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sense of Floer associated with the Rabinowitz action functional
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1. Introduction

In this paper, we introduce an analogue of the twisted Floer homology [25]
in the Rabinowitz–Floer setting. See the excellent survey article [5] for a
brief introduction to Rabinowitz–Floer homology and [2] for an overview of
common Floer theories. Following [7] and [3], we construct a Morse–Bott
homology for a suitable twisted version of the standard Rabinowitz action
functional, generalising standard Rabinowitz–Floer homology.

Theorem 1.1 (Twisted Rabinowitz–Floer homology). Let (M,λ) be
the completion of a Liouville domain (W,λ) and let φ ∈ Diff(W ) be of fi-

nite order with φ(∂W ) = ∂W and φ∗λ− λ = dfϕ for some smooth compactly

supported function fϕ ∈ C∞
c (IntW ) in the interior of W .

(a) The semi-infinite dimensional Morse–Bott homology RFHϕ(∂W,M)
in the sense of Floer of the twisted Rabinowitz action functional exists

and is well-defined. Moreover, twisted Rabinowitz–Floer homology is

invariant under twisted homotopies of Liouville domains.

(b) If ∂W is simply connected and does not admit any nonconstant twisted

Reeb orbits, then RFHϕ∗ (∂W,M) ∼= H∗(Fix(φ|∂W );Z2).

(c) If ∂W is displaceable by a compactly supported Hamiltonian symplec-

tomorphism in (M,λ), then RFHϕ(∂W,M) ∼= 0.

Part (a) will be proven in Sections 4 and 5, in particular Theorem 5.2,
part (b) is the content of Proposition 4.3 and finally part (c) is the content
of Theorem 6.5. First of all, twisted Rabinowitz–Floer homology does indeed
generalise standard Rabinowitz–Floer homology as

RFHidW (∂W,M) = RFH(∂W,M).

Moreover, twisted Rabinowitz–Floer homology can be used to prove exis-
tence of noncontractible periodic Reeb orbits on quotients of certain sym-
metric star-shaped hypersurfaces.

Theorem 1.2. Let Σ ⊆ Cn, n ≥ 2, be a compact and connected star-shaped

hypersurface invariant under the rotation

φ : Cn → C
n, φ(z1, . . . , zn) :=

(
e2πik1/mz1, . . . , e2πikn/mzn

)

for some even m ≥ 2 and k1, . . . , kn ∈ Z coprime to m. Then Σ/Zm admits

a noncontractible periodic Reeb orbit generating π1(Σ/Zm) ∼= Zm.
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The proof is straightforward, once we have computed the Zm-equivariant
twisted Rabinowitz–Floer homology of the sphere S2n−1 ⊆ Cn. Indeed, by
invariance we may assume that Σ = S2n−1, as Σ is star-shaped. Then we
use the following elementary topological fact (see Lemma 1.3 below). Let Σ
be a simply connected topological manifold and let φ : Σ → Σ be a homeo-
morphism of finite order m that is not equal to the identity. If the induced
discrete action

Zm × Σ → Σ, [k] · x := φk(x)

is free, then π : Σ → Σ/Zm is a normal covering map [17, Theorem 12.26].
For x ∈ Σ define the based twisted loop space of Σ and ϕ by

Lϕ(Σ, x) := {γ ∈ C(I,Σ) : γ(0) = x and γ(1) = φ(x)} ,

where I := [0, 1]. Then we have the following result. See Figure 1.

Lemma 1.3. If γ ∈ Lϕ(Σ, x) for some x ∈ Σ, then π ◦ γ ∈ L (Σ/Zm, π(x))
is not contractible. Conversely, if γ ∈ L (Σ/Zm, π(x)) is not contractible,

then there exists 1 ≤ k < m such that γ̃x ∈ Lϕk(Σ, x) for the unique lift γ̃x
of γ with γ̃x(0) = x.

For a more detailed study of twisted loop spaces of universal covering
manifolds as well as a proof of Lemma 1.3 see Appendix A. To the authors
knowledge, there are two similar versions of Theorem 1.2 in the literature.

Theorem 1.4 ([11, Corollary 1.6 (iv)]). Any contact form on a lens

space defining the standard contact structure admits a closed Reeb orbit.

Using the fact that there is a natural bijection between contact forms on
the odd-dimensional sphere equipped with the standard contact structure
and star-shaped hypersurfaces, Theorem 1.4 is actually stronger than The-
orem 1.2 in that it does not restrict the parity of the lens space. However,
Theorem 1.4 does not say anything about the topological nature of the Reeb
orbit. The proof of this theorem uses a generalisation of Givental’s nonlinear
Maslov index to lens spaces.

Theorem 1.5 ([20, Theorem 1.2]). Let Σ ⊆ Cn, n ≥ 2, be a dynamically

convex star-shaped hypersurface such that Σ = −Σ. Then Σ admits at least

two symmetric geometrically distinct closed characteristics.

Theorem 1.5 has the advantage of being a multiplicity result, but in
disadvantage requires the assumption that the hypersurface is dynamically
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convex and does only work for Z2-symmetry. The first named author of the
paper [20] is currently working on extending Theorem 1.5 to lens spaces.
As many multiplicity results, the proof of this theorem makes use of index
theory, in particular Ekeland–Hofer theory.

The existence of closed Reeb orbits on lens spaces is important in the
study of celestial mechanics. Indeed, by [10, Corollary 5.7.5], the Moser regu-
larised energy hypersurface near the earth or the moon of the planar circular
restricted three-body problem for energy values below the first critical value
is diffeomorphic to the real projective space RP

3.

Σ

Σ/Zm

π

π ◦ γ

x

π(x)

ϕ(x) γ

Figure 1. The projection π ◦ γ ∈ L (Σ/Zm, π(x)) of γ ∈ Lϕ(Σ, x) is not con-
tractible for the deck transformation φ ̸= idΣ.
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2. The twisted Rabinowitz action functional

Definition 2.1 (Free twisted loop space). Let φ ∈ Diff(M) be a diffeo-

morphism of a smooth manifold M . Define the free twisted loop space of

M and ϕ by

LϕM := {γ ∈ C∞(R,M) : γ(t+ 1) = φ(γ(t)) ∀t ∈ R} .

Let (M,ω) be a symplectic manifold and φ ∈ Symp(M,ω). Given a
twisted loop γ ∈ LϕM and ε0 > 0, we say that a curve

(−ε0, ε0) → LϕM, ε 7→ γε

starting at γ is smooth , if the induced variation

R× (−ε0, ε0) →M, (t, ε) 7→ γε(t)

is smooth. Since γε(t+ 1) = φ(γε(t)) holds for all ε ∈ (−ε0, ε0) and t ∈ R, we
call such a variation a twisted variation . Then the infinitesimal variation

δγ :=
∂γε
∂ε

∣∣∣∣
ε=0

∈ X(γ),

satisfies

δγ(t+ 1) = Dφ(δγ(t)) ∀t ∈ R.

Lemma 2.2. Let (M,ω) be a symplectic manifold and let φ ∈ Symp(M,ω)
be of finite order. Let γ ∈ LϕM and let X ∈ X(γ) be such that

X(t+ 1) = Dφ(X(t)) ∀t ∈ R.

Then there exists a twisted variation of γ such that δγ = X.

Proof. As φ is assumed to be of finite order, there exists a φ-invariant ω-
compatible almost complex structure J on M by [22, Lemma 5.5.6]. With
respect to the induced Riemannian metric

mJ := ω(J ·, ·),

the symplectomorphism φ is an isometry. Define the exponential variation

R× (−ε0, ε0) →M, γε(t) := exp∇J

γ(t)(εX(t)),
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for ε0 > 0 sufficiently small and ∇J denoting the Levi–Civita connection
associated with mJ . Such an ε0 > 0 does exist by naturality of geodesics
[19, Corollary 5.14]. Then we compute

γε(t+ 1) = exp∇J

γ(t+1)(εX(t+ 1))

= exp∇J

ϕ(γ(t))(Dφ(εX(t)))

= φ
(
exp∇J

γ(t)(εX(t))
)

= φ(γε(t))

by naturality of the exponential map [19, Proposition 5.20]. □

Remark 2.3. The statement of Lemma 2.2 remains true if ordφ = ∞.

This discussion together with Lemma A.3 motivates the following defi-
nition of the tangent space to the free twisted loop space.

Definition 2.4 (Tangent space to the free twisted loop space). Let

(M,ω) be a symplectic manifold and φ ∈ Symp(M,ω). For γ ∈ LϕM define

the tangent space to the free twisted loop space at γ by

TγLϕM := {X ∈ Γ(γ∗TM) : X(t+ 1) = Dφ(X(t)) ∀t ∈ R} .

Definition 2.5 (Twisted Hamiltonian function). Let (M,ω) be a sym-

plectic manifold and φ ∈ Symp(M,ω). A function H ∈ C∞(M × R) is said

to be a twisted Hamiltonian function, if

φ∗Ht+1 = Ht ∀t ∈ R.

We denote the space of all twisted Hamiltonian functions by C∞
ϕ (M × R) and

the subspace of all autonomous twisted Hamiltonian functions by C∞
ϕ (M).

Recall, that an exact symplectic manifold is by definition a pair (M,λ)
such that (M,dλ) is a symplectic manifold. An exact symplectomorphism of
an exact symplectic manifold (M,λ) is a diffeomorphism φ ∈ Diff(M) such
that φ∗λ− λ is exact.
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Definition 2.6 (Perturbed twisted Rabinowitz action functional).
Let (M,λ) be an exact symplectic manifold and φ ∈ Diff(M) an exact sym-

plectomorphism with φ∗λ− λ = df . For H,F ∈ C∞
ϕ (M × R) define the per-

turbed twisted Rabinowitz action functional

A
(H,F )
ϕ : LϕM × R → R

by

A
(H,F )
ϕ (γ, τ) :=

∫ 1

0
γ∗λ− τ

∫ 1

0
Ht(γ(t))dt−

∫ 1

0
Ft(γ(t))dt− f(γ(0)).

If F = 0 and H ∈ C∞
ϕ (M), we write A H

ϕ for A
(H,F )
ϕ and call A H

ϕ the

twisted Rabinowitz action functional.

Remark 2.7. Assume that m := ordφ <∞. Then

A
(H,F )
ϕ (γ, τ) =

1

m
A

(H,F )(γ̄, τ)−
1

m

m−1∑

k=0

f(γ(k)),

for all (γ, τ) ∈ LϕM , where γ̄ ∈ LM is defined by γ̄(t) := γ(mt) and

A
(H,F ) : LM × R → R

denotes the standard Rabinowitz action functional.

Definition 2.8 (Differential of the perturbed twisted Rabinowitz
action functional). Let φ ∈ Diff(M) be an exact symplectomorphism of

an exact symplectic manifold (M,λ). For H,F ∈ C∞
ϕ (M × R), define the

differential of the perturbed twisted Rabinowitz action functional

dA (H,F )
ϕ |(γ,τ) : TγLϕM × R → R

for all (γ, τ) ∈ LϕM × R by

dA (H,F )
ϕ |(γ,τ)(X, η) :=

d

dε

∣∣∣∣
ε=0

A
(H,F )
ϕ (γε, τ + εη),

where γε is a twisted variation of γ such that δγ = X.

Proposition 2.9 (Differential of the perturbed twisted Rabinowitz
action functional). Let φ ∈ Diff(M) be an exact symplectomorphism of
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an exact symplectic manifold (M,λ) and H,F ∈ C∞
ϕ (M × R). Then

dA (H,F )
ϕ |(γ,τ)(X, η) =

∫ 1

0
dλ(X(t), γ̇(t)− τXHt(γ(t))−XFt(γ(t)))dt(2.1)

− η

∫ 1

0
Ht(γ(t))dt

for all (γ, τ) ∈ LϕM × R and (X, η) ∈ TγLϕM × R. Moreover, we have that

(γ, τ) ∈ CritA
(H,F )
ϕ

if and only if

(2.2) γ̇(t) = τXHt(γ(t)) +XFt(γ(t)) and

∫ 1

0
Ht(γ(t))dt = 0

for all t ∈ R.

Proof. A routine computation shows (2.1). Let (γ, τ) ∈ CritA
(H,F )
ϕ . It fol-

lows immediately from (2.1) that

∫ 1

0
Ht(γ(t))dt = 0

and
∫ 1

0
dλ(X(t), γ̇(t)− τXHt(γ(t))−XFt(γ(t)))dt = 0

for all X ∈ TγLϕM . Suppose there exists t0 ∈ Int I such that

γ̇(t0)− τXHt0
(γ(t0))−XFt0

(γ(t0)) ̸= 0.

By nondegeneracy of the symplectic form dλ there exists v ∈ Tγ(t0)M with

dλ(v, γ̇(t0)− τXHt0
(γ(t0))−XFt0

(γ(t0))) ̸= 0.

Fix a Riemannian metric onM and let Xv denote the unique parallel vector
field along γ|I such that Xv(t0) = v. As Int I is open, there exists δ > 0 such
that B̄δ(t0) ⊆ Int I. Fix a smooth bump function β ∈ C∞(I) for t0 supported
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in Bδ(t0). By shrinking δ if necessary, we may assume that

∫ t0+δ

t0−δ
dλ(β(t)Xv(t), γ̇(t)− τXHt(γ(t))−XFt(γ(t)))dt ̸= 0.

Extending

(βXv)(t+ k) := Dφk(β(t)Xv(t)) ∀t ∈ I, k ∈ Z,

we have that βXv ∈ TγLϕM and thus we compute

0 = dA (H,F )
ϕ |(γ,τ)(βXv, 0)

=

∫ t0+δ

t0−δ
dλ(β(t)Xv(t), γ̇(t)− τXHt(γ(t))−XFt(γ(t)))dt

̸= 0.

Hence

γ̇(t) = τXHt(γ(t)) +XFt(γ(t)) ∀t ∈ I,

implying

γ̇(t+ k) = Dφk(γ̇(t))

= τ(Dφk ◦XHt)(γ(t)) + (Dφk ◦XFt)(γ(t))

= τ(Dφk ◦XHt ◦ φ
−k ◦ φk)(γ(t)) + (Dφk ◦XFt ◦ φ

−k ◦ φk)(γ(t))

= τφk∗XHt(γ(t+ k)) + φk∗XFt(γ(t+ k))

= τXϕk∗Ht(γ(t+ k)) +Xϕk∗Ft(γ(t+ k))

= τXHt+k(γ(t+ k)) +XFt+k(γ(t+ k))

for all t ∈ I and k ∈ Z. The other direction is immediate. □

Corollary 2.10. The differential of the perturbed twisted Rabinowitz ac-

tion functional is well-defined, that is, independent of the choice of twisted

variation, and linear.

Preservation of energy implies the following corollary.

Corollary 2.11. Let φ ∈ Diff(M) be an exact symplectomorphism of an

exact symplectic manifold (M,λ) and H ∈ C∞
ϕ (M). Then CritA H

ϕ consists

precisely of all (γ, τ) ∈ LϕM × R such that γ(R) ⊆ H−1(0) and γ is an

integral curve of τXH .
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There is a natural R-action on the twisted loop space LϕM given by

(s · γ)(t) := γ(t+ s) ∀t ∈ R.

If (M,λ) is an exact symplectic manifold and H ∈ C∞
ϕ (M) for an exact sym-

plectomorphism φ ∈ Diff(M) of finite order such that supp f ∩H−1(0) = ∅,
then the twisted Rabinowitz action functional A H

ϕ is invariant under the

induced S1-action on CritA H
ϕ . In particular, the unperturbed twisted Ra-

binowitz action functional is never a Morse function.

Definition 2.12 (Hessian of the twisted Rabinowitz action func-
tional). Let φ ∈ Diff(M) be an exact symplectomorphism of an exact sym-

plectic manifold (M,λ) and H ∈ C∞
ϕ (M). For (γ, τ) ∈ CritA H

ϕ , define the

Hessian of the twisted Rabinowitz action functional

HessA
H
ϕ |(γ,τ) : (TγLϕM × R)× (TγLϕM × R) → R

by

HessA
H
ϕ |(γ,τ)((X, η), (Y, σ)) :=

∂2

∂ε1∂ε2

∣∣∣∣
ε1=ε2=0

A
H
ϕ (γε1,ε2 , τ + ε1η + ε2σ),

for a smooth two-parameter family γε1,ε2 of twisted loops with

∂

∂ε1

∣∣∣∣
ε1=0

γε1,0 = X and
∂

∂ε2

∣∣∣∣
ε2=0

γ0,ε2 = Y.

Remark 2.13. Traditionally, the differential and the Hessian of the twisted
Rabinowitz action functional are called the first and second variation of the
twisted Rabinowitz action functional.

In order to compute the Hessian of the twisted Rabinowitz action func-
tional we need to choose a suitable connection. We will see that this choice
is irrelevant in the end.

Definition 2.14 (Symplectic connection). Let (M,ω) be a symplectic

manifold. A symplectic connection on (M,ω) is defined to be a torsion-

free connection ∇ in the tangent bundle TM such that ∇ω = 0.

Remark 2.15. Every symplectic manifold admits a symplectic connection
by [12, p. 308], but in sharp contrast to the Riemannian case, a symplectic
connection on a given symplectic manifold is in general not unique.
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Lemma 2.16. Let φ ∈ Diff(M) be an exact symplectomorphism of an exact

symplectic manifold (M,λ). Fix a symplectic connection ∇ on (M,dλ) and

a twisted Hamiltonian function H ∈ C∞
ϕ (M). If (γ, τ) ∈ CritA H

ϕ , then

(2.3) HessA
H
ϕ |(γ,τ)((X, η), (Y, σ)) =

∫ 1

0
dλ(Y,∇tX)

− τ

∫ 1

0
Hess∇H(X,Y )− η

∫ 1

0
dH(Y )− σ

∫ 1

0
dH(X)

for all (X, η), (Y, σ) ∈ TγLϕM × R.

Proof. The proof is a long routine computation. □

Corollary 2.17. The Hessian of the twisted Rabinowitz action functional

is a well-defined, that is, independent of the choice of twisted two-parameter

family, symmetric bilinear form.

Lemma 2.18. Let φ ∈ Diff(M) be an exact symplectomorphism of an exact

symplectic manifold (M,λ) and H ∈ C∞
ϕ (M). If (γ, τ) ∈ CritA H

ϕ , then

HessA
H
ϕ |(γ,τ)((X, η), (Y, σ)) =

∫ 1

0
dλ(Y, LτXHX − ηXH(γ))(2.4)

− σ

∫ 1

0
dH(X)

for all (X, η), (Y, σ) ∈ TγLϕM × R, where

LτXHX(t) =
d

ds

∣∣∣∣
s=0

DϕXH−sτX(s+ t) ∀t ∈ I,

with ϕXH denoting the smooth flow of the Hamiltonian vector field XH .

Proof. One computes

Hess∇(X,Y ) = dλ(Y,∇XXH).

Inserting this into (2.3) yields

HessA
H
ϕ |(γ,τ)((X, η), (Y, σ)) =

∫ 1

0
dλ(Y,∇tX − τ∇XXH)

− η

∫ 1

0
dH(Y )− σ

∫ 1

0
dH(X).
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But as ∇ has no torsion by assumption, we compute

∇tX − τ∇XXH = ∇γ̇X − τ∇XXH = ∇τXHX − τ∇XXH = [τXH , X],

and

[τXH , X](t) = LτXHX(t)

=
d

ds

∣∣∣∣
s=0

DϕXH−sτ (X(ϕXHsτ (γ(t)))

=
d

ds

∣∣∣∣
s=0

DϕXH−sτ (X(ϕXHsτ (ϕXHtτ (γ(0)))))

=
d

ds

∣∣∣∣
s=0

DϕXH−sτ (X(ϕXH(s+t)τ (γ(0))))

=
d

ds

∣∣∣∣
s=0

DϕXH−sτX(s+ t)

for all t ∈ I. □

Corollary 2.19. Let φ ∈ Diff(M) be an exact symplectomorphism of an

exact symplectic manifold (M,λ) and H ∈ C∞
ϕ (M). The kernel of the Hes-

sian of the twisted Rabinowitz action functional at (γ, τ) ∈ CritA H
ϕ consists

precisely of all (X, η) ∈ TγLϕM × R satisfying

LτXHX = ηXH(γ) and

∫ 1

0
dH(X) = 0.

Lemma 2.20. Let φ ∈ Diff(M) be an exact symplectomorphism of an exact

symplectic manifold (M,λ) and H ∈ C∞
ϕ (M). For every (γ, τ) ∈ CritA H

ϕ ,

there is a canonical isomorphism

(2.5) kerHessA
H
ϕ |(γ,τ) ∼= K(γ, τ),

where

K(γ, τ) := {(v0, η) ∈ Tγ(0)M × R : solution of (2.6)}

with

(2.6) D(ϕXH−τ ◦ φ)v0 = v0 + ηXH(γ(0)) and dH(v0) = 0.
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Proof. We follow [10, p. 99–100]. Let (X, η) ∈ kerHessA H
ϕ |(γ,τ) and define

v : I → Tγ(0)M, v(t) := DϕXH−τtX(t).

We claim that

(2.7) kerHessA
H
ϕ |(γ,τ) → K(γ, τ), (X, η) 7→ (v(0), η)

is an isomorphism. First, we show that the above homomorphism is indeed
well-defined. The assumption that (X, η) lies in the kernel of the Hessian
of the twisted Rabinowitz action functional at the critical point (γ, τ) is by
Corollary 2.19 equivalent to

(2.8) v̇ = ηXH(γ(0)) and

∫ 1

0
dH(v) = 0.

Integrating the first equation yields

v(t) = v0 + tηXH(γ(0)) ∀t ∈ I,

with v0 := v(0). Thus (v0, η) ∈ K(γ, τ) follows from

v(1) = DϕXH−τ X(1)

= DϕXH−τ Dφ(X(0))

= D(ϕXH−τ ◦ φ)X(0)

= D(ϕXH−τ ◦ φ)v0.(2.9)

That (2.7) is an isomorphism follows by considering the inverse

K(γ, τ) → kerHessA
H
ϕ |(γ,τ), (v0, η) 7→ (X, η),

where X ∈ TγLϕM is defined by

X(t) := DϕXHτt (v0 + tηXH(γ(0))) ∀t ∈ R.

This establishes the canonical isomorphism (2.7). □

In what follows, we assume that the energy hypersurface H−1(0) is a
contact manifold. A contact manifold is a pair (Σ, α), where Σ is an odd-
dimensional manifold and α ∈ Ω1(Σ) is a global contact form. Every contact
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manifold (Σ, α) admits a unique vector field R ∈ X(Σ), called the Reeb vec-
tor field, defined implicitly by

iRdα = 0 and iRα = 1.

Recall, that a strict contactomorphism of a contact manifold (Σ, α) is defined
to be a diffeomorphism φ ∈ Diff(Σ) such that φ∗α = α. Note that the Reeb
flow always commutes with a strict contactomorphism.

Definition 2.21 (Parametrised twisted Reeb orbit). For a contact

manifold (Σ, α) and a strict contactomorphism φ : (Σ, α) → (Σ, α) define

the set of parametrised twisted Reeb orbits on (Σ, α) by

Pϕ(Σ, α) := {(γ, τ) ∈ LϕΣ× R : γ̇(t) = τR(γ(t)) ∀t ∈ R} .

Definition 2.22 (Twisted spectrum). For a contact manifold (Σ, α) and
a strict contactomorphism φ : (Σ, α) → (Σ, α) define the twisted spectrum

by

Spec(Σ, α) := {τ ∈ R : ∃γ ∈ LϕΣ such that (γ, τ) ∈ Pϕ(Σ, α)} .

Proposition 2.23 (Kernel of the Hessian of the twisted Rabinowitz
action functional). Let (Σ, λ|Σ) be a regular energy surface of restricted

contact type in an exact Hamiltonian system (M,λ,H) with XH |Σ = R. Sup-
pose φ ∈ Diff(M) is an exact symplectomorphism such that H ∈ C∞

ϕ (M)
and φ∗λ|Σ = λ|Σ. Then

CritA
H
ϕ = Pϕ(Σ, λ|Σ)

and

kerHessA
H
ϕ |(γ,τ) ∼= ker

(
D(ϕR−τ ◦ φ)|γ(0) − idTγ(0)Σ

)

for all (γ, τ) ∈ Pϕ(Σ, λ|Σ). Moreover, we have R(γ(0)) ∈ kerHessA H
ϕ |(γ,τ)

and if Pϕ(Σ, λ|Σ) ⊆ Σ× R is an embedded submanifold, then Spec(Σ, λ|Σ)
is discrete.

Remark 2.24. If (γ, τ) ∈ Pϕ(Σ, λ|Σ), we have the period-action equality

A
H
ϕ (γ, τ) =

∫ 1

0
γ∗λ =

∫ 1

0
λ(γ̇) = τ

∫ 1

0
λ(R(γ)) = τ.
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Proof. The identity CritA H
ϕ = Pϕ(Σ, λ|Σ) immediately follows from Corol-

lary 2.11 together with [18, Corollary 5.30]. The proof of the formula for the
kernel of the Hessian of A H

ϕ is inspired by [10, p. 102]. By Lemma 2.20 we
have that

kerHessA
H
ϕ |(γ,τ) ∼= K(γ, τ),

where (v0, η) ∈ Tγ(0)M × R belongs to K(γ, τ) if and only if

D(ϕXH−τ ◦ φ)v0 = v0 + ηXH(γ(0)) and dH(v0) = 0.

Thus in our setting, the second condition implies v0 ∈ Tγ(0)Σ. Decompose

v0 = vξ0 + aR(γ(0)) vξ0 ∈ ξγ(0), a ∈ R,

where ξ := kerλ|Σ denotes the contact distribution. Then we compute

D(ϕR−τ ◦ φ)R(γ(0)) = D(ϕR−τ ◦ φ)

(
d

dt

∣∣∣∣
t=0

ϕRt (γ(0))

)

=
d

dt

∣∣∣∣
t=0

(ϕR−τ ◦ φ ◦ ϕRt )(γ(0))

=
d

dt

∣∣∣∣
t=0

(ϕRt ◦ φ ◦ ϕR−τ )(γ(0))

=
d

dt

∣∣∣∣
t=0

ϕRt (γ(0))

= R(γ(0)),

as a strict contactomorphism commutes with the Reeb flow. Hence

v0 + ηR(γ(0)) = D(ϕR−τ ◦ φ)v0 = Dξ(ϕR−τ ◦ φ)v
ξ
0 + aR(γ(0)),

where

Dξ(ϕR−τ ◦ φ) := D(ϕR−τ ◦ φ)|ξ : ξ → ξ,

implies

η = 0 and Dξ(ϕR−τ ◦ φ)v
ξ
0 = vξ0

by considering the splitting TΣ = ξ ⊕ ⟨R⟩. Consequently

K(γ, τ) = ker
(
D(ϕR−τ ◦ φ)|γ(0) − idTγ(0)Σ

)
× {0} .

Finally, assume that Pϕ(Σ, λ|Σ) ⊆ Σ× R is an embedded submanifold
via the obvious identification of (γ, τ) ∈ Pϕ(Σ, λ|Σ) with (γ(0), τ) ∈ Σ× R.
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Fix a path (γs, τs) in Pϕ(Σ, λ|Σ) = CritA H
ϕ from (γ0, τ0) to (γ1, τ1). Then

using Remark 2.24 we compute

∂sτs = ∂sA
H
ϕ (γs, τs) = dA H

ϕ |(γs,τs)(∂sγs, ∂sτs) = 0,

implying that τs is constant, and in particular τ0 = τ1. Consequently, A H
ϕ is

constant on each path-connected component of Pϕ(Σ, λ|Σ). As Pϕ(Σ, λ|Σ)
is a submanifold of Σ× R, there are only countably many connected com-
ponents by definition, implying that Spec(Σ, λ|Σ) is discrete. □

3. Compactness of the moduli space of twisted negative

gradient flow lines

Definition 3.1 (Liouville domain). A Liouville domain is defined to

be a compact connected exact symplectic manifold (W,λ) with connected

boundary such that the Liouville vector field X defined implicitly by iXdλ = λ
is outward-pointing along the boundary.

Definition 3.2 (Liouville automorphism). Let (W,λ) be a Liouville

domain with boundary Σ. A diffeomorphism φ ∈ Diff(W ) is said to be a

Liouville automorphism, if φ(Σ) = Σ, φ∗λ− λ is exact and compactly

supported in IntW , and ordφ <∞. The set of all Liouville automorphisms

on the Liouville domain (W,λ) is denoted by Aut(W,λ).

Remark 3.3. Let φ ∈ Aut(W,λ) be a Liouville automorphism. Then there
exists a unique function fϕ ∈ C∞

c (IntW ) such that

φ∗λ− λ = dfϕ.

Remark 3.4. The set Aut(W,λ) of Liouville automorphisms of a Liouville
domain (W,λ) is in general not a group. Indeed, for φ, ψ ∈ Aut(W,λ) it is
not necessarily true that φ ◦ ψ is of finite order unless φ and ψ commute.

Definition 3.5 (Completion of a Liouville domain). Let (W,λ) be a

Liouville domain with boundary Σ. The completion of (W,λ) is defined

to be the exact symplectic manifold (M,λ), where

M :=W ∪Σ [0,+∞)× Σ and λ|[0,+∞)×Σ := erλ|Σ.

Definition 3.6 (Twisted defining Hamiltonian function). Let (W,λ)
be a Liouville domain with boundary Σ and φ ∈ Aut(W,λ). A twisted
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defining Hamiltonian function for Σ is a Hamiltonian function H ∈
C∞(M) on the completion (M,λ) of (W,λ), satisfying the following condi-

tions:

(i) H−1(0) = Σ and Σ ∩ CritH = ∅.

(ii) H ∈ C∞
ϕ (M).

(iii) dH is compactly supported.

(iv) XH |Σ = R is the Reeb vector field of the contact form λ|Σ.

Denote by Fϕ(Σ) the set of twisted defining Hamiltonian functions for Σ.

Remark 3.7. A necessary condition for Fϕ(Σ) ̸= ∅ is that φ∗R = R. This
is not true in general if φ does not induce a strict contactomorphism on Σ.

Definition 3.8 (Adapted almost complex structure). Let (W,λ) be a

Liouville domain with boundary Σ. An adapted almost complex struc-

ture is defined to be a dλ-compatible almost complex structure J on (W,λ)
such that J restricts to define a dλ|Σ-compatible almost complex structure

on the contact distribution kerλ|Σ and JR = ∂r holds near the boundary.

Definition 3.9 (Rabinowitz–Floer data). Let (M,λ) be the comple-

tion of a Liouville domain (W,λ) with boundary Σ and φ ∈ Aut(W,λ).
Rabinowitz–Floer data for ϕ is defined to be a pair (H, J) consisting of

a twisted defining Hamiltonian function H ∈ Fϕ(Σ) for Σ and of a smooth

family J = (Jt)t∈R of adapted almost complex structures on W such that

φ∗Jt+1 = Jt ∀t ∈ R.

Remark 3.10. For simplicity we ignore the fact, that in order to achieve
transversality of the moduli spaces in general, the smooth family of almost
complex structures does depend on the Lagrange multiplier (see [1]). This
technicality does not significantly alter our arguments as explained in [9]
and can also be treated abstractly using polyfold theory [14].

Lemma 3.11. Let (W,λ) be a Liouville domain and φ ∈ Aut(W,λ). Then
there exists Rabinowitz–Floer data for φ.

Proof. The construction of the twisted defining Hamiltonian H for Σ is
inspired by the proof of [8, Proposition 4.1]. Fix δ > 0 such that the exact
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symplectic embedding

ψ :
(
(−δ, 0]× Σ, erλ|Σ

)
→֒ (W,λ)

defined by

ψ(r, x) := ϕXr (x)

satisfies

(3.1) Uδ := ψ((−δ, 0]× Σ) ∩ supp fϕ = ∅.

Indeed, that ψ is an exact symplectic embedding follows from the computa-
tion

d

dr
ψ∗
rλ =

d

dr

(
ϕXr

)∗
λ

= (ϕXr )
∗LXλ

=
(
ϕXr

)∗
(diXλ+ iXdλ)

=
(
ϕXr

)∗
(diX iXdλ+ λ)

=
(
ϕXr

)∗
λ

= ψ∗
rλ

implying

ψ∗
rλ = erλ|Σ ∀r ∈ (−δ, 0] ,

by ψ0 = ιΣ, where ιΣ : Σ →֒W denotes the inclusion. Note that ψ∗
rX = ∂r.

We claim

(3.2) φ(ψ(r, x)) = ψ(r, φ(x)) ∀(r, x) ∈ (−δ, 0]× Σ,

that is, φ and ψ commute. Note that (3.2) makes sense because φ(Σ) = Σ
by assumption. Indeed, (3.2) follows from the uniqueness of integral curves
and the computation

d

dr
φ(ψ(r, x)) =

d

dr
φ(ϕXr (x))

= Dφ(X(ϕXr (x)))

= (Dφ ◦X|Uδ ◦ φ
−1 ◦ φ)(ϕXr (x))

= (φ∗X|ϕ(Uδ) ◦ φ)(ϕ
X
r (x))

= (X|ϕ(Uδ) ◦ φ)(ϕ
X
r (x))

= X(φ(ψ(r, x)))
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where we used the φ-invariance of the Liouville vector field on Uδ, that is,

φ∗X|ϕ(Uδ) = X|ϕ(Uδ),

which in turn follows from

iϕ∗Xdλ = dλ(φ∗X, ·)

= dλ(Dφ ◦X ◦ φ−1, ·)

= dλ
(
Dφ ◦X ◦ φ−1, Dφ ◦Dφ−1·

)

= φ∗dλ(X ◦ φ−1, Dφ−1·)

= dλ(X ◦ φ−1, Dφ−1·)

= φ∗(iXdλ)

= φ∗λ

= λ− d(fϕ ◦ φ−1)

and assumption (3.1).
Next we construct the defining Hamiltonian H ∈ C∞(M). Let h ∈

C∞(R) be a sufficiently small mollification of the piecewise linear function

h(r) :=





r r ∈
[
− δ

2 ,
δ
2

]
,

δ
2 r ∈

[
δ
2 ,+∞

)
,

− δ
2 r ∈

(
−∞,− δ

2

]
,

as in Figure 2.

4 2 0 2 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 2. Mollification of the piecewise linear function h.
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Define H ∈ C∞(M) by

(3.3) H(p) :=





h(r) p = ψ(r, x) ∈ Uδ,

h(r) p = (r, x) ∈ [0,+∞)× Σ,

− δ
2 p ∈W \ Uδ.

Then H is a defining Hamiltonian for Σ and dH is compactly supported by
construction. Moreover, H is φ-invariant by (3.2). Finally, XH |Σ = R follows
from the observation XH = h′(r)e−rR. Indeed, on Uδ we compute

ih′(r)e−rRψ
∗dλ = ih′(r)e−rRd(e

rλ|Σ)

= ih′(r)e−rR(e
rdr ∧ λ|Σ + erdλ|Σ)

= −h′(r)dr

= −dH.

Next we construct the family J = (Jt)t∈R of dλ-compatible almost
complex structures on W . Fix a dλ|Σ-compatible almost complex struc-
ture J on the contact distribution kerλ|Σ and choose a path (JΣ

t )t∈I ⊆
J (kerλ|Σ, dλ|Σ) from J to φ∗J . Extend this smooth family to (JΣ

t )t∈R sat-
isfying φ∗JΣ

t+1 = JΣ
t for all t ∈ R. Finally, extend this family to ((−δ,+∞)×

Σ, d(erλ|Σ)) by

(3.4) JΣ
t |(a,x)(b, v) :=

(
λx(v), J

Σ
t |x(π(v))− bR(x)

)
,

where

π : kerλ|Σ ⊕ ⟨R⟩ → kerλ|Σ

denotes the projection. Choose a smooth family
(
J
W\Σ
t

)
t∈R

onW \ Σ twisted

by φ, and let
{
βΣ, βW\Σ

}
be a partition of unity subordinate to {Uδ,W \ Σ}.

Define a smooth family (mt)t∈R of Riemannian metrics on W by

mt := βΣmψ∗JΣ
t
+ βW\ΣmJ

W\Σ
t

and let (Jt)t∈R be the corresponding family of dλ-compatible almost complex
structures on W . □
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Definition 3.12 (L2-Metric). Let (H, J) be Rabinowitz–Floer data for a

Liouville automorphism φ ∈ Aut(W,λ). Define an L2-metric on LϕM × R

(3.5) ⟨(X, η), (Y, σ)⟩J :=

∫ 1

0
dλ(JtX(t), Y (t))dt+ ησ

for all (X, η), (Y, σ) ∈ TγLϕM × R and γ ∈ LϕM .

With respect to the L2-metric (3.5), the gradient of the twisted Rabi-
nowitz action functional gradJ A H

ϕ ∈ X(LϕM × R) is given by

gradJ A
H
ϕ |(γ,τ)(t) =



Jt(γ̇(t)− τXH(γ(t)))

−

∫ 1

0
H ◦ γ


 ∀t ∈ R.

Lemma 3.13 (Fundamental lemma). Let (H, J) be Rabinowitz–Floer

data for a Liouville automorphism φ ∈ Aut(W,λ). Then there exists a con-

stant C = C(λ,H, J) > 0 such that

∥∥gradJ A
H
ϕ |(γ,τ)

∥∥
J
<

1

C
⇒ |τ | ≤ C(|A H

ϕ (γ, τ)|+ 1)

for all (γ, τ) ∈ LϕM × R.

Proof. The proof [7, Proposition 3.2] goes through with minor modifications
as ∥fϕ∥∞ < +∞ by assumption. □

Definition 3.14 (Twisted negative gradient flow line). Let (H, J)
be Rabinowitz–Floer data for a Liouville automorphism φ ∈ Aut(W,λ). A

twisted negative gradient flow line is a tuple (u, τ) ∈ C∞(R,LϕM × R)
such that

∂s(u, τ) = − gradJ A
H
ϕ |(u(s),τ(s)) ∀s ∈ R.

Definition 3.15 (Energy). Let (H, J) be Rabinowitz–Floer data for a Li-

ouville automorphism φ ∈ Aut(W,λ). The energy of a twisted negative

gradient flow line (u, τ ) is defined by

EJ(u, τ) :=

∫ +∞

−∞
∥∂s(u, τ)∥

2
J ds =

∫ +∞

−∞

∥∥gradJ A
H
ϕ |(u(s),τ(s))

∥∥2
J
ds.

Theorem 3.16 (Compactness). Let (H, J) be Rabinowitz–Floer data for

a Liouville automorphism φ ∈ Aut(W,λ). Suppose (uµ, τµ) is a sequence of
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negative gradient flow lines of the twisted Rabinowitz action functional A H
ϕ

such that there exist a, b ∈ R with

a ≤ A
H
ϕ

(
uµ(s), τµ(s)

)
≤ b ∀µ ∈ N, s ∈ R.

Then for every reparametrisation sequence (sµ) ⊆ R there exists a subse-

quence µν of µ and a negative gradient flow line (u∞, τ∞) of A H
ϕ such that

(
uµν (·+ sµν ), τµν (·+ sµν )

) C∞
loc−−→ (u∞, τ∞) as ν → ∞.

Proof. The proof [7, p. 268] goes through without any changes as we have
a twisted version of the Fundamental Lemma. However, for convenience, we
reproduce the main arguments here. We need to establish

– a uniform L∞-bound on uµ,

– a uniform L∞-bound on τµ,

– a uniform L∞-bound on the derivatives of uµ.

Indeed, by elliptic bootstrapping [21, Theorem B.4.1] the negative gradient
flow equation we will obtain C∞

loc-convergence by [21, Theorem B.4.2].
To obtain a uniform L∞-bound on the sequence of twisted negative

gradient flow lines uµ, observe that by definition of Rabinowitz–Floer data
for φ, there exists r ∈ (0,+∞) with

suppXH ∩ [r,+∞)× Σ = ∅

and Jt is adapted to the boundary of W ∪Σ [0, r]× Σ for all t ∈ R. Con-
sequently, [21, Corollary 9.2.11] implies that every uµ remains inside the
compact set W ∪Σ [0, r]× Σ as the asymptotics belong to W ∪Σ [0, r)× Σ
for all µ ∈ N. Indeed, this follows from

EJ(uµ, τµ) =

∫ +∞

−∞
∥∂s(uµ, τµ)∥

2
J ds

=

∫ +∞

−∞
⟨∂s(uµ, τµ), ∂s(uµ, τµ)⟩Jds

= −

∫ +∞

−∞
⟨gradJ A

H
ϕ |(uµ(s),τµ(s)), ∂s(uµ, τµ)⟩Jds

= −

∫ +∞

−∞
dA H

ϕ (∂s(uµ, τµ))ds
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= −

∫ +∞

−∞
∂sA

H
ϕ (uµ, τµ)ds

= lim
s→−∞

A
H
ϕ (uµ(s), τµ(s))− lim

s→+∞
A

H
ϕ (uµ(s), τµ(s))

≤ b− a,

as this implies

lim
s→±∞

∥∂s(uµ, τµ)∥J = lim
s→±∞

∥∥gradJ A
H
ϕ |(uµ(s),τµ(s))

∥∥
J
= 0

by the negative gradient flow equation.
The uniform L∞-bound on the Lagrange multipliers τµ follows from the

Fundamental Lemma 3.13 by arguing as in [7, Corollary 3.5].
Lastly, the uniform L∞-bound on the derivatives of uµ follows from stan-

dard bubbling-off analysis. Indeed, if the derivatives of uµ are unbounded,
then there exists a nonconstant pseudoholomorphic sphere as in [21, Sec-
tion 4.2]. This is impossible as M is an exact symplectic manifold and thus
in particular symplectically aspherical. □

4. Definition of twisted Rabinowitz–Floer homology

In this section we make implicit use of the requirement that a Liouville
automorphism has finite order. This is crucial because then the arguments
go through as in the case of loops by Remark 2.7.

Definition 4.1 (Transverse Conley–Zehnder index). Let (W 2n, λ) be
a Liouville domain with boundary Σ. Let (γ0, τ0), (γ1, τ1) ∈ Pϕ(Σ, λ|Σ) for

some φ ∈ Aut(W,λ) such that there exists a path γσ in LϕΣ from γ0 to γ1.
Define the transverse Conley–Zehnder index by

µ((γ0, τ0), (γ1, τ1)) := µCZ(Ψ
1)− µCZ(Ψ

0) ∈ Z,

with

Ψ0 : I → Sp(n− 1), Ψ0
t := Φ−1

t,0 ◦DξϕRτ0t ◦ Φ0,0,

Ψ1 : I → Sp(n− 1), Ψ1
t := Φ−1

t,1 ◦DξϕRτ1t ◦ Φ0,1,

where Φt,σ : R
2n−2 → ξγσ(t) is a symplectic trivialisation of F ∗ξ, ξ := kerλ|Σ

with F ∈ C∞(R× I,M) being defined by F (t, σ) := γσ(t), satisfying

Φt+1,σ = Dφ ◦ Φt,σ ∀(t, σ) ∈ R× I.
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Remark 4.2. The transverse Conley–Zehnder index, or more precisely, the
twisted relative transverse Conley–Zehnder index, does not depend on the
choice of trivialisation. Denote by

Σϕ :=
Σ× R

(φ(x), t+ 1)∼(x, t)

the mapping torus of φ giving rise to the fibration

πϕ : Σϕ → S
1, πϕ([x, t]) := [t].

The vertical bundle kerDξπϕ → Σϕ is a symplectic vector bundle. One can
show, that if c1(kerD

ξπϕ) = 0, then the transverse Conley–Zehnder index
is independent of the choice of path in LϕΣ from γ0 to γ1.

Let (H, J) be Rabinowitz–Floer data for φ ∈ Aut(W,λ). Set

Σ := ∂W and M :=W ∪Σ [0,+∞)× Σ.

Fix (η, τη) ∈ Pϕ(Σ, λ|Σ) and denote by [η] the corresponding class in
π0LϕΣ. Assume that the twisted Rabinowitz action functional A H

ϕ is

Morse–Bott, that is, CritA H
ϕ ⊆ Σ× R is a properly embedded submani-

fold by Proposition 2.23, and fix a Morse function h ∈ C∞(CritA H
ϕ ). Define

the twisted Rabinowitz–Floer chain group RFCϕ(Σ,M) to be the Z2-vector
space consisting of all formal linear combinations

ζ =
∑

(γ,τ)∈Crit(h)
[γ]=[η]

ζ(γ,τ)(γ, τ)

satisfying the Novikov finiteness condition

# {(γ, τ) ∈ Crit(h) : ζ(γ,τ) ̸= 0,A H
ϕ (γ, τ) ≥ κ} <∞ ∀κ ∈ R.

Define a boundary operator

∂ : RFCϕ(Σ,M) → RFCϕ(Σ,M)

by

∂(γ−, τ−) :=
∑

(γ+,τ+)∈Crit(h)
[γ+]=[γ−]

nϕ(γ
±, τ±)(γ+, τ+),
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where

nϕ(γ
±, τ±) := #2M

0
ϕ(γ

±, τ±) ∈ Z2,

with M 0
ϕ(γ

±, τ±) denoting the zero-dimensional component of the moduli
space of all unparametrised twisted negative gradient flow lines with cascades
from (γ−, τ−) to (γ+, τ+). This is well-defined by Theorem 3.16. Define the
twisted Rabinowitz–Floer homology of Σ and ϕ by

RFHϕ(Σ,M) :=
ker ∂

im ∂
.

Proposition 4.3. Let (W,λ) be a Liouville domain with simply connected

boundary Σ and φ ∈ Aut(W,λ). If there do not exist any nonconstant twisted

periodic Reeb orbits on Σ, then

RFHϕ∗ (Σ,M) ∼= H∗(Fix(φ|Σ);Z2).

Proof. If there do not exist any nonconstant twisted periodic Reeb orbits,

CritA
H
ϕ = {(cx, 0) : x ∈ Fix(φ|Σ)} ∼= Fix(φ|Σ)

for any H ∈ Fϕ(Σ). Since Fix(φ|Σ) is a properly embedded submanifold of
Σ by [19, Problem 8-32] or [22, Lemma 5.5.7], A H

ϕ is a Morse–Bott function.
Let x, y ∈ Fix(φ|Σ). As Σ is simply connected by assumption, there exists
some path γ from x to y in Σ and a homotopy from γ to φ ◦ γ with fixed
endpoints. Extend this homotopy to a path in LϕΣ from cx to cy. Choose
a Morse function h on Fix(φ|Σ) and any critical point cx ∈ Fix(φ|Σ). Then
we can define a Z-grading of RFCϕ(Σ,M) by

µ((cy, 0), (cx, 0)) + indh(cy) = indh(cy) ∀cy ∈ Crit(h),

and consequently,

RFHϕ∗ (Σ,M) = HM∗(Fix(φ|Σ);Z2) ∼= H∗(Fix(φ|Σ);Z2)

as there are only twisted negative gradient flow lines with zero cascades,
that is, ordinary Morse gradient flow lines of h. Indeed, suppose that there
is a nonconstant twisted negative gradient flow line (u, τ) of A H

ϕ such that

lim
s→±∞

(u(s), τ(s)) = (γ±, τ±) ∈ CritA
H
ϕ .

Using the twisted negative gradient flow equation we estimate

τ− − τ+ = A
H
ϕ (γ−, τ−)− A

H
ϕ (γ+, τ+)
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= lim
s→−∞

A
H
ϕ (u(s), τ(s))− lim

s→+∞
A

H
ϕ (u(s), τ(s))

=

∫ +∞

−∞

∥∥gradJ A
H
ϕ |(u(s),τ(s))

∥∥2
J
ds

> 0.

Hence τ+ < τ−, contradicting τ± = 0. □

5. Invariance of twisted Rabinowitz–Floer homology under

twisted homotopies of Liouville domains

Definition 5.1 (Twisted homotopy of Liouville domains). Given

the completion (M,λ) of a Liouville domain (W0, λ) and φ ∈ Aut(W0, λ),
a twisted homotopy of Liouville domains in M is a time-dependent

Hamiltonian function H ∈ C∞(M × I) such that

(i) Wσ := H−1
σ ((−∞, 0]) is a Liouville domain with symplectic form dλ|Wσ

and boundary Σσ := H−1
σ (0) for all σ ∈ I,

(ii) Hσ ∈ Fϕ(Σσ) for all σ ∈ I,

(iii) Σσ ∩ supp fϕ = ∅ for all σ ∈ I.

Twisted Rabinowitz–Floer homology is stable under twisted homotopies
of Liouville domains. This property is crucial for proving Theorem 1.2.

Theorem 5.2 (Invariance of twisted Rabinowitz–Floer homology).
If (Hσ)σ∈I is a twisted homotopy of Liouville domains such that both A H0

ϕ

and A H1
ϕ are Morse–Bott, then there is a canonical isomorphism

RFHϕ(Σ0,M) ∼= RFHϕ(Σ1,M).

Proof. The proof follows from the same adiabatic argument as in [7, p. 275–
277]. Crucial is that [7, Theorem 3.6] remains true in our setting as well
as the genericity of the Morse–Bott condition. Indeed, if (M,λ) is an exact
symplectic manifold and φ ∈ Diff(M) is of finite order such that φ∗λ = λ,
then we have the following generalisation of [7, Theorem B.1]. Adapting the
proof accordingly, one can show that there exists a subset

U ⊆ {H ∈ C∞
ϕ (M) : supp dH compact},
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of the second category such that for every H ∈ U , A H
ϕ is Morse–Bott with

critical manifold being Fix(φ|H−1(0)) together with a disjoint union of circles.
Again, this works only since the contact condition is an open condition. □

Remark 5.3. Invariance of twisted Rabinowitz–Floer homology allows us
to define twisted Rabinowitz–Floer homology also in the case where A H

ϕ is
not necessarily Morse–Bott. Indeed, as the proof of Theorem 5.2 shows, we
can perturb the hypersurface Σ slightly to make it Morse–Bott. Thus we can
define the twisted Rabinowitz–Floer homology of such a hypersurface to be
the twisted Rabinowitz–Floer homology of any Morse–Bott perturbation.
This is well-defined by Theorem 5.2.

Corollary 5.4 (Independence). Let φ ∈ Aut(W,λ) and H0, H1 ∈ Fϕ(Σ)
be such that either A H0

ϕ or A H1
ϕ is Morse–Bott. Then the definition

of twisted Rabinowitz–Floer homology RFHϕ(Σ,M) is independent of the

choice of a twisted defining Hamiltonian function for Σ.

Proof. Note that Fϕ(Σ) is a convex space. Indeed, set

Hσ := (1− σ)H0 + σH1 σ ∈ I.

Then φ∗Hσ = Hσ, dHσ has compact support and XHσ |Σ = R for all σ ∈ I.
Moreover, for the Liouville vector field X ∈ X(M) we compute

d

dt

∣∣∣∣
t=0

H ◦ ϕXt |Σ = dH(X)|Σ = dλ(X,XH)|Σ = λ(XH)|Σ = λ(R) = 1,

for any H ∈ Fϕ(Σ), and thus H < 0 on IntW and H > 0 on M \W . Con-
sequently, H−1

σ (0) = Σ and so Hσ ∈ Fϕ(Σ) for all σ ∈ I. Hence (Hσ)σ∈I is
a twisted homotopy of Liouville domains in M and Theorem 5.2 implies the
claim. □

6. Twisted leaf-wise intersection points

Definition 6.1 (Twisted leaf-wise intersection Point). Let (M,λ) be
the completion of a Liouville domain (W,λ) and let φ ∈ Aut(W,λ) be a Li-

ouville automorphism. A point x ∈ Σ is a twisted leaf-wise intersection

point for a Hamiltonian symplectomorphism φF ∈ Ham(M,dλ), if

φF (x) ∈ Lϕ(x) = {ϕRt (φ(x)) : t ∈ R} .
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Definition 6.2 (Twisted Moser pair). Let φ ∈ Aut(W,λ). A twisted

Moser pair is defined to be a tuple M := (χH,F ), where

(i) H ∈ C∞
ϕ (M), F ∈ C∞

ϕ (M × R) and χ ∈ C∞(S1, I) such that
∫ 1
0 χ = 1.

Any time-dependent Hamiltonian function χH is said to be weakly

time-dependent.

(ii) suppχ ⊆
(
0, 12

)
and Ft = 0 for all t ∈

[
0, 12

]
.

Lemma 6.3. Let φ ∈ Aut(W,λ). For all H ∈ Fϕ(Σ) and φF ∈
Ham(M,dλ) there exists a corresponding twisted Moser pair M such that

the flow of χXH is a time-reparametrisation of the flow of XH .

Proof. For constructing the Hamiltonian perturbation F̃ , fix ρ ∈ C∞(I, I)
such that

ρ(t) =

{
0 t ∈

[
0, 12

]
,

1 t ∈
[
2
3 , 1

]
.

See Figure 3a. Then define F̃ ∈ C∞
ϕ (M × R) by

F̃ (x, t) := ρ̇(t− k)F
(
φ−k(x), ρ(t− k)

)
∀t ∈ [k, k + 1] ,

for k ∈ Z. See Figure 3b. Then F̃t = 0 for all t ∈
[
0, 12

]
, and

ϕ
XF̃
t = ϕXFρ(t) ∀t ∈ I.

Indeed, we compute

d

dt
ϕXFρ(t) = ρ̇(t)

d

dρ
ϕXFρ(t) = ρ̇(t)

(
XFρ(t) ◦ ϕ

XF
ρ(t)

)
= XF̃t

◦ ϕXFρ(t).

In particular

φF̃ = ϕ
XF̃
1 = ϕXFρ(1) = ϕXF1 = φF .

Finally, we have that

ϕχXHt = ϕXHτ(t) with τ(t) :=

∫ t

0
χ.

Indeed, we compute

d

dt
ϕXHτ(t) = χ(t)

d

dτ
ϕXHτ(t) = χ(t)XH ◦ ϕXHτ(t),

and thus we conclude by the uniqueness of integral curves. □
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(b) The derivative ρ̇ of ρ.

Figure 3

Twisted leaf-wise intersection points can be detected variationally by the
perturbed twisted Rabinowitz action functional associated with a twisted
Moser pair. This is crucial for the proof of Theorem 6.5.

Lemma 6.4. Let φ ∈ Aut(W,λ) and φF ∈ Ham(M,dλ) a Hamiltonian

symplectomorphism. If (γ, τ) ∈ CritA M
ϕ , then x := γ

(
1
2

)
is a twisted leaf-

wise intersection point for φF .

Proof. Let M = (χH,F ) denote the twisted Moser pair from Lemma 6.3.
Using Proposition 2.9 we compute

d

dt
H(γ(t)) = dH(γ̇(t))

= dH(τXχ(t)H(γ(t)) +XFt(γ(t)))

= dH(τχ(t)XH(γ(t)))

= τχ(t)dH(XH(γ(t)))

= 0

for all t ∈
[
0, 12

]
. Thus H ◦ γ = c ∈ R on

[
0, 12

]
with

0 =

∫ 1

0
χH(γ) =

∫ 1

2

0
χH(γ) = c

∫ 1

2

0
χ = c

∫ 1

0
χ = c.

Consequently, γ(0) ∈ Lx and x ∈ Σ. Moreover, also γ(1) = φ(γ(0)) ∈ Σ by
the φ-invariance of H. For t ∈

[
1
2 , 1

]
, γ̇ = XFt(γ) and so γ(1) = φF (x) ∈ Σ.
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We conclude

Lϕ(x) = {ϕRt (φ(x)) : t ∈ R} = {φ(ϕRt (x)) : t ∈ R} = φ(Lx)

and so φF (x) = γ(1) = φ(γ(0)) ∈ Lϕ(x). □

Theorem 6.5. Let (W,λ) be a Liouville domain with displaceable boundary

in the completion (M,λ) and φ ∈ Aut(W,λ). Then RFHϕ(Σ,M) ∼= 0.

Proof. Suppose that Σ = ∂W is displaceable in M via φF ∈ Hamc(M,dλ)
and choose Rabinowitz–Floer data (H, J) for φ. Denote by M = (χH,F )
the associated twisted Moser pair from Lemma 6.3. Then CritA M

ϕ = ∅.

Indeed, if there exists (γ, τ) ∈ CritA M
ϕ , then γ

(
1
2

)
is a twisted leaf-wise

intersection point for φF by Lemma 6.4. However, this is impossible as by
displaceability we have that φF (Σ) ∩ Σ = ∅. Consequently, the perturbed
twisted Rabinowitz action functional A M

ϕ is a Morse function. By adapting
the Fundamental Lemma to the current setting as in [3, Theorem 2.9], the
Floer homology HF(A M

ϕ ) is well-defined. By making use of continuation
homomorphisms we have that

0 = HF(A M

ϕ ) ∼= HF(A (χH,0)
ϕ ) ∼= RFHϕ(Σ,M),

where the last equation is the observation that twisted Rabinowitz–Floer
homology in the autonomous case extends to the weakly time-dependent
case without any issues. Crucial is, that the period–action equality (see
Remark 2.24) is still valid. Indeed, we compute

A
(χH,0)
ϕ (γ, τ) =

∫ 1

0
γ∗λ =

∫ 1

0
λ(γ̇) = τ

∫ 1

0
χλ(R(γ)) = τ

∫ 1

0
χ = τ

for all (γ, τ) ∈ CritA
(χH,0)
ϕ . □

7. Existence of noncontractible periodic Reeb orbits

We define an equivariant version of twisted Rabinowitz–Floer homology fol-
lowing [4, p. 487]. Denote by (Cn, ω) the standard symplectic vector space
with symplectic form

ω :=

n∑

j=1

dyj ∧ dxj =
i

2

n∑

j=1

dz̄j ∧ dzj ,
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and coordinates zj := xj + iyj . Then ω = dλ for

(7.1) λ :=
1

2

n∑

j=1

(
yjdxj − xjdyj

)
=
i

4

n∑

j=1

(
z̄jdzj − zjdz̄j

)
.

Consider the free smooth discrete action on the odd-dimensional sphere

S
2n−1 :=

{
(z1, . . . , zn) ∈ C

n :
n∑

j=1

|zj |
2
= 1

}

generated by the rotation

φ : Cn → C
n, φ(z1, . . . , zn) :=

(
e2πik1/mz1, . . . , e2πikn/mzn

)

for m ≥ 1 and k1, . . . , kn ∈ Z coprime to m. Define a twisted defining Hamil-
tonian function H ∈ Fϕ(S

2n−1) by

H(z) :=
1

2

(
β(|z|2)− 1

)

for some sufficiently small mollification of the piecewise linear function

β(r) =





1
2 r ∈

(
−∞, 12

]
,

r r ∈
[
1
2 ,

3
2

]
,

3
2 r ∈

[
3
2 ,+∞

)
.

Fix a φ-invariant ω-compatible almost complex structure on (Cn, ω). Then
the rotation φ induces a free Zm-action on CritA H

ϕ and on the moduli space

of twisted negative gradient flow lines with cascades of A H
ϕ . Therefore, we

can define Zm-equivariant twisted Rabinowitz-Floer homology

RFH
ϕ
k (S

2n−1/Zm) :=
ker ∂̄k
im ∂̄k+1

∀k ∈ Z,

as the homology of the Z-graded chain complex (see Remark 4.2)

∂̄k : RFCϕk (S
2n−1,Cn)/Zm → RFCϕk−1(S

2n−1,Cn)/Zm

given by

∂̄k[(γ, τ)] := [∂k(γ, τ)] (γ, τ) ∈ Crith,

for some φ-invariant Morse function h on CritA H
ϕ .
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Theorem 7.1. Let n ≥ 2. For m ≥ 1 consider the rotation

φ : Cn → C
n, φ(z1, . . . , zn) :=

(
e2πik1/mz1, . . . , e2πikn/mzn

)

for k1, . . . , kn ∈ Z coprime to m. Then

RFH
ϕ
k (S

2n−1/Zm) ∼=

{
Z2 m even,

0 m odd,
∀k ∈ Z.

If m is even, then RFH
ϕ
k (S

2n−1/Zm) is generated by a noncontractible peri-

odic Reeb orbit in the lens space S2n−1/Zm for all k ∈ Z.

Proof. First we consider the special case

φ : Cn → C
n, φ(z) = e2πi/mz.

The hypersurface S2n−1 ⊆ (Cn, dλ) is of restricted contact type with contact
form λ|S2n−1 and associated Reeb vector field

R = 2

(
yj

∂

∂xj
− xj

∂

∂yj

) ∣∣∣∣
S2n−1

= 2i

(
z̄
∂

∂z̄
− z

∂

∂z

) ∣∣∣∣
S2n−1

.

Suppose (γ, τ) ∈ CritA H
ϕ . If τ = 0, then γ is constant. This cannot happen

as Fix(φ|S2n−1) = ∅. So assume τ ̸= 0. Define a reparametrisation

γτ : R → S
2n−1, γτ (t) := γ(t/τ).

Then γτ is the unique integral curve of R starting at z := γ(0) and thus

γτ (t) = e−2itz ∀t ∈ R.

From γ(t) = γτ (τt) and the requirement

e−2iτz = γ(1) = φ(γ(0)) = φ(z) = e2πi/mz,

we conclude τ ∈ π
m(mZ− 1). Hence

CritA
H
ϕ =

{(
ϕτkR(z), τk

)
: k ∈ Z, z ∈ S

2n−1
}
∼= S

2n−1 × Z,

for any H ∈ Fϕ(S
2n−1), where

τk :=
π

m
(mk − 1).
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By Proposition 2.23, (z0, η) ∈ TzS
2n−1 × R belongs to the kernel of the

Hessian at (z, k) ∈ CritA H
ϕ if and only if η = 0 and

z0 ∈ ker
(
D(ϕR−τk ◦ φ)|z − idTzS2n−1

)
.

A direct computation yields D(ϕR−τk ◦ φ)|z = idTzS2n−1 and thus

T(z,k)CritA
H
ϕ = TzS

2n−1 × {0} ∼= kerHessA
H
ϕ |(z,k).

So the twisted Rabinowitz action functional A H
ϕ is Morse–Bott with spheres.

The full Conley–Zehnder index [10, Definition 10.4.1] gives rise to a
locally constant function

µ̂CZ : CritA
H
ϕ → Z, µ̂(z, k) = (2k − 1)n.

Note that the definition of the Conley–Zehnder index also applies in this
degenerate case, compare [10, Remark 10.4.2]. By the adapted proof of the
Hofer–Wysocki–Zehnder Theorem [10, Theorem 12.2.1] to the n-dimensional
setting, the full Conley–Zehnder index coincides with the transverse Conley–
Zehnder index µCZ. Indeed, for (γ, τ) ∈ CritA H

ϕ define a smooth path

Ψ: I → Sp(n), Ψt := DϕHτt|γ(0) : C
n → C

n.

Adapting the proof of [10, Lemma 12.2.3 (iii)], we get that

Ψ1(R(γ(0))) = R(γ(1)) and Ψ1(γ(0)) = γ(1).

Arguing as in [10, p. 235–236] we conclude

µCZ(γ, τ) = µ̂CZ(γ, τ).

Fix z0 ∈ S2n−1 and define η := ϕτ0R(z0). Note that ϕτkR(z) belongs to
the same equivalence class in π0LϕS

2n−1 as η for all z ∈ S2n−1 and k ∈ Z

because S2n−1 is simply connected for n ≥ 2. Let h ∈ C∞(S2n−1) be the
standard height function. By Remark 4.2, RFHϕ(S2n−1,Cn) carries the Z-
grading

µ((z, k), (z0, 0)) + indh(z) = 2kn+ indh(z) ∀(z, k) ∈ S
2n−1 × Z.

We claim that the number of twisted negative gradient flow lines between
the minimum of S2n−1 × {k + 1} and the maximum of S2n−1 × {k} must
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be odd, so that the critical manifold CritA H
ϕ looks like a string of pearls,

see Figure 4. Indeed, if there is an even number of such negative gradient
flow lines, then RFHϕ∗ (S

2n−1,Cn) ̸= 0, contradicting Theorem 6.5 as S2n−1

is displaceable in the completion Cn.
To compute the Zm-equivariant twisted Rabinowitz–Floer homology,

choose the additional Zm-invariant Morse–Bott function

f : S2n−1 → R, f(z1, . . . , zn) :=

n∑

j=1

j |zj |
2

on each component of CritA H
ϕ . It is easy to check that f is Morse–Bott

with circles. Additionaly, choose a Zm-invariant Morse function on Crit f .

Figure 4. The critical manifold S2n−1 × Z with the standard height function,
the Morse–Bott function f and the resulting chain complex.
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For example, one can take

h : S1 → R, h(t) := cos(2πmt).

The resulting chain complex is given by

. . . Zm2 Zm2 Zm2 Zm2 Zm2 Zm2 . . .✶ A ✶ A ✶

where ✶ ∈Mm×m(Z2) has every entry equal to 1 and A ∈Mm×m(Z2) is
defined by

A := Im×m +

m−1∑

j=1

e(j+1)j + e1m,

where eij ∈Mm×m(Z2) satisfies (eij)kl = δikδjl. Thus the resulting chain
complex looks like a rope ladder. Compare Figure 4.

Passing to the quotient via the free Zm-action, we get the acyclic chain
complex

. . . Z2 Z2 Z2 Z2 . . .0 0 0

if m is even and the alternating chain complex

. . . Z2 Z2 Z2 Z2 Z2 Z2 . . .1 0 1 0 1

if m is odd. From this the statement follows in the special case.
For the general case, we note that

C
n × [0, 1] → C

n, φs(z
1, . . . , zn) :=

(
e2πisk1/mz1, . . . , e2πiskn/mzn

)

is a smooth path from φ0 = idCn to φ1 = φ. By adapting the proof of [25,
Lemma 2.27], we get an isomorphism of chain complexes

RFC(S2n−1,Cn) ∼= RFCϕ(S2n−1,Cn).

This isomorphism does not necessarily preserve the grading, but the relative
Conley–Zehnder index is preserved. Note that also f is invariant under φs
for all s ∈ [0, 1]. It is no problem to allow twists φs of infinite order as the
standard Reeb flow on S2n−1 is periodic. Consider the torus action

T
n × C

n → C
n, (θ1, . . . , θn) · (z

1, . . . , zn) :=
(
e2πiθ1z1, . . . , e2πiθnzn

)
.

Since the torus Tn is abelian, we have that the Zm-action induced by φ
and the different twists along the path (φs)s∈[0,1] commute. Thus we get an
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isomorphism of the Zm-equivariant chain complexes and consequently

RFH
ϕ
∗ (S

2n−1/Zm) ∼= RFHZm
∗ (S2n−1,Cn),

where RFHZm
∗ denotes the Zm-equivariant Rabinowitz–Floer homology con-

structed in [4, p. 487]. Performing the same computation of the latter ho-
mology as before in the special case yields

RFHZm

k (S2n−1,Cn) ∼=

{
Z2 m even,

0 m odd,
∀k ∈ Z.

Finally, RFH
ϕ
k (S

2n−1/Zm) is generated by a noncontractible periodic
Reeb orbit in S2n−1/Zm for all k ∈ Z by Lemma 1.3. □

For an immediate algebraic corollary recall the definition of Tate co-
homology [26, Definition 6.2.4] and Tate homology [6, p. 135]. For a more
general result see [24, Theorem 5.6].

Corollary 7.2 (Tate homology). Let Cm denote the cyclic group of order

m ≥ 1. Then for the trivial left Cm-module Z2 we have that

RFH
ϕ
k (S

2n−1/Zm) ∼= Ĥk(Cm;Z2) ∀k ∈ Z,

where Ĥ∗(Cm;Z2) denotes the Tate homology group of Cm with coefficients

in the trivial left Cm-module Z2.

Proof of Theorem 1.2. By assumption, Σ bounds a star-shaped domain D
with respect to the origin. Thus (D ∪ Σ, λ) is a Liouville domain with λ
given by (7.1). By rescaling we may assume that S2n−1 ⊆ D. Define a smooth
function

δ : Σ → (−∞, 0)

by requiring δ(x) to be the unique number such that ϕXδ(x)(x) ∈ S2n−1, x ∈ Σ,
where

X =
1

2

(
xj

∂

∂xj
+ yj

∂

∂yj

)

denotes the Liouville vector field. We claim that δ ◦ φ = δ. Indeed, δ(φ(x)) is
the unique number such that ϕXδ(ϕ(x))(φ(x)) ∈ S2n−1. As the flow of X and φ

commute by the proof of Lemma 3.11, we conclude that ϕXδ(ϕ(x))(x) ∈ S2n−1.
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Define a smooth family of star-shaped hypersurfaces (Σσ)σ∈I

Σσ :=
{
ϕXσδ(x)(x) : x ∈ Σ

}
⊆ C

n.

Then we compute

φ(Σσ) =
{
φ
(
ϕXσδ(x)(x)

)
: x ∈ Σ

}

=
{
ϕXσδ(x)(φ(x)) : x ∈ Σ

}

=
{
ϕXσδ(ϕ(x))(φ(x)) : x ∈ Σ

}

=
{
ϕXσδ(y)(y) : y ∈ φ(Σ)

}

=
{
ϕXσδ(y)(y) : y ∈ Σ

}

= Σσ

for all σ ∈ I and therefore we can find a twisted homotopy (Hσ)σ∈I of Li-
ouville domains in Cn. By Theorem 5.2 we have that

RFHϕ∗ (Σ,C
n) ∼= RFHϕ∗ (S

2n−1,Cn),

giving rise to a canonical isomorphism of the associated Zm-equivariant
twisted Rabinowitz–Floer homology

RFH
ϕ
∗ (Σ/Zm)

∼= RFH
ϕ
∗ (S

2n−1/Zm).

Indeed, this follows from observing that the standard continuation homo-
morphism [7, p. 276] is Zm-invariant and thus descends to the quotient. But
by Theorem 7.1 the latter homology does not vanish as m ≥ 2 is even. □
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Appendix A. Twisted loop spaces

In this Appendix, we will consider the category of topological manifolds
rather than the category of smooth manifolds, because smoothness does not
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add much to the discussion. Free and based loop spaces are fundamental
objects in Algebraic Topology, for a vast treatment of the geometry and
topology of based as well as free loop spaces see for example [16]. But so-
called twisted loop spaces are not considered that much.

Theorem A.1 (Twisted loops in universal covering manifolds). Let

(M,x) be a connected pointed topological manifold and π : M̃ →M the uni-

versal covering.

(a) Fix [η] ∈ π1(M,x) and denote by Uη ⊆ L (M,x) the path component

corresponding to [η] via the bijection π0(L (M,x)) ∼= π1(M,x). For ev-
ery e, e′ ∈ π−1(x) and φ ∈ Autπ(M̃) such that φ(e) = η̃e(1), where η̃e
denotes the unique lift of η with η̃e(0) = e, we have a commutative

diagram of homeomorphisms

(A.1)

Lϕ(M̃, e) Lψ◦ϕ◦ψ−1(M̃, e′)

Uη,

Lψ

Ψe Ψe′

where ψ ∈ Autπ(M̃) is such that ψ(e) = e′,

Lψ : Lϕ(M̃, e) → Lψ◦ϕ◦ψ−1(M̃, e′), Lψ(γ) := ψ ◦ γ,

and

Ψe : Uη → Lϕ(M̃, e), Ψe(γ) := γ̃e,

Ψe′ : Uη → Lψ◦ϕ◦ψ−1(M̃, e′), Ψe′(γ) := γ̃e′ .

Moreover, Ucx
∼= Lϕ(M̃, e) via Ψe if and only if φ = idM̃ , where cx

denotes the constant loop at x.

(b) For every φ ∈ Autπ(M̃) and e, e′ ∈ π−1(x) we have a commutative di-

agram of isomorphisms

Autπ(M̃) Autπ(M̃)

π1(M,x),

Cψ

Φe Φe′
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where for ψ ∈ Autπ(M̃) sucht that ψ(e) = e′

Cψ : Autπ(M̃) → Autπ(M̃), Cψ(φ) := ψ ◦ φ ◦ ψ−1,

and

Φe : π1(M,x) → Autπ(M̃), Φe([γ]) := φe[γ],

Φe′ : π1(M,x) → Autπ(M̃), Φe′([γ]) := φe
′

[γ],

with φe[γ](e) = γ̃e(1) and φ
e′

[γ](e
′) = γ̃e′(1).

(c) The projection

π̃x :
∐

ϕ∈Autπ(M̃)
e∈π−1(x)

Lϕ(M̃, e) → L (M,x)

defined by π̃x(γ) := π ◦ γ is a covering map with number of sheets coin-

ciding with the cardinality of π1(M,x). Moreover, π̃x restricts to define

a covering map

π̃x|idM̃ :
∐

e∈π−1(x)

L (M̃, e) → Ucx ,

and π̃x gives rise to a principal Autπ(M̃)-bundle. IfM admits a smooth

structure, then this bundle is additionally a bundle of smooth Banach

manifolds.

Proof. For proving part (a), fix a path class [γ] ∈ π1(M,x). As any topologi-
cal manifold is Hausdorff, paracompact and locally metrisable by definition,
the Smirnov Metrisation Theorem [23, Theorem 42.1] implies that M is
metrisable. Let d be a metric on M and d̄ be the standard bounded metric
corresponding to d, that is,

d̄(x, y) = min {d(x, y), 1} ∀x, y ∈M.

The metric d̄ induces the same topology on M as d by [23, Theorem 20.1].
Topologise the based loop space L (M,x) ⊆ LM as a subspace of the free
loop space on M , where LM is equipped with the topology of uniform
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convergence, that is, with the supremum metric

d̄∞(γ, γ′) = sup
t∈S1

d̄
(
γ(t), γ′(t)

)
∀γ, γ′ ∈ LM.

There is a canonical pseudometric on the universal covering manifold M̃
induced by d̄ given by d̄ ◦ π. As every pseudometric generates a topology,
we topologise the based twisted loop space Lϕ(M̃, e) ⊆ PM̃ as a subspace
of the free path space on M̃ for every e ∈ π−1(x) via the supremum metric
d̃∞ corresponding to d̄ ◦ π. In fact, d̃∞ is a metric as if d̃∞(γ, γ′) = 0, then
by definition of d̃∞ we have that π(γ) = π(γ′). But as γ(0) = e = γ′(0), we
conclude γ = γ′ by the unique lifting property of paths [17, Corollary 11.14].
Note that the resulting topology of uniform convergence on Lϕ(M̃, e) coin-
cides with the compact-open topology by [23, Theorem 46.8] or [13, Propo-
sition A.13]. In particular, the topology of uniform convergence does not
depend on the choice of a metric (see [23, Corollary 46.9]). It follows from
[17, Theorem 11.15 (b)], that Ψe and Ψe′ are well-defined. Moreover, it is
immediate by the fact that the projection π : M̃ →M is an isometry with
respect to the above metric, that Ψe and Ψe′ are continuous with continu-
ous inverse given by the composition with π. It is also immediate that Lψ is
continuous with continuous inverse Lψ−1 .

Next we show that the diagram (A.1) commutes. Note that

π ◦ Lψ ◦Ψe = π ◦Ψe = idUη = π ◦Ψe′ ,

thus by

(Lψ ◦Ψe(γ))(0) = ψ(γ̃e(0)) = ψ(e) = e′ = γ̃e′(0) = Ψe′(γ)(0)

and by uniqueness it follows that

Lψ ◦Ψe = Ψe′ .

In particular

Ψe′(1) = (Lψ ◦Ψe)(1) = ψ(φ(e)) = (ψ ◦ φ ◦ ψ−1)(e′),

and thus Ψe′(γ) ∈ Lψ◦ϕ◦ψ−1(M̃, e′). Consequently, the homeomorphism Ψe′

is well-defined.
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Recall, that by the Monodromy Theorem [17, Theorem 11.15 (b)]

γ ≃ γ′ ⇔ Ψe(γ)(1) = Ψe(γ
′)(1)

for all paths γ and γ′ in M starting at x and ending at the same point.
Note that the statement of the the Monodromy Theorem is an if-and-only-if
statement since M̃ is simply connected.

Suppose γ ∈ L (M,x) is contractible. Then γ ≃ cx, implying e ∈ Fix(φ).
But the only deck transformation of π fixing any point of M̃ is idM̃ by [17,
Proposition 12.1 (a)].

Conversely, assume that γ ∈ L (M,x) is not contractible. Then we have
that Ψe(γ)(1) ̸= e. Indeed, if Ψe(γ)(1) = e, then γ ≃ cx and consequently, γ
would be contractible. As normal covering maps have transitive automor-
phism groups by [17, Corollary 12.5], there exists ψ ∈ Autπ(M̃) \ {idM̃} such
that Ψe(γ)(1) = ψ(e).

For proving part (b), observe that Φe and Φe′ are isomorphisms follows
from [17, Corollary 12.9]. Moreover, it is also clear that Cψ is an isomorphism
with inverse Cψ−1 . Let [γ] ∈ π1(M,x). Then using part (a) we compute

(Cψ ◦ Φe)[γ](e
′) = (ψ ◦ Φe[γ] ◦ ψ

−1)(e′)

= ψ
(
φe[γ](e)

)

= ψ(γ̃e(1))

= (Lψ ◦Ψe)(γ)(1)

= Ψe′(γ)(1)

= γ̃e′(1)

= φe
′

[γ](e
′)

= Φe′ [γ](e
′).

Thus by uniqueness [17, Proposition 12.1 (a)], we conclude

Cψ ◦ Φe = Φe′ .

Finally for proving (c), define a metric d̃∞ on

E :=
∐

ϕ∈Autπ(M̃)
e∈π−1(x)

Lϕ(M̃, e)
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by

d̃∞(γ, γ′) :=

{
d̄∞

(
π(γ), π(γ′)

)
γ, γ′ ∈ Lϕ(M̃, e),

1 else.

Then the induced topology coincides with the disjoint union topology and
with respect to this topology, π̃x is continuous. So left to show is that π̃x is
a covering map. Surjectivity is clear. So let γ ∈ L (M,x). Then γ ∈ Uη for
some [η] ∈ π1(M,x). Now note that Uη is open in L (M,x) and by part (a)
we conclude

(A.2) π̃−1
x (Uη) =

∐

ψ∈Autπ(M̃)

Lψ◦ϕ◦ψ−1(M̃, ψ(e))

for some fixed e ∈ π−1(x) and φ ∈ Autπ(M̃) such that φ(e) = η̃e(1).
As the cardinality of the fibre π−1(x) and of Autπ(M̃) coincides with the

cardinality of the fundamental group π1(M,x) by [17, Corollary 11.31] and
part (b), we conclude that the number of sheets is equal to the cardinality
of the fundamental group π1(M,x).

Equip Autπ(M̃) with the discrete topology. As the fundamental group
of every topological manifold is countable by [17, Theorem 7.21], we have
that Autπ(M̃) is a discrete topological Lie group. Now label the distinct
path classes in π1(M,x) by β ∈ B and for fixed e ∈ π−1(x) define local triv-
ialisations

(π̃x, αβ) : π̃
−1
x (Uβ)

∼=
−→ Uβ ×Autπ(M̃),

making use of (A.2) by

αβ(γ) := ψ−1,

whenever γ ∈ Lψ◦ϕ◦ψ−1(M̃, ψ(e)). Consequently, π̃x is a fibre bundle with
discrete fibre Autπ(M̃) and bundle atlas (Uβ , αβ)β∈B. Define a free right
action

E ×Autπ(M̃) → E, γ · ξ := ξ−1 ◦ γ.

Then αβ is Autπ(M̃)-equivariant with respect to this action for all β ∈ B.
Indeed, using again the commutative diagram (A.1) we compute

αβ(γ · ξ) = αβ(ξ
−1 ◦ γ) =

(
ξ−1 ◦ ψ

)−1
= ψ−1 ◦ ξ = αβ(γ) ◦ ξ

for all ξ ∈ Autπ(M̃) and γ ∈ Lψ◦ϕ◦ψ−1(M̃, ψ(e)). Note, that here we use
again the fact that Autπ(M̃) acts transitively on the fibre π−1(x).

Suppose that M admits a smooth structure. Then for every compact
smooth manifold N we have that the mapping space C(N,M) admits the
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structure of a smooth Banach manifold by [27]. By [16, Theorem 1.1 p. 24],
there is a smooth fibre bundle, called the loop-loop fibre bundle ,

L (M,x) →֒ LM
ev0−−→M

where

ev0 : LM →M, ev0(γ) := γ(0).

Thus the based loop space L (M,x) = ev−1
0 (x) on M is a smooth Banach

manifold by the implicit function theorem [21, Theorem A.3.3] for all x ∈M .
Likewise, by [16, Theorem 1.2 p. 25], there is a smooth fibre bundle, called
the path-loop fibre bundle ,

L (M̃, e) →֒ P(M̃, e)
ev1−−→ M̃,

where

P(M̃, e) := {γ ∈ C(I, M̃) : γ(0) = e}

denotes the based path space and

ev1 : P(M̃, e) → M̃, ev1(γ) := γ(1).

Therefore, the twisted loop space Lϕ(M̃, e) = ev−1
1 (φ(e)) is also a smooth

Banach manifold for all φ ∈ Autπ(M̃) and e ∈ π−1(x) by the implicit func-
tion theorem [21, Theorem A.3.3]. As the fundamental group π1(M,x) is
countable, the topological space E has only countably many connected com-
ponents being smooth Banach manifolds and thus the total space itself is a
smooth Banach manifold. Finally, Autπ(M̃) is trivially a Banach manifold
with dimAutπ(M̃) = 0 as a discrete Lie group. □

Corollary A.2. Let (M,x) be a connected pointed topological manifold and

denote by π : M̃ →M the universal covering of M . Assume that π1(M,x)
is abelian.

(a) Fix a path class [η] ∈ π1(M,x). For every e, e′ ∈ π−1(x) and deck

transformation φ ∈ Autπ(M̃) such that φ(e) = η̃e(1), we have a com-

mutative diagram of homeomorphisms

Lϕ(M̃, e) Lϕ(M̃, e′)

Uη,

Lψ

Ψe Ψe′
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where ψ ∈ Autπ(M̃) is such that ψ(e) = e′.

(b) For every φ ∈ Autπ(M̃) we have that Φe = Φe′ for all e, e′ ∈ π−1(x).

Lemma 1.3 now follows from part (a) of Theorem A.1. Indeed, by as-
sumption φ ∈ Autπ(Σ) \ {idΣ} and using the long exact sequence of homo-
topy groups of a fibration [13, Theorem 4.41], there is a short exact sequence

0 π1(Σ, x) π1(Σ/Zm, π(x)) π0(Zm) 0.

In particular, by [17, Corollary 12.9] we conclude

Autπ(Σ) ∼= π1(Σ/Zm, π(x)) ∼= Zm
∼= {idΣ, φ, . . . , φ

m−1}.

Finally, we discuss a smooth structure on the continuous free twisted
loop space of a smooth manifold.

Lemma A.3. Let M be a smooth manifold and φ ∈ Diff(M). Then the

continuous free twisted loop space LϕM is the pullback of

(ev0, ev1) : PM →M ×M, γ 7→ (γ(0), γ(1)),

where we abbreviate PM := C(I,M), along the graph of φ

Γϕ : M →M ×M, Γϕ(x) := (x, φ(x)),

in the category of smooth Banach manifolds. Moreover, we have that

TγLϕM = {X ∈ Γ0(γ∗TM) : X(1) = Dφ(X(0))}

for all γ ∈ LϕM .

Proof. Write f := (ev0, ev1). Then

LϕM = f−1(Γϕ(M)).

Thus in order to show that the free twisted loop space LϕM is a smooth
Banach manifold, it is enough to show that f is transverse to the properly
embedded smooth submanifold Γϕ(M) ⊆M ×M . By [15, Proposition 2.4]
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we need to show that the composition

Φγ : TγPM
Dfγ
−−→ T(x,ϕ(x))(M ×M) → T(x,ϕ(x))(M ×M)/T(x,ϕ(x))Γϕ(M)

is surjective and kerΦγ is complemented for all γ ∈ f−1(Γϕ(M)), where we
abbreviate x := γ(0). Note that we have a canonical isomorphism

T(x,ϕ(x))(M ×M)/T(x,ϕ(x))Γϕ(M) → Tϕ(x)M, [(v, u)] := u−Dφ(v).

Under this canonical isomorphism, the linear map Φγ is given by

Φγ(X) = X(1)−Dφ(X(0)), ∀X ∈ Γ0(γ∗TM).

Fix a Riemannian metric onM and letXv ∈ Γ(γ∗TM) be the unique parallel
vector field with Xv(1) = v ∈ Tϕ(x)M . Fix a cutoff function β ∈ C∞(I) such

that suppβ ⊆
[
1
2 , 1

]
and β = 1 in a neighbourhood of 1. Then Φγ(βXv) = v

and consequently, Φγ is surjective. Moreover

kerΦγ = {X ∈ Γ0(γ∗TM) : X(1) = Dφ(X(0))}

is complemented by the finite-dimensional vector space

V := {βXv ∈ Γ(γ∗TM) : v ∈ Tϕ(x)M} .

Indeed, any X ∈ Γ0(γ∗TM) can be decomposed uniquely as

X = X − βXv + βXv, v := X(1)−Dφ(X(0)).

Abbreviating Y := X − βXv ∈ Γ0(γ∗TM), we have that

Y (1) = Dφ(X(0)) = Dφ(Y (0)),

implying Y ∈ kerΦγ . Thus LϕM is a smooth Banach manifold.
Now note that LϕM can be identified with the pullback

f∗PM = {(x, γ) ∈M × PM : (γ(0), γ(1)) = (x, φ(x))},

making the diagram

f∗PM PM

M M ×M

pr2

pr1 f

Γϕ
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commute, via the homeomorphism

LϕM → f∗PM, γ 7→ (γ(0), γ).

Finally, one computes

T(x,γ)f
∗
PM = {(v,X) ∈ TxM × TγPM : DfγX = DΓϕ|x(v)}

for all (x, γ) ∈ f∗PM . □

Remark A.4. Using Lemma A.3 one should be able to prove similar results
as in Theorem A.1 in the case of free twisted loop spaces. However, in the
non-abelian case the situation gets much more complicated as in general it
is not true, that lifts of conjugated elements of the fundamental group lie in
the same free twisted loop space by [16, Theorem 1.6 (i)].
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