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The Maurer-Cartan algebra of a Lagrangian L is the algebra that
encodes the deformation of the Floer complex CF (L,L; Λ) as an
A∞-algebra. We identify the Maurer-Cartan algebra with the 0-th
cohomology of the Koszul dual dga of CF (L,L; Λ). Making use of
the identification, we prove that there exists a natural isomorphism
between the Maurer-Cartan algebra of L and a suitable subspace
of the completion of the wrapped Floer cohomology of another
Lagrangian G when G is dual to L in the sense to be defined. In
view of mirror symmetry, this can be understood as specifying a
local chart associated with L in the mirror rigid analytic space.
We examine the idea by explicit calculation of the isomorphism for
several interesting examples.
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1. Introduction

Deformation of a Lagrangian submanifold has been a central problem in
symplectic geometry. The geometric deformation of a Lagrangian L is locally

1
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parametrized by H1(L), and McLean’s classical result [McL98] showed that
the deformation of a special Lagrangian is unobstructed in the sense that
deformation parametrized by H1(L) automatically satisfies a special La-
grangian condition. Such a deformation problem draws more attention after
Strominger-Yau-Zaslow [SYZ96] asserts that the mirror complex manifold
of a symplectic manifold should be obtained as a complexified deformation
space of a special Lagrangian torus.

On the other hand, in view of homological mirror symmetry, a La-
grangian (together with some additional structure) may be identified as an
object of the Fukaya category. In this spirit, one can instead study deforma-
tion of the endomorphism algebra of a Lagrangian regarded as an object of
the A∞-category, which is, in fact, the core of Lagrangian Floer theory of
the Lagrangian. Such a deformation may admit further nontrivial obstruc-
tions from holomorphic disks bounded by the Lagrangian. More specifically,
for given a compact Lagrangian L, one can study deformation of the A∞-
algebra CF (L,L) following [FOOO09]. The deformation is parametrized by
b ∈ CF 1(L,L) ∼= H1(L) (using the canonical model) that solves the follow-
ing nonlinear equation

(1.1) m0(1) +m1(b) +m2(b, b) +m2(b, b, b) + · · · = 0

called the Maurer-Cartan equation, and b satisfying the equation kills the
obstruction m0 for L being an well-defined object in the Fukaya category.
The set of solutions, denoted byMC(L), is called the Maurer-Cartan space
of L.

Through a series of papers [CHL17], [CHL19] and [CHL18], we propose a
mirror construction by gluing via quasi-isomorphisms local mirrors obtained
as Maurer-Cartan spaces of Lagrangians (or strictly speaking, weak Maurer-
Cartan spaces to produce a Landau-Ginzburg mirror). It often happens that
a single Lagrangian already has big enough deformation to produce a full
mirror, especially when we deform the Floer theory of an immersed La-
grangian L by generators from self-intersections. While the Maurer-Cartan
deformation of immersed Lagrangians can be nicely formulated in the realm
of immersed Floer theory [AJ10], their geometric deformation seems a very
delicate problem that has not been fully understood.

Another benefit of using MC(L) is that the construction is essentially
algebraic once the necessary part of the A∞-structure on the Floer complex
is known. This enables us to extend the deformation into noncommutative
directions without much further effort, yet find new interesting geometric
phenomena (see [CHL21]). In this regard, it is more natural to extract the
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Maurer-Cartan deformation of Lagrangians 3

Maurer-Cartan algebra AL of L from (1.1) (see Definition 2.4) rather than
the space, which supposedly serves as the ring of functions onMC(L).

The first half of the article aims to reformulate the mirror construction
via MC(L) in terms of well-known homological algebra tools, bar/cobar
(denoted by B/Ω) construction. The upshot is to realize the Maurer-Cartan
algebra AL as the Koszul dual of the A∞-algebra CF (L,L).

Theorem 1.1 (Proposition 4.1 and Proposition 4.3). Let L be a com-
pact graded Lagrangian in a symplectic manifold M such that CF 0(L,L)
is spanned by the unit class. Then the Maurer-Cartan algebra AL can
be identified as the 0-th cohomology of the dga AL := homCF (L,L)(Λ,Λ)
where Λ becomes a CF (L,L)-module via the augmentation CF (L,L)→ Λ ∼=
CF 0(L,L) given as the projection. This dga can be computed equivalently as
either Ω (CF (L,L)∨) or (BCF (L,L))∨, where (−)∨ is the topological dual
of a normed vector space.

Abstractly, the above can be understood as an adaption of the result
of Efimov-Lunts-Orlov [ELO10] to the T -adic setting, which tells us that
the derived deformation of an A∞-algebra is represented by the Koszul dual
algebra. For an A∞-algebra A over a base ring k, the dga homA(k, k) is
referred to as the Koszul dual, following [LPWZ08]. There are many differ-
ent versions of Koszul duals in different generalities, and the one presented
here is most adapted to the filtered A∞-setting. In particular, we use the
topological dual as mentioned in the statement, and this is closely related
with convergence in T -adic topology.

Observe that (1.1) is an infinite sum in general. Therefore any construc-
tion rooted from the Maurer-Cartan deformation (of a compact Lagrangian)
is necessarily accompanied with the convergence issue. In Floer theory, it is
usually handled by introducing the field Λ with a non-Archimedean valua-
tion, recording the areas of contributing holomorphic disks as exponents of
T . Moreover, b in (1.1) should have a positive T -adic valuation to ensure
the convergence. Accordingly, the Koszul dual will be carried out over Λ-
coefficient in our setting. This may seem as merely changing the coefficient
ring, but we will see that the areas of holomorphic disks provide crucial
information about the location and the size ofMC(L) in the mirror space.
In particular, it turns MC(L) into an analytic neighborhood in the mirror
space for immersed L, not just a formal one that one would obtain over C .

Under some additional assumptions, an A∞-algebra and its Koszul dual
dga share important homological algebraic properties such as equivalences
between certain module categories over these algebras. We expect that



✐

✐

“1-Hong” — 2023/7/26 — 18:47 — page 4 — #4
✐

✐

✐

✐

✐

✐

4 Hansol Hong

purely algebraic results known for Koszul duality may lead to some nontriv-
ial geometric observation on Lagrangian Floer theory and mirror symmetry.
There is an interpretation of the mirror symmetry via Koszul duality be-
tween sheaves constructed from Lagrangian torus fibers. See [Tu15] for more
details.

In the second half of the article, we focus on a pair of Lagrangians
(G,L) in a Liouville manifold M such that their Floer complex (over Λ)
has a nontrivial component of rank 1 in degree 0, only. We will view these
Lagrangians as objects in the wrapped Fukaya category defined over Λ.
By introducing a semi-simple coefficient ring kΛ := ⊕ki=1Λ⟨πi⟩, our setting
includes the case when G = ∪ri=1Gi and L = ∪ri=1Li consist of the same
number of irreducible components such that |Gi ∩ Lj | = δij . For given such
a pair (G,L), L determines an augmentation ϵL : CF (G,G)→ kΛ by iden-
tifying CF (G,L) ∼= kΛ in m2 : CF (G,G)⊗ CF (G,L)→ CF (G,L). (Here,
CF (G,G) is the wrapped Floer cohomology of G in Λ-coefficient,)

The key observation is that the augmentation ϵL can be regarded as
specifying a point in the “spec” of CF (G,G). To make more sense of it,
suppose that CF (G,G) is concentrated at degree 0 so that it is simply an
algebra (over kΛ) for degree reason. If G generates the Fukaya category of
M , then M̌ := “Spec”CF (G,G) (or more precisely a would-be space whose
function ring is CF (G,G)) should give a mirror of M . Pascaleff [Pas19]
considered a similar situation in which M is a Log Calabi-Yau surface, and
G a Lagrangian section.

On the other hand, in spirit of SYZ mirror symmetry, the mirror space
M̌ is supposed to be a deformation space of a Lagrangian, or the moduli of
Lagrangians (in some loose sense). Hence each point of M̌ should correspond
to some Lagrangian. In this point of view, it is natural to think that L sits in
M̌ as the point corresponding to the maximal ideal ker ϵL in of the algebra
CF (G,G).

Having identified L with a point in the mirror M̌ (constructed from the
noncompact generator G), the next question to ask is how to describe its
neighborhood in M̌ . Recall that we already have an intrinsic deformation
space of L, which is the Maurer-Cartan spaceMC(L). The following theorem
answers howMC(L) sits in M̌ as a neighborhood of the point corresponding
to L or dually, it describes the relation between CF (G,G) and the Maurer-
Cartan algebra AL.

Theorem 1.2 (Proposition 4.8, Theorem 5.4). Suppose L satisfies the
conditions in Theorem 1.1. If two Lagrangians L = ⊕ri=1Li and G = ⊕ri=1Gi
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in a Liouville manifoldM satisfy |Gi ∩ Lj | = δij, then there is a natural A∞-
algebra homomorphism

κ : CF (G,G)→ AL,

where AL is the Koszul dual of CF (L,L).
If G generates L in the wrapped Fukaya category of M , and

HF>0(G,G) = 0, then κ induces the isomorphism between a certain proper
subalgbera of the formal completion of HW 0(G,G) and the Maurer-Cartan
algebra AL.

See Proposition 5.2 and Proposition 5.3 for analogous statements in the
unfiltered setting. We remark that the two statements [EL17a, Theorem 2
and Corollary 52] combined together proves the unfiltered version of the
above when H1(Li) = 0 for each i.

The homomorphism κ = {κl}l≥1 admits an explicit formula

∑
mk(Z1, · · · , Zl, P, b̃, · · · , b̃) = P κl(Z1, · · · , Zl),

for Z1, · · · , Zl ∈ CF (G,G), where P generates CF (G,L) and b̃ =
∑
xiXi

is the formal linear combination of all generators Xi of CF (L,L) except
the unit. mk on the left hand side can be expanded using (2.10) so that
it becomes a sum of mk’s having usual inputs from the Floer complexes
multiplied by monomials in xi. Making use of its compatibility with algebraic
structures, κ can be explicitly computed in many cases, at least on the level
of cohomology.

We provide detailed computations for several important classes of exam-
ples in Section 6. Observe that two typical examples of such a pair (G,L)
arises in

• M , a cotangent bundle with a cotangent fiber G and the zero section L,

• M with a SYZ fibration where G is a Lagrangian section and L a torus
fiber.

Etgü and Lekili [EL17b] have given a nice explanation on the former case
related with Koszul duality, and analyzed in detail the case of plumbing of
spheres in this context. Also Li [Li19b, Li19a, Li21] found such a duality
pattern in many Weinstein manifolds beyond plumbings.

Our focus is more on the latter one, and in particular, the case when
the compact Lagrangian L has nontrivial H1(L) so that its Maurer-Cartan
deformation is nonempty. This is an essential reason why we need to deal
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with the convergence issue more carefully. Namely, the elements in H1(L)
can be inserted arbitrarily many times to A∞-operations without chang-
ing the degree of the output. Keeping track of the degree changes in alge-
braic constructions, H1(L) is responsible for the 0-th cohomology of AL, the
Maurer-Cartan algebra AL.

With help of the theorem, we shall make an atlas of the mirror rigid an-
alytic varieties obtained from the generating Lagrangian G of several local
SYZ models, locating the Maurer-Cartan deformation space of important
classes of Lagrangians (as well as torus fibers) in the mirror space. This pro-
cedure takes the opposite way to gluing construction in [HL18] or [CHL18]
in the sense that we describe local charts in terms of global coordinates on
the mirror given G.

The examples include the cotangent bundle of Tn (or a trivial SYZ fi-
bration), a conic bundle with a nodal torus fiber, and a deformed conifold.
Purpose of the last example is to examine the noncommutative (quiver) sit-
uation. Interestingly, we will see that immersed Lagrangians (such as nodal
torus fiber) tend to have bigger Maurer-Cartan neighborhoods than embed-
ded ones (such as torus fibers). Intuitively, this means: the more singular
the Lagrangian is, the more Lagrangians it can produce by deformation. It
is, of course, plausible since one can smooth out singularity to make the
Lagrangian less singular.

On the contrary, torus fibers have very small Maurer-Cartan neighbor-
hood. Note that different torus fibers do not intersect. This implies that their
Maurer-Cartan neighborhoods do not overlap, since the Maurer-Cartan de-
formation is based on Lagrangian intersection Floer theory. For this reason,
one should take into account every fiber to obtain a full deformation space
of Lagrangian torus fibers. This is along the same line of thoughts as in the
family Floer program [Abo14] or the family of valuations in [FOOO16]1.

Here are some future directions. One potential application of Theo-
rem 1.2 is the computation of the Maurer-Cartan algebra of L from the
wrapped Floer cohomology of its dual G. Usually, the Maurer-Cartan al-
gebra involves nonlinear relations from higher mk-operations that makes it
hard to compute by direct count of holomorphic disks. On the other hand,
in many examples including conic bundles, the wrapped Floer cohomology
is concentrated at degree 0, and is relatively easy to compute by explicit

1There are some cases such as toric manifolds where the symplectic information
is concentrated only at critical fibers, in which case it may be enough to look at
their weak Maurer-Cartan deformation to construct a mirror [CHL19].
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Maurer-Cartan deformation of Lagrangians 7

perturbations. Also there is a nice generation result of the wrapped Fukaya
category provided by [GPS20] and [CRGG17].

It would be also interesting to extend the result into weak Maurer-Cartan
deformation and its associated Landau-Ginzburg mirror. In 6.2, we shall per-
form some relevant construction for a certain weakly unobstructed immersed
circle in the pair-of-pants, which may give us a hint for a more general for-
mulation.

Notations

We will work over several different coefficient rings depending on the
geometric situation. The most frequently used is the universal Novikov field
over C defined as

(1.2) Λ :=

{
∞∑

i=0

aiT
λi | ai ∈ C, lim

i→∞
λi +∞

}
.

We also use the following subrings of Λ often:

Λ0 :=

{
∞∑

i=0

aiT
λi ∈ Λ | λi ≥ 0

}
, Λ+ :=

{
∞∑

i=0

aiT
λi ∈ Λ | λi > 0

}
.

Finally, the following is the set of elements in Λ0 which has multiplicative
inverses:

ΛU := {a0 + λ : a0 ∈ C× and λ ∈ Λ+},

which can be thought of as unitary elements in Λ. In addition, we will also
use their semi-simple generalizations, whose definition is to be given later.
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2. Maurer-Cartan space of a Lagrangian

We briefly recall Lagrangian Floer theory following [FOOO09], especially the
Maurer-Cartan deformation of a Lagrangian, which is the main subject in
the paper. As we are to relate this with an endomorphism of a noncompact
Lagrangians in later applications, a short review on wrapped Floer theory
will be also given. Along the way, we present the precise T -adic setting for
both of Floer theories that we work with throughout the paper.

2.1. Fukaya A∞-algebra and wrapped Fukaya category

Let us start with a compact unobstructed Lagrangian L in a symplectic
manifold M . We allow L to be immersed with clean intersections. The un-
obstructedness of L means that the evaluation image of the moduli space
of holomorphic discs bounding L with one marked point vanishes, which
results in the absence of m0-term in the A∞-structure below. For instance,
if there is no nonconstant disc bounding L, then L is automatically unob-
structed. We will use the canonical model for the Floer complex CF (L,L; Λ)
that is modeled on H∗(L; Λ). When L is immersed, we additionally include
two copies of cocycles on the self-intersection loci into CF (L,L; Λ). Each
of them spans rank-1 Λ-vector space in CF (L,L; Λ) whose elements will be
called immersed generators.

CF (L,L; Λ) has a C-vector subspace CF (L,L;C) generated byH∗(L;C)
and immersed generators (over C) so that CF (L,L; Λ) = CF (L,L;C)⊗ Λ.
There exists a non-Archimedean valuation ν on CF (L,L; Λ) which is com-
pletely determined by setting it to be zero on CF (L,L;C). See 3.1.

Theorem 2.1 ([FOOO09],[AJ10]). There exist a sequence of multilinear
maps

mk : CF (L,L; Λ)
⊗k → CF (L,L; Λ)

for k ≥ 1 which satisfies
(2.1)∑

i,k1+k2=k+1

(−1)∗mk1(X1, · · · , Xi,mk2(Xi+1, · · · , Xi+k2), Xi+k2+1, · · · , Xk),

where ∗ = (−1)|X1|′+···+|Xi|′, and |Xi|
′ denotes the shifted degree |Xi|

′ =
|Xi| − 1.

A vector space V with a family of multilinear operations {mk : V
⊗k →

V }k≥1 satisfying 2.1 is called an A∞-algebra, and hence the theorem simply
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tells us that CF (L,L; Λ) admits an A∞-structure. If L is obstructed, (2.1)
should additionally involve a certain nonzero cohomology class usually called
m0(1). Each mk can be further decomposed as

(2.2) mk =
∑

β∈π2(M,L)

mk,βT
ω(β)

which can be an infinite sum, but Gromov compactness ensures that this
operation converges over Λ.

Now we recall the wrapped Floer cohomology first defined in [AS10].
Let M be a Liouville manifold with an exact symplectic form ω = dθ. Let
us take a Liouville vector field Z such that ιZω = θ. We require M to be
symplectomorphic to [1,∞)× Σ outside a compact regionM in for some con-
tact hypersurface Σ. More precisely, [1,∞)× Σ is equipped with ω = d(rα)
where α := θ|Σ and r is the standard coordinate on (1,∞). A Lagrangian L
is said to be conical at infinity if L intersects Σ transversally and Θ|L ≡ 0
on this region.

For given an exact Lagrangian L conical at infinity, we define its (self-
)wrapped Floer complex as follows. We take a linear Hamiltonian H :M →
R in the sense that H = r on the region symplectomorphic to (1,∞)× Σ.
Then the wrapped Floer complex CW (L,L) is defined to be

CW (L,L) = ⊕∞
w=1CF (L,L;wH)[q]

where CF (L,L;wH) is formally generated over C by time-1 Hamiltonian
chords of wH from L to itself, and q is a formal variable with deg q = −1.
The operations

(2.3) mk : CW (L,L)⊗k → CW (L,L)

are defined by counting pseudo-holomorphic maps that carries some addi-
tional data about continuation between Hamiltonians with different slopes
w. The m1-cohomology of CW (L,L) denoted by HW (L,L) is called the
wrapped Floer cohomology of L. We refer readers to [AS10, Section 2,3] for
detailed construction. See also [RS17, Section 3] for the construction in the
monotone setting. We remark that unlike (2.2), the output of (2.3) is a finite
sum of intersection points.

More generally, for a (k + 1)-tuple of a Lagrangian L0, · · · , Lk, one can
analogously define

(2.4) mk : CW (L0, L1)⊗ · · · ⊗ CW (Lk−1, Lk)→ CW (L0, Lk).
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where CW (Li, Lj) = ⊕
∞
w=1CF (Li, Lj ;wH)[q] and CW (Li, Lj ;wH) is the

C-vector space generated by wH-Hamiltonian chords from Li to Lj . The
wrapped Fukaya categoryWFuk(M) is then defined as the C-linear category
whose objects are exact Lagrangians conical at infinity and morphism space
between L and L′ is given by homWFuk(M)(L,L

′) = CW (L,L′). WFuk(M)
is naturally an A∞-category with operations mk (2.4).

Wrapped Fukaya category over Λ. For later use, we extend the coeffi-
cient field for the wrapped Fukaya category to the Novikov field Λ so that the
A∞-operations involve the powers of T , recording the areas of contributing
disks. We first set

CW (Li, Lj ; Λ) := ⊕
∞
w=1CF (Li, Lj ;wH; Λ)[q]

where everything is the same as before except that CF (Li, Lj ;wH; Λ) is
now Λ-vector space freely generated by wH-Hamiltonian chords from Li to
Lj . mk-operations are defined analogously to (2.2), that is, we count the
pseudo-holomorphic map u : S →M contributing to mk with the weight
TEtop(u) ∈ Λ for

Etop(u) :=

∫

S

u∗ω − d(u∗H ∧ γ).

Here, γ is a part of the data contained in the disk moduli which encodes
the interpolation among linear Hamiltonians with different slopes associ-
ated with inputs and outputs. In fact, we do not actually need its pre-
cise definition here, since in the exact setting, one can recover the weight
simply from the actions of inputs and outputs as [AS10, (7.9)]. Namely,
if u takes its inputs Pi ∈ CF (Li−1, Li;wiH) for 1 ≤ i ≤ k and the out put
Q ∈ CF (L0, Lk;w0H), then Stokes formula tells us that

(2.5) Etop(u) = Aw0H(Q)−
k∑

i=1

AwiH(Pi),

where

AwH(P ) =

∫ 1

0
−P ∗θ + wH(P (t))dt+ fj(P (1))− fi(P (0))

for a Hamiltonical chord P ∈ CF (Li, Lj ;wH) and the primitives fi, fj satis-
fying dfi = θ|Li

. Sometimes it is useful to identify P as an intersection point
P ∈ ϕwH(Li) ∩ Lj (abusing notation), in which case the valuation can be
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written as

(2.6) AwH(P ) := −ιXwH
θ(P ) + fj(P )− fi(P ).

Notice that ιXwH
θ + fL is a primitive of ϕwH(L), see for e.g., [Gao17,

Lemma 3.2].
Let us denote by WFukΛ(M) the category with the same set of objects

as WFukΛ(M), but

homWFukΛ(M)(L,L
′) := CW (L,L′; Λ).

The above discussion gives the natural extension of A∞-operations on
WFukΛ(M), and it becomes the filtered A∞-category over Λ. Furthermore,
by absorbing the weight TEtop(u) appearing in the A∞-operations into inputs
and outputs using (2.5), we have

(2.7) WFuk(M)⊗C Λ →֒ WFukΛ(M).

To fix the notations, we describe the functor (2.7) more explicitly be-
low. For exact Lagrangians L and L′, suppose a Hamiltonian chord
P ∈ CF (L,L′;wH) gives rise to the generator P̃ ∈ homWFuk(M)(L,L

′) =

CW (L,L′). Then the above functor sends P̃ regarded as a morphism in
WFuk(M) to TAwH(P )P where fL and f ′L are such that

θ|L = dfL and θ|L′ = dfL′ ,

and the same symbol P now represents the standard generator of the mor-
phism space in WFukΛ(M) supported at the Hamiltonian chord P . By
abuse of notation, we denote the normalized generator TAwH(P )P by P̃ re-
garded as a morphisms in WFukΛ(M), which is actually the image of the
standard generator (written by the same notation P̃ ) in WFuk(M) sup-
ported at P . P̃ will be referred to as an exact generator for this reason.

Definition 2.2. A morphism in WFukΛ(M) is said to be an exact gener-
ator if it is an image of a generator homWFuk(M)(L,L

′) under (2.7).

Throughout, our notation will follow the same convention, i.e., for a ge-
ometric generator (a chord or an intersection point) P , P̃ is the (image in
WFukΛ(M) of) morphism in the exact category, and hence among them,
A∞-operations as well as continuations maps do not produce any nontrivial
powers of T . If L ∈ WΛ is a compact object, then one may alternatively use
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Morse-Bott model H∗(L; Λ) (or its variants) for homWΛ(L,L), which coin-
cides with CF (L,L; Λ) described earlier. For non-immersed generators in
H∗(L;C)(⊂ H∗(L; Λ), the corresponding exact generators are simply them-
selves, which is somewhat consistent with (2.6) since H = 0 for the Morse-
Bott model and L = L′ for an endomorphism space. By definition, their
valuations ν vanish also.

On the other hand, immersed generators have slightly a different fea-
ture in this regard. Let X be an immersed generator of the (Morse-Bott)
Floer complex CF (L,L; Λ) of an exact Lagrangian immersion ι : L↬ L,
supported at the self-intersection ι(X+) = ι(X−). Suppose that the genera-
tor X represents the branch jump from X− to X+ in Floer theory of L. One
can assign another real number to X analogously to (2.6) as follows. Let fL
be the chosen primitive of ι∗θ for the exact brane L. We denote by A(X)
the difference of the values of fL at the branch jump X,

(2.8) A(X) := fL(X+)− fL(X−) ∈ R.

It will play an important role, indicating the position of L in the global
moduli of Lagrangian. As before, if we use the scaling X̃ = TA(X)X for
immersed generators, then the A∞-operation does not involve the area term,
which is essentially going back to the C-linear category WC. Thus an exact
immersed generator X̃ can have nonzero valuation ν(X̃) = A(X) ̸= 0.

We finish the discussion by the following simple example of M = T ∗S1

to illustrate how the actions of generators of the wrapped Floer cohomology
are given.

Example 2.3. Let G be a cotangent fiber in M := T ∗S1. If we iden-
tify T ∗S1 = R× S1 and use (s, t) as local coordinates (with s ∈ R and
t ∈ [0, 1]/0∼1), the symplectic form is given by ω = dsdt with Θ = sdt. (In
view of X = C×, (t, s) and z ∈ C× are related by log z = s+ it.) Identifying
the subset {≤ 1− ϵ|s|} as the conical end, one take H(s, t) := |s|/(1− ϵ) to-
gether with a suitable interpolation by a quadratic function over −1 + ϵ <
s < 1− ϵ. Here, ϵ is a small positive real number so as to avoid integer Reeb
chords at the contact boundary of M .

For w = 1, 2, · · · , CF (G,G;wH; Λ) is spanned by chords {Z
(w)
i : − w

1−ϵ <

i < w
1−ϵ} where Z

(w)
i wraps i times the cylinder M . By a direct calculation,

AwH(Z
(w)
i ) = C

(
− i2

w
+ w

(1−ϵ)2

)
, and hence the corresponding exact genera-

tor is given by Z̃
(w)
i = T

C
(

− i2

w
+ w

(1−ϵ)2

)

Z
(w)
i . (C is a fixed positive real number

only depending on H.)
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The obvious continuation map CF (G,G;wH; Λ)→ CF (G,G; (w +

1)H; Λ) identifies Z̃
(w)
i and

˜
Z

(w+1)
i .

{
Z̃0 := Z̃

(1)
0 , Z̃i :=

˜
Z

(|i|)
i : i ∈ Z \ {0}

}

(or more precisely, their images in the cohomology) can be taken as a basis

of the cohomology HW (G,G; Λ). It is well-known that m2(Z̃i, Z̃j) = Z̃i+j is
the only nontrivial operation.

2.2. Maurer-Cartan equation

Let L be a graded unobstructed immersed Lagrangian, which is compact.
We assume that L consists of a single irreducible component for simplic-
ity. Consider its Lagrangian Floer complex CF (L,L; Λ) which is naturally
an A∞-algebra. We assume that CF (L,L; Λ) is supported on nonnegative
degrees and the degree 0 component CF 0(L,L; Λ) is generated by the unit
class. By passing to the minimal model, the condition is satisfied if L does
not have any immersed generators with nonpositive degrees. To be more con-
crete, we will take the underlying vector space of CF (L,L; Λ) to be H∗(L; Λ)
(adjoined with immersed generators if L is immersed).

In [CHL17], the localized mirror associated to L was constructed as the
space of Maurer-Cartan deformation of L defined in the following way2. Let
{X1, · · · , Xl} be a basis of the degree 1 component CF 1(L,L; Λ0), induc-
ing that of CF 1(L,L; Λ) = CF 1(L,L; Λ0)⊗Λ0

Λ formed by elements with
zero valuations. For (free) formal variables x1, · · · , xl, we consider a linear
combination b =

∑
xiXi, and compute

(2.9) m1(b) +m2(b, b) + · · ·

where we use the convention

(2.10) mk(xi1Xi1 , · · · , xikXik) = xik · · ·xi1mk(Xi1 , · · · , Xik).

Notice that elements of Λ+ can only be plugged into formal variables
x1, · · · , xl in order to to make sense of possibly an infinite sum (2.9).

Since CF (L,L; Λ) is Z-graded, the outcome must be a linear combination
of degree 2 generators of CF (L,L; Λ) with coefficient being noncommutative

2[CHL17] mainly deals with the weak Maurer-Cartan deformation
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formal power series in x1, · · · , xl, i.e.,

m1(b) +m2(b, b) + · · · = f1(x1, · · · , xl)Xl+1 + · · ·+ fN ′(x1, · · · , xl)XN ′

where Xl+1, · · · , XN ′ generate CF 2(L,L; Λ). Let Λ{{x1, · · · , xl}} denote the
space of (noncommutative) formal power series over Λ with bounded coeffi-
cients. We see that if xi’s are taken from the algebra

(2.11)
Λ{{x1, · · · , xl}}

⟨⟨f1, · · · , fN ′⟩⟩
,

then the associated b solves the Maurer-Cartan equation

(2.12) m1(b) +m2(b, b) + · · · = 0.

Here, the ideal ⟨⟨f1, · · · , fN ′⟩⟩ is defined as follows. Note that a se-
ries

∑∞
l=0

∑
I∈(Z>0)l

λIx
I belongs to Λ{{x1, · · · , xl}} if and only if the set

{val(λI) : I ∈ (Z>0)
l} (⊂ Λ) is bounded below. (Here, xI = xi1 · · ·xil for

I = (i1, · · · , il).) We call inf{val(λI) : I ∈ (Z>0)
l} the (T -adic) valuation of∑

I∈(Z>0)l
T λIxI . ⟨⟨f1, · · · , fN ′⟩⟩ consists of elements of the form

(2.13)

N ′∑

k=1

∞∑

l=0

∑

|I|+|J |=l

λk,I,J x
I fk x

J

such that valuations of elements in the set {λk,I,J} are bounded below,
where |I| = m for I ∈ (Z>0)

m. As we will see later, Λ{{x1, · · · , xl}} can be
obtained as the continuous dual of the tensor algebra of CF 1(L,L) (over Λ)
with respect to a natural T -adic topology. Correspondingly, ⟨⟨f1, · · · , fN ′⟩⟩
is the closure of the ideal generated by f1, · · · , fN ′ .

If {Yi} is another basis of CF 1(L,L; Λ0), then Yi =
∑l

j=1 aijXj for
some aij such that (aij) = (aij) + (bij) where (aij) is an invertible ma-
trix with entries in C and bij ∈ Λ+. Thus, the inverse (aij) of (aij) is
given as (aij) = (aij)− (aij)(bij)(a

ij) + (aij)(bij)(a
ij)(bij)(a

ij)− · · · where
(aij) := (aij)−1 (the expression converges since bij ∈ Λ+). The associated

variable yi can be written as yi =
∑l

j=1 a
jixj , and this gives an isomorphism

between Λ{{x1, · · · , xl}} and Λ{{y1, · · · , yl}} by a valuation preserving (lin-
ear) coordinate change.

Definition 2.4. The Maurer-Cartan algebra of L is defined to be

AL :=
Λ{{x1, · · · , xl}}

⟨⟨f1, · · · , fN ′⟩⟩
.
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Intuitively, the Maurer-Cartan space from L is the (possibly noncom-
mutative) space whose function ring is the Maurer-Cartan algebra of L. For
a Maurer-Cartan solution b (that is, b satisfying (2.12)) with coefficients in
Λ+, (L, b) defines an unobstructed object whose Floer cohomology is well-
defined. Therefore, the Maurer-Cartan space can be thought of as a local
moduli formed by objects in the Fukaya category near L (see, for instance,
[HL18]).

Example 2.5. Let us consider (C∗)n = T ∗Tn, the cotangent bundle of the
n-dimensional torus L := Tn. Since A∞-operations admits no contribution
from nonconstant discs, we only need to take into account the cup product
on H∗(L). Since H∗(L) is an exterior algebra generated by dθ1, · · · , dθn, we
see that the Maurer-Cartan equation for b =

∑
xiθi gives

m(eb) =
∑

i,j

(xixj − xjxi)dθi ∧ dθj ,

and hence the Maurer-Cartan algebra of L is the symmetric algebra on n-
letters, x1, · · ·xn. Taking into account the convergence issue over Λ, the
Maurer-Cartan algebra is given by

(2.14)
Λ{{x1, · · · , xn}}

⟨⟨xixj − xjxi | 1 ≤ i ̸= j ≤ n⟩⟩

which can be thought of as a certain completion of the polynomial ring over
Λ in n-variables, and one can think of x1, · · · , xn as variables for (Λ+)

n.

There is a way to include energy-0 Maurer-Cartan deformation, which is
to use ΛU-connection ρ on L. Fix a generator X1, · · · , Xl of H

1(L;Z), and
suppose ρ has holonomy ρi ∈ ΛU along PD(Xi). The Maurer-Cartan defor-
mation by

∑
xiXi with xi ∈ Λ+ can be enhanced using ρ by introducing a

new variable zi = ρie
xi . Here, the appearance of the expression exi is natural

in the sense that xi appears in A∞-operations deformed by b =
∑
xidθi as

an exponential due to the divisor axiom. However, the change of variables xi
into exi has a dramatic effect on the valuation, since exi always has valuation
zero for any xi ∈ Λ+.

Example 2.6. Applying the above discussion to Example 2.5 with b =
(ρ,

∑
i xidθi), we obtain an enlarged deformation space whose Maurer-

Cartan algebra is given by

(2.15)
Λ{zi : i ∈ Z}

⟨zizj = zi+j : i, j ∈ Z⟩
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where Λ{zi : i ∈ Z} consists of an infinite sum
∑∞

k=1 akzik with lim val(ak) =
∞. One does not need to take the closure of the ideal ⟨zizj = zi+j : i, j ∈
Z⟩ since it is automatically closed due to some general fact about affinoid
algebras, see [BGR84, Proposition 3, 6.1.1] and [BGR84, 6.1.4].

Notice that (2.14) describes the ring of convergent (analytic) functions
on (Λ+)

n, whereas (2.15) is that of (ΛU)
n. The exponential coordinate

change zi = ρie
xi = ρi + ρixi + · · · clearly explains the necessity of the con-

dition lim val(ak) =∞, since otherwise
∑∞

k=1 akzik would not give a well-
defined element in (2.14) after coordinate change back to xi.

The last example concerns the Maurer-Cartan deformation by immersed
generators of a Lagrangian, which can be intuitively thought of as smoothing
out the corresponding self-intersections.

Example 2.7. Consider the deformed conifold {(u1, v1, u2, v2) ∈ C4 :
u1v1 − u2v2 = ϵ} with ϵ ̸= 0. It admits a double conic fibration by writing
the defining equation as u1v1 = z − a and u2v2 = z − b (with b− a = ϵ). Let
M := {(u1, v1, u2, v2) ∈ C4 : u1v1 − u2v2 = ϵ} \ {z = 0}, which is the anti-
canonical divisor complement of a deformed conifold. The projection to z-
plane defines a double-conic fibration, and two matching cycles L0 and L1

over the paths drawn in Figure 1 are Lagrangian 3-spheres.

Figure 1. A double conic fibration on the deformed conifold with two sin-
gular fibers

Consider the union L := L0 ⊕ L1 regarded as an immersed Lagrangian.
Floer theory on L has been examined in [CPU16] using a certain simplicial
model. L has the Maurer-Cartan algebra

Λ{{x, y, z, w}}

⟨⟨xyz − zyx, yzw,wzy, zwx− xwz,wxy − yxw, xz, zx, yw,wy⟩⟩
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where x, y, z, w are taken from the path algebra ΓQ for

Q : •

x

��
z

%%
•

y

ee

w

[[ .

Here, the relations xz = zx = yw = wy = 0 come from composability of ar-
rows in Q.

In Example 2.7, we can alternatively use the semi-simple coefficient ring
kΛ := Λπ0 ⊕ Λπ1 with πi · πi = πi and π0 · π1 = π1 · π0 = 0 which can tell us
about composability of paths as well. In this case, we take kΛ{{x, y, z, w}} as
a replacement for Λ{{x, y, z, w}} with x, y, z, w ∈ ΓQ, where π0x = xπ1 = x,
xπ0 = π1x = 0, zπ0 = zπ1 = 0, and similar for y, z, w. In what follows, we
will work over such a coefficient ring to efficiently include the case when L

is given as a union of several Lagrangians.

3. Preliminaries on homological algebra in filtered setting

We review basic algebraic constructions that are relevant to our geometric
applications below, adapting [EL17a, Section 2] to T -adic setting. A related
construction in the filtered and curved setting seems to be carried out in
[DL18]. To begin with, we fix once and for all our base ring k to be a
semisimple ring kΛ = ⊕ri=1Λπi such that πi · πi = πi and πi · πj = 0 for i ̸= j.
There exists a valuation val : Λ→ R such that val(T λ) = λ, which has an
obvious extension to kΛ. We set kC = ⊕ri=1Cπi so that kΛ = kC ⊗C Λ. For
both kΛ and kC, the sum

∑
1≤i≤r πi of idempotents defines the unit, which

we denote by 1.

3.1. Non-Archimedean topology on kΛ-modules

In what follows, the underlying (chain-level) space V of any algebraic struc-
tures we are to consider will be of the following form. V is a free kΛ-bimodule
endowed with a valuation ν : V → R ∪ {∞} such that

• ν(cX) = val(c) + ν(X) for c ∈ k and X ∈ V ;

• ν(X + Y ) ≥ min{ν(X), ν(Y )} for X,Y ∈ V ;

• ν(X) =∞ if and only if X = 0.
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Notice that X 7→ e−ν(X) defines a non-Archimedean norm, and hence a
topology on V . The valuation ν on V gives rise to a filtration of V defined
by

FλV := {X ∈ V : ν(X) ≥ λ}

that satisfies

• FλV ⊂ Fλ
′

V for λ > λ′,

• cFλV ⊂ Fλ+val(c)V for c ∈ Λ.

The completion of V with respect to the filtration agrees with the completion
of the normed vector space V with respect to the norm e−ν .
{FλV } induces a filtration on the k-fold tensor product TkV := V ⊗k of

V (over kΛ) by

(3.1) FλTkV = Fλ(V ⊗ · · · ⊗ V ) :=
⋃

λ1+···+λk=λ

Fλ1V ⊗ · · · ⊗ FλkV

One can also consider the completion of TV = ⊕kV
⊗k with respect to the

filtration

FλTV :=
⋃

k

⋃

λ1+···+λk=λ

Fλ1V ⊗ · · · ⊗ FλkV

naturally extending (3.1).

3.2. A∞-algebras and coalgebras in Novikov setting

An A∞-algebra (V, {mk}k≥1) over kΛ is a free Z-graded filtered kΛ-bimodule
V equipped with a sequence of multilinear operations

mk : V
⊗k → V

of degree 2− k which satisfies the relations (2.1). Here, the filtered condition
means that V is equipped with a filtration as in 3.1 and that mk for each k
is a filtered map, i.e.,

mk(F
λ1Vi1 , · · · ,F

λkVik) ⊂ F
λ1+···+λk+λdVi1+···ik+2−k

for all k. Analogous conditions will be required for other algebraic structures
too.
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Remark 3.1. We use the following sign change that turns an A∞-algebra
with mk≥3 ≡ 0 into a dga

d(X) = m1(X), X · Y = (−1)|X|m2(X,Y ).

(See for e.g., [CHL18, Appendix A].) Adding extra signs is necessary due
to difference between A∞- and dg-sign conventions. To avoid a potential
confusion, an A∞-algebra (V,m1,m2,m≥3 ≡ 0) will be referred to as an A∞-
dga.

For two A∞-algebras (V1, ν1) and (V2, ν2), an A∞-homomorphism ϕ is
defined as a sequence of filtered multilinear maps ϕk : TkV1 → V2 of degree
1− k satisfying

∑

k

∑

i1,··· ,ik≥1

mV2

l (ϕi1(X
(1)), · · · , ϕil(X

(l)))

=
∑

(−1)|X
(1)|′ϕk1(X

(1),mV1

k2
(X(2)),X(3)).

where we write X ∈ BkV1 as X = X(1) ⊗ · · · ⊗X(l) on the left hand side
with X(i) ∈ TjV for some j, and the decomposition on the right hand side
is similarly defined.

An A∞-right module (E, νE) over V is a filtered kΛ-bimodule that
is equipped with a sequence of filtered multilinear maps {n1|k}, nk|1 :
E ⊗ TkV → E of degree 1− k, satisfying

∑
(−1)|Y |′+|X(1)|′n1|k1(Y,X

(1),mk2(X
(2)),X(3))

+
∑

n1|k1(n1|k2(Y,X
(1)),X(2))) = 0.

Left modules are similarly defined. Let E1 and E2 be two A∞-right modules
over V . A degree d pre-A∞-morphism f between two A∞-modules over V is
given by a sequence of filtered multilinear maps {ψk,1}, ψk,1 : TkV ⊗ E1 →
E2 of degree 1− k + d. We denote by homd

V (E1, E2) the set of all degree d
pre-A∞-module homomorphisms from E1 to E2, and set homV (E1, E2) :=
⊕d hom

d
V (E1, E2).
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There is a differential M1 (in A∞-convention) on homV (E1, E2) defined
by

M1(ψ)1|k(Y,X1, · · · , Xk)(3.2)

:=
∑

(−1)|ψ
′|+|Y |′+|X(1)|′ψ1|k1(Y,X

(1),mk2(X
(2)),X(3))

+
∑

(−1)|ψ|
′

ψ1|k1(n
E1

1|k2
(Y,X(1)),X(2))

+
∑

nE2

1|k1
(ψ1|k2(Y,X

(1)),X(2)).

It is elementary to check that M2
1 = 0. M1-closed pre-morphisms are usually

called A∞-module homomorphisms. When E1 = E2 = E, we can compose
(in A∞-convention) two morphisms {ψ1|k} and {ϕ1|k} from E to itself by

(3.3) M2(ϕ, ψ)1|k(Y,X1, · · · , Xk) =
∑

(−1)|ϕ|
′

ϕ1|k1(ψ1|k2(Y,X
(1)),X(2)),

and (homV (E,E),M1,M2) defines an A∞-dga in this case.
We next discuss an A∞-coalgebra C, which is the dual notion to an

A∞-algebra.

Definition 3.2. An A∞-coalgebra C over kΛ is a free Z-graded filtered kΛ-
module equipped with a family of filtered maps ∆k : C → C⊗k of degree k − 2
such that, for each k ≥ 1,

(3.4)
∑

r+s+t=k
u=r+1+t

(−1)∗(1⊗r ⊗∆s ⊗ 1⊗t)∆u = 0.

For two A∞-coalgebras C and C ′ over kΛ, a morphism between them is
a sequence of filtered linear maps {ϕk : C → C ′⊗k} satisfying

∑
(−1)∗(id⊗k1 ⊗∆k2 ⊗ id

⊗k3) ◦ ϕk1+k2+k3

=
∑

(ϕi1 ⊗ ϕi2 ⊗ · · · ⊗ ϕim) ◦∆m.

The signs in (3.4) follow the Koszul convention (with respect to the
shifted degrees). For instance, in (3.4),

(−1)∗(1⊗r ⊗∆s ⊗ 1⊗t)(c(1), c(2), c(3)) = (−1)|c
(1)|′c(1) ⊗∆s(c

(2))⊗ c(3)

where c(1) ⊗ c(2) ⊗ c(3) = (c1 ⊗ · · · ⊗ cr)⊗ (cr+1 ⊗ · · · ⊗ cr+s)⊗ (cr+s+1 ⊗
· · · ⊗ cr+s+t).
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A dg-coalgebra (C, d,∆ : C → C⊗C) is a special case of an A∞-coalgebra
with ∆3≥ ≡ 0, where d and ∆ differ from ∆1 and ∆2 by d(c) = ∆1(c), ∆(c) =∑

(−1)|c1|c1 ⊗ c2 when ∆2(c) =
∑
c1 ⊗ c2. The sign change makes (d,∆)

satisfy the usual graded co-Leibnitz rule. We will call (C,∆1,∆2,∆≥3 ≡ 0)
an A∞-dg-coalgebra to avoid potential confusion.

3.3. Bar construction

We next recall bar/cobar constructions in our setting. A dg-coalgebra is
closely related with an A∞-algebra structure via non-reduced bar construc-
tion. (The bar construction will refer to the reduced one in this paper.)
Namely, A∞-structure {mk} on V over kΛ is equivalent to a dg-coalgebra
structure on B̃V := T (sV ) = ⊕kTk(sV ), which is a non-reduced bar con-
struction of V (see for e.g. [Kel01]). Here, sV is a suspension of V which
shifts degree by −1, and hence for x ∈ V , |sx| = |x| − 1, which also agrees
with the shifted degree |x|′. (If there is no danger of confusion, we will use
the same notation x for sx in TV .) ∆ and d on TV are defined by

∆ : B̃V → B̃V ⊗ B̃V(3.5)

x1 ⊗ · · · ⊗ xk 7→
∑

i

(x1 ⊗ · · · ⊗ xi)⊗ (xi+1 ⊗ · · · ⊗ xk)

(3.6) d : B̃V → B̃V

x1 ⊗ · · · ⊗ xk 7→
∑

i,l

(−1)|x1|′+···+|xi|′x1 ⊗ · · · ⊗ml(xi+1, · · · , xi+l)⊗ · · · ⊗ xk.

One can easily check that this defines a dg-coalgebra (with respect to the
shifted degree), and that the condition d2 = 0 is equivalent to the A∞-
relations among {mk}k≥1.

In this paper, we will mainly consider the reduced bar construction, or
simply the bar construction, for an augmented A∞-algebra, which is given
as follows. Let V be an augmented A∞-algebra, i.e., an A∞-algebra together
with an A∞-homomorphism ε : V → kΛ. If V is unital, one can decompose
V = V̄ ⊕ kΛ where V̄ := ker ε is a (non-unital) A∞-algebra.

We further assume that ε is strict, in the sense that it does not involve
higher components V ⊗k → kΛ for k ≥ 2. This implies that V̄ is preserved by
any A∞-operations. For instance, CF (L,L; Λ) for a compact unobstructed
Lagrangian L admits a (strict) augmentation ε after passing to the minimal
model if necessary, where ε is the projection to the unit component.
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Definition 3.3. The bar construction of an augmented A∞-algebra (V, ε)
over kΛ is a dg-coalgebra on BV = T (sV̄ ) where V̄ = ker ε and the opera-
tions d and ∆ are given by the formulas (3.6) and (3.5) (with V replaced
by V̄ ).

Note that BV includes kΛ as a component, and is coaugmented via
the inclusion of this component. In general, the coaugmentation of an A∞-
coalgebra C is an A∞-coalgebra homomorphism η : kΛ → C.

3.4. Cobar construction

To define cobar the construction of an A∞-coalgebra over kΛ, we need to
enlarge the tensor algebra as follows.

Definition 3.4. For a filtered kΛ-bimodule C, let T̃C be the inverse limit
of {TC/FlTC}l≥0 where FlTC = ⊕∞

i=l+1C
⊗i. TC is defined as the subspace

of T̃C consisting of elements all of whose factors have valuations bounded
from below. One can express a general element of T̃C as

∞∑

l=0

∑

|α⃗|=l

cα⃗xα⃗ (cα⃗ ∈ kΛ and α⃗ = (α1, · · · , αl) ∈ I
l

and xα⃗ = xα1
⊗ · · · ⊗ xαl

).

(When C is graded, then the sum is required to be supported on finitely many
degrees.) This element belongs to TC if

(3.7) val(cα⃗) +

l∑

i=1

ν(xαi
) > λ

for some λ ∈ R for all l and α.

Given an A∞-coalgebra (C,∆k) over kΛ with the coaugmentation η :
kΛ → C, there is a natural way to obtain a dg-algebra, called the cobar
construction. We assume η is strict in the sense that ηk ≡ 0 for k ≥ 2.

Definition 3.5. Let C be a coaumented A∞-coalgebra over kΛ, and C̄ :=
C/η(k). Its cobar construction is the dg-algebra ΩC := T (s−1C̄), where the
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differential δ := dΩC is given by

(3.8) δ(x1 ⊗ · · · ⊗ xk) =∑

i,j

(−1)|x1|′+···+|xi−1|′x1 ⊗ · · · ⊗ xi−1 ⊗∆j(xi)⊗ xi+1 ⊗ · · · ⊗ xk

The multiplication · on ΩC is defined to be the usual concatenation of ten-
sors.

(3.8) is an element of T (s−1C̄) since ∆j ’s are filtered. One can check
that δ satisfies the graded Leibnitz rule (with respect to the degree shifted
by s−1) and δ2 = 0, and hence ΩC defines a dga. Also, ΩC is augmented via
the projection to the component kΛ in T (s−1C̄).

Remark 3.6. One can analogously perform the cobar construction on the
length completion T̃C. We write Ω̂C for the resulting dga. On the other
hand, for a dg-coalgebra C, the construction can be carried out for the usual
tensor algebra TC̄, which we denote by ΩC. Clearly, Ω̂C = lim

←−l
ΩC/FlΩC

where FlΩC denotes the subspace of elements with tensor length≥ l + 1. For
a dg-coalgebra C over kΛ (in the filtered setting), we have ΩC →֒ ΩC →֒ Ω̂C.

3.5. Dual of A∞-algebras and A∞-coalgebras

In our T -adic setting, the most natural way to take the dual of a vector
space over Λ is to consider bounded linear maps. Namely, linear functionals
are required to satisfy certain boundedness conditions with respect to the
valuation functions. We first discuss the dual of a kΛ-module.

Let us consider a non-graded kΛ-bimodule V over kΛ with a valuation
ν : V → R ∪ {∞}. Let V ∨ denote the set of all right kΛ-module maps V →
kΛ which are bounded. Recall that a kΛ-linear map f : V → Λ is said to be
bounded if

(3.9) inf{val(f(X)) ∈ kΛ : X ∈ V with ν(X) = 0} ≠ −∞.

In this case, one can define ν∨ : V ∨ → R ∪ {∞} to be this infimum. Such
f gives a continuous linear map between the two non-Archimedean normed
spaces (V, e−ν) and (kΛ, e

−val), and V ∨ is usually referred to as the topolog-
ical (or continuous) dual of V . One can check that e−ν

∨

defines a non-
Archimedean norm on V ∨. Since (3.9) is equivalent to inf{val(f(X))−
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ν(X) ∈ kΛ : X ∈ V }, we have

val(f(X)) ≥ ν∨(f) + ν(X)

for any X ∈ V . The kΛ-bimodule structure on V ∨ is defined by (a · f ·
b)(X) = a · f(b ·X) for a, b ∈ kΛ. One can analogously define the left dual
∨V of V , the set of bounded left kΛ-module maps from V to kΛ, and

∨V
becomes a kΛ-bimodule via (a · f · b)(X) = f(X · a) · b.

For a graded kΛ-module V = ⊕d∈ZVd, we define V ∨ = ⊕d (Vd)
∨, where

we set the grading on (Vd)
∨ to be −d so that (V ∨)d = (V−d)

∨. This resembles
taking the graded dual of V , but the usual algebraic dual of each graded
piece now being replaced by the topological dual.

Suppose that {Xi : i ∈ I} freely generate the degree d component Vd
over kΛ, and for each i, Xi ∈ πβi

· Vd · παi
for some αi and βi. For this choice

of generators, one can define the coordinate function xi ∈ παi
· (Vd)

∨ · πβi
⊂

(Vd)
∨ of degree −d by xi(Xj) := δij παi

. and extending it kΛ-linearly. Obvi-
ously, xi is bounded, and ν

∨(xi) = −ν(Xi). In general, an element of (V ∨)d
can be written as a possibly infinite linear combination

(3.10)

∞∑

j=1

bixi bi ∈ kΛ

satisfying val(bi) + ν∨(xi) > λ for all i and some fixed constant λ ∈ R. If Vd
is finitely generated, then (3.10) reduces to a finite linear combination over
kΛ. A general element of V ∨ is a finite sum of series like (3.10) with different
degrees.

3.5.1. Dual of a tensor algebra. We make a few remarks about the
relation between the tensor algebra and the (topological) dual. For a free
graded kΛ-bimodule (V, ν), the degree d piece of TV is given by

(TV )d =
⊕

k

⊕

d1+···+dk=d

Vd1 ⊗ · · · ⊗ Vdk .

Recall that TV = ⊕d(TV )d is equipped with a filtration induced by ν, and
it makes sense to take its topological dual (TV )∨. Namely, it consists of
linear maps f : TV → kΛ which support on finitely many degrees and satisfy
f(FλTV ) ⊂ Fλ+λfkΛ
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We always have a kΛ-bimodule homomorphism

(3.11) (Vd1)
∨ ⊗ · · · ⊗ (Vdk)

∨ → (Vdk ⊗ · · · ⊗ Vd1)
∨

by letting

(y1 ⊗ · · · ⊗ yk) (Zk ⊗ · · · ⊗ Z1) := y1(· · · yk−1(yk(Zk)Zk−1) · · ·Z1),

which clearly defines a bounded map. It induces maps Tk(V
∨)→ Tk(V

∨)
and T (V ∨)→ (TV )∨ which are isomorphisms for a finitely generated
V . For the left-dual ∨V , we instead use (y1 ⊗ · · · ⊗ yk) (Zk ⊗ · · · ⊗ Z1) =
yk(Zk yk−1(Zk−1 · · · y1(Z1))), and proceed analogously. From now on we will
mainly consider the right dual to simplify the exposition.

Lemma 3.7. If V is finitely generated graded module over kΛ, then
(TV )∨ ∼= T (V ∨), where T (V ∨) is given as in Definition 3.4.

Proof. Let us fix a basis {Xi : i ∈ I} of V with Xi ∈ πβi
V παi

, and con-
sider associated coordinate functions {xi : i ∈ I}. V ⊗ · · · ⊗ V admits a basis
{Xi1 ⊗ · · · ⊗Xik : k ≥ 1, αil = βil+1

}. Therefore an element of (TV )∨ is com-
pletely determined by its value at these element. Namely, it can be expressed
as

(3.12)

∞∑

k=1

∑

v∈Ik

cvx⃗v

where x⃗v = xv1 ⊗ · · · ⊗ xvk . For this to be an element of (TV )∨, it has to be
a bounded map, and cv is nonzero for finitely many degrees only. Namely,
the set of values of (3.12) at normalized basis elements

{
T−

∑

k
val(Xvk

)Xv1 ⊗ · · · ⊗Xvk : (v1, · · · , vk) ∈ I
k, k = 1, 2, · · ·

}

with valuation zero should be bounded below. Thus there exists λ ∈ R such
that

val(cv)−
k∑

l=1

ν(Xvl) = val(cv) +

k∑

l=1

ν(xvl) > λ

for all v. Together with the fact that (3.12) supports only finitely many
degrees, this is precisely a description of an element of T (V ∨). □
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3.5.2. Dual of a finitely generated A∞-algebra over kΛ. Suppose
we are given a filtered A∞-algebra (V, {mk}k≥1) finitely generated over kΛ.
For f ∈ V ∨, we define

(3.13) ∆k(f)(X1 ⊗ · · · ⊗Xk)) = (−1)|X1|′+···+|Xk|′f(mk(X1, · · · , Xk))),

where we implicitly use the fact that (3.11) is an isomorphism for finitely
generated V . It is not difficult to show that ∆k(f) is a bounded linear
map, and hence ∆k(f) ∈ (V ⊗k)∨ ∼= V ∨ ⊗ · · · ⊗ V ∨. Therefore the dual V ∨

of a filtered finitely generated A∞-algebra over kΛ admits a structure of a
filtered A∞-coalgebra over kΛ.

3.5.3. Dual of an A∞-coalgebra over kΛ. Let us next consider a fil-
tered A∞-coalgebra C, not necessarily finitely generated. As before, consider
the dual C∨ of C, the set of bounded kΛ-right-linear maps on C. If we define

(3.14) mk(f1, · · · , fk)(x) := (−1)|f1|
′+···+|fk|′(f1 ⊗ · · · ⊗ fk)(∆k(x)),

then one can easily check that mk(f1, · · · , fk) is bounded and mk is filtered.
Finally, {mk} satisfies A∞-relations by dualizing the relations among {∆k}.
Hence the dual of a filterd A∞-coalgebra over kΛ is naturally a filtered A∞-
algebra over kΛ.

Remark 3.8. The duality between A∞-algebra and coalgebra (3.13) and
(3.14) involves nontrivial signs. On the other hand, a dga (V, d, · ) and its
dual dg-coalgebra (V ∨, δ,∆) are related in the following way:

(δf)(x) = (−1)|f |f(dx), (∆f)(x⊗ y) = f(x · y)

for f ∈ V ∨ and x ∈ V . This is compatible with the sign difference between
A∞ and dg-conventions in our setup.

4. Maurer-Cartan space of a Lagrangian and

Koszul dual dga

In this section, we identify the localized mirror obtained by Maurer-Cartan
formalism of a Lagrangian L (see Section 2) with the Koszul dual of the
Floer complex of L. Consider a graded unobstructed compact Lagrangian L

in a symplectic manifold M . It is possible that L is a finite union of several
irreducible Lagrangians, L = ⊕i∈ΓLi, in which case we take the base ring
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k to be kΛ = ⊕i∈ΓΛπi. Thus the Floer complex CF (L,L; Λ) is naturally a
bimodule over kΛ.

Throughout, we will assume CF (L,L; Λ) is minimal and supported in
nonnegative degrees only, and that all the immersed generators have pos-
itive degrees. In particular, we have CF 0(L,L) ∼= kΛ spanned by the unit
class, or more precisely the sum of units for irreducible components of L.
The projection to the unit component CF (L,L; Λ)→ CF 0(L,L; Λ) defines
a canonical augmentation ϵ : CF (L,L; Λ)→ kΛ.

4.1. The Maurer-Cartan algebras of Lagrangian revisited

For simplicity, let us write VL = CF (L,L; Λ) from now on, which is a fil-
tered A∞-algebra over kΛ as in the setting of the previous section. Recall
from 2.1 that VL is equipped with a non-Archimedean valuation which van-
ishes on H∗(L;C) and the standard geometric generators associated with
self-intersections. By our assumption, VL is supported on nonnegative de-
grees only, and V 0

L
∼= kΛ. To make the exposition more explicit, we fix gen-

erators X1, · · · , XN of CF>0(L,L) with ν(Xi) = 0 such that

V 1
L

= span⟨X1, · · · , Xl⟩

V ≥2
L

= span⟨Xl+1, · · · , XN ⟩.

Recall that the dual CF (L,L)∨ is endowed with a structure of a filtered
A∞-coalgebra. For simplicity, we write V ∨

L
for CF (L,L)∨ in what follows.

V ∨
L

has counit and coaugmentation by dualizing those of VL. We write η :
kΛ → V ∨

L
for the coaugmentation, whose image is the (scalar multiples of)

coordinate function for the unit class in VL.
We can choose a splitting V ∨

L
= V ∨

L
⊕ kΛ using the fixed generators

above, where V ∨
L

= V ∨
L
/η(kΛ). Namely, we take the coordinate function xi

for Xi as generators of V ∨
L
. Recall that the degree of xi is taken to be

|xi| := −|Xi|. The same notation xi has already been used for a coefficient
in b in the Maurer-Cartan algebra in 2.2, but we will see that the two can
be naturally identified. For instance, if L is a Lagrangian torus, a degree 1
generator xi can be thought of as a coordinate for the 1-cocycles dθi whereas
other xj ’s are dual to wedge products among dθi’s.

The coalgebra structure on V ∨
L

has the following concrete description.
Suppose that we have nontrivial coefficient cv ∈ kΛ of Xi in the A∞-
operation on v := Xa1

⊗ · · · ⊗Xak
:

(4.1) mk(Xa1
, · · · , Xak

) = · · ·+ cvXi + · · · .
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For each such a tuple v, we have one summand xak
⊗ · · · ⊗ xa1

in ∆k(xi):

∆k(xi) = · · ·+ cv(xak
⊗ · · · ⊗ xa1

) + · · · .

The cobar construction of (V ∨
L
, η) produces a dg algebra ΩV ∨

L
. Its under-

lying kΛ-module T (s−1V ∨
L
) is generated by formal (noncommutative) series

in xi’s with a fixed degree such that valuations of coefficients are bounded
below. Note that in T (s−1V ∨

L
), the degree of xi should be inverse-shifted,

that is, |xi|
′′ := |xi|+ 1. We will often omit the tensor product symbol, and

simply write xak
⊗ · · · ⊗ xa1

:= xak
· · ·xa1

to denote the corresponding ele-
ment in (s−1V ∨

L
)⊗k. Then δ is given by

(4.2) δ(x) =
∑

k

∑

v

cvxak
· · ·xa1

where the inner sum is taken over all v = Xa1
⊗ · · · ⊗Xak

such that
mk(Xa1

, · · · , Xak
) = · · ·+ cvX + · · · with cv ̸= 0.

Ignoring the dg-algebra structure, ΩV ∨
L

can be thought of as the formal
function ring of the kΛ-bimodule CF (L,L) consisting of noncommutative
power series. Notice that constant functions are also included as T (s−1V ∨

L
) =

k⊕
(
⊕k≥1(s

−1V ∨
L
)⊗k

)
. We show that the dg-structure on ΩV ∨

L
encodes the

obstruction of a Maurer-Cartan deformation of the A∞-algebra CF (L,L).

Proposition 4.1. Let L be a graded unobstructed immersed Lagrangian
such that CF<0(L,L) = 0 and every immersed generators have positive de-
grees. Consider the dg-algebra ΩV ∨

L
for V ∨

L
= CF (L,L)∨. Then the 0-th co-

homology H0(ΩV ∨
L
, δ) is isomorphic to the Maurer-Cartan algebra AL of L.

Proof. We prove this for L with a single irreducible component only, and it
can be easily generalized to other cases. By definition, the degree 0 compo-
nent of ΩV ∨

L
is given by Ts−1

(
CF 1(L,L)

)∨
, which consists of infinite series

in x1, · · · , xl with bounded coefficients, i.e.

∞∑

i=k

∑

v∈{1,··· ,l}k

cvxv with inf{cv : i = 1, 2, · · · , v ∈ {1, · · · , l}k} > −∞.

This is precisely Λ{{x1, · · · , xl}} in (2.11).
Let Xl+1, · · · , XN ′ be the degree 2 generators of CF (L,L). Then the

degree (-1) component of ΩV ∨
L

is the set of infinite series consisting of
words in x1, · · · , xl, xl+1, · · · , xN ′ which have exactly one xj for l + 1 ≤ j ≤
N ′. On the other hand, it is obvious from the construction that δ(xj) =
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fj(x1, · · · , xl) ∈ (ΩV ∨
L
)0 for xj with l + 1 ≤ j ≤ N ′ if and only if the follow-

ing holds:

m0(1) +m1(b) +m2(b, b) + · · ·

= f1(x1, · · · , xl)Xl+1 + · · ·+ fN ′(x1, · · · , xl)XN ′

where b =
∑l

i=1 xiXi, and we linearly expand the left hand side by (2.10).
Now, a general degree 1 element f ∈ (ΩV ∨

L
)1 can be written as

f =

∞∑

k=0

gk(x1, · · · , xl)xikhk(x1, · · · , xl)

for some polynomials g, h and l + 1 ≤ ik ≤ N
′, where the lengths of terms

become greater than any fixed number after certain stage, and T -adic val-
uations of terms are bounded below. Since δ(gk) = δ(hk) = 0 in the above
expression by degree reason, δ(f) has precisely the same description as the
series (2.13) after applying the Leibnitz rule. Hence, the image of (ΩV ∨

L
)1

under δ coincides with the closure of the two-sided ideal generated by
δ(xl+1), · · · , δ(xN ′). Therefore the 0-th δ-cohomology computes

Λ{{x1, · · · , xl}}

⟨⟨δ(xl+1), · · · , δ(xN ′)⟩⟩
=

k{{x1, · · · , xl}}

⟨⟨f1, · · · , fN ′⟩⟩
,

which is exactly the Maurer-Cartan algebra of L. □

In general, ΩV ∨
L

may carry nontrivial information in higher degree com-
ponent, and hence taking the 0-th cohomology AL may lose some geometric
information of the Lagrangian L. For instance, if L is simply connected, then
AL is trivial.

Definition 4.2. We will call ΩV ∨
L

the Maurer-Cartan dga of L, and we
denote it by AL.

We remark that the curved version of this dga has been already consid-
ered in [CHL21], which includes the superpotential as a curvature term. The
Maurer-Cartan dga has another description using the bar construction. In
general, one has the following purely algebraic statement.

Proposition 4.3. For a finitely generated A∞-algebra V , Ω(V ∨) is iso-
morphic to (BV )∨.
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Proof. Lemma 3.7 shows that both Ω(V ∨) and (BV )∨ have the same under-
lying vector space. The remainder of the proof is comparing the algebraic
operations and their signs, which is elementary. □

Applying this to VL = CF (L,L), we see that the Maurer-Cartan dga of
L can be also expressed as (BVL)

∨, and we will mostly use this alternative
description in what follows. The main advantage of doing so is that (BV )∨

makes sense even for an infinite dimensional V . Mimicking the proof of
Proposition 4.1, one can derive a simple formula for the differential d on
this dga, whose proof is left as an exercise.

Lemma 4.4. For an A∞-algebra V , let X1, · · · , XN freely span V over its
coefficient ring, and formally write b̃ :=

∑N
i=1 xiXi. Then d on (BV )∨ is

implicitly given by m(eb̃) =
∑N

i=1(−1)
|xi|′d(xi)Xi.

4.2. Koszul dual algebras and generalized
Maurer-Cartan algebras

For a unital algebra A over a field k with an augmentation ϵ : A→ k, its
Koszul dual algebra is defined by A¡ = Ext∗(k, k) equipped with a Yoneda
product. Here, the A-module structure on k is induced by ϵ which splits the
unit k→ A. The main question around A¡ is whether or not taking Koszul
dual twice comes back to A itself. Such algebras has been extensively studied,
and generalized into various directions since it first appeared in [Pri70].

Our interest lies in the A∞-(or dg-) version of this construction, espe-
cially on the chain level rather than the cohomology Ext-algebras. Koszul
duality in this context has already been investigated in many literatures
such as [LPWZ08] or more categorical approach [Pos11], etc. In this section,
we recall the Koszul dual of A∞-algebras adapted to our filtered setting,
and explain its relationship with the Maurer-Cartan formalism.

We begin with (V, ε), a unital filtered augmented A∞-algebra over kΛ
with a valuation ν, and set V̄ := ker ε. As before, kΛ can be regarded as an
A∞-module over V via the augmentation ϵ. Consider the set

(4.3) homV (kΛ, kΛ) = {{fk,1}k≥1 : fk,1 : kΛ ⊗ V
⊗k → kΛ filtered}

of pre-A∞ homomorphisms from kΛ to itself. Recall from 3.2 and 3.3 that
homV (kΛ, kΛ) is an A∞-dga with a differential M1 and the multiplication
M2.
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Definition 4.5. For an augmented A∞-algebra (V, ϵ) over kΛ,
homV (kΛ, kΛ) (or its A∞ quasi-isomorphism class) is called the Koszul
dual of V , which is a A∞-dga with operations given by (3.2) and (3.3).
(One needs to put additional signs as in Remark 3.1 to fit into the standard
dg-sign conventions.) We will denote it by E(V ).

We shall see below that the Koszul dual for an A∞-algebra V =
CF (L,L) indeed coincides with the Maurer-Cartan dga of L. Recall from 3.2
that in our T -adic setting, homV (kΛ, kΛ) consists of multilinear maps that
decompose into finitely many homogeneous components, each of which is
bounded. Apart from the boundedness issue (which does not create addi-
tional difficulty here), it should be well-known. See, for e.g., [EL17a, Propo-
sition 14] for the same statement in unfiltered setting.

Proposition 4.6. E(V ) = homV (kΛ, kΛ) is quasi-isomomrphic to (BV )∨.
Thus it is quasi-isomorphic to Ω(V ∨) when V is finitely generated.

Proof. Since V ⊗k ⊗ kΛ ∼= V ⊗k and the action of unit is pre-determined by
the unital property, a homogenous element {fk,1 : kΛ ⊗ V

⊗k → kΛ}k≥1 of
degree 1− k + d in E(V ) is equivalent to a bounded linear map BV =
T (sV̄ )→ kΛ of degree d. (Formally, one can write f = ⊕kfk,1.) Taking this
model, we obtain a bijective correspondence between homV (kΛ, kΛ) and
(BV )∨ .

We next compare the algebraic operations. The differential M1 on BV ∨

is given by

M1(f)(X1 ⊗ · · · ⊗Xk) = d(f)(X1 ⊗ · · · ⊗Xk)

= (−1)|f |f (d(X1 ⊗ · · · ⊗Xk))

= (−1)|f |f
(∑

(−1)|X
(1)|′X(1) ⊗m(X(2))⊗X(3)

)

which agrees with (3.2) under our correspondence above, since the last two
terms on the right hand side of (3.2) vanish for inputs from the augmentation
ideal. Note that the hidden factor kΛ absorbed in V ⊗k has a nontrivial
shifted degree in view of homV (kΛ, kΛ), so |f | here plays a role of |ψ|′ in
(3.2). Finally, taking into account the sign change (3.8) between A∞- and
dg-conventions, the product M2 on BV ∨ is given by

M2(f, g)(X1 ⊗ · · · ⊗Xk) =
∑

(−1)|f |(f ⊗ g)
(
X(1) ⊗ (X(2)

)

=
∑

(−1)|f |f(g(X(1))X(2)),
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and this matches with (3.3) under the correspondence. □

Applying this to VL = CF (L,L) for a graded unobstructed Lagrangian
L, we conclude that the Maurer-Cartan dga AL is nothing but (a dga model
of) the Koszul dual of the A∞-algebra CF (L,L).

Going back to classical Koszul duality theory for algebras, the important
class of objects is, roughly speaking, a graded algebra A over k such that
homA(k, k) (graded with respect to our convention) has a trivial cohomology
at every nonzero degree. In this case, A is called a Koszul algebra, and its
double Koszul dual gets back to A.

On the other hand, recall that the Maurer-Cartan algebra AL of
a Lagrangian L neglects nonzero-degree part of the cohomology of
homVL

(kΛ, kΛ). We speculate that the localized mirror functor which can
be understood as a functor

(4.4) VLmod→ ALmod

establishes an equivalence if and only if the Floer complex VL satisfies an
analogous condition to the Koszulity of an algebra, for e.g., the cohomology
of homVL

(kΛ, kΛ) being supported at degree 0, only. Here, the left hand
side of (4.4) can be thought of as the subcategory of the compact Fukaya
category generated by L. For a general L, one may need to consider the
extended mirror functor

VLmod→ AL dg-mod M → homVL
(kΛ,M)

which reduces to (4.4) by regarding homVL
(kΛ,M) as a module over the 0-th

cohomology of homVL
(kΛ, kΛ).

4.3. Dual pairs of objects in A∞-categories

Consider two objects L = ⊕ri=1Li and G = ⊕ri=1Gi in a unital (filtered) A∞-
category C over the field Λ. Here, each Li and Gi are objects of C, and one
may need to replace C by its additive enlargement if necessary, in order to
make sense of the direct sum. Thus, morphism spaces between L and G as
well as their endomorphisms are naturally modules over kΛ = ⊕iΛ⟨πi⟩.

Suppose G and L satisfy the following conditions.

• homC(G,L) ∼= kΛ as homC(G,G)-modules.

• hom>0
C (G,G) = 0 and hom<0

C (L,L) = 0

• homC(L,L) is finitely generated over kΛ with hom0
C(L,L)

∼= kΛ.
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Such a pair (G,L) can be thought of as a Koszul dual pair in the sense we
explain now.

Since hom>0
C (G,G) = 0, the left homC(G,G)-module structure on

homC(G,L) given as

nk|1 := mk+1 : hom
i1
C (G,G)⊗ · · · ⊗ homik

C (G,G)⊗ homC(G,L)

→ homC(G,L)

must be trivial unless k = 1 and i1 = · · · ik = 0, and we have n1|1(1G, P ) = P
for P ∈ homC(G,L) where 1G is the unit on homC(G,G). An analogous
statement is true for the right homC(L,L)-module homC(G,L), and in this
case, the only nontrivial operation is the action of a scalar multiple of the
unit in homC(L,L).

Lemma 4.7. Fix a generator P of homC(G,L) so that homC(G,L) =
kΛ⟨P ⟩. Define ε = εL : homC(G,G)→ kΛ by

m2(Z,P ) = ε(Z)P.

Then ε is a strict augmentation on homC(G,G).

Proof. We show that {εk}k≥1 : homC(G,G)→ kΛ defined by ε1 := ε, εk≥2 ≡
0 gives an A∞-homomorphism. From the homC(G,G)-module structure on
homC(G,L), it is easy to see that ε(Z) = 0 unless degZ = 0. Also, we have
ε(m1(Z)) = 0 since

ε(m1(Z))P = m2(m1(Z), P ),

and the right hand side equalsm1(m2(Z,P ))−m2(Z,m1(P )), each of which
vanishes since m1(P ) = 0. It now suffices to check the following identity:

ε(m2(Z,Z
′)) = ε(Z) · ε(Z ′).

To see this, observe that

m2(m2(Z,Z
′), P )

= m2(Z,m2(Z
′, P ))−m3(m1(Z), Z

′, P ) +m3(Z,m1(Z
′), P )

= m2(Z,m2(Z
′, P ))

= ε(Z ′)m2(Z,P ) =
(
ε(Z)ε(Z ′)

)
P.

Here,m3(m1(Z), Z
′, P ) = m3(Z,m1(Z

′), P ) = 0 sincem1(Z) = m1(Z
′) = 0.

□
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One can similarly define an augmentation on homC(L,L), but it is easy to
see from degree reason that the resulting augmentation is the projection to
the unit component hom0

C(L,L)
∼= kΛ.

Although homC(G,L) is trivial regarded as either a left homC(G,G)- or a
right homC(L,L)-module, its (homC(G,G), homC(L,L))-bimodule structure
is still quite rich. Explicitly, it is induced by the A∞-operations on C,

ml+k+1 : homC(G,G)
⊗l ⊗ homC(G,L)⊗ homC(L,L)

⊗k → homC(G,L)

For notational simplicity, denote A∞-algebras homC(L,L) and homC(G,G)
by V and W , respectively. As before, we write V̄ := hom>0

C (L,L) (the aug-
mentation kernel) and W̄ := ker ε. Since homC(G,L) ∼= kΛ, the above map
can be thought of as a pairing between T (sW ) and T (sV ). Here, the degree
shift makes the pairing Z-graded (i.e., it has degree zero). We can alterna-
tively view this pairing in the following perspective.

Koszul map. One can first take direct sum over k after removing the unit
component of V to get

(4.5) κ̃l :W
⊗l ⊗BV → kΛ,

where BV = T (sV̄ ) is the bar-construction of V . By dualizing (4.5), we
obtain

(4.6) κl :W
⊗l → (BV )∨.

(4.6) is well-defined due to the boundedness condition on mk-operations
which implies that (4.5) gives a bounded linear map for each fixed element
of W⊗l. We will provide an explicit formula for κ below.

Recall that (BV )∨ = homV (kΛ, kΛ) is the Koszul dual dga of V . The
map κ = {κl}l≥1 will be referred to as the Koszul map. The Koszul map
admits the following explicit description. Let {X1, · · · , XN} freely generate
V , and suppose Xi ∈ πβi

· V · παi
. Denote their dual variables by x1, · · · , xN

which can be naturally identified as elements of BV ∨, and take a formal
linear combination b̃ =

∑N
i=1 xiXi (which should not be confused with b

in (2.9) consisting of degree 1 elements only). Then

(4.7)
∑

k

ml+k+1(Z1, · · · , Zl, P, b̃, · · · , b̃) = P κl(Z1, · · · , Zl),
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where we use the following convention when pushing the formal variables to
the back to obtain κl(Z1, · · · , Zl), i.e.,

mk(Z1, · · · , Zl, P, xi1Xi1 , · · · , ximXim)(4.8)

= mk(Z1, · · · , Zl, P,Xi1 , · · ·Xim)xim · · ·xi1

for k = l +m+ 1. This makes κ into a kΛ-module homomorphism. The ex-
pression P κl looks opposite to our earlier convention (2.10) in which we
put xi’s before Floer generators, but it does not create any conflict with the
Maurer-Cartan dga as we will see.

More concretely, the left hand side of (4.7) computes

∑

k

∑

i1,··· ,ik

m(Z⃗, P, xi1Xi1 , · · · , xikXik)(4.9)

=
∑

k

∑

i1,··· ,ik

m(Z⃗, P,Xi1 , · · · , Xik)xik · · ·xi1 ,

= P


∑

k

∑

i1,··· ,ik

ci1,··· ,ikxi1 · · ·xik




where Z⃗ = Z1 ⊗ · · · ⊗ Zl and we put m(Z⃗, P,Xi1 , · · · , Xik) = P ci1,··· ,ik for
ci1,··· ,ik ∈ kΛ. Therefore κl(Z1, · · · , Zl) =

∑
k

∑
i1,··· ,ik

ci1,··· ,ikxi1 · · ·xik .
We next show that the Koszul map κ := {κl}l≥1 is an A∞-algebra ho-

momorphism. Let us begin by checking the degree of κ. If xi1 · · ·xim nontriv-
ially appears in κl(Z1, · · · , Zl), then the corresponding mk-operations must
be nonzero. That is, we have to look at the case when the operation

ml+m+1(Z1, · · · , Zl, P,Xi1 , · · · , Xim)

can have a nonzero output. Since the only possible output is P itself, we see
that

|Z1|+ · · ·+ |Zl|+ |Xi1 |+ · · ·+ |Xim |+ 2− (l +m+ 1) = 0

(since |P | = 0). Therefore

|xi1 |+ · · ·+ |xim | = (1− |Xi1) + · · ·+ (1− |Xim |)

= n+ |Z1|+ · · ·+ |Zl|+ 2− (l +m+ 1)

= |Z1|+ · · ·+ |Zl|+ (1− l),

and hence the degree of κl (4.6) is given by 1− l.
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Proposition 4.8. κ :W → (BV )∨ is an A∞-algebra homomorphism

Proof. We write M1 and M2 for the operations of the A∞-dga (BV )∨, i.e.,

M1(x) = d(x), M2(x, y) = (−1)|x|x⊗ y.

We have to verify the identity

M1(κl(Z1, · · · , Zl)) +
∑

l1+l2=l

M2 (κl1(Z1, · · · , Zl1), κl2(Zl1+1, · · · , Zl))

=
∑

k1+k2=l+1

(−1)|Z1|′+···+|Zj |′κk1

× (Z1, · · · , Zj ,mk2(Zj+1, · · · , Zj+k2), Zj+k2+1 · · · , Zl).

Let us consider the A∞-relations for the tuple (Z1, · · · , Zl, P, e
b̃) where

eb̃ = 1 + b̃+ b̃⊗ b̃+ b̃⊗ b̃⊗ b̃+ · · · ,

and b̃⊗i is inserted to A∞-operations as mk(−, · · · ,−,

i︷ ︸︸ ︷
b̃, · · · , b̃). The relation

is equivalent to

∑
(−1)|Z⃗|

′

m(Z⃗, P, eb̃,m(eb̃), eb̃)

+
∑

(−1)|Z⃗
(1)|′−1m(Z⃗(1),m(Z⃗(2), P, eb̃), eb̃)

=
∑

(−1)|Z⃗
(1)|′m(Z⃗(1),m(Z⃗(2)), Z⃗(3), P, eb̃),

where we omit the subscript k in mk for simplicity. Here, |Z⃗|′ is the sum of
the shifted degrees of factors in Z⃗. The right hand side equals

∑
(−1)|Z⃗

(1)|′m(Z⃗(1),m(Z⃗(2)), Z⃗(3), P, eb̃)

= P
∑

(−1)|Z⃗
(1)|′κ(Z⃗(1),m(Z⃗(2)), Z⃗(3)),
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and the second term on the left hand side equals

∑
(−1)|Z⃗

(1)|′−1m(Z⃗(1),m(Z⃗(2), P, eb̃), eb̃)

=
∑

(−1)|Z⃗
(1)|′−1m(Z⃗(1), P κ(Z⃗(2)), eb̃)

=
∑

(−1)|Z⃗
(1)|′−1m(Z⃗(1), P, eb̃)κ(Z⃗(2))

=
∑

(−1)|κ(Z⃗
(1))|P κ(Z⃗(1)) · κ(Z⃗(2))

= P
∑

M2(κ(Z⃗
(1)), κ(Z⃗(2)))

since κl has degree 1− l. Lastly, applyingm(eb̃) =
∑N

i=1(−1)
|xi|′d(xi)Xi (see

Lemma 4.4), the first term on the left hand side becomes

(−1)|Z⃗|
′

m(Z⃗, P, eb̃,m(eb̃), eb̃)

=
∑

k

∑

i1,··· ,ik

∑

1≤a≤k

(−1)|Z⃗|
′+|xia |

′

×m(Z⃗, P, xi1Xi1 , · · · , xia−1
Xia−1

, d(xia)Xia , xia+1
Xia+1

, · · · , xikXik)

=
∑

k

∑

i1,··· ,ik

∑

1≤l≤k

(−1)|Z⃗|
′+|xia |

′+∗

×m(Z⃗, P,Xi1 , · · · , Xia , · · · , Xik)xik · · ·xia+1
d(xia)xia−1

· · ·xi1 ,

where ∗ = |xi1 |+ · · ·+ |xia−1
| comes from the Koszul convention since

|d(xia)Xia |
′ = −1. Observe that

|Z⃗|′ + |xia |
′ + ∗ = (−|Xi1 |

′ − · · · − |Xik |
′ − 1) + |xia |

′ + ∗

= (|xi1 |+ · · · |xik | − 1) + |xia |
′ + (|xi1 |+ · · ·+ |xia−1

|)

≡ |xia+1
|+ · · ·+ |xik | mod 2

Comparing with (4.9), we see that

m(Z⃗, P, eb̃,m(eb̃), eb̃) = P d(κ(Z⃗)) = P M1(κ(Z⃗)),

which completes the proof. □

We will mainly focus on the induced map on the 0-th cohomology of
κ : homC(G,G)→ AL = (B homC(L,L))

∨ in our geometric situation below.
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5. Dual pairs in wrapped Fukaya categories

We apply the homological algebra tool developed so far to the Fukaya A∞-
algebra, and study the Koszul duality between A∞-algebras from two La-
grangians in some special geometric relation. Let (M,ω = dΘ) be a Liouville
manifold, and consider an exact compact Lagrangian L = ⊕ri=1Li which, to-
gether with suitable Floer data, gives an object in WFuk(M). Since L con-
sists of r irreducible components, we are naturally to work over the semi-
simple ring kC or kΛ. Analogously to the algebraic setting in 4.3, suppose
that there exists another Lagrangian G = ⊕ri=1Gi in WFuk(M) so that the
pair (G,L) admits the following properties.

Assumption 5.1. G and L satisfy

• homWFuk(M)(G,L) ∼= kC as homWFuk(M)(G,G)-modules;

• hom<0
WFuk(M)(L,L) = 0 and hom0

WFuk(M)(L,L)
∼= kC;

• homi>0
WFuk(M)(G,G) = 0, and G generates L in WFuk(M).

We work with this assumption throughout the section. The first con-
dition implies that (after rearranging indinces suitably) Li intersects Gi
exactly at one point, say Pi, with degree 0, and Li ∩Gj = ∅ for j ̸= i. Then
homWFuk(M)(G,L) is spanned by P =

∑
Pi. We also remark that the sec-

ond condition only constraints the degree of immersed generators of L. Note,
in particular, that G and L form a Koszul dual pair in WFuk(M) in the
sense of 4.3. Our goal is to compare the wrapped Floer cohomology of G and
the Maurer-Cartan algebra of L using the Koszul map κ algebraically de-
fined in 4.3. For notational simplicity, we writeWC andWΛ for respectively
WFuk(M) and WFukΛ(M) from now on.

Our setting generalizes the geometric one in [EL17b, Introduction] in the
sense that an individual component Li can be non-simply-connected. This
makes each homogenous piece of its bar construction infinite dimensional,
and it is natural to work over Λ for this reason. Then it is crucial to introduce
a certain completion of homWΛ(G,G) = CW (G,G; Λ) (related with the T -
adic topology) to compare with the Maurer-Cartan algebra of L. We will also
examine in 5.4 the case of non-exact tori L sitting as fibers of a Lagrangian
torus fibation, which will be useful in applications to local SYZ examples
later.
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5.1. The double Koszul dual and the completed cobar
construction Ω̂B.

Let us first compare Floer theory of G and L satisfying Assumption 5.1 over
C-coefficient. Following [EL17b, Introduction], we begin with the Yoneda
map for G

homWC(L,L)→ homhom
WC (G,G)(homWC(G,L), homWC(G,L))(5.1)

= homhom
WC (G,G)(kC, kC),

which is a quasi-isomorphism since G generates L. We remark that kC above
is taken to be a left module over homWC(G,G). [EL17a, Proposition 14] (or
Proposition 4.6 adapted to C-coefficient setting) shows that

homhom
WC (G,G)(kC, kC) ∼=

♯(B homWC(G,G))

where ♯(−) is the graded dual (over kC), that is, the direct sum of the
sets of left kC-module maps from individual graded pieces to kC. The bar
construction B in this case is the one for kC-module, taken with respect
to the (strict) augmentation εC : homWC(G,G)→ kC given by m2(Z̃, P̃ ) =
εC(Z̃)P̃ , which is related with ε given in Lemma 4.7 via base change. Notice
that we are using the notation for exact generators here (see Definition 2.2).
OnWΛ, the associated geometric generator Z and P differ from Z̃ and P̃ by
T -th power determined by their actions. Note also that the augmentation
εC depends significantly on L.

For simplicity, let us write VC and WC for homWC(L,L) and
homWC(G,G) respectively. Likewise, we will use the notations VΛ :=
homWΛ(L,L) and WΛ := homWΛ(G,G). Taking the bar construction on the
A∞ quasi-isomorphism VC →

♯(BWC) in (5.1), we have a dg-coalgebra quasi-

isomorphim BVC
≃
−→ B

(
♯(BWC)

)
, or dually,

(5.2) (B ♯(BWC))
♯ ≃
−→ (BVC)

♯

since Ext group vanishes over a divisible group. The 0-th cohomology
H0(BV ♯

C
) of the right hand side of (5.2) can be thought of as the “for-

mal” Maurer-Cartan algebra of L in contrast to the actual Maurer-Cartan
algebra AL = H0(BV ∨

Λ ) which involves the continuous dual. On the other
hand, (B ♯(BWC))

♯ is the double Koszul dual, where the Koszul dual in this
context uses the graded dual “♯” instead of the continuous dual “∨”.

We lift the above quasi-isomorphism to Λ-coefficients, and unravel the
double Koszul dual a little further. For a graded left kΛ moduleM , we denote
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byM ♯Λ the graded dual ofM in Λ-coefficient, that is, its degree d piece is the
set homkΛ

(M−d, kΛ) of right kΛ module homomorphisms. ♯ΛM is similarly

defined. Applying (−)⊗C Λ (or (−)⊗kC kΛ)) to BVC
≃
−→ B

(
♯(BWC)

)
,

BVΛ
∼=
−→ B

(
♯(BWC)

)
⊗ Λ,

which leads to

⊕

d

homkΛ

((
B
(
♯(BWC)

))
d
⊗ kΛ, kΛ

) ∼=
−→ (BVΛ)

♯Λ

by universal coefficient theorem, and hence

(5.3)
⊕

d

homkC

((
B
(
♯(BWC)

))
d
, kΛ

) ∼=
−→ (BVΛ)

♯Λ .

The left hand side is the double Koszul dual over Λ, but still formal in the
sense that it ignores the T -adic convergence. We first show that it is quasi-
isomorphic to the completed cobar construction Ω̂BWΛ of BWΛ mentioned
in Remark 3.6.

Proposition 5.2. (BVΛ)
♯Λ is quasi-isomorphic to Ω̂BWΛ (where VΛ =

homWΛ(L,L) and WΛ = homWΛ(G,G)).

Proof. We show that the left hand side of (5.3) is quasi-isomorphic to
Ω̂BWΛ. For simplicity, let us write W := B ♯(BWC) in the rest of the proof.
W admits a filtration induced by the number of tensor powers from the
latter bar construction. Namely, we have

(5.4) F0W ⊂ F1W ⊂ F2W ⊂ · · ·

where F lW := ⊕li=0

(
s ♯(BWC)

)⊠i
, and each F lW is preserved by the differ-

ential as it decreases the length. Notice that we use ⊠ for the tensor product
appearing in the latter bar construction B in order to avoid confusion. The
filtration satisfies ∪∞i=1F

iW = W, although it is not bounded.
W can also be understood as a double complex described in the diagram

below (in the diagram, W denotes WC for simplicity), where the filtration
F l is simply taking its first l rows.
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(5.5)

♯W̄0
// ♯W̄−1 ⊕

♯(W̄⊗2
0 ) //

♯W̄−2 ⊕
♯(W̄−1 ⊗ W̄0)

⊕ ♯(W̄0 ⊗ W̄−1)⊕
♯(W̄⊗3

0 )
// · · ·

♯W̄0 ⊠
♯W̄0

//

OO

♯W̄−1 ⊠
♯W̄0 ⊕

♯W̄0 ⊠
♯W̄−1

⊕ ♯W̄0 ⊠
♯(W̄⊗2

0 )⊕ ♯(W̄⊗2
0 )⊠ ♯W̄0

//

OO

· · ·

♯W̄0 ⊠
♯W̄0 ⊠

♯W̄0
//

OO

· · ·

The horizontal differential is induced by that on BWC (extended to the
tensor product ⊠ by the Leibnitz rule), and the vertical differential is dual
to a⊗ b 7→ a⊠ b.

Now, consider the following graded dual W♯Λ of W in Λ-coefficients:

(
W♯Λ

)
d
= homC(Wd,Λ)

By the universal coefficient theorem, W♯Λ is quasi-isomorphic to the graded
dual (BVC)

♯Λ of BVC in Λ-coefficient. We then find what the cohomology
of W♯Λ computes. Observe that W♯Λ can be obtained as the inverse limit

(completion) of
{(
F lW

)♯Λ}
l≥1

with respect to the natural restriction map

ιl′l :
(
F l

′

W
)♯Λ
→

(
F lW

)♯Λ

for l′ > l, where
(
F lW

)♯Λ is the graded dual of F lW in Λ-coefficient. It is
not difficult to see that the completion is isomorphic W♯Λ on the chain level.

On the other hand, recall ΩBWΛ = ΩBWC ⊗ Λ (see Remark 3.6) also
admits a filtration from the tensor powers associated with the cobar con-
struction, given as

FlΩBWΛ := ⊕∞
i=l+1

(
s−1BWΛ

)⊠i

so that

F0ΩBWΛ ⊃ F1ΩBWΛ ⊃ F2ΩBWΛ ⊃ · · · .

Here we use ⊠ to denote the tensor product associated with Ω. It can also
be written as a double complex below, where the filtration Fl takes rows
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above the l-th:

(5.6) · · · // W̄0 ⊠ W̄0 ⊠ W̄0

· · · // (W̄−1 ⊠ W̄0)⊕ (W̄0 ⊠ W̄−1)

⊕(W̄0 ⊠ W̄⊗2
0 )⊕ (W̄⊗2

0 ⊠ W̄0)
//

OO

W̄0 ⊠ W̄0

· · · // W̄−2 ⊕ (W̄−1 ⊗ W̄0)

⊕(W̄0 ⊗ W̄−1)⊕ W̄
⊗3
0

//

OO

W̄−1 ⊕ W̄
⊗2
0

//

OO

W̄0

.

As in Remark 3.6, Ω̂BWΛ is the inverse system formed by Il(ΩBWΛ) :=
ΩBWΛ

FlΩBWΛ
.

Observe that there exists a natural map

(5.7) fl : Il(ΩBWΛ)→
(
F lW

)♯Λ

which is compatible with the restriction maps ιl′l. This is induced by the eval-
uation of a tensor product of maps in ♯

(
⊗a1

i=1(W̄C)di,1
)
⊠ ♯

(
⊗a2

i=1(W̄C)di,2
)
⊠

· · ·⊠ ♯
(
⊗al

i=1(W̄C)di,l
)
(belonging to Wd for d =

∑
i,j(1− di,j)− k) at an el-

ement in
(
⊗a1

i=1(W̄C)di,1
)
⊠
(
⊗a2

i=1(W̄C)di,2
)
⊠ · · ·⊠

(
⊗al

i=1(W̄C)di,l
)
⊂ ΩBWC

extended to ΩBWΛ by linearity. This is well-defined since the evaluation of
a map in F lW at any element of FlΩBWΛ vanishes by definition.

It is straightforward to check that fl is a chain map. We claim that fl
(5.7) is a quasi-isomorphism for each l. To see this, recall that ♯(BWC) is
quasi-isomorphic to VC, and hence it has a finite dimensional cohomology. By
the universal coefficient theorem, BWC should also have a finite dimensional
cohomology. Let us first look into the cohomology of F lW itself.
F lW admits a bounded decreasing filtration which restricts the original

one on W (5.4)

F lW ⊃ F l−1W ⊃ · · · ⊃ F0W

The E1-page of the associated spectral sequence is nothing but the horizontal
cohomology of the double complex (5.5). Therefore, E1-page consists of the
tensor products

♯H i1(BWC)⊠
♯H i2(BWC)⊠ · · ·⊠

♯H ik(BWC)

= ♯
(
H i1(BWC)⊠H i2(BWC)⊠ · · ·⊠H ik(BWC)

)
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with k ≤ l where the equality holds since each H∗(BWC) is finite dimen-
sional. Similarly, Il(ΩBWΛ) can be thought of as the one obtained by eras-
ing rows above l-th row in (5.6) (or replacing them by 0). It also admits
a bounded filtration whose associated spectral sequence computes the hori-
zontal cohomology at E1-page. Thus E1 consists of

H i1(BWΛ)⊠H i2(BWΛ)⊠ · · ·⊠H ik(BWΛ)

= homC(
♯
(
H i1(BWC)⊠H i2(BWC)⊠ · · ·⊠H ik(BWC)

)
,Λ),

where the equality holds since H∗(BWC) is finite dimensional.
We conclude that the filtrations on F lW and Il(ΩBWΛ) both admit spec-

tral sequences which become finite dimensional from E1-pages. Moreover,
they are dual to each other (in the sense of taking (homC(−,Λ)) in each page.
Since both of filtrations are bounded, their associated spectral sequence con-
verges, and hence H∗Il(ΩBWΛ) is isomorphic to homC(H

∗(F lW),Λ). The
claim follows from this by the universal coefficient theorem. □

WhenW is a dga with H∗(BW ) locally finite, [Boo22, Proposition 4.1.9,
Remark 4.1.11] proves that the double Koszul dual of W is the completed
cobar construction Ω̂BW which was understood as the “derived” completion
of W . For an augmented algebra, it is shown in [Seg08] that the double
Koszul dual gives rise to the completion of the algebra with respect to the
augmentation kernel.

5.2. Formal neighborhood of L

We are interested in what (5.3) induces on the 0-th cohomology.
H0(BV ♯Λ

Λ ) can be understood as a formal noncommutative power series

analogue of AL in Definition 2.4. Using the notation in 2.2, H0(BV ♯Λ
Λ )

consists of series
∑∞

l=0

∑
I∈(Z>0)l

λIx
I modulo elements of the form∑N ′

k=1

∑∞
l=0

∑
|I|+|J |=l λk,I,J x

I fk x
J where there are no restrictions for the

sets of coefficients {ΛI} and {λk,I,J}. We will write ÂL := H0(BV ♯Λ
Λ ). It is

not difficult to see the natural map AL(= H0(BV ∨
Λ ))→ ÂL induced from

BV ∨
Λ → BV ♯

Λ is an inclusion, and AL can be intuitively interpreted as the

subspace of ÂL formed by convergent power series.

Proposition 5.3. In the setting as above, ÂL is isomorphic to the com-

pletion Ĥ0(WΛ) of H0(WΛ) with respect to the maximal ideal H0(W̄Λ) for
WΛ = homWΛ(G,G) and W̄Λ = ker ϵL.
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Note that the augmentation ϵL induces an algebra homomorphism
H0(WΛ)→ kΛ, and its kernel is given by H0(W̄Λ). In particular, H0(W̄Λ)
is a maximal ideal of H0(WΛ).

Proof. From the discussion so far, the question boils down to identify the 0-
th cohomology of the completion of {Il(ΩBWΛ)}l≥1. For this purpose, let us
look into the cohomology of Il(ΩBWΛ). Recall that it can be understood as
the double complex described in (5.6). Let us consider the spectral sequence
for Il(ΩBWΛ) viewed as the double complex given in (5.6), but we begin
with the vertical differential this time which is simply switching ⊗ to ⊠.
Indeed, this is exact except on the first low, and on the l-th row since we
cut-off the l + 1-th row and above. To see this, one can use a homotopy r
on ΩBWΛ

r : W̄⊗i1
Λ ⊠ W̄⊗i2

Λ ⊠ · · · ⊗ W̄⊗ik
Λ → W̄⊗i1+i2

Λ ⊠ · · ·⊠ W̄⊗ik
Λ

which is defined to be zero for i1 ̸= 1 and equal to the natural isomorphism

W̄Λ ⊠ W̄⊗i2
Λ ⊠ · · ·⊠ W̄⊗ik

Λ → W̄⊗1+i2
Λ ⊠ · · ·⊠ W̄⊗ik

Λ .

Due to our assumption on the grading on W , the only possible degree 0
piece on the E2-page is H0(W̄Λ), where horizontal differential takes the (0-
th) cohomology of W̄Λ in this degree. The image of the differential inH0(W̄Λ)
on this page consists of elements of the form a1 · a2 · · · al where “ · ” denotes
the associative product on H0(W̄Λ) induced by m2 where ai ∈ H

0(W̄Λ).
Therefore, it stabilizes to the quotient H0(W̄Λ)/

∏l
i=1H

0(W̄Λ) afterwards.
The diagram below shows the computation of the differential on the E2-page
when l = 3.

· · · //

(
H0(W̄Λ)⊗H

0(W̄Λ)⊠H0(W̄Λ)⊠H0(W̄Λ)
)
⊕(

H0(W̄Λ)⊠H0(W̄Λ)⊗H
0(W̄Λ)⊠H0(W̄Λ)

)
⊕(

H0(W̄Λ)⊠H0(W̄Λ)⊠H0(W̄Λ)⊗H
0(W̄Λ)

)
// 0

· · · // 0 //

OO

0 //

OO

0

· · · // H−3(W̄Λ) //

OO

H−2(W̄Λ) //

OO

H−1(W̄Λ) //

OO

H0(W̄Λ)

.
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0 0 0 0 0

a1 ⊠ a2 ⊗ a3 ⊠ a4 a1 ⊠ a2 · a3 ⊠ a4 0 0 0

a1 ⊗ a2 · a3 ⊠ a4 a1 · a2 · a3 ⊠ a4 0 0

a1 · a2 · a3 ⊗ a4 a1 · a2 · a3 · a4 0

□

Proposition 5.3 admits the following interpretation in view of
mirror symmetry. When G is a generator of WΛ, then H0(WΛ) =
H0(homWΛ(G,G)) can be understood as the ring of (global) functions of the

mirror space. In this perspective, the completion Ĥ0(WΛ)(∼= ÂL) describes
the formal neighborhood of the point that is mirror to L, as its corresponding
maximal ideal is the kernel of the augmentation εL : H0(WΛ)→ kΛ associ-
ated with L.

5.3. Analytic neighborhood of L

The isomorphism Ĥ0(WΛ)→ ÂL = H0(BV ♯Λ
Λ ) in Proposition 5.3 can be de-

scribed as follows. Recall that we have an algebra homomorphism

κ : H0(WΛ)→ AL

where we abuse notation by writing the same symbol κ for its induced map
on the 0-th cohomology (see Proposition 4.8). After composing AL → ÂL,
we obtain

κ̃ : H0(WΛ)→ AL → ÂL.

Let m denote ker(εL : H0(WΛ)→ kΛ) = H0(W̄Λ) for simplicity. Consider

an element (wk)k≥1 in the m-adic completion Ĥ0(WΛ), that is, wk ∈
H0(WΛ)/m

k such that wk ≡ wi mod m
i for i ≤ k. Since κ̃ is a ring ho-

momorphism, it maps an element in m
k to an element of AL whose word-

length is at least k. In other words, its image under κ̃, viewed as a lin-
ear map BVΛ → Λ, vanishes on Fk−1BVΛ = ⊕k−1

l=0 V
⊗l
Λ . Thus, if X ∈ BlVΛ,

then κ(wk)(X) stabilizes after k = l + 1. Therefore κ̃ extends to a map

κ̂ : Ĥ0(WΛ)→ ÂL.
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From the discussion above, κ̂ : Ĥ0(WΛ)→ ÂL is simply an extension of
κ which was defined implicitly by

(5.8) κ : H0(WΛ)→ AL
∑

i≥0

mWΛ

i+2(Z,P,

i︷ ︸︸ ︷
b, b, · · · , b) = P κ(Z)

where b =
∑
xiXi is a formal linear combination of degree 1 generators

X̃i of V = homW∗(L,L) coupled with their dual coordinate functions xi.
More specifically, κ(Z) is obtained by expanding the right hand side by
linearity using the rule (4.8), and κ̂ allows a series in the m-adic completion
in the place of Z. Note that

∑
xiXi =

∑
x̃iX̃i since the valuations of xi

and Xi compensate each other, and one can rewrite (5.8) in terms of exact
generators in order to have the analogue of κ̂ in C-coefficient setting. In this
case, (5.8) should be expanded in terms of x̃i’s, as otherwise the expansion
would involve some nontrivial powers of T ’s.

Through an obvious (proper) inclusion AL ⊂ ÂL, AL can be viewed as
a subalgebra of the formal completion of H0(homWΛ(G,G))(∼= ÂL). In view
of interpretation made at the end of 5.2, AL corresponds to a neighborhood
of the point mirror to L bigger than its formal neighborhood. It will give us
some benefit in studying the local structure of the mirror space in Section
6. The following summarizes our discussion in this section.

Theorem 5.4. If two exact Lagrangian branes L = ⊕riLi and G = ⊕riGi in
WFuk(M) satisfy Assumption 5.1, then the Maurer-Cartan algebra AL is

properly embedded in the m-adic completion ̂HW 0(G,G; Λ) of HW 0(G,G; Λ)
for m = ker εL.

The embedding of AL is the restriction of the inverse of κ̂ :
̂HW 0(G,G; Λ)

∼=
→ ÂL where κ̂ is given as the natural extension of

(5.9)
∑

mk(Z,P, b, · · · , b) = P · κ(Z)

where b =
∑
xiXi is a formal linear combination of degree 1 generators.

Identified as a subalgebra of ̂HW 0(G,G; Λ), a general element F of

AL can be described as follows. Recall that ̂HW 0(G,G; Λ)/m is gener-
ated by finitely many elements, say Z1, · · · , ZN , as kΛ-module. By scal-
ing, we may assume that κ(Zi) has valuation 0 for each i. Then F can
be identified as a (noncommutative) power series in Z1, · · · , ZN , valuations
of whose coefficients are bounded below. More precisely, F = (wk)k≥1 with
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wk ∈ HW
0(G,G; Λ)/mk givens as the sum of deg ≤ (k − 1) terms in this

series. Note that any element in ̂HW 0(G,G; Λ) can also be written as such
a series, but with no requirement on valuations of the coefficients.

Remark 5.5. Recall that the map (5.9) is actually defined on the chain
level. Taking the formal linear combination b including generators of all
degrees as in Lemma 4.4, we have an A∞-homomorphism

(5.10) κ : CW (G,G; Λ)→ AL.

The relationship between algebraic structures on CW (G,G) and the Maurer-
Cartan algebra AL can be heuristically seen by a usual cobordism argument in
Floer theory. For example, Figure 2 (a) describes the cobordism that implies
compatibility of the chain-level Koszul map (5.10) with the differential on
CW (G,G) and AL. Likewise, the compatibility of κ with products can be
intuitively seen as in Figure 2 (b).

Figure 2. Compatibility between (a) differentials and (b) products on
CW (G,G) and AL

5.4. (local) SYZ fibration: a generating section and fibers

We next consider the following geometric setting for a local SYZ fibration.
Let (M,ω = dΘ) be a Liouville manifold and, suppose it admits a Lagrangian
torus fibration π :M → B. We will deal with fibers π−1(b) sitting near an
exact torus fiber L0. They have minimal Maslov number 0, but are not
exact in general. By Theorem 5.4, the Maurer-Cartan algebra of L0 can
be obtained as a subspace of the m-adic completion of homWΛ(G,G) for
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m = ker(εL0
). We are interested in the behavior of nearby torus fibers L and

their associated Koszul maps κ : homWΛ(G,G)→ AL.
We claim that there exists an 1-form Θ’ satisfying dΘ′ = ω and Θ′|L = df

for some function f : L→ R, if L is sufficiently close to L0. Let u1, · · ·un
and ρ1, · · · ρn be action-angle coordinates such that (u1, · · · , un) = (0, · · · , 0)
for points in L0. If we set ai :=

∫
βi
Θ|L for βi a loop along the direction of

ρi, then (u1, · · · , un) = (a1, · · · , an) gives the action coordinates for L by
Stokes’ theorem since dΘ = ω.

Let us take contractible open sets U1, U2(⊂ B) with U1 ⊂ U2, both
of which contain (0, · · · , 0) and (a1, · · · , an) where we use ui as coordi-
nates on the base B of π. Then we choose compactly supported functions
hi(u1, · · · , un) for 1 ≤ i ≤ n such that hi|U1

≡ ai and hi|B\U2
≡ 0. They give

rise to an 1-form Θ̃′ := Θ−
∑
hidρi on M . When L is sufficiently close to

L0, we can make |dhi| small enough so that dΘ̃′ is still symplectic.
Notice that dΘ̃′ and ω differ from each other by a compactly supported

exact 2-form. Hence Moser’s trick applies to the situation to produce a
(compactly supported) diffeomorphism ψ such that ψ∗(dΘ̃′) = ω. As ω =
dΘ̃′ on U that contains L, ψ preserves L. In particular, if we set Θ′ :=
ψ∗Θ̃′, then dΘ′ = ω and Θ′|L = Θ̃′|L is exact since its integration over any
loops in L vanishes by construction. By construction, the close form Θ′|G −
Θ|G vanishes away from a contractible subset of G, and hence is exact.
Thus G is an exact Lagrangian with respect to Θ′, and the pair (G,L) of
Θ′-exact Lagrangians fits into the setting of Theorem 5.4. Therefore the
Maurer-Cartan algebra of L can be obtained as a suitable completion of
homWΛ(G,G).

We can make the above discussion more concrete by relating Floer the-
ory of (G,L) with that of (G,L0) as follows. The closed 1-form α := Θ′ −Θ
induces a symplectomorphism ϕ by integrating the symplectic vector field
Xα given by ιXα

ω = α. Since α = −
∑
aidρi on π−1(U1), the symplec-

tomorphism ϕ simply translates L back to L0 via (u1, · · · , un) 7→ (u1 −
a1, · · · , un − an). On the other hand, π−1(U2) ∩G lies in some contractible
open set since G intersects each torus fiber at one point, and the 1-form α
admits a well-defined primitive, say F̃ , over this set. We extend F̃ outside
π−1(V ) using suitable bump functions to get F :M → R. Thus, restricting
ourselves to G, we have ϕ(G) = ϕF (G) since dF and α agrees with each
other on a region near G.

From the above discussion, we conclude that Floer theory of the pair
(G,L) can be identified with that of (ϕ(G), ϕ(L)) = (ϕF (G), L0), and hence
that of (G,L0) as F is a compactly supported Hamiltonian. Suppose that we
make the wrapping for both G and ϕF (G) happen away from the support
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of F so that homWΛ(G,G) and homWΛ(ϕF (G), ϕF (G)) have precisely the
same set of geometric generators. However, these set-theoretically identical
generators have different valuations on the two Λ-vector space since ϕF does
not preserve Θ in general. In practice,

homWΛ(G,G)
∼=
→ homWΛ(ϕF (G), ϕF (G))

simply scales these geometric intersection points by suitable power of T . In
this case, the Koszul map homWΛ(G,G)→ AL can be easily obtained from
that for (G,L0) after such scaling generators of homWΛ(G,G).

5.5. Example of T ∗S1

Let us first look into the simplest case of M = T ∗S1 as a warm-up exam-
ple. We use coordinate (t, s) ∈ T ∗S1 = S1 × R where t ∈ [0, 2π]/0 ∼ 2π as in
Example 2.3, so we have ω = dsdt with Θ = sdt. The zero section L := S1

is exact with respect to Θ, and clearly, L and the cotangent fiber G sat-
isfy Assumption 5.1. As before, we take the basis of H∗ homWΛ(G,G)(=

HW (G,G; Λ)) formed by Z̃i for i ∈ Z with the multiplication m2(Z̃i, Z̃j) =

Z̃i+j being the only nontrivial A∞-operation. On the chain level, Z̃i can

be represented by T
−C

(

i2

w
+ w

(1−ϵ)2

)

Z
(w)
i ∈ CF (G,G;wH) (using notations in

Example 2.3) for w large enough. Notice that H∗ homWΛ(G,G) ∼= Λ[Z,Z−1]

is precisely the function ring of Λ×, where Z := Z̃1 serves as the standard
coordinate, and Z̃0 is identified with 1 ∈ Λ[Z,Z−1]

We write P for the unique intersection point between G and L, and
at the same time, P denotes the corresponding geometric generator of
homWΛ(G,L). In this example, we have P̃ = P since the primitives of
Θ|L and Θ|G are both zero. From direct counting (see Figure 3 (a)),

m2(Z̃1, P̃ ) = P̃ , where the Novikov parameter T does not appear since the
computation involves exact generators that has zero actions. Hence, the aug-
mentation εL : H∗ homWΛ(G,G)→ Λ associated with L sends Z̃1 to 1 which
implies εL(Z̃i) = 1 for all i. Consequently, ε has the kernel

ker εL = {Z̃i − Z̃0 : i ∈ Z}

and in particular, the corresponding point in Λ× is Z = 1.
On the other hand, the Maurer-Cartan algebra AL is a ring Λ{x} consist-

ing of bounded power series, where x is linear dual to dt ∈ H1(S1). Setting
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b = xdt, the Koszul map κ computes

P̃ κ(Z̃1) =
∑

k≥0

mk+2(Z̃1, P̃ , b, · · · , b) =
∞∑

k=0

1

k!
xkm2(Z̃1, P̃ ) = P̃ ex,

(again no T appears since everything involved has zero actions)

and hence κ (Z) = κ(Z̃1) = ex. Here, mk+2(Z̃1, P̃ , dt, · · · , dt) =
1
k!m2(Z̃1, P̃ )

holds, since the left hand side is contributed by geometrically the same
disk as m2(Z̃1, P̃ ), but the actual moduli space is (the compactifica-
tion of) the configuration space {(t1, · · · , tk) : 0 < t1 < · · · < tk < 1} due
to locations of boundary markings for b’s, on which the integration of
ev∗3dt ∧ · · · ∧ ev

∗
k+2dt = dt1 · · · dtk gives the extra factor 1

k! .

Figure 3. The zero section L and a cotangent fiber G in T ∗S1

Remark 5.6. We can deform CF (L,L) by ΛU -flat connections ∇
z whose

holonomy is parametrized by z ∈ ΛU . The associated κ can be computed as

P̃ κ(Z̃1) = m∇z

2 (Z̃1, P̃ ) = P̃ z.

Thus κ(Z) = z, which is consistent with the earlier computation if we set
z = ex.

By Theorem 5.4, the Maurer-Cartan space of L can be obtained as a
suitable subspace of the m-adic completion of Λ[Z,Z−1] where m = ⟨Z− 1⟩.
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Recall that this subspace consists of series

(5.11) c0 + c1(Z− 1) + c2(Z− 1)2 + · · ·

for ci ∈ Λ, as long as −∞ < inf{val(ci) : i = 0, 1, 2, · · · }. In particular, x can
be identified with

(Z− 1)−
1

2
(Z− 1)2 +

1

3
(Z− 1)3 − · · · = log ((Z− 1) + 1) ,

where “log” on the right hand side means a priori a formal expansion. In
order for such a series (5.11) to be well-defined as a genuine function on
Λ×, Z must be lie in 1 + Λ+. Notice that Z = 1 ∈ Λ× is precisely the point
corresponding to L. We conclude that the Maurer-Cartan space of L sits in
Λ× as B(1, 1), the open ball centered at 1 with radius 1 (which is merely a
different way of describing the same set 1 + Λ+).

One can further deform L by equipping it with a fixed flat connection∇α

with holonomy α ∈ ΛU . Repeating the same computation, we see that the
object (L,∇α) sits at a point Z = α in Λ×, and the corresponding Maurer-
Cartan space is the open ball B(α, 1) centered at this point with radius
1.

We next consider a general torus fiber Lr := {(t, s) ∈ S
1 × R : s = r}.

Since Lr is no longer exact, we cannot directly reduce the computation to
C-coefficient case as we did for L0. Let Pr be the unique intersection points
in G ∩ Lr. However, it is clear from the picture that the only difference is the
energy of the contributing disks. More specifically, one needs to additionally
take into account the integration of Θ along the boundary of the disk that
lies on Lr. For instance, the shaded disk in Figure 3 (b) contributes to

m2(Z̃1, Pr) = T−rPr,

since Θ restricts to rdt on Lr, and its integration over the corresponding
boundary segment of the disk is −r. The associated augmentation is given
by εLr

(Z) = εLr
(Z̃1) = T−r. Therefore the maximal ideal ker εr indicates the

point Z = T−r in Λ×. Similarly, κ(Z) has an additional factor T−r compared
with the case of L0, that is, κ(Z) = T−rex, and this completely determines
κ since it is a ring homomorphism.

Setting Zr := T rZ, one can go back to the same situation as in L = L0,
except that Zr has a nontrivial valuation. To recover x, one can take the
formal expansion

(Zr − 1)−
1

2
(Zr − 1)2 +

1

3
(Zr − 1)3 − · · · = log ((Zr − 1) + 1) .
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Notice that this is consistent with the discussion in 5.4, in that the Koszul
map for Lr can be obtained from that of L0 after scaling Z to Zr = T rZ.
On the level of algebra, the Maurer-Cartan algebra of Lr is isomorphic to
the the completion of Λ[Zr,Z

−1
r ] at the ideal ⟨Zr − 1⟩. Let us describe the

corresponding region in Λ+. In the original coordinate Z, one has

T r(Z− T−r)−
1

2
T 2r(Z− T−r)2 +

1

3
T 3r(Z− T−r)3 − · · ·

= log
(
T r(Z− T−r) + 1

)
,

which is valid as a function Z for Z ∈ T−r + T−rΛ+. Therefore we conclude
that the Maurer-Cartan deformation space of Lr sits in the global mirror
Λ+ as the open ball B(T−r, er).

We remark that the balls obtained by varying r are mutually disjoint.
This is consistent with the fact that different torus fibers do not intersect
each other, and hence Floer theory between them is trivial.

5.6. ΛU -flact connections on L

As one can see in the previous example, in Maurer-Cartan deformation, ΛU -
connections serve identically as degree one cocycles in L paired with C∗-flat
connections after exponentiating the variable, as long as the divisor-type
axiom holds. Therefore, in practice, one may take (ΛU )

b1 parametrizing ΛU -
flat connections on L for related computations, instead of the coordinate
functions on H1(L). Here, b1 denotes the first Betti number of L)

When z⃗ varies over (ΛU )
b1 , the associated Koszul map is defined by

(5.12) P κl(Z1, · · · , Zl) = m∇z⃗

l+1(Z1, · · · , Zl, P ),

and it is essentially determined by the augmentation ϵL (once we know
the boundary classes of contributing disks). By our assumption on the de-
grees, (5.12) is nontrivial only when l = 1, so it reduces to an algebra ho-
momorphism

(5.13) H0 homWΛ(G,G)→ Λ{z±1 , · · · , z
±
b1
}

where the right hand side consists of infinite Laurent series
∑∞

i=1 aiz
vi with

limi→∞ val(ai) =∞. (See Example 2.6 and the paragraph above it for the
related discussions.)

In the applications in Section 6, we will proceed mainly with connec-
tions rather than dealing with divisors on L. Readers are warned that one
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should switch back to the original variable xi (dual to Xi ∈ H
1(L)) to apply

Theorem 5.4.

6. Examples: local models for SYZ fibrations

We examine the main idea of Theorem 5.4 using simple, but illustrative
geometric examples, which are typical local models for SYZ fibrations in low
dimensions. When there is no singular fiber, then the fibration is locally the
same as (C×)n = T ∗Tn, which is nothing but the product of Example 5.5
that we have already analyzed in detail. Like before, the Maurer-Cartan
space of each torus fiber in (C×)n forms a small chart in (Λ×)n. Notice that
(Λ×)n is Spec of the endomorphism algebra of the Lagrangian G ∼= Rn in
WFukΛ((C×)n). These charts are indeed disjoint small balls in (Λ×)n. More
precisely, the Maurer-Cartan space of the Lagrangian fiber

Lr⃗ := {(z1, · · · , zn) : log |zi| = ri}

equipped with the holonomy ∇c⃗ = (c1, · · · , cn) ∈ (ΛU)
n sits in the global

space (Λ×)n as a polydisk B(T−r1c1, e
r1)× · · · ×B(T−rncn, e

rn) about the
point (T−r1c1, · · · , T

−rncn).
Before we proceed to our main examples, let us make a short remark on

the cotangent bundle of a simply connected manifold and related works.

Cotangent bundles. The wrapped Floer cohomology of a cotangent fiber
in T ∗L has been shown to be quasi-isomorphic to C−∗(Ω0L) by Abouzaid
[Abo12] where Ω0L is the based loop space. On the other hand, the Maurer-
Cartan dga AL of L can be expressed as ΩH−∗(L; Λ), where we identify
the continuous dual of H∗(L; Λ) with H−∗(L; Λ) (which is possible since
everything is finite dimensional).

Suppose L is simply connected. Then the A∞-coalgebra structure on
H−∗(L; Λ) is finite by degree reason, i.e, ∆i(c) = 0 except for finitely many
i’s. Thus one can avoid completion procedure in 3.4 for the cobar construc-
tion of H−∗(L; Λ), and the resulting dga is quasi-isomorphic to C−∗(Ω0L)
by Adams [Ada56]. Combined with the result of Abouzaid, the Maurer-
Cartan dga of L can be identified with a suitable completion of the wrapped
Floer cohomology of a cotangent fiber. (This point has been already dis-
cussed implicitly in [EL17a].) Based on the above observation, we speculate
that Theorem 5.4 generalizes to the nonzero degree components under some
milder assumptions on the grading of G and L.
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We now begin to explore more intriguing examples of local SYZ fibra-
tions that comes with typical type of singularities. We will be interested in
the Maurer-Cartan spaces of singular fibers as well .

6.1. Local model for I1-singular fiber

Let us consider the following exact symplectic manifold

M = C2 \ {z1z2 = ϵ},

which is a toy model for the 2-dimensional SYZ fibration that has a unique
nodal singular fiber. The fibration is given by

(6.1) (z1, z2) 7→ (|z1|
2 − |z2|

2, |z1z2 − ϵ|)

and its Floer theory and mirror symmetry have been studied and fully under-
stood through many literatures for e.g., [Aur07]. The singular fiber denoted
by L occurs when |z1z2 − ϵ| = ϵ and |z1|

2 − |z2|
2 = 0, and L is an immersed

sphere with a transversal double point at z1 = z2 = 0. It is easy to visual-
ize the Lagrangians in our interest using the conic fibration w :M → C∗,
w(z1, z2) = z1z2 − ϵ. The projection of torus fibers draws a concentric circle
about the origin, as does that of L in particular (see Figure 5).

The Maurer-Cartan algebra AL is the ring of bounded power series ring
on two variables u and v,

AL = Λ{{u, v}}/uv = vu,

associated with the immersed generator U and V supported at the nodal
point. See for e.g., [Sei] or [HKL18] for more details. In fact, AL can be
computed from the wrapped Floer theory of the dual Lagrangian and the
Koszul map κ.

The geometric generators U and V have nontrivial actions A(U) and
A(V ) (see (2.8)) depending on the size of the base circle in w-plane that L
projects to. Since U and V are complementary to each other supported at the
same self-intersection, we have A(U) +A(V ) = 0. As before, we denote by Ũ
and Ṽ the associated exact generators, i.e., Ũ = TA(U)U and Ṽ = TA(V )V .

Let us next consider G, a Lagrangian section of (6.1) that projects to
the positive real axis in w-plane. Over each point in the positive real axis
lies C∗ ∼= T ∗S1 given by z1z2 = const. and G is isomorphic to a cotangent
fiber of T ∗S1 along this direction. G generates the wrapped Fukaya category
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of M , and hence Theorem 5.4 applies to the situation in this example.3 The
wrapped Floer cohomology of G can be computed by counting holomorphic
sections of the fibration w following the idea of [Pas14, Proposition 4.5]. We
remark that [CU13] computed the wrapped Floer cohomology of analogous
Lagrangians in more general situation of An. Our computation below uses
a Hamiltonian similar to “H2” appearing in [CPU16, Section 6].

Figure 4. Generators of homWΛ(G,G) in the picture of the conic fibration
w = z1z2 − ϵ

Hamiltonian chords for a multiple of linear Hamiltonian wH can be
parametrized by Ca,b for lattice points with |a| ≤ aw and |b| ≤ bw where
aw, bw →∞ as w →∞. In Figure 4, the intersection points in G ∩ ϕwH(G)
corresponding to these generators are plotted (we will mostly describe disks
with these intersection points below, as they are easier to visualize). Each
of them produces a degree 0 exact generator denoted as C̃a,b in the m1-
cohomology, and in particular, H∗(homWΛ(G,G)) is simply an algebra with-
out higher operations, concentrated at degree 0. The product m2 is given
by

(6.2) m2(C̃a1,b1 , C̃a2,b2) =

k∑

i=0

(
k

i

)
C̃a1+a2,b1+b2+i

3One technical subtlety here is that unless we allow immersed Lagrangians as

objects of WC, we may need to identify L with a twisted complex L̃
δ
→ L̃ built out

of the thimble L̃ emanating from (z1, z2) = (0, 0). As computations with L or with

L̃
δ
→ L̃ are not much different from each other, we proceed with L itself, here.
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where k is given by

k =

{
min{|a1|, |a2|} if a1 and a2 have different signs

0 otherwise.

Hence it is commutative. It is elementary to deduce from (6.2) that two
elements C̃±1,0 generate H∗(homWΛ(G,G)) as an algebra, or it will be more
clear after we compare this with AL via the Koszul map κ.

Figure 5. Contributing polygons to κ(C̃±1,0)

Let us now consider κ : H0(homWΛ(G,G))→ AL. Shaded regions in Fig-
ure 5 show holomorphic sections of the conic fibration that contribute to
κ(C̃±1,0). (In the figure, G is wrapped minimal number of times to show

the generators C±1,0 as intersection points.) This implies κ(C̃−1,0) = ũ and

κ(C̃1,0) = ṽ. The outputs do not involve any nontrivial powers of T ’s, since
we work with exact generators and variables. The fact that AL is commuta-
tive can be deduced from this without actually solving the Maurer-Cartan
equation for L.

Since κ is a ring homomorphism, we can compute κ(C̃a,b) for other a, b ∈
Z using (6.2). For example, one has

κ(C̃0,1) = ũṽ − 1
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from m2(C̃−1,0, C̃1,0) = C̃0,0 + C̃0,1. The general formula is given by

(6.3) κ(C̃a,b) =

{
(ũṽ − 1)bũ|a| a < 0

(ũṽ − 1)bṽ|a| a ≥ 0

Inspired by the formula (6.3), we set U = C̃−1,0 and V = C̃1,0, and it
gives rise to a simpler and more familiar presentation H∗(homWΛ(G,G)) =
Λ[U,V,UV − 1] (the same expression also appears in [Pas19]). Namely, it
corresponds to the function ring of M̌ := Λ2 \ {UV = 1}. Most importantly,
U and V can be thought of as global coordinates on M̌ . The crucial reason
behind it is the finiteness of the A∞-operations on wrapped Floer theory.

To the contrary, recall that the Maurer-Cartan algebra of L is given as
AL = Λ{{u,v}}

uv=vu which allows an infinite sum of monomials in u, v as long as

the valuation is bounded below. Thus AL is the function ring of (Λ+)
2. (The

maximal subset of Λ2 on which every elements in AL can be evaluated is
(Λ+)

2.) In other words, the Maurer-Cartan space MC(L) (dual to AL) is
isomorphic to (Λ+)

2 with coordinates u and v. This is along the same line
as the coefficients for the bounding cochains in [FOOO09].

Notice that MC(L) is bigger than a formal neighborhood which is al-
ready assured by Theorem 5.4. Let us examine how the local chartMC(L)
sits in the global mirror M̌ = Λ2 \ {UV = 1}. First of all, the chart is around
the origin (U,V) = (0, 0) since their augmentation values are zero. Recall
that the exact variables ũ = T−A(U)u and ṽ = T−A(V )v precisely match with
the exact generators U and V in H0(homWΛ(G,G)) under κ. The constraint
that val(u) > 0, val(v) > 0 (i.e., (u, v) ∈ (Λ+)

2) translated into the condition
val(U) > −A(U), val(V) > −A(V ) where we view (U,V) as global coordi-
nates on M̌ = Λ2 \ {UV = 1}. We see that MC(L) embeds into M̌ as the
polydisk

UL := {(U,V) : ||U|| < eA(U), ||V|| < eA(V )}.

One can vary L by choosing non-concentric circle about the origin, while
still enclosing the origin and passing through −ϵ. Such a deformation is cer-
tainly not a Hamiltonian isotopy, and hence produce non-isomorphic objects
in the Fukaya category. We investigate the change ofMC(L) in this case. We
may assume A(U) = A(V ) = 0 for the concentric L, which can be achieved
by adjusting ϵ if necessary. UL is then given as the polydisk with each factor
having radius 1.

Take an immersed sphere L′ obtained by taking a circle smaller than
|w| = ϵ, and write U ′ and V ′ for the corresponding immersed generator
for L′. Stokes formula implies that A(U ′) > 0 and A(V ′) < 0. Therefore
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Figure 6. Regions in the mirror space occupied by (a) immersed Lagrangian
spheres and (b) Lagrangian tori

MC(L′) is embedded in Λ2 \ {UV = 1} as a polydisk UL′ with radius of
U-factor bigger than e−0 = 1, and that of V-factor less than 1. On the
other hand, an immersed sphere L′′ with sitting over a circle in w-plane
with a bigger enclosed area satisfy A(U ′′) < 0 and A(V ′′) > 0. In Figure 6
(a), we depict three different charts UL, UL′ and UL′′ by plotting the norm
(x, y) = (||U||, ||V||) = (e−val(U), e−val(V)). One corner of each chart moves
along the curve ab = 1 since the valuations of the two immersed generators
add up to zero in any case.

We next turn our attention to various Lagrangian tori inM . We will only
consider the tori sitting over circles in w-plane with height |z1|

2 − |z2|
2 = 0.

These can be divided into four crucially different families of Lagrangian
tori, which can be distinguished from each other by their locations relative
to wall (or that of L) and “sizes” of their projections relative to that of L.
The original fibers of the fibration (6.1) already has Chekanov and Clifford
tori, denoted by LstdChek and LstdClif in different sides of the wall. In addition,

one can consider a Chekanov torus LbigChek which lies above a circle in w-plane
bigger than |w| = ϵ, or a Clifford torus LsmallClif sitting over a circle smaller
than |w| = ϵ. Notice that the latter two can be Hamiltonian isotopic to none
of fibers of (6.1). Figure 7 shows typical members of these four different
families.



✐

✐

“1-Hong” — 2023/7/26 — 18:47 — page 59 — #59
✐

✐

✐

✐

✐

✐

Maurer-Cartan deformation of Lagrangians 59

Figure 7. Four different types of tori in M distinguished by wall-crossing
and valuations: (a) LstdChek, (b) L

std
Clif , (c) L

big
Chek and (d) LsmallClif

Let us equip the tori with ΛU-connections parametrized by their corre-
sponding holonomies (z1, z2). Here, z1 is the holonomy along a circle in the
conic fiber, and z2 is that of a circle in |w|-plane. (See [HKL18] for more
details.) One can compute κ for these tori by directly counting holomorphic
sections with appropriate boundary conditions. Alternatively, we may use
the fact that κ is invariant under the quasi-isomorphism in the Fukaya cat-
egory, since the construction of κ is purely categorical. In either way, one
has, for LChek,

{
z1 = C̃0,1 = UV − 1

z2 = C̃−1,0 = T aU
⇒

U = T−az2 ∈ T
−aΛU,

V = T a(z1 + 1) ∈

{
T aΛ+ z1 ∈ −1 + Λ+

T aΛU otherwise

for some a such that a < 0 for LstdChek and a > 0 for LbigChek. Therefore,
e−val(U) = ea and 0 < e−val(V) ≤ e−a, which draws vertical lines below the
graph of xy = 1 in Figure 6 (b). The vertical line moves closer to the y-
axis as the size of the w-projection of the Chekanov torus becomes bigger.
Likewise, plotting Clifford tori in (x, y)-planes give horizontal lines left to
xy = 1 in Figure 6 (b). Lagrangian tori with |z1|

2 − |z2|
2 ̸= 0 are located in

the region above the graph of xy = 1.
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6.2. A pair-of-pants

Let M be a pair-of-pants. M admits a torus fibration with the “Y”-shaped
singular fiber (the Lagrangian skeleton depicted in the left of Figure 8),
whose Floer theory cannot be defined. Thus, instead of considering the
SYZ mirror, we look into the wrapped Floer theory of three noncompact
Lagrangian G1, G2 and G3 shown in Figure 8. Any two of them already
generate the wrapped Fukaya category. The endomorphism algebra of ⊕Gi
is built upon the path algebra of a quiver with more than one vertex, and
hence is noncommutative. It also has nonzero degree components, so it is
hard to extract the conventional mirror out of it.

We take the following alternative approach. let us first explain the
wrapped cohomology for each of Gi’s. Wrapping G1 around two punctures
it asymptotes, we obtain a similar picture as what we have seen for T ∗S1,
except that the third puncture appears in the middle of the cylinder. As
the slope w grows, we obtain generators U0, U1, U2, · · · and V0, V1, V2, · · ·
(with U0 = V0 being the unit) of HW (G1, G1) whose corresponding inter-
section points (in G1 ∩ ϕwH(G1)) indicated in Figure 8. Exact generators of
HW (G1, G1) induced from Ui and Vi have degree 0, and satisfy

m2(Ũi, Ũj) = Ũi+j , m2(Ṽi, Ṽj) = Ṽi+j , m2(Ũi, Ṽj) = 0

for i, j ≥ 1 (see [AAE+13] for more details). Setting U := Ũ1 and V := Ṽ1,
we see that the wrapped Floer cohomology of G1 can be identified with

(6.4) HW (G1, G1; k) =
k[U,V]

⟨UV⟩

where k could be C or Λ depending on which wrapped Fukaya category we
are dealing with. Thus the corresponding space is the union of two coordinate
axes in k2, or {(U,V) ∈ k2 | UV = 0}.

We then consider the circle L in Figure 8 and its deformation by xdθ.
Let us assume for simplicity that L is exact so as not to have any nontrivial
powers of T ’s in the formula below. By direct counting, the kernel m of
the resulting augmentation on (6.4) is the ideal generated by U− 1 and V
(or the point corresponding to L is (U,V) = (1, 0)). In particular, V does
not survive in the m-adic completion of 6.4 with respect to this ideal, since
V = (−1)n(U− 1)nV for any n.

Given the locations of L and G1 in M , one can show by the same calcu-
lation as in Subsection 5.5 that κG1,L(U) = ex. Also, we have κG1,L(V) = 0
since there are no disks to count. This does not violate Theorem 5.4 (note
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Figure 8. Noncompact Lagrangians G1 and G2 and their endomorphism
algebras interacting with the Maurer-Cartan algebra of the circle L

that G1 generates L) as V becomes zero in the completion. To summarize
the Maurer-Cartan space of L lies in (6.4) via

κG1,L(U) = ex and κG1,L(V) = 0.

Namely, AL = Λ{x} is isomorphic to the subspace of the m-adic completion
of (6.4) consisting of series with bounded coefficients. MC(L) ∼= Λ+ sits
in the U-axis (⊂ {(U,V) ∈ k2 | UV = 0}) as the unit open disk around
(U,V) = (1, 0).

On the other hand, exactly the same procedure applying to the pair
(G2, L) identifies the Maurer-Cartan space of L as a subset of the coordinate
axis W = 0 via

κG2,L(U
′) = ex and κG2,L(W) = 0,

where we take the presentation k[U′,W]/⟨U′W⟩ of the wrapped Floer coho-
mology of G2 as before. (Here, U′ is the exact generator appearing closer to
the same puncture as U for G1.) Repeating the same computation for other
circles in the same leg ofM , we conclude that in view of Lagrangian moduli,
the two coordinate axes {(U, 0) | U ∈ k∗} (from G1) and {(U

′, 0) | U ∈ k∗}
(from G2) should be identified by letting (U, 0) = (U′, 0), as indicated in
Figure 8.

Observe that the origin U = V = 0 cannot be covered by any of such
circles L, since the exponential ex is always nonzero. We next seek for the
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Figure 9. The Maurer-Cartan algebra of the Seidel Lagrangian and the en-
domorphism algebra of G1

object in the Fukaya category that should correspond to the origin. Let
us consider the immersed circle L0 with three self-intersection points X,Y
and Z described in Figure 9. This immersed Lagrangian has been used to
study homological mirror symmetry of surfaces in many literatures, since
first introduced by Seidel [Sei11].

Let X,Y, Z and X ′, Y ′, Z ′ denote degree 0 and 1 generators, respectively.
Observe that for ω = dΘ,

(6.5)

∫

L0

Θ =

∫

∂∆F

Θ−

∫

∂∆B

Θ =

∫

∆F

ω −

∫

∆B

ω

where ∆F and ∆B are two triangles bounded by L0 with corners X,Y and
Z and their boundaries are positively oriented. By imposing the reflection
symmetry on L0 so that (6.5) vanishes, L0 can be made exact, or ι∗Θ = df for
some function f on the domain S1 of the immersion ι : S1 ↬ L0. Thus each
immersed generator naturally comes with its action A, and one can assign
exact generators to X,Y, Z,X ′, Y ′, Z ′ by multiplying TA(−) (see (2.8)). The
Maurer-Cartan equation for L0 in terms of these exact generators is given
as

(6.6) m0(e
b) = (ỹz̃ − z̃ỹ)X̃ ′ + (z̃x̃− x̃z̃)Ỹ ′ + (x̃ỹ − ỹx̃)Z̃ ′ + x̃ỹz̃1L0

where b = x̃X̃ + ỹỸ + z̃Z̃(= xX + yY + zZ). (For instance, X̃ = TA(X)X
and x̃ = T−A(X)x.) Notice that there is no nontrivial power of T appearing
in (6.6), thanks to the usage of exact generators.
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Remark 6.1. Strictly speaking, L0 does not completely fit into our setting
in Section 5 since it is only Z2-graded, and a lower (de Rham) degree term
such as x̃ỹz̃1L0

appears in the Maurer-Cartan equation (6.6). To keep the
Z-graded setting, one could introduce an extra variable “e” with deg e = 2
encoding Maslov indices, which turns the last term in (6.6) to x̃ỹz̃e1L0

.
On the other hand, the coefficient W := x̃ỹz̃ = T−A(X)−A(Y )−A(Z)xyz is

called the potential function defined on the weak Maurer-Cartan space of L0,
which give a local Landau-Ginzburg mirror. To deal with Lagrangians more
systematically, one may need a generalization of κ into weak Maurer-Cartan
deformations, which we leave for future research.

Therefore the relations are generated by commutators among variables
together with xyz, and hence the (strict) Maurer-Cartan algebra in Λ-
coefficient can be represented as

AL0
=

Λ{{x, y, z}}

⟨⟨[x, y], [y, z], [z, x], xyz⟩⟩
.

The associated spaceMC(L0) is given by {xyz = 0} ⊂ (Λ+)
3. One can also

use C-coefficient, in which case the corresponding Maurer-Cartan deforma-
tion of L0 gives a formal neighborhood the origin in the union of three
coordinate planes in C3.

Another feature of L0 slightly off the setting in 5 is that Gi and L0

intersect at two points, say P of degree 0 and Q of degree 1. Despite the
existence of an additional intersection point Q, the map κGi,L0

defined by
the precisely same formula (5.9) still produces an algebra homomorphism
modulo the ideal ⟨rPQ(x, y, z), rQP (x, y, z)⟩ where rPQ and rQP are given by

m0,b
1 (Q) = rQP (x, y, z)P nad m0,b

1 (P ) = rPQ(x, y, z)Q. To see this, observe
that the A∞-relation

m(

multiple of Q︷ ︸︸ ︷
m(Z1, Z2, P, e

b), eb) +m(m2(Z1, Z2), P, e
b)

−m(Z1,m(Z2, P, e
b), eb) +m(Z1, Z2,m

0,b
1 (P ), eb) = 0

for Z1, Z2 ∈ homWΛ(Gi, Gi) reduces to

κ(m2(Z1, Z2)) = κ(Z1)κ(Z2) mod ⟨rPQ, rQP ⟩

since the first and the last terms are multiple of rQP and rPQ, respectively.
It is easy to see that rPQ(x, y, z) = z and rPQ(x, y, z) = xy up to scaling in
this case.
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Remark 6.2. The pair (rPQ, rQP ) gives the matrix factorization ofW mir-
ror dual to G1 in view of the Landau-Ginzburg mirror of M mentioned in
Remark 6.1. See [CHL18] for more details.

As a result, one obtains an algebra homomorphism

(6.7) κG1,L0
:
Λ[U,V]

⟨UV⟩
→

AL0

⟨⟨rPQ, rQP ⟩⟩
∼=

Λ{{x, y}}

⟨⟨xy⟩⟩
.

The homomorphism is determined by images of U and V, and the shaded
holomorphic disks drawn in Figure 9 shows

κG1,L0
(U) = x̃ = T−A(X)x, κG1,L0

(V) = ỹ = T−A(Y )y.

In particular, κG1,L0
becomes an isomorphism after taking completion of the

left hand side. Setting x = y = 0, (6.7) reduces to the augmentation U,V 7→
0, from which one can deduce that L0 (without boundary deformation) sits
at the origin (U,V) = (0, 0).

By the same argument, we see also that L0 corresponds to the origin
(U′,W) = (0, 0) in view of G2. Accordingly, one has to identify the two
“origins”. Combined with the previous identification (U, 0) = (U′, 0) for
U,U′ ̸= 0, we conclude that U-axis in {UV = 0} from G1 and U′-axis in
{U′W = 0} from G2 should be glued together.

The upshot is the union of three coordinate axes

(6.8) {(U, 0, 0)} ∪ {(0,V, 0)} ∪ {(0, 0,W)}

in Λ3, and this is obtained by keeping track of locations of point-like objects
(in the Fukaya category) in the “Spec” of HW (G1, G1) and HW (G2, G2).
(We could also include HW (G3, G3), but it is redundant here.)

Putting together (6.7) and its analogues for G2, G3, we see that the
subspace {(x, y, z) ∈ Λ3

+ | xy = yz = zx = 0} of the Maurer-Cartan space
MC(L0) embeds into (6.8) via

(U,V,W) = (T−A(X)x, 0, 0) or (0, T−A(Y )y, 0) or (0, 0, T−A(Z)z),

which describes a certain neighborhood VL0
of the origin in (6.8). Note that

VL0
is the critical loci of the potential

W : UL0
→ Λ (x, y, z) 7→ T−A(X)−A(Y )−A(Z)xyz,

and hence, it can be thought of as the set of nonzero objects (L0, b) for
b ∈MC(L0).
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6.3. Smoothing of conifold

The last example is the (divisor complement of) deformed conifold discussed
in Example 2.7

M := {(u1, v1, u2, v2, z) ∈ C4 × C∗ | u1v1 = z − a, u2v2 = z − b} \ {z = 0}.

The projection to z-plane defines a double conic fibration on M , whose
fibers degenerate over z = a and z = b. Near a or b, M is locally isomorphic
to the product of the example in 6.1 with T ∗S1, and as before, it admits a
torus fibration with fibers lying over concentric circles about the origin in z-
plane, consisting of T 2-orbits for the Hamiltonian action (u1, v1, u2, v2, z) 7→
(eiθ1u1, e

−iθ1v1, e
iθ2u2, e

−iθ2v2, z).
Take two Lagrangians L0 and L1 to be matching spheres lying over

paths drawn in Figure 10. As in the picture, Gi for i = 0, 1 is a Lagrangian
section of the torus fibration which intersects Li exactly once. More details
on Floer theory of these Lagrangians can be found in [CPU16]. We finally
set G = G0 ⊕G1 and L = L0 ⊕ L1.

Figure 10. two Lagrangian spheres L0, L1 and their duals

The computation of κ for G and L can be done in a similar manner
to what we did in 6.1, and we do not present much details. For a lin-
ear Hamiltonian wH with w →∞, we obtain the family {P ia,b,c : a, b, c ∈
Z} of wH-hamiltonian chords from Gi to itself for i = 0, 1 (equivalently,
the intersection points in G ∩ ϕH(G)). Likewise, we have {Qa,b,c : a ∈

1
2 +

Z, b, c ∈ Z} spanning hom(G1, G0), and {Ra,b,c : a ∈
1
2 + Z, b, c ∈ Z} span-

ning hom(G0, G1). Thier degrees are all 0. Analogous to the way of indexing
in 6.1, a and (b, c) in P ia,b,c indicate the component of chords along the base
and the double-conic fiber directions, respectively. Qa,b,c and Ra,b,c are sim-
ilarly defined, except that they lie between the two different Lagrangians.
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The locations of the intersection points corresponding to the first few gen-
erators are shown in Figure 11. We denote by P̃ ia,b,c (for i = 0, 1), Q̃a,b,c and

R̃a,b,c the associated generators of H∗ hom(G,G). P̃ i0,0,0 is the unit in the
corresponding component of H∗ hom(G,G).

In [CPU16], m2 between these generators has been explicitly computed.
For instance,

m2(P̃
0
a1,b1,c1

, P̃ 0
a2,b2,c2

) =

k1∑

i=0

k2∑

j=0

(
k1
i

)(
k2
j

)
P̃ 0
a1+b1,a2+b2+i,a3+b3+j .

where k = min{|a1|, |a2|} if a1 and a2 have different signs, and k = 0 other-
wise. Also,

m2(Q̃a1,b1,c1 , R̃a2,b2,c2) =

k1∑

i=0

k2∑

j=0

(
k1
i

)(
k2
j

)
P̃ 1
a1+b1,a2+b2+i,a3+b3+j .

where k1 = min{|a1| − 1/2, |a2| − 1/2}+ 1 and k2 = {|a1| − 1/2, |a2| − 1/2}
if a2 < 0 < a1, and k1 = min{|a1| − 1/2, |a2| − 1/2} and k2 = {|a1| −
1/2, |a2| − 1/2}+ 1 if a1 < 0 < a2 (k1 = k2 = 0 if a1 and a2 have the same
sign). Formulas for other products have similar patterns, and we omit.

Recall from Example 2.7 that the Maurer-Cartan algebra AL is a quiver
algebra generated by four arrows x, y, z, w, with relations xyz = zyx and
its permutations. These arrows are dual to immersed generators X,Y, Z,W
taken as in Figure 11. (Y and W are complementary to X and Z, respec-
tively.)

Figure 11. The Koszul map κ for generators of homW(G,G)
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We can compute κ : H0(hom(G,G))→ AL using the same strategy as
in 6.1. Namely, we first find the images of generators of H0(hom(G,G))
with small indices by directly counting holomorphic disks, and then apply
the known formula of m2 above.

First, it is not difficult to check that Q̃± 1

2
,0,0, R̃± 1

2
,0,0 and P̃ i±1,0,0 (for

i = 0, 1) generate the algebra H0(hom(G,G)), and hence it suffices to find
their images under κ. Any contributing disks to κ(Q̃± 1

2
,0,0) project to one

of the shaded regions in Figure 11) by the maximum principle, and each
shaded region supports a unique disk since the Lagrangian boundaries lie
on the same moment fiber and the fibration is trivial away from an arbitrarily
small neighborhood of the double conic fiber containing X or Z. Therefore
κ(Q̃ 1

2
,0,0) = x̃ and κ(Q̃ 1

2
,0,0) = z̃. The other generators can be handled in the

same manner.
The general formula for κ is given as follows: for 0 < a ∈ Z,

κ(P̃ 0
a,b,c) = (w̃x̃)a(ỹx̃− 1)b(w̃z̃ − 1)c,

κ(P̃ 0
−a,b,c) = (ỹz̃)a(ỹx̃− 1)b(w̃z̃ − 1)c,

κ(P̃ 1
a,b,c) = (x̃w̃)a(x̃ỹ − 1)b(z̃w̃ − 1)c,

κ(P̃ 1
−a,b,c) = (z̃ỹ)a(x̃ỹ − 1)b(z̃w̃ − 1)c,

and for 0 < a ∈ 1
2 + Z,

κ(Q̃a,b,c) = x̃(w̃x̃)a−
1

2 (ỹx̃− 1)b(w̃z̃ − 1)c,

κ(Q̃−a,b,c) = z̃(ỹz̃)−a+
1

2 (ỹx̃− 1)b(w̃z̃ − 1)c,

κ(R̃a,b,c) = w̃(x̃w̃)a−
1

2 (x̃ỹ − 1)b(z̃w̃ − 1)c,

κ(R̃−a,b,c) = ỹ(z̃ỹ)−a+
1

2 (x̃ỹ − 1)b(z̃w̃ − 1)c.

Negative powers of a polynomial in the formula should be interpreted as
series, for e.g., (x̃ỹ − 1)−1 = −1− x̃ỹ − x̃ỹx̃ỹ − · · · . Note that such infinite
sums are legitimate in AL. Also, the loops based at the same vertex commute
in AL due to the relations, and hence the order of factors can be switched
with some minor effect. For instance,

w̃(x̃w̃)a−
1

2 (x̃ỹ − 1)b(z̃w̃ − 1)c = (w̃x̃)a−
1

2 w̃(z̃w̃ − 1)c(x̃ỹ − 1)b

holds in AL, and the orders of factors in the above formulas are arbitrarily
chosen for convenience.
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