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We study moduli spaces M of holomorphic maps U to R
4 with

boundaries on the Lagrangian cylinder over a Legendrian link Λ ⊂
(R3, ξstd). We allow our domains, Σ̇, to have non-trivial topology
in which case M is the zero locus of an obstruction function O,
sending a moduli space of holomorphic maps in C to H1(Σ̇). In
general, O−1(0) is not combinatorially computable. However after
a Legendrian isotopy Λ can be made left-right-simple, implying
that any U
1) of index 1 is a disk with one or two positive punctures for which

πC ◦ U is an embedding.
2) of index 2 is either a disk or an annulus with πC ◦ U simply

covered and without interior critical points.
Therefore any SFT invariant of Λ is combinatorially computable
using only disks with ≤ 2 positive punctures.
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1. Introduction

Let (R3, ξstd) denote the standard contact structure on 3-space, R3 ≃ R× C.
With coordinates (t, x, y),

ξstd = ker(αstd), αstd = dt− ydx.

A link Λ in R3 is Legendrian if it is tangent to ξstd in which case we write
Λ ⊂ (R3, ξstd).

In [C02, E98], Chekanov and Eliashberg define a combinatorially-
computable symplectic field theory (SFT) [EGH00] invariant of isotopy
classes of Legendrian links in (R3, ξstd), called Legendrian contact homol-
ogy. For a Legendrian link Λ ⊂ (R3, ξstd) we will denote this invariant by
LCH(Λ). See [EtN18] for an overview of LCH and related invariants.

The graded algebra LCH(Λ) is the homology of a differential graded
algebra (DGA) generated by ∂t chords of Λ. The differential for the DGA
counts finite energy holomorphic disks U with boundary on the Lagrangian
cylinder

R× Λ ⊂ Rs × R
3.

The disks have a single boundary puncture asymptotic to a chord of Λ at
the s → ∞ end of R× Λ and any number of boundary punctures asymptotic
to chords at the s → −∞ end of R× Λ. In this article, we always use the
standard complex structure, J , defined

(1.0.1) J∂s = ∂t, J∂x = ∂y.

See Section 3.1. We also assume that the domains of holomorphic maps are
connected.

In [Av22, Ek08, N10], the author, Ekholm, and Ng define versions of
Legendrian rational symplectic field theory (RSFT ) for Legendrian links
by counting holomorphic disks with any numbers of positive and negative
punctures. A next logical step in the development of SFT for Legendrian
links would be to incorporate counts holomorphic maps U whose domains are
any compact, connected Riemann surfaces (Σ, j) with boundary punctures
removed, Σ̇ ⊂ Σ, allowing multiple boundary components or positive genus.
While an invariant which counts all such curves is yet to be rigorously defined
for Legendrian links, we’ll call such a hypothetical invariant Legendrian SFT,
and denote it by LSFT (Λ).

Chekanov’s LCH and Ng’s RSFT are defined by counting immersions
of disks to C with boundary on πC(Λ), facilitating combinatorial proofs
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of well-definition and invariance under Legendrian isotopy. The fact that
these combinatorial invariants coincide with their analytically-defined coun-
terparts follows from the Riemann mapping theorem coupled with analysis
of Etnyre, Ng, and Sullivan [EtNS02, Section 7]. The goal of this article is
to address the possibility of combinatorial counting of holomorphic curves
on Λ whose domains are not necessarily contractible.

Question 1.1. Can the LSFT moduli spaces MΛ of holomorphic maps

U = (s, t, u) : Σ̇ → R× R× C, U(∂Σ̇) ⊂ R× Λ

be described combinatorially from λ = πC(Λ) ⊂ C when H1(Σ̇) ̸= 0?

1.1. Main results

The answer to this question is “no” in general but “yes” after applying a
Legendrian isotopy to Λ. This first assertion will be justified shortly. The
second is the content of the following theorem:

Theorem 1.2. After applying a Legendrian isotopy to the link Λ, the fol-
lowing conditions apply to holomorphic curves with boundary on R× Λ and
boundary punctures asymptotic to ∂t-chords of Λ:

1) Every ind = 1 holomorphic curve U with boundary on R× Λ is a disk
with 1 or 2 positive punctures and such that πC ◦ U is an embedding.
There are only finitely many such disks up to holomorphic reparame-
terization and translation in the s-coordinate.

2) Every ind = 2 holomorphic curve U with boundary on R× Λ is either
a disk with at most 3 positive punctures, or an annulus with at most
2 positive punctures. The map πC ◦ U is simple and without critical
points in the interior of its domain.1 Consequently, U is simple and
without interior critical points.

Theorem 1.2 utilizes a new notion of simplicity for Legendrian links.

Definition 1.3. Let Λ be a Legendrian link in good position (Definition 2.1)
and such that x|Λ is Morse.

1We recall – cf. [MS04] – that a holomorphic map u is multiply covered if it may
be written u = ũ ◦ ϕ where ϕ is a branched covering of the domain of u onto another
Riemann surface, which is the domain of ũ. Simple curves are those which are not
multiply covered.
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Figure 1: The two-component Legendrian link on the left is modified by
Reidemeister moves to obtain the link on the right whose Lagrangian reso-
lution is left-right-simple.

1) Λ is left-simple is there exists xL ∈ R for which each local minimum
of x|Λ has x-value xL.

2) Λ is right-simple is there exists xR ∈ R for which each local maximum
of x|Λ has x-value xR.

3) Λ is left-right-simple if it is both left simple and right simple.

Starting from a front projection, any Λ can be made left-right-simple by
applying type-II Reidemeister moves so that the front is plat and then ap-
plying a Lagrangian resolution as described in [N03].2 An example is worked
out in Figures 1 and 2. Our proof of Theorem 1.2 principally relies on index
calculations appearing in Theorem 4.6 (broadly applicable) and Theorem 6.6
(specific to the left-right-simple setting).

Only moduli spaces of Fredholm index ≤ 2 holomorphic maps need to
be considered for the development of typical SFT invariants. From the first
statement of the above theorem we immediately obtain the following meta-
result:

Corollary 1.4. Any definition of LSFT which counts rigid curves on (pos-
sibly multiple copies of)3 Λ is combinatorially computable by counting rigid
disks with at most two positive punctures.

2A front diagram is plat if all left-pointing cusps have the same x coordinate and
all right-pointing cusps have the same x coordinate. Plat diagrams are of common
use in the LCH literature, cf. [Sa05].

3See Section 2.5 for details on the n-copy construction.
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Figure 2: Lagrangian resolutions of the fronts shown in Figure 1.

1.2. Curve counting

We describe our setup for curve counting and address the (im)possibility of
counting χ(Σ̇) < 1 curves without a geometric constraint such as the left-
right-simple condition.

1.2.1. The obstruction function. Following the analytical strategies
of [DR16, EtNS02], we obtain the following commutative diagram, which
summarizes much of the content of Section 3:

(1.2.1)

MΛ/R 0

Mλ H1(Σ,R)O

In words, the diagram says that we can identify the (reduced) moduli
spaces MΛ/R of holomorphic curves in R× R× C with boundary on R× Λ
as the zero-locus, O−1(0), of an obstruction function, O, from a moduli space
Mλ of holomorphic curves in C with boundary on λ to the first cohomology
group of the domain, Σ. Here R acts on MΛ by translating curves in the
s-direction and we are allowing the topology of Σ to vary across connected
components of the moduli spaces.

Of course O always vanishes in the case Σ = D, yielding the known “lift-
ing” results, [DR16, Theorem 2.1] and [EtNS02, Theorem 7.7]. In the case
Σ ̸= D, we can view Equation (1.2.1) as setting up a typically non-trivial
obstruction bundle problem. For simplicity, we consider moduli spaces of
parameterized maps. See Section 3.7.3 for further commentary on unparam-
eterized curves.
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1.2.2. Curve counting difficulties. For Σ with more general topology,
Equation (1.2.1) tells us that if MΛ/R has expected dimension 0, then Mλ

will have expected dimension

(1.2.2) expdimMλ = dimH1(Σ,R) = 1− χ(Σ).

For example, when Σ is an annulus, then we want to study dimMλ = 1
moduli spaces whose elements are not rigid curves. These are the dimensions
required to count curves contributing to a LSFT differential.

In such a situation, we would like to be able count points in O−1(0) only
using the data of the Lagrangian projection of Λ. The analysis of Section 5
demonstrations that this is not possible in general. However, the left-right-
simple condition ensures that Equation (1.2.2) cannot be achieved.

1.3. Related work and additional context

1.3.1. Perturbed ∂ equations. Our approach to studying O is via anal-
ysis of holomorphic curves which are perturbed in the sense of [Ab11,
AbCH05]. Contrasting with Doicu and Fuchs’ [DF18], our perturbation
terms are unbounded, and this unboundedness is leveraged to count curves
in special cases as previously mentioned. An ongoing program of Oh and
Wang [Oh21] describes solutions to generalization of these perturbed holo-
morphic curve equations.

1.3.2. More on LSFT . This article is partly motivated by recent work
of Ekholm and Ng: In [EkN20], a definition of Legendrian SFT is proposed
in the context of knot contact homology, in which case counts of curves with
χ(Σ) < 1 may be reduced to counts of holomorphic disks via a recursion
argument.

Although Theorem 1.2 may aid in computation, it does not apriori assist
in defining (some version of) LSFT , proving that such an algebraic object is
invariant under Legendrian isotopy, or in addressing aspects of functoriality
[EHK16]. Analytical proofs of the invariance of LSFT would require analysis
of holomorphic curves on Lagrangian cobordisms. Likewise, combinatorial
approaches to invariance should require violation of the left-right-simple
condition. We do not address non-trivial Lagrangian cobordisms or algebraic
aspects of LSFT in this article.

1.3.3. Heegaard-Floer invariants. According to Lipshitz [Li06], the

Heegaard-Floer invariants ĤF (Y ) [OzvSz04] of a smooth 3-manifold, Y ,



✐

✐

“2-Avdek” — 2023/9/18 — 22:55 — page 271 — #7
✐

✐

✐

✐

✐

✐

Simplified SFT moduli spaces for Legendrian links 271

count holomorphic curves in almost complex 4-manifolds of the form
R× [0, 1]× S for a surface S with boundaries mapped to non-compact La-
grangian submanifolds. As in the case of LSFT there are no restrictions
on the topological types of the domains of curves. Therefore we view left-
right-simple links as being analogous to Sarkar and Wang’s nice Heegaard
diagrams [SW10], and Theorem 1.2(1) as being analogous to their [SW10,

Theorem 1.1] which reduces ĤF (Y ) curve counts to combinatorial counts of
holomorphic disks in the Riemann surface S with at most 2 positive punc-
tures.

Our approach to analyzing MΛ/R described in Sections 3 and 5 can

similarly be applied to ĤF curve counts associated to non-nice Heegaard
diagrams. This approach appears impractical for general computation but is
useful in some restricted scenarios. The technique is used to count annuli in
Ozváth and Szabó’s original paper [OzvSz04, Section 9] and in unpublished
work of Pardon [P12].

1.3.4. Replacing C with an arbitrary Liouville domain. It would
be interesting to know if an analogue of Theorem 1.2 exists for (per-
haps topologically restricted classes of) Legendrian submanifolds in higher-
dimensional contactizations of Liouville domains.4 The results of Section 3
readily generalize to holomorphic curves in symplectizations of contactiza-
tions of arbitrary Liouville domains in parallel with

1) Dimitroglou Rizell’s [DR16] generalizing [EtNS02, Section 7] or

2) Colin, Honda, and Tian’s construction of ĤF for higher-dimensional
manifolds [CHT20].

The story told in Section 1.2 may be applied without modification to
attempts at counting holomorphic curves “by hand” in any of the above gen-
eralized contexts just as it applies to ĤF . Hence a Sarkar-Wang-style result
such as Theorem 1.2 may in general be necessary to eliminate rigid χ(Σ̇) < 1
curves, making combinatorially techniques such as Morse flow trees [Ek07]
applicable. Our proof of Theorem 1.2 relies on specifically low-dimensional
methods – combinatorial topology of curves on surfaces.

1.4. Organization of this article

In Section 2 we cover generalities regarding Legendrian links in (R3, ξstd). In
Section 3 we define the moduli spaces of holomorphic curves relevant to this

4Our ambient space, (R3, ξstd), may be viewed as the contactization of T ∗
R.
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paper and elaborate on Equation (1.2.1). Section 4 describes general index
formula for holomorphic maps to C with boundary on an immersed multi-
curve. Examples are explored in which the map O is used to combinatorially
count holomorphic annuli in Section 5. Finally, Section 6 is dedicated to the
proof of Theorem 1.2.
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2. Background and notions of simplicity for Legendrian links

In this section we describe Legendrian links in (R3, ξstd) and explore various
ways in which the geometry of such links may be restricted for the purposes
of simplifying computations. In particular, the left-right-simple condition is
described in Definition 1.3.

2.1. Basic notions

Throughout, Λ will denote a Legendrian link in (R3, ξstd) and λ will de-
note an immersed 1-dimensional submanifold of C with only transverse self-
intersections. Unless otherwise specified, we will take λ = πC(Λ).

A chord of Λ is a compact, connected ∂t trajectory in R3 which both
begins and ends on Λ. Chords are in bijective correspondence with the double
points of λ. The action, A(r) of a chord r = r(t) is defined

A(r) =

∫

r

dt.

Throughout we will use η = η(T ) to denote either an oriented path in
λ ⊂ C which begins and ends at double points of λ. For such a path η with
domain I ⊂ R, the rotation angle, denoted θ(η) ∈ R, is defined as the integral



✐

✐

“2-Avdek” — 2023/9/18 — 22:55 — page 273 — #9
✐

✐

✐

✐

✐

✐

Simplified SFT moduli spaces for Legendrian links 273

of the Gauss map G : λ → R/2πZ pulled back to an interval by η:

I R

λ R/2πZ

G̃

η

G

, θ(η) =

∫

I

G̃dT.

2.2. Restrictions on Lagrangian projections

The following condition – originally appearing in [Av20] – will help us to
simplify calculations of rotation angles paths in Λ. Similar conditions con-
straining the geometry of Legendrians near endpoints of chords appear in
[BEE12, DR16, EES05].

Definition 2.1. We say that an immersed multicurve λ ⊂ C is in good po-
sition if each self-intersection (x0, y0) ∈ C is transverse and the there exists
a neighborhood about the point within which

1) one strand of λ admits a parameterization satisfying (x, y)(q) = (x0 +
q, y0 − q) and

2) the other strand admits a parameterization satisfying (x, y)(q) = (x0 +
q, y0 + q).

We say that a Legendrian link Λ ⊂ (R3, ξstd) is in good position if πC(Λ)
is in good position and the first strand above corresponds to the one with
greater t-value.

Good position guarantees that the Gauss map of a parameterization of
λ evaluates to 3π

4 or 7π
4 near an over-crossing and to π

4 or 5π
4 near an under-

crossing. Likewise, the rotation angles of paths η ending on double points of
a multicurve in good position satisfy

(2.2.1) θ(η) ∈
π

2
Z.

2.3. Lagrangian resolution

The following proposition is a slight modification of [N03, Proposition 2.2]
appearing in [Av20]:

Proposition 2.2. Provided a front projection of a Legendrian link Λ, we
may perform a Legendrian isotopy of so that it is in good position and so
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that away from double points the Lagrangian diagram is obtained by resolving
singularities of the front as depicted in Figure 3.

Figure 3: The first row of subfigures shows segments of a Legendrian link
appearing in the front projection. Directly below each subfigure is the cor-
responding local picture in the Lagrangian resolution.

We say that a Lagrangian projection obtained from a front as described
in the above proposition is the Lagrangian resolution of the front.

2.4. Assumptions and conventions

Throughout the remainder of this article it will be assumed that every La-
grangian projection of a Legendrian knot is obtained by a Lagrangian res-
olution of a front diagram unless otherwise specified. Consequently, for the
crossings appearing in both front and Lagrangian projections, we require
that the “north-west to south-east” strand lies above the “south-west to
north-east” strand of the link. With this simplification at hand, crossings
in both the front- and Lagrangian projections will henceforth be drawn as
“X”s without ambiguity.

2.5. Compatibility with the n-copy construction

We note that left-right-simplicity is compatible with the satellite construc-
tion of [NT05] when the satellite pattern is a positive braid. For the sake
of brevity we only discuss the n-copy construction here, which is particu-
larly important in the study of Legendrian links. For example, the n-copy is
used to define product structures on linearized LCH in [BEE11, BC14] and
RSFT invariants of Legendrian links in [Ek08].
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For n ∈ N, the n-copy of Legendrian link, Λ, is defined as the Legendrian
isotopy class of the link

Λn = ⊔n−1
k=0Λk, Λk = Flow

k

n
ϵ

∂t (Λ)

for ϵ > 0 arbitrarily small, whence the Legendrian isotopy class of Λn is
independent of ϵ.

Figure 4: A 3-copy of a Legendrian unknot in the front and Lagrangian
projections.

One obvious way to make Λn left-right-simple is to perturb the front
projection of Λ to a plat closure as shown in Figure 1, take the n-copy, and
then apply the Lagrangian resolution. See Figure 4 for an example.

Λ2

Λ1

Λ0

Λ2

Λ1

Λ0

Figure 5: Drawing an n-copy of a Lagrangian resolution in the Lagrangian
projection for n = 3. From left-to-right, the required modifications are de-
picted near the resolution of a left-pointing cusp, a crossing, and a left-
pointing cusp.

Let Ci,j denote the chords of Λn which start on Λi and end on Λj . In
[BC14, BEE11, Ek08] the authors apply Legendrian isotopies to Λn to ensure
chord genericity, requiring that the Λk are close enough to the original Λ so
that

1) when i ≥ j, Ci,j is naturally identified with the chords of Λ.
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2) when i < j, Ci,j is naturally identified with a union of the chords of Λ
together with critical points of a Morse function on Λ.

A method for producing a left-right-simple n-copy which meets these
criteria from a left-right-simple Λ is shown in Figure 5. This method does
not rely on our assumption that the Lagrangian projection of Λ is obtained
by a Lagrangian resolution of a front. Note that patching the columns of Fig-
ure 5 in the obvious fashion will produce a 3-copy of the Legendrian unknot,
Legendrian isotopic to the one shown in Figure 4. The chords determined
by the maxima and minima of x|Λ will correspond to the critical points of
a Morse function on Λ having 2#(crit(x|Λ)) critical points.

3. Moduli spaces and cohomological obstruction

In this section we describe the moduli spaces of interest in this article. Our
main result here is Theorem 3.4 which justifies Equation (1.2.1). This section
closes with a description of some technical subtleties.

As mentioned in the introduction, the definitions and results of this sec-
tion may easily be extended to the case of Lagrangian cylinders over Legen-
drian submanifolds inside of symplectizations of contactizations of Liouville
domains in the spirit of [DR16, Theorem 2.1].

3.1. Specification of J on R4

We use J0 to denote the standard complex structure on C. As mentioned in
the introduction, we always work with the standard complex structure J =
J0 × J0 on Rs × Rt × Cx,y ≃ Cs,t × Cx,y given by Equation (1.0.1). While
J does not preserve ξstd, it is αstd-tame in the sense of [BH15] and is so
suitable for SFT computations. This standard J is of common use in the
Legendrian contact homology literature, cf. [DR16].

The results of this paper are equally valid using the αstd-adapted almost
complex structure J ′ on R× R3 defined

J ′∂s = ∂t, J ′(v + ydx(v)∂t) = J0v + ydx(J0v)∂t, v ∈ TC.

See, for example, [EtNS02, Section 7] and [Av20, Section 11.1]. Both J and
J ′ are compatible with the symplectic form d(esαstd), so that all Lagrangian
submanifolds are totally real for either choice of almost complex structure.
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3.2. Riemann surfaces

Throughout this article Σ will denote a compact, connected, oriented surface
with non-empty boundary. We write H1(Σ) (H

1(Σ)) for the associated first
homology (cohomology) group with coefficients in R. In this article we will
frequently encounter H1 elements as being determined by harmonic 1-forms.
It will be useful – especially in Section 5 – to think of H1 as the dual space

H1(Σ) ≃ Hom(H1(Σ),R)

whose elements are uniquely determined by their integrals over closed 1-
cycles. From this perspective, a choice of basis of homology of Σ determines
a dual basis of H1(Σ).

We write Σ = (Σ, j, {pi}) for a compact, connected surface Σ with la-
beled boundary components

∂Σk, k = 1, . . . ,#(∂Σ),

complex structure j, and a non-empty collection of marked points pi con-
tained in ∂Σ. We say that such a triple (Σ, j, {pi}) is a decorated Riemann
surface.

We say that two decorated Riemann surfaces Σ = (Σ, j, {pi}) and Σ̃ =
(Σ̃, j̃, {p̃i}) are isomorphic if #(∂Σk) = #(∂Σ̃k), #(pi) = #(p̃i), and there is
a (j, j̃) holomorphic diffeomorphism Σ → Σ̃ mapping each ∂Σk to ∂Σ̃k and
each pi to p̃i. We say that Σ and Σ̃ are isotopic if such a diffeomorphism
exists which is isotopic to the identity in Diff(Σ).

We write Σ̇ for Σ with all of its marked points removed, ∂Σ̇k for the kth
boundary component of Σ with the pi removed, and ∂Σ̇ for the union of the
∂Σ̇k. The following lemma summarizes some results of Sections 3 and 4 of
[L02]:

Lemma 3.1. We say that the triple (Σ, j, {pi}}) is stable if Aut(Σ̇, j) is
finite. This condition is equivalent to the condition that

2χ(Σ)−#(pi) < 0.

Assuming stability, the moduli space of isotopy classes of decorated Riemann
surfaces Σ is a manifold of dimension

#(pi)− 3χ(Σ) = #(pi) + 3#(∂Σ) + 6g(Σ)− 6.
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The only non-stable curves we consider are the 2-disk, D, with one or
two boundary punctures, which have automorphism groups of dimensions 2
and 1 respectively.

We defer to [L02] for descriptions of the compactifications of moduli
spaces of decorated Riemann surfaces. In particular, we assume familiarity
with nodal curves which will appear in the proof of Theorem 1.2. It is of note
that we have not included interior punctures or surfaces without boundary
marked points.

Because we will be interested in holomorphic maps with Lagrangian
boundary in a Euclidian space, all interior punctures of maps under con-
sideration will be removeble. Limits of holomorphic curves may of course
develop interior punctures in their domains as the boundary component of
a curve may shrink to a point. We will see non-trivial examples of this phe-
nomenon in Section 5. Because the Lagrangians of interest will be cylinders
over Legendrian links, there will be no holomorphic maps without at least
one boundary puncture.

3.3. Moduli spaces of holomorphic u

Let λ be a compact, immersed multi-curve in C in good position. We consider
(j, J0)-holomorphic maps u : Σ̇ → C which satisfy the following conditions:

1) u satisfies the Lagrangian boundary condition, u(∂Σ̇) ⊂ λ.

2) The energy, E(u), of u is finite, where it is defined

E(u) =

∫

Σ
u∗(dx ∧ dy).

3) All boundary punctures are asymptotic to self-intersection of λ.

Two such maps will be considered equivalent if they differ by a reparam-
eterization of the domain which is an isotopy of decorated Riemann surfaces.
Therefore our moduli spaces will be modeled on Teichmüller space rather
than on the Deligne-Mumford space of curves, typically used in SFT. See
Section 3.7.3 for further commentary.

Provided such a map u we write Mλ
u for path connected component of

the space of such (j′, J0)-holomorphic maps u′ : Σ̇ → C containing u, where
j′ a complex structure on Σ̇, modulo biholomorphic reparameterization.
Without a map u specified, we will write Mλ for the associated moduli
space.
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According to our convention that holomorphic maps are parameterized
up to isotopy together with fact that isotopy acts trivially on cohomology,
H1(Σ) forms a trivializable vector bundle over each Mλ

u. Such a choice of
trivialization is equivalent to a choice of basis of H1(Σ).

3.4. Moduli spaces of Dirichlet problems

Now suppose that Λ is a Legendrian link in R3 and write λ = πC(Λ) for its
projection to the xy-plane, C. We assume that Λ is in good position.

Consider the moduli space MD whose elements consist of pairs (t∂ , u) of
holomorphic maps u ∈ Mλ together with continuous functions t∂ : ∂Σ̇ → R

such that

(t∂(z), u(z)) ∈ Λ ⊂ R
3, z ∈ ∂Σ̇.

We declare that (t∂i , ui) for i = 1, 2 are equivalent if they differ by isotopic
reparameterizations of the domain. We call MD the Dirichlet moduli space.
For a particular choice of (t∂ , u) the path-connected component of MD con-
taining the pair (t∂ , u) will be denoted MD

(t∂ ,u).

Proposition 3.2. The map

πD : MD → Mλ, πD(t
∂ , u) = u

is a homeomorphism away from constant maps.

Proof. Because Λ is a submanifold of R3 and the function t∂ is required
to be continuous, the restriction of t∂ to any connected component ∂Σ̇ is
determined by its value at a given point which is not mapped to a double
point of λ. Because we have assumed that u is non-constant, the restriction
of u to each component of ∂Σ̇ must be non-constant. Hence the image of
each such connected component must contain a point z for which u(z) is not
a double point of λ. For such z, there is a unique choice of t∂(z). Thus t∂ is
uniquely determined by the map u. □

3.5. Moduli spaces of holomorphic U

We now consider (j, J)-holomorphic maps

U = (s, t, u) : Σ → R× R× C

subject to the following conditions:



✐

✐

“2-Avdek” — 2023/9/18 — 22:55 — page 280 — #16
✐

✐

✐

✐

✐

✐

280 Russell Avdek

1) U has Lagrangian boundary, U(∂Σ̇) ⊂ R× Λ.

2) The dα-energy, Edα(U), of U is finite, where it is defined

Edα(U) =

∫

Σ
U∗dαstd.

3) The Hofer energy, EH(U), of U is finite, where it is defined

EH(U) = sup
ρ∈F

∫

Σ
U∗(ρ(s)ds ∧ α), F = {ρ : R → [0, 1] :

dρ

ds
≥ 0}.

4) All boundary punctures asymptotic to chords of Λ. That is, for each
boundary puncture p ∈ ∂Σ there is a holomorphic coordinate system
of the form [C0,∞)C × [0, π] ⊂ Σ̇ identifying the point at C = ∞ with
p so that limz→p s(z) = ±∞ and we have convergence of the paths
limC→∞(t(C, ∗), u(C, ∗)) to a chord of Λ with ±-orientation.

As πC is (j, J0)-holomorphic and dαstd = dx ∧ dy, the dα-energy is de-
termined by u = πC ◦ U . Stokes’ theorem also tells us that the energy of U
is determined by the chords {r±j }

m±

j=1 to which it is positively and negatively
asymptotic:

(3.5.1) Edα(U) = E(u) =
m+∑

1

A(r+j )−
m−∑

1

A(r−j ).

Provided such a map U we write MΛ
U for the path connected component

of the space of such (j′, J)-holomorphic maps U ′ : Σ̇ → R× C× R contain-
ing U , where j′ a complex structure on Σ̇, modulo isotopic reparameteriza-
tion. This moduli space admits an R-action by translation in the s-direction,
(s0, U) 7→ U + (s0, 0, 0, 0), and we write MΛ

U/R for the quotient. Disregard-
ing a particular U , the moduli space and its R-quotient will be denoted MΛ

and MΛ/R, respectively.

3.6. Cohomological obstructions

For a function f : Σ̇ → R defined on a subset Σ̇ ⊂ Σ of a compact Riemann
surface (Σ, j), the Laplacian ∆f is defined5

∆f = −d(df ◦ j) ∈ Ω2(Σ̇)

5What we’re calling the Laplacian – taking values in Ω2(Σ̇) rather than the usual
Ω0(Σ̇) = C∞(Σ̇) – is typically called the Levi form. See [OS04, CE12].
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which in a local holomorphic coordinate system x, y takes the usual form

∆f = (
∂2f

∂x2
+

∂2f

∂y2
)dx ∧ dy.

Lemma 3.3. Let Λ ⊂ (R3, ξstd) be a Legendrian link. Then a map

U = (s, t, u) : Σ̇ → R× R× C, U(∂Σ̇) ⊂ R× Λ

is (j, J)-holomorphic if and only if the following are satisfied,

∂J0
u = 0, ds = dt ◦ j,

in which case ∆t = 0.

This is a straightforward computation. To address Question 1.1, we want
to understand to what extent elements of MΛ are determined by (t, u) =
πR3 ◦ U . With this line of inquiry in mind – together with the fact that
harmonic functions are determined by their boundary values – we define a
map

πΛ : MΛ/R → MD, πΛ([(s, t, u)]) = (t|∂Σ̇, u).

The content of [DR16, Theorem 2.1] and [EtNS02, Theorem 7.7] is that πΛ
is a homeomorphism when Σ = D. We follow their strategy.

Provided (t∂ , u), the existence of a function t ∈ C∞(Σ̇) solving the Dirich-
let problem

(3.6.1) t|∂Σ̇ = t∂ , ∆t = 0

may be established using classical techniques, such as Perron’s method as
described in [Al79, Section 6.4.2]6. In contrast with [DR16, EtNS02], the
required exactness of dt ◦ j is not automatically satisfied when χ(Σ) < 1. To
each Dirichlet problem (t∂ , u) ∈ MD we define the obstruction class

(3.6.2) O : MD → H1(Σ,R), O((t∂ , u)) = [dt ◦ j].

The fact that ∆t = 0 is equivalent to dt ◦ j ∈ Ω1(Σ) being closed establishes
that O((t∂ , u)) is indeed a cohomological cycle. As we have declared that

6While the solution to the Dirichlet problem in [Al79] is worked out for bounded
regions Ω ⊂ C with non-singular ∂Ω and bounded, piece-wise continuous t∂ , the
proof relies only on analysis of functions on holomorphically embedded disks ⊂ Ω,
and so generalizes to arbitrary compact Riemann surfaces with only notational
modification.
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holomorphic maps are equivalent only if they differ by an isotopy of Σ, and
any such isotopy will act trivially on H1(Σ,R), O is well defined.

Theorem 3.4. The map πΛ is an injection whose image is O−1(0).

Proof. Continuting the above discussion, we show that each (t∂ , u) ∈ O−1(0)
admits a lift to MΛ. Provided t ∈ C∞(Σ̇) solving Equation (3.6.1), the def-
inition of O then entails that there exists s : Σ̇ → R solving ds = dt ◦ j. We
must verify that U = (s, t, u) meets the criteria for inclusion in MΛ as de-
scribed in Section 3.5.

The Lagrangian boundary condition for R× Λ is satisfied by definition
of the space MD. The finiteness of Edα(U) follows from Equation (3.5.1)
together with the presumed finiteness of E(u). For the finiteness of the Hofer
energy, we appeal to [Ek08, Lemma B.3], which bounds EH(U) in terms of
the actions of the positive punctures of U .

To complete our proof that (s, t, u) ∈ MΛ, we must show that the bound-
ary punctures of Σ̇ are positively and negatively asymptotic to chords of Λ.
The case Σ = D is worked out in the proof of [EtNS02, Theorem 7.7]. As
the analysis of [EtNS02] is carried out in a strip-like neighborhood of each
boundary puncture whence it is reduced to the case considered in [RS01],
it translates without modification to the case of a boundary puncture in a
general decorated Riemann surface.

We have so far established that O−1(0) ⊂ πΛ(M
Λ/R). The opposite in-

clusion πΛ(M
Λ/R) ⊂ O−1(0) as well as the uniqueness of lifts follow from

the fact that (s, t, u) ∈ MΛ is uniquely determined – up to addition of con-
stant functions of the form (s0, 0, 0) – by (t|∂Σ̇, u). For t, this is a consequence
of the maximum principle for harmonic functions. For s, this follows from
the fact that if ds′ = ds then s′ = s+ s0 for some s0 ∈ R. □

3.7. Some technical nuances

3.7.1. When u is constant. The map πD will typically be many-to-one
along the inverse image of constant maps u whose image is a self-intersection
of λ. Supposing that (x0, y0) ∈ C is such a self-intersection corresponding to
a chord c of Λ, which for notational simplicity, we assume starts at t = 0.
Supposing also that Σ is a decorated Riemann surface, there is only a single
holomorphic map to C with image (x0, y0), but 2N holomorphic maps in
π−1
D ((x0, y0)) whereN is the number of connected components of ∂Σ̇. Indeed,

each factor of 2 accounts for a choice of sending each connected component
of ∂Σ̇ to either the starting or ending point of the chord lying over (x0, y0).
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r2 r4

r2 r3

r1 r2 r3

r4

Figure 6: A 1-parameter family of holomorphic curves in R× R3 with
boundary on R× Λ, where Λ is a trefoil. The images of the u are shown
in the right-hand column with boundary critical points shown as a thick
dot. As the image of the boundary critical point tends towards πC(r2) in C,
a trivial strip over r2 bubbles off.

As described in [CL07], curves of positive area with multiple positive
punctures may degenerate into nodal configuration containing trivial strips.
An example is shown in Figure 6. This type of degeneration necessitates that
the appearance of the string topological correction term in the differential
of Ng’s Legendrian RSFT [N10].

3.7.2. Compactness. The preceding example indicates that care must
be taken when attempting to extend the results of this section pertaining to
the moduli spaces M∗ to their corresponding compactifications, M∗.

For another example: We will see in Section 5.5 that the obvious exten-
sion of the map πD to the associated compactified moduli spacesMD → Mλ

is not a homeomorphism in general.
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More foundational issues arise when studying the interplay between
Dirichlet problems and limits of decorated Riemann surfaces: The classi-
cal example

int(Σ) = {|z| ∈ (0, 1)} ⊂ C, t =

{
0 |z| = 1

1 z = 0

indicates that the Dirichlet problem of Equation (3.6.1) cannot be solved in
general over surfaces with singular boundary, which may be realized as limits
of non-singular decorated Riemann surfaces. Thus the map O – as defined
using Dirichlet solutions in Equation (3.6.2) – does not generally admit a
continuous extension to ∂MD. We will leverage this lack of continuity to
draw pictures of moduli cycles of annuli in Section 5.

3.7.3. Orbibundles over moduli spaces of unparameterized maps.
If we had defined our moduli spaces by declaring holomorphic maps to be
equivalent if they differ by isomorphism – rather than isotopy – of deco-
rated Riemann surfaces, then O would be ill-defined due to the possibility
for Aut(Σ) to act non-trivially on H1(Σ). Then H1(Σ) would form an orbi-
bundle over theMD moduli spaces of whichO would be a lifted multisection.
See, for example, [FT17].

We have chosen to work with isotopies of Σ to avoid these complexities.
Theorem 1.2 indicates that for LSFT curves U with ind(U) ≤ 2 there is no
difference between moduli spaces of isotopic and isomorphic curves when
the left-right-simple condition is in effect.

3.7.4. Perturbed holomorphic maps. For the purposes of either topo-
logical applications or perturbing the function O, the reader may be inter-
ested in solving equations of the form

(3.7.1)
U = (s, t, u) : Σ → R× R× C, ∂u = 0, ds+ dt ◦ j = γ,

γ ∈ Ω1(Σ), dγ = d(γ ◦ j) = 0.

We say that solutions of the above equations satisfying the conditions of
Section 3.5 are harmonically perturbed holomorphic curves as studied in
[Ab11, AbCH05, DF18].

Proposition 3.5. For each (t∂ , u) ∈ Mλ there exists a harmonically per-
turbed holomorphic curve U with perturbation term γ ∈ Ω1 satisfying

πC(U) = u, U(∂Σ̇) ⊂ R× Λ, [γ] = O((t∂ , u)) ∈ H1(Σ)
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Observe that the asymptotic convergence of boundary punctures to Reeb
chords here is analogous to the asymptotic convergence of interior punctures
to closed Reeb orbits in the ∂Σ = ∅ case described by Abbas in [Ab11,
Proposition 1.5].

Proof. We proceed as in the proof of Theorem 3.4 by first finding a function
t solving the Dirichlet problem of Equation (3.6.1). Now we construct the
harmonic form γ ∈ Ω1(Σ) with the appropriate cohomology class.

Let (Σ̃, j̃) be a closed Riemann surface with a holomorphic embedding
i : Σ → Σ̃ for which i∗ : H1(Σ̃) → H1(Σ) is a surjection. The doubling con-
structions described in [L02] provide some options of such (Σ̃, j̃). Applying
a Hodge decomposition to Σ̃, we can find a harmonic γ̃ ∈ Ω1(Σ̃) for which
[i∗γ̃] = O = [dt ◦ j] and then define γ = i∗γ̃. It follows that γ is harmonic
and γ − dt ◦ j is cohomologically trivial, so that there exists an s solving
Equation (3.7.1). Moreover, the closure and co-closure of γ ensure that s is
harmonic as well.

Having defined the function s and so the map U = (s, t, u), we address
the dα- and Hofer-energies. By the fact that u is holomorphic, Equation
(3.5.1) still applies so that Edα(U) < ∞. Again using ∂u = 0 – implying
u∗dαstd ≥ 0 point-wise on Σ̇ – the proof of [Ek08, Theorem B.3] is still
valid, implying EH(U) < 0.

As for asymptotics, exponential converge in u of boundary punctures
towards a self-intersection of λ follows from [RS01] as in the proof of The-
orem 3.4. To complete the proof, we will establish asymptotic convergence
towards a chord in the s and t directions.

Near each boundary puncture of Σ, we can use one of two holomorphic
models. First we can model the puncture on the half-disk D ∩ {y ≤ 0} ⊂
C with the boundary marked point corresponding to z = 0. Next, we can
use the strip model, [0,∞)× i[0, π] ⊂ C with the point at infinity, x → ∞
corresponding to the marked point. To get from the strip model to the half-
disk model, we simply apply the transformation z = e−ζ .

In either model γ is exact and γ = df , so that s− f is holomorphic.
Applying the arguments of [DR16, EtNS02] as in Theorem 3.4, we see that
(s− f, t) – which is holomorphic – satisfies the usual exponential conver-
gence estimate in the half-infinite strip model. We may assume the f = 0
at our boundary puncture, so that a Taylor expansion for f in the half disk
model yields |f | = O(|z|) = O(e|ζ|). Therefore (s, t) = (s− f, t) + (f, 0) will
exponentially converge to the trivial strip over some chord as desired. □
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4. Combinatorial index computations

Here we describe two ways of computing indices of holomorphic maps in
Mλ and MΛ: First we state the usual index formulae using Maslov indices.
Second, we compute indices by counting critical points of holomorphic maps
from a surface to the plane in Theorem 4.6.

Throughout this section, the good position condition is assumed to hold.
This is primarily to simplify the calculations of rotation angles as described
in Equation (2.2.1). We do not assume that λ or Λ is left-right-simple.

4.1. Index calculations from Maslov numbers

Theorem 4.1. The expected dimension of the space Mλ
u is given by the

index formula

ind(u) =

#(∂Σ)∑

k=1

M(u|∂Σk
)− 2χ(Σ) + #(pi).

This is a special case of the index formula computation of [CEL10, The-
orem A.1] in the case n = 1 with only Lagrangian intersection boundary
punctures using the (unique up to homotopy) framing of TC which extends
over all of C. The Maslov index over a boundary component ∂Σk with punc-
tures pk,i and oriented, connected components of ∂Σ̇k denoted ηk,i may be
computed

(4.1.1) M(u|∂Σk
) =

1

π

∑
θ(u|ηk,i

)−
1

2
#(pk,i).

Here the −1
2 contribution at each boundary puncture comes from the fact

that a negative rotations of a Lagrangian plane in Cn is applied along each
Lagrangian intersection (or Reeb chord) in order to assign a closed loop
of Lagrangian subspaces to each ∂Σk. See [CEL10] for further context and
details.

Definition 4.2. We say that such a map u is rigid if ind(u) = 0.

We expect that rigid maps would be isolated in the sense that Mu =
{[u]} where [u] is the class of maps which agree with u after biholomorphic
isotopy.
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Theorem 4.3. The expected dimension of the moduli space MΛ
U is given

by the index formula

ind(U) =

#(∂Σ)∑

k=1

M(U |∂Σk
)− χ(Σ) + #(pi)

This is also a special case of [CEL10, Theorem A.1], this time in the case
n = 2 with only Reeb chord boundary punctures. Combining Theorems 4.1
and 4.3 we have

(4.1.2) ind(U) = ind(u) + χ(Σ)

which follows from the fact that

M(U |∂Σk
) = M(u|∂Σk

).

Indeed, T (R× Λ) splits as R∂s ⊕ Tλ and the Maslov number of R∂s is trivial
over any loop, so the formula follows from the additivity of the Maslov
number under direct sums [MS99, Theorem 2.29].

Definition 4.4. We say that such a map U is rigid if ind(U) = 1.

We expect that a rigid map U would be isolated in the sense that MΛ
U ≃

R, parameterized by maps which are R-translates (in the s direction) of maps
biholomorphically isotopic to U . Equation (4.1.2) indicates that in order to
study d-dimensional moduli spaces MΛ

U we must understand the obstruction
class O over moduli spaces Mλ

u of dimension

(4.1.3) dim(Mλ
u) = d− χ(Σ) = d+ dimH1(Σ)− 1.

Remark 4.5. As with the content of Section 3, Equations (4.1.2) and
(4.1.3) readily translate to the contexts of [CHT20, DR16, Li06].

4.2. Local branching of holomorphic maps

For a holomorphic map u ∈ Mu we write crit∗(u) ⊂ Σ for the sets of critical
points

crit(u) = {z ∈ Σ̇, Tu(z) = 0}, critint(u) = crit(u) ∩ int(Σ̇),

crit∂(u) = crit(u) ∩ ∂Σ̇.
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We only consider non-constant u with Σ compact so that crit(u) is a finite
subset of Σ, cf. [Al79, MS99].

4.2.1. Orders of critical points. For z0 ∈ Σ̇ we define the order of u
at z0, ordu(z0), as follows: Take a neighborhood N(z0) ⊂ Σ containing z0
within which u admits a power-series expansion

u|N(z0) =

∞∑

0

akz
k

where we have identified z0 = 0 ∈ N(z0). For z0 ∈ int(Σ̇), the neighborhood
hood N(z0) may be modeled on Bϵ(0) ⊂ C and for z0 ∈ ∂Σ, the neighbor-
hood may be modeled on the half-ball Bϵ(0) ∩ {|y| ≥ 0} for some ϵ > 0.
Then ordu(z0) is defined the smallest k for which the zk coefficient in du is
non-zero.

4.2.2. Orders of boundary punctures. We will additionally need a
notion of the order of u at a boundary puncture. Here matters will be con-
siderably simplified by our requirement that the angles of self-intersections
of λ are always π

2 .
After a rotation, the local picture of λ at a self-intersection will always

look like the coordinate axes in C intersecting at the origin. We then define
the order of u at a boundary puncture pi, ordu(pi) to be the number of
quadrants covered by the map u by a neighborhood about pi minus 1.

Figure 7: Convex and non-convex corners corresponding to boundary punc-
tures of orders 0 and 2, respectively. Each subfigure may be rotated by
multiples of π

2 .

For some examples, we’ll work with the actual coordinate axes: Let λ =
{x = 0} ∪ {y = 0} and take a neighborhood of pi in Σ̇ to be the upper-right
quadrant B ∩ {x, y ≥ 0}. Then if u is locally given by u(z) = zk with k odd,
then ordu(pi) = k − 1. Observe that this number must be even. Figure 7
shows boundary punctures of orders 0 and 2.
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4.3. Index calculations from branch orders

Here we calculate the Maslov indices of maps u ∈ Mu from the orders of
critical points and boundary punctures.

Theorem 4.6. For u ∈ Mλ,

ind(u) =
1

2

∑

pi∈∂Σ

ordu(pi) +
∑

z∈crit∂u

ordu(z) + 2
∑

z∈critintu

ordu(z).

Hence all rigid curves in Mλ are immersed and such that every boundary
puncture has order 0.

Proof. We will work through a sequence of increasingly general cases. In each
case, we’ll be computing Maslov numbers using rotation angles of paths as
described in Equation (4.1.1).

First consider the case when Σ = D, crit(u) = ∅, and there are no bound-
ary punctures. Then u is an immersion of the disk into C, and the restriction
of u to ∂D will have total rotation angle 2π. Then M(∂Σ) = 2 and 2χ(Σ) = 2
so that ind(u) = 0, as expected.

Next, consider the case when Σ = D, crit(u) = ∅, and the order of u at
each boundary puncture pi is 0. If we round each π

2 corner of the image
of u, we obtain an immersion ũ whose domain is a disk without boundary
punctures. The effect of rounding corners adds π

2 to the boundary rotation
angle for each boundary puncture of u. Hence

∑
θk = 2π −

π

2
#(pi).

When computing the Maslov index of u|∂Σ, we subtract π
2 from the rota-

tion angle for each boundary puncture. Hence M(u|∂Σ) = 2−#(pi) and so
ind(u) = 0, establishing the theorem in this case.

Now we consider the case in which Σ = D, crit(u) = ∅, and the orders of
boundary punctures are allowed to be arbitrary non-negative integers. Let
λ̃ be an immersed multi-curve obtained from λ by adding circles ∂Dϵ(zk)
centered about each of the double points zk ∈ C of λ. A map ũ is obtained
from u by deleting the connected components u−1(Bϵ) from the domain of
u which contain punctures. See Figure 8. Then the domain of ũ will have
2#(pi) boundary marked points and the order of ũ at each boundary marked
point will be 0. We have already established that if θ̃k are the rotation angles
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u
−→

ũ
−→

ak

ak+1

ãk

b̃k

ãk+1

Figure 8: On the left, a neighborhood of a boundary puncture p ∈ ∂Σ is
sent via u to a non-convex corner, so that ordu(p) = 2. On the right, we
modifying λ and u to obtain λ̃ and ũ having two boundary punctures, each
having order 0.

over the boundary components of the domain Σ̃ of ũ, then

(4.3.1)
∑

θ̃k = 2π − π#(pi)

We label the boundary components of ∂Σ̇ and ∂Σ̃ as shown in Figure 8 so
that each connected component ak of ∂Σ̇ determines a connected component
ãk of ∂Σ̃ and each pk determines a new boundary arc b̃k of ∂Σ̃. From the
figure, we see that the rotation angle of each ãk agrees with the rotation
angle of each ak. The new boundary arc, considered as living in Σ̇ is exactly
as the form of the arcs used to define ordu(p) for a boundary puncture
except oriented backwards. The rotation angle of b̃k is −π

2 (ordu(pk) + 1).

By combining the rotation angles θ(̃bk) with Equation (4.3.1), we conclude

(4.3.2)

∑
θ(ak) =

∑
θ (ãk) =

∑
θ (ãk) +

∑
θ
(
b̃k

)
−
∑

θ
(
b̃k

)

=
∑

θ̃k +
π

2

∑
(ordu(pk) + 1)

= 2π −
π

2
#(pk) +

π

2

∑
ordu(pk).

Then M(u|∂Σ) = 2−#(pi) +
1
2

∑
ordu(pi) so that

ind(u) = 2−#(pi) +
1

2

∑
ordu(pi)− 2χ(Σ) + #(pi) =

1

2

∑
ordu(pi).

Thus we have established the theorem in our current case.
Now we add boundary critical points to our calculation, applying a sim-

ilar trick wherein λ and u are modified. See Figure 9. Suppose that Σ is a
disk, crit(u) = crit∂(u), and the orders of the boundary punctures are arbi-
trary non-negative integers. Write zk ∈ C for the critical values of u. We add
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u
−→

ũ
−→

ak

ζ z0

ãk,i

b̃ζ

ãk,i+1

Figure 9: Modifying λ and u to obtain λ̃ and ũ near a boundary critical
point ζ of ordu(ζ) = 1 with u(ζ) = z0. The map u is obtained locally by
folding the boundary in half at the point ζ with ∂Σ mapped to the dashed
arc.

circles ∂Dϵ(zk) about each zk to λ to obtain an immersed multi-curve λ̃. A
half-ball is cut out from Σ̇ centered about each point ζ ∈ crit(u) to obtain
a domain Σ̃ ⊂ Σ, a disk with corners, and a holomorphic map ũ : Σ̃ → C

with boundary on λ̃. The newly created boundary components, b̃ζ , will be
mapped to the circles which have been added to λ. For each connected com-
ponent ak of ∂Σ̇, there will be a collection of boundary components ãk,i. The

endpoints of the b̃ζ provide two new marked points on ∂Σ̃ which will both
be asymptotic to a point of intersection of λ with one of the circles we’ve
added, lying in the u(∂Σ̇) ⊂ λ. The map ũ is as described in the previous
case considered, without boundary critical points and with

#(p̃i) = #(pi) + 2#crit∂(u),
∑

i

θ(ãk,i) = θ(ak),

θ(̃bζ) = −π(ordu(ζ) + 1).

Here p̃i are the boundary punctures of Σ̃. Those p̃i corresponding to the pi
of Σ have ordũ(p̃i) = ordu(pi) and the order of ũ at each of the two new p̃i
is 0. So we calculate

∑
θ(ak) =

∑

k,i

θ (ãk,i)(4.3.3)

=


∑

k,i

θ (ãk,i) +
∑

ζ∈crit(u)

θ(̃bζ)


−

∑

ζ∈crit(u)

θ
(
b̃ζ

)

=
(
2π −

π

2
# (p̃k) + π

∑
ordu (p̃k)

)

+ π
∑

ζ∈crit(u)

(ordu(ζ) + 1)
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= 2π −
π

2

(
#(pk) + 2#crit∂(u)

)
+

π

2

∑
ordu(pk)

+ π
∑

ζ∈crit(u)

(ordu(ζ) + 1)

= 2π −
π

2
#(pk) +

π

2

∑
ordu (pk) + π

∑

ζ∈crit∂u(ζ)

ordu(ζ).

Here we are applying Equation (4.3.2) in the third line above. Again, we
use the rotation angle computation above to compute the Maslov number
of u|∂Σ, establishing the theorem in the case under consideration.

u
−→

ũ
−→

ai

ζk u(ζk)
bk ãi,j

b̃k,0
c̃k

b̃k,1
ãi,j+1

Figure 10: Modifying λ and u to account for interior critical points. The
dashed arc is the image of b̃k,j which overlap perfectly.

Next we incorporate interior critical points into our calculation, following
a modification described in Figure 10. We start with a general holomorphic
map u whose domain is a disk with boundary punctures Σ̇, mapping ∂Σ̇ to
some λ. We write ζi for points in critintu and zk ∈ C for the critical values
of u. For each zk, let γ be an embedded arc in C satisfying the following
conditions:

1) The γk are pairwise disjoint as subsets of C.

2) For each k, zk is a unique point in γk ∩ u(crit(u)).

3) Each γk intersections λ at least once.

4) Each γk intersects λ transversely in π
2 angles.

Let λ̃ be the union of λ with the γk and circles ∂Dϵ(zk) about each zk. For
each ζk choose a path bk ⊂ γk ∩ im(u) which starts on λ and ends at the
point zk. We require that all of the bk have disjoint interiors. For each bk,

choose a path b̃k ⊂ Σ̇ which starts on ∂Σ̇ and ends at ζk. To obtain our ˜̇Σ,
we cut a keyhole-type shape out of Σ̇ at each ζk as follows:

1) Remove the connected component of u−1(Bϵ(zk)) which contains the
point ζk.
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2) Remove the arc b̃k.

3) Compactify along what was b̃k to obtain boundary arcs b̃k,0, b̃k,1.

The result of this surgery, shown in the center-right of Figure 10, is a surface
˜̇Σ with four new boundary marked points for each ζk. We retroactively
specify that the b̃k are chosen so that the surface Σ̃ is connected. The map
ũ is obtained by restricting u to the interior of Σ̃ which is contained in the
interior of Σ̇. The newly created boundary punctures will be asymptotic to
intersections of γk with λ and of γk with ∂Dϵ(zk). Clearly the order of ũ
at each of the new punctures is 0. In addition to the b̃k,j , the boundary
components ai will be subdivided into ãi,j , and there is a new boundary
arc for each ζk, which we will denote c̃k as shown in Figure 10. For the
calculations of rotation angles, we have

∑
θ(ai) =

∑

j

θ (ãij) , θ
(
b̃k,0

)
= −θ

(
b̃k,1

)
, θ (c̃k) = −2π (ordu(ζk) + 1) .

As the map ũ satisfies the conditions of Equation (4.3.3), we apply that for-
mula together with the above expressions and #(p̃k) = #(pk) + 4#critint(u)
to obtain

∑
θ(ak) =

∑

i

θ (ãk,i)

=


∑

i

θ (ãk,i) +
∑

ζ∈critint(u)

θ (c̃ζ)


−

∑

ζ∈critint(u)

θ (c̃ζ)

=


2π −

π

2
# (p̃k) +

π

2

∑
ordu (p̃k) + π

∑

ζ∈crit∂u(ζ)

ordu(ζ)




+ 2π
∑

ζ∈critint(u)

(ordu(ζ) + 1)

= 2π −
π

2
#(pk) +

π

2

∑
ordu(pk) + π

∑

ζ∈crit∂u(ζ)

ordu(ζ)

+ 2π
∑

ζ∈critint(u)

ordu(ζ)

proving the theorem in full generality for Σ = D.
To complete our calculation we must consider maps u whose domain

may have χ(Σ) < 1. In this, let bk be an arc basis of Σ̇ for which each bk is
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Figure 11: Cutting up Σ̇ using an arc basis to obtain ˜̇Σ ⊂ D. The case of an
annulus is shown, wherein there is only a single bk.

disjoint from crit(u) and the boundary marked points pk. By compactifying
Σ̇ \ (∪bk) as shown in Figure 11 we obtain a disk with #(pk) + 4 dim(H1(Σ))
boundary punctures, whose complement we denote by Σ̃. We also get a map
ũ, which we may consider as having boundary on an immersed multi-curve
λ̃ obtained by taking the union of λ with simple closed curves containing
the u(bk). Following the above calculations of

∑
θ(ak), we subtract 2π for

each bk. Thus,

1

π

∑
θ(ak) = 2χ(Σ)−

1

2
#(pk) +

1

2

∑
ordu(pk)

+
∑

ζ∈crit∂(u)

ordu(ζ) + 2
∑

ζ∈critint(u)

ordu(ζ).

By combining this formula with Theorem 4.1, the proof is complete. □

5. Examples of holomorphic annuli

In this section we study examples of holomorphic annuli on Legendrian
links using our index calculations and analysis of cohomological defects.
Our intentions are to

1) demonstrate the utility of these tools, showing how the obstruction
class can be used to count curves in certain restricted scenarios,

2) point out some obstacles in reducing counts of χ < 1 holomorphic
curves to combinatorics, and

3) provide contrast between moduli spaces of holomorphic curves associ-
ated to arbitrary Legendrian links, those which are right-simple, and
those which are left-right-simple.
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5.1. An index 0 annulus in MΛ

We explicitly describe an ind(U) = 0 annulus inMΛ. Although the existence
of such annuli violate an expected dimension count, this example will help
to us to understand some more subtle counting difficulties in Section 5.3
below.

Figure 12: A holomorphic annulus on the Lagrangian resolution of a pair of
unknots.

Consider the 2-component unlink of Legendrian tb = −1 unknots shown
in Figure 12. Let’s call this link Λ0 and for T ∈ R write ΛT for the link
obtained by translating the inner knot in the t-direction of R3 by T ∈ R,
while keeping the outer knot fixed. All of the ΛT have the same Lagrangian
projections which will be denoted by λ. As shown in the right-hand side of
the figure, there is a rigid holomorphic annulus on λ, one of whose boundary
components is positively asymptotic to a self intersection of the outer com-
ponent of λ. The other boundary component has two punctures negatively
asymptotic to the single self-intersection of the inner component of λ.

Suppose that the annuli ΣT in the domain of these maps are isomor-
phic to [−C,C]p × S1

q for some C > 0 with S1 = [0, 2π]/ ∼ and the p = −C
boundary component sent to the inner component of λ. Note that C is
constant in T as the maps u are unchanged by the variation in ΛT . Let
tT ∈ C∞(Σ̇T ) be harmonic functions extending the Dirichlet boundary con-
dition t∂T ∈ C∞(∂Σ̇T ) associated to each ΛT . We apply a Fourier series ex-
pansion to the restriction of tT to each {p = p0} to obtain the expression

tT (p, q) =
∑

n∈Z

fT,n(p)e
inq, fT,n ∈ C∞([−C,C],C),(5.1.1)

fT,−n(p) = fT,n(p).



✐

✐

“2-Avdek” — 2023/9/18 — 22:55 — page 296 — #32
✐

✐

✐

✐

✐

✐

296 Russell Avdek

We compute the Laplacian of tT as

∆tT (p, q) =
(∑

n∈Z

(∂2fT,n
∂p2

(p)− n2fT,n(p)
)
einq

)
dp ∧ dq = 0,

telling us that for all T , fT,0 must satisfy ∂2fT,0

∂p2 (p) = 0, and so be linear
functions of p. We may then write fT,0(p) = aT p+ bT for some real-values
constants (functions of the variable T ), aT and bT . Using this expression,
we compute the integral of our obstruction class OT ∈ H1(ΣT ) as

∫

{p=0}
dtT ◦ j =

∫

{p=0}

∑

n∈Z

einq
(∂fT,n

∂p
dp+ infT,ndq

)
◦ j

=

∫

{p=0}

∑

n∈Z

einq
(
−

∂fT,n
∂p

dq + infT,ndp
)

=

∫

{p=0}
−
∂fT,0
∂p

dq = −2πaT

=
1

2C

∫

ΣT

−
∂fT,0
∂p

dp ∧ dq

=
1

2C

(∫

p=−C

fT,0dq −

∫

p=C

fT,0dq
)

=
1

2C

(∫

p=−C

t∂Tdq −

∫

p=C

t∂Tdq
)
.

At the third and fourth lines we use the fact that fT,0 is an affine function of
p. In the last line, we use the fact that

∫
p=±C

fT,ne
inqdq = 0 for each n ̸= 0

together with the expression for tT in Equation (5.1.1).
For T > 0 large enough that inf{p=−C} t

∂
T > sup{p=C} t

∂
T the above ex-

pression will be positive, while for T < 0 small enough that sup{p=−C} t
∂
T <

inf{p=C} t
∂
T the above expression will be negative. Hence for some T ∈ R,

the obstruction class vanishes by the intermediate value theorem, and the
annulus admits a holomorphic lift to the symplectization.

Using the above methods, we only have control over O for |T | large.
We therefore cannot determine its behavior from only looking at the La-
grangian resolution of the front projection. Also problematic is the fact that
(unbranched) multiple covers of a O = 0 annulus will also have ind(U) = 0.
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5.2. A rigid holomorphic annulus in MΛ

To demonstrate that ind(U) = 1 holomorphic annuli can exist when using
the simple fronts of [N03], we look to the link Λ appearing in Figure 13. On
the right-hand side of the figure, we see a holomorphic annulus of index 1
on the Lagrangian submanifold λ = πC(Λ) ⊂ C. This annulus lives in a 1-
dimensional moduli space of such annuli, Mλ

u which we will shortly describe.
Working under the assumption that O is transverse to 0, we will see that
the signed count #(O−1(0)) of elements of Mλ which lift to holomorphic
annuli in MΛ/R has absolute value 1.

r1

r2

r3

Figure 13: An index 1 annulus on the Lagrangian projection of a right-
simple Legendrian link.

In Figure 14, we consider the moduli space Mλ
u which is parameter-

ized by the image of a single critical point appearing on the boundary of
the annulus. As in previous figures, we use dashed arcs to indicate where
the image of the boundary of a curve double-covers λ. From our previous
calculations, we expect dim(Mλ

u) = 1 and since dimH1(Σ), we expect that
O−1(0) – described in Theorem 3.4 will be a collection of points.

Figure 14: The moduli spaceMu is parameterized by the location of a single
boundary branch point, shown as a thick dot.

We seek to count the number of points in O−1(0) algebraically as a kind
of relative Euler number over Mλ

u. Let γ be the oriented loop in Σ shown in
the center of Figure 15. Identify H1(Σ) with R via the mapping [β] 7→

∫
γ
β

so that O may be viewed as a real number.
At one end of our moduli space shown in the left subfigure of Figure 15,

Σ degenerates into a nodal curve which can be viewed as a disk with two
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Figure 15: Nodal degeneration of Σ.

boundary punctures identified. A holomorphic map u0 from this disk (with
the node forgotten) will lift to the symplectization R× R3 with boundary
on R× Λ via a map U0. Let γ0 be the arc shown in the left-hand side of the
figure. The integral of dt ◦ j of this arc may be computed

∫

γ0

dt ◦ j =

∫

γ0

ds = ∞

as the arc begins at a negative puncture and ends at a positive puncture.
We conclude that

∫
[γ] dt ◦ j tends to infinity as the maps u tend to the nodal

limiting curve on the left-hand side of Figure 15.
A similar analysis may be applied to the right-hand side of the figure.

The arc shown starts at a positive puncture of a map U1 : Ḋ → R× R3 and
ends at negative puncture. We conclude that

∫
[γ] dt ◦ j → −∞ at this end of

the moduli space. As O → ∞ at one end of our moduli space, and O → −∞
at the end other end we conclude that the algebraic count of points inO−1(0)
is ±1. Hence at least 1 point in Mλ

u must determine a rigid annulus in the
associated moduli space MΛ

U .

5.3. An impossible-to-count annulus

We combine concepts of the preceding two examples to provide an example
of a 1-dimensional family of u annuli for which O−1(0) is impossible to count
from the Lagrangian projection.

Figure 16 shows a Legendrian Hopf link in the front projection, together
with its Lagrangian resolution. In the Lagrangian projection the image of
a holomorphic map u whose domain is an annulus is shown. The curve has
ind(u) = 1 and the associated moduli space Mλ

u may be parameterized by
the location of a boundary branch point or – at one point in the moduli
space – a non-convex corner, indicated by a dot in the figure. Let’s say that
Mλ

u is parameterized with a variable T ∈ (0, 1).
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Figure 16: A Legendrian link in the front and Lagrangian projections, to-
gether with the image of an ind(u) = 1 annulus in C.

Figure 17: T → 0 and T → 1 ends of the moduli space Mλ
u.

As in the example of Section 5.2, we fix a homotopy class of simple
closed curve γ in the annulus and study

∫
γ
O as the location of the branch

point varies. At the end of the moduli space shown in the left-hand side
of Figure 17, the annulus breaks into a rigid annulus and a disk. Let’s say
this is the T → 0 end of Mλ

u. As
∫
γ
O is well defined over this new rigid

annulus, we conclude that the limit limT→0

∫
γ
O(T ) exists, yielding some

C ∈ R. Generically we may assume that C ̸= 0.
The T → 1 end of the moduli space is shown on the right-hand side of

Figure 17. If, as in Figure 15, our curve γ traverses the annulus counter-
clockwise, then limT→1

∫
γ
O(T ) = ∞. Therefore we obtain

|#(MΛ
U )| =

{
1 C < 0

0 C > 0.

Unfortunately, it is impossible to read the sign of C – and so determine
|#(MΛ

U )| – from only looking at the Lagrangian projection.
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5.4. Some non-rigid holomorphic annuli

Here we study a 1-dimension family of annuli that reveal themselves when
gluing together two Legendrian RSFT disks at multiple punctures simul-
taneously. The Lagrangian projection λ = πC(Λ) of a right-handed tb = 1
trefoil Λ is depicted in Figure 18. We again assume that O is transverse to
0.

r1 r2 r3

r4

r5

R1

R2 R1 R2

r4

r1

r4

r1 r2 r3

r2 r3

Figure 18: Holomorphic disks in R× R3 with boundary on R× Λ, projected
to the xy-plane.

The trefoil has five chords labeled r1, . . . , r5. There are two connected
components of C \ πC(Λ) of interest to us, labeled R1 and R2. We can view
the Ri as the interiors of images of holomorphic maps ui from disks with
boundary punctures removed to the xy-plane. The union of theRi also forms
the image interior of the image of a holomorphic map, u•, whose domain is
a disk.

The holomorphic maps u•, u1, u2 can be lifted to holomorphic maps

U∗ = (s∗, t∗, u∗) : Ḋ∗ → R× R× C, U∗(∂Ḋ∗) ⊂ R× Λ

for ∗ = •, 1, 2. Here Ḋ∗ is the unit disk in C with some collection of boundary
punctures removed. Such lifts are unique up to translation in the s coordinate
and each disk has index 1. The asymptotics for boundary punctures are
indicated in the right half of Figure 18. The map U• is such that there a
point in the interior of D which intersects R× Λ, which is labeled with a
dot. We assume that such an intersection is unique at which point U(D) and
R× Λ meet transversely.

If we glue the negative punctures of U1 to the positive punctures of U2

the positive punctures we expect to see a 2-dimensional family of holomor-
phic maps from the annulus with two boundary punctures into R× R× C.
Modding out by translations in the s direction, this yields a family of maps
UT with
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Figure 19: The holomorphic maps UT .

1) limT→∞ Ut yielding the height 2 holomorphic building determined by
the gluing shown on the right-hand side of Figure 19.

2) limT→−∞ Ut being the curve corresponding to the degeneration where
one of the boundary components of the domain shrinks to a point.
This curve has a removeable singularity which when filled in yields
U•, as shown in the center-left of Figure 19.

Let a denote the oriented arc

a = R1 ∩R2, ∂a = πC(r2)− πC(r3).

The images of each uT = πC ◦ UT will appear as the image of u• with a slit
removed, with the slit properly contained in the arc a. The boundary of such
a slit will have two boundary branch points – the unique critical points of
the uT .

Now suppose that we identify a ≃ [0, 1] and consider the 2-parameter
family of holomorphic maps

ua0,a1
: Σ̇ → C, a0 < a1 ∈ [0, 1]

where Σ̇ is an annulus with two boundary punctures on the same boundary
component. The maps ua0,a1

have two boundary critical points contained
in the component of the annulus without boundary punctures, with critical
values ai ∈ [0, 1]. The image of each ua0,a1

is im(u•) with the slit (a0, a1) ⊂ a
removed.

The moduli spaceMa0,a1
of such ua0,a1

is then an open triangle, naturally
contained in the plane. The compactification of this space has 1-dimensional
strata provided by the subsets {a0 = 0}, {a1 = 1}, and {a0 = a1}. There are
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u0 ∪ u1

u•

Figure 20: The moduli space of ua0,a1
is shown in gray, parameterized by the

ai satisfying 0 < a0 < a1 < 1. The collection of ua0,a1
which we expect to lift

to holomorphic maps UT is shown as the wiggly arc b. The boundary of the
compactification of this arc contains the maps u• (where a0 = a1 ∈ int(a))
and the union u1 ∪ u2 (where 0 = a0, 1 = a1) in the boundary of the ua0

, a1
moduli space.

at least two points in the boundary compactified moduli space Ma0,a1
which

lift to holomorphic buildings in R4:

1) The map u0 ∪ u1 lifts to the height 2 holomorphic building U1 ∪ U2

shown in the right most subfigure of Figure 19.

2) The map u• lifts to the map U• with an interior removable puncture
deleted, shown in the center-left of Figure 19.

We expect – assuming that O is transverse at 0 ∈ R – that there should
be a 1-dimensional manifold b ⊂ Ma0,a1

of maps which lift to the UT as
shown. How can we see this using the obstruction class O? Following the
methodology of the previous example, we can integrate O over a loop γ in
Σ which is parallel to the boundary component of Σ without punctures.

Points in the boundary strata {a0 ∈ (0, 1), a1 = 1} of the compactified
space Ma0,a1

may be viewed as nodal annuli obtained by identifying bound-
ary punctures on the disk. These disks – with the node removed – lift to
holomorphic maps in R4. Adding in the puncture then amounts to gluing a
puncture which is negatively asymptotic to r3 to a puncture which is posi-
tively asymptotic to r3 in the domain. Because of our choice of orientation
of γ we see that

∫
γ
dt ◦ j → ∞ for points in Ma0,a1

which are close to this
boundary strata.

A similar argument shows that near the set {a0 = 0, a1 ∈ (0, 1)} in
Ma0,a1

, the integral
∫
γ
dt ◦ j tends towards −∞. Hence every every path
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in Ma0,a1
of the form a1 = a0 + ϵ we see a count of ±1 holomorphic annuli

in O−1(0) = MΛ
U/R. Looking over all such paths as the parameter ϵ varies,

we obtain the 1-dimensional family shown by the black curve in Figure 20.

5.5. Subtleties of compactified Dirichlet moduli spaces

Here we describe a moduli space of annuli which shows that the homeo-
morphism MD → Mλ of Proposition 3.2 does not in general extend to a
homeomorphism of the associated compactified moduli spaces. This behav-
ior cannot be eliminated using our notions of simple diagrams.

r1 r2 r3

Figure 21: Holomorphic annuli appearing with two boundary critical points.

Consider the holomorphic annuli in Mλ appearing in Figure 21. The
multicurve λ depicted may be obtained from the Lagrangian resolution of a
plat front for a left-right-simple Legendrian Λ which is a stabilized unknot.
The annuli have one boundary component with two boundary punctures
which are positively asymptotic to double points associated to chords r1
and r3. The other boundary component of the annuli map to homotopically
trivial curves in λ.

The associated moduli spaces Mλ and MD are homeomorphic to a dis-
joint union of two open triangles as described in the preceding subsection.
The open codimension one strata of the associated compactified moduli
spaces consists of

1) nodal disks with a pair of identified nodes on the boundary of the
disk. These occur when a single boundary critical point is pushed to
the boundary of the image of a map in Mλ.

2) half infinite cylinders with boundary punctures, or alternatively disks
with two boundary punctures and a single interior puncture. These
maps occur when the boundary critical points on the annulus coincide.

The codimension two boundary strata consists of limits of maps for which
both boundary critical points tend towards the boundary of the image of
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a holomorphic map. We’ll show that Mλ is connected while MD is not as
depicted in Figure 22, so that as claimed above there can be no homeomor-
phism MD → Mλ.

Mλ MD

ũ (tL1 , ũ) (tR1 , ũ)

Figure 22: Compactified moduli spaces. The points associated to the map
ũ discussed in the text are indicated by thickened dots.

Consider the punctured holomorphic disk ũ ∈ Mλ sending the interior
marked point to the double point πC(r2) of λ associated to r2. The map ũ can
be seen as the T → 1 limit of a family ũLT , T ∈ (0, 1) of annuli shown in the
left-hand side of Figure 21 with the boundary branch points both converging
to πC(r2). Likewise we can see ũ as a T → 1 limit of annuli ũRT , T ∈ (0, 1) as
in the right-hand side of the figure, again with the boundary branch points
converging to πC(r2). Hence ũ lives in the boundary of the compactifications
of each component of Mλ, and so Mλ is connected.

Now we show that MD is disconnected. Let t0, t1 be the t-values
endpoints of the chord r2 of Λ with t0 < t1. If we lift the ũLT to maps

(tLT , ũ
L
T ) ∈ MD, then in the T → 1 limit we’ll get a map (tL1 , ũ

L
1 ) ∈ MD

whose domain is a punctured disk. This map extends over the puncture,
say 0 ∈ D, so that (tL1 , ũ

L
1 )(0) = (t0, πC(r2)). This is a consequence of our

conventions for crossings described in Section 2.4.
We can likewise lift the ũLR to maps (tLR, ũ

R
T ) ∈ MD with a T → 1 limit

(tR1 , ũ) ∈ MD whose domain is a punctured disk with interior puncture
at 0 ∈ D. Again the map extends over the puncture with (tR1 , ũ

R
1 )(0) =

(t1, πC(r2)). Noting that both (tL1 , ũ) and (tR1 , ũ) project to the embedding

ũ ∈ Mλ but take different values at the interior puncture, 0 ∈ D, we con-
clude that (tL1 , ũ) ̸= (tR1 , ũ). Hence MD is disconnected.

We observe that at most one of (tL1 , ũ) and (tR1 , ũ) can lie in O−1(0). For
if one such map exists, then the domain of the associated curve will be a disk
with an interior puncture, determining a removable singularity. Extending
the map (s, t, ũ) over this puncture to obtain some (s, t, u), the value of t
at u−1(πC(r2)) will be uniquely determined by the the values of t along the
boundary of the non-punctured disk.

Generically – within the space of Legendrian isotopies which preserve the
isotopy class of λ – we can guarantee that neither of the (tL1 , ũ), (t

R
1 , ũ). To see
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this, we may keep the arcs of Λ projecting to ∂ im(ũ) fixed and perturb the z-
value Λ over the arcs projecting to the interior of im(ũ). Such perturbations
will preserve the map (s, t, u) and so the value of t at u−1(πC(r2)).

Assuming transversality of O, an analysis similar to that of Section 5.2
reveals that all points in ∂O−1(0) will correspond to 1-level SFT buildings
whose domain is a disk with two boundary punctures positively asymptotic
to r1 and r3 and a single, removable interior puncture. Likewise, a signed
count of such curves can be seen to be 0.

5.6. Non-embedded annuli

Figure 23: On the left, a non-embedded annulus u ∈ Mλ on the Lagrangian
resolution of the 2-copy of the trefoil. On the right, a pair of dashed arcs
parameterize the moduli space Mλ

u.

So far we have only considered examples of holomorphic annuli in Mλ

which are embeddings when restricted to the interiors of their domains.
Figure 23 shows the Lagrangian resolution of a 2-copy of the Legendrian
trefoil of Section 5.2. On the left, we see a holomorphic annulus u ∈ Mλ with
two boundary punctures on each connected component of the boundary of its
domain. Two of the corners are non-convex and we may compute ind(u) = 2.
Clearly the annulus is not embedded in C.

The moduli space Mλ
u is homeomorphic to an open square whose axes

are parameterized by the images of boundary critical points or non-convex
corners. These images must be contained in dashed arcs appearing in the
right-hand side of Figure 23.

Again, let’s assume that O is transverse to zero. An analysis analogous
to that of Section 5.2 reveals that ∂O−1(0) consists of two points which are
corners of the closed square Mλ

u. Each such point is associated to a 2-level
SFT building. The top level of each building is a holomorphic disk with two
positive and two negative punctures. The bottom level of the building has
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Figure 24: Each column represents 2-level SFT buildings of holomorphic
disks appearing in ∂MΛ as Gromov limits of holomorphic annuli.

two positive punctures which are glued to the negative punctures of the top
level curve. Each column of Figure 24 depicts such a 2-level building.

6. Restrictions on J-curves on left-right-simple Λ

In this section we will prove Theorem 1.2.

Assumptions 6.1. Throughout this section we will take Λ to be a left-right-
simple Legendrian link in (R3, ξstd) and use the notation λ = πC(Λ) ⊂ C

throughout. We always assume that u : Σ̇ → C is a holomorphic curve in
Mλ. The symbol U will always denote a holomorphic curve U = (s, t, u) :
Σ̇ → C in MΛ.

We briefly outline the content of this section below while providing a
broad overview of our proof:

1) Section 6.1 sets up some notation and details basic restrictions on u|∂Σ̇
imposed by the left-right-simple condition.

2) Section 6.2 uses the aforementioned restrictions to provide another
means of computing Maslov indices which, unlike our previous com-
putations, is specific to the left-right-simple setting. This will take care
of Theorem 1.2 as it pertains to the case χ(Σ) < −1.



✐

✐

“2-Avdek” — 2023/9/18 — 22:55 — page 307 — #43
✐

✐

✐

✐

✐

✐

Simplified SFT moduli spaces for Legendrian links 307

3) Section 6.3 establishes that all ind(u) = 0 disks are embedded.

4) Section 6.4 bounds the indices of curves with χ(Σ) = 0,−1.

5) Section 6.5 rules out the possibility of ind(u) = 2 holomorphic annuli
having interior critical points.

6) Section 6.6 combines all of our results to complete our proof of Theo-
rem 1.2.

6.1. Restrictions on boundary paths

The foundation underlying the results of this section are restrictions which
the left-right-simple condition impose on the rotation angles of paths in λ.
We outline some terminology which will help speed up our arguments.

SW SE

NENW

Figure 25: Arc segments emanating from a self-intersection of λ.

At each self-intersection of λ there are four oriented arcs exiting the
crossing at fixed angles, due to our requirement that Λ is in good position.
We call an arc-segment NE, NW, SW, or SE – for northeast, northwest,
southwest, or southeast – according to Figure 25. Likewise, we say that a
path in λ which both begins and ends on self-intersections is, say, NE-SW if
it exits its starting self-intersection from the NE and approaches its terminal
self-intersection along the SW arc.

We will be interested in paths in λ which are the images of connected
components of ∂Σ̇ under holomorphic maps. We’d like to continue to think
about the boundary behavior of Mλ curves as encoding the positivity and
negativity of asymptotics of MΛ curves.

Proposition 6.2. If u = πC ◦ U for a holomorphic curve U ∈ MU with Λ
left-right-simple, then for each connected component η of ∂Σ̇, inheriting its
orientation from ∂Σ,

1) if η begins at a negative puncture, then u(η) will exit the corresponding
self-intersection of λ in the NE or SW directions.
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B

Figure 26: Ends of λ determined by left and right pointing cusps, where B
is any positive braid with strange pointing left-to-right. The arrows indicate
orientations on the boundaries of images of holomorphic maps.

2) if η begins at a positive puncture, then u(η) will exit the corresponding
self-intersection of λ in the NW or SE directions.

3) if η ends at a negative puncture, then u(η) will enter the corresponding
self-intersection of λ in the NE or SW directions.

4) if η ends at a positive puncture, then u(η) will enter the corresponding
self-intersection of λ in the NW or SE directions.

The above proposition is clear from looking at the under- and over-
crossings of Λ at a self-intersection of λ. When speaking of Mλ curves,
we will continue to use the positive and negative puncture terminology as
determined by the above proposition, even when a map u is not determined
by some U .

Next we address such paths which touch local maxima and minima of
x|λ.

Proposition 6.3. Let u be a holomorphic map with domain Σ̇ with λ left-
right-simple and let η be a connected component of ∂Σ̇ parameterized by
a variable T , directed by the boundary orientation. If u(η) touches a local
minimum of x|λ, then at this point ∂y◦u

∂T
< 0 as shown on the left-hand side

of Figure 26. If u(η) touches a local maximum of x|λ, then at this point
∂y◦u
∂T

> 0 right-hand side of Figure 26.

Proof. We work out the first statement regarding local minima of x|λ. The
proof of the second statement regarding local maxima is similar. Apart from
looking at Figure 26 to ensure that the signs of partial derivatives are cor-
rect, we only need to check that ∂y◦η

∂T
is non-zero when u(η) touches a local

minimum of x|λ. If such a boundary critical point existed then the image
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of u would spill over into the connected component of C \ λ of infinite area,
which is impossible by our assumption that E(u) < ∞. □

6.2. An index formula for left-right-simple diagrams

Lemma 6.4. Let η = η(T ) be a connected component of ∂Σ̇ directed by the
boundary orientation and let u ∈ Mλ be a holomorphic map with domain Σ
with λ left-right-simple. If η is not closed, then it may be parameterized by
T ∈ (0, 1) and we write ai ∈ {±}, i = 0, 1 to indicate that the T → i punc-
tures are positive or negative. With this notation, the rotation angle θ(u(η))
is computed

θ(u(η)) =
π

2

(
δ+,a1

− δ−,a0
+ 2#(u(η)−1(crit(x|λ)))

)

where the δ are Kronecker deltas.

Proof. We use the boundary-relative homotopy invariance of the rotation
angle to compute it from models.

+

−
+ +

+

−
− −

+

−

− −
+

−
+ +

Figure 27: Models for immersed paths which avoid local minima of x|λ and
end at distinct self-intersections of λ. For left-to-right, the rotation angles
in the first row are 0, π

2 , 0, and −π
2 . For the second row, the angles are 0,

−π
2 , 0,

π
2 .

If u(η) does not touch a local minima of x|λ, then we can use one of the
models from Figure 27 assuming the endpoints of the path correspond to
distinct double points of λ. Each subfigure encodes the boundary angles and
comparative x values of immersed paths in λ which avoid the local minima
of x|λ. Non-immersed paths can be “pulled taut” to eliminate any critical
points of x ◦ u|η, so as to agree with one of these model paths. Any such
deformation the path will leave not change the rotation angle or the sign of
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the associated puncture per Proposition 6.2. However pulling a path taut
may change the direction that a path exists or enters a self-intersection of
λ from NE to SW, SW to NE, NW to SE, or SE to NW. Our formula for
θ(u(η)) may be verified by hand in each of these cases.

If the endpoints of the path correspond to the same double point and
the path does not touch crit(x|λ) then it must be homotopically trivial and
have 0 rotation angle. If η is an open interval, then it must touch the double
point at its ends with tangent vectors living in the same unoriented line at
both of its ends. This Proposition 6.3 indicates that either u(η) begins at
a positive puncture and ends at a negative puncture or that it begins at a
negative puncture and ends at a positive puncture. In either of these cases,
the Kronecker delta terms in the statement of the current proposition cancel
to yield θ(u(η)) = 0 as we have shown to be true.

−

− +

+ +

+

−

−

Figure 28: Models for taught paths with one end on a double point of λ and
the other on crit(x|λ). In the top row, paths begin at double points of λ and
end on points in crit(x|λ). In the bottom row, paths begin at critical points
of x|λ and end on double points of λ.

In the case that u|η touches a local minimum of x|λ we look to Figure 28.
We cut the path into subpaths which begin or and at double points or
crit(x|λ). Each subpath is then pulled taught – as described above – so that
∂u
∂T

̸= 0 along the interior of the subpath. We then add up the contributions
to rotation angle over each subpath. The figure encodes the relative x-values
and endpoint type of each such subpath. The contribution of each subpath
which begin at a local minimum of x|λ and and at a local maximum (or vice
versa) is clearly π. The desired formula then follows. □

Lemma 6.5. Suppose that ∂Σk is a boundary component of Σ and write
p±i,k for the boundary punctures of Σ contained in ∂Σk with superscripts
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indicating whether a puncture is positive or negative. Then for λ left-right-
simple, the Maslov index of u|∂Σk

may be computed

M(u|∂Σk
) + #(pi,k) = #(u|−1

∂Σk
(crit(x|λ))) + #(p+i,k).

Proof. We write ηi for the connected components of ∂Σ′
k and compute

(6.2.1) M(u|∂Σk
) + #(pi,k) =

1

π

∑

i

(
θ(u|ηi

) +
π

2

)

using Equation (4.1.1). If ∂Σ̇k is a circle, then the proposition clearly follows
from Lemma 6.4.

If ηi connect a negative punctures to a negative punctures, we may
rephrase the first statement of Lemma 6.4 by writing

θ (u|ηi
) = π#

(
u|−1

ηi
(crit (x|λ))

)
−

π

2
.

We apply analogous arguments to the remaining cases of the proposition.
In the case that ηi connects a negative puncture to a positive puncture,

then we can use the second statement in Lemma 6.4 to conclude that

θ (u|ηi
) +

π

2
=

π

2
+ π#

(
u|−1

ηi
(crit (x|λ))

)
.

In the case that ηi starts at a positive puncture and ends at a negative
puncture, we can use the third statement in Lemma 6.4 to conclude that

θ (u|ηi
) +

π

2
=

π

2
+ π#

(
u|−1

ηi
(crit (x|λ))

)
.

Finally, if ηi connects two positive punctures, we can use the final case of
Lemma 6.4 to conclude that

θ (u|ηi
) +

π

2
= π + π#

(
u|−1

ηi
(crit (x|λ))

)
.

We now plug the above equations into Equation (6.2.1) to compute

M (u|∂Σk
) + # (pi,k) = #

(
u|−1

∂Σk
(crit (x|λ))

)

+
1

2
(# (− → +) +#(+ → −) + 2# (+ → +)) .

where the right-most summand counts the number of ηi which end punctures
with varying signs indicated by + or −. This summand counts each positive
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puncture twice with multiplicity 1
2 . Hence

1

2
(# (− → +) +#(+ → −) + 2# (+ → +)) = #

(
p+i,k

)
,

completing the proof. □

We combine the results of the above proposition together with our stan-
dard index calculations and the fact that holomorphic maps have to have at
least 1 positive boundary puncture.

Theorem 6.6. When Λ is left-right-simple, the index of a map u with
domain Σ̇ may be computed

ind(u) = −2χ(Σ) + #
(
u|−1

∂Σ̇
(crit (x|λ))

)
+#

(
p+i

)

where the p+i are the positive boundary punctures of Σ. Therefore the indices
of maps U satisfy

ind(U) = −χ(Σ) + #
(
u|−1

∂Σ̇
(crit (x|λ))

)
+#

(
p+i

)

Some immediate consequences of the above theorem follow:

1) If Σ = D, all ind(u) = 0 curves have ≤ 2 positive punctures and all
ind(u) = 1 curves u have ≤ 3 positive punctures.

2) If Σ is an annulus, then ind(u) ≥ 1 as there must be at least one
positive boundary puncture.

3) If χ(Σ) < 0, then

ind(U) = ind(u) + χ(Σ) ≥ −χ(Σ) + 1.

In particular a χ(Σ) = −1 curve has ind(U) ≥ 2 and a curve with
χ(Σ) < −1 has ind(U) ≥ 3.

Furthermore, it’s easy to prove the following statement appearing in
Theorem 1.2:

Corollary 6.7. The reduced moduli space MΛ
1 /R of ind(U) = 1 holomor-

phic curves consists of a finite number of points for Λ left-right-simple.

Proof. The collection of such disks is a discrete set up to biholomorphic
reparameterization. There is a finite number of configurations of positive
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and negative asymptotics along the boundary of a disk. This follows from
the facts that such a disk has at most two positive punctures, there are a
finite number of double points of λ, and given a prescribed set of positive
punctures there is a finite collection of possible choices of negative punctures
due to the fact that a holomorphic disk must have positive area.

The collection of holomorphic disks with a given configuration of pre-
scribed boundary asymptotics is also finite. Indeed, Gromov compactness
[BEHW03] tells us that (the closure of) this discreet space is compact, and
hence finite. □

Holomorphic disks with ind(u) = 0 will be further analyzed below in
Section 6.3. There we will be provide an alternate, combinatorial proof of
Corollary 6.7. In order to prove Theorem 1.2, we will need to rule out the
existence of ind(u) = 1 annuli and ind(u) = 3 curves with χ(Σ) = −1. The
required analysis is carried out in Section 6.4.

6.3. Embeddedness and finiteness of ind(u) = 0 disks

Here we will use Theorem 6.6 together with the following lemma to establish
that all ind(u) = 0 holomorphic disks are embeddings into C. We also reprove
that there are only finitely many rigid disks without appealing to Gromov
compactness [BEHW03].

Lemma 6.8. Suppose that u : D → C is an immersion for which x ◦ u|∂D
has exactly one local maxima and one local minima. Then u is an embedding.

Proof. Consider the foliation of D given by ker(u∗dx) whose leaves are the
preimages of line segments of the form im(u) ∩ {x = x0}. The leaves corre-
sponding to the maximum and minimum x-values are points. Using our as-
sumption that u is an immersion, every other leaf is a compact 1-dimensional
manifold along which u∗dy ̸= 0.

By rescaling the x-coordinate of the target and reparameterizing D,
we may assume without loss of generality that x ◦ u|∂D agrees with the x-
coordinate on ∂D ⊂ C having unique boundary critical points ±1 ∈ D ⊂ C.
By our hypothesis on x ◦ u, the restriction of u to each connected compo-
nent of ∂D \ {±1} is an embedding. If the images of these line segments
intersect, say at some x0 ∈ (−1, 1), with y-value y0, then the restriction of
y ◦ u to the leaf {x = x0} must have (possibly degenerate) critical points as
y ◦ u = y0 at the endpoints of the leaf. At such a critical point, u cannot be
an immersion.
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We conclude that u|∂D is an embedding. Hence there is a single connected
component of C \ u(∂D) of finite area which must be the image of int(D)
under u. Hence u is an embedding, completing the proof. □

Figure 29: Rounding convex corners. The rounding procedure can be applied
by rotating the figure by any integer multiple of π

2 .

Proposition 6.9. For λ left-right-simple, each ind(u) = 0 holomorphic
disk is an embedding.

Proof. By Theorem 4.6, u is an immersion and all of the boundary punctures
of u must correspond to convex corners. By trimming D in neighborhoods
about its boundary marked points as described in Figure 29, we obtain a
map ũ from a disk to C which is an immersion. It suffices to show that ũ is
an embedding. The domain of ũ is strictly contained in D, but we will refer
to it as D for notational simplicity. The critical points of x ◦ ũ|∂D correspond
to the points in im(u) ∩ crit(x|λ) together with the positive punctures of u.

By Theorem 6.6, u must be one of the following two forms:

1) There are two positive punctures and u is disjoint from crit(x|λ).

2) There is a single positive puncture and a single point of crit(x|λ)
touched by u.

In either case, we get exactly two critical points of x ◦ ũ|∂D. Hence by
Lemma 6.8, ũ is an embedding. □

The embeddedness of ind(u) = 0 disks facilitates an alternate proof of
Corollary 6.7 with an explicit (albeit, course) bound on the number of such
disks.

Alternate proof of Corollary 6.7. Suppose that C \ λ has N ∈ N connected
components of finite area, indexed by {1, . . . , N}. The image of such a map U
will be uniquely determined by the components of C \ λ which are covered by
U . For each connected component of C \ λ can be covered at most once and if
two such covered connected components are adjacent, then our holomorphic
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map must extend over the arc lying at the intersection of their boundaries.
These observations follow from Proposition 6.9.

Define a map

MΛ
1 /R → (Z/2Z)N

which assigns to U a 1 (or 0) in the jth position of the target if the jth
connected component of C \ λ is (or is not) covered by im(πC ◦ U). The
preceding arguments inform us that this map is injective. It then follows
that #(MΛ

1 /R) ≤ 2N , the cardinality of the target of this map. □

The following result will be useful later in the proof of Proposition 6.12.

Proposition 6.10. Let u ∈ Mλ be an ind(u) = 0 curve associated to a
left-right-simple λ whose domain Σ̇ is a punctured disk with two positive
punctures. Then the positive punctures can be labeled p+min, p

+
max so that all

negative punctures p−i satisfy

x(p+min) < x(p−i ) < x(p+max)

where the x(p∗∗) are the limiting x-values of the punctures under the map u.

Proof. As all of the corners of u must be convex, a positive puncture must
point to the right or to the left. Let’s say that that one of the corners
corresponding to p+max points to the right.

As we traverse ∂Σ̇ leaving this puncture, we must exit the associated
self-intersection in the NW direction with x decreasing. Following the top
row of Figure 27 we see that any negative punctures encountered on our way
to p+min must have x-value strictly less than that of p+max and strictly greater
than that of p+min, which must be a left-pointing corner.

The same goes for any negative punctures encountered on the way from
p+min back to p+max while continuing to traverse the boundary of the punctured
disk. The same line of argument applies if we had first assumed that our
starting puncture corresponded to a left-pointing corner, up to a change in
notation. □

6.4. Elimination of χ = 0,−1 curves with low index

Here we analyze χ(Σ) = 0,−1 curves.

Proposition 6.11. Suppose that Σ is an annulus. Then any u ∈ Mλ with λ
left-right-simple has ind(u) ≥ 2. Therefore U ∈ MΛ with Λ left-right-simple
has ind(U) ≥ 2.
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Proof. We will rule out the existence of ind(u) = 1 annuli by contradiction.
By Theorem 6.6 such a curve could have only a single positive boundary
puncture and not touch any point in crit(x|λ). By Theorem 4.6, such a
curve can have either:

1) a single non-convex corner for one of its punctures, all other punctures
corresponding to convex corners, and no critical points or

2) all punctures corresponding to convex corners with a single boundary
critical point and no interior critical points.

Figure 30: Perturbing a non-convex corner to obtain a convex corner and a
boundary critical point.

In the first case above, we may perturb u near a non-convex corner
to find a nearby holomorphic map which coincides with the second case
described. This is described by Figure 30 and its π

2 rotations. The right-
most subfigure may also be reflected about a vertical line. After applying
such a perturbation, it suffices to consider only the second case listed above.

a

Figure 31: We push a boundary critical point to ∂Σ along an arc a.

Thus we may assume that we have a single boundary critical point away
from which our map u is an immersion. Following Figure 31, we may push
this boundary critical point along some arc a ⊂ Σ for which
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1) u(a) ⊂ λ,

2) one endpoint of a is the boundary branch point and the other lies on
∂Σ̇.

In the limit we obtain a nodal curve whose domain can be described by
compactifying Σ̇ \ a and identifying two points in the boundary of the curve
obtained.

If a separates Σ, then Σ̇ \ a consists of an annulus and a disk component.
This is impossible, as otherwise u would determine a holomorphic map from
the annulus to C which is immersed and hence have ind = 0, a scenario ruled
out by Theorem 6.6.

As u is non-separating, we may compactify Σ̇ \ a to obtain a disk with
boundary punctures and a holomorphic map ũ from this disk to C. The map
ũ is immersed with all corners convex and cannot touch any critical points of
x|λ. Hence the disk has exactly 2 boundary punctures, p+1 , p

+
2 by the above

theorem. As is clear from the cutting operation of Figure 31 – specifically
focusing on the dashed arc – the map ũ cannot be an embedding near its
boundary. This contradicts Proposition 6.9. □

Now we seek to show that all curves which are neither disks nor annuli
have ind(U) = ind(u) + χ(Σ) ≥ 3 as per item (2) of Theorem 1.2. According
to Theorem 6.6, we need only consider the case χ(Σ) = −1, so that Σ is either
a pair of pants or a genus 1 curve with a single boundary component.

Proposition 6.12. Suppose χ(Σ) = −1. If λ is left-right-simple, then
ind(u) ≥ 4. Consequently if Λ is left-right-simple, then ind(U) ≥ 3.

Proof. We suppose that we have a map u with ind(u) = 3 and χ(Σ) = −1,
seeking to find a contradiction. Applying Theorem 6.6, we see that this is the
minimum possible index and that our curve has a single positive puncture
and cannot touch crit(x|λ).

As in Figure 31, we can perform a perturbation to make all punctures
have branch order zero, possibly at the expense of introducing additional
boundary critical points. If the given boundary puncture p has ordu(p) > 1,
then the perturbation will result in a single boundary critical point of order
1, together with an additional boundary critical point of order ordu(p)− 1.
We will see how to deform boundary critical points of order two – the worst
possible case in our current setup – into a pair of boundary critical points,
each of order 1 in the discussion around Figure 33, below.

Then we may assume that all punctures correspond to convex corners.
Moreover, Theorem 4.6 tells us that out map has either
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1) a single interior critical point and a single boundary critical point of
order 1,

2) no interior critical points and boundary critical points whose orders
sums up to 3.

We first address the possibility that there exists an interior critical point.
Suppose that an interior critical point exists and take a path in the moduli
space which moves the critical point towards the boundary of ∂Σ̇. In the
limit there are two possible scenarios.

a

ã✛

❄

Figure 32: Pushing an interior critical point to ∂Σ. Domains of curves ap-
pear in the top row with their images in the bottom row, a convention we will
adopt for subsequent figures. The heavier shading indicates double-covering.

First, if the image of the critical point tends towards the boundary of
the image of our holomorphic map, then a node will develop in the domain
as shown in Figure 32. For arcs a in this image which connect the image of
the critical point to the boundary of the image will lift to double covers ã as
shown in the figure. In the limit, these arcs ã may shrink to points where the
nodes of interest will develop. Let’s write Σ̃ for the limiting curve obtained
by removing the node and write ũ : Σ̃ → C for the associated holomorphic
map. By our hypothesis on the map u, ũ is an immersion. If Σ̃ has two
connected components, then one of the components must have χ ≤ 0, and
the index of the restriction of ũ to this surface is zero. This is impossible by
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Theorem 4.6. If Σ̃ is connected then it is an annulus and ind(ũ) = 0, which
is again impossible.

Figure 33: In the left column we have a local picture of a map u with
a pair of ordu = 1 boundary critical points. To help intuit the branching
behavior, we observe a thin arc in the domain being sent to a loop enclosing
the images of the corresponding critical values via u. In the center column,
the boundary critical points converge to a single ordu = 2 boundary critical
point. In the right column, the single critical point moves from the boundary
of the domain into its interior. Again we track the image of an arc under
the map to help see the branching.

Second, the image of the critical point may stay within the interior of
the image of the limiting map. In this case, the domain Σ is topologically the
same in the limit and an ordu = 2 critical point develops on the boundary of
Σ̇. The limit curve may also be realized as the limit of a sequence of curves
having two ordu = 1 boundary critical points fuse as described in Figure 33.

We describe a simple model for this type of degeneration while explaining
what is happening in the figure. Consider functions of the form

uϵ =
z3

3
− ϵ2z, duϵ = (z + ϵ)(z − ϵ)

with domain the upper half plane Σ = {y ≥ 0}. For ϵ ∈ R ∪ iR, the uϵ map
∂Σ = R to R. For ϵ ∈ R \ {0} there are two critical points in the boundary
of the domain as shown in the left-hand side of Figure 33. For ϵ = 0, these
two boundary critical points converge as shown in the center column of the
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figure. Likewise taking the limit ϵ → 0 for ϵ ∈ iR will push a single interior
critical point towards ∂Σ. We see this as we transition from the right to
center columns of the figure.

By pushing interior critical points to the boundary of Σ̇, we can assume
that u has only convex corners, no interior critical points, and exactly three
boundary critical points, each of order 1. For the above argument can also
be used to convert ordu ≥ 1 boundary critical points into a collection of
ordu = 1 boundary critical points.

a

u(a)

Figure 34: Nodal degeneration occurring upon the fusion of two boundary
critical points. The arc a connects boundary critical points in the domain
of u.

As in Figure 31, we attempt to push one of the boundary critical points
towards the end of a compact, connected arc a ⊂ Σ̇ for which u(a) ⊂ λ.
This time, because our curve has multiple boundary critical points, we may
run into another boundary critical point as shown in Figure 34. Then the
limiting curve is a nodal domain which is obtained by shrinking the arc a to
a point. Let Σ̃ be the associated curve with the node removed determining
a holomorphic map ũ : Σ̃ → C. By our hypothesis, the map ũ must have
a single positive puncture and a single boundary critical point. Because
there is only one positive puncture, Σ̃ must be connected, and so Σ̃ must
be an annulus with a single boundary critical point, which is impossible by
Proposition 6.11.

Therefore, our arc a touches ∂Σ̇ at both of its endpoints, with one end-
point on a boundary critical point and the other on a point of ∂Σ̇ at which
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u is an immersion. The arc a is therefore described as in Figure 31. If the
arc a separates Σ̇, then either

1) Σ̃ is a disjoint union of a disk and an χ = −1 surface. If this is so,
the χ = −1 surface will have at most two boundary critical points,
no interior critical points, and so by the branch order index formula
will have ind = 2, which violates the estimate ind(u) ≥ 3 provided by
Theorem 6.6.

2) Σ̃ is a disjoint union of two annuli. In this case, either each annuli will
have a single boundary critical point (which is impossible as the index
of an annulus is at least 2) or one annulus will have two boundary
critical points and the other will have none (which is again impossible
due to the branch order index formula).

Thus the arc a cannot be separating so that Σ̇ \ a is a connected annulus
determining a holomorphic map with exactly two boundary critical points,
two positive punctures, all punctures corresponding to convex corners, and
no points touching crit(x|λ). Moreover, there must be a pair p+1 , p

−
1 consisting

of a positive and negative puncture which are mapped to the same self-
intersection of λ. Let’s denote this map u1 and rename the arc a as a1.

Let’s try to cut the domain of u1 with another arc a2 for which u1(a2) ⊂ λ
with an endpoint of a2 touching a boundary critical point of u1. We may
assume that such an arc cannot fuse two boundary critical points as in Fig-
ure 34, as we can consider such an arc as being contained in Σ̇, a possibility
ruled about by the above arguments. Thus the arc a2 must extend to the
boundary as in Figure 31. If the arc a2 is separating, then one of the con-
nected components of Σ̇ \ (a1 ∪ a2) will be an annulus with less than two
boundary critical points – an impossibility by Proposition 6.11. Therefore
a2 must not separate.

Then Σ′
2 = Σ̇ \ (a1 ∪ a2) is a disk and we have a map u2 : Σ̇2 → C for

which

1) all corners are convex,

2) the image of u2 cannot touch crit(x|λ),

3) there is a single boundary critical point of order 1,

4) there are exactly three positive puncture p+1 , p
+
2 , p

+
3 , and

5) there are negative punctures p−1 , p
−
2 for which p+i = p−i for i = 1, 2.
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We can cut Σ̇2 using another arc a3 which connects the remaining boundary
critical point to ∂Σ̇2 and necessarily separates. We thus obtain Σ′

3 = Σ̇ \
(a1 ∪ a2 ∪ a3) – a disjoint union of two disks – and a holomorphic map
u3 : Σ̇3 → C for which

1) all corners are convex,

2) the image of u3 cannot touch crit(x|λ),

3) u3 is an immersion,

4) there are exactly four positive puncture p+1 , . . . , p
+
4 , and

5) there are negative punctures p−1 , p
−
2 , p

−
3 for which u3(p

+
i ) = u3(p

−
i ) for

i = 1, 2, 3.

Since u3 is an immersion not touching crit(x|λ), each connected compo-
nent of Σ̇3 has exactly two positive punctures by Theorem 6.6. By Propo-
sition 6.10, for each pair (p+i , p

−
−) of punctures mapping to the same self-

intersection of λ we must have that p+i and p−− lie on distinct connected
components of Σ′

3. Let’s say that p+1 and p+2 live on the same connected
component, possibly after a reindexing of the boundary punctures. Then
again by Proposition 6.10, we must have that either the x-value of p+3 is less
than all of the x-values of all negative punctures, or it must have x-value
greater than that of all other punctures.

This means that the pair (p+3 , p
−
3 ) cannot possibly exist. Thus our

ind(u) = 3, χ(Σ) = −1 curve cannot exist and the proof is complete. □

6.5. Critical points of ind = 2 holomorphic annuli

Proposition 6.13. Suppose that u ∈ Mλ is an ind(u) = 2 annulus with λ
left-right-simple. Then u cannot have any interior critical points. Therefore
an ind(U) = 2 annulus cannot have interior critical points when Λ is left-
right-simple.

Proof. Following the narrative of the preceding proofs, we suppose that such
a map u with an interior critical point exists and will arrive at a contradic-
tion by studying nearby maps in Mλ

u. By Theorem 4.6 there is only one
such critical point, all punctures of u correspond to convex corners, and the
restriction of u to ∂Σ̇ is an immersion.

Following the proof of Proposition 6.12, we attempt to push the interior
critical point towards the boundary of im(u). If this is possible as described
in Figure 32, then a node will develop in the domain corresponding to the
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pinching of an arc, a ⊂ Σ. Let’s call the limiting map ũ whose domain is the
limiting nodal curve, with nodal connections deleted.

If a is boundary parallel, then the nodal curve obtained will be the
disjoint union of a disk and an annulus, and the restriction of ũ to the
annulus will be an immersion with all punctures corresponding to convex
corners, and hence have index 0 by Theorem 4.6. This is impossible by
Proposition 6.11. If a is not boundary parallel, the domain of ũ will be a
connected disk and the map ũ will be an immersion having all boundary
punctures corresponding to convex corners so that ind(ũ) = 0, again via
application of Theorem 4.6. However, following Figure 32, ũ cannot be an
embedding, contradicting Lemma 6.8.

We have established that we cannot push the interior critical points to
∂ im(u) as described in Figure 32, so we push the critical point to the end
of a single sheet of im(u) as described in Figure 33. The modified curve
ũ ∈ Mλ

u has all punctures corresponding to convex corners and exactly two
boundary critical points which are as depicted in the figure. Let η be the
connected component of ∂Σ̇ in which the boundary critical points of ũ are
contained.

Let λ̃ be the connected component of λ \ crit(x|λ) to which the curve
η is mapped via ũ. We will attempt to push the boundary critical points
of ũ along λ̃. Without loss of generality, suppose that the critical point is
as in Figure 33. Locally, the portion of im(ũ) which is multiply has greater
y-coordinate values than the portion of im(ũ) which is singly covered.

We push the right-most boundary critical point as far as we can to the
right along λ̃. In the limit we have a domain curve obtained from cutting an
embedded arc, bR, from Σ̃ and a holomorphic map from this domain with
only a single boundary critical point associated to the left-most critical point
of Figure 33. If the arc bR is boundary parallel, then one of the components
of the nodal domain obtained will be an annulus with 0 or 1 boundary
critical points, in violation of Proposition 6.11. Hence the curve bR must be
essential. The minimum x-value of b is attained by the left-most boundary
critical point of ũ, so that bR does not touch the other critical point of ũ.
As all corners of ũ are convex, bR cannot end at a puncture. Note that the
restriction of ũ to bR is an embedding.

We may analogously define an arc bL ⊂ Σ̃ emanating from the left-most
boundary critical point described above. The restriction of ũ to bL is also
an embedding, and will be disjoint from bR as is seen by comparing their
x-values under the map ũ. Thus the complement of bL ∪ bR in Σ̃ is a pair of
disks. Our current situation is summarized in Figure 35.
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bR

bL

ũ(bR)

ũ(bL)

bR

bL

Figure 35: The arcs bL and bR (top-left), their images in C (bottom-left), and
a schematic of their configuration within Σ̃ (right). Compare with Figure 33.

Compactifiying Σ̃ \ (bL ∪ bR) appropriately, we obtain a pair of holomor-
phic maps from a pair of punctured disks to C with boundary on λ, with all
boundary punctures corresponding to convex corners, and without critical
points. Hence each holomorphic disk in Mλ has ind = 0 and so must be em-
bedded by Proposition 6.8. Looking at the lower-left portion of Figure 35,
we see that this is impossible. For if one of the disks covers the bottom
triangle in the subfigure, then it must either do so twice, or cover both the
upper and lower triangles. In either case our holomorphic disk is not an
embedding. □

6.6. Proof of Theorem 1.2

We now combine the above results to complete our proof of Theorem 1.2.
Every ind = 1 holomorphic curve with boundary on R× Λ is a disk with

1 or 2 positive punctures. Theorem 6.6 indicates that the domain of an
ind(U) = 1 curve is either a disk with ≤ 2 positive punctures or and annulus.
Then Proposition 6.11 tells us that ind(U) = 1 annuli cannot exist.

Every ind = 1 holomorphic disk U is such that πC ◦ U is an embedding.
There are only finitely many such disks up to holomorphic reparameteriza-
tion and translation in the s-coordinate. This is the content of Section 6.3.
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Every ind = 2 holomorphic curve with boundary on R× Λ is either a
disk with at most 3 positive punctures, or an annulus with at most 2 positive
punctures. Theorem 6.6 tells us that a Σ = D curve of ind(U) = 2 has at most
3 positive punctures. It also rules out the possibility of ind(U) = 2 curves
with domain Σ̇ having χ(Σ) < −1. To rule out the existence of χ(Σ) = −1
curves with ind(U) = 2, apply Proposition 6.12.

Every ind = 2 holomorphic curve U is such with πC ◦ U is simply cov-
ered and has no critical points in the interior of its domain. By the above
statement, we need only to consider disks and annuli. Following our existing
notation, we write u = πC ◦ U .

In the case of a disk, Theorem 4.6 tells us that if an interior critical
point exists, then ind(u) ≥ 2 so that ind(U) ≥ 3. This establishes the second
statement that πC(U) has no interior critical points. The first statement that
πC(U) is simply covered can be derived from the first together with some
consequences of the Riemann-Hurwitz formula: If a disk multiply covers a
Riemann surface, then that surface must also be a disk and the covering must
have at least one critical point, which we’ve already shown to be impossible.

In the case of an annulus, we have already established that u has no
interior critical points in Proposition 6.13. If u multiply covers some map ũ :
Σ̃ → C, then this results establishes that the covering must be free of critical
points, so that Σ̃ is also an annulus. We may derive, say from Theorem 4.6,
that

ind(u) = N ind(ũ)

where N ∈ N is the covering multiplicity. By Proposition 6.11, if N > 1,
then ind(U) = ind(u) > 2. This completes the proof of Theorem 1.2.
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