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Anti-diagonal toric generalized Kähler (GK) structures of symplec-
tic type on a compact toric symplectic manifold were investigated
in [18] . In this article, we consider general toric GK structures of
symplectic type, without requiring them to be anti-diagonal. Such
a structure is characterized by a triple (τ, C, F ) where τ is a strictly
convex function defined in the interior of the moment polytope ∆
and C,F are two constant anti-symmetric matrices. We prove that
underlying each such a structure is a canonical toric Kähler struc-
ture I0 whose symplectic potential is given by this τ . Conversely,
given a toric Kähler structure with symplectic potential τ and two
anti-symmetric constant matrices C,F , the triple (τ, C, F ) then
determines a toric GK structure of symplectic type canonically if
F satisfies additionally a certain positive-definiteness condition.
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1. Introduction

Generalized Kähler (GK) structures in generalized complex (GC) geometry
are a generalization of Kähler structures in complex geometry. M. Gualtieri
proved in [10] a remarkable result that such a structure is equivalent to the
biHermitian structure first recognized by physicists trying to find the most
general 2-dimensional N = (2, 2) supersymmetric σ-models [9].

Compared with Kähler geometry, GK geometry is still not a well-
developed discipline and even constructing a nontrivial GK structure needs
some effort. Perhaps it helps to study some simple examples first. In Kähler
geometry, toric Kähler structures are well-understood mainly through the
work of V. Guillemin [12] and M. Abreu [1]. A toric Kähler structure can
be efficiently described by a strictly convex function τ (called symplectic
potential) defined in the interior ∆̊ of the moment polytope ∆. Often toric
Kähler structures provide computable examples to shed some light on ab-
stract ideas in Kähler geometry. The basic goal of [3, 18] and this article as
well is to extend the Abreu-Guillemin theory to the context of GK geometry.
We hope this study would provide interesting yet simple examples for GK
geometry.

In [3] L. Boulanger started to study toric GK structures of symplectic
type on a compact toric symplectic manifold (M,Ω,T, µ) (T is a torus acting
on M in an effective and Hamiltonian fashion, µ the moment map and the
symplectic form Ω provides one of the two underlying GC structures); in
particular, he identified a special class of such structures called anti-diagonal
ones and found that each such a structure can be characterized by a pair
(τ, C), where τ is again a strictly convex function on ∆̊ and C is an anti-
symmetric constant matrix.

Anti-diagonal toric GK structures of symplectic type were further ex-
plored in [18]. It was found that the above τ is always the symplectic po-
tential of a canonically associated toric Kähler structure and C provides a
holomorphic Poisson structure β such that the other GC structure besides
the symplectic one is induced from this β up to B-transform. In this article,
we continue to study toric GK structures of symplectic type that are not
necessarily anti-diagonal. Note that a key ingredient in the approach of [18]
towards anti-diagonal toric GK structures of symplectic type is to realize
that the T-action is strong Hamiltonian in the sense of [17] and thus can
be generalized complexified. However, for the most general case, the torus
action fails to be strong Hamiltonian and the geometry becomes much more
complicated.
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It turns out in this article that a general toric GK structure of symplectic
type can be characterized by a triple (τ, C, F ), where τ is the symplectic
potential of a canonically associated toric Kähler structure and C,F are
two constant anti-symmetric matrices. If F = 0, we specialize to the anti-
diagonal case, and if C = F = 0, this is the classical toric Kähler case. The
role of this new matrix F needs to be clarified. Note that µ : M̊ → ∆̊ is a
trivial principal T-bundle over ∆̊ where M̊ = µ−1(∆̊). While for the anti-
diagonal case only one flat connection on M̊ is involved, in the general case
three flat connections arise naturally and are related to each other by F . If
we interpret F as a deformation of the canonically associated toric Kähler
structure, it can be imagined that before deformation, the three connections
coincide and as the deformation starts, they become separated: one of them
stays unchanged and the other two change in opposite directions.

To understand the different roles of C and F properly, let us resort to a
simplified picture. Imagine how one defines a linear complex structure I in
a real vector space V . He can choose a basis {fi} of V and a certain matrix
A claimed to be the matrix form of I w.r.t. {fi}. Now if he is to deform I to
obtain new ones, then there are basically two ways to achieve this: on one
side he can fix {fi} and deform A, while on the other side, he can also fix A
but deform the basis {fi}. If we interpret C, F as small deformations of the
canonical complex structure, then C corresponds to the first way and F to
the second. This explanation will be much clearer in the main body of this
article.

The above investigation suggests the possibility of constructing toric
GK structures from toric Kähler structures by inputting additionally two
constant matrices C and F . In this aspect, C and F again behave very
differently. To realize this construction, there is no requirement on the mag-
nitude of C and all feasible C’s form a real linear space, but F must satisfy
a further positive-definiteness condition and all possible F ’s only constitute
a bounded set.

The article is organized as follows. § 2 is a modest review of the neces-
sary background on GC geometry. § 3.1 is a brief account of Abreu-Guillemin
theory and its generalization in [3, 18]. Our study on general toric GK struc-
tures of symplectic type actually starts from § 3.2. Basing on some essential
remarks on a result in [18], we formulate our main theorem Thm. 3.3. The
proof of this theorem is divided into the following two sections § 4, § 5.
Besides the proof, the two sections also contain some detailed information
towards understanding the underlying geometric structures. § 6 contains an
explicit example on CP 1 × CP 1 to demonstrate how a toric GK structure
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of symplectic type can be constructed from a toric Kähler structure and the
two additional constant matrices.

2. GK structures of symplectic type

In this section, we collect the most relevant material from GC geometry.
Our basic references are [10, 11].

A Courant algebroid E is a real vector bundle E over a smooth manifold
M , together with an anchor map π to TM , a non-degenerate inner product
(·, ·) and a so-called Courant bracket [·, ·]c on Γ(E). These data should satisfy
some compatibility axioms we won’t review here. E is called exact, if the
short sequence

0 −→ T ∗M
π∗

−→ E
π−→ TM −→ 0

is exact. We only deal with exact Courant algebroids throughout this
article. Given E, one can always find an isotropic right splitting s :
TM → E, with a curvature form H ∈ Ω3

cl(M) defined by H(X,Y, Z) =
([s(X), s(Y )]c, s(Z)), where X,Y, Z ∈ Γ(TM). By the bundle isomorphism
s+ π∗ : TM ⊕ T ∗M → E, the Courant algebroid structure can be trans-
ported onto TM ⊕ T ∗M . Then the inner product (·, ·) is the natural pair-
ing, i.e. (X + ξ, Y + η) = ξ(Y ) + η(X). Different splittings are related by
B-tranforms: eB(X + ξ) = X + ξ +B(X), where B is a 2-form.

Definition 2.1. A GC structure on a Courant algebroid E is a com-
plex structure J on E orthogonal w.r.t. the inner product and its

√
−1-

eigenbundle L ⊂ EC is involutive under the Courant bracket. We also say J

is integrable in this case.

For H ≡ 0, ordinary complex and symplectic structures are extreme ex-
amples of GC structures. Precisely, for a complex structure I and a sym-
plectic structure Ω, the corresponding GC structures are of the following
form:

JI =

(

−I 0
0 I∗

)

, JΩ =

(

0 Ω−1

−Ω 0

)

.

A nontrivial example beyond these is provided by a holomorphic Poisson
structure: Let β be a holomorphic Poisson structure on a complex manifold
(M,J). Then

Jβ =

(

−J −4Imβ
0 J∗

)

is a GC structure, where Imβ is the imaginary part of β.
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Definition 2.2. A generalized metric on a Courant algebroid E is an or-
thogonal, self-adjoint operator G such that (G·, ·) is positive-definite on E.

G induces a canonical isotropic splitting: E = G(T ∗M)⊕ T ∗M , called
the metric splitting. Given a generalized metric, we shall always choose
its metric splitting to identify E with TM ⊕ T ∗M . Then G is of the form
(

0 g−1

g 0

)

for a Riemannian metric g. A generalized metric is an ingredi-

ent of a GK structure.

Definition 2.3. A GK structure on E is a pair of commuting GC structures
(J1, J2) such that G := −J1J2 is a generalized metric.

A GK structure can be reformulated in many different ways, the basic
of which is the biHermitian one: There are two complex structures J± onM
compatible with the metric g induced from the generalized metric. Let ω± =
gJ±. Then in the metric splitting the GC structures and the corresponding
biHermitian data are related by

J1 =
1

2

(

−J+ − J− ω−1
+ − ω−1

−
−ω+ + ω− J∗

+ + J∗
−

)

,

J2 =
1

2

(

−J+ + J− ω−1
+ + ω−1

−
−ω+ − ω− J∗

+ − J∗
−

)

.

Note that β1 := −1
2(J+ − J−)g

−1 and β2 := −1
2(J+ + J−)g

−1 are real Pois-
son structures associated to J1 and J2 respectively. As was noted by N.
Hitchin [14], there is a third Poisson structure β3 =

1
8 [J+, J−]g

−1, which is
the common imaginary part of a J+-holomorphic Poisson structure β+ and
a J−-holomorphic Poisson structure β−.

If J2 is a B-transform of a GC structure JΩ induced from a symplec-
tic form Ω, the GK manifold (M, J1, J2) is said to be of symplectic type. It
is known from [8] that for a given symplectic manifold (M,Ω), compatible
GC structures J1 which, together with a B-transform of JΩ, form GK struc-
tures onM are in one-to-one correspondence with tamed integrable complex
structures J+ on M whose symplectic adjoint JΩ := −Ω−1J∗

+Ω is also inte-
grable. This fact greatly facilitates the study of such structures. Precisely, if
we set

1

2

(

−J+ + J− ω−1
+ + ω−1

−
−ω+ − ω− J∗

+ − J∗
−

)

=

(

1 0
−b 1

)(

0 Ω−1

−Ω 0

)(

1 0
b 1

)

,
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then the following basic identities can be easily obtained:

(2.1) J− = JΩ
+ = −Ω−1J∗

+Ω, g = −1

2
Ω(J+ + J−), b = −1

2
Ω(J+ − J−).

Recall that tameness of J+ means that the symmetric part of −ΩJ+ is a
Riemannian metric on M . Since

(J+ + J−)(J+ − J−) = −(J+ − J−)(J+ + J−) = −[J+, J−],

one can easily derive in this setting that β3 = −1
4(J+ − J−)Ω

−1.

3. The main theorem

3.1. Abreu-Guillemin theory and Boulanger’s generalization

Let us recall briefly the Abreu-Guillemin theory and its generalization in
[3, 18] first.

Definition 3.1. A toric symplectic manifold (M,Ω,T, µ) of dimension 2n
is a symplectic manifold (M,Ω) with an effective and Hamiltonian action of
the n-dimensional torus T = Tn. Here µ is the moment map.

Let (M,Ω,T, µ) be a compact toric symplectic manifold and t ∼= Rn the
Lie algebra of T. By the convexity theorem of Atiyah-Guillemin-Sternberg
[2, 13], the image ∆ of µ is a polytope in t

∗ = (Rn)∗, i.e. the convex hull of
the image of fixed points. ∆ is called the moment polytope. Delzant’s famous
theorem says that compact toric symplectic manifolds are classified by their
moment polytopes up to equivariant symplectomorphism [6]. Polytopes in
this classifying scheme are called Delzant polytopes.

Given (M,Ω,T, µ) as above, Guillemin in [12] showed that compatible
T-invariant Kähler structures are also determined by data specified on ∆.
The following is a sketch of the basic ideas.

Let ∆̊ be the interior of ∆. Then the open dense subset M̊ := µ−1(∆̊)
consists of points at which T acts freely. Topologically, µ : M̊ → ∆̊ is a trivial
principal T-bundle over ∆̊. Denote the set of T-invariant complex structures
on M compatible with Ω by KT

Ω(M), i.e. the set of toric Kähler structures.
Let I ∈ KT

Ω(M) and {Xj} be the fundamental vector fields associated to a
fixed integral basis {ej} ⊂ t. Then {Xj , IXj} is a global frame of TM̊ and
the Lie bracket of any two vector fields in this frame vanishes. Let {ζj , ϑj} be
the dual frame on T ∗M̊ . Then dζj = dϑj = 0 and thus locally ζj = dθj and
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ϑj = duj . θj +
√
−1uj are then local holomorphic coordinates of M̊ . Since

{ϑj} and {dµj} determine the same integrable Lagrangian distribution D
generated by those Xj ’s, these uj ’s are functions depending only on µ, i.e.

(3.1) duj = −
n
∑

k=1

ϕjk(µ)dµk,

or 1

(3.2) I∗
(

dθ
dµ

)

=

(

0 ϕ
−ϕ−1 0

)(

dθ
dµ

)

.

These θj , µj are Darboux coordinates, i.e. on M̊ , Ω =
∑n

j=1 dµj ∧ dθj .
Compatibility of I with Ω forces the matrix ϕ = (ϕjk) to be symmetric

and positive-definite, and integrability of Eq. (3.1) implies that ϕ ought
to be the Hessian of a function τ on ∆̊, or in other words τ is strictly
convex. τ is called the symplectic potential of the invariant Kähler structure
I, providing a useful computational tool in examining geometric ideas in
Kähler geometry. The argument can go in the converse direction: a strictly
convex function τ on ∆̊ can be used to construct a toric Kähler structure on
M̊ . However, to extend the structure smoothly to the whole of M requires
τ to satisfy the so-called Guillemin boundary condition. In [7], Donaldson
formulated this condition as follows:

• (a) τ is continuous on ∆ and smooth in ∆̊.

• (b) The restriction of the Hessian ϕ of τ to each (open) face is smooth
and positive-definite.

• (c) Let p be a boundary point lying on a co-dimension r (open)
face of ∆, and w.l.g., assume p = 0 and ∆ is locally defined by x1 >
0, · · · , xr > 0. Then near p, τ =

∑r
i=1 xi lnxi + v where v is smooth.

Let ∆ be the Delzant polytope of (M,Ω,T, µ). Associated with ∆ is a
canonical toric Kähler manifoldM∆ [6], whose symplectic potential is totally
determined by the linear data defining ∆ [12]. If ∆ in t

∗ = (Rn)∗ is defined

1As a convention, we have written dθj ’s or dµj ’s in a column. Similar notation is
used below.
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by

lj(x) := (uj , x)− λj ≥ 0, j = 1, 2, · · · , d

where the linear equations lj(x) = 0 define faces of codimension 1 of ∆
and d is the number of such faces, then the symplectic potential of M∆ is
the Guillemin function τ∆(x) =

1
2

∑d
j=1 lj(x) ln lj(x). In these terms, Abreu

formulated the Guillemin boundary condition as follows [1]:

• (d) τ − τ∆ is smooth on ∆.

• (e) The Hessian ϕ of τ is positive-definite in ∆̊ and

det(ϕ) = [δ(x)

d
∏

i=1

l(x)]−1

where δ(x) is smooth and positive-definite on ∆.

Boulanger’s generalization went in a similar spirit. Consider T-invariant
GK structures (J1, J2) of symplectic type on (M,Ω,T, µ), where J2 is a
B-transform of JΩ. The complex structure I in the above argument is re-
placed by J+ underlying the biHermitian description. The weaker condition
of tameness no longer in general ensures that θj , µj be Darboux coordinates.
Boulanger thus focused on a special case to reserve this property. Denote the
space of T-invariant GK structures of symplectic type by GKT

Ω(M). Then
an element of GKT

Ω(M) is called anti-diagonal if J+D = J−D, where D is
again the Lagrangian distribution generated by {Xj}.

Let us introduce some notation before proceeding further. As in [3],
denote the subset of anti-diagonal elements in GKT

Ω(M) by DGKT

Ω(M).
Since an element in GKT

Ω(M) is completely parameterized by its complex
structure J+, we usually write J+ ∈ GKT

Ω(M) to convey this fact. Sometimes
we also write J1 ∈ GKT

Ω(M) if the GC aspect is emphasized. Similar notation
is adopted for elements in DGKT

Ω(M).
For J+ ∈ DGKT

Ω(M), θj , µj are again Darboux coordinates (called ad-
missible coordinates associated to J+ in [3]) and with such coordinates J±
are of a form similar to Abreu-Guillemin’s case:

J∗
+

(

dθ
dµ

)

=

(

0 ϕT

−(ϕ−1)T 0

)(

dθ
dµ

)

,

J∗
−

(

dθ
dµ

)

=

(

0 ϕ
−ϕ−1 0

)(

dθ
dµ

)
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except that ϕ is not necessarily symmetric. Here ϕT is the transpose of ϕ.
Integrability of J± forces the symmetric part ϕs = (ϕ+ ϕT )/2 to be the
Hessian of a function τ on ∆̊ and the anti-symmetric part C = ϕa = (ϕ−
ϕT )/2 to be a constant n× n matrix. Tameness then simply means that
τ is strictly convex. A sketch of this argument can be found in the next
subsection in a more general setting.

In [18], it was further proved that Boulanger’s τ is the symplectic poten-
tial of a genuine toric Kähler structure J0 canonically associated to J+. Con-
versely, given a toric Kähler structure and an n× n constant anti-symmetric
matrix C, a canonical element in DGKT

Ω(M) can be constructed. This is a
rather nontrivial statement as it tells us that in this more general setting
the potential τ has the same asymptotic behavior near the boundary of ∆ as
in the toric Kähler case. Moreover, the underlying GC structure J1 is sim-
ply a B-transform of Jβ induced from a J0-holomorphic Poisson structure β
characterized by the matrix C.

By abuse of language, we will not distinguish T-invariant smooth func-
tions on M (or M̊) from smooth functions on ∆ (or ∆̊).

3.2. General toric GK structures of symplectic type

Let us begin with recalling a result from [18]. Fix an integral basis {ej} of
t and let {µj} be the corresponding components of µ. Note again that M̊
is a trivial principal T-bundle over ∆̊. Let ζ =

∑

j ζjej be a flat connection
on this bundle. Since the vertical distribution is Lagrangian, there exists a
1-form σζ =

∑

j hjdµj with hj depending only on µ such that Ω =
∑

j dµj ∧
ζj + dσζ . We call the matrix Fζ :=

1
2(hk,j − hj,k) the associated matrix of the

connection ζ. Obviously, Fζ is determined by ζ. If Fζ happens to be constant,
we say ζ is admissible. If furthermore Fζ ≡ 0, we say ζ is of Darboux type.

Lemma 3.2. ([18]) J+ ∈ GKT

Ω(M̊) is determined by a triple (ζ+, τ, C)
where ζ+ is an admissible connection on M̊ , C is an n× n constant anti-
symmetric real matrix and τ is a strictly convex function on ∆̊ whose Hes-
sian ϕs satisfies the condition

(3.3) ϕs + Fζ+(ϕs)
−1Fζ+ is positive-definite on ∆̊.

Conversely, such a triple (ζ+, τ, C) also gives rise to an element in GKT

Ω(M̊).

Proof. For the reader’s convenience, we only sketch the proof. See [18] for
the details.
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Let J+ ∈ GKT

Ω(M̊) and Xj be the vector fields on M̊ generated by ej .
Tameness of J+ with Ω assures that {Xj , J+Xj} be a global frame of TM̊ .
Let {ζ+j , ϑj} be the dual frame on T ∗M̊ . Since J+ is integrable and the action

of T is abelian, ζ+ :=
∑

j ζ
+
j ej gives rise to a flat connection on M̊ . Locally

ζ+j = dθ+j , ϑj = du+j and θ+j +
√
−1u+j are local J+-holomorphic coordinates

on M̊ . Since {du+j } and {dµj} determine the same distribution D, du+j =
−
∑

k ϕjkdµk, where ϕjk’s are functions only of µ; in particular,

(3.4) J∗
+

(

ζ+

dµ

)

=

(

0 ϕT

−(ϕ−1)T 0

)(

ζ+

dµ

)

,

and for a certain matrix-valued function F = (Fkj),

Ω =
∑

j

dµj ∧ ζ+j +
∑

j,k

Fkjdµj ∧ dµk.

The same argument applies to J− as well. There should be a flat con-
nection ζ− and a matrix-valued function ψ only of µ such that

J∗
−

(

ζ−

dµ

)

=

(

0 ψT

−(ψ−1)T 0

)(

ζ−

dµ

)

.

However ψ is nothing else but ϕT . Indeed, in the coordinates {θ+j , µj},

ζ− = −ψTJ∗
−dµ = ψTΩJ+Ω

−1(dµ)

= −ψTΩJ+(∂θ+) = ψTϕ−1Ω(∂µ)

= ψTϕ−1(ζ+ + 2Fdµ).

Since ζ± are both flat connections, we must have ζ−j = ζ+j + 2dfj for some

functions fj depending only on µ. This implies ψTϕ−1 = I where I is the
identity matrix or equivalently ψ = ϕT . We must also have Fkj = fj,k. Let

Fkj,l =
∂Fkj

∂µl
. Then

Fkj,l = fj,kl = fj,lk = Flj,k,

which, together with Fkj = −Fjk, immediately implies that Fkj,l = 0 and
thus that F is constant, i.e. ζ± are both admissible.
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Since ζ+j −
√
−1
∑

k ϕjkdµk and ζ−j −
√
−1
∑

k ϕkjdµk are J±-
holomorphic 1-forms respectively, integrability of J± implies

(3.5) ϕkj,l = ϕlj,k, ϕjk,l = ϕjl,k.

Then we can conclude that the anti-symmetric part ϕa of ϕ is a constant
matrix C and the symmetric part ϕs of ϕ is the Hessian of a function τ
defined on ∆̊.

To see what tameness of J+ with Ω means, we should derive the matrix
form of the metric g. In the frame {ζ+, dµ},

J∗
− ∼

(

I −2F
0 I

)(

0 ϕ
−ϕ−1 0

)(

I 2F
0 I

)

=

(

2Fϕ−1 4Fϕ−1F + ϕ
−ϕ−1 −2ϕ−1F

)

.

Since g = 1/2(J∗
+ + J∗

−)Ω, we obtain the matrix form of g relative to
{ζ+, dµ}:

g ∼
(

(ϕ−1)s ϕ−1F
−F (ϕT )−1 ϕs

)

.

It’s elementary to find that positive-definiteness of g is equivalent to that
both ϕs and ϕs + F (ϕs)

−1F are positive-definite. Thus τ should satisfy the
properties listed in the theorem. Clearly, the triple (ζ+, τ, C) determines J+
uniquely.

Conversely, given the triple (ζ+, τ, C) satisfying the listed conditions, let
ϕs be the Hessian of τ and ϕ = ϕs + C and define J+ via Eq. (3.4). Obviously
such a J+ ∈ GKT

Ω(M̊). □

Before moving on, let us motivate our further steps by giving some re-
marks on the implication of Lemma 3.2.

• In this lemma, if F = 0, then we recover Boulanger’s result for anit-
diagonal GK structures of symplectic type. In contrast with this more
restrictive case, we should emphasize that in general two constant anti-
symmetric matrices C and F are involved in the characterization of
J+ ∈ GKT

Ω(M). Compared with C, this additional F turns out to play
a very different role: In the anti-diagonal case, only one flat connection
ζ+ of Darboux type is involved, and in the single frame {ζ+, dµ}, J±
can be anti-diagonalized simultaneously. However, in the general case,
three flat connections are involved: two admissible connections ζ± asso-
ciated with J± respectively and a flat connection ζ of Darboux type,
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i.e., ζ := (ζ+ + ζ−)/2 such that Ω =
∑

j dµj ∧ ζj . These connections
are related by

(3.6) ζ± = ζ ∓ Fdµ.

In particular, J± fails to be anti-diagonalized simultaneously in a single
frame. To understand the roles played by τ, C and F , it turns out to
be very important to distinguish among these flat connections.

• The connection ζ is determined by τ . Given τ , whose Hessian is
non-degenerate in ∆̊, one can define ζ using Eq. (3.2). Then J+ is
completely determined by the triple (τ, C, F ) and the two positive-
definiteness conditions in the lemma can be reformulated as that the
complex matrix ϕ+

√
−1F is positive-definite. This is simply because

the positive-definiteness of g is equivalent to that g is a Hermite metric
w.r.t. J+.

2

We need to generalize Guillemin’s boundary condition to our present
setting. We formulate it in Donaldson’s terms. We replace Donaldson’s (b)
by the following

• (b’) The restriction of the matrix ϕ+
√
−1F (ϕ = Hessian(τ)) to each

(open) face is smooth and positive-definite.

For completeness, we also include Abreu’s version of this Guillemin con-
dition, one simply replaces the condition (e) by the following

• (e’) The matrix ϕ+
√
−1F is positive-definite in ∆̊ and det(ϕ+√

−1F ) = [δ(x)
∏d

i=1 l(x)]
−1 where δ(x) is smooth and positive-

definite on ∆.

We won’t prove the equivalence of the two versions here since it will be
clear in later sections and established in the end of § 5. We are now ready
to formulate our main theorem in this paper. For convenience, the triple
(τ, C, F ) satisfying Guillemin boundary condition (a)(b’)(c) will be called a
GK triple on ∆ and the proof of the theorem will be given in later sections.

Theorem 3.3. Given (M,Ω,T, µ) with its Delzant polytope ∆ ⊆ (Rn)∗,
there is a one-to-one correspondence between the set GKT

Ω(M) and the set
of GK triples (τ, C, F ) on ∆ where τ is defined modular the addition of a
linear function.

2The author thanks the referee for pointing out this equivalence.
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4. The canonical toric Kähler structure

In this section, we prove that the triple (τ, C, F ) arising in Lemma 3.2 sat-
isfies Guillemin boundary condition (a)(b’)(c). We only need to prove that
τ is actually the symplectic potential of a genuine toric Kähler structure
on M . (a) and (c) then follow immediately from this claim and (b’) can be
seen easily by tracing the degeneration of the vector fields Xi on each face
of ∆. To prepare for the proof, we investigate the local geometry on M̊ first.
To understand the underlying geometry, this investigation is also of its own
interest.

In the present setting, for J+ ∈ GKT

Ω(M), due to Lemma 3.2 we can
define two new complex structures I± on M̊ by requiring their matrix forms
in the frame {ζ, dµ} be

(4.1) I∗+ ∼
(

0 ϕT

−(ϕ−1)T 0

)

, I∗− ∼
(

0 ϕ
−ϕ−1 0

)

.

We emphasize that I± are different from J± for they are defined using the
flat connection ζ rather than the admissible ones ζ±; in particular, up to now
we only know that I± are defined on M̊ rather than M . By construction,
I+ ∈ DGKT

Ω(M̊).
There is a fifth complex structure I0 whose matrix form w.r.t. {ζ, dµ} is

(4.2) I∗0 ∼
(

0 ϕs
−(ϕs)

−1 0

)

.

We know from [18, Thm. 4.4, 4.5] that I0 ∈ KT

Ω(M̊) and τ is the symplec-
tic potential of I0, and that ϕa = C determines an I0-holomorphic Poisson
structure β on M̊ .

There is a sixth almost complex structure J0 on M̊ . Note that J2 is a
B-transform of JΩ by the 2-form b. In this context, the classical infinitesimal
action of t on M receives a cotangent correction: Xj 7→ Xj − b(Xj). The
latter should be understood as an extended Lie algebra action [17]. Note
that

−J1(Xj − b(Xj) = J1J
2
2(Xj − b(Xj)) = GΩ(Xj) = −g−1dµj .

Let Yj := −g−1dµj . These Yj ’s are orthogonal to Xk’s. Indeed g(Yj , Xk) =
−(dµj , Xk) = 0 for µ is T-invariant. Thus {Xj , Yj} is a global frame of TM̊
and J0 could be simply defined by setting J0Xj = Yj . In the frame {∂θ+ , ∂µ},
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the matrix form of J0 is

(4.3) J0 ∼
(

−Ξ−1F (ϕs)
−1ϕ −Ξ−1

Ξ[I + (Ξ−1F (ϕs)
−1ϕ)2] F (ϕs)

−1ϕΞ−1

)

,

where Ξ = ϕs + F (ϕs)
−1F .

If F = 0 (ζ± and ζ then coincide), i.e. J+ ∈ DGKT

Ω(M̊), then the above
J0 is integrable, coincides with I0 and plays a fundamental role in under-
standing the geometry [18]. In our present setting, J0 is not integrable and
we choose to include it here since it is naturally associated to J1.

Another use of these Xj , Yj is that the smooth distribution D1 (in the
sense of Sussmann [15]) generated by them preserves β1, as was noted in the
remark of [17, Prop. 4.6]. This observation implies partially

Proposition 4.1. For J1 ∈ GKT

Ω(M), points in M̊ are all regular, and the
common type is the co-rank of the complex matrix F −

√
−1ϕa.

Proof. Recall that the type of J1 at a point p ∈ M̊ is the complex dimension
transverse to the symplectic leaf of β1 through p. p is called regular if this
number is constant around p. Since the distribution D1 has full dimension
on M̊ , M̊ is actually a leaf of D1 of the highest dimension. Now that β1 is
preserved by D1, the rank of β1 on M̊ has to be constant, i.e., points in M̊
are all regular for J1.

Besides the above intrinsic proof of the first part of Prop. 4.1, we
can give an alternative proof by a direct local computation. Note that
β3 = −1/4(J+ − J−)Ω

−1. We can write down the matrix form of β3 w.r.t.
{ζ+, dµ}:

β3 ∼
1

2

(

−ϕa Fϕ−1

(ϕ−1)TF −(ϕ−1)a

)

,

or as a tensor, 2β3 is

(

∂Tθ+ (J+∂θ+)T
)

⊗
(

I 0
0 −ϕT

)(

−ϕa Fϕ−1

(ϕ−1)TF −(ϕ−1)a

)(

I 0
0 −ϕ

)(

∂θ+

J+∂θ+

)

=
(

∂Tθ+ (J+∂θ+)T
)

⊗
(

−ϕa −F
−F ϕa

)(

∂θ+

J+∂θ+

)

.

Note that the type of J1 is half the real dimension of ker(J+ − J−) and that

the matrix

(

−ϕa −F
−F ϕa

)

is constant. We thus know that points in M̊ are
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all regular for J1; in particular, if we denote z+i = θ+i +
√
−1u+i , then it can

be easily obtained that

(4.4) β+ =
∑

i,j

[Fij −
√
−1(ϕa)ij ]∂z+

j
∧ ∂z+

i
.

Consequently, the common type of J1 in M̊ is n− rk(F −
√
−1ϕa). □

Remark. Similarly, let z−i = θ−i +
√
−1u−i . Then we have

β− =
∑

i,j

[Fij −
√
−1(ϕa)ij ]∂z−

j
∧ ∂z−

i
.

In particular, we find that J1 at a fixed point of the T-action is of complex
type because the vector fields Xj ’s all vanish there.

Now we address the global smoothness of those structures defined above,
i.e. whether they can be extended smoothly on the whole of M .

Lemma 4.2. I+ ∈ GKT

Ω(M̊) is the restriction of an element in GKT

Ω(M)
on M̊ if and only if the tensors I+ and (I+ + I−)

−1 can both be extended
smoothly to M .

Proof. Obviously, it suffices to prove the sufficiency part.
Since I− = −Ω−1I∗+Ω, global smoothness of I+ implies that of I−. A con-

tinuity argument makes it clear that I± are integrable complex structures on
M . Therefore, ḡ = −1

2Ω(I+ + I−) is smooth on M . By continuity, ḡ should

be nonnegative-definite on M\M̊ . Since Ω = −2ḡ(I+ + I−)
−1, smoothness

of (I+ + I−)
−1 implies that ḡ must be non-degenerate on M\M̊ and thus

positive-definite there. □

Let I+ ∈ GKT

Ω(M̊) be defined in Eq. (4.1). Take J+ as a reference ele-
ment in GKT

Ω(M). If we can prove I+ and (I+ + I−)
−1 − (J+ + J−)

−1 both
extend smoothly toM , then by Lemma 4.2 I+ is the restriction of an element
in DGKT

Ω(M).

Lemma 4.3. Let J+ ∈ GKT

Ω(M) and Ξ := ϕs + F (ϕs)
−1F in the context

of Lemma 3.2. Then the inverse Ξ−1 admits a smooth extension to M .
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Proof. In the frame {∂θ+ , ∂µ}, the invertible map (J+ + J−)/2 has the matrix
form

J+ + J−
2

∼
(

−(ϕT )−1F −(ϕ−1)s
ϕs + 2F (ϕT )−1F F (ϕT )−1

)

.

An elementary computation shows that its inverse has the matrix form

(4.5) (
J+ + J−

2
)−1 ∼

(

Ξ−1F (ϕs)
−1ϕ Ξ−1

(−ϕT + 2AFΞ−1F )(ϕs)
−1ϕ 2AFΞ−1

)

,

where A = φT (φs)−1

2 − I; in particular, we find

Ω((
J+ + J−

2
)−1∂θ+

i
, ∂θ+

j
) = Ω(

∑

k

(Ξ−1)ki∂µk
, ∂θ+

j
) = (Ξ−1)ji.

Since Ω((J++J−

2 )−1∂θ+

i
, ∂θ+

j
) is smooth on M , we know that Ξ−1 admits a

smooth extension to M . □

Theorem 4.4. For J+ ∈ GKT

Ω(M), I+ defined in Eq. (4.1) is the restric-
tion of an element in DGKT

Ω(M) on M̊ .

Proof. Let us prove first that I+ is smooth. Define F : TM → TM by F =
Id− Ω−1F̂ where F̂ =

∑

j,k Fkjdµj ∧ dµk. Then

F∗
(

ζ
dµ

)

=

(

I −F
0 I

)(

ζ
dµ

)

=

(

ζ+

dµ

)

and thus I+ = FJ+F−1. Since F is globally well-defined on M , so is I+.
Next we shall write down the matrix form of [(I+ + I−)/2]

−1 in the frame
{ζ+, dµ} ( I± are defined using {ζ, dµ}). Since ζ+ has no global meaning on
M , we replace it with −ϕTJ∗

+dµ where J∗
+dµ is smooth on M .

By Eq. (4.5), in terms of {J∗
+dµ, dµ} and {∂θ+ , J+∂θ+} the tensor [(J+ +

J−)/2]
−1 is

(

(J∗
+dµ)

T dµT
)

⊗
(

−ϕΞ−1F (ϕs)
−1ϕ ϕΞ−1ϕ

(−ϕT + 2AFΞ−1F )(ϕs)
−1ϕ −2AFΞ−1ϕ

)(

∂θ+

J+∂θ+

)
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where A = ϕT (ϕs)
−1/2− I. Similarly, the tensor [(I+ + I−)/2]

−1 equals to

(

(J∗
+dµ)

T dµT
)

⊗
(

−ϕ(ϕs)−1F ϕ(ϕs)
−1ϕ

−F (ϕs)−1F − ϕT (ϕs)
−1ϕ F (ϕs)

−1ϕ

)(

∂θ+

J+∂θ+

)

.

Thus to prove that [(I+ + I−)/2]
−1 is globally well-defined on M , we have

to justify:
i) ϕΞ−1F (ϕs)

−1ϕ− ϕ(ϕs)
−1F is smooth on M ;

ii) ϕ(Ξ−1 − (ϕs)
−1)ϕ is smooth on M ;

iii) AFΞ−1F (ϕs)
−1ϕ+ 1/2F (ϕs)

−1F is smooth on M ;
iv) 1/2F (ϕs)

−1ϕ+AFΞ−1ϕ is smooth on M .
With Lemma 4.3 in mind, a careful analysis reveals that one only needs

to check that the quantities (ϕs)
−1, ϕsΞ

−1ϕs − ϕs,Ξ
−1ϕs are smooth on M .

Note that

ϕsΞ
−1ϕs − ϕs = [Ξ− F (ϕs)

−1F ]Ξ−1ϕs − ϕs = −F (ϕs)−1FΞ−1ϕs

and

Ξ−1ϕs = Ξ−1[Ξ− F (ϕs)
−1F ] = I− Ξ−1F (ϕs)

−1F.

So we only have to prove that (ϕs)
−1 is smooth on M .

Claim. (ϕs)
−1 admits a smooth extension to M .

Proof. Let us compute the seemingly irrelevant quantity ((J+ +
J−)

−1∂θ+

i
, J∗

+dµj) first. From Eq. (4.5), we have

((J+ + J−)
−1∂θ+

i
, J∗

+dµj) = −
∑

k,l

[Ξ−1F (ϕs)
−1ϕ]ki(ϕ

−1)jl(∂θ+

k
, ζ+l )

= −[Ξ−1F (ϕs)
−1]ji.

Since ((J+ + J−)
−1∂θ+

i
, J∗

+dµj) is globally defined on M , we know that

Ξ−1F (ϕs)
−1 is smooth on M . Additionally, we have

I = Ξ−1(ϕs + F (ϕs)
−1F ) = Ξ−1ϕs + Ξ−1F (ϕs)

−1F

and consequently Ξ−1ϕs is smoothly defined on M . Note that ϕs ≥ Ξ on
M̊ in the sense that their difference −F (ϕs)−1F is nonnegative-definite. We
thus have (ϕs)

−1 ≤ Ξ−1 on M̊ and det(Ξ−1ϕs) = detΞ−1 × detϕs ≥ 1 on
M̊ . By continuity, det (Ξ−1ϕs) ≥ 1 on the whole of M , implying that Ξ−1ϕs
is both smooth and invertible on M . Therefore, (ϕs)

−1Ξ is smooth on M .
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The factorization (ϕs)
−1 = [(ϕs)

−1Ξ]× Ξ−1 then implies that (ϕs)
−1 is also

smooth on M . □

By Lemma 4.2, we thus have finally proved that I+ ∈ DGKT

Ω(M). □

Corollary 4.5. The complex structure I0 defined in Eq. (4.2) admits a
smooth extension on M . More precisely, I0 ∈ KT

Ω(M) and τ is its symplectic
potential.

Proof. Since I+ ∈ DGKT

Ω(M), the result follows immediately from [18,
Thm. 4.9]. □

Corollary 4.6. The almost complex structure J0 defined by Eq. (4.3) ad-
mits a smooth extension to M ; in particular, J0 is compatible with Ω, i.e.
J0 is a toric almost Kähler structure.

Proof. The proof goes in the same spirit as the proof of Thm. 4.4. J0 as a
tensor is

(

(J∗
+dµ)

T dµT
)

⊗
(

ϕΞ−1F (ϕs)
−1ϕ −ϕΞ−1ϕ

Ξ[I + (Ξ−1F (ϕs)
−1ϕ)2] −F (ϕs)−1ϕΞ−1ϕ

)(

∂θ+

J+∂θ+

)

.

Similarly, J+ as a tensor has the form

(

(J∗
+dµ)

T dµT
)

⊗
(

0 −ϕ
ϕ 0

)(

∂θ+

J+∂θ+

)

.

Thus to see J0 is globally defined on M , we have to prove the functions
ϕΞ−1F (ϕs)

−1ϕ, ϕΞ−1ϕ− ϕ, F (ϕs)
−1ϕΞ−1ϕ and Ξ[I + (Ξ−1F (ϕs)

−1ϕ)2]− ϕ
can all be extended smoothly toM . In Lemma 4.3 and the proof of Thm. 4.4,
we already have the global smoothness of Ξ−1, Ξ (ϕs)

−1 and Ξ−1ϕs, which
leads to the global smoothness of J0.

To see J0 is compatible with Ω, note that there is a natural J0-Hermitian
metric on M̊ defined by the GK structure onM : Identify TM̊ with K⊕ J1K,
where K is the subbundle of TM̊ ⊕ T ∗M̊ generated by Xj − b(Xj). The
restriction of −J1 and G = −J1J2 on K⊕ J1K then gives rise to J0 and a
Hermitian metric g̃. One can easily check that on M̊ , Ω = g̃J0. The detailed
computation involved here is in essence the same as that in the proof of [18,
Thm. 4.4] and thus omitted. By continuity, the conclusion can be finally
established. □
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We have noted that for J1 ∈ GKT

Ω(M), points in M̊ are all regular and
on the other side fixed points are all of complex type. For completeness, let
us have a very brief look at those points in M\M̊ .

Let P be an open face of codimension k of ∆, defined in (Rn)∗ by
(ujl , µ) = λjl , l = 1, 2, · · · , k, and VP ⊂ (Rn)∗ the linear subspace singled out
by (ujl , µ) = 0, l = 1, 2, · · · , k. These ujl ∈ t generate a subtorus T0P acting
trivially on MP = µ−1(P̄ ), where P̄ is the closure of P . Let TP be the quo-
tient of T by T0P . Note that intrinsically C and F are elements in ∧2

t. Let
cP , fP be the restriction of c = 1/2

∑

j,k Ckjej ∧ ek and f =
∑

j,k Fkjej ∧ ek
on VP respectively.

Theorem 4.7. Let P be an open face of ∆ as above. Then MP is a GK
submanifold for J1 ∈ GKT

Ω(M). More precisely, its GK structure (J1P , J2P )
belongs to GKTP

ΩP
(MP ), where ΩP = Ω|MP

.MP inherits a toric Kähler struc-
ture from the canonical one on M , which together with cP and fP , charac-
terizes the GK structure on MP .

Proof. Recall that MP is a GK submanifold means that the pull-backs of
the complex Dirac structures associated with J1, J2 to MP are themselves
GC structures and form a GK structure on MP . It is a rather standard
argument to prove that MP is a complex submanifold w.r.t. any one of the
complex structures J± and I0. It is known that if a submanifold is both
J+- and J−-invariant, then it is a GK submanifold (see for example [16]).
On the other side, the pull-back of J2 is of course of sympletic type with
its symplectic form ΩP . These structures on MP are obviously TP -invariant
and consequently the GK structure on MP lies in GKTP

ΩP
(MP ).

Note that the matrices C, F can be equivalently viewed as two canonical
I0-holomorphic Poisson structures on M and MP is a Poisson submanifold
relative to both of them. Obviously, the corresponding restricted holomor-
phic Poisson structures on MP are characterized by cP and fP . To see these
do characterize the toric GK structure onMP , the most direct way is through
the global formula (5.1) in § 5, which shows how J+ ∈ GKT

Ω(M) arises from
an element in DGKT

Ω(M). □

Remark. From the expression of β+ (Eq (4.4)), we find that on µ−1(P )
the type of J1 is n− rk(fP −

√
−1cP ) and the type of J1P is n− rk(fP −√

−1cP )− k.
To conclude this section, we specialize to the case where C = 0 and

F ̸= 0. This is missing in [3]. We begin with an intrinsic characterization of
this case. Recall that D is the distribution on M generated by the t-action.
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Definition 4.8. If J+ ∈ GKT

Ω(M) satisfies the condition (J+ − J−)D ⊂ D,
we call J+ a symmetric toric GK structure of symplectic type on M .

Proposition 4.9. J+ ∈ GKT

Ω(M) is symmetric if and only if the underly-
ing matrix C in Lemma 3.2 vanishes.

Proof. Note that in the frame {ζ+, dµ},

J∗
+ − J∗

−
2

∼
(

−Fϕ−1 −2Fϕ−1F − ϕa
(ϕ−1)a ϕ−1F

)

.

Thus (J+ − J−)D ⊂ D if and only if (ϕ−1)a ≡ 0. The latter is equivalent to
that ϕ is symmetric, i.e. C = 0. □

In the frame {ζ, dµ}, the several geometric structures as linear maps are of
the following more compact form:

J∗
± ∼

(

∓Fϕ−1 Ξ
−ϕ−1 ±ϕ−1F

)

, g ∼
(

ϕ−1 0
0 Ξ

)

,

b ∼
(

0 ϕ−1F
Fϕ−1 0

)

, β1 ∼
(

−F 0
0 ϕ−1FΞ−1

)

,

where Ξ = ϕ+ Fϕ−1F . In the present setting, β± =
∑

j,k Fkj∂z±

j
∧ ∂z±

k
,

where z±j := θ±j +
√
−1u±j are J±-holomorphic coordinates respectively. Let

I0 be the toric Kähler structure canonically associated to J+. An interesting
thing is the following

Lemma 4.10. β3 is also the imaginary part of an I0-holomorphic Poisson
structure and b is the imaginary part of an I0-holomorphic 2-form.

Proof. Note that in the admissible coordinates θi, µi the matrix form of β3

is of the form

(

0 Fϕ−1

ϕ−1F 0

)

. Let zi = θi +
√
−1ui be I0-holomorphic

coordinates on M̊ . Then

2β3 =
∑

j,k,l

Fkj(ϕ
−1)lk∂θj ∧ ∂µl

= −
∑

j,k

Fkj∂θj ∧ ∂uk

= −
√
−1
∑

j,k

Fkj(∂zj + ∂z̄j ) ∧ (∂zk − ∂z̄k)

= −
√
−1
∑

j,k

Fkj∂zj ∧ ∂zk +
√
−1
∑

j,k

Fkj∂z̄j ∧ ∂z̄k .
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This implies the conclusion for β3 and that for b can be obtained similarly.
□

If S ∈ Γ(End(TM)) is invertible, then S acts naturally on TM ⊕ T ∗M by
acting only on the tangent part: S · (X + ξ) = S(X) + ξ. We call this sort
of transforms to be purely tangent. Generally S won’t preserve the natural
pairing on TM ⊕ T ∗M .

Proposition 4.11. If J1 ∈ GKT

Ω(M) is symmetric, then up to purely tan-
gent transform, J1 is a B-transform of a GC structure Jβ induced from an
I0-holomorphic Poisson structure β = −1

2(I0β3 +
√
−1β3).

Proof. Let S = J++J−

2 . We rewrite J1 in terms of S, β3 and b. Indeed,

β1 = −J+ − J−
2

g−1 = (
J+ + J−

2
)−1(

J+ − J−
2

)(
J+ + J−

2
)g−1 = S−1β3,

where we have used the fact that (J+ + J−)(J+ − J−) = −(J+ − J−)(J+ +
J−). Similarly,

−1

2
(ω+ − ω−) = −g(J+ − J−

2
) = gS−1(

J+ − J−
2

)S

= −ΩSS−1(
J+ − J−

2
)S = bS.

Therefore,

J1 =

(

−S 2S−1β3
bS S∗

)

=

(

S−1 0
0 Id

)(

−S 2β3
b S∗

)(

S 0
0 Id

)

.

Now we shall prove there is a 2-form b1 on M such that

(

−S 2β3
b S∗

)

=

(

Id 0
−b1 Id

)(

−I0 2β3
0 I∗0

)(

Id 0
b1 Id

)

.

b1 should satisfy the following two equations:

S = I0 − 2β3b1, b = b1I0 − 2b1β3b1 + I∗0b1.

It suffices to set b1 = −1
2Fkjdµj ∧ dµk. Since b1 is global on M , a continuity

argument completes the proof. □

The following proposition may have some relevance in understanding the
implication of the almost complex structure J0.
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Proposition 4.12. The almost complex structure J0 defined in § 3.2, the
complex structure I0 and β1 are compatible in the sense that J0β1 = β1I

∗
0 .

Proof. It’s elementary to find that in the frame {ζ, dµ} the matrix form of

J0 is

(

0 −Ξ−1

Ξ 0

)

. Then the result can be obtained by using the matrix

forms of I0 and β1 directly . □

5. Constructing toric GK structures from a GK triple

This section is devoted to proving that a GK triple (τ, C, F ) on ∆ produces
an element in GKT

Ω(M) canonically.
The first thing one should bear in mind is that the function τ in a GK

triple on ∆ is automatically a symplectic potential of a toric Kähler struc-
ture. This is simply because Guillemin boundary condition (a)(b’)(c) imply
(b). Given the symplectic potential τ (ϕs = Hessian(τ)) of a toric Kähler
structure, for technical convenience we introduce the following condition for
a constant skew real matrix F :

• (f) I + [(ϕs)
−1/2F (ϕs)

−1/2]2 is positive-defintie on ∆.

Here (ϕs)
−1/2 is the square root of ϕ−1

s , which is continuous on ∆ [5].

Lemma 5.1. If (τ, C, F ) is a GK triple on ∆, then the above condition (f)
holds.

Proof. If (τ, C, F ) is a GK triple, then τ is the symplectic potential of a toric
Kähler structure, and thus ϕs has a smooth inverse and is positive-definite
on each open face of ∆. This surely implies that

(ϕs)
−1/2(ϕs +

√
−1F )(ϕs)

−1/2 = I +
√
−1(ϕs)

−1/2F (ϕs)
−1/2

is positive-definite when restricted on each open face of ∆. The same con-
clusion holds for I−

√
−1(ϕs)

−1/2F (ϕs)
−1/2. Then

(I +
√
−1(ϕs)

−1/2F (ϕs)
−1/2)(I−

√
−1(ϕs)

−1/2F (ϕs)
−1/2)

= I + [(ϕs)
−1/2F (ϕs)

−1/2]2

is also positive-definite on each open face of ∆. Note that at each fixed point
ϕ−1
s = 0 and (f) automatically holds. This completes the proof. □
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Before proceeding, we show the condition (f) is really a restriction on
the magnitude of F . This is another fundamental distinction between the
roles of C and F .

Proposition 5.2. Let An be the linear space of n× n anti-symmetric real
matrices F with norm ∥F∥ :=

√

−tr(F 2) and ϕs the Hessian of the sym-
plectic potential τ of I0 ∈ KT

Ω(M). Then the subset Aτ of F ∈ An satisfying
the above condition (f) is a symmetric bounded open convex subset of An

containing zero.

Proof. Fix x ∈ ∆̊ and let Fx := (ϕs)
−1/2(x)F (ϕs)

−1/2(x). Then F ∈ Aτ im-
plies that −F 2

x < I and hence ∥Fx∥2 = −tr(F 2
x ) < n. This shows that Aτ is

bounded.
For F ∈ Aτ , since (f) is an open condition, for each x0 ∈ ∆, there is a

neighbourhood Ux0

F ⊂ An of F and a neighborhood Vx0
⊂ ∆ of x0 such that

−F 2
x < I, ∀F ∈ Ux0

F , x ∈ Vx0
.

Now that ∆ is compact, there is a finite subset {xi} ⊂ ∆ such that ∆ =
∪iVxi

. Then ∩iU
xi

F ⊂ Aτ is an open neighbourhood of F in An.
To see Aτ is convex, let F1, F2 ∈ Aτ and Fλ := λF1 + (1− λ)F2 for some

λ ∈ (0, 1). It suffices to prove −F 2
λx < I for any x ∈ ∆. Note that Fλx =

λF1x + (1− λ)F2x and let | · | denote the usual Euclidean norm on Rn. For
0 ̸= v ∈ Rn, we have

(Fλxv, Fλxv)

= λ2(F1xv, F1xv) + (1− λ)2(F2xv, F2xv) + 2λ(1− λ)(F1xv, F2xv)

≤ λ2|F1xv|2 + (1− λ)2|F2xv|2 + 2λ(1− λ)|F1xv||F2xv|
= (λ|F1xv|+ (1− λ)|F2xv|)2 < [λ× |v|+ (1− λ)× |v|]2

= |v|2,

as required. That Aτ is symmetric is obvious. □

Example 5.3. Let us analyse the case n = 2 in some detail. If

ϕs =

(

τ11 τ12
τ12 τ22

)

, F =

(

0 f
−f 0

)

, C =

(

0 c
−c 0

)

,

where ϕs is the Hessian of the symplectic potential τ of I0 ∈ KT

Ω(M), then the

condition (f) amounts to that 1− f2

detφs
> 0 on M . Let m := maxx∈∆

1
detφs

on ∆. Then that 1− f2

detφs
> 0 is equivalent to f ∈ (− 1√

m
, 1√

m
) ∼= Aτ .
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Given a GK triple (τ, C, F ) on ∆, let I0 ∈ KT

Ω(M) and ζ be the com-
plex structure and the flat connection associated to τ respectively and
ϕs = Hessian(τ). As what Lemma 3.2 tells us, we can define two one-
parameter families of admissible connections ζ±t = ζ ∓ tFdµ for t ∈ [0, 1]
and define J t

+ ∈ GKT

Ω(M̊) by

J t∗
+

(

ζ+t

dµ

)

=

(

0 ϕT

−(ϕ−1)T 0

)(

ζ+t

dµ

)

,

where ϕ = ϕs + C. In this context,

J t∗
−

(

ζ−t

dµ

)

:= −ΩJ t
+Ω

−1

(

ζ−t

dµ

)

=

(

0 ϕ
−ϕ−1 0

)(

ζ−t

dµ

)

.

Proposition 5.4. Let J t
+ ∈ GKT

Ω(M̊) be as above. Then J t
+ ∈ GKT

Ω(M) for
each t ∈ [0, 1]. In particular, setting t = 1 we get the canonical GK structure
associated with the GK triple (τ, C, F ).

Proof. To see J t
+ is smooth on M , we resort to a global description of J t

±.
Firstly we can define another complex structure I+ as follows:

I∗+

(

ζ
dµ

)

=

(

0 ϕT

−(ϕT )−1 0

)(

ζ
dµ

)

.

Then due to [18, Thm. 4.11], I+ is globally well-defined on M and I+ ∈
DGKT

Ω(M).
Secondly, define a map Ft by Ft = Id− tΩ−1F̂ , where F̂ =

∑

j,k Fkjdµj ∧ dµk. Ft is smoothly well-defined on M . Then we have

(5.1) J t∗
+ = F∗

t I
∗
+(F∗

t )
−1, J t∗

− = (F∗
t )

−1I∗−F∗
t

where I− is the symplectic adjoint of I+. This shows that J
t
± are both smooth

on M .
To see J t

+ ∈ GKT

Ω(M), by Lemma. 4.2 we only need to prove the global
smoothness of (J t

+ + J t
−)

−1. We adopt a similar strategy to that of the proof
of Thm. 4.4. This time we choose the toric Kähler structure I0 as the refer-
ence.

Let θj , µj be the admissible coordinates associated to I0. Then in the
frame {∂θ, ∂µ},

J t
+ + J t

−
2

∼
(

t(ϕ−1)aF −(ϕ−1)s
ϕs + t2F (ϕ−1)sF −tF (ϕ−1)a

)

,
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and consequently (see Eq. (4.5))

(
J t
+ + J t

−
2

)−1

∼
(

I 0
tF I

)(

tΞ−1
t F (ϕs)

−1ϕ Ξ−1
t

(−ϕT + 2t2AFΞ−1
t F )(ϕs)

−1ϕ 2tAFΞ−1
t

)(

I 0
−tF I

)

=

(

tΞ−1
t FB Ξ−1

t

−ϕT (ϕs)−1ϕ+ t2BTFΞ−1
t FB tBTFΞ−1

t

)

,

where Ξt = ϕs + t2F (ϕs)
−1F , A = φT (φs)−1

2 − I, B = (ϕs)
−1ϕa and ϕa = C.

Then as a tensor (
Jt
++Jt

−

2 )−1 is of the following form:

(

(I∗0dµ)
T dµT

)

⊗
(

−tϕsΞ−1
t FB ϕsΞ

−1
t ϕs

−ϕT (ϕs)−1ϕ+ t2BTFΞ−1
t FB −tBTFΞ−1

t ϕs

)(

∂θ
I0∂θ

)

.

Similarly, the tensor ( I0+IΩ
0

2 )−1 = I−1
0 = −I0 is of the form:

(

(I∗0dµ)
T dµT

)

⊗
(

0 ϕs
−ϕs 0

)(

∂θ
I0∂θ

)

.

Therefore, to prove the global smoothness of (
Jt
++Jt

−

2 )−1, we have to
prove:

i) ϕsΞ
−1
t F (ϕs)

−1ϕa is smooth on M ;

ii) ϕsΞ
−1
t ϕs − ϕs is smooth on M ;

iii) −ϕT (ϕs)−1ϕ− t2ϕa(ϕs)
−1FΞ−1

t F (ϕs)
−1ϕa + ϕs is smooth on M .

With the fact that (ϕs)
−1 is smooth onM in mind, a careful but elementary

analysis shows that it suffices to prove that Ξ−1
t ϕs is smooth on M . Note

that

(ϕs)
−1Ξt = I + t2[(ϕs)

−1F ]2

is smooth on M . Thus to complete the proof, it suffices to prove that
(ϕs)

−1Ξt is also non-degenerate on M\M̊ . On M we have

det((ϕs)
−1Ξt) = det[(ϕs)

−1/2Ξt(ϕs)
−1/2] = det[I + t2((ϕs)

−1/2F (ϕs)
−1/2)2]

≥ det[I + ((ϕs)
−1/2F (ϕs)

−1/2)2] > 0,

where the condition (f) is used. □
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This completes the proof of Thm. 3.3.
To conclude this section, we remark that

Proposition 5.5. In Thm. 3.3 Donaldson’s version of Guillemin boundary
condition can be replaced by Abreu’s version.

Proof. If (τ, C, F ) is a GK triple, then the condition (d) of course holds.
For Abreu’s version to hold, it suffices to prove that det(ϕ+

√
−1F ) (ϕ =

Hessian(τ)) has the correct form. We only need to prove det(I +
√
−1ϕ−1F )

to be positive-definite on ∆. This is obvious by the proof of Lemma 5.1.
If (τ, C, F ) fulfills Abreu’s version of Guillemin boundary condition, i.e.

(d)(e’), to prove that (τ, C, F ) is actually a GK triple, we only need to prove
that τ is the symplectic potential of a genuine toric Kähler structure and
that the condition (f) holds. Let ϕ0 be the Hessian of τ∆. Then detϕ0 =
[δ0(x)

∏d
i=1 li(x)]

−1 for a smooth positive-definite function δ0(x) on ∆. By
the condition (d), we know ϕϕ−1

0 is smooth on ∆. Thus by (e’) on ∆

det(ϕϕ−1
0 +

√
−1Fϕ−1

0 ) = δ0(x)/δ(x).

It’s easy to see det(ϕϕ−1
0 ) ≥ det(ϕϕ−1

0 +
√
−1Fϕ−1

0 ) and therefore ϕϕ−1
0 is

smooth and invertible on ∆. It follows that (e) holds and hence τ is the
symplectic potential of a toric Kähler structure. One immediately obtains
condition (f) from this. □

6. An explicit example on CP 1
× CP 1

In this section, to demonstrate the general theory developed before, we con-
struct toric GK structures of symplectic type on M = CP 1 × CP 1.

Let M be equipped with the symplectic structure

Ω =

√
−1

2

dz1 ∧ dz̄1
(1 + |z1|2)2

+

√
−1

2

dz2 ∧ dz̄2
(1 + |z2|2)2

.

The standard T2-action

(e
√
−1θ1 , e

√
−1θ2) · ([1 : z1], [1 : z2]) = ([1 : e

√
−1θ1z1], [1 : e

√
−1θ2z2])

on M is Hamiltonian. The infinitesimal action is then given by

∂θj =
√
−1(zj∂zj − z̄j∂z̄j ), j = 1, 2,
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with a moment map µj = |zj |2/2(1 + |zj |2), j = 1, 2. Then ∆ = [0, 1/2]×
[0, 1/2]. Guillemin function of M∆ is

τ =
1

2

2
∑

j=1

[µj lnµj + (
1

2
− µj) ln(

1

2
− µj)],

whose Hessian ϕs is

(

1
4µ1(1/2−µ1)

0

0 1
4µ2(1/2−µ2)

)

.

Let C =

(

0 c
−c 0

)

and F =

(

0 f
−f 0

)

, where f ̸= 0. By Example 5.3,

for the triplet (τ, C, F ) to determine a toric GK structure of symplectic type,
f must satisfy

1− 16f2µ1µ2(1/2− µ1)(1/2− µ2) > 0, (µ1, µ2) ∈ ∆.

The function 1/ detϕs = 16µ1µ2(1/2− µ1)(1/2− µ2) takes its maximum
1/16 when µ1 = µ2 = 1/4. We thus find that f ∈ Aτ = (−4, 4).

Now let ϕ = ϕs + C and consequently

ϕ−1 =
1

detϕ

(

1
4µ2(1/2−µ2)

−c
c 1

4µ1(1/2−µ1)

)

,

where detϕ = 1
16µ1(1/2−µ1)µ2(1/2−µ2)

+ c2. For later convenience, let

p :=
1

16µ1(1/2− µ1)µ2(1/2− µ2)
, ϱj := dzj/zj , j = 1, 2.

Note that in the admissible coordinates θ, µ, the matrix form of g is

1

detϕ













1
4µ2(1/2−µ2)

0 cf 0

0 1
4µ1(1/2−µ1)

0 cf

cf 0 detφ−f2

4µ1(1/2−µ1)
0

0 cf 0 detφ−f2

4µ2(1/2−µ2)













.
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Similarly, the matrix form of b is

1

detϕ













0 −c 0 f
4µ2(1/2−µ2)

c 0 − f
4µ1(1/2−µ1)

0

0 f
4µ1(1/2−µ1)

0 c(detϕ+ f2)

− f
4µ2(1/2−µ2)

0 −c(detϕ+ f2) 0













,

or

b =
1

detϕ
× [−cdθ1dθ2 +

fdθ1dµ2
4µ2(1/2− µ2)

− fdθ2dµ1
4µ1(1/2− µ1)

+ c(detϕ+ f2)dµ1dµ2].

J1 on M̊ is as well of symplectic type and in particular its pure spinor3

is eb
′−

√
−1Q, where b′ is a real 2-form and Q is a symplectic form (the inverse

of β1). It can be found that

Q = −g(J+ − J−
2

)−1, b′ = −1

2
Q(J+ + J−),

through which we can obtain the two 2-forms:

Q =
1

c2 + f2
[fdθ1dθ2 +

cdθ1dµ2
4µ2(1/2− µ2)

− cdθ2dµ1
4µ1(1/2− µ1)

+ (fc2 + f3 − pf)dµ1dµ2],

b′ = −(
f

c2 + f2
− f

detϕ
)[

dθ1dµ2
4µ2(1/2− µ2)

− dθ2dµ1
4µ1(1/2− µ1)

]

+ (
c

c2 + f2
− c

detϕ
)dθ1dθ2 + (− cp

c2 + f2
+

cf2

detϕ
)dµ1dµ2.

Finally, let us have a look at the symmetric case, i.e. c = 0. Note that

dθj = −
√
−1

2
(ϱj − ϱ̄j), dµj =

|zj |2
2(1 + |zj |2)2

(ϱj + ϱ̄j).

By using these formulae, we can find that in terms of the Euclidean coordi-
nates

b′ − b−
√
−1Q =

√
−1dz1 ∧ dz2
fz1z2

−
√
−1fd|z1|2 ∧ d|z2|2

4[(1 + |z1|2)(1 + |z2|2)]2
.

3We won’t review the spinor description of GC structures here. For this see [11]
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Note that the first term of the right hand side corresponds to the I0-
holomorphic Poisson structure

√
−1fz1z2∂z1 ∧ ∂z2 while the second term

seems to represent the effect of the purely tangent transform.
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