct corollaries of that discussion is the following which is proven in Sec-
tion 2.

Proposition 1.2. Any overtwisted contact structure on S3 can be isotoped
to be cst-real. More precisely any overtwisted contact structure on S3 can be
obtained by an equivariant contact surgery in (S3, cst, ξst).

Section 3, which is not directly related to the proof of Theorem 1.1
and may be skipped in the first reading, suggests a method to obtain a
given real 3-manifold from the standard real S3 through a sequence of single
surgery operations and intermediate real 3-manifolds, in a way that each
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next surgery is equivariant in the previous intermediate real 3-manifold. We
call such a link –constituted of an ordered collection of knots– recursively
invariant. Thus we prove the following theorem in Section 3, which can
be considered as a recursively equivariant version of the Lickorish-Wallace
theorem. (See Theorem 3.1 for the detailed, precise version.)

Theorem 1.3. Every closed real 3-manifold can be obtained via a finite
number of Dehn surgeries along an ordered, recursively invariant collection
of knots starting from the real 3-sphere (S3, cst).

Due to the recursive nature of the construction, this theorem does not
lend itself easily to applications, for example in obtaining surgery diagrams
in S3. Instead, in Section 4 we prove an equivariant version of the Lickorish-
Wallace theorem.

Theorem 1.4 (Equivariant Lickorish-Wallace Theorem). Every
closed, oriented real 3-manifold can be obtained via equivariant Dehn surgery
along an equivariant link L in the real 3-sphere (S3, cst). The equivariant
link can be taken as L = L ∪ LS ∪ L where LS is a cst-equivariant unlink,
cst(L) = L and all the surgery coefficients can be taken as ±1, (with respect
to a framing induced by an invariant Heegaard surface).

The proofs of Theorems 1.3 and 1.4 respectively follow the proof of the
Lickorish-Wallace Theorem where we start with suitable decompositions for
S3 and the given 3-manifold, and look for appropriate factorizations of dif-
feomorphisms on Heegaard surfaces in the mapping class group (recursively
invariant factorization and equivariant factorization respectively).

Employing Theorem 1.4, we prove our main result, Theorem 1.1, in
Section 5. For the proof it suffices to show that the equivariant link in
Theorem 1.4 can be chosen appropriately so that it is possible to turn the
equivariant surgeries into equivariant contact (±1)-surgeries. The proof is
constructive and produces an explicit algorithm that allows explicit equiv-
ariant contact surgery descriptions for real contact 3-manifolds.

An immediate consequence of Theorem 1.1 is the following, which we
prove in Section 5.

Corollary 1.5. Any oriented overtwisted contact structure on an integer
homology real sphere (Σ, s) of dimension 3 can be isotoped to be s-real.

In Section 6 we produce examples on S1 × S2 and lens spaces. In the
first part we show
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Theorem 1.6. The unique tight contact structure on S1 × S2 is real with
respect to three of the four possible real structures on S1 × S2.

We do not know the answer for the last real structure.
Finally on any lens space there exists a unique real structure that acts

on each Heegaard torus as hyperelliptic involution (coined as type A in [12]).
We prove in Section 6.2

Theorem 1.7. For any p > q > 0, every tight contact structure on L(p, q)
is A-real.

Acknowledgements. The authors thank the anonymous referee for es-
sential corrections and suggestions; and the Mathematics Village, Izmir,
for their hospitality during a research-in-pairs stay. The second author is
grateful to Sinem Onaran and Marc Kegel for their comments on contact
diagrams.

2. Preliminaries and equivariant contact surgery

2.1. Basic definitions

In the sequel we always reside in the smooth category, both for spaces and
maps, for the sake of keeping the rapport between involutions and contact
structures. We note that in the topological category some claims in the
equivariant realm may fail, e.g. the Smith conjecture [18].

On a solid torus S1 ×D2, there are four real structures up to isotopy
through real structures [11]. We choose an oriented identification of the
boundary T 2 with R2

(x,y)/Z
2, where x direction corresponds to the meridional

direction of T 2, and fix the coordinates of S1 ×D2 as (y, t, x) where t is the
radial direction of D2. In these coordinates, the four real structures on the
solid torus are:
(1) c1 : (y, (x, t)) 7→ (−y, (t,−x));
(2) c2 : (y, (t, x)) 7→ (y, (t, x+ 1

2));
(3) c3 : (y, (t, x)) 7→ (y + 1

2 , (t, x));
(4) c4 : (y, (t, x)) 7→ (y + 1

2 , (t, x+ 1
2)).

Any orientation preserving involution on T 2 can be extended to an in-
volution on S1 ×D2. Such an extension is unique up to isotopy and fixes a
core of the solid torus setwise [11]. A cj-knot is by definition a knot which
has a cj-equivariant neighborhood.

Likewise there are three involutions on the core circle up to isotopy
through involutions: reflection, identity and rotation by π (antipodal map).
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We also denote them by c1, c2 (or id) and c3 respectively. Note that c4|core =
c3 too.

An embedded Heegaard decomposition for a real 3-manifold (M, cM )
is said to be real if cM exchanges the two Heegaard handlebodies. In this
case cM restricts to a real structure on the Heegaard surface H, reversing
the orientation. It was proven by T. A. Nagase that every real 3-manifold
admits an (embedded) real Heegaard decomposition [19, Proposition 2.4].
As usual one can also construct a real 3-manifold by a pair of handlebodies,
both diffeomorphic to a handlebody U , and a gluing map c : U → U which is
a real structure on U [22]. Such a decomposition of the 3-manifold is called
an abstract real Heegaard decomposition, denoted in the sequel by the pair
(∂ U, c). The minimal genus among all Heegaard surfaces of all possible real
Heegaard decompositions of (M, cM ) is called the real Heegaard genus of
(M, cM ). It is greater than or equal to the Heegaard genus of M . See [22]
for a detailed discussion on real Heegaard decompositions.

A particular way to produce a real Heegaard decomposition is through
real open books [22]. Let (S, f) be an abstract open book, where S is
a compact surface with boundary and f : S → S is the monodromy with
f |∂S = identity. For a real structure c on S, the triple (S, f, c) with f ◦ c =
c ◦ f−1 is called an (abstract) real open book. The map cπ = c ◦ f is a real
structure on the page π of the open book so that f = c ◦ cπ. An abstract
real open book determines a real 3-manifold (M, cM ) uniquely and canoni-
cally. The union of the page 0 and the page π is a real Heegaard surface in
M and the real structure cM is the identity map between the two identical
handlebodies of the Heegaard splitting. The restrictions of cM to the page 0
and the page π are respectively c and cπ. As in the usual setting, there is
a notion of positive real stabilization developed in [22]. Up to equivariant
isotopy there are 9 distinct ways to attach handles to S and to extend the
real structure over the new handles (see [22, Figure 3]).

In the sequel, instead of using the term cM -real, we usually drop the ref-
erence to cM whenever the real structure is understood. The real structures
and the real parts will be in red wherever color is possible. We assume that
all contact structures are oriented and positive.

2.2. Equivariant surgery

Let (M, cM ) be a closed, oriented real 3-manifold and K be a cM -invariant
knot. Then K has a unique equivariant tubular neighborhood N(K), which
is equivariantly isotopic to one of the real solid tori (S1 ×D2, ci). An invari-
ant knot K is called a ci-knot if it has an equivariant neighborhood of type
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(S1 ×D2, ci). The common name used for a c1-knot is a strongly invertible
knot (under the involution).

A topological (p/q)-surgery (p, q ∈ Z) along the knot K takes the
meridian-longitude pair (µ0, λ0) of the new solid torus N0 to (pµ+ qλ, p′µ+
q′λ) on the boundary of the excised neighborhood N via a gluing map ϕ.
Note that here pq′ − qp′ = −1 and λ must be chosen. (The following discus-
sion is with respect to a fixed λ.) This surgery can be performed naturally
in the real setting along a ci-knot. The real extension cj over the surgered
solid torus is unique in the following way. Indeed in every possible case it
suffices to check that ci ◦ ϕ = ϕ ◦ cj .

• If K is a c1-knot then the real structure extends as c1.

• If K is a c2-knot then the real structure extends as











c2 if q even;

c3 if q odd, q′ even;

c4 if q odd, q′ odd;

• If K is a c3-knot then the real structure extends as











c2 if p even;

c3 if p odd, p′ even;

c4 if p odd, p′ odd;

• If K is a c4-knot then the real structure extends as











c2 if p+ q even;

c3 if p+ q odd, p′ + q′ even;

c4 if p+ q odd, p′ + q′ odd.

Definition 2.1. If a cI -solid torus is excised and a cJ -solid torus is glued
back, we call such a surgery of type IJ . As a final type of equivariant surgery,
consider a knot K satisfying K ∩ Fix (cM ) = ∅ and its disjoint copy K ′ =
cM (K). An equivariant pair of surgeries performed along K and K ′ will
be coined as a type-5 surgery (along K and K ′). Since cM is an orientation
preserving homeomorphism, the surgery framings along K and K ′ are equal.

Remark 2.2. Note that a 23-surgery followed by a Dehn twist along the
meridian (which alters the parity of q′) produces a manifold equivariantly
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diffeomorphic to one obtained by a single 24-surgery. Similarly 33- and 34-
surgeries are equivalent in that sense since a meridional Dehn twist alters
the parity of p′. Similarly for 43- and 44-surgeries. We will use this subtle
remark repeatedly in the sequel since we are content with diffeomorphisms,
not isotopies. However if the latter is in question then one should a priori
distinguish between I3- and I4-surgeries, I = 2, 3 or 4.

Let us also note that in case of a 11 surgery, the number |Fix| of con-
nected components of the real part may change. In fact, for a c1-knot K,
if the fixed points of K belong to the same (respectively different) compo-
nent(s) of the real part, |Fix| either increases (respectively decreases) by 1
or stays the same. Meanwhile, in case of 23- or 24-surgery, K is a c2-knot
(a real knot) and |Fix| decreases by 1; in case of 32- or 42-surgery, |Fix|
increases by 1. The 34- and 43-surgeries do not alter |Fix|.

2.3. Equivariant contact surgery

The possibility of contact surgery for a rational coefficient relies on the
existence of a tight contact solid torus with the required contact structure
on its convex boundary. It is known that the germ of a contact structure
near the convex boundary is determined by a collection of curves on the
boundary, called the dividing set. On a convex torus, this picture can be
standardized further to obtain linear curves as the dividing set, so that the
common slope of these curves determine the contact structure near the torus.
Such convex tori are said to be in standard form. The slope on the standard
contact neigborhood of a Legendrian curve L is determined by the contact
twisting (denoted tw(L)) of the curve. The twisting is well-defined after a
choice of a longitude for L. (See e.g. [8] or [13] for a thorough discussion for
convex surfaces, slopes and twisting.)

Similarly the possibility of equivariant contact surgery for a nonzero
rational coefficient relies of course on the existence of an equivariant tight
contact solid torus with the required slope on its convex boundary. The
equivariant counterpart of the terms above (i.e. the standard equivariant
contact neigborhood theorems, equivariant convex surfaces etc.) has been
studied in [21] and [20]. Here we put together the previously known existence
results for equivariant tight solid tori after [20].

Theorem 2.3. We have the following listed existence/nonexistence results
regarding equivariant tight solid tori with convex boundary. In case of exis-
tence, it is unique up to equivariant contact isotopy relative to the equivariant
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convex boundary in standard form such that the dividing set has slope s and
has exactly two connected components. Below k ∈ Z; 1/0 is considered as ∞.

• A c1-real tight solid torus with s = 1/k exists.

• A c2-real tight solid torus exists if and only if s = 1/k.

• A c3-real tight solid torus exists if and only if s = 1/(2k + 1).

• A c4-real tight solid torus exists if and only if s = 1/(2k).

All of the solid tori above are the standard neighborhoods of equivariant
Legendrian knots with tw = 1/s. Here tw is with respect to a fixed longitude.

Now let K be an equivariant Legendrian knot in a real tight contact
manifold (M, ξ, cM ). Let N be a standard equivariant contact neighborhood
of K, the existence of which is warranted by [21] and [20]. A contact (p/q)-
surgery on K is with respect to the choice of the longitude λ as the dividing
set on the boundary of N . To have a well defined contact structure on the
surgered 3-manifold, the dividing sets of ∂N0 and ∂N must match. By the
identification above, the curve −p′µ0 + pλ0 maps to the longitude λ, so the
solid torus N0 should be a tight contact solid torus with boundary slope
−p/p′.

We now repeat this discussion in the equivariant setting. We will be
interested in the following cases.

Case 1. K is a c1-knot. The extension would be c1. Since tight c1-solid
tori of slope (1/p′) (p′ ∈ Z) uniquely exist, equivariant contact (1/q)-surgery
of type 11 is uniquely defined up to equivariant contact isotopy. We fill in the
standard c1-real tight neighborhood of a c1-invariant knot with tw = −p′ .

Case 2. K is a c2-knot. It follows from Theorem 2.3 that equivariant
contact (p/q)−surgery is defined if and only if p = 1. Similarly for the other
cases below.

If q and q′ are both odd, then p′ must be even and the real contact
structure extends uniquely as a c4-tight solid torus with slope −1/p′ (∞
included here and below whenever p′ = 0).

If q is odd and q′ is even, then p′ must be odd and the real contact
structure extends uniquely as a c3-tight solid torus with slope −1/p′.

If q is even, then the real contact structure extends as a c2-tight solid
torus with slope −1/p′.

Note for the first two cases here that the parity of q′ is not well-defined:
given p and q one can alter the parity of p′ and q′ by meridional Dehn twists.
This is not a problem in the contact setting since a meridional Dehn twist
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extends over a solid torus and is smoothly isotopic to the identity. However
it is not isotopic to the identity through real structures (See Remark 2.2 and
the conclusion in Theorem 2.4).

Case 3. K is a c3-knot. Then p = 1 as before.
If p′ is odd, then the real structure extends as c4 but no c4-real tight

solid torus exists with slope −1/p′ for odd p′.
If p′ is even, then the real structure extends as c3 but no c3-real tight

solid torus exists with slope −1/p′ for even p′.
Case 4. K is a c4-knot. Then p = 1.
If p+ q = 1 + q is odd (i.e. q is even; so q′ is odd) and p′ + q′ is odd,

then p′ must be even and the real contact structure extends uniquely as a
c4-tight solid torus with slope −1/p′.

If q is even and p′ + q′ is even, then p′ must be odd and the real contact
structure extends uniquely as a c3-tight solid torus with slope −1/p′.

If q is odd, then the real contact structure extends uniquely as a c2-tight
solid torus with slope −1/p′.

Similar remark as the one following Case 2 above applies here for the
parity of p′: it is not well-defined and can be altered. Let us summarize the
above discussion.

Theorem 2.4 (Equivariant Contact Surgery along Equivariant Leg-
endrian Knots). Equivariant contact surgery along a Legendrian c3-knot
is impossible. Equivariant contact (1/q)-surgery (q ∈ Z) along a Legendrian
c1-, c2- or c4-knot is uniquely defined up to equivariant contactomorphism.
For a c2- or c4-knot the only possible contact surgery coefficient is 1/q.

Moreover for the surgery types 11, 22 and 42 the uniqueness is up to
equivariant contact isotopy.

Table 1 details the cases for equivariant contact surgery. The last column
describes the type c of the glued back solid torus: a standard c-real tight
neighborhood of a c-invariant knot with tw = −p′.

Proof of Proposition 1.2. The number of overtwisted contact structures on
S3 up to contact isotopy is countably infinite. They are distinguished by the
d3 invariant, which is a half integer for S3. (For d3, see [10] where it was first
defined or see e.g. [3].) The overtwisted structure ξ−2p with d3 = −2p+ 1/2,
p ∈ Z, can be obtained by a contact surgery given explicitly in, for example,
[6, Figure 8]. Observing the symmetry here, one can immediately turn this
diagram into an equivariant contact one along a pair of c1-real knots with
surgery coefficients +1 and −1/p (see Figure 1), except for p = 0 when there
is a single knot, the one on the left in Figure 1 with surgery coefficient +1.
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Knot Case Glue back

c1 c = c1

c2 q odd, q′ odd c = c4

q odd, q′ even c = c3

q even c = c2

c3 ∅

c4 q even, p′ even c = c4

q even, p′ odd c = c3

q odd c = c2

Table 1. Equivariant contact 1/q-surgery along ci-knots. We glue back the
standard c-real tight neighborhood of a c-invariant knot with tw = −p′

These equivariant contact surgeries are possible by Theorem 2.4. Recall that
the equivariant contact connected sum between two real contact 3-manifolds
is well-defined thanks to the fact that there is a unique real tight 3-ball [21].
Thus taking connected sums of arbitrarily many (S3, cst, ξk) with k = 0 and
d3 = 1/2 (respectively k = −2 and d3 = −3/2) one obtains every overtwisted
3-sphere with positive (respectively negative) d3 (cf. [3, Lemma 4.2]). Alter-
natively one could consider the real contact 3-spheres obtained by taking the
connected sum between (S3, cst, ξ0) and the 3-sphere in Figure 1 for varying
p ∈ Z. Note that in each case the equivariant contact diagram is simply the
disjoint union of the previous ones.

In general one must also check that the final real structure is the desired
one. But here that is immediate by the uniqueness of cst. □

+1
−1/p

Figure 1. The cst-real overtwisted structure ξ−2p on S3, p ∈ Z. In the case
p = 0, the ∞-surgery on the right disappears.
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3. Going recursively from real S3 to any real 3-manifold

In this section we will prove the following theorem of recursive nature.

Theorem 3.1. Every closed real 3-manifold (M, cM ) can be obtained via
a finite number of Dehn surgeries along an ordered, recursively invariant
collection of knots starting from the real 3-sphere (S3, cst).

More precisely, there is a sequence {(Mj , sj ;Kj)}
k
j=0 of real 3-manifolds,

a common Heegaard surface H and sj-invariant knots Kj ⊂ H ⊂Mj such
that (M0, s0) = (S3, cst) and (Mk, sk) is equivariantly diffeomorphic to
(M, cM ) and each (Mj+1, sj+1), 0 ≤ j ≤ k, is obtained from (Mj , sj) via
a ±1 surgery along Kj where the framing along Kj is determined by H; at
each step, the real structure is canonically extended to the surgered region.

First we will prove several lemmata regarding factorizations in the map-
ping class group of a real Heegaard surface. To start we need some pre-
liminaries. Two real structures (orientation reversing involutions) r and s
on an closed, oriented genus g surface Σg are said to be equivalent if there
is an orientation preserving diffeomorphism h such that r = h ◦ s ◦ h−1. It
is well-known that the equivalence class of r is determined by the num-
ber of connected components of the real part Fix (r), and connectedness of
Σg − Fix (r). (This follows from considering the quotient surface and the
classification of 2-manifolds.) In case Fix (r) is separating (i.e. Σg− Fix (r)
has exactly 2 connected components), then 1 ≤ |Fix (r)| ≤ g + 1 and g and
|Fix (r)| have opposite parities. We denote by smax the maximal real struc-
ture in the standard form (see Figure 2). If Fix (r) is non-separating (i.e.
Σg − Fix (r) is connected), then 0 ≤ |Fix (r)| ≤ g. In this case, the real
structure in the standard form is denoted by s|Fix (r)|.

Below τa always denotes the positive Dehn twist along a curve a on a
surface.

Lemma 3.2. Any real structure s on Σg with |Fix (s)| = k can be expressed
in the form

(3.1) s = τmβ · τbu . . . τb1 · p · smax

where p = τσ1

a1
. . . τσw

aw
· τσw

aw
. . . τσ1

a1
is a palindrome (possibly empty) with even

length and with each aj smax-invariant, σj ∈ Z; each bj ⊂ Fix (p · smax);
and β ⊂ Fix (s) with m = 1 if s is separating but not maximal and m = 0
otherwise.
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smax

m1

dg+1

d1 d2 d3 dg

e1 e2 e3 eg

Figure 2. The maximal real structure smax on Σg. The set of fixed points is
d1 ∪ . . . ∪ dg ∪ dg+1; here dg+1 is the large outer closed curve. The Humphries
generators of the mapping class group are d1, . . . , dg, e1, . . . , eg,m1; each is
an smax-invariant curve.

Proof. (i) Assume s is non-separating. Set u = g + 1− k and take smax-real
circles d1, . . . , du on Σg . Then sk = τdu

. . . τd1
· smax is the standard non-

separating real structure with k real circles hence is conjugate to s. Then
there is an orientation preserving diffeomorphism f of Σg so that

s = fskf
−1 = f · τdu

. . . τd1
· smax · f

−1

= f · τdu
f−1f . . . f−1fτd1

· f−1fsmax · f
−1

= τf(du) . . . τf(d1) · fsmaxf
−1.

Observe that since each dj is smax-invariant, each bj = f(dj) is (fsmaxf
−1)-

invariant. Furthermore fixing a basis for the mapping class group of Σg con-
sisting of twists on smax-invariant curves (e.g. the smax-invariant Humphries
generators in Figure 2), we can write

fsmaxf
−1 = (τσ1

a1
. . . τσw

aw
) · smax · (τ

−σw

aw
. . . τ−σ1

a1
)

= τσ1

a1
. . . τσw

aw
τσw

aw
. . . τσ1

a1
· smax.

(ii) If s is separating but not maximal, take any circle β ⊂ Fix (s). Then
τ−1
β · s is non-separating and the proof follows from part (i).

(iii) If s is maximal then the equation holds with m = 0 and u = 0 following
part (i). □
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On a real surface (Σg, s), we say that the product of Dehn twists
τσm
rm · · · τσ1

r1 satisfies the recursive s-invariance condition (or is recursively
s-invariant) if for each j = 1, . . . ,m,

(i) τ
σj−1

rj−1
. . . τσ1

r1 · s(rj) = rj ;

(ii) or rj and rj+1 are disjoint, and τ
σj−1

rj−1
. . . τσ1

r1 · s(rj) = rj+1.

We will set s0 = s and, for j > 0, sj = τ
σj

rj · sj−1 in case (i).

Lemma 3.3. The even palindrome p in the previous lemma has a recur-
sively smax-invariant factorization in even powers.

Proof. First, using the fact that p is an even palindrome, observe that it can
be written as

p = (τσ1

a1
· · · τσw−1

aw−1
τσw

aw
τ−σw−1

aw−1
· · · τ−σ1

a1
)2 · · ·

(τσ1

a1
τσ2

a2
τσ3

a3
τ−σ2

a2
τ−σ1

a1
)2 · (τσ1

a1
τσ2

a2
τ−σ1

a1
)2 · τ2σ1

a1
.

Now for each 1 ≤ j < w, set fj = τσ1

a1
· · · τ

σj

aj
, f̄j = τ

σj

aj
· · · τσ1

a1
, and r1 = a1,

rj+1 = fj(aj+1). Then the factorization above becomes

p = τ2σw

rw · · · τ2σ2

r2 τ2σ1

r1 .

We claim that this factorization is recursively smax-invariant. In fact, r1 =
a1 is invariant under smax; furthermore, for each 1 ≤ j < w, (dropping the
powers σj ’s for the sake of clarity)

(τ2rj · · · τ
2
r1smax)(rj+1) = fj f̄jsmax(fj(aj+1))

= fj(f̄j f̄j
−1

)smax(aj+1)

= fj(aj+1) = rj+1.

To finish the proof, we should also note that (τrj+1
τ2rj · · · τ

2
r1smax)(rj+1) =

rj+1. □

The proof above shows also that the composition of smax with τrj ’s is
always a real structure. In fact, for every 1 ≤ j < w, (without writing σj ’s)

(τ2rj · · · τ
2
r1smax) · (τ

2
rj · · · τ

2
r1smax) = (fj f̄jsmax) · (fj f̄jsmax)

= fj f̄j f̄j
−1
fj

−1s2max = id
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and similarly

(τrj+1
τ2rj · · · τ

2
r1smax) · (τrj+1

τ2rj · · · τ
2
r1smax) = τrj+1

τ−1
rj+1

= id.

Of course this fact is valid for every recursively s-invariant product
τσw
rw . . . τσ1

r1 . If we set s0 = s and, for j > 0, sj = τ
σj

rj · sj−1, we see that

{sj}
j=m
j=0 is a sequence of real structures on Σg.

Proof of Theorem 3.1. We will follow the proof of the Lickorish-Wallace
Theorem (see e.g. [23]). Given the real 3-manifold (M, cM ), consider a real
Heegaard splitting ofM . Let the Heegaard surface H have genus g. Then we
take a genus-g nonseparating real splitting of (S3, cst) (which exists for any
g > 0; see [22] or [1]) so that the real map s = cst|H equals τδ1 . . . τδg · smax

for some smax-real disjoint curves δ1, . . . , δg. Note that in these splittings, s
and c = cM |H are gluing maps. In the usual proof of the Lickorish-Wallace
Theorem, the composition c · s is expressed as a product of Dehn twists
and then each twist is extended over handlebodies. In our case, we express
c · s as a recursively s-invariant product and show that that factorization
describes an appropriate recursively equivariant sequence of (±1)-surgeries.
Now, using Lemma 3.2 and Lemma 3.3 we write:

c · s = (τmβ τbu . . . τb1 · p · smax) · (τδ1 . . . τδg · smax)

= τmβ τbu . . . τb1 · p · τ
−1
δ1

. . . τ−1
δg

where p = τ2σw
rw . . . τ2σ1

r1 is a (possibly empty) recursively smax-invariant fac-
torization with even powers, bj ’s are in Fix (p · smax); δj ’s are s-invariant
and smax-real; and β ∈ Fix (c) with m = 1 if c is non-separating but not
maximal and m = 0 otherwise.

We claim that the last factorization for c · s is recursively s-invariant.
First since δj ’s are disjoint s-invariant, following the terms of Lemma 3.3 we
have:

s0 = s, r1 = δg;

s1 = τ−1
δg

· s, r2 = δg−1;
...

sg = τ−1
δ1

. . . τ−1
δg

· s = smax, rg+1 = δ1.

Next, p is already recursively smax-invariant. Moving on with the remaining
terms of the product we set sg+w+1 = p · smax and rg+w+2 = b1. Since bj ’s are
disjoint and (p · smax)-real and β is c-real the claim of recursive s-invariance
follows.
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Finally we claim that each of these steps determines an appropriate
equivariant (±1)-surgery with respect to the framing determined by the ini-
tial surface H. As usual this is accomplished by pushing each curve equiv-
ariantly into the Heegaard handlebodies, as the following proposition shows,
and thus the proof of Theorem 3.1 follows. □

Proposition 3.4. Let X and Y be real 3-manifolds with real Heegaard
splittings (H, c) and (H, s) respectively. Suppose s = τ±σ

α · c where α is a c-
invariant curve on H. Then a (∓1/2σ)-surgery in X along α, with framing
determined by H, followed by uniquely extending the real structure over the
surgered region gives a real 3-manifold equivariantly diffeomorphic to (Y, s).

Proof. Let H1 and H2 be the two handlebodies of the Heegaard splitting of
(X, c) and let X0 ⊂ X be an equivariant neighborhood of H diffeomorphic
to H × [−1, 1]. Set X1 = cl(H1 −X0) which we consider identical to X2 =
cl(H2 −X0). Then X is equivariantly diffeomorphic to X1 ∪id|∂X1

X0 ∪c|∂X0

X2 (here the gluing maps are from the top boundary of the first space to
the bottom boundary of the next) with the real structure c̃ defined as

c̃ :

{

X1 → X2, x 7→ x

X0 → X0, x 7→ c(x).

Similarly, we consider such a splitting (Y1, Y0, Y2; s̃) for (Y, s). Here we con-
sider X1, X2, Y1, Y2 identical and X0, Y0 identical.

Let ν(α) be an annulus neighborhood of α in H and N = ν(α)× [−1, 1]
be a c-equivariant smooth neighborhood of α in X0. Since α is both c- and s-
invariant, with a slight abuse, we will also denote by N a small s-equivariant
neighborhood of α in Y0. We observe that the identity map (again with
an abuse) is an equivariant homeomorphism from X −N to Y −N , which
can be made an equivariant diffeomorphism after smoothing. Now, with
T = S1 ×D2 and ϕ a (∓1/2σ)-sloped diffeomorphism on ∂N , (X −N) ∪ϕ T
is diffeomorphic to Y . Here the previous diffeomorphism idX−N extends
trivially over T .

What the essence in the claim of the proposition is and what we have to
show basically is that the above extension can be performed equivariantly.
Indeed the real structure τ±2σ

α c|∂T (here τ±1
α is considered to be a twist

around a copy of α on ∂T ∼=ϕ ∂N) can be extended to a real structure over
T uniquely. In fact,
(i) If c|α = c1 then the unique extension over T up to equivariant isotopy is
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c1. This corresponds to a type-11 equivariant surgery (see Theorem 2.4).
(ii) If c|α = c2, i.e. α is real, then τ±2σ

α c|∂T is equivariantly diffeomorphic
to c2 since the surgery coefficient q = ±2σ is even. This corresponds to a
type-22 equivariant surgery.
(iii) If c|α = c3 then c|∂N = c3 or c4 . The former is impossible on a real
Heegaard surface. Then τ±2σ

α c|∂T is equivariantly isotopic to c3 or c4. This
is an equivariant type-44 or 43 surgery. Of course the choices here are equiv-
ariantly diffeomorphic. □

4. Equivariant Lickorish-Wallace theorem

In this section, we will give an equivariant surgery description for a real
3-manifold and prove the Lickorish-Wallace Theorem in the equivariant set-
ting. In general the surgery link provided by the Lickorish-Wallace Theorem
need not accept any kind of symmetry in (S3, cst). However we show here
that it is always possible to construct an invariant surgery link.

Consider a real three-manifold (M, cM ) and a cM -equivariant link L =
L1 ∪ . . . ∪ Ln in M decorated with an integer n-tuple σ = (σ1, . . . σn) ∈
Zn. Let (M(L), cM (L), σ) denote the real 3-manifold resulting from cM -
equivariant σ-surgery along L, i.e. the collection of σi-surgeries along Li’s,
1 ≤ i ≤ n. (As usual the surgery coefficients are with respect to a standard or
given reference framing.) We will usually write (M(L), cM (L)) instead, when
the surgery coefficient σ is clearly understood or is not explicitly required.

Definition 4.1. On a real surface (Σg, c), a product τσt
at
. . . τσ1

a1
·

τ±1
bk

. . . τ±1
b1

· τσ1

a′

1

. . . τσt

a′

t
of Dehn twists is called an equivariant product for

c if c(ai) = a′i and bj are disjoint c-invariant curves for all 1 ≤ i ≤ t and
1 ≤ j ≤ k .

We start with a technical lemma.

Lemma 4.2. Let (M, cM ) and (M ′, cM ′) be two real manifolds with the
associated real Heegaard splittings (H, c) and (H, c′) respectively. Assume
that c′c = τut

at
. . . τu1

a1
· τvk

bk
. . . τ v1

b1
· τu1

a′

1

. . . τut

a′

t
with all ui, vj ∈ {−1,+1} and

that this factorization is an equivariant product for c. Then there is an
equivariant link L in (M, cM ) decorated with ui’s and vj’s such that the
real 3-manifold (M(L), cM (L)) (with respect to a framing induced by a real
Heegaard surface) is equivariantly diffeomorphic to the manifold (M ′, cM ′).

Proof. Topologically, the manifold M ′ can be obtained from M following
Lickorish and Wallace. LetM = U1 ∪c U2 andM

′ = U1 ∪c′ U2 where U1 and
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U2 are two genus-g handlebodies bounded by H. Instead, we consider a split-
ting of (M, cM ), similar to the proof of Proposition 3.4 but with more in-
termediate blocks, as follows. Take an equivariant neighborhood H × [−1, 1]
of the Heegaard surface H with cM fibered in the sense that cM |H×{t} = c.
Keeping this model in mind, set Hi = H × [i, i+ 1], −t− 1 ≤ i ≤ t. Then
(M, cM ) is equivariantly diffeomorphic to the manifold

U1 ∪id H−t−1 ∪id . . . ∪id H−2 ∪id H × [−1, 1] ∪id H1 ∪id . . . ∪id Ht ∪c U2

(as in the proof of Proposition 3.4, here and in every similar notation below
the gluing maps are to be understood from the top boundary of the previous
space to the lower boundary of the next) with the real structure defined as

c̃M =

{

id : U1 → U2,

cM : Hi → H−i−1.

(See Figure 3, left.) We will use this splitting and real structure for (M, cM ),
and write cM for c̃M , abusing the notation

We push the curves ai to the knots Ki on the surface h−i (which is
the lower boundary of H−i; see Figure 3), the curves a′i to Ki on hi (lower
boundary of Hi) and the curves bj determine knots Cj on h0 (which are
mutually disjoint by assumption), so that we get the surgery link

(L, σ) = (Kt, ut) ∪ . . . ∪ (K1, u1) ∪ (Ck, vk) ∪ . . . ∪ (C1, v1) ∪ . . . ∪ (Kt, ut)

for the manifold M ′. The surgery coefficients here are with respect to the
associated surface hi. Note that L is a cM -equivariant link, as the knot pair
Ki and Ki are swapped by c̃M |H = cM |H = c for each 1 ≤ i ≤ t and Cj is a
c-invariant knot for all 1 ≤ j ≤ k.

We will prove in two steps that the resulting real manifold
(M(L), cM (L)) is not only diffeomorphic but also equivariantly diffeomor-
phic to (M ′, cM ′). First we will show that (M(L), cM (L)) is equivariantly
diffeomorphic to the intermediate real manifold (E, e) where

E = U1 ∪id H−t−1 ∪τ
ut
at
. . . ∪τ

u1
a1
H−1, 0] ∪τ

vk
bk

...τ
v1
b1

H0 ∪τ
u1

a′

1

. . . ∪τ
ut

a′

t

Ht ∪c U2

with the real structure

e =

{

id : U1 → U2,

cM : Hi → H−i−1 (fibered as before).

(See Figure 3, right.) For the sake of simplicity of the demonstration, let
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h0

h−1

U1

U2

h−1

Ht

id

id

c

id

id
H−t−1

id

U1

U2

h−t−1

h−t

h−t−1

h−t

h1 h1

c

id

cMidcMcM

ht+1

ht

h0

ht

ht+1

id
H0

id
H−1

cM

τut

a′

t

τu1

a′

1

τvk

bk
· · · τv1

b1

τu1
a1

τut
at

Figure 3. The real splittings associated to (M, cM ) (left) and (E, e) (right).
Gluing maps are shown on the right of the surfaces, real structures are shown
as –red– thick lines.

us take k = t = 1 and drop the indices and powers. Then we have a single
invariant knot b lying on the surface h0, and a pair of knots (a, a′) swapped by
the real structure in both manifolds. The general case where there are more
curves is handled similarly. Now, take an equivariant neighborhood (a solid
torus) V0 of the curve b, by first taking an equivariant annular neighborhood
of b on h0, product with a small interval I so that the neighborhood remains
equivariant and between but away from the surfaces h1 and h−1. Similarly
take an equivariant pair of neighborhoods in M as follows: neighborhood
V ′ of a′ between h2 and h0, and V of a between h0 and h−2. Maybe the
only essential observation here is that since a is invariant under τa, id(V ) is a
neighborhood of a in E too (similarly for a′ and b). Between the complements
of the interiors of these solid tori in M and E, there is the equivariant
diffeomorphism

id :M − (V̊ ′ ∪ V̊0 ∪ V̊ ) → E − (V̊ ′ ∪ V̊0 ∪ V̊ );

here V̊ denotes the interior of V .
For V in M , take a meridian µ and a longitude λ that is a copy of a;

then V in E has meridian µ± λ. Similarly for V0 and V ′. Then we excise
these solid tori from M and glue back identical solid tori T, T0, T

′ respec-
tively. The gluing maps are (±1)-sloped boundary diffeomorphisms ψ, ψ′

(i.e. µ 7→ µ± λ) for V and V ′, while for T0 an equivariant diffeomorphism
ψ0 : (∂T0, c∗) → (∂V0, e|V0

) can be taken. Here c∗ = c1, c2 or c4. Thus one



✐

✐

“3-Ozturk” — 2023/4/20 — 0:01 — page 1332 — #20
✐

✐

✐

✐

✐

✐

1332 M. Cengı̇z and F. Öztürk

obtains (M(L), c(L)) where the real structure c(L) is given as:

c(L) =











cM :M − V̊ ′ − V̊0 − V̊ →M − V̊ ′ − V̊0 − V̊ ,

id : T → T ′,

c∗ : T0 → T0,

Now we define a diffeomorphism F from ML to E as follows:

F =























id :M − V̊ ′ − V̊0 − V̊ → E − V̊ ′ − V̊0 − V̊ ,

ψ′ : T ′ → V ′,

ψ0 : T0 → V0,

ψ : T → V.

It is straightforward to check that F ◦ c(L) = e ◦ F so that F is an equiv-
ariant diffeomorphism.

In the second step, we prove that (E, e) is equivariantly diffeomorphic
to (M ′, cM ′). Consider the following splitting of (M ′, cM ′):

U1 ∪id H−t−1 ∪id . . . ∪id H−1 ∪c′ H0 ∪id . . . ∪id Ht ∪id U2

with the real structure

cM ′ =

{

id : U1 → U2,

id : Hi → H−i−1.

(See Figure 4.) For each i define the functions fi and fi as follows:

fi =
(

c · τ−ut

a′

t
. . . τ

−ui+1

a′

i+1

)

× id : Hi → Hi

fi =
(

τut

at
. . . τui+1

ai+1

)

× id : H−i−1 → H−i−1

Now define a map from (E, e) to (M ′, cM ′) using the above functions:

F =























id : U1 → U1,

id : U2 → U2,

fi : Hi → Hi,

fi : H−i−1 → H−i−1,

It is straightforward to check that F is a well-defined diffeomorphism from
E to M ′ on the boundaries of the thickened surfaces and handlebodies. We
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do that just for h0:

F−1c′F |h0⊂∂H0
= f0

−1
c′f0 = τ−u1

a1
. . . τ−ut

at
c′cτ−ut

a′

t
. . . τ−u1

a′

1

= τ vk

bk
. . . τv1

b1
.

Finally F is an equivariant diffeomorphism:

FeF−1 =

{

id : U1 → U2

fi
−1
cMf

−1
i = id : Hi → H−i−1

}

= cM ′

□

Proof of Theorem 1.4. Let (M, cM ) be a real 3-manifold with a real Hee-
gaard splitting (H, c) and fix a real Heegaard splitting (H, s) of (S3, cst)
with the same surface H (s is to be determined below). The above lemma
proves in particular that in case c · s has a factorization which is an equiv-
ariant product of Dehn twists, one gets an equivariant surgery description
of a real 3-manifold M starting from (S3, cst). So to prove the theorem it
suffices to show that c · s has a factorization which is an equivariant product.
Indeed first assume that the real part of M is non-empty and consists of the
circles r0, . . . , rk in H. The real structure c′ = τr1 . . . τrk · c on H has the real
part r0 and is non-separating if and only if either k ≥ 1 or k = 0 and c is
non-separating. We know that there is a real Heegaard splitting (H, s) of

h−1

Ht

id

id

id

id

H0

H−1

H−t−1

id

U1

U2

h−t−1

h−t

h1

id

ht+1

ht

h0

id

ididc′

Figure 4. The splitting associated with (M ′, cM ′).
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(S3, cst) with a non-separating real part r ⊂ H. Furthermore in case k = 0
but c is separating, (S3, cst) can be assigned a real Heegaard splitting (H, s)
with separating s (e.g. see Figure 7). By the classification of real structures
on compact surfaces, c′ and s are conjugate by an orientation preserving
diffeomorphism f . Set bi = f(ri) and note that b0 = r. Then we have

s = f−1 · c′ · f

= f−1 · τr1 . . . τrk · c · f

= (f−1 · τr1 · f) · f
−1 . . . f · (f−1 · τrk · f) · f

−1 · c · f

= τb1 . . . τbk · f
−1 · c · f

The curves b1, . . . , bk on H are now c4-invariant with respect to s. Let f =
τut
at
. . . τu1

a1
be an expression for f in terms of generators of the mapping class

group of H. Then

c = f−1 · τ−1
bk

. . . τ−1
b1

· s · f

= τut

at
. . . τu1

a1
· τ−1

bk
. . . τ−1

b1
· s · τ−u1

a1
. . . τ−ut

at

= τut

at
. . . τu1

a1
· τ−1

bk
. . . τ−1

b1
· (s · τ−u1

a1
· s−1) · s . . . s−1 · (s · τ−ut

at
· s−1) · s

= τut

at
. . . τu1

a1
· τ−1

bk
. . . τ−1

b1
· τu1

s(a1)
. . . τut

s(at)
· s.

The factorization for c · s that appears in the last line above is an equivariant
product for s. We complete the proof using the Lemma 4.2 and its proof
to get an equivariant link of the form L = L ∪ LS ∪ L so that LS is an
equivariant unlink consisting of c4-knots and cst(L) = L.

For the case where the real manifold (M, cM ) has empty real part, by
[24, Lemma 4.3.1], τr · s is a real structure with empty real part. We follow
exactly the same steps and end up with an equivariant link L = L ∪ LS ∪ L
so that LS is a c2-knot (the only real knot) in S3 and cst(L) = L. □

Let us note the crucial issue that the surgery along the c4-knots in LS is
of type 42 (purely by the construction of the proof). In other words, the real
structure c∗ that appears in the expression of the equivariant diffeomorhism
ψ0 in the proof of Lemma 4.2 is c2.

5. Three-manifolds with real contact structures

The main result of this section is Theorem 1.1 that asserts that every real
3-manifold admits a real contact structure. In order to prove that, we simply
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show that the equivariant surgeries in the previous section can be realized
in the contact setting. The proof displays a constructive algorithm. Before
that we prove two technical lemmata.

The first one is a Legendrian realization principle in the real setting.
Recall that the Legendrian realization principle Theorem 3.7 in [13] gives
a criterion for making a collection C of non-isolating curves and arcs on a
convex surface Legendrian after a perturbation of the convex surface. (A
set C of disjoint curves is said to be non-isolating if C is transverse to ΓS ,
every arc in C begins and ends on ΓS , and every component of S − C has
nonempty intersection with ΓS .) We are going to prove a weaker version in
the real setting, for an invariant set of curves on an anti-symmetric convex
surface, imposing an additional condition on the set C.

Lemma 5.1. Let S be an anti-symmetric closed convex surface in
(M, ξ, cM ) so that c = cM |S is an orientation reversing involution and ΓS is
an anti-symmetric oriented dividing set. Let C be a non-isolating c-invariant
set of curves. Assume S − (ΓS ∪ C ∪ Fix (c)) consists only of disjoint com-
ponents S1, S

′
1, . . . Sk, S

′
k with c(Si) = S′

i for 1 ≤ i ≤ k. Then there exists an
equivariant isotopy φs (s ∈ [0, 1]) of S:
(1) φ0 = id;
(2) φs(S) is convex;
(3) φ1(ΓS) = Γφ1(S);

(4) φ1(C) is Legendrian and (φ1 ◦ c ◦ φ
−1
1 )-invariant.

Proof. In the original proof of Legendrian realization principle, one con-
structs a singular foliation F containing the set C (or an isotopic copy)
which is also divided by ΓS . Then using the Flexibility Theorem, this folia-
tion can be made a characteristic foliation for Γ and since the leaves of the
characteristic foliation are Legendrian, so is the set C. For a detailed proof
see [13] or [4].

We will not reproduce the proof here but instead we will point out
how one can modify it equivariantly. The singular foliation F is constructed
around a boundary collar of each component of S − (ΓS ∪ C) and then is
extended to the interior. The assumption that C is non-isolating makes it
possible to extend C to a singular foliation.

In our case, we consider the set C ∪ Fix (c). ΓS and Fix (c) intersect
transversally and nontrivially since ΓS is anti-symmetric, which guarantees
that C ∪ Fix (c) is non-isolating provided C is non-isolating. Since Fix (c) is
Legendrian by definition, the components of S − (ΓS ∪ C ∪ Fix (c)) may be
treated as if they are components of S − (ΓS ∪ C) with Legendrian boundary
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Fix (c). Now we can construct a singular foliation on each piece Si in exactly
the same way as in the original proof, then extend it to S′

i equivariantly. Then
we use the real version of Giroux’s Flexibility Theorem [21, Proposition 3.4]
to conclude. □

Note that if c is separating, then S − (ΓS ∪ C ∪ Fix (c)) already consists of
equivariant pair of components. The assumption is needed when c is non-
separating.

The last assumption of the lemma is indispensable. Indeed we are go-
ing to show in the next section that there are cases where the assumption
does not hold and equivariant Legendrian realization is impossible (see Re-
mark 6.2).

The second lemma is about convex Heegaard splittings of the real tight
S3, similar to the observations in [22, Section 2.1].

Lemma 5.2. For any genus g ≥ 1, (S3, ξst, cst) has a real Heegaard splitting
where the Heegaard surface H is convex. Moreover, there are g disjoint c4-
circles m1, . . . ,mg on H such that |mi ∩ Γ| = 4 where Γ is the dividing set
of H.

Proof. We will start with a real open book decomposition of (S3, cst) with
disk pages and by positive real stabilizations we will increase the genus of
the induced Heegaard splitting. This proves the first claim as the Heegaard
surface induced by an open book decomposition is convex.

Now let (S0 = D2, f0 = id, c0 = ρ0) be the real open book decomposition
of (S3, cst) where ρ0 is the reflection with respect to the y-axis. After a real
positive stabilization of type II, the resulting real pages are annuli with the
real structure shown in Figure 5.

Performing real positive stabilizations of type II g times successively,
the real pages (S−, c−) and (S+, c+) become disks with g holes with c− =
ρgτa1

. . . τag
and c+ = ρg where ρg is the reflection with g + 1 real arcs; see

Figure 6.
We obtain a real Heegaard splitting with convex surface H = S− ∪ S+ of

genus g. The dividing set is the binding and the gluing map is s = c− ∪ c+.
The blue curves shown in Figure 6 are c4-curves with respect to s and satisfy
the conditions of the lemma. □

Proof of Theorem 1.1. Let (M, cM ) be a real 3-manifold with the real
Heegaard splitting (H, c). By Theorem 1.4 there is an equivariant link
L = L ∪ LS ∪ L and σ ∈ {−1,+1}n in (S3, cst) such that (S3

L, c(L), σ) is
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Figure 5. The real pages after a real positive stabilization of type II; left:
(S−, c−) and right: (S+, c+)

Figure 6. The real pages (S−, c−) (top) and (S+, c+) (bottom) for (S3, cst).
The red arcs are real, the blue arcs are cst-invariant.

equivariantly diffeomorphic to (M, cM ). Here the link LS consists of un-
linked cst-invariant knots and L and L are swapped by cst. To turn this
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equivariant surgery into an equivariant contact surgery, we must put LS

into an equivariant Legendrian position so that the components of LS sat-
isfy the hypotheses of Theorem 2.4, summarized in Table 1. For L and L, it
is enough to make them Legendrian respecting the equivariance.

Using the set up in the proof of Theorem 1.4, let Fix (c) consist of
k + 1 real circles r0, . . . , rk. Consider (S3, cst) with the real contact Hee-
gaard splitting (H, s) of genus k induced by the real open book decomposi-
tion given in Lemma 5.2. Let r ⊂ H denote the real circle of s. There are k
disjoint c4-circles (with respect to s) m1, . . .mk on H by Lemma 5.2. Then
c′ = τ−1

m1
. . . τ−1

mk
· s is a real structure with Fix (c′) = {r,m1, . . . ,mk}. Now

that c and c′ are conjugate, there is an orientation preserving diffeomorphism
f of H given by a product τσ1

a1
. . . τσt

at
such that c = f ◦ c′ ◦ f−1. Following

the steps in the proof of Lemma 4.2, we get an equivariant surgery link
L ∪ LS ∪ L where LS consists of the knotsm1, . . . ,mk on H. On eachmi, we
perform a type-42, equivariant (−1)-surgery. Note that since {m1, . . . ,mk}
is a non-isolating set of curves transverse to the dividing set, we can make
each mi Legendrian with an equivariant perturbation of H by Lemma 5.1.
Moreover for each modified mi, tw = −2 since |mi ∩ Γ| = 4. Hence, the con-
dition in Theorem 2.4 to perform an equivariant contact surgery on a c4-knot
is satisfied and we perform an equivariant (+1)-contact surgery on each mi.

Note that if k = 0 and r0 is separating, we cannot use the real Heegaard
splitting given by Lemma 5.2 since r is non-separating there, so that c and
s would not be conjugate. In that case we use the real Heegaard splitting
induced by the real open book given in Figure 7. (See also [22, Figure 6].)
This open book is obtained from the simplest real open book decomposition
of S3 with disk pages and succesively attacing handles of type III k times.
The real circle is separating in this case and c and s are conjugate. The rest
of the proof follows similarly as above. □

Proof of Corollary 1.5. This follows immediately from Proposition 1.2 and
the proof of Theorem 1.1. Given any real integer homology sphere (Σ, s)
the proof of Theorem 1.1 shows that one can obtain an s-real contact struc-
ture η on Σ via an equivariant contact diagram Γ in (S3, cst, ξst). Then
consider the real contact 3-manifold (Σ, s, η)#(S3, cst, ξp), p ∈ Z, which is
equivariantly diffeomorphic to (Σ, s). Besides the final contact structure is
overtwisted, since ξp is. In an integer homology sphere, the set of overtwisted
contact structures up to contact isotopy is countably infinite and they are
distinguished by the d3 invariant. Again from [3, Lemma 4.2] it follows that
varying p one exhausts all overtwisted structures on (Σ, s). Each is given
by the equivariant contact diagram Γ adjoined with the one for (S3, cst, ξp)
obtained in the proof of Proposition 1.2. □
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ag a1 a′1 a′g

Figure 7. A real open book of S3 after stabilizations of type III. The real
page (S−, c−) is depicted.

6. Examples

This section is a display for the applications of the ideas we have harvested
in the previous sections. For some basic real 3-manifolds (S1 × S2 and lens
spaces), we will give equivariant surgery descriptions and provide equivariant
contact surgery diagrams in (S3, cst, ξst). Of course, given surgery diagrams
for these manifolds we could readily make them equivariant. However then
we would not have any control on the real structure obtained at the end. In
this section we turn surgery diagrams into equivariant ones with a careful
control on the final real structure. For a collection of similar results see [20].

Below we use the genus-1 real contact Heegaard decomposition of

(S3, cst) with the gluing map cst =

[

0 1

1 0

]

, with abuse of notation. The con-

vexity of the Heegaard surface is guaranteed by

Lemma 6.1. (a) There is a real contact Heegaard decomposition of
(S3, cst, ξst) of genus 1, with the Heegaard map cst.
(b) Moreover a parallel copy of the dividing set (which does not satisfy the
hypothesis of Lemma 5.1) can be realized in a Legendrian way on the Hee-
gaard surface.

Proof. We consider the setup in [8, Example 4.6.21] in the real 3-sphere
{r21 + r22 = 2} ∈ R4 with

cst(r1, ϕ1, r2, ϕ2) = (r2,−ϕ2, r1,−ϕ1).
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The invariant torus T : r1 = r2 = 1 of the Hopf vector field is an embed-
ded anti-symmetric Heegaard surface naturally, with the gluing map cst.
As noted in [8], such a torus is not convex. However it can be made con-
vex equivariantly using the equivariant perturbation similar to [8, Exam-
ple 4.8.10]. There the ambient contact space (T 2 × R, dθ/2 + zdϕ) can be
made real by defining c′(θ, ϕ, z) = (−θ, ϕ,−z). Now an equivariant neigh-
borhood of the anti-symmetric torus {z = 0} is equivariantly contactomor-
phic to an equivariant neighborhood of T via the map f : θ = ϕ1 + ϕ2, ϕ =
ϕ1 − ϕ2, z = r21 − 1, i.e. f satisfies f ◦ cst = c′ ◦ f . Finally observe that the
second characteristic foliation in [8, Example 4.8.10] is c′-real when p = 1
and q = 0. In that (standard) characteristic foliation a knot parallel to the
dividing set is Legendrian (see the corresponding figure in [8]). □

Now we are ready to move on towards our basic examples.

6.1. S
1
× S

2

We refer to the work of J. L. Tollefson [25] for the classification of involutions
on S1 × S2 up to conjugation by a diffeomorphism of S1 × S2. There are 13
classes in total and 4 of them are orientation preserving with one dimensional
fixed point set. Hence there are 4 real structures on S1 × S2 with nonempty
real part, up to equivalence. If we identify S1 × S2 as {(θ, (x, y, z)) : x2 +
y2 + z2 = 1} ⊂ S1 × R3 then we can express two of these real structures:

(1) s1 : (θ, (x, y, z)) 7→ (θ, (−x,−y, z)),

(2) s2 : (θ, (x, y, z)) 7→ (−θ, (x, y,−z)),

each of which has two real circles.
If we consider S1 × S2 as the space [−1, 1]× S2 with (−1, (x, y, z)) and

(1, (−x,−y, z)) identified, then we can express the remaining two of these
real structures as:

(3) s3 : (t, (x, y, z)) 7→ (t, (x,−y,−z)),

(4) s4 : (t, (x, y, z)) 7→

{

(1− t, (−x,−y,−z)) if 0 ≤ t ≤ 1

(−1− t, (x, y,−z)) if − 1 ≤ t < 1
,

each of which has one real circle.
Each of the real structures above can be associated with a real genus-1

Heegaard splitting of S1 × S2. Consider the real structures on T = S1 × S1
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given by the matrices

(6.1) s1 =

[

−1 2

0 1

]

, s2 =

[

1 2

0 −1

]

, s3 =

[

−1 1

0 1

]

, s4 =

[

1 1

0 −1

]

.

The abuse of notation here relies on the fact that the abstract real Heegaard
splitting (T, si) for any k ∈ Z is associated to the real 3-manifold (S1 ×
S2, si). This can be seen by computing the quotients and the number of real
components. (Any even -resp. odd- integer at the top right entry of s1 or s2
-resp. s3 or s4- would give the same result.)

Now that we have an abstract real Heegaard splitting for each real S1 ×
S2, we will demonstrate how to obtain them via equivariant surgery from
the standard real 3-sphere via Theorem 1.4. Below a and b are the curves

S1 × {1} and {1} × S1 on T ; τa =

[

1 1

0 1

]

, τb =

[

1 0

−1 1

]

are the Dehn twists

along a and b respectively.
(1) The gluing involution s1 satisfies s1 = τ−1

a+bcst where a+ b is a c4-knot
for cst. Then (S1 × S2, s1) can be obtained from (S3, cst) by an equivariant
(−1)-surgery of type 42 on the unknot represented by a+ b, with respect
to the framing induced from the Heegaard surface H. Since the Heegaard
framing minus the Seifert framing along a+ b is +1, a (−1)-surgery with
respect to H corresponds to a topological 0-surgery on the unknot, which
gives of course S1 × S2.
(2) We have s2 = τa−bcst where a− b is a c1-knot for cst. Then (S1 × S2, s2)
can be obtained from (S3, cst) by an equivariant (+1)-surgery of type 11 on
the unknot represented by a− b, with framing with respect to H.
(3) For (S1 × S2, s3), we have s3 = τ−1

b τ−1
a cst, and cst(a) = b. Hence (S1 ×

S2, s3) is given by an equivariant (−1)-surgery of type 5 on the Hopf link
formed by the knot pair (a, b). Here Seifert framing and Heegaard framing
of a coincide; similarly for b.
(4) For (S1 × S2, s4), we have s3 = τbτacst. Hence (S1 × S2, s3) is given by
an equivariant (+1)-surgery of type 5 on the Hopf link formed by the knot
pair (a, b).

The tight contact structure on S1 × S2, unique up to isotopy, is given
by

ξ = ker(xdθ + ydz − zdy).

Obviously the contact structure ξ is real with respect to s1 and s2. However
it is not obvious at all whether ξ is real with respect to s3 and s4. Below
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we also answer that question for s4 affirmatively using equivariant contact
surgery.

The unique tight contact structure ξ of S1 × S2 is obtained from (S3, ξst)
through contact (+1)-surgery on the unknot with Thurston-Bennequin num-
ber tb = −1 [3] (see Figure 8, left). This contact surgery diagram can be

+1+1+1

Figure 8. The contact surgery diagram (left) for the unique tight contact
structure on S1 × S2 can be made s1-real (middle) and s2-real (right)

readily made equivariant in two ways as depicted in Figure 8, middle and
right. Now we argue that these correspond to the equivariant contact surgery
descriptions for (S1 × S2, s1, ξ) and (S1 × S2, s2, ξ) respectively.

We have already observed that (S1 × S2, s1) is given by an equivariant
(−1)-surgery (with respect to H) of type 42 on the unknot represented by
a+ b. We consider a real Heegaard splitting (H, cst) of (S3, cst, ξst); here,
thanks to Lemma 6.1(a), we may assume that H is an equivariant convex
torus with two parallel dividing curves, each represented by a− b. Here,
the Real Legendrian Realization Principle Lemma 5.1 cannot be used to
get a+ b equivariantly Legendrian on H. Instead we employ Lemma 6.1(b)
to accomplish that. Since the contact twisting along a+ b with respect to
H is tw(a+ b;H) = −2, the contact surgery coefficient is +1. Moreover,
tb(a+ b) = −1. Hence we get the corresponding equivariant contact surgery
diagram, the one in the middle in Figure 8.

Similarly (S1 × S2, s2) is given by an equivariant (+1)-surgery of type 11
(with respect to H) on the unknot represented by a− b. In this the curve
a− b can be made equivariantly Legendrian on H according to Lemma 5.1.
Then tw(a− b;H) = 0 as (a− b) is parallel to the dividing set. Hence we
get the contact surgery coefficient +1− 0 = +1. Since tb(a− b) = −1, we
obtain the equivariant contact surgery diagram in Figure 8, right.

(S1 × S2, s4) is obtained by performing a type 5 (+1)-surgery on the
knot pair formed by the curves (a, b). We make a Legendrian (no need to
employ Real Legendrian Realization Principle), and an equivariant copy
represents a Legendrian unknot b. If these Legendrian unknots are arranged
to have tw = tb = −1 then we would need an equivariant pair of contact
(+2)-surgeries. However such a contact surgery is not well-defined; a priori
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it is not unique. However in this case it is: either of the two choices made
during the surgery leads to isomorphic structures (see [14, Example 5.3]).
Anyhow this topological equivariant surgery must be turned into a well-
defined equivariant contact one. For this we follow the idea in [14] to turn the
contact (+2)-surgery along the Legendrian knot with tb = −1 into contact
(±1)-surgeries along a pair of Legendrian knots K1,K2 and their equivariant
copy L1, L2 as appears in Figure 9(a). Moreover, this contact diagram gives
the unique tight structure on S1 × S2.

+1+1

(b)

∼=

(a)

K1

K2

L2

L1

K2

L1

−1

+1

∼= ∼=

+1
+1

−1

+1

+1 ∼=

−1

+1

+1

−1

−1

Figure 9. Equivariant contact surgery diagrams (a) for (S1 × S2, s4, ξ) and
(b) for (S1 × S2, s3, OT ).

A proof of tightness is shown in Figure 9. The first isomorphism is by
contact sliding of K1, L2 over K2 [2]. In the new diagram L1 does not link
with the slided copies of K1, L2 and thus it is a meridian of K2. The second
isomorphism follows from the fact that a (−1)-contact surgery on some L
and a (+1)-contact surgery on its meridian cancels each other. One way
to see that is by sliding the meridian over L to get a Legendrian push-off
of L. A (−1)-contact surgery on L and a (+1) on its push-off cancel. The
third isomorphism is via applying [5, Lemma 2.9] (for two knots and for
n = +1). This lemma is a generalization of [15, Proposition 2.4]. Finally the
last isomorphism is a contact Reidemeister move. The discussion up to now
proves Theorem 1.6.
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Furthermore (S1 × S2, s3) is given by a type 5 (−1)-surgery on the same
Hopf link as above and a possible corresponding equivariant contact surgery
diagram is shown in Figure 9(b). This s3-real contact structure is overtwisted
(see e.g. [3]). So the attempt to find out whether ξ is s3-real or not is in-
conclusive with this particular surgery. We still do not know whether ξ is
s3-real or not.

Remark 6.2. Let us start with the genus-1 real contact Heegaard decom-
positions of (S3, cst) with the gluing map f = τbs

′
2 instead of cst, where

s′2 =

[

1 0

0 −1

]

. This decomposition is induced from the real open book de-

picted in Figure 5, thus the Heegaard surface H is equivariantly convex as it
comes from a real open book. Since s′2 = τ−1

b f , (S1 × S2, s2) can be obtained
from (S3, cst) via an equivariant (−1)-surgery of type 11 on the unknot rep-
resented by b, with framing with respect to H. We observe that b can be
realized in a Legendrian way on H by the Legendrian Realization Principle
but that cannot be done equivariantly. Indeed, first note that Lemma 5.1
does not apply here as its last assumption is not satisfied. If equivariant
realization were possible, then tw(b;H) would be zero as b is parallel to
the dividing set. Hence we would get tb(b) = 0 + 1 = 1. This is of course
impossible for an unknot in the tight S3.

6.2. Lens spaces – real structures of type A

As in the previous paragraph let us consider an h-equivariant Heegaard
torus T in the real lens space (L(p, q), h), bounding solid tori V and V ′.
If h is orientation preserving on T and if h|V = c1 and h|V ′ = c1, then h
is said to be of type A. It is interesting that for any p, q, L(p, q) admits a
real structure of type A, unique up to equivariant isotopy [12]. Moreover
we claim and prove here Theorem 1.7 which asserts that any tight contact
structure on L(p, q) is A-real.

Let p > q > 0 and [r1, . . . , rn], ri ≤ −2 be the continued fraction for
−p/q. K. Honda proved that on L(p, q), there exists exactly |(r1 +
1) . . . (rk + 1)| tight contact structures up to isotopy. Moreover, each tight
contact structure on L(p, q) can be obtained from Legendrian ((−1)-contact)
surgery on a link in the standard tight 3-sphere [13]. Topologically, surgery
link is given by a chain of unknots with (ordered) coefficients ri as in Fig-
ure 10. This surgery diagram in fact is an equivariant surgery diagram
where all the unknots are c1-knots. Performing equivariant surgery pro-
duces (L(p, q), A). Indeed, the quotient of the surgered manifold with the
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real structure is S3. Since the only real structure on L(p, q) having quotient
S3 is A [12], the real structure on the surgered manifold is of type A.

r1 r3 rn

r2

. . .

. . .

Figure 10. A surgery diagram for L(p, q), which may be taken equivariant.

There are exactly |(ri + 1)| ways to stabilize an unknot to perform a con-
tact (−1)-surgery on it. Moreover, each choice of stabilization will represent
a Legendrian c1-unknot. Hence, each contact surgery diagram describing
a tight contact structure on L(p, q) is also an equivariant contact surgery
diagram (consisting of Legendrian c1-knots and contact (−1)-surgeries of
type 11) describing an A-real tight contact structure.

This argument proves Theorem 1.7.
Finally note that the equivariant contact surgery diagram we mentioned

in the previous paragraph cannot be obtained by the construction in the
proof of Theorem 1.4 since the latter does not involve any c1-knots.
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