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First steps in twisted Rabinowitz—Floer

homology

YANNIS BAHNI

Rabinowitz—Floer homology is the Morse-Bott homology in the
sense of Floer associated with the Rabinowitz action functional
introduced by Kai Cieliebak and Urs Frauenfelder in 2009. In our
work, we consider a generalisation of this theory to a Rabinowitz—
Floer homology of a Liouville automorphism. As an application,
we show the existence of noncontractible periodic Reeb orbits on
quotients of symmetric star-shaped hypersurfaces. In particular,
our theory applies to lens spaces.

1__Introduction| 112
2T : [Rabi : on T : 1 115
I3 Compactness of the moduli space of twisted negative |

gradient flow lines| 126
|4 Definition of twisted Rabinowitz—Floer homology| 133
[ Tnvariance of twisted Rabinowitz—Floer homology under |

twisted homotopies of Liouville domains| 136
|6 Twisted leaf-wise intersection points| 137
|7 Existence of noncontractible periodic Reeb orbits| 140
|Appendix A Twisted loop spaces| 147
[References] 156

111



112 Yannis Bahni

1. Introduction

In this paper, we introduce an analogue of the twisted Floer homology [25]
in the Rabinowitz—Floer setting. See the excellent survey article [5] for a
brief introduction to Rabinowitz—Floer homology and [2] for an overview of
common Floer theories. Following [7] and [3], we construct a Morse-Bott
homology for a suitable twisted version of the standard Rabinowitz action
functional, generalising standard Rabinowitz—Floer homology.

Theorem 1.1 (Twisted Rabinowitz—Floer homology). Let (M, \) be
the completion of a Liouville domain (W, \) and let ¢ € Diff(W) be of fi-
nite order with (OW) = OW and p*\ — X\ = df, for some smooth compactly
supported function f, € C°(Int W) in the interior of W.

(a) The semi-infinite dimensional Morse—Bott homology REH?(OW, M)
in the sense of Floer of the twisted Rabinowitz action functional exists
and is well-defined. Moreover, twisted Rabinowitz—Floer homology is
invariant under twisted homotopies of Liouville domains.

(b) If OW is simply connected and does not admit any nonconstant twisted
Reeb orbits, then RFHL (OW, M) = H,(Fix(¢|ow ); Z2).

(¢) If OW is displaceable by a compactly supported Hamiltonian symplec-
tomorphism in (M, ), then REHY (OW, M) = 0.

Part (a) will be proven in Sections 4| and |5, in particular Theorem [5.2
part (b) is the content of Proposition and finally part (c) is the content
of Theorem|[6.5] First of all, twisted Rabinowitz—Floer homology does indeed
generalise standard Rabinowitz—Floer homology as

RFH!Y (9W, M) = RFH(OW, M).

Moreover, twisted Rabinowitz—Floer homology can be used to prove exis-
tence of noncontractible periodic Reeb orbits on quotients of certain sym-
metric star-shaped hypersurfaces.

Theorem 1.2. Let X C C", n > 2, be a compact and connected star-shaped
hypersurface invariant under the rotation

p: C" — C™, go(,zl, o2t = (e%ikl/mzl, e e%ik"/mz”)

for some even m > 2 and ki, ..., kn € Z coprime to m. Then X/Z, admits
a noncontractible periodic Reeb orbit generating w1 (3/Zpm,) = L,
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The proof is straightforward, once we have computed the Z,,-equivariant
twisted Rabinowitz-Floer homology of the sphere S?*~! C C". Indeed, by
invariance we may assume that ¥ = S?"~! as ¥ is star-shaped. Then we
use the following elementary topological fact (see Lemma below). Let 3
be a simply connected topological manifold and let ¢: ¥ — ¥ be a homeo-
morphism of finite order m that is not equal to the identity. If the induced
discrete action

Ty X8 — %, k] - 2 = o%(2)

is free, then 7: ¥ — ¥ /Z,, is a normal covering map [I7, Theorem 12.26].
For x € ¥ define the based twisted loop space of 3 and ¢ by

Zp(%,x) :={y € C(1,%) : 7(0) = x and v(1) = ¢(2)},
where I :=[0,1]. Then we have the following result. See Figure

Lemma 1.3. Ify € Z,(X,x) for somex € ¥, thenm oy € L (X)L, m(x))
is mot contractible. Conversely, if v € L (X)L, m(x)) is not contractible,
then there exists 1 < k < m such that 3, € L (X, x) for the unique lift 7,
of v with 4(0) = x.

For a more detailed study of twisted loop spaces of universal covering
manifolds as well as a proof of Lemma [I.3] see Appendix [A] To the authors
knowledge, there are two similar versions of Theorem in the literature.

Theorem 1.4 ([11, Corollary 1.6 (iv)]). Any contact form on a lens
space defining the standard contact structure admits a closed Reeb orbit.

Using the fact that there is a natural bijection between contact forms on
the odd-dimensional sphere equipped with the standard contact structure
and star-shaped hypersurfaces, Theorem is actually stronger than The-
orem in that it does not restrict the parity of the lens space. However,
Theorem does not say anything about the topological nature of the Reeb
orbit. The proof of this theorem uses a generalisation of Givental’s nonlinear
Maslov index to lens spaces.

Theorem 1.5 ([20, Theorem 1.2]). Let ¥ C C", n > 2, be a dynamically
convex star-shaped hypersurface such that ¥ = —X. Then X admits at least
two symmetric geometrically distinct closed characteristics.

Theorem has the advantage of being a multiplicity result, but in
disadvantage requires the assumption that the hypersurface is dynamically
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convex and does only work for Zs-symmetry. The first named author of the
paper [20] is currently working on extending Theorem to lens spaces.
As many multiplicity results, the proof of this theorem makes use of index
theory, in particular Ekeland—Hofer theory.

The existence of closed Reeb orbits on lens spaces is important in the
study of celestial mechanics. Indeed, by [10, Corollary 5.7.5], the Moser regu-
larised energy hypersurface near the earth or the moon of the planar circular
restricted three-body problem for energy values below the first critical value
is diffeomorphic to the real projective space RP3.

S/,

Figure 1. The projection oy € Z(X/Zy,, m(x)) of v € Z,(%, x) is not con-
tractible for the deck transformation ¢ # idy.
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2. The twisted Rabinowitz action functional

Definition 2.1 (Free twisted loop space). Let ¢ € Diff (M) be a diffeo-
morphism of a smooth manifold M. Define the free twisted loop space of
M and ¢ by

LM :={ye C°([R,M) :v(t+1) = ¢(y(t)) Vt € R}.

Let (M,w) be a symplectic manifold and ¢ € Symp(M,w). Given a
twisted loop v € Z,M and €9 > 0, we say that a curve

(*60,80) — fwM, E = Ye
starting at ~ is smooth, if the induced variation
R x (—e0,€0) = M, (t,e) = ()

is smooth. Since 7. (t + 1) = ¢(7:(t)) holds for all ¢ € (—&p,ep) and t € R, we
call such a variation a twisted variation. Then the infinitesimal variation

e
oy =
K Oe e=0

satisfies
Y (t+1) = Dp(dv(t)) vVt € R.

Lemma 2.2. Let (M,w) be a symplectic manifold and let ¢ € Symp(M,w)
be of finite order. Let v € Z,M and let X € X(y) be such that

X(t+1)=Dp(X(t)) vVt € R.
Then there exists a twisted variation of v such that oy = X.

Proof. As ¢ is assumed to be of finite order, there exists a y-invariant w-
compatible almost complex structure J on M by [22] Lemma 5.5.6]. With
respect to the induced Riemannian metric

my = w(J7 ')7
the symplectomorphism ¢ is an isometry. Define the exponential variation

R x (—eg,e0) > M,  7%(t) = eXPXd) (eX (1)),
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for g9 > 0 sufficiently small and V; denoting the Levi—Civita connection
associated with mj. Such an g9 > 0 does exist by naturality of geodesics
[19, Corollary 5.14]. Then we compute

Ye(t+1) = expvv(‘;Jrl)(eX(t +1))
= eXpZ({y(t)) (Dp(eX(t)))
= ¢ (expY ;) (X (1))

= 0(7(1))

by naturality of the exponential map [19, Proposition 5.20]. O
Remark 2.3. The statement of Lemma [2.2] remains true if ord ¢ = oo.

This discussion together with Lemma motivates the following defi-
nition of the tangent space to the free twisted loop space.

Definition 2.4 (Tangent space to the free twisted loop space). Let
(M, w) be a symplectic manifold and ¢ € Symp(M,w). Fory € £, M define
the tangent space to the free twisted loop space at ~ by

T,Z,M :={X e T(y*TM) : X(t +1) = Dyp(X(t)) Vt € R}.

Definition 2.5 (Twisted Hamiltonian function). Let (M,w) be a sym-
plectic manifold and ¢ € Symp(M,w). A function H € C*°(M x R) is said
to be a twisted Hamiltonian function, if

SO*Ht+1 = Ht Vt S R.

We denote the space of all twisted Hamiltonian functions by Cf;o(M x R) and
the subspace of all autonomous twisted Hamiltonian functions by C’;O(M).

Recall, that an exact symplectic manifold is by definition a pair (M, \)
such that (M, dM) is a symplectic manifold. An exact symplectomorphism of
an exact symplectic manifold (M, \) is a diffeomorphism ¢ € Diff (M) such
that ©*A — A is exact.
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Definition 2.6 (Perturbed twisted Rabinowitz action functional).
Let (M, \) be an exact symplectic manifold and ¢ € Diff (M) an exact sym-
plectomorphism with ¢*A\ — X\ = df . For H, F € C*(M x R) define the per-
turbed twisted Rabinowitz action functional

A £,M xR — R

AHE) (. 7) = / o / Hy(y(t))dt — / Fy(y(#)dt — f((0)).

If F=0 and H € CX(M), we write ;sz for MéH’F) and call Q/(pH the
twisted Rabinowitz action functional.

Remark 2.7. Assume that m := ord ¢ < co. Then

3

1
o (HLF) — = gy (HF) —
) y,7) = —af ) (3, 7)

f(v(k)),

0

for all (v,7) € £, M, where ¥ € M is defined by 7(t) := y(mt) and

1
m

e
I

dHE) . LM xR R
denotes the standard Rabinowitz action functional.

Definition 2.8 (Differential of the perturbed twisted Rabinowitz
action functional). Let ¢ € Diff(M) be an exact symplectomorphism of
an eract symplectic manifold (M, ). For H,F € CZ(M x R), define the
differential of the perturbed twisted Rabinowitz action functional

de/{T0)| o T, 2,M x R — R
for all (v, 7) € £,M xR by

d

d/SH0| (X, ) = 7

©® dgp(}LF) (’YEa T + 577)7

e=0

where v, is a twisted variation of v such that §y = X.

Proposition 2.9 (Differential of the perturbed twisted Rabinowitz
action functional). Let ¢ € Diff(M) be an exact symplectomorphism of
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an exact symplectic manifold (M, \) and H, F' € C*(M x R). Then

1
(2.1) der{™ | (X, m) :/0 AN(X(t),7(t) = 7Xp, (7(t) — XF, (v(2)))dt

1
[ m o)
forall (v,7) € Z,M xR and (X,n) € T,.£,M x R. Moreover, we have that
(v,7) € Crit Jz{@(H’F)

if and only if

1
(22) () = 7Xm, (/1) + Xk (1) and /0 Hy(4(t))dt = 0
for allt € R.

Proof. A routine computation shows ({2.1)). Let (v, 7) € Crit %SD(H’F). It fol-
lows immediately from ([2.1)) that

[ e =o

and

1

[ NG5 = X 06) = X (20t =0
for all X € T',.Z, M. Suppose there exists ¢y € Int I such that
Y(to) — 7Xu,, (v(to)) — Xr, (v(t0)) # 0.

By nondegeneracy of the symplectic form dA there exists v € T, ;) M with

dA(v,¥(to) — 7Xm,, (7(t0)) — X, (7(t0))) # 0.
Fix a Riemannian metric on M and let X,, denote the unique parallel vector

field along |r such that X, (o) = v. As Int I is open, there exists 6 > 0 such
that Bs(tp) C Int I. Fix a smooth bump function 8 € C°°(I) for to supported
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in Bs(to). By shrinking § if necessary, we may assume that

to+0
/t " NBOX0,3(0) ~ X0 (00) ~ X0t £ 0.

Extending
(BXo)(t+k) == D" (BHX,(1) Vel k€L,
we have that 8X, € T,.Z,M and thus we compute
0= de/{"|(, (8, 0)

to+9
= /t : ANB()Xo(t),5(t) — 7Xm,(7(t)) — Xk, (1(1)))dt

£ 0.

Hence
Y(t) =7Xm,(v(t) + Xk (v(t)  VEeL,
implying

Y(t + k) = D" (3(t))
= 7(D¢" o Xp,)(v(t)) + (D" 0 XF,)(7(1))
= 7(Dg" o Xp, 0 07" 0 O*)(7(1)) + (D" 0 X1, 0 97" 0 0*)(4(1))
= 70i X, (Yt + k) + o5 Xp, (v(t + F))
=7Xorm, (Yt + k) + Xorr, (v(E + k)
=7Xm,, (Yt + k) + Xp, (vt +F))

for all t € I and k € Z. The other direction is immediate. O

Corollary 2.10. The differential of the perturbed twisted Rabinowitz ac-
tion functional is well-defined, that is, independent of the choice of twisted
variation, and linear.

Preservation of energy implies the following corollary.

Corollary 2.11. Let ¢ € Diff(M) be an exact symplectomorphism of an
ezact symplectic manifold (M, \) and H € C3*(M). Then Crit 42/<pH consists
precisely of all (v,7) € £L,M x R such that v(R) C H~Y(0) and v is an
integral curve of T Xpr.
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There is a natural R-action on the twisted loop space .Z,,M given by
(s-7)(t) :=~(t+s) vVt € R.

If (M, M) is an exact symplectic manifold and H € CZ°(M) for an exact sym-
plectomorphism ¢ € Diff (M) of finite order such that supp f N H~1(0) = @,
then the twisted Rabinowitz action functional &%f is invariant under the
induced S'-action on Crit Mf . In particular, the unperturbed twisted Ra-
binowitz action functional is never a Morse function.

Definition 2.12 (Hessian of the twisted Rabinowitz action func-
tional). Let ¢ € Diff (M) be an exact symplectomorphism of an exact sym-
plectic manifold (M, ) and H € CF(M). For (v,7) € Crit ,QZ;I, define the
Hessian of the twisted Rabinowitz action functional

Hess |, 1)1 (T5ZpM x R) x (T,.4,M x R) - R
by

82
- o
Hess o' | (4, ((X,n), (Y,0)) = 0e10¢e9

'Q{(pH(’Y&hEz?T + 8177 + 820)7

61262:0

for a smooth two-parameter family ., o, of twisted loops with

0 0
Ver,0 = X and Do V0,6, =Y.
€2

62:0

861 e1=0

Remark 2.13. Traditionally, the differential and the Hessian of the twisted
Rabinowitz action functional are called the first and second variation of the
twisted Rabinowitz action functional.

In order to compute the Hessian of the twisted Rabinowitz action func-
tional we need to choose a suitable connection. We will see that this choice
is irrelevant in the end.

Definition 2.14 (Symplectic connection). Let (M,w) be a symplectic
manifold. A symplectic connection on (M, w) is defined to be a torsion-
free connection V in the tangent bundle T M such that Vw = 0.

Remark 2.15. Every symplectic manifold admits a symplectic connection
by [12, p. 308], but in sharp contrast to the Riemannian case, a symplectic
connection on a given symplectic manifold is in general not unique.
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Lemma 2.16. Let ¢ € Diff (M) be an exact symplectomorphism of an exact
symplectic manifold (M, ). Fix a symplectic connection V on (M,d)\) and
a twisted Hamiltonian function H € CZ*(M). If (v, 7) € Crit .Q/f, then

1
(2.3) Hess |, ((X,n),(Y,0)) = /d)\(YVt )

/HessVHXY /dH —a/ dH (X
0

for all (X,n), (Y,0) € T, £, M x R.
Proof. The proof is a long routine computation. O

Corollary 2.17. The Hessian of the twisted Rabinowitz action functional
1s a well-defined, that is, independent of the choice of twisted two-parameter
family, symmetric bilinear form.

Lemma 2.18. Let ¢ € Diff (M) be an exact symplectomorphism of an exact
symplectic manifold (M, ) and H € CZ*(M). If (v, ) € Crit ﬂf, then

1
(24)  Hessa/ | (X.n). (Y.0)) = /O (Y, Ly, X —nX1(3))

1
—J/ dH(X)
0
for all (X,n),(Y,0) € T,£,M x R, where
d X
Lox,X(t) = 7| DeXLX(s+1)  Wel,
S|ep

with X% denoting the smooth flow of the Hamiltonian vector field Xg.

Proof. One computes
HessY (X,Y) = d\(Y, Vx Xp).

Inserting this into (2.3|) yields

1
Hess /1) (X.0). (V.0)) = | dNY.9,X =7V i)

—n/()ldH(Y) —a/oldH(X).
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But as V has no torsion by assumption, we compute

ViX —7VxXy = VX —7Vx Xy = Vox, X — 7Vx Xy = [ X, X,

and
[7Xpg, X|(t) = Lx, X (1)
-2 _ DeNL (X (6% (1(0)
-2 DR (X (03 635 (0)))
_ di szoD(ﬁ)f;’T(X(¢f§it)T(’Y(0))))
_ % SZOD&; (s+1)
for all t € 1. -

Corollary 2.19. Let ¢ € Diff(M) be an exact symplectomorphism of an
exact symplectic manifold (M, \) and H € C*(M). The kernel of the Hes-
sian of the twisted Rabinowitz action functional at (v, 7) € Crit ,fo consists
precisely of all (X,n) € T,.Z,M x R satisfying

1
L:x, X =nXu(v) and / dH(X)=0.
0

Lemma 2.20. Let ¢ € Diff (M) be an exact symplectomorphism of an exact
symplectic manifold (M, ) and H € CZX(M). For every (v,7) € Crit %f,
there is a canonical isomorphism

(2.5) ker Hess szf = R(y, 1),

’(%T)

where

R(v,7) == {(vo,n) € Ty0)yM x R : solution of (2.6]) }

with

(2.6) D(¢X# 0 ©)vg = vo + X (7(0)) and  dH(vg) = 0.

-7
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Proof. We follow [10, p. 99-100]. Let (X, n) € ker Hess .fo\(%r) and define
vi I = TyoM,  o(t) = D¢ X(t).

We claim that

(2.7) ker Hess QQ@H\(%T) — R(~,71), (X,n) — (v(0),n)

is an isomorphism. First, we show that the above homomorphism is indeed
well-defined. The assumption that (X,n) lies in the kernel of the Hessian
of the twisted Rabinowitz action functional at the critical point (v, 7) is by
Corollary equivalent to

(2.8) o= nXu(v(0))  and /O " dH () = 0.
Integrating the first equation yields

o(t) =vo +tnXu(y(0))  Vtel,
with vy := v(0). Thus (vg,n) € R(v, ) follows from

v(1) = DHX7 X (1)

= D<z>XHDso<X(0)>
= D( X >X<o>

That is an isomorphism follows by considering the inverse
K(~,7) — ker Hess %@Hk%ﬂ, (vo,m) — (X,n),
where X € T.,.Z,M is defined by
X(t) == D¢} (vo + X (7(0)))  VteR.

This establishes the canonical isomorphism ([2.7)). 0

In what follows, we assume that the energy hypersurface H~1(0) is a
contact manifold. A contact manifold is a pair (X, «), where ¥ is an odd-
dimensional manifold and a € Q!(X) is a global contact form. Every contact
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manifold (¥, o) admits a unique vector field R € X(X), called the Reeb vec-
tor field, defined implicitly by

irda =0 and tra = 1.

Recall, that a strict contactomorphism of a contact manifold (X, «) is defined
to be a diffeomorphism ¢ € Diff () such that ¢*« = a. Note that the Reeb
flow always commutes with a strict contactomorphism.

Definition 2.21 (Parametrised twisted Reeb orbit). For a contact
manifold (X,c) and a strict contactomorphism ¢: (3,a) — (X, a) define
the set of parametrised twisted Reeb orbits on (X, a) by

P8, ) ={(7,7) € Z,X x R:4(t) = TR(y(t)) Vt € R}.

Definition 2.22 (Twisted spectrum). For a contact manifold (¥, «) and
a strict contactomorphism p: (X, a) — (2, ) define the twisted spectrum

by

Spec(3, a) := {1 € R: Iy € Z,¥ such that (7,7) € Z,(E,0a)}.
Proposition 2.23 (Kernel of the Hessian of the twisted Rabinowitz
action functional). Let (X, \|x) be a regular energy surface of restricted
contact type in an exact Hamiltonian system (M, A\, H) with Xg|s, = R. Sup-

pose ¢ € Diff(M) is an exact symplectomorphism such that H € CZ*(M)
and ©*Nx = A|g. Then

Crit o/ = P,(2, A|x)

and
ker Hess "Z{fk%ﬂ = ker (D(QS]—%T o SO)H(O) - idTme)

for all (v,7) € P,(3, AN|g). Moreover, we have R(y(0)) € ker Hess %¢H|(%T)
and if P,(3, AN|z) € X xR is an embedded submanifold, then Spec(X, A|s)

1s discrete.

Remark 2.24. If (v,7) € Z,(%, Aln), we have the period-action equality

%5{(%7)=/017*A=/01A(’v)=r/01A(R(v>):T.



Twisted Rabinowitz—Floer homology 125

Proof. The identity Crit %f = Z,(3, A|x) immediately follows from Corol-
lary together with [I8, Corollary 5.30]. The proof of the formula for the
kernel of the Hessian of 42/ka is inspired by [10, p. 102]. By Lemma we
have that

ker Hess %¢H|(%7) = R(y, 1),
where (vo,n) € Ty)M x R belongs to &(v,7) if and only if

D(¢™7 o )y = vo + nX g (7(0)) and dH (vy) = 0.

T

Thus in our setting, the second condition implies vy € T’ )2. Decompose
vy = Ug + aR(v(0)) ’US € 5’\/(0); a € R,

where £ := ker M|y, denotes the contact distribution. Then we compute

D(9%, 0 @) R(1(0)) = D(6", 0 ) (i

o 0)

t=0

as a strict contactomorphism commutes with the Reeb flow. Hence
vo +nR(1(0) = D(@F, 0 p)ug = D65, 0 )vf + aR(v(0))
0 noy —r O®)vo —r 9®)Vs v )

where

Dé(f, 0 p) 1= D(@f, 0 p)le: € &,
implies

n=0 and  DY(¢% op)vf=1f
by considering the splitting 7' = £ @ (R). Consequently

A(7,7) = ker (D(6F, 0 9)|5() — idr, 5) x {0}

Finally, assume that Z,(X, A|y) € ¥ x R is an embedded submanifold
via the obvious identification of (v, 7) € Z,(X, A|y) with (7(0),7) € £ x R.
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Fix a path (s, 75) in Z,(X, A|y) = Crit JZ/SOH from (0, 70) to (y1,71). Then
using Remark we compute

887—5 = 850(2%;]{(’757 Ts) = dﬂf‘('ys,rs)(as’}’& 887—8) = 07

implying that 75 is constant, and in particular 79 = 7. Consequently, Q@H is
constant on each path-connected component of Z,(X, A|s). As Z, (X, A|y)
is a submanifold of ¥ x R, there are only countably many connected com-
ponents by definition, implying that Spec(3, A|x) is discrete. O

3. Compactness of the moduli space of twisted negative
gradient flow lines

Definition 3.1 (Liouville domain). A Liouville domain is defined to
be a compact connected exact symplectic manifold (W, \) with connected
boundary such that the Liouville vector field X defined implicitly by ixdA = A
s outward-pointing along the boundary.

Definition 3.2 (Liouville automorphism). Let (W,\) be a Liouville
domain with boundary ¥. A diffeomorphism ¢ € Diff (W) is said to be a
Liouville automorphism, if o(3) =%, ¢*\ — X is exact and compactly

supported in Int W, and ord ¢ < oo. The set of all Liouville automorphisms
on the Liouville domain (W, \) is denoted by Aut(W,\).

Remark 3.3. Let ¢ € Aut(WW, \) be a Liouville automorphism. Then there
exists a unique function f, € C2°(Int W) such that

A — A = df,.

Remark 3.4. The set Aut(W, \) of Liouville automorphisms of a Liouville
domain (W, A) is in general not a group. Indeed, for ¢, v € Aut(W, \) it is
not necessarily true that ¢ o1 is of finite order unless ¢ and 1 commute.

Definition 3.5 (Completion of a Liouville domain). Let (W, ) be a
Liouville domain with boundary . The completion of (W, ) is defined
to be the exact symplectic manifold (M, \), where

M =W Usg [0,+00) X & and Alfo,400)x3 1= € Als.

Definition 3.6 (Twisted defining Hamiltonian function). Let (W, \)
be a Liouville domain with boundary ¥ and ¢ € Aut(W,\). A twisted
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defining Hamiltonian function for X is a Hamiltonian function H €

C*°(M) on the completion (M, \) of (W, ), satisfying the following condi-

tions:
(i
(ii) H € CX(M).

“10) =X and XN Crit H = @.

) H
)
(iii) dH is compactly supported.
(iv) Xu|s = R is the Reeb vector field of the contact form Al|x.

Denote by F,(X) the set of twisted defining Hamiltonian functions for X.

Remark 3.7. A necessary condition for .7 ,(3) # @ is that ¢*R = R. This
is not true in general if ¢ does not induce a strict contactomorphism on X.

Definition 3.8 (Adapted almost complex structure). Let (W, \) be a
Liouwville domain with boundary Y. An adapted almost complex struc-
ture is defined to be a d\-compatible almost complex structure J on (W, )
such that J restricts to define a d\|x-compatible almost complex structure
on the contact distribution ker Ay, and JR = 0, holds near the boundary.

Definition 3.9 (Rabinowitz—Floer data). Let (M,\) be the comple-
tion of a Liouville domain (W, \) with boundary ¥ and ¢ € Aut(W,\).
Rabinowitz—Floer data for ¢ is defined to be a pair (H,J) consisting of
a twisted defining Hamiltonian function H € % ,(X) for ¥ and of a smooth
family J = (Ji)ier of adapted almost complex structures on W such that

@*Jt—i-l =J; Vvt € R.

Remark 3.10. For simplicity we ignore the fact, that in order to achieve
transversality of the moduli spaces in general, the smooth family of almost
complex structures does depend on the Lagrange multiplier (see [I]). This
technicality does not significantly alter our arguments as explained in [9]
and can also be treated abstractly using polyfold theory [14].

Lemma 3.11. Let (W, \) be a Liouville domain and ¢ € Aut(W, X). Then
there exists Rabinowitz—Floer data for .

Proof. The construction of the twisted defining Hamiltonian H for X is
inspired by the proof of [8, Proposition 4.1]. Fix § > 0 such that the exact
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symplectic embedding

¥: ((=6,0] x X, e"Ag) < (W, )

defined by
¢(7’7 iL‘) = ¢7{<($)
satisfies
(3.1) Us :=¢((—9,0] x ¥) Nsupp f, = 2.

Indeed, that v is an exact symplectic embedding follows from the computa-
tion

L (6F)" A

*LxA
" (dix A+ ixd\)
d’Lxlxd)\ + )\)

711}“\ - dr
= (¢7)
= (¢¥)" (
= (¢X)"(
= (¢X)" A
= A

implying

Pid=e€" Ny Vr e (—0,0],
by ¥y = tx, where vy: 3 — W denotes the inclusion. Note that ¢ X = 0,.
We claim

(3'2) 80(1/1(7“7 .’L‘)) - Wﬁ@(x)) V(r,m) S (_57 O] X 3,

that is, ¢ and ¢ commute. Note that (3.2) makes sense because p(3) = X
by assumption. Indeed, (3.2)) follows from the uniqueness of integral curves
and the computation

Lowlrm) = oo} @)

= Do(X (¢ (x)))

= (Dyg o Xy, oo™ 0 @) (¢ (x))
= (@ X () 0 9) (7 ()

= (X (s © @) (5 (x))

= X(p(¢(r, z)))
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where we used the ¢-invariance of the Liouville vector field on U, that is,

PaX o) = Xlopws)s

which in turn follows from

G, x AN = dX (@« X, ")
=d\(DpoXop ')
=dA (Dgp oXop ! Dpo Dgp_l-)
= p*d\(X o', D)
=d\X ol DpL)
= pu(ixdA)
— o\
=A—d(fs0 )

and assumption (3.1).
Next we construct the defining Hamiltonian H € C*°(M). Let h €

C>°(R) be a sufficiently small mollification of the piecewise linear function

re[-55],
re [g,—koo) R
4 re (oo —g],

o 3

h(r) :=

as in Figure [2

Figure 2. Mollification of the piecewise linear function h.
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Define H € C*(M) by

h(r) p=1(r,z) € Us,
(3-3) H(p) == { h(r) p=(r,z)€[0,+00) x X,
-3 peW\Us.

Then H is a defining Hamiltonian for ¥ and dH is compactly supported by
construction. Moreover, H is -invariant by (3.2). Finally, Xy|s; = R follows
from the observation Xy = h/(r)e”"R. Indeed, on Us we compute

it (rye—r RV AN = ip(r)e-rrd("A|5)
= ih/(r)e—rR(erdr VAN )\‘2 + erd)\‘g)
= —h(r)dr
— —dH.

Next we construct the family J = (J;)ier of dA-compatible almost
complex structures on W. Fix a dA|g-compatible almost complex struc-
ture J on the contact distribution ker M|z and choose a path (J*)ier C
J (ker Mg, d\|s) from J to o..J. Extend this smooth family to (J;°)icr sat-
isfying go*JtEH = J for all t € R. Finally, extend this family to ((—6, +-00) x
S.d(e" N]s;)) by

(3.4) I | (a2) (b 0) := (Ae(v), I |o(m(v)) — bR(2)) ,

where

m: ker M|z @ (R) — ker A|s
denotes the projection. Choose a smooth family (JtW \Z) rer OB W \ X twisted

by ¢, and let {ﬁz, ﬁW\Z} be a partition of unity subordinate to {Us, W \ ¥}.
Define a smooth family (m)tcr of Riemannian metrics on W by

= g e + 5 e

and let (J;)ter be the corresponding family of dA-compatible almost complex
structures on W. O
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Definition 3.12 (L2-Metric). Let (H,J) be Rabinowitz—Floer data for a
Liouville automorphism ¢ € Aut(W, \). Define an L?-metric on £,M x R

1
(3.5) (X,n),(Y,0))s = /0 dN(J: X (2),Y (t))dt + no
for all (X,n), (Y,0) € Ty £, M xR and v € Z,M.

With respect to the L?-metric (3.5), the gradient of the twisted Rabi-
nowitz action functional grad; .waH € X(Z,M x R) is given by

grad ; ,waH](%T) (t) = ! vt e R.

Lemma 3.13 (Fundamental lemma). Let (H,J) be Rabinowitz—Floer
data for a Liouville automorphism ¢ € Aut(W,\). Then there exists a con-
stant C = C(\, H, J) > 0 such that

|erad; o7, = |l <O (v, 1) +1)

) H <

Proof. The proof [7, Proposition 3.2] goes through with minor modifications
as || f,|l,, < +oo by assumption. O

Definition 3.14 (Twisted negative gradient flow line). Let (H,J)
be Rabinowitz—Floer data for a Liouville automorphism ¢ € Aut(W,\). A
twisted negative gradient flow line is a tuple (u,7) € C*(R, Z,M x R)
such that

65(u, 7') = — gradj JZ{SOH’(U(S)J(S)) Vs € R.

Definition 3.15 (Energy). Let (H,J) be Rabinowitz—Floer data for a Li-
ouville automorphism ¢ € Aut(W, \). The energy of a twisted negative
gradient flow line (u,T) is defined by

—+oco —+o0 9
Ej(u,7) := / 195 (u, 7)) ds = / llerad ; | (uis),r(sn || ds-

Theorem 3.16 (Compactness). Let (H,J) be Rabinowitz—Floer data for
a Liowville automorphism ¢ € Aut(W, X). Suppose (u,,7,) is a sequence of
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negative gradient flow lines of the twisted Rabinowitz action functional %f
such that there exist a,b € R with

agdf (uu(s), u(s)) <b VieN,s eR.

Then for every reparametrisation sequence (s,) C R there exists a subse-
quence [, of i and a negative gradient flow line (Uoo, Too) Of Mf such that

oo

C.
(Uuu(’ +5u,)s T, (- + S,uy)) —% (Uoos Too) as v — oQ.

Proof. The proof [7, p. 268] goes through without any changes as we have
a twisted version of the Fundamental Lemma. However, for convenience, we
reproduce the main arguments here. We need to establish

— a uniform L*-bound on u,,
— a uniform L*°-bound on 7,

— a uniform L*°-bound on the derivatives of u,.

Indeed, by elliptic bootstrapping [21, Theorem B.4.1] the negative gradient
flow equation we will obtain C{X-convergence by [21, Theorem B.4.2].

To obtain a uniform L°°-bound on the sequence of twisted negative
gradient flow lines u,, observe that by definition of Rabinowitz-Floer data

for ¢, there exists r € (0, +00) with
supp Xy N[r,+00) X ¥ =2

and J; is adapted to the boundary of W Uyx [0,7] x ¥ for all ¢ € R. Con-
sequently, [2I Corollary 9.2.11] implies that every wu, remains inside the
compact set W Uy [0,7] x ¥ as the asymptotics belong to W Uy, [0,7) X £
for all 4 € N. Indeed, this follows from

+o00 9
EJ(UmT,u) = / Has(uuﬂ'u)njds

—0o0

+oo
- / (Os (wis ), Os (wps ) s ds

—0o0

+o0o
B / (grad ; 7 | (u, (s) 7, (5))> Os (ps 7)) s ds

—00

+o00
- —/ AP (0 (7))

—0o0
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+oo
- _ / Os M (uyy, 7)ds

= i o] (wa(5), 7u(5)) — im0 (), 7 (9))
S b— a,

as this implies

Jim 110w )l = lim[lerad; |, (0,70 [, = 0
by the negative gradient flow equation.

The uniform L*°-bound on the Lagrange multipliers 7, follows from the
Fundamental Lemma by arguing as in [7, Corollary 3.5].

Lastly, the uniform L°°-bound on the derivatives of u,, follows from stan-
dard bubbling-off analysis. Indeed, if the derivatives of u, are unbounded,
then there exists a nonconstant pseudoholomorphic sphere as in [21, Sec-
tion 4.2]. This is impossible as M is an exact symplectic manifold and thus
in particular symplectically aspherical. O

4. Definition of twisted Rabinowitz—Floer homology

In this section we make implicit use of the requirement that a Liouville
automorphism has finite order. This is crucial because then the arguments
go through as in the case of loops by Remark 2.7}

Definition 4.1 (Transverse Conley—Zehnder index). Let (W?", \) be
a Liouville domain with boundary ¥. Let (y0,70), (71,71) € Zu(2, A|s) for
some o € Aut(W, X) such that there exists a path v in Z,% from o to ;.
Define the transverse Conley—Zehnder index by

1((v0570), (1, 711)) = pez(Ph) — poz(¥°) € Z,
with

U1 —Sp(n—1),  W):=d;;o0D¢N, 0dgp,
U T - Sp(n—1), U= oD 0,

where @y, : R2"—2 &y () @8 a symplectic trivialisation of F*¢, § := ker Als
with F € C®(R x I, M) being defined by F(t,0) := ~,(t), satisfying

Q1110 =Dpod;, V(t,o) e R x I.
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Remark 4.2. The transverse Conley—Zehnder index, or more precisely, the
twisted relative transverse Conley—Zehnder index, does not depend on the
choice of trivialisation. Denote by

Y xR
(p(@),t + 1)~(,t)

the mapping torus of ¢ giving rise to the fibration

Yy =

Tp: By — ST, ([, t]) = [t].

The vertical bundle ker D§7r¢ — X, is a symplectic vector bundle. One can
show, that if ¢j(ker D®m,) = 0, then the transverse Conley—Zehnder index
is independent of the choice of path in Z,3 from ~g to 71.

Let (H,J) be Rabinowitz—Floer data for ¢ € Aut(W,\). Set
Y =0W and M =W Uyx [0, +00) x X.

Fix (n,7;) € Z,(X,\|x) and denote by [n] the corresponding class in
mo-ZLp2. Assume that the twisted Rabinowitz action functional Mf is
Morse—-Bott, that is, Crit ;ZZPH C ¥ xR is a properly embedded submani-
fold by Proposition and fix a Morse function h € C*°(Crit MJI ). Define
the twisted Rabinowitz—Floer chain group RFC¥ (X, M) to be the Zs-vector
space consisting of all formal linear combinations

C = Z C("/,T) (’77 7_)
(7,7)€Crit(h)
[v1=[n]

satisfying the Novikov finiteness condition
#{(v,7) € Crit(h) : {(y,r) # 0,42/5(7,7‘) > K} <0 Vi € R.
Define a boundary operator

8: REC# (X, M) — RFC?(, M)

3(7_57—_) = Z nCP(’y:th:t)(’y—i_’T_‘—)a
(v+,7+)eCrit(h)
[vFl=l7]
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where
np(vE, TE) 1= (v, TF) € Lo,
with //lg (vF,7%) denoting the zero-dimensional component of the moduli
space of all unparametrised twisted negative gradient flow lines with cascades
from (y~,77) to (y*, 7). This is well-defined by Theorem Define the
twisted Rabinowitz—Floer homology of ¥ and ¢ by
ker 0

imd "’

RFH? (S, M) :=

Proposition 4.3. Let (W, \) be a Liouville domain with simply connected
boundary ¥ and ¢ € Aut(W, \). If there do not exist any nonconstant twisted
periodic Reeb orbits on X, then

RFHZ (3, M) = H,(Fix(p[n); Z2).
Proof. If there do not exist any nonconstant twisted periodic Reeb orbits,
Crit MWH = {(cz,0) : € Fix(p|n)} = Fix(¢|x)

for any H € Z#,(X). Since Fix(¢|x) is a properly embedded submanifold of
¥ by [19, Problem 8-32] or [22, Lemma 5.5.7], MSDH is a Morse-Bott function.
Let x,y € Fix(p|y). As ¥ is simply connected by assumption, there exists
some path v from = to y in ¥ and a homotopy from v to ¢ o~ with fixed
endpoints. Extend this homotopy to a path in £,% from ¢, to ¢,. Choose
a Morse function h on Fix(¢|y) and any critical point ¢, € Fix(¢|y). Then
we can define a Z-grading of RFC¥ (X, M) by

p((cy,0), (¢z,0)) + indp(cy) = indp(cy) Ve, € Crit(h),
and consequently,
RFHY (X, M) = HM, (Fix(p[z); Z2) = H.(Fix(¢|x); Z2)

as there are only twisted negative gradient flow lines with zero cascades,
that is, ordinary Morse gradient flow lines of h. Indeed, suppose that there
is a nonconstant twisted negative gradient flow line (u,7) of df such that

lim (u(s),7(s)) = (v©,7%) € Crit /.

s—*+oo

Using the twisted negative gradient flow equation we estimate

_ H/ . — _— H
T _T+:'Q{Lp (7 » T )_dtp <7+7T+>
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= lim szf(u(s),T(s))— lim o (u(s),7(s))

§——00 s——+00 ¥
+oc0 I 9
= / lerady ;" ugs).r ol ds
—0o
> 0.
Hence 7+ < 77, contradicting 7+ = 0. U

5. Invariance of twisted Rabinowitz—Floer homology under
twisted homotopies of Liouville domains

Definition 5.1 (Twisted homotopy of Liouville domains). Given
the completion (M, \) of a Liouville domain (Wy,X) and ¢ € Aut(Wy, A),
a twisted homotopy of Liouville domains in M is a time-dependent
Hamiltonian function H € C*°(M x I) such that

(i) W, := H;((—00,0]) is a Liouville domain with symplectic form d\|w,
and boundary ¥, := H,1(0) for all o € 1,

(i) Hy € Z,(Es5) forallo €1,
(ili) ¥s Nsupp f, = @ for all o € I.

Twisted Rabinowitz—Floer homology is stable under twisted homotopies
of Liouville domains. This property is crucial for proving Theorem

Theorem 5.2 (Invariance of twisted Rabinowitz—Floer homology).
If (Hy)ger is a twisted homotopy of Liouville domains such that both DQZPHO
and %le are Morse—Bott, then there is a canonical isomorphism

RFH? (5o, M) = RFH?(S1, M).

Proof. The proof follows from the same adiabatic argument as in [7, p. 275—
277]. Crucial is that [7, Theorem 3.6] remains true in our setting as well
as the genericity of the Morse—Bott condition. Indeed, if (M, \) is an exact
symplectic manifold and ¢ € Diff (M) is of finite order such that p*A = A,
then we have the following generalisation of [7, Theorem B.1]. Adapting the
proof accordingly, one can show that there exists a subset

% C{H € C; (M) :suppdH compact},
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of the second category such that for every H € %, fQZpH is Morse-Bott with
critical manifold being Fix(¢|p-1 (0)) together with a disjoint union of circles.
Again, this works only since the contact condition is an open condition. [

Remark 5.3. Invariance of twisted Rabinowitz—Floer homology allows us
to define twisted Rabinowitz—Floer homology also in the case where %f is
not necessarily Morse—Bott. Indeed, as the proof of Theorem shows, we
can perturb the hypersurface X slightly to make it Morse—Bott. Thus we can
define the twisted Rabinowitz—Floer homology of such a hypersurface to be
the twisted Rabinowitz—Floer homology of any Morse-Bott perturbation.
This is well-defined by Theorem

Corollary 5.4 (Independence). Let p € Aut(W, ) and Hy, H1 € F,(%)
be such that either szfo or 42/511 is Morse—Bott. Then the definition
of twisted Rabinowitz—Floer homology RFH¥ (X, M) is independent of the
choice of a twisted defining Hamiltonian function for .

Proof. Note that .#,(X) is a convex space. Indeed, set
Hgiz(l—O')Ho—l-JHl o€l

Then ¢*H, = H,, dH, has compact support and X |x, = R for all o € I.
Moreover, for the Liouville vector field X € X(M) we compute

d
o o o v = dH(X)|x = dA(X, Xpg)|s = MXn)ls = A(R) =1,
t=0

for any H € #,(¥), and thus H <0 on Int W and H > 0 on M \ W. Con-
sequently, H,1(0) = ¥ and so H, € Z,(X) for all o € I. Hence (H,)per is
a twisted homotopy of Liouville domains in M and Theorem [5.2] implies the
claim. 0

6. Twisted leaf-wise intersection points

Definition 6.1 (Twisted leaf-wise intersection Point). Let (M, \) be
the completion of a Liouville domain (W, \) and let ¢ € Aut(W, \) be a Li-
ouville automorphism. A point x € ¥ is a twisted leaf-wise intersection
point for a Hamiltonian symplectomorphism op € Ham(M,dN), if

@F(x) € Lgo(x) - {(ﬁﬁ(@(x)) e R} :
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Definition 6.2 (Twisted Moser pair). Let ¢ € Aut(W,\). A twisted
Moser pair is defined to be a tuple M := (xH, F'), where

(i) He CX(M), F € C(M x R) and x € C*>°(S', ) such that folx =1.
Any time-dependent Hamiltonian function xH is said to be weakly
time-dependent.

(ii) supp x C (0, %) and Fy =0 for allt € [0, %]

Lemma 6.3. Let ¢ Aut(W,\). For all He Z,(X) and ¢f€
Ham(M, d\) there exists a corresponding twisted Moser pair MM such that
the flow of xXpg is a time-reparametrisation of the flow of Xp.

Proof. For constructing the Hamiltonian perturbation F, fix p € C>(1,1)

such that
0 telo,3],
t =
(1) {1 te[3,1].

See Figure Then define F € Co*(M x R) by
F(z,t):=p(t — k)F (¢ *(x),pt = k))  Vte [k k+1],
for k € Z. See Figure [3b] Then F, = 0 for all ¢ € [0,1], and
LF=eNn Vel

Indeed, we compute

d Xr . d Xr . Xp Xr
@i Pty = PO 3 05ty = P8 (X, 0 0) = XF, 0 035,

In particular

X._

Finally, we have that

t
XXm — qbf(f) with  7(¢) ::/ X-
0

Indeed, we compute

d Xu d Xy Xy
%¢T(t) = X(t)5¢7(t) = x(t)Xu o ¢T(t)u

and thus we conclude by the uniqueness of integral curves. O
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(a) The smooth function p. (b) The derivative p of p.

Figure 3

Twisted leaf-wise intersection points can be detected variationally by the
perturbed twisted Rabinowitz action functional associated with a twisted
Moser pair. This is crucial for the proof of Theorem

Lemma 6.4. Let ¢ € Aut(W,\) and pp € Ham(M,d\) a Hamiltonian
symplectomorphism. If (y,7) € Crit dgﬁ, then x =~y (%) 1s a twisted leaf-
wise intersection point for pp.

Proof. Let 9 = (xH, F') denote the twisted Moser pair from Lemma
Using Proposition [2.9 we compute

S HO) = dH (3 (1)
= dH (7 X,z (7(1)) + X, (7(£)))
=dH(mx(t) Xz (7(t)))
=7x(t)dH(Xg(~(t)))
0

for all ¢t € [07%]. Thus Hoy=c &€ R on [0,%] with

ozfolxmw=/0;><H<v>=c/0;x=c/01x=c.

Consequently, v(0) € L, and = € ¥. Moreover, also v(1) = ¢(7(0)) € ¥ by
the ¢-invariance of H. For t € [$,1], 4 = Xp,(v) and so y(1) = pp(z) € E.
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We conclude
Ly@) = {6 (p(x)) : t € R} = {p(¢]'(z)) : t € R} = o(Ly)
and so pp(z) =7(1) = ¢(7(0)) € Ly(y).- O

Theorem 6.5. Let (W, \) be a Liouville domain with displaceable boundary
in the completion (M, \) and ¢ € Aut(W, X). Then RFH?(X, M) = 0.

Proof. Suppose that X = 0W is displaceable in M via ¢p € Ham.(M, d\)
and choose Rabinowitz—Floer data (H,.J) for ¢. Denote by 9 = (yH, F)
the associated twisted Moser pair from Lemma Then Crit sz/ém = .
Indeed, if there exists (v, 7) € Crit Mgn , then v (3) is a twisted leaf-wise
intersection point for pr by Lemma However, this is impossible as by
displaceability we have that ¢p(X) NX = &. Consequently, the perturbed
twisted Rabinowitz action functional d;m is a Morse function. By adapting
the Fundamental Lemma to the current setting as in [3, Theorem 2.9], the
Floer homology HF(JZf;m) is well-defined. By making use of continuation
homomorphisms we have that

0 = HF (/") = HF (o/X"9)) = RFH? (S, M),

where the last equation is the observation that twisted Rabinowitz—Floer
homology in the autonomous case extends to the weakly time-dependent
case without any issues. Crucial is, that the period—action equality (see
Remark is still valid. Indeed, we compute

AP0 (y,7) = /1’7*)\ = /01 A7) = T/le/\(R(V)) = T/olx =T

0
for all (v, 7) € Crit t;z/é,XH’O). O
7. Existence of noncontractible periodic Reeb orbits
We define an equivariant version of twisted Rabinowitz—Floer homology fol-

lowing [4, p. 487]. Denote by (C™,w) the standard symplectic vector space
with symplectic form

n . n
w ::Zldyj/\dxj = ;Zldzj/\dzj,
j= Jj=
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and coordinates 27 := 27 + iy/. Then w = d\ for

1 n . n

. . . . 17 ) . .
(7.1) )\:—2;(y3d:c]—x3dyj)—4;(zjdz]—zjdzj).

Consider the free smooth discrete action on the odd-dimensional sphere

s¥n-l= {(zl,...,z”) eC": Z]zj]2 = 1}
j=1

generated by the rotation

©:C" = C", p(2,..., 2" = (e%ikl/mzl e%ik"/mz")
form > 1and ky,...,k, € Z coprime to m. Define a twisted defining Hamil-
tonian function H € .Z,(S*"~!) by

H(z) = 5 (8 - 1)

for some sufficiently small mollification of the piecewise linear function

3 7€ (-00 3],
Blry=<r re33],
% TE[%,—I—OO).

Fix a ¢-invariant w-compatible almost complex structure on (C",w). Then
the rotation ¢ induces a free Z,,-action on Crit df and on the moduli space
of twisted negative gradient flow lines with cascades of Mf . Therefore, we
can define Z, -equivariant twisted Rabinowitz-Floer homology

ker ék
im dg 11

RFH; (S Y/Z,,) = Vk € Z,

as the homology of the Z-graded chain complex (see Remark
Jx: RFCY(S**1,C")/Zy, — RFCY_(S*"1,C") /L,

given by
Ol(v, 7)) = [Ok(y,7)]  (7,7) € Crith,

for some (p-invariant Morse function h on Crit ;zif .
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Theorem 7.1. Let n > 2. For m > 1 consider the rotation
e: C" = C", p(2h...,2") = (e%ikl/mzl, NN e%ik"/mz”)
forkyi,... k, €Z coprime to m. Then

Zo m even,
0 m odd,

RFH; (S*"Y)Z,,) = { Vk € Z.

If m is even, then RFH] (S*"~1/Z,,) is generated by a noncontractible peri-
odic Reeb orbit in the lens space S?" = /7y, for all k € Z.
Proof. First we consider the special case

©: c" - (Cn’ (,0(2) — 627ri/mz.

The hypersurface S?*~1 C (C", d)) is of restricted contact type with contact
form Algzn—1 and associated Reeb vector field

;0 ;0 0 0
- A N —9 (s — =
R=2 (y 9~ 8yj> . 2 (Zaz Z@z)

Suppose (v, 7) € Crit Mf . If 7 =0, then ~ is constant. This cannot happen
as Fix(plgzn-1) = &. So assume 7 # 0. Define a reparametrisation

§2n—1

YRSy () = A (t/7).
Then ~, is the unique integral curve of R starting at z := ~(0) and thus
v (t) = e 2, vVt e R.
From ~y(t) = v,(7t) and the requirement
ez = (1) = 9(1(0) = p(z) = Mz,
we conclude 7 € 7-(mZ — 1). Hence
Crit Jzsz = {(qﬁT"R(z), Tk) keZ,ze SQn_l} ~ §2n-1 7,
for any H € Z,(S*~1), where

T
= —(mk —1).
Tk m(m )
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By Proposition m (20,m) € T,S?"~1 x R belongs to the kernel of the
Hessian at (z, k) € Crit ﬂff if and only if n = 0 and

20 € ker (D(¢f. 0 ¢)|, —idg.gem1) .
A direct computation yields D(¢f, o ¢)|, = idz g2 and thus
T\, k) Crit JZZPH = T,S*" 1 x {0} = ker Hess essz\(z’k).

So the twisted Rabinowitz action functional JZZPH is Morse—Bott with spheres.
The full Conley—Zehnder index [10, Definition 10.4.1] gives rise to a
locally constant function

ficz: Crit e/l —Z,  [i(z,k) = (2k — 1)n.

Note that the definition of the Conley—Zehnder index also applies in this
degenerate case, compare [10, Remark 10.4.2]. By the adapted proof of the
Hofer-Wysocki-Zehnder Theorem [10, Theorem 12.2.1] to the n-dimensional
setting, the full Conley—Zehnder index coincides with the transverse Conley—
Zehnder index pcyz. Indeed, for (v, 7) € Crit ;sz define a smooth path

U:1—Sp(n), U :=Del|,p: C"—C"
Adapting the proof of [10, Lemma 12.2.3 (iii)], we get that
Ui(R(v(0))) = R(»(1))  and  W1(y(0)) = ~(1).
Arguing as in [10, p. 235-236] we conclude
pez(y, 7) = hez(y, 7).

Fix 2o € S~ ! and define 1 := ¢™(2). Note that ¢™%(z) belongs to
the same equivalence class in WOOZOS?”_I as 7 for all z € S ! and k € Z
because S?"~! is simply connected for n > 2. Let h € C*®°(S?*"~!) be the

standard height function. By Remark RFH?(S?"~1,C") carries the Z-
grading

w((z,k), (20,0)) +indp,(2) = 2kn +indj,(2)  V(z,k) € S 1 x Z.

We claim that the number of twisted negative gradient flow lines between
the minimum of S?*~! x {k + 1} and the maximum of S**~! x {k} must
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be odd, so that the critical manifold Crit JZZPH looks like a string of pearls,
see Figure [4l Indeed, if there is an even number of such negative gradient
flow lines, then RFHY (S?"~1, C") # 0, contradicting Theorem as S?n—1
is displaceable in the completion C™.

To compute the Z,,-equivariant twisted Rabinowitz—Floer homology,
choose the additional Z,,-invariant Morse-Bott function

n
FrSUR, f(E 2 =Y g1
j=1

on each component of Crit ,Q{f . It is easy to check that f is Morse-Bott
with circles. Additionaly, choose a Z,,-invariant Morse function on Crit f.

=

X
Y

VAN

2

YN X\
‘S0
NN\

\/
XX
IR

)
X

VA

(OHOA

Figure 4. The critical manifold S**~! x Z with the standard height function,
the Morse—Bott function f and the resulting chain complex.
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For example, one can take
h: St - R, h(t) := cos(2mmt).
The resulting chain complex is given by

m 1 m A\ m 1 N m A m ]1\ m

v

where 1 € M,,»«m(Z2) has every entry equal to 1 and A € My,xm(Zs) is
defined by

m—1

A= Ipxm + Z €(+1)j + e1m,

j=1
where e;; € Myxm(Z2) satisfies (ej;)r = 0ix0j. Thus the resulting chain
complex looks like a rope ladder. Compare Figure

Passing to the quotient via the free Z,,-action, we get the acyclic chain

complex

ZQ 0 >Zg 0 ZQ 0 >Zg

~

if m is even and the alternating chain complex

Z2 ! Z2 0 ZQ 1>Z2 O>ZQ 1>ZQ

~

if m is odd. From this the statement follows in the special case.
For the general case, we note that

C" x [0,1] - C", ws(2l, ..., 2") = (62”“’“1/7”21, ... ,eZWiSk”‘/mz")

is a smooth path from ¢y = id¢» to ¢ = ¢. By adapting the proof of [25]
Lemma 2.27], we get an isomorphism of chain complexes

RFC(S*"1,C") = RFC# (S, Cn).

This isomorphism does not necessarily preserve the grading, but the relative
Conley—Zehnder index is preserved. Note that also f is invariant under @,
for all s € [0,1]. It is no problem to allow twists ¢, of infinite order as the
standard Reeb flow on S?"~! is periodic. Consider the torus action

T x C* = C", (61,...,0,)(2%,...,2") = (egmelzl,...,ezmenz") :

Since the torus T" is abelian, we have that the Z,,-action induced by ¢
and the different twists along the path (¢5) se[0,1] commute. Thus we get an
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isomorphism of the Z,,-equivariant chain complexes and consequently
RFH? (S*"1/Z,,) = RFHZ~ (S?"~1 C™),

where RFHZ™ denotes the Z,,-equivariant Rabinowitz-Floer homology con-
structed in [4, p. 487]. Performing the same computation of the latter ho-
mology as before in the special case yields

Zs m even,
0 m odd,

RFHZ(S*~1 Cm) = { Vk € 7.

Finally, RFH] (S**~!/Z,,) is generated by a noncontractible periodic
Reeb orbit in §?"~1/Z,, for all k € Z by Lemma O

For an immediate algebraic corollary recall the definition of Tate co-
homology [26] Definition 6.2.4] and Tate homology [6, p. 135]. For a more
general result see [24, Theorem 5.6].

Corollary 7.2 (Tate homology). Let C,, denote the cyclic group of order
m > 1. Then for the trivial left Cy,-module Zo we have that

RFH] (S )Z) 2 Hy(Cn; Zo) Yk € Z,

where ﬁ*(Cm;Zg) denotes the Tate homology group of Cy, with coefficients
in the trivial left C,,-module Zo.

Proof of Theorem[I.3. By assumption, ¥ bounds a star-shaped domain D
with respect to the origin. Thus (D UX, ) is a Liouville domain with A
given by (7.1)). By rescaling we may assume that S?»~! C D. Define a smooth
function

0: % — (—00,0)

by requiring d(x) to be the unique number such that qﬁgix) (r) €S> L xey,

where
1 .0 .0
X:* ]7, ‘77.
2 <x OxJ ty 8yﬁ>

denotes the Liouville vector field. We claim that 6 o ¢ = §. Indeed, §(¢(x)) is
the unique number such that qbgi ¢(x)) € S?~1. As the flow of X and ¢

(
o(x
commute by the proof of Lemma we conclude that qﬁg(( @(x))(ac) € st
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Define a smooth family of star-shaped hypersurfaces (X4)scr
Yo i= {qﬁf&(m)(x) cxeX}CC™
Then we compute

0(Bs) = {80 (Qbfg(w)(f)) HERS E}
= {050 (p(2)) 1z € 2}
= {¢§5(¢(z))(ﬁp($)) tx € N}
= {¢i%(y)(y) NS 80(2)}
= {¢;%(y)(y) y e X}
-y,

for all o € I and therefore we can find a twisted homotopy (H,)secs of Li-
ouville domains in C". By Theorem [5.2] we have that

RFHZ (X, C") = RFHZ(S*"~1,C"),

giving rise to a canonical isomorphism of the associated Z,-equivariant
twisted Rabinowitz—Floer homology

RFH? (X/Z,) = RFHL (S Y/ Z,,).

Indeed, this follows from observing that the standard continuation homo-
morphism [7, p. 276] is Z,,-invariant and thus descends to the quotient. But
by Theorem the latter homology does not vanish as m > 2 is even. [
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Appendix A. Twisted loop spaces

In this Appendix, we will consider the category of topological manifolds
rather than the category of smooth manifolds, because smoothness does not
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add much to the discussion. Free and based loop spaces are fundamental
objects in Algebraic Topology, for a vast treatment of the geometry and
topology of based as well as free loop spaces see for example [16]. But so-
called twisted loop spaces are not considered that much.

Theorem A.1 (Twisted loops in universal covering manifolds). Let
(M, z) be a connected pointed topological manifold and w: M — M the uni-
versal covering.

(a) Fiz [n] € m(M,z) and denote by U, C L (M,x) the path component
corresponding to [n] via the bijection wo(L (M, x)) = w1 (M, x). For ev-
ery e,e € 1 (z) and p € Aut (M) such that o(e) = 7e(1), where 7,
denotes the unique lift of n with 7.(0) = e, we have a commutative
diagram of homeomorphisms

~ Ly ~
fw(M, 6) e > ‘iﬂﬂﬂowodfl (M, e’)

(A1) '/ql\ -

Uy,

where 1 € Auty (M) is such that i(e) = €/,
L¢2 g¢(M,6) — gq/,mpod,—l(M,el), Ld,(")/) = ¢O’y7
and

W, : Un—>$¢(]\~4,€), \Ije('y) = Ye,
U, : U77 — "S’ﬂT/’O@Ow_l (M, 6/), U, (’7) = e
Moreover, U,, = L@(M,e) via W if and only if ¢ =id,;, where c;
denotes the constant loop at x.
(b) For every ¢ € Aut;(M) and e, e’ € 7~ (x) we have a commutative di-

agram of isomorphisms

C P

Aut, (M) s Aut (M)

Wl(va)a
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where for v € Auty (M) sucht that i(e) = €
Cy: Auty (M) — Autr (M), Cy(p) i=topory™

and

O Fl(Max) — Autﬂ(M)7 @6([7]) = gpfy]?
P 7'['1(]\4a I) - Autﬂ(M)v @6/([’)/]) = 30[6';]’

with ¢f 1(€) = Fe(1) and ap[e;](e’) = (1).
(c) The projection

Tyt H Zo(M,e) — £L(M, )

pEAut, (M)
een 1 (z)

defined by 7, (y) := m o 7y is a covering map with number of sheets coin-
ciding with the cardinality of m (M, x). Moreover, T, restricts to define
a covering map

ﬁx’id]\;[: H X(M,G)AUCN
ecm—1(x)
and 7, gives rise to a principal Aut, (M)-bundle. If M admits a smooth
structure, then this bundle is additionally a bundle of smooth Banach
manifolds.

Proof. For proving part (a), fix a path class [y] € m1(M, z). As any topologi-
cal manifold is Hausdorff, paracompact and locally metrisable by definition,
the Smirnov Metrisation Theorem [23, Theorem 42.1] implies that M is
metrisable. Let d be a metric on M and d be the standard bounded metric
corresponding to d, that is,

d(w,y) = min{d(z,y),1}  Va,ye M.

The metric d induces the same topology on M as d by [23, Theorem 20.1].
Topologise the based loop space Z(M,z) C LM as a subspace of the free
loop space on M, where £ M is equipped with the topology of uniform



150 Yannis Bahni
convergence, that is, with the supremum metric

doo(7,7) = tsuspd(v(t),v’(t)) Vv, € L M.
E 1

There is a canonical pseudometric on the universal covering manifold M
induced by d given by d o 7. As every pseudometric generates a topology,
we topologise the based twisted loop space .32{0(]\;[ ,e) C PM as a subspace
of the free path space on M for every e € 7~ 1(x) via the supremum metric
dso corresponding to d o . In fact, dog is a metric as if dso (7, v') = 0, then
by definition of dss we have that 7(v) = 7(v'). But as 4(0) = e = 7/(0), we
conclude v = 7/ by the unique lifting property of paths [I7, Corollary 11.14].
Note that the resulting topology of uniform convergence on .7, (]\7[ ,€) coin-
cides with the compact-open topology by [23, Theorem 46.8] or [13], Propo-
sition A.13]. In particular, the topology of uniform convergence does not
depend on the choice of a metric (see [23, Corollary 46.9]). It follows from
[17, Theorem 11.15 (b)], that ¥, and ¥, are well-defined. Moreover, it is
immediate by the fact that the projection 7: M — M is an isometry with
respect to the above metric, that ¥, and W, are continuous with continu-
ous inverse given by the composition with 7. It is also immediate that Ly, is
continuous with continuous inverse Ly,-1.
Next we show that the diagram commutes. Note that

noLyoW,=moW¥,=idy, =mo ¥,
thus by
(Ly © We(7))(0) = 1(7(0)) = ¢p(e) = €’ = Fer(0) = Ver(7)(0)
and by uniqueness it follows that
LyoW¥,=U,.
In particular
Wer(1) = (Ly o We)(1) = v(w(e)) = (o ov™h)(e),

and thus W (7) € Lyogop-1 (M, ¢'). Consequently, the homeomorphism U,
is well-defined.
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Recall, that by the Monodromy Theorem [I7, Theorem 11.15 (b)]

vy g We(v)(1) = \I}e(’yl)(l)

for all paths v and 7/ in M starting at = and ending at the same point.
Note that the statement of the the Monodromy Theorem is an if-and-only-if
statement since M is simply connected.

Suppose v € Z (M, x) is contractible. Then v ~ ¢, implying e € Fix(y).
But the only deck transformation of 7 fixing any point of M is id i by 17,
Proposition 12.1 (a)].

Conversely, assume that v € 2 (M, ) is not contractible. Then we have
that U.(y)(1) # e. Indeed, if U.(y)(1) = e, then v =~ ¢, and consequently, v
would be contractible. As normal covering maps have transitive automor-
phism groups by [I7, Corollary 12.5], there exists 1) € Aut, (M) \ {id 17} such
that W, (7)(1) = v(e).

For proving part (b), observe that ®. and ®. are isomorphisms follows
from [I7, Corollary 12.9]. Moreover, it is also clear that Cy, is an isomorphism
with inverse Cy-1. Let [y] € w1 (M, z). Then using part (a) we compute

0 ®.[y] 04 )(¢)
()

(36(1))

D)

(Cy 0 Pe)[Y](€)

I
<

|
=52
o §m
< =

[
=
('B\
—
2
N—
—~
=
N—

I
N
('U\
—
—
. ~—

I
SRS
®
=)
-~
.

I
j(‘b
—

Thus by uniqueness [17, Proposition 12.1 (a)], we conclude
CTZ} 9] q)e = q)e"
Finally for proving (c), define a metric du, on

E = H Z,(M,e)
pEAut, (M)
ecn!(x)
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doo 7, 7/) = 1 else

- {Joo (r(1),7(Y)) 1 € Zo(M,e),

Then the induced topology coincides with the disjoint union topology and
with respect to this topology, 7, is continuous. So left to show is that 7, is
a covering map. Surjectivity is clear. So let v € Z(M, ). Then v € U, for
some [n] € m (M, x). Now note that U, is open in .Z (M, z) and by part (a)
we conclude

(A2) %;I(Un) = H fwmpow—l (M7 11}(6))
wEAut, (M)

for some fixed e € 7~ (z) and ¢ € Aut, (M) such that ¢(e) = 7.(1).

As the cardinality of the fibre 71 (z) and of Aut, (M) coincides with the
cardinality of the fundamental group (M, x) by [17, Corollary 11.31] and
part (b), we conclude that the number of sheets is equal to the cardinality
of the fundamental group (M, z).

Equip Aut, (M) with the discrete topology. As the fundamental group
of every topological manifold is countable by [I7, Theorem 7.21], we have
that Aut,(M) is a discrete topological Lie group. Now label the distinct
path classes in 71 (M, x) by 8 € B and for fixed e € 7~ !(z) define local triv-
ialisations

(Fay05): 75 ' (Ug) = Us x Auty (M),

making use of (A.2) by
ag(y) =1,
whenever ~ € fwwowl(]\;[ ,¥(e)). Consequently, 7, is a fibre bundle with

discrete fibre Aut,(M) and bundle atlas (Ug, ag)gep. Define a free right
action

E x Aut.(M) — E, voEi=¢ton.

Then ag is Aut,(M)-equivariant with respect to this action for all g € B.
Indeed, using again the commutative diagram (A.1)) we compute

as(v-€) =ag(€loy)= (€ oy) =yl ot =ag(y) ot

for all £ € Aut,(M) and v € Lyogop-1(M,1(e)). Note, that here we use
again the fact that Aut, (M) acts transitively on the fibre 7~ (x).

Suppose that M admits a smooth structure. Then for every compact
smooth manifold N we have that the mapping space C(N, M) admits the
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structure of a smooth Banach manifold by [27]. By [16, Theorem 1.1 p. 24],
there is a smooth fibre bundle, called the loop-loop fibre bundle,

L(M,z) = LM =% M

where
evp: LM — M, evo(y) :=~v(0).

Thus the based loop space .Z(M,z) = evy ' (x) on M is a smooth Banach
manifold by the implicit function theorem [21), Theorem A.3.3] for all x € M.
Likewise, by [16, Theorem 1.2 p. 25], there is a smooth fibre bundle, called
the path-loop fibre bundle,

L(M,e) — P(M,e) =5 M,

where
P (M, e):={yeC(,M):~(0) =e}
denotes the based path space and

evi: P(M,e) — M, evi(y) :=~(1).

Therefore, the twisted loop space .Z,(M,e) = evy *(p(e)) is also a smooth
Banach manifold for all ¢ € Aut,(M) and e € 7~ (z) by the implicit func-
tion theorem [21l, Theorem A.3.3]. As the fundamental group (M, ) is
countable, the topological space E has only countably many connected com-
ponents being smooth Banach manifolds and thus the total space itself is a
smooth Banach manifold. Finally, Aut,(M) is trivially a Banach manifold

with dim Aut, (M) = 0 as a discrete Lie group. l

Corollary A.2. Let (M, x) be a connected pointed topological manifold and
denote by m: M — M the universal covering of M. Assume that m (M, x)
1s abelian.

(a) Fiz a path class [n] € m(M,z). For every e,e’ € n='(z) and deck
transformation ¢ € Autz(M) such that p(e) = 7.(1), we have a com-
mutative diagram of homeomorphisms

Z,(M, e) b 2,0,

Uy,
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where 1) € Autz(M) is such that (e) = ¢'.
(b) For every ¢ € Auty(M) we have that ®, = O, for all e,e’ € 7~ (x).

Lemma now follows from part (a) of Theorem m Indeed, by as-
sumption ¢ € Aut,(X) \ {ids} and using the long exact sequence of homo-
topy groups of a fibration [I3, Theorem 4.41], there is a short exact sequence

0 — mE,2) — m(E/Zp, () — 70(Zm) — 0.
In particular, by [I7, Corollary 12.9] we conclude
Aut,(2) 2 11 (2)Z, w(x)) = Zyy, = {ids, @, ..., " 1.

Finally, we discuss a smooth structure on the continuous free twisted
loop space of a smooth manifold.

Lemma A.3. Let M be a smooth manifold and ¢ € Diff(M). Then the
continuous free twisted loop space L,M is the pullback of

(evo,evi): PM — M x M, v+ (v(0),7(1)),

where we abbreviate M = C(I, M), along the graph of ¢
Ly: M — M x M, Fy(x) = (x, p(x)),

in the category of smooth Banach manifolds. Moreover, we have that

T, %,M = {X € I°("TM) : X(1) = D(X(0)))
for all v € Z,M.
Proof. Write f := (evg,evy). Then

LM = fLT (M),

Thus in order to show that the free twisted loop space .Z,M is a smooth
Banach manifold, it is enough to show that f is transverse to the properly
embedded smooth submanifold I', (M) C M x M. By [I5, Proposition 2.4]
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we need to show that the composition
Df,
q)fyl TVQM — T(ac,cp(x))(M X M) — T(x,go(:c))(M X M)/T(x,ap(a:))l—‘go(M)

is surjective and ker @, is complemented for all v € f~1(I',(M)), where we
abbreviate z := 7(0). Note that we have a canonical isomorphism

T(x,(p(a:)) (M X M)/T(;E,Lp(x))rsﬂ(M) - Tgo(x)Ma [(U7 u)] =U = D(p(’U)
Under this canonical isomorphism, the linear map @, is given by
0,(X) = X(1) = Dg(X(0)), VX € [%(y"TM).

Fix a Riemannian metric on M and let X, € T'(y*T'M) be the unique parallel
vector field with X, (1) = v € T,(,) M. Fix a cutoff function 8 € C*°(I) such
that supp 8 C [%, 1] and 3 =1 in a neighbourhood of 1. Then ®,(8X,) = v
and consequently, ®, is surjective. Moreover

ker &, = {X € T9(y*TM) : X(1) = Dp(X(0))}
is complemented by the finite-dimensional vector space
Vi={BX, eT(y"TM):v €T, M}.
Indeed, any X € I'%(y*TM) can be decomposed uniquely as
X =X - BX, + Xy, v:=X(1) — Dp(X(0)).
Abbreviating Y := X — X, € I'%(y*T M), we have that
Y (1) = Do(X(0)) = D (Y (0)),

implying Y € ker ®,. Thus £, M is a smooth Banach manifold.
Now note that £, M can be identified with the pullback

fTPM ={(z,7) € M x ZM : (7(0),~(1)) = (, ¢(x))},

making the diagram
freM 22 M

prli if

MF—>M><M
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commute, via the homeomorphism

LM — f*PM, v (7(0),7).

Finally, one computes

Ty f*PM = {(v,X) € TM x Ty PM : Df,X = DTy 4(v)}

for all (z,v) € f*ZM. O

Remark A.4. Using Lemma one should be able to prove similar results
as in Theorem in the case of free twisted loop spaces. However, in the
non-abelian case the situation gets much more complicated as in general it
is not true, that lifts of conjugated elements of the fundamental group lie in
the same free twisted loop space by [16, Theorem 1.6 (i)].
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