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We show that the minimal symplectic area of Lagrangian submani-
folds are universally bounded in symplectically aspherical domains
with vanishing symplectic cohomology. If an exact domain admits
a k-semi-dilation, then the minimal symplectic area is universally
bounded for K(π, 1)-Lagrangians. As a corollary, we show that the
Arnol’d chord conjecture holds for the following four cases: (1) Y
admits an exact filling with SH∗(W ) = 0 (for some nonzero ring
coefficient); (2) Y admits a symplectically aspherical filling with
SH∗(W ) = 0 and simply connected Legendrians; (3) Y admits an
exact filling with a k-semi-dilation and the Legendrian is a K(π, 1)
space; (4) Y is the cosphere bundle S∗Q with π2(Q) → H2(Q) non-
trivial and the Legendrian has trivial π2. In addition, we obtain the
existence of homoclinic orbits in case (1). We also provide many
more examples with k-semi-dilations in all dimensions ≥ 4.

1. Introduction

One of the fundamental questions in contact geometry is the following chord
conjecture by Arnol’d [8].

Conjecture 1.1. Let (Y, ξ) be a closed contact manifold, then any closed
Legendrian carries a Reeb chord for any contact form α.

The conjecture was completely addressed in dimension 3 by Hutchings-
Taubes [25]. The surgical picture in [25] first appeared in Cieliebak’s proof
[15] of the chord conjecture for some special cases, as the Reeb chord of a
Legendrian sphere is closely related to the surgery formula for Floer theories
[10]. However, in dimension ≥ 5, a Legendrian can have a diffeomorphism
type different from spheres, hence the surgery point of view may not apply
in general. On the other hand, Mohnke used a different method and proved
the chord conjecture for any subcritically fillable contact manifolds in all
dimensions [31].
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Mohnke’s argument revealed a closely related concept called minimal
symplectic area [18]. The minimal symplectic area of a closed Lagrangian L
inside a symplectic manifold (W,ω) is defined to be

(1.1) Amin(L,W ) := inf

{∫
u∗ω

∣∣∣∣u ∈ π2(W,L),

∫
u∗ω > 0

}
∈ [0,∞].

Let L be a set of diffeomorphism types of closed connected manifolds, we
define

Amin(L,W ) := sup{Amin(L,W ) |

L is a Lagrangian in W, the diffeomorphism type of L is in L}.

There are two collections that we are interested in, Lall the collection of all
n-manifolds, LK(π,1) the collection of all n-dimensional K(π, 1)-spaces, in
particular, those admitting a non-positive sectional curvature. The following
theorem is due to Mohnke [31].

Theorem 1.2 ([31]). If the contact manifold Y admits an exact filling
W , such that Amin(Lall,W ) < ∞, then the chord conjecture holds for Y . If
Amin(LK(π,1),W ) < ∞, then the chord conjecture holds for K(π, 1) Legen-
drians1.

Then the chord conjecture for subcritically fillable contact manifolds
follows from that the minimal symplectic area is bounded from above by
the displacement energy of the subcritical domain W by [14]. Our main
theorem is finding new families of symplectic manifolds with universally
bounded minimal symplectic area, which are not necessarily displaceable.

Theorem 1.3. Let W be an symplectically aspherical domain and R be
unital commutative ring such that 1 ̸= 0 ∈ R.

1) If SH∗(W ;R) = 0, then Amin(Lall,W ) < ∞.

2) If W is an exact domain and admits a k-semi-dilation in R coefficient
[44], then Amin(LK(π,1),W ) < ∞.

Remark 1.4. It is not true that W ′ ⊂ W implies that Amin(L,W
′) ≤

Amin(L,W ) since π2(W
′, L) → π2(W,L) may not be surjective. For ex-

ample, if L = {Tn}, then Amin(L, B
2n(1)) < ∞. On the other hand

1Such statement is not the minimal requirement for the argument in [31] to work.
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Amin(L, D
∗
ϵT

n) = ∞ as it contains an exact Tn, but the disk bundle D∗
ϵT

n

with small enough radius ϵ can be symplectically embedded into the ball
B2n(1). However if W ′ ⊂ W is a homotopy equivalence, then we have
Amin(L,W

′) ≤ Amin(L,W ). In particular, we can use Amin(L,W ) to define
a generalized symplectic capacity for star shaped domains in Cn, e.g. the
Lagrangian capacity [16, 18].

By [26], if an exact domain W is displaceable, then SH∗(W ;Z) = 0. But
the vanishing of symplectic cohomology does not imply being displaceable.
Although the vanishing of symplectic cohomology is a restriction, there are
still many examples (1) flexible Weinstein domains [10, 34], (2) subflexible
Weinstein domains [34], (3) V × D for any exact domain V [35], (4) prequan-
tization line bundles over symplectically aspherical manifolds [36]. Moreover,
there are many non-flexible examples whose symplectic cohomology vanishes
in certain finite field coefficient [4, 27]. The k-semi-dilation is a generalization
of the vanishing of symplectic cohomology, as admitting a 0-semi-dilation
is equivalent to the vanishing of symplectic cohomology. Examples with k-
semi-dilations include cotangent bundles of simply connected manifolds [44,
Proposition 5.1], more generally tree plumbings of cotangent bundles of sim-
ply connected (spin) manifolds of dimension at least 3 [28, Proposition 6.2],
and Milnor fibers of many canonical singularities [44, Theorem A]. More-
over, the k-semi-dilation is preserved under subcritical and flexible surgeries
under mild conditions, products and Lefschetz fibrations [44, §3.6]. In this
paper, we also find more examples with k-semi-dilations, see Theorem 1.9.
Therefore there is a rich class of examples that Theorem 1.3 can be applied
to. There are also examples of vanishing of symplectic cohomology using
local systems [7]. As a corollary we have the following.

Theorem 1.5. Let Q be a closed manifold such that the Hurewicz map
π2(Q) → H2(Q) is nontrivial. Then Amin(L,D

∗Q) is uniformly bounded for
any Lagrangian L such that π2(L) → π2(T

∗Q) is trivial.

The topological conditions in (2) of Theorems 1.3 and 1.5 are neces-
sary. For example, the zero section of D∗S2 is exact, hence has infinite
minimal symplectic area. However, (2) of Theorem 1.3 or 1.5 imply that
oriented Lagrangians that are not spheres have a universal minimal sym-
plectic area bound. Indeed, there are many such Lagrangians, as we can
take several copies of the zero section after different Hamiltonian perturba-
tions and then use Lagrangian surgeries to resolve the intersections to get
smooth Lagrangians with higher genus.
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Combining Theorems 1.2, 1.3, and 1.5 together, we prove the chord
conjecture for the following examples.

Corollary 1.6. Let Y be a contact manifold and R ̸= 0 a commutative
ring.

1) If Y has an exact filling W with SH∗(W ;R) = 0, then the chord con-
jecture holds for Y .

2) If Y has a symplectically aspherical filling W with SH∗(W ;R) =
0, then the chord conjecture holds for any Legendrian Λ such that
π1(Λ) → π1(W ) is trivial, in particular, any simply connected Legen-
drian.

3) If Y has an exact filling W with a k-semi-dilation in R-coefficient,
then the chord conjecture holds for any K(π, 1) Legendrian.

4) If Y = S∗Q with the Hurewicz map π2(Q) → H2(Q) nontrivial, then
the chord conjecture holds for any Legendrian Λ such that π2(Λ) →
π2(T

∗Q) is trivial.

Remark 1.7. For exact domains W with SH∗(W ) = 0, Ritter showed that
the chord conjecture holds for exactly fillable Legendrians via showing the
vanishing of the wrapped Floer cohomology of the filling [37]. However, not
every Legendrian is fillable and we do not have an effective criterion to prove
a Legendrian is fillable.

We first explain the mechanism behind the proof of Theorem 1.3. In the
extreme case, if L is an exact Lagrangian inside an exact domain W , in
particular, then Amin(L,W ) = ∞. In this case, we have the Viterbo trans-
fer map SH∗(W ) → SH∗(T ∗L) preserving various structures. Note that
SH∗(T ∗L) is never zero and SH∗(T ∗L) does not carry a k-semi-dilation
if L is a K(π, 1) space. Using the Viterbo transfer map, if SH∗(W ) = 0
then W has no exact Lagrangians, and if W admits a k-semi-dilation, then
W has no exact K(π, 1) Lagrangians. If L is not an exact Lagrangian, the
Viterbo transfer map (without deformation) does not exist. However a trun-
cated version of the Viterbo transfer map still exists, where the threshold of
the truncation depends on Amin(L,W ). Then Theorem 1.3 follows from the
same argument as in the exact case above.

Inspired by the argument in [31], it is natural to look for the extreme case
of the failure of finite minimal symplectic area in the symplectization, i.e.
exact Lagrangians in a symplectization. By [33], there exist abundant exact



✐

✐

“5-Zhou” — 2023/4/21 — 11:45 — page 1389 — #5
✐

✐

✐

✐

✐

✐

On the minimal symplectic area of Lagrangians 1389

Lagrangians in overtwisted contact manifolds of dim ≥ 3. Therefore the ap-
proach in [31] is not applicable to all contact manifolds. On the other hand,
every exact Lagrangian in the symplectization is displaceable by Hamilto-
nian diffeomorphisms [33, Remark 4]. In particular, there is no exact La-
grangian in the symplectization if the contact manifold is exactly fillable,
for otherwise the Lagrangian Floer cohomology is well-defined and non-
vanishing, contradicting that it is displaceable. It is an interesting question
to understand if there is some quantitative shadow of this argument which
leads to existence of Reeb chords.

Mohnke’s construction was modified by Lisi [30] to obtain existence of
homoclinic orbits in the case of displaceable exact domains. Here the dis-
placeable property is again used to obtain universal minimal symplectic area
upper bounds by [14]. With new minimal symplectic area bound given by
Theorem 1.3, we obtain the following result.

Corollary 1.8. Assume (W,λ) is an exact domain such that SH∗(W ;R) =
0 for a commutative ring R ̸= 0. Let H : W → R be a Hamiltonian with
H(x0) = 0 and x0 a hyperbolic zero of the Hamiltonian vector field XH .
Suppose H−1(0) is compact and H−1(0)\{x0} is of restricted contact type,
i.e. λ(XH) > 0 on H−1(0)\{x0}, then there is an orbit of XH homoclinic to
x0.

We also find many new examples with k-semi-dilations, which provide
more examples for Theorem 1.3 and Corollary 1.6.

Theorem 1.9. Let X be a degree m smooth hypersurface in CPn+1 for
m ≤ n. Then for any holomorphic section s of O(k) for k ≤ n+ 1−m, the
affine variety X\s−1(0) admits a k +m− 2-semi-dilation.
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2. Symplectic cohomology

In this section, we review briefly the construction of symplectic cohomology
for exact and symplectically aspherical domains and the Viterbo transfer
map following [19, §3]. We will only recall basics of symplectic cohomology
to set up notations and relevant structures for our main results. We refer
readers to [19, 37, 39] for a more complete treatment of the subject.

2.1. Symplectic cohomology

2.1.1. Symplectic cohomology for exact domains. Let (W,λ) be an

exact filling and (Ŵ , λ̂) = W ∪ ∂W × (1,∞) be the completion. Let H be a

time-dependent Hamiltonian on the completion (Ŵ , λ̂), then the symplectic
action for an orbit γ is

(2.1) AH(γ) = −

∫
γ∗λ̂+

∫

S1

(H ◦ γ)dt,

where dλ̂(·, XH) = dH. We say an almost complex structure J is cylindri-
cally convex near ∂W × {r0} iff near the hypersurface r = r0 we have that
λ̂ ◦ J = dr. We will consider a Hamiltonian H, which is a C2 small pertur-
bation (for the more precise meaning, see (ii) below) to the Hamiltonian
that is 0 on W and linear with slope a on ∂W × (1,∞), such that a is not a
period of Reeb orbits of Rλ on ∂W × {1}. We may assume the Hamiltonian
is non-degenerate, then the periodic orbits consist of the following.

(i) Constant orbits on W with AH ≈ 0.

(ii) Non-constant orbits near Reeb orbits of Rλ on ∂W × {1}, with action
close to the negative period of the Reeb orbits. In particular, we have
AH ∈ (−a, 0). To see this, note that our H is an S1-dependent C2

small perturbation to an autonomous Hamiltonian h(r) with h′(r) = a
for r > 1 + ϵ with ϵ small and h(r) = 0 for r ≤ 1. The non-constant
orbits of h(r) are in S1 families like (ξ(h′(r0)t), r0), where ξ is a Reeb
orbit of (∂W, λ|∂W ) with the period of ξ is h′(r0) for 1 < r0 < 1 + ϵ.
Then the S1 family comes from the reparameterization of the Reeb
orbit ξ. Therefore the symplectic action of such orbit is

−h′(r0)r0 + h(r0).

It is clear when ϵ ≪ 1, we have that the symplectic action is approx-
imately the negative period of ξ, which, in particular, is in (−a, 0).
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Then the C2-small perturbation to h(r) in [11, Lemma 3.3] will break
the S1 family orbits into two non-degenerate orbits with symplectic
action arbitrarily close to the original S1 family.

After fixing an S1-dependent compatible almost complex structure J that
is cylindrically convex near a slice (i.e. a hypersurface r = r0) where the
Hamiltonian is linear with slope a, we can consider the compactified moduli
space of Floer cylinders, i.e. solutions to ∂su+ J(∂tu−XH) = 0 modulo the
R translation and asymptotic to two Hamiltonian orbits

Mx,y =
{
u : Rs × S1

t → Ŵ |∂su+ J(∂tu−XH) = 0, lims→∞ u(s, ·) = x, lims→−∞ u(s, ·) = y
}
/R.

With a generic choice of J , the count of rigid Floer cylinders defines a cochain
complex C(H), which is a free R module generated by Hamiltonian orbits,
for any commutative ring R (our default setting is R = Z). The differential
δ0 is defined as

δ0(x) =
∑

y,dimMx,y=0

(#Mx,y) y.

The orbits of type (i) form a subcomplex C0(H), whose cohomology is
H∗(W ). The orbits of type (ii) form a quotient complex C+(H). The cochain
complexes are graded by n− µCZ , which is in general a Z/2Z grading un-
less c1(W ) = 0. Given two Hamiltonians Ha, Hb with slopes a < b, we can
consider a non-increasing homotopy of Hamiltonians Hs from Hb to Ha, i.e.
Hs = Hb for s ≪ 0 and Hs = Ha for s ≫ 0. Then the count of rigid solu-
tions to the parameterized Floer’s equation ∂su+ J(∂tu−XHs

) = 0 defines
a continuation map C(Ha) → C(Hb), which is compatible with splitting into
zero and positive complexes. Then the (positive) symplectic cohomology of
W is defined as

SH∗(W ) := lim
a→∞

H∗(C(Ha)), SH∗
+(W ) := lim

a→∞
H∗(C+(Ha)),

which fit into a tautological exact sequence,

. . . → H∗(W ) → SH∗(W ) → SH∗
+(W ) → H∗+1(W ) → . . .

We define the filtered symplectic cohomology SH∗
<a(W ) by H∗(C(Ha)) and

SH∗
+,<a(W ) by H∗(C+(Ha)), which are independent of Ha as long as a

is not a period of Reeb orbits on ∂W , see [46, Proposition 2.8]. We use

SH [0],∗(W ), SH
[0],∗
+ (W ) to denote the cohomology generated by contractible

orbits.
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2.1.2. Symplectic cohomology for symplectically aspherical do-
mains. Assume (W,ω) is a strong domain2 that is symplectically aspher-
ical, i.e. ω|π2(W ) = 0. Then the symplectic action for a Hamiltonian H and
a contractible orbit γ is now

(2.2) AH(γ) = −

∫

D

u∗ω̂ +

∫

S1

(H ◦ γ)dt,

where u : D → Ŵ is an extension of γ. (2.2) is independent of u since
ω|π2(W ) = 0. In this case, we still have a cochain complex C [0](Ha) for a

Hamiltonian with slope a and a continuation map C [0](Ha) → C [0](Hb) for
a < b. However, it is not longer clear from the symplectic action perspective
that C [0](Ha) splits into C0 and C+

3. Nevertheless, we can still define sym-
plectic cohomology SH [0],∗(W ) := lima→∞H∗(C [0](Ha)) and filtered sym-

plectic cohomology SH
[0],∗
<a (W ) := H∗(C [0](Ha)) and a continuation map

H∗(W ) = SH
[0],∗
<ϵ (W ) → SH

[0],∗
<a (W ) → SH [0],∗(W ) for ϵ ≪ 1, which in the

exact case, is the map H∗(W ) → SH
[0],∗
<a (W ) → SH [0],∗(W ) in the tautolog-

ical exact sequence.

2.2. The Viterbo transfer map [19, §5]

Let (V, λV ) ⊂ (W,λW ) be an exact subdomain, i.e. λW |V = λV , then there
exists ϵ > 0, such that Vϵ := V ∪ ∂V × (1, 1 + ϵ] ⊂ W with λW |Vϵ

= λ̂V .

Then we can consider a Hamiltonian H on Ŵ as a C2-small non-degenerate
perturbation to the following.

1) H is 0 on V .

2) H is linear with slope B on ∂V × [1, 1 + ϵ], such that B is not the
period of a Reeb orbit on ∂V .

3) H is Bϵ on W\Vϵ.

4) H is linear with slope A ≤ Bϵ on ∂W × [1,∞), such that A is not the
period of a Reeb orbit on ∂W .

Then there are five classes of periodic orbits of XH .

2A strong domain (W,ω) is a compact symplectic manifold with boundary, such
that ω = dλ near ∂W and the Liouville vector field X defined by ιXω = λ near ∂W
points out along ∂W .

3The splitting, in particular, the positive symplectic cohomology is still defined
by the asymptotic behaviour lemma [19, Lemma 2.3].
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(I) Constant orbits on V with AH ≈ 0.

(II) Non-constant periodic orbits near ∂V with AH ∈ (−B, 0).

(III) Non-constant periodic orbits near ∂V × {1 + ϵ} with action AH ∈
(Bϵ− (1 + ϵ)B,Bϵ) = (−B,Bϵ). To see the action region, it is similar
to (ii) after (2.1). Those orbits are close to Reeb orbits of (∂W, λ|∂W ),
but placed near r = 1 + ϵ. Therefore −

∫
γ∗λ̂ in (2.1) is close to (1 + ϵ)

times (as λ̂|r=1+ϵ = (1 + ϵ)λ|∂W ) the period of the Reeb orbits and∫
S1(H ◦ γ)dt is close to Bϵ. Hence the claim follows.

(IV) Constant orbits on W\Vϵ with AH ≈ Bϵ.

(V) Non-constant periodic orbits near ∂W with AH ∈ (Bϵ−A,Bϵ)

In particular, when Bϵ ≥ A, the quotient complex generated by orbits with
non-positive action are generated by type (I), (II) orbits along with some
of the type (III) orbits. However, there is no Floer cylinder from a type
(III) orbit to a type (I) or (II) orbit [19, Figure 6]. This follows from the
asymptotic behavior lemma [19, Lemma 2.3] and the integrated maximum
principle [19, Lemma 2.2]. Therefore orbits of the form (I), (II) form a quo-
tient complex when Bϵ ≥ A. Let HV denote the Hamiltonian on V̂ which
is the linear extension of the truncation of H on Vϵ. Then by [19, Lemma
2.2], the quotient complex is identified with C∗(HV ). Those two applications
of the integrated maximum principle are where exactness of the cobordism
W\V is crucial. Next we consider a Hamiltonian HW on Ŵ which is a C2

small perturbation to the function that is zero on W and linear with slope A
on ∂W × (1,∞). Then HW ≤ H and we can find non-increasing homotopy
from H to HW , which defines a continuation map. Therefore we have a map

C∗(HW ) → C∗(H) → C∗(HV ).

Since the continuation map increases the symplectic action, the above map
respects the splitting into C0, C+. Taking direct limit forB yields the Viterbo
transfer map which is compatible with the tautological exact sequence,

. . . // H∗(W ) //

��

SH∗
<A(W ) //

��

SH∗
+,<A(W ) //

��

H∗+1(W ) //

��

. . .

. . . // H∗(V ) // SH∗(V ) // SH∗
+(V ) // H∗+1(V ) // . . .

If we also take the direct limit for A, then we get the Viterbo transfer map
for the full symplectic cohomology.
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Moreover, SH∗(W ) is a unital ring by the pair-of-pants construction [37,
§6]. The continuation map H∗(W ) → SH∗(W ) as well as the (full) Viterbo
transfer SH∗(W ) → SH∗(V ) are unital ring maps [37, §9, §15]. If we take
SH [0],∗(W ), then the Viterbo transfer map maps to the part of SH∗(V )
generated by orbits that are contractible in W , which can then be included
into the full symplectic cohomology generated by all orbits.

2.3. S
1-equivariant symplectic cohomology

The S1 action on the free loop space gives rise to an S1-equivariant analogue
for symplectic cohomology [13, 39]. More precisely, one can consider Hamil-
tonians with slope a that are parameterized over ES1 = S∞ (in the actual
construction, we need to approximate ES1 by S2m+1). In particular, by
counting parameterized Floer trajectories, we have maps δ1, δ2, . . . defined
on the regular symplectic cochain complex, such that

∑
i+j=k δ

i ◦ δj = 0 for

k ≥ 0. Then δS
1

=
∑∞

k=0 u
kδk defines a differential on C(H)⊗R[u, u−1]/u,

whose cohomology is denoted by SH∗
S1,<a(W ). The full S1-equivariant sym-

plectic cohomology SH∗
S1(W ) is the direct limit with respect to continuation

maps for a → ∞, see [13, 22, 43, 44] for details. We also have the splitting
into positive and zero parts, which induces the following long exact sequence
of H∗(BS1) = R[u]-modules,

(2.3) . . . → H∗
S1(W ) → SH∗

S1(W ) → SH∗
+,S1(W )

δ
→ H∗+1

S1 (W ) → . . . ,

where H∗
S1(W ) = H∗(W )⊗Z R[u, u−1]/u.

Definition 2.1. Let π0 denote the projection H∗
S1(W ) → H0(W ), we say

W carries a k-semi-dilation iff there exists x ∈ SH∗
+,S1(W ), such that π0 ◦

δ(x) = 1 and uk+1(x) = 0.

It is clear from definition, that k-semi-dilations only depend on the part

SH
[0],∗
+,S1(W ) generated by contractible orbits.

Remark 2.2. A symplectic dilation was introduced by Seidel-Solomon [40]
as an element x ∈ SH1(W ), such that ∆(x) = 1, where ∆ is the BV op-
erator. In [44], we introduced the concept of k-dilations, an exact domain
W admits a k-dilation iff there exists x ∈ SH∗

+,S1(W ), such that δ(x) = 1

and uk+1(x) = 0. Then the existence of a 1-dilation is equivalent to the ex-
istence of a symplectic dilation [44, Proposition 3.8], and the existence of a
k-dilation for some k is equivalent to the existence of a cyclic dilation for
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h = 1 introduced in [28], see [44, Remark 1.1]. The existence of k-dilations
implies the existence of k-semi-dilations [44, Proposition 3.8].

Let V ⊂ W be an exact subdomain. By the family version of the con-
struction in §2.2, we have the following Viterbo transfer map which respects
the R[u]-module structure, see [22].

. . . // H∗
S1(W ) //

��

SH∗
S1,<a(W ) //

��

SH∗
+,S1,<a(W ) //

��

H∗+1
S1 (W ) //

��

. . .

. . . // H∗
S1(V ) // SH∗

S1(V ) // SH∗
+,S1(V ) // H∗+1

S1 (V ) // . . .

In particular, if W carries a k-semi-dilation, then by the commutativity of
rightmost square as R[u]-modules, we have that V also carries a k semi-
dilation.

Example 2.3. The following examples have a k-semi-dilation for some k.

1) The cotangent bundle T ∗Q of a simply connected closed manifold Q
[44, Proposition 5.1] and more generally, plumbings of {T ∗Qi} with
respect to any tree for simply connected closed spin manifold Qi such
that dimQi ≥ 3 [28, Proposition 6.2];

2) The Brieskorn variety xn0 + . . .+ xnn = 1 [44, Theorem A];

3) Lefschetz fibration whose fiber admits a k-semi-dilation [44, Proposi-
tion 3.31];

4) Products of exact domains if one of them admits a k-semi-dilation,
[44, Proposition 3.30];

5) Flexible surgery does not affect the existence of k-semi-dilations under
mild assumptions [44, Proposition 3.32].

Using the functorial property of k-semi-dilations and Lefschetz fibrations,
there are many more Brieskorn varieties with k-semi-dilations, when the
Brieskorn singularity is canonical, see [44, §5].

Example 2.4. Let L be a smooth K(π, 1) space, then T ∗L does not admit
a k-semi-dilation. This is because SHS1(T ∗L) is the equivariant homology
of the free loop space possibly twisted by a local system [2, 3, 38, 42], hence
SH∗

+,S1(T ∗L) is generated by non-contractible loops as L is a K(π, 1) space.
Therefore T ∗L can not support a k-semi-dilation for any k, as the class
x ∈ SH∗

+,S1(W ) for a k-semi-dilation is represented by contractible orbits.
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3. Truncated Viterbo transfer

Let L ⊂ W be a Lagrangian. We say L is exact if λ is exact on L. In this case,
the complement of a Weinstein neighborhood of L is an exact cobordism. In
general, λ|L is only a closed class, and the complement is a strong cobordism
and the Viterbo transfer in §2.2 fails. In this case, (1.1) becomes

Amin(L,W ) = inf

{∫
γ∗λ

∣∣∣∣γ ∈ π1(L) that is contractible in W,

∫
γ∗λ > 0

}
.

Proposition 3.1. Let (W,λ) be an exact domain and L a Lagrangian such
that Amin(L,W ) ≥ 2A > 0, then we have a Viterbo transfer SH∗

<A(W ) →
SH∗(T ∗L) such that the following exact sequences commute

. . . // H∗(W ) //

��

SH
[0],∗
<A (W ) //

��

SH
[0],∗
+,<A(W ) //

��

H∗+1(W ) //

��

. . .

. . . // H∗(T ∗L) // SH∗(T ∗L) // SH∗
+(T

∗L) // H∗+1(T ∗L) // . . .

Proof. Fixing a metric on L, we have the unit cotangent bundle (D∗L, λstd).
We define (D∗

ϵL, λstd) = D∗L\(∂D∗L× (ϵ, 1]). By the Weinstein neighbor-
hood theorem, we have a symplectic embedding (D∗

ϵL, dλstd) into W .
WLOG, we can assume there exits a closed one form β ∈ Ω1(D∗

ϵL), which
is a pullback from Ω1(L), such that λ = λstd + β on D∗

ϵL. Then we consider

Hamiltonians H on Ŵ in the definition of the Viterbo transfer that are C2

small perturbations to functions with the following properties,

1) 0 on D∗
ϵ

2

L,

2) linear with slope 2A
ϵ

with respect to r ∈ (0, ϵ] on D∗
ϵL\D

∗
ϵ

2

L,4

3) A on W\D∗
ϵL,

4) linear with slope A on ∂W × (1,∞).

We write Γ := Amin(L,W ), which by assumption is ≥ 2A. As in §2.2, we
have the following five types of orbits.

(I) Constant orbits on D∗
ϵ

2

L with AH ≈ 0.

4The standard r0 coordinate for the completion D∗
ϵ
2

L ∪ ∂D∗
ϵ
2

L× (1,∞)r0 = T ∗L

equals to 2
ϵ
r on D∗

ϵL\D
∗
ϵ
2

L. Therefore the slope w.r.t. the r0 coordinate is A.
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(II) Non-constant periodic orbits near ∂D∗
ϵ

2

L. The symplectic action using

λstd for those type (II) orbits is the same as before, i.e. in the region
(−A, 0).5 But the actual symplectic action using λ differs by

∫
γ∗β for

the orbit γ. In particular, those orbits have action in (−A, 0) + ZΓ.

(III) Non-constant periodic orbits near ∂D∗
ϵL. The actual symplectic action

using λ again differs from that of type (III) orbits in §2.2 by
∫
γ∗β for

the orbit γ. Hence the symplectic action is in (−A,A) + ZΓ.

(IV) Constant orbits on W\D∗
ϵL, with AH ≈ A, as H ≈ A there.

(V) Non-constant periodic orbits near ∂W with AH ∈ (0, A).

Then we consider the Hamiltonian HW on Ŵ , which is admissible with
slope A. Since the symplectic action of orbits of XHW

is in (−A, 0) and
the continuation map induced from the non-increasing homotopy from H
to HW increases symplectic action, we get a cochain map from C [0](HW )
to the complex generated by orbits of XH that are contractible in W with
action in (−A, 0). Since Γ ≥ 2A, any type (II), (III) orbit γ with action in
(−A, 0) has the property that

∫
γ∗β = 0.

Claim 1. Type (I) and (II) orbits with action in (−A, 0) generate a further
quotient complex, which is isomorphic to C∗

β(HD∗

ϵL
), i.e. the subcomplex gen-

erated by orbits annihilated by β, where HD∗

ϵL
∈ C∞(S1 × D̂∗

ϵL) is the linear
extension of H|S1×D∗

3ϵ
4

L to S1 × T ∗L.

Proof of the claim. Let x, y be two such orbits. We can require the almost
complex structure to be cylindrically convex for λstd on near ∂D∗

3

4
ϵ
L6, i.e.

λstd ◦ J = d2
ϵ
r, we claim if u ∈ Mx,y then imu ⊂ D∗

3

4
ϵ
L. Assume otherwise

that u escapes D∗
3

4
ϵ
L, and S = u−1(Ŵ\D∗

3

4
ϵ
L). WLOG, we may assume

u ⋔ ∂D∗
3

4
ϵ
L, hence S is a compact surface with boundary equipped with

complex structure j, then by homology reasons u|∂S represents a class anni-
hilated by β, in particular,

∫
∂S

u∗λ =
∫
∂S

u∗λstd, this allows us to apply the
integrated maximum principle by Abouzaid-Seidel [5], or [19, Lemma 2.2].

5Translating back to the notation in §2.2, we have ϵ′ = 1, A′ = A,B′ = A, where
ϵ′, A′, B′ are ϵ, A,B in §2.2. This also explains why the symplectic action using λstd

in the next case is in (−A,A).
6This does not contradict the “genericity” of J , as it is sufficient to perturb J

near orbits to achieve transversality.
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More precisely, we have

0 < E(u|S) :=
1

2

∫

S

|du−XH ⊗ dt|2d vol

=

∫

S

u∗dλ− u∗dH ∧ dt

=

∫

S

d(u∗λ− u∗Hdt)

=

∫

∂S

u∗λ− (u∗H)dt

=

∫

∂S

u∗λstd − (u∗H)dt

=

∫

∂S

λstd(du−XH(u)⊗ dt)

=

∫

∂S

λstd(J ◦ (du−XH(u)⊗ dt) ◦ (−j))

=

∫

∂S

2

ϵ
dr ◦ du ◦ (−j) ≤ 0

which is a contradiction. The second last equality follows from that u solves
the Floer equation (du−XH(u)⊗ dt)0,1 = 0. The last equality follows from
λstd ◦ J = d2

ϵ
r and dr(XH) = 0 on ∂D∗

3

4
ϵ
L. The last inequality follows from

the fact that for each tangent vector ξ of ∂S defining its boundary orien-
tation, jξ points into S, therefore dr ◦ du(jξ) ≥ 0. In other words, since we
only consider orbits γ with

∫
γ∗β = 0, the integrated maximum principle

can be applied as usual. As a consequence, combined with the asymptotic
behavior lemma [19, Lemma 2.3], there is no differential from a type (III)
orbit to a type (II) or (I) orbit if both of them are annihilated by β. This
shows that type (I) and (II) orbits with action in (−A, 0) generate a quotient
complex.

By [19, Lemma 2.2], all curves involved in the definition of Hamiltonian-
Floer cohomology of the linear extension HD∗

ϵL
on T ∗L is contained in D∗

3ϵ

4

L,

where the geometric data is identified with that of W restricted to D∗
3ϵ

4

L. In

particular, we can identify the moduli spaces for the differential, hence our
quotient complex is identified with C∗

β(HD∗

ϵL
) on the nose. □

Hence there is a truncated Viterbo transfer map C∗(HW ) → C∗
β(HD∗

ϵL
)

which respects the splitting into C0, C+. Then the claim follows from the
composition with the continuation map to the full symplectic cohomology
of T ∗L. □
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Remark 3.2. In fact, Proposition 3.1 holds for Amin(L,A) > A. To see
this, for δ ≪ 1, we consider the Hamiltonian with slope A

(1−δ)ϵ on D∗
ϵL\D

∗
δϵL,

then type (II) orbits have action in (− Aδ
1−δ

, 0) + ZΓ and type (III) orbits

have action in (− Aδ
1−δ

, A) + ZΓ, then the argument in Proposition 3.1 can be

applied if Γ > A+ Aδ
1−δ

. Then the claim follows when δ → 0. This bound is
sharp, which can be seen from a family of thin ellipsoids converging to the
infinite cylinder D× Cn−1, where D ⊂ C is the unit disk. Another perspective
of such bound is from the functoriality of SFT and the relation between SFT
and string topology [17], see Remark 4.2.

By exactly the same argument, we have the following parameterized
version for equivariant symplectic cohomology.

Proposition 3.3. Let W be an exact domain and L a Lagrangian such that

Amin(L,W ) ≥ 2A > 0, then we have a Viterbo transfer map SH
[0],∗
S1,<A(W ) →

SH∗
S1(T ∗L) of R[u]-modules, such that the following exact sequences com-

mute

. . . // H∗
S1(W ) //

��

SH
[0],∗
S1,<A(W ) //

��

SH
[0],∗
+,S1,<A(W ) //

��

H∗+1
S1 (W ) //

��

. . .

. . . // H∗
S1(T ∗L) // SH∗

S1(T ∗L) // SH∗
+,S1(T ∗L) // H∗+1

S1 (T ∗L) // . . .

Next, we consider general symplectically aspherical domains. Let HW

be an admissible Hamiltonian on W with slope a, the symplectic action of a
contractible orbit γ is given by (2.1) if γ is contractible in ∂W . If γ is only
contractible in W , then (2.1), (2.2) might differ7. Since for a Hamiltonian
of slope a, there are only finitely many orbits. Therefore we can find f(a) ≥
a > 0, such that symplectic action of periodic orbits of XHW

is supported in
(−f(a), f(a)).

Proposition 3.4. Let W be a symplectically aspherical domain and L a La-
grangian such that Amin(L,W ) ≥ 4f(A) > 0, then we have a Viterbo transfer

7Since our non-constant orbits are in ∂W × (1,∞), where λ is still defined even
though ω is not globally exact.
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SH
[0],∗
<A (W ) → SH∗(T ∗L) such that the following commutes

H∗(W )
ι

//

��

SH
[0],∗
<A (W )

��

H∗(T ∗L) // SH∗(T ∗L)

Proof. By the Weinstein neighborhood theorem, we have a symplectic em-
bedding (D∗

ϵL, dλstd) into W as before. Then we consider Hamiltonians H

on Ŵ in the definition of the Viterbo transfer that are C2 perturbations to
functions with the following properties,

1) 0 on D∗
ϵ

2

L,

2) linear with slope 4f(A)
ϵ

with respect to r ∈ (0, ϵ] on D∗
ϵL\D

∗
ϵ

2

L.

3) 2f(A) on W\D∗
ϵL,

4) linear with slope A on ∂W × (1,∞).

We write Γ := Amin(L,W ), which by assumption is ≥ 4f(A). As in §2.2, we
have the following five types of orbits.

(I) Constant orbits on D∗
ϵ

2

L with AH ≈ 0.

(II) Non-constant periodic orbits near ∂D∗
ϵ

2

L. The symplectic action us-

ing λstd for those type (II) is the same as before, i.e. in the region
(−2f(A), 0). The actual symplectic action using ω for a contractible
orbit γ of type (II) differs from the symplectic action using λstd by∫
u∗ω, where u ∈ π2(W,L) with boundary homotopic to γ in D∗

ϵL. To
see this, let u0 : D → W to be the disk used to compute the symplectic
action of γ in (2.2), and u1 be the annulus in D∗

ϵL with ∂u1 = −γ ∪ η,
where η ⊂ L. Then the glued disk u0#u1 is in π2(W,L). Then we have

∫
(u0#u1)

∗ω =

∫
u∗0ω +

∫
u∗1ω =

∫
u∗0ω +

∫
u∗1(dλstd)

=

∫
u∗0ω −

∫
γ∗λstd +

∫
η∗λstd =

∫
u∗0ω −

∫
γ∗λstd,

i.e. the action difference, where the last equality follows from that
λstd|L = 0. Therefore the actual symplectic action is in (−2f(A), 0) +
ZΓ. It is also important to note that the integral

∫
u∗ω is independent
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of u, only depends on γ, asW is symplectically aspherical and π1(L) →
π1(D

∗
ϵL) is an isomorphism.

(III) Non-constant periodic orbits near ∂D∗
ϵL. The actual symplectic action

using λ again differs from that of type (III) in §2.2 by
∫
u∗ω. Hence

the symplectic action is in (−2f(A), 2f(A)) + ZΓ.

(IV) Constant orbits on W\D∗
ϵL, with AH ≈ 2f(A), as H ≈ 2f(A) there.

(V) Non-constant periodic orbits near ∂W with AH ∈ (−f(A), f(A)) +
2f(A) = (f(A), 3f(A)).

Then we consider the Hamiltonian HW on Ŵ , which is admissible with slope
A. Since the symplectic action of orbits of XHW

is in (−f(A), f(A)) and the
continuation map C [0],∗(HW ) → C [0],∗(H) increases symplectic action, we
get a cochain map from C [0],∗(HW ) to the complex generated by orbits of
XH that are contractible in W with action in (−f(A), f(A)). Since Γ ≥
4f(A), any type (II), (III) orbit in this action window has the property that∫
u∗ω = 0, where u ∈ π2(W,L) is the disk as before. We claim that type (I)

and (II) orbits with action in (−f(A), f(A)) generate a quotient complex,
which is isomorphic to C∗

ω(HD∗

ϵL
), i.e. the subcomplex generated by orbits

in the homotopy classes that are contractible in W and
∫
u∗ω = 0 for the

contracting disk u, where HD∗

ϵL
∈ C∞(S1 × D̂∗

ϵL) is the linear extension of
the truncation. In view of the proof of Proposition 3.1, this boils down to
the integrated maximum principle for type (II), (III) orbits with

∫
u∗ω = 0.

More precisely, it is sufficient to prove that
∫
S
u∗ω =

∫
∂S

λstd, where S ⊂
R× S1 is the part where u exceeds the level set to which we try to apply
the integrated maximum principle. Let ux, uy be the capping disks used to
define symplectic action (2.2) for x and y. Therefore we have

∫

R×S1

u∗ω =

∫

D

(u∗xω − u∗yω).

Since x, y have the property that
∫
u∗xω =

∫
x∗λstd and

∫
u∗yω =

∫
y∗λstd, we

have ∫

R×S1

u∗ω =

∫
x∗λstd − y∗λstd.

Since u|R×S1\S is contained in the Weinstein neighborhood of L, we have,
by Stokes’ theorem,

∫

R×S1\S
u∗ω =

∫

R×S1\S
u∗(dλstd) =

∫
(x∗λstd − y∗λstd)−

∫

∂S

λstd.
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Therefore we have
∫
S
u∗ω =

∫
∂S

λstd. As a consequence, the claim holds, as
well as the truncated Viterbo transfer map. □

Proof of Theorem 1.3. If W is a symplectically aspherical domain such that
SH∗(W ) = 0, i.e. 1 = 0 in SH [0],∗(W ), then H∗(W )

ι
→ SH [0],∗(W ) maps 1

to 0. Since SH [0,∗](W ) = lim
−→

SH
[0],∗
≤a (W ), then by definition,

A := min
{
a
∣∣∣ι(1) = 0 ∈ SH

[0],∗
<a (W ), 1 ∈ H0(W )

}

is finite. Then we have Amin(L,W ) < 4f(A). Assume otherwise, by Propo-
sition 3.4, we have that 1 ∈ H∗(T ∗L) is also mapped to zero in SH∗(T ∗L),
contradicting that SH∗(T ∗L) ̸= 0 [2, 3, 38, 42]. This proves Claim (1).

If W is exact and admits a k-semi-dilation, then we have

B := min
{
a
∣∣∣∃x ∈ SH∗

+,S1,<a(W ), s.t. uk+1(x) = 0, π0 ◦ δ(x) = 1 ∈ H0(W )
}

is finite. If there is a K(π, 1) Lagrangian L ⊂ W with Amin(L,W ) ≥ 2B,
then by Proposition 3.3, we have a commutative square of R[u]-modules

SH
[0],∗
+,S1,<2B(W )

δ
//

ϕ

��

H∗+1
S1 (W )

��

π0
// H0(W )

��

SH∗
+,S1(T ∗L)

δ
// H∗+1

S1 (T ∗L)
π0

// H0(T ∗L)

Since there is a x ∈ SH
[0],∗
+,S1,<2B(W ) such that π0 ◦ δ(x) = 1 and uk+1(x) = 0,

then π0 ◦ δ(ϕ(x)) = 1 and uk+1(ϕ(x)) = 0, i.e. T ∗L admits a k-semi-dilation,
contradicting Example 2.4. This proves Claim (2). □

Remark 3.5. Following from Remark 3.2, we have Amin(L,W ) ≤ A when
W is an exact domain with SH∗(W ) = 0. When W is given by the ellipsoid∑n

i=1
|zi|2

ai
≤ 1 for 0 < a1 ≤ . . . ≤ an, one can show that A = πa1.

8 Then it

contains a Lagrangian torus L = {|zi|
2 = bi}, where b1 = a1 − ϵ for 0 < ϵ ≪

1 and bi =
aiϵ
a1

for i > 1. Then we have Amin(L,W ) = min{πbi}, which is
πb1 = πa1 − πϵ when ai ≫ 0 for i > 1. That is the bound Amin(L,W ) ≤ A
is close to a sharp bound when W is a thin ellipsoid. However the bound is

8Assume for simplicity a1 < a2, then the non-degenerate Reeb orbit in the z1-
coordinate plane is the only Reeb orbit to have the right Conley-Zehnder index to
kill 1.
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much weaker when W is a round ball, i.e. ai = 1, where the sharp bound for
Lagrangian torus is π

n
by Cieliebak-Mohnke [18].

Proof of Theorem 1.5. By [7] if π2(Q) → H2(Q) is nontrivial, then there
exists a local system ρ on L0Q (the space of contractible loops), such
that SH∗(T ∗Q; ρ) = 0. As the presence of local system only twists the for-
mula for the differential but uses the same moduli spaces, Proposition 3.1
holds for symplectic cohomology with local systems by the same argu-
ment. Such local system is classified by Hominv(π2(W ),C∗), i.e. the subset
of Hom(π2(W ),C∗) that is invariant under the π1(W ) conjugation. Since
π2(L) → π2(T

∗Q) is trivial, we have the local system is trivial onD∗
ϵL, hence

SH∗(D∗
ϵL; ρ|D∗

ϵL
) = SH∗(T ∗L;C) ̸= 0. Then the proof of Theorem 1.3 can

be applied to finish the proof. □

4. The chord conjecture

For the completeness, we recall the proof of Theorem 1.2 from [31].

Mohnke’s proof of Theorem 1.2. Let α be a contact form on Y , which is,
a priori, different from the contact form λ|∂W . However, we have α =
fλ|∂W for some positive function f on Y . Then λ̂ restricted the contact

hypersurface r = f(x) in Ŵ is α (through the obvious identification of
r = f(x) and Y = ∂W ). Note that we can find r0 > 0, such that r0f ≤ 1,
i.e. the contact hypersurface r = r0f is contained in the domain W and
λ̂ restricted the contact hypersurface r = r0f(x) in W is r0α. Since the
Reeb flows of r0α and α are the same up to rescaling, the chord con-
jecture holds for α iff it holds for r0α. Let W ′ denote the exact sub-
domain bounded by r = r0f . Since W ′ ⊂ W is an homotopy equivalence,
we have Amin(Lall,W

′) ≤ Amin(Lall,W ) < ∞. Let ϕt denote the Reeb flow
on ∂W ′, i.e. Reeb flow of r0α. If the Legendrian Λ has no Reeb chord,
then Φ : Λ× [ϵ, 1]× R → ∂(W ′ × [ϵ, 1]r′ , d(r

′λ|∂W )), (x, s, t) 7→ (ϕt(x), s) is
an embedding. Here r′ is the cylindrical coordinate for the symplectization of
∂W ′, which is different from the r coordinate on Ŵ . Then it is direct to check
that any embedded loop γ ∈ [ϵ, 1]× R gives rise to a Lagrangian Φ(Λ× γ) ⊂
∂W ′ × [ϵ, 1] ⊂ W ′. Note that λ|Λ = 0 and Φ∗(d(r′λ|∂W ′)) = ds ∧ dt, then we
know that Amin(Φ(Λ× γ),W ′) is the the area enclosed by γ, which can be
arbitrarily big, contradiction! The situation for K(π, 1) Legendrians is sim-
ilar as the product of a K(π, 1) space with S1 is again a K(π, 1) space. □
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Proof of Corollary 1.6. Cases (1), (3) follow Theorem 1.2 and 1.3. For case
(4), if π2(Λ) → π2(T

∗Q) is trivial, then π2(Φ(Λ× γ)) → π2(T
∗Q) is also triv-

ial. Then the existence of Reeb chords follows from Theorem 1.5 and the
same argument of Theorem 1.2. In the case (2), if π1(Λ) → π1(W ) is trivial,
then we know that Amin(Φ(Λ× γ),W ) is again area enclosed by γ9. Then
the claim follows from the argument of Theorem 1.2 and Theorem 1.3. □

Proof of Corollary 1.8. The proof follows from the same argument as [30,
Theorem 1.1], where we replace [14] by Theorem 1.3 in the proof of [30,
Theorem 2.1] to obtain a universal upper bound of the minimal symplectic
area. □

Remark 4.1. In the special case of SH∗(W ) = 0, the chord conjecture for
Legendrian spheres can also be proven by surgery following the idea in [15].

Let W̃ be the domain obtained from attaching a Weinstein handle to the
Legendrian sphere Λ. If Λ has no Reeb chords, then by [15], we have the

Viterbo transfer map SH∗
+(W̃ ) → SH∗

+(W ) is an isomorphism. Note that
we have the following commutative diagram,

. . . // H∗(W̃ ) //

��

SH∗(W̃ ) //

��

SH∗
+(W̃ ) //

��

H∗+1(W̃ ) //

��

. . .

. . . // H∗(W ) // SH∗(W ) // SH∗
+(W ) // H∗+1(W ) // . . .

Since SH∗(W ) = 0, we have SH∗
+(W ) → H∗+1(W ) hits 1. Therefore

SH∗
+(W̃ ) → H∗+1(W̃ ) also hits 1, because SH∗

+(W̃ ) → SH∗
+(W ) is an iso-

morphism. As a consequence, we have H∗+1(W ) ≃ SH∗
+(W ) ≃ SH∗

+(W̃ ) ≃

H∗+1(W̃ ). However, we can not have H∗(W ) ≃ H∗(W̃ ), as they have dif-
ferent Euler characteristics, which is a contradiction.

Remark 4.2. Following the philosophy of SFT, if V ⊂ W is not an ex-
act subdomain, i.e. the cobordism W\V is not exact, the strong cobordism
W\V gives rise to a Maurer-Cartan element by counting holomorphic caps
in W\V [17], and the Viterbo transfer map should hold for the symplectic
cohomology of V deformed by the Maurer-Cartan element. Then the classical
Viterbo transfer map should hold if we truncated at an action smaller than
the minimal action of the Maurer-Cartan element. In the case of V = D∗

ϵL,
the action of a Maurer-Cartan element is a multiple of Amin(L,W ) minus

9In general, it might be smaller contributed by a loop with a nontrivial π1(Λ)
component that is contractible only in W .
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the period of a geodesic loop for metric ϵg. In particular, it is not obvious
that the Maurer-Cartan action is greater than Amin(L,W ). However, if we
let ϵ → 0, we can replace the symplectic cohomology of T ∗L by the string
topology of L following [19]. In this case, the Maurer-Cartan element is rep-
resented by the evaluation of boundaries of holomorphic disks, whose action
is indeed bounded below by Amin(L,W ). Those two constructions (deformed
symplectic cohomology, the relation between SFT and string topology) faces
various technical difficulties, whose full constructions with complete analyti-
cal details are not available in literature. The argument in this paper can be
viewed as a substitute of such ideas in the classical constructions.

The closely related Weinstein conjecture asserts the existence of Reeb
orbits on every compact contact manifold. It was proven in dimension 3 by
Taubes [41] and various other cases [1, 6, 24]. All the proofs are based on
existence of holomorphic curves, often abundances of holomorphic curves10.
The relation between holomorphic curves and Reeb orbits are much better
understood than the following question.

Question 4.3. How abundances of holomorphic curves (in the symplectic
domain) can be used to show the existence of Reeb chords for any Legendrian.

Remark 4.4. Note that the conditions in Corollary 1.6 imply that the sym-
plectic manifold is uniruled [44, Theorem 3.27].

5. New examples with k-semi-dilations

Let X be a degree m smooth hypersurface in CPn+1 for m ≤ n. By [32,
Lemma 7.1], for any holomorphic section s of O(k), we have the affine variety
X\s−1(0) embeds exactly into X\S−1(0), where S is a holomorphic section
of O(k) such that S−1(0) is a smooth divisor with multiplicity 1. In our
case, we can assume S−1(0) in the intersection of X with a generic smooth
degree k hypersurface in CPn+1. In view of the functorial property of k-
semi-dilations, i.e. when V ⊂ W is an exact subdomain and W admits a
k-semi-dilation, then so does V , Theorem 1.9 is implied by the following.

Theorem 5.1. If k ≤ n+ 1−m, then X\S−1(0) admits a k +m− 2-
dilation.

10In the context of ECH, the non-triviality of the U -map implies the abundance
of holomorphic curves.
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To prove this theorem, we will adopt the method in [20] as in [44]. We
first recall the setups. We use D to denote the smooth divisor S−1(0) and X̌
to denote the exact (Weinstein) domain X\D. Then the contact boundary
Y := ∂X̌ is equipped with a Boothby-Wang contact form [9] such that the
Reeb flow is the S1 action on the circle bundle with periods 2π · N. Then
we pick two Morse functions fD on D and fX̌ on X̌, such that ∂rfX̌ > 0
near ∂X̌ = Y . We use Crit(f) to denote the set of critical points. We may
assume fD is perfect. This is obvious when n = 2. When n ≥ 4, this follows
from Smale’s simplification of the handle representation since D is simply
connected and H∗(D) is free by the Lefschetz hyperplane theorem. When
n = 3, we only need to consider m = 1, k = 1, 2, 3, m = 2, k = 1, 2 and m =
3, k = 1, the existence of perfect Morse functions follows from [23] except for
the case m = k = 2. When m = k = 2, D is a K3 surface, hence there exists
a perfect Morse function on D. We also assume fX̌ has a unique minimum
m. In the following, we will consider the filtered cochain complex for period
up to 2πk.

Proposition 5.2. The circles with wrapping number around D from
1, . . . , k are in different homology classes of X̌.

Proof. To see this, when n ≥ 3, we have D is simply connected by the
Lefschetz hyperplane theorem. ∂X̌ is an S1-bundle over D, whose first
Chern class is the restriction of k[H] by the adjunction formula, where
[H] ∈ H2(CPn+1) is the hyperplane class, i.e. the positive generator of
H2(CPn+1), which is the Poincaré dual to the homology class represented by
a complex hyperplane H. When n ≥ 4, [H] is also a generator of H2(D) by
the Lefschetz hyperplane theorem. Then the Gysin exact sequence implies
that H1(∂X̌) = 0 and the torsion part of H2(∂X̌) is Z/kZ. This implies, by
the universal coefficient theorem, that H1(∂X̌) = Z/kZ, which is generated
by the fiber circle. When n = 3, assume [H] ∈ H2(D) is divisible by M ∈ N

and M is the maximum of such divisors11. That H2(D) is free implies that
the torsion of H2(∂X̌) = H2(D)/⟨ k[H] ⟩ is Z/MkZ, hence we can still con-
clude that those multiple covers of fibers are in different homology classes in
H1(∂X̌) = Z/MkZ. When n = 2, i.e. m = 1, k = 1, 2 and m = 2, k = 1, the
only non-trivial case is when m = 1, k = 2, which follows from [29, Proposi-
tion 2.3]12. □

11If m1,m2 divide [H], then the lowest common multiple of m1,m2 also divides
[H]

12Alternatively, in this case, we have D = CP
1 and ∂X̌ is the circle bundle asso-

ciated to O(4) and X̌ = T ∗
RP

2. Then the claim follows from a direct check.
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In particular, there will be no Floer differential between orbits with different
wrapping numbers around D when the period is at most 2πk. Note that
k ≤ n+ 1−m is exactly the monotonicity condition in [20]. Next we list
the properties of the symplectic cochain complex and its S1-equivariant
analogue from [20] as follows.

1) The symplectic cochain complex up to period 2πk is generated by
x ∈ Crit(fX̌) and p̌i, p̂i for p ∈ Crit(fD) and 1 ≤ i ≤ k. The positive
cochain complex is generated by p̌i, p̂i for p ∈ Crit(fD) and 1 ≤ i ≤ k.
Here p̌i, p̂i can be viewed as the two Hamiltonian orbits corresponding
to the Reeb orbit that is the i-mutiple cover of the simple Reeb orbit
corresponding to the critical point p.

2) For p, q ∈ Crit(fD), we have ⟨ δ0(p̌i), q̂i ⟩ = ⟨ c1(O(k), [W s
D(q)] ∩

[W u
D(p)]), where

W u
D(p) := {z ∈ D| lim

t→∞
ϕt(z) = p}

with ϕt is the gradient flow of fD, i.e. the unstable manifold of the
negative gradient flow. Similarly, we have the stable manifold

W s
D(p) := {z ∈ D| lim

t→−∞
ϕt(z) = p}.

as well as stable/unstable manifoldsW s
X̌
(x),W u

X̌
(x) for the Morse func-

tion fX̌ and x ∈ Crit(fX̌).

3) For x ∈ Crit(fX̌) such that W u
X̌
(x) represents a homology class in

H∗(X̌), we have

⟨ δ0(p̌k), x ⟩ = kGWX,D

0,1,(k),A([W
u
X̌
(x)], [W u

D(p)])

Here GWX,D

0,1,(k),A([W
u
X̌
(x)], [W u

D(p)]) stands for the relative Gromov-
Witten invariant counting rational curves in X of the positive gen-
erator13 A ∈ H2(X) with two marked points mapped to W u

X̌
(x) and

W u
D(p) in D with the intersection multiplicity with D at least k. Since

we only care about ⟨ δ0(p̌k),m ⟩ for the unique minimum m, the for-
mula above suffices for our purpose of studying l-semi-dilations.

13That is A maps to the positive generator of H2(CP
n+1) by X → CP

n+1. Note
that when n = 2,m = 2, X = CP

1 × CP
1 and there are two classes in H2(X) with

such property, then GWX,D

0,1,(k),A([m], [Wu
D(p)]) should be understood as the sum of

relative Gromov-Witten invariants of both classes.
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4) There are also Morse differentials between critical points of fX̌ , and
from p̌k to other critical points of fX̌ . But they are not relevant for
studying l-semi-dilations. Those four cases are all the terms of δ0. This
is because fD is perfect and p1, . . . , pk are in different homology classes
in X̌.

5) We have δ1(p̌i) = ip̂i and δi = 0 for i ≥ 2. This follows from the S1-
equivariant transversality argument in [44, Proposition 5.9, Remark
5.10], where the S1-equivariant transversality is provided by [20] as
the monotonicity assumption holds. The coefficient being i follows from
[13, Lemma 3.1].

6) δi respects the splitting of C0, C+, i.e. δ
i has a decomposition into

δi0 + δi+ + δ+0 with δi0 : C0 → C0, δ
i
+ : C+ → C+, δ

i
+,0 : C+ → C0. The

connecting map δ in (2.3) is defined by
∑∞

i=0 u
iδi+,0.

Proof of Theorem 5.1. By [21, Theorem 2.6], we have

GWX,D

0,1,(k),A([pt], [D] ∩n+1−m−k [H]) ̸= 0,

where H ∈ H2n(CP
n+1) is the hyperplane class. We assume p0 is the criti-

cal point of fD of index 2(m+ k − 2), such that [W u
D(p

0)] = [D] ∩n+1−m−k

[H]14. Similarly we use pi to represent the critical point such that
[W u

D(p
i)] = [D] ∩n+1−m−k+i [H] for 1 ≤ i ≤ m+ k − 2. We claim that η :=

p̌k +
∑m+k−2

i=1 (−1)iu−ip̌ik represents a closed cochain in the positive S1-
equivariant cochain complex. To see this, we compute

δS
1

(η) = δ0+(p̌
0
k) +

m+k−2∑

i=1

i∑

j=0

(−1)iuj−iδj+(p̌
i
k)

(5)
= δ0+(p̌

0
k) +

m+k−2∑

i=1

1∑

j=0

(−1)iuj−iδj+(p̌
i
k)

=

m+k−3∑

i=0

(−1)iu−i(δ0+(p̌
i
k)− δ1+(p̌

i+1
k )) + (−1)m+k−2u2−m−kδ0+(p̌

m+k−2
k )

(2),(5)
=

m+k−3∑

i=0

(−1)iu−i(kp̂i+1
k − kp̂i+1

k ) = 0

14In general, it is possible that [D] ∩n+1−m−k [H] is represented by a linear com-
bination of critical points, we use a single one with coefficient 1 for simplicity.
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One the other hand, we compute

π0 ◦ δ(η) = π0 ◦


δ0+,0(p̌

0
k) +

m+k−2∑

i=1

i∑

j=0

(−1)iuj−iδj+,0(p̌
i
k)




(3),(5)
= kGWX,D

0,1,(k),A([pt], [D] ∩n+1−m−k [H]) ̸= 0

Finally, um+k−1(η) = 0 by definition. Therefore X̌ admits a m+ k − 2-
dilation. □

Remark 5.3. Following the fibration argument in [44, §5], we can prove
that the order of semi-dilation for X̌ is exactly k +m− 2. It is natural to
expect that examples in Theorem 1.9 carry a k +m− 2-dilation instead of
a k +m− 2-semi-dilation. However, this requires checking the vanishing of
many other relative Gromov-Witten invariants like [44, Theorem A], i.e. the
differentials in (4) is no longer irrelevant.

Remark 5.4. One can derive a formula of the positive S1-equivariant sym-
plectic cohomology of smooth divisor complements similar to [20]. Under the
monotonicity assumption, we can use the S1-equivariant transversality to
apply a quotient construction of the positive S1-equivariant symplectic co-
homology instead of the Borel construction used in this paper, see [13]. In
this case, the cochain complex is generated by pk for p ∈ Crit(fD) and k ≥ 1,
with differential purely determined by Morse differential of fD. All the other
contributions from check orbits to hat orbits in [20, Theorem 9.1] now con-
tributes to the R[u]-module structure. Note that by the Gysin exact sequence
[12], the positive S1-equivariant symplectic cohomology as a R[u]-module can
recover the regular positive symplectic cohomology. In particular, this is just
a reformulation of [20, Theorem 9.1]. When the monotonicity assumption
fails, we may not have a simple collections of degeneration as in [20], but the
other consequence of monotonicity, namely S1-equivariant transversality, is
available through polyfold techniques [45]. In particular, it seems that positive
S1-equivariant symplectic cohomology (just as a group not a R[u]-module)
is much easier to compute for general smooth divisor complement.
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[4] M. Abouzaid and P. Seidel, Altering symplectic manifolds by homolo-
gous recombination, preprint, arXiv:1007.3281, (2010).

[5] ———, An open string analogue of Viterbo functoriality, Geom. Topol.
14 (2010), no. 2, 627–718.

[6] B. Acu and A. Moreno, Planarity in higher-dimensional contact mani-
folds, Int. Math. Res. Not. 2022 (2022), no. 6, 4222–4258.

[7] P. Albers, U. Frauenfelder, and A. Oancea, Local systems on the free
loop space and finiteness of the Hofer-Zehnder capacity, Math. Ann.
367 (2017), no. 3-4, 1403–1428.

[8] V. I. Arnol’d, The first steps of symplectic topology, Uspekhi Mat. Nauk
41 (1986), no. 6(252), 3–18, 229.

[9] W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math.
(2) 68 (1958) 721–734.

[10] F. Bourgeois, T. Ekholm, and Y. Eliashberg, Effect of Legendrian
surgery, Geom. Topol. 16 (2012), no. 1, 301–389. With an appendix
by Sheel Ganatra and Maksim Maydanskiy.

[11] F. Bourgeois and A. Oancea, Symplectic homology, autonomous Hamil-
tonians, and Morse-Bott moduli spaces, Duke Math. J. 146 (2009),
no. 1, 71–174.

[12] ———, The Gysin exact sequence for S1-equivariant symplectic homol-
ogy, J. Topol. Anal. 5 (2013), no. 4, 361–407.

[13] ———, S1-equivariant symplectic homology and linearized contact ho-
mology, Int. Math. Res. Not. IMRN (2017), no. 13, 3849–3937.

[14] Y. V. Chekanov, Lagrangian intersections, symplectic energy, and areas
of holomorphic curves, Duke Math. J. 95 (1998), no. 1, 213–226.

[15] K. Cieliebak, Handle attaching in symplectic homology and the chord
conjecture, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 2, 115–142.



✐

✐

“5-Zhou” — 2023/4/21 — 11:45 — page 1411 — #27
✐

✐

✐

✐

✐

✐

On the minimal symplectic area of Lagrangians 1411

[16] K. Cieliebak, H. Hofer, J. Latschev, and F. Schlenk, Quantitative sym-
plectic geometry, in Dynamics, ergodic theory, and geometry, Vol. 54 of
Math. Sci. Res. Inst. Publ., 1–44, Cambridge Univ. Press, Cambridge
(2007).

[17] K. Cieliebak and J. Latschev, The role of string topology in symplectic
field theory, in New perspectives and challenges in symplectic field the-
ory, Vol. 49 of CRM Proc. Lecture Notes, 113–146, Amer. Math. Soc.,
Providence, RI (2009).

[18] K. Cieliebak and K. Mohnke, Punctured holomorphic curves and La-
grangian embeddings, Invent. Math. 212 (2018), no. 1, 213–295.

[19] K. Cieliebak and A. Oancea, Symplectic homology and the Eilenberg-
Steenrod axioms, Algebr. Geom. Topol. 18 (2018), no. 4, 1953–2130.
Appendix written jointly with Peter Albers.

[20] L. Diogo and S. T. Lisi, Symplectic homology of complements of smooth
divisors, J. Topol. 12 (2019), no. 3, 967–1030.

[21] A. Gathmann, Absolute and relative Gromov-Witten invariants of very
ample hypersurfaces, Duke Math. J. 115 (2002), no. 2, 171–203.

[22] J. Gutt, The positive equivariant symplectic homology as an invariant
for some contact manifolds, J. Symplectic Geom. 15 (2017), no. 4, 1019–
1069.

[23] J. Harer, On handlebody structures for hypersurfaces in C3 and CP 3,
Math. Ann. 238 (1978), no. 1, 51–58.

[24] H. Hofer, Pseudoholomorphic curves in symplectizations with applica-
tions to the Weinstein conjecture in dimension three, Invent. Math. 114
(1993), no. 3, 515–563.

[25] M. Hutchings and C. H. Taubes, Proof of the Arnold chord conjecture
in three dimensions, II, Geom. Topol. 17 (2013), no. 5, 2601–2688.

[26] J. Kang, Symplectic homology of displaceable Liouville domains and
leafwise intersection points, Geom. Dedicata 170 (2014) 135–142.

[27] O. Lazarev and Z. Sylvan, Prime-localized Weinstein subdomains,
preprint, arXiv:2009.09490, (2020).

[28] Y. Li, Exact Calabi-Yau categories and disjoint Lagrangian spheres,
preprint, arXiv:1907.09257, (2019).



✐

✐

“5-Zhou” — 2023/4/21 — 11:45 — page 1412 — #28
✐

✐

✐

✐

✐

✐

1412 Zhengyi Zhou

[29] A. Libgober, Lectures on topology of complements and fundamental
groups, in Singularity theory, 71–137, World Sci. Publ., Hackensack,
NJ (2007).

[30] S. T. Lisi, Homoclinic orbits and Lagrangian embeddings, Int. Math.
Res. Not. IMRN (2008), no. 5, Art. ID rnm 151, 16.

[31] K. Mohnke, Holomorphic disks and the chord conjecture, Ann. of Math.
(2) 154 (2001), no. 1, 219–222.

[32] A. Moreno and Z. Zhou, A landscape of contact manifolds via rational
SFT, preprint, arXiv:2012.04182, (2020).

[33] E. Murphy, Closed exact Lagrangians in the symplectization of contact
manifolds, preprint, arXiv:1304.6620, (2013).

[34] E. Murphy and K. Siegel, Subflexible symplectic manifolds, Geom.
Topol. 22 (2018), no. 4, 2367–2401.
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